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Saraccoa

aUniv. Bordeaux, CNRS, INRIA, Bordeaux INP, IMB, UMR 5251, F-33400 Talence
bINRAE, ETTIS, F-33612 Cestas, France

Published: November 20, 2022

Mixed data arise when observations are described by a mixture of numer-
ical and categorical variables. The R package PCAmixdata extends to this
type of data standard multivariate analysis methods which allow descrip-
tion, exploration and visualization of the data. The key techniques/methods
included in the package are principal component analysis for mixed data
(PCAmix), varimax-like orthogonal rotation for PCAmix, and multiple factor
analysis for mixed multi-table data. This paper proposes a unified math-
ematical presentation of the different methods with common notations, as
well as providing a summarised presentation of the three algorithms, with
details to help the user understand graphical and numerical outputs of the
corresponding R functions. This then allows the user to easily provide rel-
evant interpretations of the results obtained. The three main methods are
illustrated on a real dataset composed of four data tables characterizing liv-
ing conditions in different municipalities in the Gironde region of southwest
France.

keywords: mixture of numerical and categorical data, PCA, multiple cor-
respondence analysis, multiple factor analysis, varimax rotation, R.

1. Introduction

Multivariate data analysis refers to descriptive statistical methods used to analyze data
arising from more than one variable. The common goal of these methods is to provide
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description, exploration and visualization of the data, via data reduction and graphical
display. These variables can be either numerical or categorical. For example, principal
component analysis (PCA) and varimax rotation handle numerical variables, whereas
multiple correspondence analysis (MCA) handles categorical variables. Multiple factor
analysis (MFA) works with multi-table data, where the type of the variables can vary
from one data table to the other but the variables should be of the same type within a
given data table (Escofier and Pagès, 1994; Bécue-Bertaut and Pagès, 2008; Abdi et al.,
2013).

While PCA, varimax and MFA for mixed data have been already described elsewhere,
our paper provides a unified mathematical presentation of all the different methods with
common notations, which greatly enhances the user experience. A synthetic presentation
of the corresponding algorithms is given, with details to help the user understand all the
graphical and numerical outputs of the R package PCAmixdata (Chavent et al., 2017).
The way the methods are presented is clearly in the French tradition of data analysis
(“analyse des données” in French), following the words of Jean-Paul Benzecri “all in all,
doing a data analysis, in good mathematics, is simply searching for eigenvectors; all the
science (or the art) of it is in finding the right matrix to diagonalize”. More precisely,
the underlying theory involves reducing data dimensionality, via generalized singular
value decomposition, to provide a subspace that best represents the data in the sense
of maximizing the variability of the projected points. Because of this, great importance
is attached to relevant graphical representations of both rows and columns of the data
matrices.

Several existing R (R Core Team, 2017) packages use standard multivariate analysis
methods. These include ade4 (Dray and Dufour, 2007; Dray et al., 2017), FactoMineR
(Lê et al., 2008; Husson et al., 2017), ExPosition (Beaton et al., 2014) or Gifi (Mair
et al., 2019; de Leeuw and Mair, 2009). Most of them propose a function to perform PCA
with a mixture of numerical and categorical data. For instance, the function dudi.mix

in the package ade4 implements the method developed by Hill and Smith (1976) and
the function FAMD of the package FactoMineR implements that developed by Pagès
(2004) in the spirit of the French school. Note that these methods are also equiva-
lent to PCAMIX, a method proposed independently by de Leeuw and van Rijckevorsel
(1980) and extended by Kiers (1991), in the spirit of the Dutch school. The R package
PCAmixdata presented in this paper is dedicated to mixed data and provides three
main functions:

� PCAmix (PCA of a mixture of numerical and categorical variables),

� PCArot (rotation after PCAmix),

� and MFAmix (multiple factor analysis of mixed multi-table data).

The PCAmix function gives similar results to dudi.mix and FAMD. The procedure
PCArot (Chavent et al., 2012) is not implemented elsewhere and allows in particular
to make rotation in MCA for categorical data. The function MFAmix allows mixed single
data table (groups with both numerical and categorical variables) and differs from the
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function MFA of the package FactoMineR where only groups of numerical and groups
of categorical variables are allowed.

In addition, the package PCAmixdata naturally offers functions to plot graphical
outputs. One particularly useful feature of the package is the possibility to predict scores
for new observations of the principal components of PCAmix, PCArot and MFAmix, and to
project supplementary variables or levels (resp. supplementary groups of variables) on
the maps of PCAmix (resp. MFAmix). These functions are implemented in the R package as
S3 methods with generic names plot, predict and suppvar associated with the objects
of class PCAmix, PCArot and MFAmix.

A real dataset called gironde is available in the package to illustrate the functions
and the outputs with simple examples. This will allow the user to easily understand the
numerical and graphical outputs, and thus draw fine and relevant interpretations from
the results obtained. This dataset is made up of four data tables, each characterizing
living conditions in 542 municipalities in the Gironde region in southwest France, see
Appendix A for details. This dataset was taken from the 2009 census database1 of
the French national institute of statistics and economic studies and from a topographic
database2 of the French national institute of geographic and forestry information. The
first data table describes the 542 municipalities with 9 numerical variables relating to
employment conditions. The second data table describes those municipalities with 5
variables (2 categorical and 3 numerical) relating to housing conditions, the third one
with 9 categorical variables relating to services (restaurants, doctors, post offices,...) and
the last one with 4 numerical variables relating to environmental conditions. A complete
description of the 27 variables, divided into 4 groups (Employment, Housing, Services,
Environment) is given in Appendix A.

The rest of the paper is organized as follows. Section 2 details the link between
standard PCA and MCA via Generalized Singular Value Decomposition (GSVD). It
demonstrates how MCA can be obtained from a single PCA with metrics, the corner-
stone for merging standard PCA and MCA in PCAmix. Sections 3, 4 and 5 present
respectively the PCAmix, PCArot and MFAmix methods with details for the interpretation
of the associated graphical and numerical outputs. Some technical proofs have been
provided in Appendices B and D. In each of these sections, the corresponding method
is illustrated with the gironde dataset and the associated R code is given. Finally,
concluding remarks are provided in Section 6.

2. PCA with metrics

PCA with metrics is a generalization of the standard PCA method where metrics are
used to introduce weights into rows (observations) and columns (variables) within a data
matrix. Standard PCA for numerical data and standard MCA for categorical data can
be presented within this general framework, so that the unique PCAmix procedure for
a mixture of numerical and categorical data can be easily defined.

1http://www.insee.fr/fr/bases-de-donnees/
2http://professionnels.ign.fr/bdtopo
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2.1. The general framework

Let Z be a real matrix of dimension n× p. Let N (resp. M) be the diagonal matrix of
the weights of the n rows (resp. the weights of the p columns).

Generalized Singular Value Decomposition. The GSVD of Z with metrics N on
Rn and M on Rp gives the following decomposition:

Z = UΛV⊤, (1)

where

- Λ = diag(
√
λ1, . . . ,

√
λr) is the r × r diagonal matrix of the singular values of

ZMZ⊤N and Z⊤NZM, and r denotes the rank of Z;

- U is the n×r matrix of the first r eigenvectors of ZMZ⊤N such that U⊤NU = Ir,
with Ir the identity matrix of size n× r;

- V is the p×r matrix of the first r eigenvectors of Z⊤NZM such that V⊤MV = Ir.

Remark 1. The GSVD of Z can be obtained by performing the standard SVD of the
matrix Z̃ = N1/2ZM1/2, that is a GSVD with metrics In on Rn and Ip on Rp. It gives:

Z̃ = ŨΛ̃Ṽ
⊤

(2)

and transformation back to the original scale gives:

Λ = Λ̃, U = N−1/2Ũ, V = M−1/2Ṽ. (3)

Principal Components. The n rows of Z are projected with respect to the inner
product matrix M onto the axes spanned by the vectors v1, . . . ,vr of Rp (columns of
V) found by solving the sequence (indexed by i) of optimization problems:

maximize ∥ZMvi∥2N
subject to v⊤

i Mvj = 0 ∀1 ≤ j < i,

v⊤
i Mvi = 1.

(4)

The solutions v1, . . . ,vr are the eigenvectors of Z⊤NZM, i.e., the right-singular vectors
in (1).
The principal component scores (also called factor coordinates of the rows hereafter)

are the coordinates of the projections of the n rows onto these r axes. Let F denote the
n× r matrix of the factor coordinates of the rows. By definition

F = ZMV, (5)

and we deduce from (1) that:
F = UΛ. (6)

Let fi = ZMvi denote a column of F. The vector fi ∈ Rn is called the ith principal
component (PC) and the solution of (4) gives ∥fi∥2N = λi.
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Loadings. The p columns of Z are projected with respect to the inner product matrix
N onto the axes spanned by the vectors u1, . . . ,ur of Rn (columns of U) found by solving
the sequence (indexed by i) of optimization problems:

maximize ∥Z⊤Nui∥2M
subject to u⊤

i Nuj = 0 ∀1 ≤ j < i,

u⊤
i Nui = 1.

(7)

The solutions u1, . . . ,ur are the eigenvectors of ZMZ⊤N, i.e., the left-singular vectors
in (1).
The loadings (also called factor coordinates of the columns hereafter) are the coor-

dinates of the projections of the p columns onto these r axes. Let A denote the p × r
matrix of the factor coordinates of the columns. By definition

A = Z⊤NU, (8)

and we deduce from (1) that:
A = VΛ. (9)

Let us denote ai = Z⊤Nui a column of A. The vector ai ∈ Rp is called the ith
loadings vector and the solution of (7) gives ∥ai∥2M = λi.

Remark 2. The previous definitions give the following entries of Z = UΛV⊤:

� The first writing is Z = UA⊤ where

- U is the matrix of the standardized principal components (U = FΛ−1),

- A = VΛ is then the matrix of the loadings of the standardized principal
components.

� The second writing is Z = FV⊤ where

- F is the matrix of the principal components,

- V is then the matrix of the loadings of the principal components.

Reduced rank matrix approximation. PCA is often seen as a method of least
square approximation of the matrix Z by a matrix Ẑ of rank q < r. This optimal
low-rank approximation is defined by:

Ẑ = UqΛqV
⊤
q (10)

where Uq (resp. Vq) denote the matrix of the first q columns of U (resp. V) and Λ is
the diagonal matrix of the first q singular values.

The reconstruction matrix Ẑ is said to be optimal for matrices of rank q because it
satisfies the following condition :

∥Z− Ẑ∥2N,M = min
X

∥Z−X∥2N,M (11)
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where ∥X∥2N,M = tr(NXMX⊤) is a generalization of the Froebonius norm to the context
of generalized SVD with metrics N and M (Abdi, 2007). Moreover it can be shown that:

∥Z− Ẑ∥2N,M =

r∑
i=q+1

λi (12)

and accordingly the quality of the reconstruction defined by

λ1 + . . .+ λq∑r
i=1 λi

(13)

is maximized. The quantity (13) is interpreted as the proportion of the variance of the
data explained by the principal components or as the reconstructed proportion.

2.2. Standard PCA and standard MCA

This section presents how standard PCA (for numerical data) and standard MCA (for
categorical data) can be obtained from the GSVD of specific matrices Z, N, M. In both
cases, the numerical matrix Z is obtained by pre-processing the original data matrix X
and the matrix N (resp. M) is the diagonal matrix of the weights of the rows (resp. the
columns) of Z.

Standard PCA. The data table to be analyzed by PCA comprises n observations
described by p numerical variables, and is represented by the n× p quantitative matrix
X. In the pre-processing step, the columns ofX are centered and normalized to construct
the standardized matrix Z (defined such that 1

nZ
⊤Z is the linear correlation matrix).

The n rows (observations) are usually weighted by 1
n and the p columns (variables) are

weighted by 1. It gives N = 1
nIn and M = Ip. The metric M indicates that the distance

between two observations is the standard euclidean distance between two rows of Z.
The total inertia of Z is then equal to p. The matrix F of the factor coordinates of the
observations (principal components) and the matrix A of the factor coordinates of the
variables (loadings) are calculated directly from (6) and (1). The well-known properties
of PCA are the following:

- Each loading aji (element of A) is the linear correlation between the numerical
variable xj (the jth column of X) and the ith principal component fi (the ith
column of F):

aji = z⊤j Nui = r(xj , fi), (14)

where ui =
fi√
λi

is the ith standardized principal component and zj (resp. xj ) is

the jth column of Z (resp. X).

- Each eigenvalue λi is the variance of the ith principal component:

λi = ∥fi∥2N = Var(fi). (15)
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- Each eigenvalue λi is also the sum of the squared correlations between the p nu-
merical variables and the ith principal component:

λi = ∥ai∥2M =

p∑
j=1

r2(xj , fi). (16)

- The contribution of the variable xj to the variance of the ith principal component
interprets as a squared loading i.e. squared correlation here:

cji = a2ji = r2(xj , fi). (17)

- The total variance of the data matrix Z is equal to p. The proportion of variance
explained by the ith principal component is then:

λi
p
.

Standard MCA. The data table to be analyzed by MCA comprises n observations
described by p categorical variables and it is represented by the n × p matrix X. Each
categorical variable has mj levels and the sum of the mj ’s is equal to m. In the pre-
processing step, each level is coded as a binary variable and the n×m indicator matrix
G is constructed. Usually MCA is performed by applying standard Correspondence
Analysis (CA) to this indicator matrix. Here, we provide different ways to calculate
the factor coordinates of MCA by applying a single PCA with metrics to the indicator
matrix G.
Let Z now denote the centered indicator matrix G. The n rows (observations) are

usually weighted by 1
n and the m columns (levels) are weighted by n

ns
, the inverse of

the frequency of the level s, where ns denotes the number of observations that belong
to the sth level. It gives N = 1

nIn and M = diag( n
ns
, s = 1 . . . ,m). This metric M

indicates that the distance between two observations is a weighted euclidean distance
similar to the χ2 distance in CA. This distance gives more importance to rare levels.
The total inertia of Z with this distance and the weights 1

n is equal to m−p. The GSVD
of Z with these metrics allow a direct calculation using (6) the matrix F of the factor
coordinates of the observations (the principal components).The factor coordinates of the
levels however are not obtained directly from the loading matrix A defined in (1) but
from:

A∗ = MA. (18)

to get back the barycentric property recalled in (19) which is central to the interpretation
of the results in MCA. The usual properties in MCA are:

- Each coordinate a∗si (element of A∗) is the mean value of the (standardized) factor
coordinates of the observations that belong to level s:

a∗si =
n

ns
asi =

n

ns
z⊤s Nui = ūsi , (19)
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where zs is the sth column of Z, ui =
fi√
λi

is the ith standardized principal com-

ponent and ūsi is the mean value of the coordinates of ui associated with the
observations that belong to level s.

- Each eigenvalue λi is the variance of the ith principal component:

λi = ∥fi∥2N = Var(fi). (20)

- Each eigenvalue λi is the sum of the correlation ratios between the p categorical
variables and the ith principal component (which is numerical):

λi = ∥ai∥2M = ∥a∗i ∥2M−1 =

p∑
j=1

η2(fi|xj). (21)

where:

η2(fi|xj) =

∑
s∈Ij

ns
n (̄f

s
i − f̄i)

2

Var(fi)
(22)

where Ij is the set of indices of the levels of the categorical variable j and f̄
s
i is the

mean value of the coordinates of fi associated with the observations that belong to
level s. Here f̄i = 0 because the principal components fi are all centered as linear
combinaisons of the centered columms of Z.

The correlation ratio η2(fi|xj) measures the link between the categorical variable
xj and the numerical principal component fi and interprets as the part of the
variance of fi explained by xj .

- The contribution of the variable xj to the variance of the ith principal component
is:

cji =
∑
s∈Ij

n

ns
a2si =

∑
s∈Ij

ns
n
a∗2si = η2(fi|xj) (23)

The contribution cij in (23) is also called a squared loading to mimic PCA where
squared loadings are squared correlations (see equation (17)).

- The total variance of Z is equal to m − p. The proportion of variance explained
by the ith principal component is then:

λi
m− p

.

Remark 3. Compared to standard MCA method where correspondence analysis (CA)
is applied to the indicator matrix, we can note that:

- the total inertia of Z (based on the metrics M and N) is equal to m− p, whereas
the total inertia in standard MCA is multiplied by p and is equal to p(m − p).
This property will be useful to define PCA for mixed data right after. It will allow
to balance the inertia of the numerical data (equal to the number of numerical
variables) and the inertia of the categorical data (equal now to the number of levels
minus the number of categorical variables),
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- the factor coordinates of the levels are the same. However, the eigenvalues are
multiplied by p and factor coordinates of the observations are then multiplied by√
p. This property has no impact since results are identical to within one multiplier

coefficient.

3. PCA of a mixture of numerical and categorical data

Principal Component Analysis (PCA) methods dealing with a mixture of numerical
and categorical variables already exist and have been implemented in functions like
FAMD of the package FactoMineR or dudi.mix of the package ade4. In the R package
PCAmixdata, the function PCAmix implements an algorithm presented hereafter as
a single PCA with metrics, i.e., based on a Generalized Singular Value Decomposition
(GSVD) of pre-processed data. This algorithm includes naturally standard PCA and
standard MCA as special cases. Note that FAMD, dudi.mix and PCAmix are three different
implementations that give identical results (sometimes up to a constant factor) 3.

3.1. The PCAmix algorithm

The data table to be analyzed by PCAmix comprises n observations described by p1
numerical variables and p2 categorical variables. It is represented by the n×p1 numerical
data matrix X1 and the n × p2 categorical data matrix X2. Let m denote the total
number of levels of the p2 categorical variables. The PCAmix algorithm merges PCA and
MCA thanks to the general framework given in Section 2 . The two steps of PCAmix

(pre-processing and factor coordinates processing) mimic this general framework with
the numerical data matrix X1 and the categorical data matrix X2 as inputs.

Step 1: pre-processing.

1. Build the real matrix Z = [Z1,Z2] of dimension n× (p1 +m) where:

↪→ Z1 is the standardized version of X1 (as in standard PCA),

↪→ Z2 is the centered version of the indicator matrix G of X2 (as in standard
MCA).

2. Build the diagonal matrix N of the weights of the rows of Z. The n rows are often
weighted by 1

n , such that N = 1
nIn.

3. Build the diagonal matrix M of the weights of the columns of Z:

↪→ The first p1 columns (corresponding to the numerical variables) are weighted
by 1 (as in standard PCA).

↪→ The last m columns (corresponding to the levels of the categorical variables)
are weighted by n

ns
(as in standard MCA), where ns, s = 1, . . . ,m denotes the

number of observations that belong to the sth level.

3https://chavent.github.io/PCAmixdata/PCAmixcompare.html
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The metric

M = diag(1, . . . , 1,
n

n1
, . . . ,

n

nm
) (24)

indicates that the distance between two rows of Z is a mixture of the simple euclidean
distance used in PCA (for the first p1 columns) and the weighted distance in the spirit
of the χ2 distance used in MCA (for the last m columns). The total inertia of Z with
this distance and the weights 1

n is equal to p1 +m− p2.

Step 2: factor coordinates processing.

1. The GSVD of Z with metrics N and M gives the decomposition:

Z = UΛV⊤

as defined in (1). Let r denote the rank of Z.

2. The matrix of dimension n× r of the factor coordinates of the n observations is:

F = ZMV, (25)

or directly computed from the GSVD decomposition as:

F = UΛ. (26)

The columns fi of the matrix F are the principal components and the columns
ui =

fi√
λi

of the matrix U are the standardized principal components.

3. The matrix of dimension (p1+m)×r of the factor coordinates of the p1 quantitative
variables and the m levels of the p2 categorical variables is:

A∗ = MVΛ = MA, (27)

where A = VΛ is the matrix of the loadings of the standardized principal compo-
nents (see Remark 2).

The matrix A∗ of factor coordinates splits as follows: A∗ =

[
A∗

1

A∗
2

]
} p1
}m

where

↪→ A∗
1 contains the factor coordinates of the p1 numerical variables,

↪→ A∗
2 contains the factor coordinates of the m levels.

The matrix A∗ differs from the matrix A of the loadings so that A∗
2 verifies the

MCA’s barycentic property (29).
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3.2. Properties of PCAmix

The PCAmix procedure shares and generalizes the properties of PCA and MCA:

- For j = 1, . . . , p1:

a∗ji = aji = r(xj , fi), (28)

The factor coordinates in A∗
1 give the correlations between the p1 quantitative

variables and the principal components.

- For s = p1 + 1, . . . , p1 +m:

a∗si = ūsi , (29)

The factor coordinates of the m levels in A∗
2 give the mean values of the standard-

ized principal components ui for the observations that belong to level s.

- Each eigenvalue λi is the variance of the ith principal component:

λi = ∥fi∥2N = Var(fi). (30)

- Each eigenvalue is the sum of squared correlations (resp. the correlation ratios)
between the p1 numerical (resp. p2 categorical) variables and the ith principal
component (which is numerical):

λi = ∥ai∥2M = ∥a∗i ∥2M−1 ,

=

p1∑
j=1

a2ji +

p2∑
j=p1+1

∑
s∈Ij

n

ns
a2si,

=

p1∑
j=1

r2(xj , fi) +

p2∑
j=p1+1

η2(fi|xj). (31)

where η2(fi|xj) is the correlation ratio defined in (22).

- The contribution of a variable xj to the variance of the ith principal component
is: {

cji = a2ji = r2(xj , fi) if the variable xj is numerical,

cji =
∑

s∈Ij
n
ns
a2si = η2(fi|xj) if the variable xj is categorical,

(32)

The contributions are called squared loadings. Note that the term squared
loadings for categorical variables draws an analogy with squared loadings in PCA.
Squared loadings are defined as squared correlations for numerical variables and
correlation ratios for categorical variables.
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- The total variance of Z is equal to p1+m−p2. The proportion of variance explained
by the ith principal component is then:

λi
p1 +m− p2

.

Remark 4. PCAmix computes q ≤ r new numerical variables (the principal components)
that will “explain” or “extract” the largest part of the inertia of the matrix Z built from
the original data tables X1 and X2. The principal components (columns of F) are by
construction non correlated linear combinations of the columns of Z and can be viewed
as new synthetic numerical variables with maximum dispersion (30) and maximum link
with the original variables (31).

3.3. Graphical outputs of PCAmix

The function plot.PCAmix plots the observations, the numerical variables and the levels
of the categorical variables according to their factor coordinates.

Correlation circle. The map of the quantitative variables, called the correlation cir-
cle, gives an idea of the pattern of linear links between the quantitative variables. If two
columns zj and zj′ of Z1 corresponding to two quantitative variables xj and xj′ (two
columns of X1) are well projected on the map i.e. with squared cosine close to 1), the
cosine of their angle in projection gives an idea of their correlation in Rn defined by

r(xj ,xj′) = z⊤j Nzj′

with N = 1
nIn in the usual case of observations weighted by 1

n .

Levels map. The levels map gives an idea of the pattern of proximities between the
levels of (different) categorical variables. If two levels zs and zs′ (two columns of the
centered indicator matrix Z2) are well projected on the map, the distance when projected
gives an idea of their distance in Rn given by

d2N(zs, zs′) = (zs − zs′)
⊤N(zs − zs′)

which can be interpreted as 1 minus the proportion of observations having both levels
s and s′. With this distance two levels are similar if they are owned by the same
observations.

Squared loadings plot. Another graphical output available in plot.PCAmix is the
plot of the variables (numerical and categorical) according to their squared loadings.
The map of all the variables gives an idea of the pattern of links between the variables
regardless of their type (quantitative or categorical). More precisely, it is easy to verify
that the squared loading cji defined in (32) is equal to:

- the squared correlation r2(fi,xj) if the variable xj is numerical,
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- the correlation ratio η2(fi|xj) if the variable xj is categorical.

Coordinates (between 0 and 1) of the variables on this plot measure the intensity of the
links between variables and principal components and can be used to interpret principal
component maps.

Observations map. The map of the observations (also called principal component
map) gives an idea of the pattern of similarities between the observations. If two ob-
servations zk and zk′ (two rows of Z) are well projected on the map, their distance in
projection gives an idea of their distance in Rp1+m defined by

d2M(zk, zk′) = (zk − zk′)
⊤M(zk − zk′)

where M is defined in (24). This squared distance can be interpreted as the squared
euclidean distance calculated on the standardized numerical variables plus the squared
χ2 distance calculated on the levels of the categorical variables. Moreover the position
(left, right, up, bottom) of the observations on the PC’s map can be interpreted in terms
of:

- numerical variables using the property indicating that coordinates on the correla-
tion circle give correlations with PCs,

- levels of categorical variables using the property indicating that coordinates on the
level map are means of PC scores.

3.4. Prediction of PC scores with predict.PCAmix

A function to predict scores for new observations on the principal components can be
helpful. For example:

- projecting new observations onto the principal component map of PCAmix,

- when the PCs are used as synthetic numerical variables replacing the original vari-
ables (quantitative or categorical) in a predictive model (regression or classification
for instance).

The ith principal component of PCAmix can be written as a linear combination of the
vectors z1, . . . , zp1+m (columns of Z):

fi = ZMvi =

p1∑
ℓ=1

vℓizℓ +

p1+m∑
ℓ=p1+1

n

nℓ
vℓizℓ.

It is then easy to write fi as a linear combination of the vectors x1, . . . ,xp1+m (columns
of X = (X1|G)):

fi = β0i +

p1+m∑
ℓ=1

βℓixℓ, (33)
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with the coefficients defined as follows:

β0i = −
p1∑
ℓ=1

vℓi
x̄ℓ

σ̂ℓ
−

p1+m∑
ℓ=p1+1

vℓi,

βℓi = vℓi
1

σ̂ℓ
, for ℓ = 1, . . . , p1,

βℓi = vℓi
n

nℓ
, for ℓ = p1 + 1, . . . , p1 +m,

where x̄ℓ and σ̂ℓ are respectively the empirical mean and the standard deviation of the
column xℓ.
The principal components are thereby written in (33) as a linear combination of the

original numerical variables and of the original indicator vectors of the levels of the
categorical variables. The function predict.PCAmix uses these coefficients to predict
the scores (coordinates) of new observations on the q ≤ r first principal components (q
is chosen by the user) of PCAmix.

3.5. Illustration of PCAmix

Let us now illustrate the procedure PCAmix with the data table housing of the dataset
gironde. This data table contains n = 542 municipalities described on p1 = 3 numerical
variables and p2 = 2 categorical with a total of m = 4 levels (see Appendix A for the
description of the variables).

R> library("PCAmixdata")

R> data("gironde")

R> head(gironde$housing)

density primaryres houses owners council

ABZAC 131.70 88.77 inf 90% 64.23 sup 5%

AILLAS 21.21 87.52 sup 90% 77.12 inf 5%

AMBARES-ET-LAGRAVE 531.99 94.90 inf 90% 65.74 sup 5%

AMBES 101.21 93.79 sup 90% 66.54 sup 5%

ANDERNOS-LES-BAINS 551.87 62.14 inf 90% 71.54 inf 5%

ANGLADE 63.82 81.02 sup 90% 80.54 inf 5%

In order to explore the mixed data table housing, a principal component analysis is
performed using the function PCAmix.

R> split <- splitmix(gironde$housing)

R> X1 <- split$X.quanti

R> X2 <- split$X.quali

R> res.pcamix <- PCAmix(X.quanti = X1, X.quali = X2, rename.level = TRUE, graph = FALSE)

R> res.pcamix$eig

Eigenvalue Proportion Cumulative

dim 1 2.5268771 50.537541 50.53754
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dim 2 1.0692777 21.385553 71.92309

dim 3 0.6303253 12.606505 84.52960

dim 4 0.4230216 8.460432 92.99003

dim 5 0.3504984 7.009968 100.00000

Note that the function splitmix splits a mixed data matrix into two datasets: one
with the numerical variables and one with the categorical variables.
The sum of the eigenvalues is equal to the total inertia p1+m−p2 = 5 and the first two

dimensions retrieve 71% of the total inertia. Let us visualize on these two dimensions
the 4 different plots presented in Section 3.3.

R> plot(res.pcamix, choice = "ind", coloring.ind = X2$houses, label = FALSE,

posleg = "bottomright", main = "(a) Observations")

R> plot(res.pcamix, choice = "levels", xlim = c(-1.5,2.5), main = "(b) Levels")

R> plot(res.pcamix,choice = "cor", main = "(c) Numerical variables")

R> plot(res.pcamix, choice = "sqload", coloring.var = T, leg = TRUE,

posleg = "topright", main = "(d) All variables")

Figure 1(a) shows the principal component map where the municipalities (the ob-
servations) are colored by their percentage of houses (less than 90%, more than 90%).
The first dimension (left hand side) highlights municipalities with large proportions of
privately-owned properties. The level map in Figure 1(b) confirms this interpretation
and suggests that municipalities with a high proportion of houses (on the left) have a
low percentage of council housing. The correlation circle in Figure 1(c) indicates that
population density is negatively correlated with the percentage of home owners and that
these two variables discriminate the municipalities on the first dimension.

Figure 1(d) plots the variables (categorical or numerical) using squared loadings as
coordinates. For numerical variables, squared loadings are squared correlations and for
categorical variables squared loadings are correlation ratios. In both cases, they mea-
sure the link between the variables and the principal components. It can be observed
that the two numerical variables density and owners and the two categorical variables
houses and council are linked to the first component. On the contrary, the variable
primaryres is clearly orthogonal to these variables and associated with the second com-
ponent. Note that these links show neither a positive nor a negative association, and
the maps Figure 1(b) and Figure 1(c) are necessary for a more precise interpretation.
In summary, municipalities on the right of the principal component map have a rel-

atively high proportion of council housing and a small percentage of privately-owned
houses, with most accommodation being rented. On the other hand, municipalities on
the left hand side are mostly composed of home owners living in their primary residence.
The percentage of primary residences also has a structuring role in the characterization
of municipalities in this region of France by defining clearly the second dimension. In-
deed the municipalities at the bottom of the map (those with small values on the second
dimension) are sea resorts with many secondary residences. For instance the 10 munici-
palities with the smallest coordinates in the second dimension are well-known resorts on
France’s Atlantic coast:
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Figure 1: Graphical outputs of PCAmix applied to the data table housing

R> sort(res.pcamix$ind$coord[,2])[1:10]

VENDAYS-MONTALIVET CARCANS LACANAU

-6.171971 -6.087304 -6.070451

SOULAC-SUR-MER GRAYAN-ET-L’HOPITAL LEGE-CAP-FERRET

-5.802359 -5.791642 -5.596315

VERDON-SUR-MER HOURTIN ARCACHON

-5.008545 -4.493259 -4.013374

PORGE

-3.751233
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Prediction and plot of scores for new observations. We will now illustrate how
the function predict.PCAmix can be helpful in predicting the coordinates (scores) of
observations not used in PCAmix. Here, 100 municipalities are sampled at random (test
set) and the 442 remaining municipalities (training set) are used to perform PCAmix.
The following R code shows how to predict the scores of the municipalities of the test
set on the two first PCs obtained with the training set.

R> set.seed(10)

R> test <- sample(1:nrow(gironde$housing), 100)

R> train.pcamix <- PCAmix(X1[-test,], X2[-test,], ndim = 2, graph = FALSE)

R> pred <- predict(train.pcamix, X1[test,], X2[test,])

R> head(pred)

dim1 dim2

MAZION -0.4120140 0.03905247

FLAUJAGUES -0.6881160 -0.33163728

LATRESNE 0.7447583 0.65305517

SAINT-CHRISTOLY-DE-BLAYE -0.7006372 -0.33216807

BERSON -1.1426625 0.33607088

CHAMADELLE -1.3781919 0.24609791

These predicted coordinates can be used to plot the 100 supplementary municipalities
on the principal component map of the other 442 municipalities (see Figure 2).

R> plot(train.pcamix, axes = c(1,2), label = FALSE, main = "Observations map")

R> points(pred, col = 2, pch = 16)

R> legend("bottomright", legend = c("train","test"), fill = 1:2, col = 1:2)

Supplementary variables. The function supvar.PCAmix calculates the coordinates
of supplementary variables (numerical or categorical) on the maps of PCAmix. More
precisely this function builds an R object of class PCAmix including the supplementary
coordinates. For instance let us consider the numerical variable building of the dataset
environment and the categorical variable doctor of the dataset services as supple-
mentary variables (see Appendix A for description of these two variables).

R> X1sup <- gironde$environment[ , 1, drop = FALSE]

R> X2sup <- gironde$services[ , 7, drop = FALSE]

R> res.sup <- supvar(res.pcamix, X1sup, X2sup, rename.level = TRUE)

R> res.sup$quanti.sup$coord[ , 1:2, drop = FALSE]

dim1 dim2

building 0.6945295 0.1884711

R> res.sup$levels.sup$coord[ ,1:2]

dim1 dim2

doctor=0 -0.44403187 -0.006224754

doctor=1 to 2 0.07592759 -0.112352412

doctor=3 or + 1.11104073 0.099723319
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Figure 2: Projection of 100 supplementary municipalities (in red) on the PC map of the
other 442 municipalities (in black)

The coordinates of the supplementary numerical variables building are still correla-
tions. For instance, the correlation between building and the first PC is equal to 0.69.
The coordinates of the levels of the supplementary categorical variables are still mean
values. For instance the coordinate -0.44 of the level doctor=0 is the mean value of the
municipalities with 0 doctors on the first standardized PC. They are probably mostly
left of the PC map. Graphical outputs including these supplementary variables and the
original ones can be obtained as previously with the function plot.PCAmix, see Figure 3.

R> plot(res.sup, choice = "cor", main = "Numerical variables")

R> plot(res.sup, choice = "levels", main = "Levels", xlim = c(-2,2.5))

4. Orthogonal rotation in PCA of mixed data

It is common practice in PCA to apply a rotation procedure to loadings to simplify
interpretation of the principal components. The well known varimax rotation procedure
(Kaiser, 1958) is implemented in the R function varimax of the stats package but this
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Figure 3: In blue, projection of the supplementary numerical variable building (left) and
projection of the levels of the supplementary categorical variable doctor (right)

procedure fits only for numerical data. The function PCArot of the package PCAmix-
data implements a generalization of the varimax procedure to the case of mixed data
(Chavent et al., 2012). The rotation procedure PCArot applies to the (standardized)
principal components of PCAmix to get either large (close to 1) or small (close to 0)
squared loadings. Indeed in PCAmix the squared loadings are squared correlations for
numerical variables and correlation ratios for categorical variables measuring then the
link between the variables (numerical or categorical) and the principal components. The
rotation procedure PCArot is therefore applied to the first q principal components of the
procedure PCAmix where q is chosen by the user.

4.1. The PCArot algorithm

We have seen that PCAmix is essentially a GSVD that gives the decomposition:

Z = UΛV⊤

defined in (1). The columns of U are the standardized principal components (PCs)
and the columns of A = VΛ are the loading vectors of the standardized principal
components. The PCArot procedure rotates the matrix Uq of the first q standardized
PCs and the matrix Aq of the first q loading vectors. Rotating the loadings Aq of
the standardized PCs (rather than loadings Vq of the PCs) provides rotated scores
that continue to be uncorrelated. The PCArot procedure does so by following Kiers
(1991) proposal to maximize Kaiser’s varimax function applied to squared loadings for
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quantitative variables and ‘pseudo’ squared loadings for categorical variables. Here the
PCArot procedure uses the alternative algorithm proposed by Chavent et al. (2012) which
expressed the squared loadings for categorical variables somewhat differently, using all
elements of Aq, as follows.

Let T be a q × q orthonormal rotation matrix. Let Urot = UqT denote the matrix of
the rotated standardized PCs and Arot = AqT denote the matrix of the rotated loading
vectors. In varimax rotation, the matrix T is computed by maximizing the variance
of the contributions of the variables which interprets as squared loadings. The squared
loadings defined in (32) write after rotation:{

cji,rot = a2ji,rot if the variable xj is numerical,

cji,rot =
∑

s∈Ij
n
ns
a2si,rot if the variable xj is categorical,

(34)

They measure the links (squared correlations or correlation ratios) between the principal
components after rotation and the variables. Maximizing the variance of the squared
loadings after rotation leads to high values of squared loadings for several variables and
low for the remainder while leaving the quality of the matrix reconstruction unchanged.
The varimax rotation problem is then rephrased as

max
T

{f(T)|TT⊤ = T⊤T = Iq}, (35)

where

f(T) =

q∑
i=1

p∑
j=1

(cji,rot)
2 − 1

p

q∑
i=1

 p∑
j=1

cji,rot

2

. (36)

The objective function (36) also writes (see Appendix C):

f(T) =

q∑
i=1

p∑
j=1

(c̃ji,rot)
2 − 1

p

q∑
i=1

 p∑
j=1

c̃ji,rot

2

. (37)

where c̃ji,rot are the squared loadings after rotation obtained with the standard SVD

Z̃ = ŨΛ̃Ṽ
⊤
,

of the matrix Z̃ = N1/2ZM1/2 (see Remark 1). The rotation procedure proposed by
(Chavent et al., 2012) uses the standard SVD of Z̃ to optimize the objective function
(37). This procedure summarized in Appendix B finds an optimal rotation matrix T
and gives:

Ũrot = ŨqT (38)

Ãrot = ÃqT (39)
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Rotated factor coordinates processing.

1. The matrix of dimension (p1 +m) × q of the rotated factor coordinates of the p1
quantitative variables and the m levels of the p2 categorical variables is (see 58):

A∗
rot = MArot = M1/2Ãrot. (40)

A∗
rot is split as follows: A

∗
rot =

[
A∗

1,rot

A∗
2,rot

]
} p1
}m

where

↪→ A∗
1,rot contains the rotated factor coordinates of the p1 numerical variables,

↪→ A∗
2,rot contains the rotated factor coordinates of the m levels.

2. The variance λi,rot of the ith rotated principal component is calculated as:

λi,rot = ∥ai,rot∥2M = ∥ãi,rot∥2Ip1+m
, (41)

where ai,rot (resp.ãi,rot) is the ith column of Arot (resp. Ãrot).

Let Λrot = diag(
√
λ1,rot, . . . ,

√
λq,rot) denote the diagonal matrix of the standard

deviations of the q rotated principal components.

3. The matrix of dimension n×q of the rotated factor coordinates of the n observations
is:

Frot = UrotΛrot = N−1/2ŨrotΛrot. (42)

Remark 5. For numerical data, PCArot is the standard varimax procedure defined by
Kaiser (1958) for rotation in PCA. For categorical data, PCArot is an orthogonal rota-
tion procedure for Multiple Correspondence Analysis (MCA).

4.2. Properties of PCArot

The properties used to interpret the graphical outputs of PCAmix remain true after
rotation:

- the rotated factor coordinates of the p1 numerical variables (the first p1 rows of
A∗

rot) are correlations with the rotated principal components (the columns of Frot),

- the rotated factor scores of the m levels (the m last rows of A∗
rot) are mean values

of the (standardized) rotated factor coordinates of the observations that belong
these levels.

The contribution (squared loading) of the variable xj to the variance of the rotated
principal component fi,rot is calculated directly from the matrix Ãrot with:

{
cji,rot = ã2ji,rot = r2(fi,rot,xj) if the variable xj is numerical,

cji,rot =
∑

s∈Ij ã
2
si,rot = η2(fi,rot|xj) if the variable xj is categorical.

(43)
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The squared loadings after rotation are then the squared correlation or correlation ratio
between the variables and the rotated principal components.

The function plot.PCAmix presented in Section 3.5 plots the observations, the nu-
merical variables and the levels of the categorical variables according to their factor
coordinates after rotation. It also plots variables according to their squared loadings
after rotation. The interpretation rules given in Section 3.3 remain true.

4.3. Prediction of rotated PC scores with predict.PCAmix

PCArot computes q new non correlated numerical variables called rotated principal com-
ponents that will explain the same part of inertia than PCAmix but with simpler interpre-
tation. Let us show that the rotated principal components (columns of Frot) are linear
combination of the columns of Z.

First it can be showed (see Appendix D) that:

Frot = ZVrot, (44)

with

Vrot = M1/2ṼqΛ̃
−1
q TΛrot, (45)

and

T = Ũ
⊤
q Ũrot. (46)

It follows that the ith rotated principal component fi,rot of PCArot writes as a linear
combination of the vectors z1, . . . , zp1+m (columns of Z):

fi,rot = Zvi,rot =

p1+m∑
ℓ=1

vℓi,rotzℓ. (47)

It is then easy to write fi,rot as a linear combination of the vectors x1, . . . ,xp1+m

(columns of X = (X1|G)):

fi,rot = β0i,rot +

p1+m∑
ℓ=1

βℓi,rotxℓ, (48)

with the coefficients

β0i,rot = −
p1∑
ℓ=1

vℓi,rot
x̄ℓ

σ̂ℓ
−

p1+m∑
ℓ=p1+1

vℓi,rot
n

nℓ
x̄ℓ,

βℓi,rot = vℓi,rot
1

σ̂ℓ
, for ℓ = 1, . . . , p1,

βℓi,rot = vℓi,rot
n

nℓ
, for ℓ = p1 + 1, . . . , p1 +m,
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where x̄ℓ and σ̂ℓ are respectively the empirical mean and the standard deviation of the
column xℓ.

The rotated principal components are thereby in (48) linear combinations of the orig-
inal numerical variables and of the original indicator vectors of the levels of the categor-
ical variables. The function predict.PCAmix uses these coefficients to predict the scores
(coordinates) of new observations on the q rotated principal components of PCArot.

4.4. Illustration of PCArot

Let us now illustrate the procedure PCArot with the mixed data table housing already
used in Section3.5. Let us first create a data frame without the first ten municipalities
(used later for prediction purposes).

R> library("PCAmixdata")

R> data("gironde")

R> train <- gironde$housing[-c(1:10), ]

R> split <- splitmix(train)

R> X1 <- split$X.quanti

R> X2 <- split$X.quali

R> res.pcamix <- PCAmix(X.quanti=X1, X.quali = X2, rename.level = TRUE, graph = FALSE)

R> res.pcamix$eig

Eigenvalue Proportion Cumulative

dim 1 2.5189342 50.378685 50.37868

dim 2 1.0781913 21.563825 71.94251

dim 3 0.6290897 12.581794 84.52430

dim 4 0.4269180 8.538361 93.06267

dim 5 0.3468667 6.937335 100.00000

The first q = 3 principal components of PCAmix retrieve 84.5% of the total inertia. In
order to improve the interpretation of these 3 components without adversely affecting
the proportion of explained inertia we perform a rotation using the function PCArot.

R> res.pcarot<-PCArot(res.pcamix, dim = 3, graph = FALSE)

R> res.pcarot$eig #variance of the rotated PCs

Variance Proportion

dim1.rot 1.919546 38.39092

dim2.rot 1.057868 21.15737

dim3.rot 1.248801 24.97601

The spread of the proportion of variance in the three dimensions is modified but the
rotated principal components still contain 84.5% of the total inertia:

R> sum(res.pcarot$eig[ ,2])

[1] 84.5243
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The rotation also modifies squared loadings with more clear association after rotation
between the third principal component and the variable density. Indeed the squared
correlation between density and the third PC is equal to 0.39 before rotation and
increases to 0.9 after rotation.

R> res.pcamix$sqload[ ,1:3]

dim 1 dim 2 dim 3

density 0.49 0.07 0.39

primaryres 0.00 0.94 0.02

owners 0.73 0.02 0.00

houses 0.68 0.03 0.03

council 0.61 0.01 0.18

R> res.pcarot$sqload

dim1.rot dim2.rot dim3.rot

density 0.04 0.01 0.90

primaryres 0.00 0.96 0.01

owners 0.48 0.03 0.25

houses 0.63 0.03 0.08

council 0.76 0.03 0.01

Because the rotation improves the interpretation of the third principal component
while the second component hardly changed, we plot the observations and the variables
on the dimensions 1 and 3.

R> plot(res.pcamix, choice = "ind", axes = c(1,3), label = FALSE,

main = "Observations before rotation")

R> plot(res.pcarot, choice = "ind", axes = c(1,3), label = FALSE,

main = "Observations after rotation")

R> plot(res.pcamix, choice = "sqload", axes = c(1,3),

main="Variables before rotation", coloring.var = TRUE, leg = TRUE)

R> plot(res.pcarot, choice = "sqload", axes = c(1,3),

main="Variables after rotation", coloring.var = TRUE, leg = TRUE)

Figure 4 shows how the variable density is more clearly linked after rotation to
the third principal component. Indeed, after rotation, the coordinates of the variable
density on the y-axis is equal to 0.9 (the squared correlation between density and
the 3rd rotated principal component). The municipalities at the top of the plot of the
observations after rotation are then characterized by their population density. Note that
the benefit of using rotation on this dataset is limited.

Prediction after rotation. Let us now predict the scores of the 10 first municipalities
of the data table housing on the rotated principal components of PCArot.
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Figure 4: Graphical outputs of PCAmix applied to the data table housing (deprived of
the 10 first rows) before rotation (left) and after rotation with PCArot (right).

R> test <- gironde$housing[1:10, ]

R> splitnew <- splitmix(test)

R> X1new <- splitnew$X.quanti

R> X2new<-splitnew$X.quali

R> pred.rot <- predict(object = res.pcarot, X.quanti = X1new, X.quali = X2new)

R> pred.rot
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dim1.rot dim2.rot dim3.rot

ABZAC 3.2685436 0.3494533 -0.85177749

AILLAS -0.7235629 0.1200285 -0.22254455

AMBARES-ET-LAGRAVE 2.8852451 0.9823515 -0.03451571

AMBES 1.7220716 1.1590890 -0.78227835

ANDERNOS-LES-BAINS 0.3423361 -2.6886415 0.90574890

ANGLADE -0.9131248 -0.4514258 -0.20108349

ARBANATS -0.6653760 0.4217893 0.13105217

ARBIS -0.7668742 0.3099338 -0.23304721

ARCACHON 1.8825083 -4.4533014 2.36935740

ARCINS -0.6896492 0.2060403 -0.09049882

These predicted coordinates can be used to plot the 10 supplementary municipalities
on the rotated principal component map of the other 532 municipalities (Figure 5).

R> plot(res.pcarot, axes = c(1,3), label = FALSE, main = "Observations map after rotation")

R> points(pred.rot[ ,c(1,3)], col = 2, pch = 16)

R> legend("topright", legend = c("train","test"), fill = 1:2, col = 1:2)
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Figure 5: Projection of 10 supplementary municipalities (in red) on the map after rota-
tion.

5. Multiple factor analysis of mixed data

Multiple factor analysis (Escofier and Pagès, 1994; Abdi et al., 2013) is a multivariate
analysis method for multi-table data where observations are described by several groups
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of variables. The straightforward analysis obtained by concatenating all variables in
a single data table has the drawback of giving more importance to groups with strong
structure. The main idea in Multiple Factor Analysis (MFA) is therefore to give the same
importance to each group by weighting each variable by the inverse of the variance of
the first principal component of its group. In standard MFA, the nature of the variables
(categorical or numerical) can vary from one group to another but the variables within a
group must be of the same nature. The MFAmix procedure proposed in this paper works
with mixed data even within a group.

5.1. The MFAmix algorithm

Here the p variables are separated into G groups. The types of variables within a group

can be mixed. Each group is represented by a data matrix X(g) = [X
(g)
1 ,X

(g)
2 ] where

X
(g)
1 (resp. X

(g)
2 ) contains the numerical (resp. categorical) variables of group g =

1, . . . , G. The numerical columns (resp. the categorical columns) of the matrices X(g)

are concatenated in a global numerical data matrix X1 = [X
(1)
1 , . . . ,X

(G)
1 ] (resp. a global

categorical data matrix X2 = [X
(1)
2 , . . . ,X

(G)
2 ]). Let Z denote the matrix constructed

with X1 and X2 as described in the pre-processing step of PCAmix in Section 3.1. The

matrix Z has then n rows and p1 +m columns where p1 = p
(1)
1 + . . . + p

(G)
1 and m =

m(1)+ . . .+m(G). Each column of Z is either a numerical variable (standardized) or the
indicator vector of a level (centered). Let N = 1

nIn and M = diag(1, . . . , 1, n
n1
, . . . , n

nm
)

be the diagonal matrices of the weights of the rows and columns of Z.
The MFAmix algorithm is a procedure where the first step modifies the weights of the

columns of Z to equilibrate the importance of the groups in a global PCAmix analysis.

Step 1: weighting step.

1. For g = 1, . . . , G, compute the first eigenvalue λ
(g)
1 of PCAmix applied to X(g).

2. Build the diagonal matrix P of the weights 1

λ
(tk)
1

where tk ∈ {1, . . . , g, . . . , G}
denote the group of the kth column of Z.

3. Build the diagonal matrix MP of the new weights of the column of Z.

Step 2: re-weighted global PCAmix step.

1. The GSVD of Z with metrics N on Rn and MP on Rp1+m gives:

Z = UmfaΛmfaV
⊤
mfa,

as defined in (1). Let r denote the rank of Z.

2. The matrix of dimension n× r of the factor coordinates of the n observations is:

Fmfa = UmfaΛmfa. (49)
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3. The matrix of dimension (p1+m)×r of the factor coordinates of the p1 quantitative
variables and the m levels is:

A∗
mfa = MVmfaΛmfa. (50)

The first p1 rows contain the factor coordinates of the numerical variables and the
following m rows contain the factor coordinates of the levels.

Step 3: squared loading processing. The squared loadings are the contributions of
the p variables to the variance of the r principal components (columns of Fmfa). It comes
from Section 2.1 that the variance of the ith principal component fi,mfa is Var(fi,mfa) =
∥ai,mfa∥2MP where ai,mfa is the ith loadings vector (column of Amfa = VmfaΛmfa). The
contribution cji,mfa of the variable xj to the variance of the principal component fi,mfa is
then:

cji,mfa =
1

λ
(tj)
1

a2ji,mfa =
1

λ
(tj)
1

a∗2ji,mfa if the variable xj is numerical,

cji,mfa =
∑
s∈Ij

1

λ
(ts)
1

n

ns
a2si,mfa =

∑
s∈Ij

1

λ
(ts)
1

ns
n
a∗2si,mfa if the variable xj is categorical,

(51)
where Ij is the set of indices of the levels of the categorical variable xj . Note that
the contributions are no longer squared correlation or correlation ratios as previously in
PCArot and PCAmix.

Remark 6. In general q ≤ r dimensions are required by the user in MFAmix.

5.2. Graphical outputs of MFAmix

The graphical outputs of MFAmix are obtained with the function plot.MFAmix. The
standard plots (observations, numerical variables and levels according to their factor
coordinates) are interpreted with the same rules as in PCAmix (see Section 3.3) which
remain true in MFAmix. The interpretation of the plot of the variables according to their
squared loadings is however slightly different. Indeed, in MFAmix, squared loadings need
to be interpreted as contributions and no longer as squared correlations or correlation
ratios. The group structure of the variables allows to build in MFAmix new graphical
outputs: plot of the groups, plot of the partial observations and plot of the partial axes.

Contribution of a group. The contribution of a variable is defined in (51). The
contribution of a group g is therefore the sum of the contributions of all the variables of
the group. The groups can then be plotted as points on a map using their contribution
to the variance of the principal components.

Partial observations. The principal component map of the observations reveals the
structure common to the groups, but it is not possible to see how each group relates
to the principal component space. The visualization of an observation according to a
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specific group (called a partial observation) can be achieved by projecting the dataset
of each group onto this space. This is done as follows:

1. For g = 1, . . . , G, construct the matrix Z
(g)
part by equating to zero in Z the values of

the columns k such that tk ̸= g. The rows of Z
(g)
part are the partial observations for

the group g.

2. For g = 1, . . . , G, the factor coordinates of the partial observations are computed
as:

F
(g)
part = G Z

(g)
partMPV. (52)

This matrix contains the coordinates of the orthogonal projections (with respect

to the adjusted metric matrix MP) of the n rows of Z
(g)
part onto the axes spanned

by the columns of V (with the number of groups G as multiplying factor). This
multiplying factor comes to get the factor coordinates of an observation at the
barycenter of the coordinates of its G partial observations.

The partial observations can then be plotted as supplementary points on the princi-
pal component map of the observations. To facilitate interpretation, lines linking an
observation with its G partial observations are drawn on the map.

Partial axes. The PCAmix procedure is applied first to the G separated data tables

X(g). The principal components f
(g)
i , i = 1 . . . q of these separate analyses are called the

partial axes. Let fi,mfa denote the ith principal component of the global analysis. The
link between the separated analysis and the global analysis is explored by computing
correlations between the principal components of each separated study and the principal

components of the global study. The correlations r(f
(g)
i , fi,mfa) are used as coordinates to

plot the partial axes on a map.

5.3. Prediction of PC scores with predict.MFAmix

The q ≤ r principal components (PCs) are new numerical variables defined as a linear
combination of the vectors z1, . . . , zp1+m (columns of Z). For i = 1, . . . , q:

fi,mfa = ZMPvi,mfa =

p1∑
ℓ=1

1

λ
(tℓ)
1

vℓi,mfazj +

p1+m∑
ℓ=p1+1

1

λ
(tℓ)
1

n

nℓ
vℓi,mfazℓ.

It is then easy to write fi,mfa as a linear combination of the vectors x1, . . . ,xp1+m

(columns of X = (X1|G)) where G is the indicator matrix of the m levels:

fi,mfa = β0i,mfa +

p1+m∑
ℓ=1

βℓi,mfaxℓ, (53)

with the coefficients
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β0i,mfa = −
p1∑
ℓ=1

1

λ
(tℓ)
1

vℓi,mfa

x̄ℓ

σ̂ℓ
−

p1+m∑
ℓ=p1+1

1

λ
(tℓ)
1

n

nℓ
vℓi,mfax̄,

βℓi,mfa =
1

λ
(tℓ)
1

vℓi,mfa

1

σ̂ℓ
, for ℓ = 1, . . . , p1,

βℓi,mfa =
1

λ
(tℓ)
1

n

nℓ
vℓi,mfa, for ℓ = p1 + 1, . . . , p1 +m,

where x̄ℓ and σ̂ℓ are respectively the empirical mean and the standard deviation of the
column xℓ.
The principal components are thereby written in (53) as a linear combination of the

original numerical variables and of the original indicator vectors of the levels of the
categorical variables. The function predict.MFAmix uses these coefficients to predict
the scores (coordinates) of new observations on the first q ≤ r principal component of
MFAmix (where q is chosen by the user).

5.4. Illustration of MFAmix

Let us now illustrate the procedure MFAmix with the 4 mixed data tables available in
the dataset gironde. As introduced previously, this dataset describes 542 municipalities
on 27 variables separated into 4 groups (Employment, Housing, Services, Environment).
The dataset gironde is then a list of 4 data tables (one data table by group).

R> library("PCAmixdata")

R> data("gironde")

R> names(gironde)

[1] "employment" "housing" "services" "environment"

The four groups contain respectively 9, 5, 9 and 4 variables and the description of the
variables of each data table is available in Appendix A.
The function MFAmix uses three main input arguments:

- data: the global data frame obtained by concatenation of the separated data
tables,

- group: a vector of integer with the index of the group of each variable,

- name.group: a vector of character with the name of each group.

R> dat <- cbind(gironde$employment, gironde$housing, gironde$services,

gironde$environment)

R> index <- c(rep(1,9), rep(2,5), rep(3,9), rep(4,4))

R> names <- c("employment", "housing", "services", "environment")

R> res.mfamix <- MFAmix(data = dat, groups = index, name.groups = names,

ndim = 3, rename.level = TRUE, graph = FALSE)
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The function MFAmix builds an object (of class MFAmix) which is a list with many
numerical results described shortly with the print function. Here, the number of di-
mensions kept in the results is equal to 3. The group structure of the variables gives
specific graphical outputs like the four maps of Figure 6.

R> plot(res.mfamix, choice = "cor", coloring.var = "groups", leg = TRUE,

main = "(a) Numerical variables")

R> plot(res.mfamix, choice = "ind", partial = c("SAINTE-FOY-LA-GRANDE"), label = TRUE,

posleg = "topright", main = "(b) Observations")

R> plot(res.mfamix, choice = "sqload", coloring.var = "groups",

posleg = "topright", main="(c) All variables")

R> plot(res.mfamix, choice = "groups", coloring.var = "groups", main = "(d) Groups")

Figure 6(a) is the correlation circle of the 16 numerical variables, colored according to
their group membership. The coordinates of the variables on this map are correlations
with the principal components of MFAmix. Because this map can be difficult to read due
to multiple overlaying of the names of some variables, it can be useful to look at the
numerical values of the coordinates available in the object res.MFAmix.

R> coord.var <- res.mfamix$quanti$coord[ , 1:2]

Table 1 highlights four numerical variables that are correlated (in absolute value)
with the first principal component: density, buildings, owners and agricul. The
municipalities on the right hand side of the principal component map in Figure 6(b)
have then higher values for variables density and buildings, whereas municipalities to
the left have higher values of the variables owners and agric.
To interpret the position of the municipalities at the top and bottom of Figure 6(b), the

coordinates of the variables in the second dimension are useful. Table 1 highlights four
numerical variables that are correlated with the second principal component: managers,
middleempl, employrate, income and vegetation. The position (top or bottom) of
the municipalities on the principal component map can then be interpreted with these
variables.
For example, Figure 6(b) shows the municipality of SAINTE-FOY-LA-GRANDE plotted

with its 4 partial representations (the four colored points linked to it with a line). The
position of this municipality on the right of the map suggests a municipality with higher
density of population, higher proportion of buildings, less owners and less agricultural
land. Its position at the bottom of the map suggests smaller values on 4 variables of the
group employment (managers, middleempl,employrate,income) and smaller values on
the variable vegetation of the group environment.
Now we come to the 9 categorical variables of the group services. These variables

naturally do not appear in the correlation circle, but do appear in Figure 6(c) where
all the variables are plotted according to their contributions to the principal compo-
nents. This map shows that all the variables of the group services (dentist, dentist,
nursery,...) contribute strongly to the first principal component. However it is not pos-
sible to know in which way. For instance does the municipality SAINTE-FOY-LA-GRANDE
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Figure 6: Some graphical outputs of MFAmix applied to the four data table of the dataset
gironde.

which has a high score on the first principal component have more or less services than
others? This information is given in Figure 7 where the levels of the categorical variables
are plotted.

R> plot(res.mfamix, choice = "levels", coloring.var = "groups",

posleg = "bottomleft", main = "Levels", cex = 1.3, cex.leg = 1.3, xlim = c(-2,4))

The level map can be used with the barycentric property to interpret the map of the
municipalities given Figure 6(b): the municipalities on the right are provided with more
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Table 1: Factor coordinates of the variables obtained with MFAmix

dim 1 dim 2

farmers -0.45 -0.30

tradesmen -0.14 0.12

managers 0.31 0.55

workers -0.13 -0.04

unemployed 0.32 -0.08

middleempl 0.24 0.60

retired -0.03 -0.44

employrate -0.33 0.55

income 0.13 0.60

density 0.72 -0.15

primaryres 0.03 0.36

owners -0.69 0.41

building 0.72 -0.21

water 0.19 -0.20

vegetation 0.08 0.56

agricul -0.54 -0.47
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Figure 7: Plot of the levels of the 10 categorical variables after applying MFAmix.

services than those on the left. The municipalities to the bottom right of the map (like
SAINTE-FOY-LA-GRANDE) have more likely a smaller proportion of houses.
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In summary, the municipality SAINTE-FOY-LA-GRANDE is a municipality with a good
level of services, but with a fairly stagnant employment market and whose inhabitants
are more likely to live in apartments than in other municipalities.
The last map Figure 6(d) is the plot of the groups according to their contributions

to the first two principal components. This map confirms the previous interpretations
of the principal components of MFAmix and the impact of the groups services and
housing on the first dimension as well as the impact of the group employment on the
second dimension.

Predicted scores for new observations. The scores of new observations can be
obtained with the predict.MFAmix function. The municipality SAINTE-FOY-LA-GRANDE

for instance can be considered as supplementary and plotted as an illustrative obser-
vation (test sample) on the map given in Figure 8 obtained with the n − 1 remaining
municipalities (training sample).

R> sel <- which(rownames(dat) == "SAINTE-FOY-LA-GRANDE")

R> res.mfamix <- MFAmix(data = dat[-sel,], groups = index,

name.groups = names, rename.level = TRUE, graph = FALSE)

R> pred <- predict(res.mfamix, dat[sel, , drop=FALSE])

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

0 5 10

−
6

−
4

−
2

0
2

4

Observations map

Dim 1 (21.71 %)

D
im

 2
 (

10
.7

9 
%

)

●SAINTE−FOY−LA−GRANDE

train
test

Figure 8: The municipality SAINTE-FOY-LA-GRANDE is plotted in supplementary in
the graphical output of MFAmix.

Supplementary groups. The supvar.MFAmix function calculates the coordinates of
supplementary groups of variables on the maps of MFAmix. Let us for instance apply
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MFAmix with three groups (employment, services, environment) and add the group
housing as a supplement.

R> dat <- cbind(gironde$employment, gironde$services, gironde$environment)

R> names <- c("employment", "services", "environment")

R> mfa <-MFAmix(data = dat, groups = c(rep(1,9), rep(2,9), rep(3,4)),

name.groups = names, rename.level =T RUE, graph = FALSE)

R> mfa.sup <- supvar(mfa, data.sup = gironde$housing, groups.sup = rep(1,5),

name.groups.sup = "housing.sup", rename.level = TRUE)

The group housing is then plotted as supplementary on the maps of MFAmix, see
Figure 9.

R> plot(mfa.sup, choice = "groups", coloring.var = "groups",

col.groups = c(2,4,5), col.groups.sup = 3)

R> plot(mfa.sup,choice="cor", coloring.var = "groups",

col.groups = c(2,4,5), col.groups.sup = 3)
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Figure 9: The group housing is plotted as supplementary in the graphical outputs of
MFAmix.

6. Concluding remarks

In this paper, the multivariate analysis methods implemented in the R package PCAmixdata
are presented in such a way that the theoretical details can be read separately from the
R examples. Therefore, users interested in the practical aspects of the methods PCAmix,
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PCArot and MFAmix can reproduce the R code provided after each theoretical section,
either with the dataset gironde (available in the package) or with their own data. Keys
are also provided for the interpretation of most numerical results and graphical outputs.
The definition of multivariate analysis methods to mixed data is important in practice

and is sometimes neglected in statistical literature and software. Research and imple-
mentation work remain to be done in this sense. For instance, the development of a
method of linear discriminant analysis compatible with mixed data is currently under
investigation. Moreover, extension of orthogonal rotation to the principal component
of MFAmix could be done in the same spirit as PCArot, because MFAmix is a re-weighted
general PCAmix analysis, this implementation should not require too many theoretical
developments.
The package PCAmixdata handles missing data with a very simple approach where

missing values are replaced by mean values for numerical variables and by zeros in the
indicator matrix for the categorical variables. Of course more relevant methods like the
method proposed by Audigier et al. (2016) and implemented in the R packagemissMDA
could be used to complete the missing values.
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Appendices

A. The dataset gironde

Table 2 provides the description of all the numerical and categorical variables of the
gironde dataset.

Table 2: Description of variables of the gironde dataset

R Names Description Group Data type

farmers Percentage of farmers employment Num

tradesmen Percentage of tradesmen and shopkeepers employment Num

managers Percentage of managers and executives employment Num

workers Percentage of workers and employees employment Num

unemployed Percentage of unemployed workers employment Num

middleemp Percentage of middle-range employees employment Num

retired Percentage of retired people employment Num

employrate employment rate employment Num

income Average income employment Num

density Population density housing Num

primaryres Percentage of primary residences housing Num

houses Percentage of houses housing Categ

owners Percentage of home owners living in their primary residence housing Num

council Percentage of council housing housing Categ

butcher Number of butchers services Categ

baker Number of bakers services Categ

postoffice Number of post offices services Categ

dentist Number of dentists services Categ

grocery Number of grocery stores services Categ

nursery Number of child care day nurseries services Categ

doctor Number of doctors services Categ

chemist Number of chemists services Categ

restaurant Number of restaurants services Categ

building Percentage of buildings environment Num

water Percentage of water environment Num

vegetation Percentage of vegetation environment Num

agricul Percentage of agricultural land environment Num

B. The iterative optimization step of PCArot

Let Ũq (resp. Ãq) denote the matrix of the first q columns of Ũ (resp. Ã = Λ̃Ṽ).
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1. Initialization: Ũrot = Ũq and Ãrot = Ãq.

2. For each pair of dimensions (l, t), i.e., for l = 1, . . . , q − 1 and t = (l + 1), . . . , q:

↪→ calculate the angle of rotation θ = ψ/4 with:

ψ =


arcos

(
h√

g2 + h2

)
if g ≥ 0,

−arcos

(
b√

g2 + h2

)
if g ≤ 0,

(54)

where g and h are given by:

g = 2p

p∑
j=1

αjβj − 2

p∑
j=1

αj

p∑
j=1

βj , (55)

h = p

p∑
j=1

(αj
2 − βj

2)−

 p∑
j=1

αj

2

+

 p∑
j=1

βj

2

, (56)

with p the total number of variables, and αj and βj defined by:

αj =
∑
s∈Ij

(ã2sl,rot − ã2st,rot) and βj = 2
∑
s∈Ij

ãsl,rotãst,rot . (57)

Here, Ij is the set of row indices of Ãrot associated with the levels of the
variable j in the categorical case and Ij = {j} in the numerical case.

↪→ calculate the corresponding matrix of planar rotationT2 =

[
cos θ −sin θ

sin θ cos θ

]
,

↪→ update the matrices Ũrot and Ãrot by rotation of their l-th and t-th columns.

3. Repeat the previous step until the q(q− 1)/2 successive rotations provide an angle
of rotation θ equal to zero.

C. Equivalence between (36) and (37)

We know from (27) that:
A∗ = MA = MVΛ.

Moreover we know from (3) that V = M−1/2Ṽ and that Λ = Λ̃. It gives then:

A∗ = M1/2ṼΛ̃ = M1/2Ã. (58)

Note that in Chavent et al. (2012) we wrote A∗ = M−1/2Ã which was a mistake. It
gives also

A = M−1/2ṼΛ̃ = M−1/2Ã. (59)
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We deduce easily from (59) that:

{
cji = a2ji = ã2ji = c̃ji if the variable xj is numerical,

cji =
∑

s∈Ij
n
ns
a2si =

∑
s∈Ij ã

2
si = c̃ji if the variable xj is categorical,

(60)

D. Proof of (44)

The q × q rotation matrix T is such that

Ũrot = ŨqT. (61)

By definition of Ũq, we have Ũ
⊤
q Ũq = Iq. It gives (46). By definition, F̃rot = ŨrotΛrot.

It gives F̃rot = ŨqTΛrot. The SVD decomposition Z̃ = ŨΛ̃Ṽ
⊤

gives Ũq = Z̃ṼqΛ̃
−1
q .

Then F̃rot = Z̃ṼqΛ̃
−1
q TΛrot. With F̃rot = N1/2Frot and Z̃ = N1/2ZM1/2, it gives (44)

and (45).
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