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An oblate spheroid, whose respective hemispheroids are kept at different uniform tem-
peratures, placed in a rarefied gas at rest is considered. The explicit formula of the
force acting on the spheroid (radiometric force) is obtained for small Knudsen numbers.
This is a model of a vane of the Crookes radiometer. The analysis is performed for the
general axisymmetric distribution of the surface temperature of the spheroid allowing
abrupt changes. Although the generalized slip flow theory, established by Sone [Sone,
Y., 1969. In Rarefied Gas Dynamics (ed. L. Trilling & H. Y. Wachman), vol. 1, pp.
243–253. New York: Academic Press], is available for general rarefied gas flows at small
Knudsen numbers, it cannot be applied to the present problem because of the abrupt
temperature changes. However, if it is combined with the symmetry relations for the
linearized Boltzmann equation developed recently by Takata [Takata, S., 2009. J. Stat.
Phys. 136, 751–784], one can bypath the difficulty. To be more specific, the force acting
on the spheroid in the present problem can be generated from the solution of the adjoint
problem to which the generalized slip flow theory can be applied, i.e., the problem in
which the same spheroid with a uniform surface temperature is placed in a uniform flow
of a rarefied gas. The analysis of the present paper follows this strategy.

Key words: Kinetic theory, Molecular dynamics, Microfluidics, Non-continuum effects

1. Introduction

When a body with a non-uniform surface temperature is placed in a rarefied gas at rest,
a steady flow is induced around the body, and a force acts on it. Photophoresis [see, e.g.,
Preining (1966); Sone & Aoki (1977); Chernyak & Beresnev (1993)] and thermophoresis
[see, e.g., Hidy & Brock (1970); Sone & Aoki (1977); Takata & Sone (1995)] of aerosol
particles and the vanes of the Crookes radiometer [see Ketsdever et al. (2012) and refer-
ences therein] are typical examples. When the gas is slightly rarefied, that is, when the
Knudsen number, the ratio of the mean free path of gas molecules to the characteristic
length of the body, is small, the induced flow and the resulting force can be explained
in the framework of the generalized slip flow theory (Sone 1969, 1971, 1991, 2002, 2007).

† Present address: Toyota Central R&D Labs., INC., Nagakute, Aichi 480-1192, Japan.
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2 K. Aoki, S. Takata and T. Tomota

This theory is a consequence of a systematic asymptotic analysis of the boundary-value
problem of the Boltzmann equation for small Knudsen numbers and provides a general
recipe to obtain a correct asymptotic solution with the help of appropriate fluid-dynamic-
type equations and their slip or jump boundary conditions, as well as kinetic corrections
in the vicinity of the boundary (the Knudsen layer). For instance, when the tempera-
ture variation along the surface of the body is small, the dominant flow is the thermal
creep flow (Kennard 1938; Sone 1966; Ohwada, Sone & Aoki 1989), which is induced by
the tangential velocity slip on the boundary proportional to the tangential temperature
gradient there.

The generalized slip flow theory is very powerful and has been applied successfully
to various problems containing flows induced by temperature fields [e.g., Sone (1972);
Sone & Aoki (1977); Sone & Tanaka (1980)]. However, the basic assumption of the the-
ory is that the shape of the boundary as well as the boundary data is smooth enough.
More specifically, the local radius of curvature of the boundary and the local length scale
of variation of the temperature and velocity of the boundary should be much longer
than the molecular mean free path. Therefore, if the body has a sharp edge or a surface-
temperature distribution with an abrupt change, as in the case of the vanes of a radiome-
ter, the generalized slip flow theory cannot be applied. However, if we restrict ourselves
to abrupt but small changes of the surface temperature leaving the body shape smooth,
there is a way to bypath the difficulty and to obtain the force acting on the body by
the use of the generalized slip flow theory. The key is to use the symmetry relations
associated with the linearized Boltzmann equation (Takata 2009a,b).

In the present study, we consider an oblate spheroid, with an axisymmetric distribution
of the surface temperature, placed in an infinite expanse of a gas at an equilibrium
state at rest. The temperature distribution is arbitrary and can be abrupt. Indeed, our
aim is to derive an explicit formula for the force acting on the oblate spheroid when
a hemispheroid is kept at a lower temperature while the other hemispheroid is kept at
a higher temperature. This may be a model of a vane of the Crookes radiometer [cf.
Ketsdever et al. (2012) and references therein; Taguchi & Aoki (2011, 2012); Chen et al.
(2012)]. For this purpose, following Takata (2009a), we consider the following adjoint
problem: The same oblate spheroid with a uniform surface temperature is placed in an
infinite expanse of a gas; there is a slow uniform flow, parallel to the axis of revolution of
the spheroid, at infinity; the surface temperature of the spheroid is the same as that of the
gas at infinity. The symmetry relation tells that the force acting on the spheroid in the
original problem is obtained from the information on the local heat flow on the spheroid
in the adjoint problem. Since the shape of the boundary as well as the boundary data is
perfectly smooth in the adjoint problem, the generalized slip flow theory can be applied
to it safely to obtain the information on the heat flow in the adjoint problem. In this
way, we can obtain the force acting on the oblate spheroid with an abrupt temperature
distribution by the use of the generalized slip flow theory. This is the strategy in the
present paper.

The paper is organized as follows. In § 2, we describe the original problem and its
adjoint problem with a mention of the necessary formula originating from the symmetry
relations of the linearized Boltzmann equation. § 3 gives a summary of the generalized slip
flow theory. We perform analysis of the adjoint problem on the basis of the generalized
slip flow theory in § 4 and obtain the force acting on the spheroid in the original problem
in § 5. § 6 contains some discussions, and § 7 is devoted to concluding remarks.
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A force acting on an oblate spheroid 3

Figure 1. Problem

2. Problem and adjoint problem

2.1. Problem

[Problem I] Consider an oblate spheroid with long radius L and short radius aL (0 <
a ⩽ 1) placed in an infinite expanse of a rarefied gas in an equilibrium state at rest at
pressure p0 and temperature T0 (figure 1). The Cartesian coordinate system Xi is taken
as in figure 1, that is, the origin is at the center of the spheroid and the X1 axis along
its axis. Then, the temperature of the surface of the spheroid, which is assumed to be
axisymmetric but arbitrary, is denoted by T0(1 + τw), where τw varies with X1/L. In
particular, we are interested in a discontinuous temperature distribution:

τw =

{
0 (0 < X1/L ⩽ a),
τwc (−a ⩽ X1/L < 0),

(2.1)

where τwc is a constant.
We investigate the force acting on the oblate spheroid (radiometric force) under the

following assumptions:

(i) The behavior of the gas is described by the steady Boltzmann equation with its
kinetic boundary condition.
(ii) The temperature variation |τw| over the surface of the spheroid is so small that the

Boltzmann equation and the boundary condition can be linearized around the uniform
equilibrium state at rest at pressure p0 and temperature T0.
(iii) The Knudsen number, the ratio of the molecular mean free path at the reference

equilibrium state to the characteristic length, say L, is small.

Neither the model for intermolecular collisions (such as the hard-sphere molecules) nor
that for the boundary condition (such as the diffuse reflection) are specified here, but
are left arbitrary until we need quantitative results. However, they should be common to
the present problem and the adjoint problem in the next subsection.
One of the reasons why we are interested in the discontinuous surface temperature (2.1)

is that an oblate spheroid with such a surface temperature may be a three-dimensional
model of a vane of the Crookes radiometer [see Ketsdever et al. (2012); Taguchi & Aoki
(2011, 2012); Chen et al. (2012)].

2.2. Adjoint problem

We introduce the following problem adjoint to the above problem (adjoint problem).

[Problem II] Consider the same oblate spheroid but with uniform surface temperature T0

placed in a uniform flow of a rarefied gas in the direction of the axis of the spheroid (figure
2). Using the same Cartesian coordinate system as in figure 1, we denote the pressure,
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4 K. Aoki, S. Takata and T. Tomota

Figure 2. Adjoint problem

temperature and flow velocity of the gas at infinity by p0, T0 and (2RT0)
1/2u∞e1, where

R is the gas constant per unit mass (R = kB/m with kB the Boltzmann constant and m
the mass of a gas molecule), and e1 is the unit vector in the X1 direction.
We investigate the steady behavior of the gas under the same assumptions as (i) and

(iii) in § 2.1 and the following assumption:

(ii)′ The flow speed at infinity u∞ is so small that the Boltzmann equation and the
boundary condition can be linearized.

2.3. Formula for radiometric force

Let us denote by F Ie1 the force (radiometric force) acting on the spheroid in the original
problem (Problem I) and by p0(2RT0)

1/2QII
n the normal component (in the direction

pointing into the gas) of the heat-flow vector on the spheroid in the adjoint problem
(Problem II). According to Takata (2009a) (see Example 2 in § 5.1 in this reference), the
force acting on the spheroid in Problem I is expressed in terms of the surface temperature
of Problem I and the normal component of the local heat flow on the spheroid in Problem
II, that is,

F I = −(p0L
2/u∞)

∫
S

τw(x1)Q
II
n (x1)dS, (2.2)

where xi = Xi/L is the dimensionless Cartesian coordinate system corresponding to Xi,
and S and dS indicate, respectively, the surface of the oblate spheroid and the surface
element on it in the dimensionless xi space. It is shown explicitly in (2.2) the fact that
τw and QII

n depends only on the x1 coordinate of a point on the surface because of axial
symmetry. It should be mentioned that this formula holds for the whole range of the
Knudsen number, that is, without assumption (iii) in § 2.1.
Problem II does not contain any abrupt change in the boundary temperature, so that it

can be analyzed by the use of the generalized slip flow theory when the Knudsen number
is small. Once the heat-flow vector in this problem is obtained, the force acting on the
spheroid in Problem I follows immediately from (2.2). In the next section, we give a brief
summary of the generalized slip flow theory.
We remark that, in Takata (2009a), the formula (2.2) is derived for a body of arbitrary

shape as an example of the general theory, so that some delicate mathematical problems
relevant to the present Problems I and II are not discussed explicitly. In order to see
the mathematical problems more clearly, we derive (2.2) again directly from the basic
equations of Problems I and II in Appendix A. Incidentally, the reader is referred to
Takata (2009b) for the relationship between the symmetry relations for the linearized
Boltzmann equation and the Onsager reciprocity relations.
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A force acting on an oblate spheroid 5

3. Generalized slip flow theory: Summary

3.1. Stokes equations and slip boundary conditions

The linearized version of the generalized slip flow theory has been established in Sone
(1969, 1971, 1991, 2002). Here, we basically follow the notations in Sone (2007).

Let us consider a gas around a solid boundary of arbitrary but smooth shape with
smooth variation of the surface temperature. The boundary is the ordinary one across
which there is no net mass flow of the gas (simple solid boundary). We repeat assumptions
(i) and (iii) in § 2.1 for the present more general setting and put the following assumption:

(ii)′′ The deviation of the system from a reference equilibrium state at rest is so small
that the Boltzmann equation and its boundary condition can be linearized.

The model for intermolecular collisions as well as that for the boundary condition are
unspecified here. When quantitative results are necessary, we will assume hard-sphere
molecules or the Bhatnagar–Gross–Krook (BGK) model (Bhatnagar, Gross & Krook
1954; Welander 1954) for the former and diffuse reflection for the latter (Sone 2007).

In this section, we redefine Xi, L, p0 and T0 as the Cartesian coordinate system,
the reference length, the reference pressure and the reference temperature, respectively,
appropriate to the general problem described in the preceding paragraph. Then, let xi =
Xi/L be the dimensionless Cartesian coordinates, ρ0(1+ω) the density, (2RT0)

1/2ui the
flow velocity, T0(1 + τ) the temperature, p0(1 + P ) the pressure, p0(δij + Pij) the stress
tensor, and p0(2RT0)

1/2Qi the heat-flow vector, where ρ0 = p0/RT0 is the reference
density, and δij the Kronecker delta. In addition, ℓ0 denotes the mean free path of the
gas molecules at the reference equilibrium state at rest at pressure p0 and temperature
T0; for instance,

ℓ0 = 1/
√
2πd2m(ρ0/m) (for hard-sphere molecules), (3.1a)

ℓ0 = (8RT0/π)
1/2/Acρ0 (for the BGK model), (3.1b)

where dm is the diameter of a molecule, and Ac is a constant such that Acρ0 is the
collision frequency of a molecule in the reference equilibrium state at rest.

The deviations h, where h stands for ω, u, τ , etc., are split into two parts, hG and hK ,
and each part is expanded in power series of a small parameter k corresponding to the
Knudsen number Kn = ℓ0/L, i.e.,

h = hG + hK (3.2a)

hG = hG0 + hG1k + hG2k
2 + · · · , (3.2b)

hK = hK1k + hK2k
2 + · · · , (3.2c)

k = (
√
π/2)Kn = (

√
π/2)(ℓ0/L). (3.2d)

The hG, which we call the Grad-Hilbert solution, describes the overall behavior of the
gas, whereas the hK , which we call the Knudsen-layer correction, is the correction to
hG in the thin layer with thickness of the order of the mean free path adjacent to the
boundary. The expansion of hK starts from the first order.

The equations for the Grad-Hilbert solution are the Stokes system of equations to any
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6 K. Aoki, S. Takata and T. Tomota

hard sphere BGK boundary condition

γ1 1.270 042 427 1 -
γ2 1.922 284 066 1 -
γ3 1.947 906 335 1 -
k0 -1.254 0 -1.016 191 diffuse reflection
K1 -0.646 5∗ -0.383 16 diffuse reflection
d1 2.400 1 1.302 72 diffuse reflection
γA 0.153 0 0.116 84 diffuse reflection
γB 1.276 0.415 56 diffuse reflection

Table 1. Coefficients contained in (3.3c), (3.6), and (3.7). The asterisk ∗ indicates the value
taken from Takata & Hattori (2012a), which is more accurate than that shown in Sone (2007)
(-0.6463).

order of expansion, that is,

∂PG0

∂xi
= 0 (3.3a)

∂ujGm

∂xj
= 0, (3.3b)

∂PGm+1

∂xi
− γ1

∂2uiGm

∂x2
j

= 0, (3.3c)

∂2τGm

∂x2
j

= 0, (3.3d)

PGm = ωGm + τGm, (3.3e)

(m = 0, 1, 2, ...),

where γ1 is a constant depending on the model for intermolecular collisions and is related
to the viscosity µ at temperature T0 and pressure p0 as

µ = (
√
π/2)γ1p0(2RT0)

−1/2ℓ0. (3.4)

The values of γ1 for hard-sphere molecules and for the BGK model, taken from Sone
(2007), are shown in Table 1. (3.3a) is the degenerated Euler equation, (3.3b) is the
continuity equation, (3.3c) is the Stokes equation, (3.3d) is the steady heat-conduction
equation, and (3.3e) is the equation of state.

The boundary conditions for (3.3b)–(3.3d) are of the form of slip or jump conditions
and have been obtained up to the order of k2 (Sone 1969, 1971, 1991, 2002, 2007). Here,
we show them only up to the order of k. Let ni and ti denote the unit normal vector
(pointing into the gas) and unit tangential vector to the boundary, respectively, and
let T0(1 + τw) and (2RT0)

1/2uwi denote the temperature and velocity of the boundary,
respectively (note that uwini = 0 because the problem is steady). Then, the boundary
conditions read as follows:

uiG0 = uwi, (3.5a)

τG0 = τw, (3.5b)
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A force acting on an oblate spheroid 7

uiG1ti = −k0

(
∂uiG0

∂xj
+

∂ujG0

∂xi

)
nitj −K1

∂τG0

∂xi
ti, uiG1ni = 0, (3.6a)

τG1 = d1
∂τG0

∂xi
ni, (3.6b)

where the derivatives on the right-hand sides of (3.6) are evaluated on the boundary, and
the constants k0 (< 0), K1 (< 0) and d1 (> 0) are the so-called slip coefficients, which
depend on the model of interaction between gas molecules as well as that of gas-surface
interaction. The values of k0, K1 and d1 for hard-sphere molecules and for the BGK
model under the diffuse-reflection condition, taken from Sone (2007), are shown in Table
1. (3.5) is the no-slip condition for viscous fluids, and (3.6a) and (3.6b) are the so-called
slip (jump) conditions.
It should be mentioned that boundary conditions (3.5) and (3.6) (and the higher-order

conditions) are obtained only by the analysis of the Knudsen-layer corrections and are
determined together with the latter. The reader is referred to Sone (2002, 2007) for the
Knudsen-layer corrections as well as the second-order slip boundary conditions. We note
that, although the complete list of the slip coefficients in the second-order slip boundary
condition is available in Sone (2002, 2007) for the BGK model with diffuse reflection,
only three of them are given there for hard-sphere molecules. The list for hard-sphere
molecules (with diffuse reflection) has been completed recently by Takata & Hattori
(2012a,b).
The solution procedure is as follows. We first determine the constant PG0 from an

appropriate condition, say the pressure at infinity. Then, we solve (3.3b)–(3.3d) with
m = 0 under the no-slip condition (3.5). The flow velocity uiG0 and pressure PG1 are
nothing but the classical Stokes flow solution. With the solution for m = 0, we evaluate
the right-hand sides of (3.6). The next step is to solve (3.3b)–(3.3d) with m = 1 under the
boundary conditions (3.6). We repeat the same procedure for (3.3b)–(3.3d) with m = 2
under the second-order boundary conditions.

3.2. Heat flow on the boundary

In the framework of the generalized slip flow theory, the Grad-Hilbert solution and the
Knudsen-layer correction for the (dimensionless) stress tensor Pij and heat-flow vector
Qi have been obtained [cf. (3.21), (3.22), and (3.49)–(3.54) in Sone (2007)]. As seen from
(2.2), we need information about the normal component Qini of the heat-flow vector on
the boundary. Therefore, we only give its expression, in the form of power series in k.
That is, Qini on the boundary is given by

Qini = −5

4
γ2

∂τG0

∂xi
nik +

{
−5

4
γ2

∂τG1

∂xi
ni +

γ3
2

∂2uiG0

∂x2
j

ni

−1

2
γA

[
∂

∂xk

(
∂uiG0

∂xj
+

∂ujG0

∂xi

)]
ninjnk

−γB

(
∂2τG0

∂xi∂xj
ninj + 2κ̄

∂τG0

∂xi
ni

)}
k2 +O(k3), (3.7)

where γ2 and γ3 are constants depending on the model for intermolecular collisions, and
γ2 is related to the thermal conductivity λ at temperature T0 and pressure p0 as

λ = (5
√
π/4)γ2Rp0(2RT0)

−1/2ℓ0. (3.8)
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8 K. Aoki, S. Takata and T. Tomota

In addition, γA and γB are constants depending on the model for intermolecular collisions
as well as that for gas-surface interaction, and κ̄ is the mean curvature of the boundary
in the dimensionless xi space. The terms containing γ2 correspond to the Fourier law,
the term γ3 indicates the heat flow due to the pressure gradient [cf. (3.3c)], which is a
typical effect of gas rarefaction, and the terms containing γA and γB are the contribution
from the Knudsen-layer correction. The constants γA and γB are, respectively, expressed
as integrals of functions HA(η) and HB(η) occurring in the profile of QiK1ti inside the
Knudsen layer [cf. (3.53) and (3.54) in Sone (2007)], i.e.,

γA =

∫ ∞

0

HA(η)dη, γB =

∫ ∞

0

HB(η)dη. (3.9)

The values of γ2, γ3, γA and γB for hard-sphere molecules as well as the BGK model
(and for the diffuse-reflection condition for the latter two) are shown in Table 1. The
values of γ2 and γ3 are taken from Sone (2007), whereas those of γA and γB were obtained
by using the data of HA and HB recomputed in Takata & Hattori (2012a).

4. Solution to adjoint problem

In this section, we try to obtain the solution to the adjoint problem, Problem II in
§ 2.2, with the help of the generalized slip flow theory. It is seen from (2.2) and (3.7)
that we only need uiG0, τG0 and τG1 to obtain the force F I acting on the spheroid in the
original problem (Problem I in § 2.2) up to the order of k2.
In Problem II, the condition at infinity for the Stokes system (3.3) is

uiG0 → (u∞, 0, 0), uiGm+1 → 0, PGm → 0, τGm → 0,

(m = 0, 1, 2, ...), (4.1)

while

uwi = τw = 0, (4.2)

in boundary condition (3.5). Therefore, it is obvious from (3.3a), (3.3d) (m = 0, 1),
(3.5b), and (3.6b) that

PG0 = 0, τG0 = 0, τG1 = 0. (4.3)

Thus, the remaining task is to obtain the solution, uiG0 and PG1, to the boundary-value
problem, (3.3b) and (3.3c) (m = 0) with boundary conditions (4.1) [uiG0 → (u∞, 0, 0)]
and (3.5a). This solution is nothing but the classical solution for the uniform flow of a
Stokes fluid past an oblate spheroid, which is available in the literature, e.g., Payne &
Pell (1960). Therefore, we just need to rewrite the solution in Payne & Pell (1960) in
terms of the present notations.
We first introduce the oblate spheroidal coordinate system (α, θ, φ) (0 ⩽ α < ∞,

0 ⩽ θ ⩽ π, 0 ⩽ φ < 2π) (figure 3), i.e.,

x1 = c0 sinhα cos θ, x2 = c0 coshα sin θ cosφ, x3 = c0 coshα sin θ sinφ, (4.4)

with

c0 = 1/ coshα0 =
√
1− a2, tanhα0 = a, (4.5)

where a (0 < a ⩽ 1) is the aspect ratio of the oblate spheroid (cf. § 2.1). The body (oblate
spheroid) occupies the domain α ⩽ α0, and the gas occupies α > α0. The coordinate
system approaches the spherical coordinate system as α becomes large. Let ai, bi and ci
denote the unit vectors in the directions of increasing α, θ and φ, respectively, and fα,
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A force acting on an oblate spheroid 9

Figure 3. Oblate spheroidal coordinate system

fθ and fφ denote the α, θ and φ components of a vector fi, i.e., fα = fiai, fθ = fibi and
fφ = fici.
According to Payne & Pell (1960), the solution, uiG0 and PG1, is given as follows:

uαG0 = u∞

{
coshα− 1

A

[
(1 + t20) tanhα

+ (1− t20) coshα cot−1(sinhα)
]}1

ρ
cos θ, (4.6a)

uθG0 = −u∞

{
sinhα− 1

A

[
t20 + (1− t20) sinhα cot−1(sinhα)

]}1

ρ
sin θ, (4.6b)

uφG0 = 0, (4.6c)

PG1 = −2γ1u∞
t0
aA

1

ρ2
cos θ, (4.6d)

where

ρ =
√
sinh2 α+ cos2 θ, t0 = sinhα0 =

a√
1− a2

, A = t0 + (1− t20) cot
−1 t0. (4.7)

Substituting (4.3) and (4.6) into (3.7) and noting that ni = ai (α = α0), we obtain
the following expression of the heat flow Qini on the surface of the oblate spheroid:

Qini

u∞
= 2(γ3 − 4γA)

t40
a3A

cos θ

(t20 + cos2 θ)5/2
k2 +O(k3). (4.8)

In this way, we can obtain the k2-order term, which is the leading-order term, of the
normal component of the heat-flow vector on the oblate spheroid in Problem II only
from the classical solution (4.6). Note that t0 and A are functions of the aspect ratio a
[see (4.7)]. Figure 4 shows Qini [with O(k3) term neglected] versus θ for various values
of a.

5. Force on oblate spheroid with discontinuous surface temperature

Now we go back to the original problem, Problem I (cf. § 2.1). Let us express the
surface temperature τw(x1) of the oblate spheroid as the function of the variable θ and
denote it by τw(θ). Then, noting that QII

n in (2.2) is given by Qini in (4.8) and that the
surface element dS is expressed as dS = c0

√
t20 + cos2 θ sin θdθdφ in terms of θ and φ,
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10 K. Aoki, S. Takata and T. Tomota

Figure 4. Heat flow on the surface of the oblate spheroid versus θ for various values of the
aspect ratio a.

we have the following expression of the force acting on the spheroid:

F I = −4π(γ3 − 4γA) p0L
2k2

t30
a2A

∫ π

0

τw(θ)
sin θ cos θ

(t20 + cos2 θ)2
dθ, (5.1)

where O(k3) terms have been neglected.
When the surface temperature is discontinuous as given by (2.1), i.e.,

τw(θ) =

{
0 (0 ⩽ θ < π/2),
τwc (π/2 < θ ⩽ π),

(5.2)

(5.1) becomes

F I = 2π(γ3 − 4γA) p0L
2τwc

1

At0
k2. (5.3)

The force F I versus the aspect ratio of the oblate spheroid a ⩽ 1 is shown in figure 5.
For a = 1 (a spherical body), (5.3) reduces to

F I = (3/2)π(γ3 − 4γA) p0L
2τwck

2. (5.4)

In this way, we obtain the analytic formula of the leading-order term (i.e., k2-order
term) of the radiometric force acting on the oblate spheroid with discontinuous surface
temperature with the help of the adjoint problem (Problem II). It should be emphasized
that in this case, the direct application of the generalized slip flow theory to the original
problem (Problem I) is beyond its applicability.

6. Some discussions

6.1. Direct application of generalized slip flow theory

As mentioned repeatedly, the original problem (Problem I) cannot be handled by the
generalized slip flow theory when the boundary temperature is discontinuous. But, it
would be interesting to see what happens if we apply the generalized slip flow theory
to the problem formally ignoring its applicability. To simplify the situation, we restrict
ourselves to the case of a spherical body (a = 1). Here, we use the spherical coordinate
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A force acting on an oblate spheroid 11

Figure 5. Radiometric force F I versus the aspect ratio a of the oblate spheroid

system (r, θ, φ) (0 ⩽ r < ∞, 0 ⩽ θ ⩽ π, 0 ⩽ φ < 2π):

x1 = r cos θ, x2 = r sin θ cosφ, x3 = r sin θ sinφ, (6.1)

and denote by urGm, uθGm and uφGm(≡ 0) the r, θ and φ components of uiGm.
In this case, the condition at infinity for the Stokes equations (3.3) becomes

uiGm → 0, PGm → 0, τGm → 0,

(m = 0, 1, 2, ...), (6.2)

while

uwi = 0, τw(θ) =

{
0 (0 ⩽ θ ⩽ π/2),
τwc (π/2 < θ ⩽ π),

(6.3)

in boundary condition (3.5). The formal solution of (3.3) satisfying conditions (6.2), (3.5)
[with (6.3)] and (3.6) is obtained as

PG0 = 0, (6.4a)

urG0 = uθG0 = PG1 = 0, τG0 = τwc

∞∑
n=0

an
rn+1

Pn, (6.4b)

vrG1 = −1

2
K1τwc

∞∑
n=1

n(n+ 1)

(
1

rn
− 1

rn+2

)
anPn, (6.4c)

vθG1 =
1

2
K1τwc

∞∑
n=1

(
n− 2

rn
− n

rn+2

)
an

dPn

dθ
, (6.4d)

PG2 = −γ1K1τwc

∞∑
n=1

n(2n− 1)

rn+1
anPn, (6.4e)

where

an =


1/2 (n = 0),

(−1)m+1 (4m+ 3)

2
· (2m− 1)!!

(2m+ 2)!!
(n = 2m+ 1;m = 0, 1, ...),

0 (n = 2m+ 2;m = 0, 1, ...),

(6.5)
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12 K. Aoki, S. Takata and T. Tomota

with (2m)!! = 2m·(2m−2) · · · 4·2, (2m+1)!! = (2m+1)·(2m−1) · · · 3·1, 0!! = (−1)!! = 1,
and Pn = Pn(cos θ) is the Legendre polynomial defined by

Pn =
1

2n

[n/2]∑
k=0

(−1)k(2n− 2k)!

k!(n− k)!(n− 2k)!
cosn−2k θ, (6.6)

with [n/2] being the largest integer less than or equal to n/2. Here, we have formally
performed term-by-term differentiation, which is not applicable at (r, θ) = (1, π/2).
In fact, the resulting solution (6.4) is singular there and should be interpreted as a
generalized function (distribution) or the fundamental solution for the problem with a
smooth τw(θ) [cf. Sone & Aoki (1977)]. However, we can formally obtain the force acting
on the sphere F Ie1 from this solution. In fact, only the r−1 terms in urG1 and uθG1 and
the r−2 term in PG2 contribute to the force F I

1 and give

F I
1 = −3πγ1K1p0L

2τwck
2. (6.7)

This coincides with (5.4) because γ3 − 4γA = −2γ1K1 holds (Takata 2009a). Thus, the
formal solution, which violates the basic assumption for the generalized slip flow theory,
happens to give the correct result for the radiometric force acting on the sphere. This is
just an accidental coincidence without theoretical validation.

6.2. Free molecular limit

In the present study, we are concerned with the force acting on an oblate spheroid with
nonuniform (axisymmetric) surface temperature at small Knudsen numbers. But if we
consider the other extreme limit, the free-molecular flow, where the gas is so rarefied that
the collision between gas molecules can be neglected, we can readily obtain the solution
and thus the force acting on the spheroid. To be more specific, we consider Problem I
(cf. § 2.1) with assumption (iii) replaced with the assumption that the Knudsen number
is infinitely large. Then, the force acting on the spheroid is obtained as

F I = −π

2
p0L

2

∫ π

0

τw(θ) sin θ cos θ dθ. (6.8)

It should be noted that the force does not depend on the aspect ratio of the spheroid a.
For the discontinuous surface temperature (2.1) or (5.2), (6.8) reduces to

F I = (π/4)p0L
2τwc. (6.9)

6.3. Final velocity of the oblate spheroid set free in the gas

If the oblate spheroid in Problem I is set free in the gas, it starts moving in the direction
of the force (5.1) or (5.3). Let us denote by Vfe1 its final velocity (in dimensional form)
after steady motion has been reached. This Vfe1 can be obtained by the superposition
of Problem I and Problem II because of the linearity of the problems as follows. In the
superposed problem, where the oblate spheroid with a non-uniform surface temperature
T0[1 + τw(x1)] is placed in a uniform flow of gas (2RT0)

1/2u∞e1, the total force acting
on the spheroid is (F I + F II)e1. Here, F

IIe1 is the force acting on the oblate spheroid
in Problem II, which is given in Appendix B in two special cases, i.e., the Stokes flow
and the free-molecular flow. If we let u∗

∞ be the value of u∞ for which the total force
vanishes, then the final velocity mentioned above is given as Vfe1 = −(2RT0)

1/2u∗
∞e1.

In the case of the discontinuous temperature distribution (2.1) [or (5.2)], F I of (5.3) [or
(6.8)] should be combined with F II of (B 1) (with u∞ of the order of k) [or (B 3)]. In
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summary, we obtain the following results: For small Knudsen numbers,

Vf =
γ3 − 4γA
4γ1a

(2RT0)
1/2τwck, (6.10)

with the terms of O(k2) neglected, and for the free-molecular gas,

Vf =

√
π

2

1

D(a)
(2RT0)

1/2τwc, (6.11)

where D(a) is given by (B 4).

7. Concluding remarks

In the present study, we considered an oblate spheroid with a non-uniform and axisym-
metric surface temperature placed in a rarefied gas at an equilibrium state at rest when
the temperature variation is small (Problem I). In this case, according to the formula
[cf. (2.2)] derived by Takata (2009a) on the basis of the symmetry relations for the lin-
earized Boltzmann equation, we can obtain the force acting on the spheroid (radiometric
force) by solving the adjoint problem (Problem II), where the same oblate spheroid with
a uniform temperature is placed in a slow uniform flow of a gas.

This approach is particularly useful for small Knudsen numbers. When the Knudsen
number is small, the generalized slip flow theory developed by Sone is available for
any smooth geometry and smooth boundary data (Sone 1969, 1971, 1991, 2002, 2007).
According to the theory, the zeroth-order solution in the Knudsen number of Problem
II, which is necessary to obtain the leading-order term in the Knudsen number of the
radiometric force in Problem I, is nothing but the classical Stokes solution (Payne &
Pell 1960). Therefore, we can readily obtain the leading-order term of the force acting
on the spheroid in Problem I by the formula (2.2) for any temperature distribution.
In particular, when the surface temperature is not smooth, such as the discontinuous
temperature distribution given by (2.1), this approach is very powerful because Problem
I itself is beyond the applicability of the generalized slip flow theory that is based on
the smoothness of the boundary data. In other words, if one tries to solve Problem I in
this case, there is no way other than a direct numerical approach even for small Knudsen
numbers. Nevertheless, we were able to obtain an analytical formula for the radiometric
force (5.1) by the present approach.

This work was partially supported by the grants-in-aid for scientific research Nos. 21656026,
23360083 and 23246034 from JSPS.

Appendix A. Direct derivation of (2.2)

The formula (2.2) has been derived in Takata (2009a) in a much more general setting.
Here, we derive it again directly from the basic equations for Problem I and Prob-
lem II in order to check some mathematical problems that have not been mentioned
explicitly in Takata (2009a). For this purpose, we introduce some additional quanti-
ties. Let (2RT0)

1/2ζi be the velocity of gas molecules and ρ0(2RT0)
−3/2E[1 + ϕ(xi, ζi)]

be the velocity distribution function of gas molecules, where ρ0 = p0/RT0 and E =
π−3/2 exp(−ζ2i ). Then, the deviations of the macroscopic quantities ω, ui, τ , P , Pij , and
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14 K. Aoki, S. Takata and T. Tomota

Qi are expressed in terms of ϕ as follows:

ω = ⟨ϕ⟩, ui = ⟨ζiϕ⟩, τ =
2

3

⟨(
ζ2i − 3

2

)
ϕ
⟩
, P = ω + τ =

2

3
⟨ζ2i ϕ⟩, (A 1a)

Pij = 2⟨ζiζjϕ⟩, Qi = ⟨ζiζ2j ϕ⟩ −
5

2
ui. (A 1b)

Here, ⟨ ⟩ indicates

⟨g(ζi)⟩ =
∫

g(ζi)Edζ, (A 2)

where g(ζi) is an arbitrary function of ζi, dζ = dζ1dζ2dζ3, and the domain of integration
is the whole space of ζi. If we introduce the notation Φ(ζi)

− = Φ(−ζi) for any function
Φ of ζi, it follows that

(Φ−)− = Φ, ⟨Φ−⟩ = ⟨Φ⟩. (A 3)

Let us consider Problem I and Problem II for arbitrary Knudsen numbers under as-
sumptions (i) and (ii) [or (ii)′] with the diffuse reflection condition as the boundary
condition for the Boltzmann equation. Then, each problem is formulated as follows:

[Problem I] The basic equation is

ζi
∂ϕI

∂xi
=

1

k
L(ϕI), (A 4)

and the boundary conditions are

ϕI = σI
w +

(
ζ2i − 3

2

)
τw, (for ζini > 0 on the spheroid), (A 5a)

with σI
w = −1

2
τw − 2

√
π

∫
ζlni<0

ζjnjϕ
IEdζ, (A 5b)

ϕI → 0, (for |xi| → ∞). (A 5c)

[Problem II] The basic equation is

ζi
∂ϕII

∂xi
=

1

k
L(ϕII), (A 6)

and the boundary conditions are

ϕII = σII
w (for ζini > 0 on the spheroid), (A 7a)

with σII
w = −2

√
π

∫
ζlni<0

ζjnjϕ
IIEdζ, (A 7b)

ϕII → 2ζ1u∞, (for |xi| → ∞). (A 7c)

Here and in what follows, the superscript I (or II) is put for the solution and corresponding
quantities of Problem I (or Problem II). In (A 4) and (A 6), L(ϕ) is the linearized collision
operator of the Boltzmann equation, whose explicit form is omitted here [see Sone (2002,
2007)]. We just note that it has the following basic properties: For any functions Φ and
Ψ of ζi,

L(Φ−) = L(Φ)−, (A 8)

⟨ΦL(Ψ)⟩ = ⟨ΨL(Φ)⟩, (self-adjointness), (A 9)

⟨ΦL(Φ)⟩ ⩽ 0, (non-positivity). (A 10)
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In (A 10), the equality sign holds if and only if Φ is a linear combination of 1, ζi and ζ2i .
Now let us consider ⟨ϕII−× (A 4) ⟩ − ⟨ϕI−× (A 6) ⟩, that is,⟨

ϕII−ζj
∂ϕI

∂xj

⟩
−
⟨
ϕI−ζj

∂ϕII

∂xj

⟩
=

1

k

[⟨
ϕII−L(ϕI)

⟩
−
⟨
ϕI−L(ϕII)

⟩]
. (A 11)

The right-hand side (RHS) of (A 11) vanishes because of the properties (A 3), (A 8) and
(A 9), i.e.,

RHS =
⟨
ϕII−L(ϕI)

⟩
−
⟨
ϕIL(ϕII−)

⟩
=
⟨
ϕII−L(ϕI)

⟩
−
⟨
ϕII−L(ϕI)

⟩
= 0. (A 12)

On the other hand, because of the same properties, the left-hand side (LHS) of (A 11) is
transformed as

LHS =

⟨
ϕII−ζj

∂ϕI

∂xj

⟩
+

⟨
ϕIζj

∂ϕII−

∂xj

⟩
=

⟨
ζj
∂ϕIϕII−

∂xj

⟩
=

∂

∂xj

⟨
ζjϕ

IϕII−⟩ . (A 13)

However, in order that the last equality holds, we implicitly assume that ϕI and ϕII are
smooth enough. In reality, in Problems I and II, where a gas around a convex body
(oblate spheroid) is considered, ϕI and ϕII have discontinuities in the ζi space (Sone &
Takata 1992; Sone 2002, 2007). More specifically, at a fixed point xi in the gas, they
are discontinuous for the velocities in the direction of the lines (in the xi space) that
are tangent to the body. In addition, in Problem I, discontinuities are also produced by
a discontinuous boundary temperature, such as (2.1) [or (5.2)]. It should be noted here
that, at any point xi, all the discontinuities in the ζi space are located along radial lines
parallel to ζi [i.e., the characteristic line of (A 4) or (A 6)]. As pointed out by Sone in the
derivation of the conservation equations from the Boltzmann equation [see §1̇.2 of the
Supplementary Notes in Sone (2007)], if we take this property into account, we can show
that the derivative ∂/∂xi and the integral ⟨ · ⟩ with respect to ζi are interchangeable,
that is, the last equality of (A 13) holds. Then, from (A12) and (A 13), we have

∂

∂xj

⟨
ζjϕ

IϕII−⟩ = 0. (A 14)

Let us consider the domain V between the surface of the spheroid S and the surface Sr
of a sphere of radius r centered at the origin and containing the spheroid. If we integrate
(A 14) over V and apply the Gauss theorem formally, we obtain∫

V

∂

∂xj

⟨
ζjϕ

IϕII−⟩ dx =

∫
Sr

⟨
ζjϕ

IϕII−⟩njdS −
∫
S

⟨
ζjϕ

IϕII−⟩njdS = 0, (A 15)

where dx = dx1dx2dx3, ni is the outward unit normal of the surface of the sphere Sr or
the unit normal of the surface of the spheroid S pointing into the gas, and dS is the surface
element on Sr or S in the dimensionless xi space. Here, the integrand

⟨
ζjϕ

IϕII−⟩nj in
the integral over S is interpreted as the limit from the gas side. As mentioned in the
preceding paragraph, ϕI and ϕII exhibit discontinuities. However,

Property 1:
⟨
ζjϕ

IϕII−⟩, which is the integral over the whole space of ζi, is a continuous
(and differentiable) function of xi in the gas, as other macroscopic quantities in Problems
I and II.

Therefore, the only problem in (A 15) is that
⟨
ζjϕ

IϕII−⟩ may have singularities on S. For
instance, when the temperature of the spheroid in Problem I is discontinuous,

Property 2:
⟨
ζjϕ

IϕII−⟩ is discontinuous on S, as other macroscopic quantities in Prob-

lem I; this means that
⟨
ζjϕ

IϕII−⟩nj is integrable on S.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



16 K. Aoki, S. Takata and T. Tomota

Properties 1 and 2 are the consequences based on the assumption that ϕI and ϕII are
piecewise smooth functions with discontinuities in xi and ζi as in Sone & Takata (1992).
We must say that it is very hard to prove these properties as well as the properties
of ϕI and ϕII in a rigorous mathematical way from the basic systems, Eqs. (A 4) and
(A 5) and Eqs. (A 6) and (A 7). However, these consequences are supported indirectly
by the previous numerical analysis (Aoki, Takata, Aikawa & Golse 2001) of a problem
with discontinuous boundary temperature using the (nonlinear) BGK model and by the
rigorous mathematical study (Aoki, Bardos, Dogbe & Golse 2001) of a boundary-value
problem with discontinuous boundary data for a simple radiative transfer equation, which
has a structure similar to the linearized BGK model. Thus, if we take the limit r → ∞
in (A 15), we have

lim
r→∞

∫
Sr

⟨
ζjϕ

IϕII−⟩njdS =

∫
S

⟨
ζjϕ

IϕII−⟩njdS. (A 16)

According to Takata (2009a), ϕI and ϕII behave, for large |xi|, as

ϕI = 2ζjc
I
j +

(
ζ2j − 5

2

)
cI +O

(
|xi|−2

)
, (A 17a)

ϕII = 2ζj(u∞j + cIj) +

(
ζ2j − 5

2

)
cII +O

(
|xi|−2

)
, (A 17b)

where u∞i indicates the vector u∞e1, and cIi, c
I, cIIi and cII are quantities of O

(
|xi|−1

)
.

Using (A 17a) and (A 17b) and noting that −2
∫
Sr
⟨ζ1ζjϕI⟩njdS is nothing else than

F I/p0L
2, we can transform the LHS of (A 16) as

lim
r→∞

∫
Sr

⟨
ζjϕ

IϕII−⟩nj = lim
r→∞

∫
Sr

[
−2u∞

⟨
ζ1ζjϕ

I
⟩
nj +O

(
|xi|−3

)]
dS.

= (u∞/p0L
2)F I. (A 18)

On the other hand, since ϕI for ζini > 0 on the spheroid is given by (A 5a) and ϕII− for
ζini < 0 there, which is equivalent to ϕII for ζini > 0, is given by (A 7a), the integrand
of the RHS, which is evaluated on the spheroid, is transformed as follows:⟨

ζjϕ
IϕII−⟩nj

=

∫
ζjnj<0

ζjnjϕ
IϕII−Edζ +

∫
ζjnj>0

ζjnjϕ
IϕII−Edζ

= σII
w

∫
ζjnj<0

ζjnjϕ
IEdζ +

∫
ζjnj>0

ζjnj

[
σI
w +

(
ζ2i − 3

2

)
τw

]
ϕII−Edζ

= σII
w

∫
ζjnj<0

ζjnjϕ
IEdζ −

∫
ζjnj<0

ζjnj

[
σI
w +

(
ζ2i − 3

2

)
τw

]
ϕIIEdζ

= −τw

(
1√
π
σII
w +

∫
ζjnj<0

ζjnjζ
2
i ϕ

IIEdζ

)
, (A 19)

where (A 5b) and (A 7b) have been used to obtain the last line. However, if we calculate
the normal component of the heat-flow vector QII

i ni corresponding to ϕII on the spheroid
using (A 1b) and (A 7a) and note that uini = 0 there, we find that the last line of (A 19)

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



A force acting on an oblate spheroid 17

is equal to −τwQ
II
i ni. Therefore, the RHS of (A 16) becomes∫

S

⟨
ζjϕ

IϕII−⟩njdS = −
∫
S

τwQ
II
i nidS. (A 20)

In summary, (A 16), (A 18) and (A 20) lead to the relation

(u∞/p0L
2)F I = −

∫
S

τwQ
II
i nidS, (A 21)

i.e., (2.2).

Appendix B. Drag acting on an oblate spheroid in Problem II

From the solution (4.6) for the Problem II, we can obtain the leading-order term in
k (≪ 1) of the drag force acting on the oblate spheroid placed in a slow uniform flow of
the gas, which is nothing but the classical Stokes drag (Payne & Pell 1960). That is, the
drag force F IIe1 is obtained as

F II = 8πγ1p0L
2u∞

a

At0
k, (B 1)

with k2-order term neglected, where A and t0 are the functions of the aspect ratio a [see
(4.7)]. In the case of a sphere (a = 1) and a circular disk (a = 0), the drag (B 1) reduces,
respectively, to

F II =

{
6πγ1p0L

2u∞k (a = 1),
16γ1p0L

2u∞k (a = 0).
(B 2)

On the other hand, in the free molecular flow (k = ∞), the drag force is given by

F II = (
√
π/2)p0L

2u∞D(a), (B 3)

where

D(a) =
4 + π − 2a2

c20

[
2− a2c−1

0 ln

(
1 + c0
1− c0

)]
+ 4a2c−1

0 ln

(
1 + c0
1− c0

)
, (B 4)

and c0 =
√
1− a2, see (4.5). In the case of a sphere (a = 1) and a circular disk (a = 0),

(B 3) reduces, respectively, to

F II =

{
(2
√
π/3)(8 + π)p0L

2u∞ (a = 1),√
π(4 + π)p0L

2u∞ (a = 0).
(B 5)
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Birkhäuser, Supplementary Notes and Errata: Kyoto University Research Information
Repository (http://hdl.handle.net/2433/66098).

Sone, Y. & Aoki, K. 1977 Forces on a spherical particle in a slightly rarefied gas. In Rarefied
Gas Dynamics (ed. J. L. Potter), pp. 417–433. New York: AIAA.

Sone, Y. & Takata, S. 1992 Discontinuity of the velocity distribution function in a rarefied
gas around a convex body and the S layer at the bottom of the Knudsen layer. Transp.
Theory Stat. Phys. 21, 501–530.

Sone, Y. & Tanaka, S. 1980 Thermal stress slip flow induced in rarefied gas between non-
coaxial circular cylinders. In Theoretical and Applied Mechanics (ed. F. P. J. Rimrott &
B. Tabarrok), pp. 405–416. Amsterdam: North-Holland.

Taguchi, S. & Aoki, K. 2011 Numerical analysis of rarefied gas flow induced around a flat
plate with a single heated side. In Rarefied Gas Dynamics (ed. D. A. Levin, I. J. Wysong
& A. L. Garcia), pp. 790–795. Melville: AIP.

Taguchi, S. & Aoki, K. 2012 Rarefied gas flow around a sharp edge induced by a temperature
field. J. Fluid Mech. 694, 191–224.

Takata, S. 2009a Symmetry of the linearized Boltzmann equation and its application. J. Stat.
Phys. 136, 751–784.

Takata, S. 2009b Symmetry of the linearized Boltzmann equation II. Entropy production and
Onsager–Casimir relation. J. Stat. Phys. 136, 945–983.

Takata, S. & Hattori, M. 2012a Asymptotic theory for the time-dependent behavior of a
slightly rarefied gas over a smooth solid boundary. J. Stat. Phys. 147, 1182–1215.

Takata, S. & Hattori, M. 2012b On the second-order slip and jump coefficients for the general
theory of slip flow. In 28th International Conference on Rarefied Gas Dynamics 2012, AIP
Conf. Proc. 1501 (eds. M. Mareschal, A. Santos & A. T. Lafita) pp. 59–66. Melville: AIP.

Takata, S. & Sone, Y. 1995 Flow induced around a sphere with a nonuniform temperature
in a rarefied gas, with application to the drag and thermal force problems of a spherical
particle with an arbitrary thermal conductivity. Eur. J. Mech. B/Fluids 14, 487–518.

Welander, P. 1954 On the temperature jump in a rarefied gas. Ark. Fys. 7, 507–553.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp




