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RIEMANNIAN CONJUGATE GRADIENT METHODS:
GENERAL FRAMEWORK AND SPECIFIC ALGORITHMS

WITH CONVERGENCE ANALYSES\ast 

HIROYUKI SATO\dagger 

Abstract. Conjugate gradient methods are important first-order optimization algorithms both
in Euclidean spaces and on Riemannian manifolds. However, while various types of conjugate gra-
dient methods have been studied in Euclidean spaces, there are relatively fewer studies for those on
Riemannian manifolds (i.e., Riemannian conjugate gradient methods). This paper proposes a novel
general framework that unifies existing Riemannian conjugate gradient methods such as the ones
that utilize a vector transport or inverse retraction. The proposed framework also develops other
methods that have not been covered in previous studies. Furthermore, conditions for the convergence
of a class of algorithms in the proposed framework are clarified. Moreover, the global convergence
properties of several specific types of algorithms are extensively analyzed. The analysis provides the
theoretical results for some algorithms in a more general setting than the existing studies and new
developments for other algorithms. Numerical experiments are performed to confirm the validity of
the theoretical results. The experimental results are used to compare the performances of several
specific algorithms in the proposed framework.

Key words. conjugate gradient method, Riemannian optimization, Riemannian manifold, vec-
tor transport, inverse retraction

MSC codes. 65K05, 90C30, 90C48
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1. Introduction. Riemannian optimization (i.e., optimization on Riemannian
manifolds) has recently attracted increasing attention owing to its vast variety of
applications, including machine learning, control engineering, and numerical linear
algebra [3, 17, 51]. While nonsmooth or constrained Riemannian optimization prob-
lems have also been studied (see [2, 19, 37, 61] and [13, 40, 56, 59] and references
therein for nonsmooth and constrained Riemannian optimization, respectively), we
focus on smooth unconstrained Riemannian optimization problems in this paper. The
class of unconstrained Riemannian optimization problems is also important since it
overlaps the class of constrained optimization problems in Euclidean space. This is
because a constrained Euclidean optimization problem can be regarded as an un-
constrained Riemannian optimization problem if the set of constraints forms a Rie-
mannian manifold. An important example is the Stiefel manifold, which is defined
as St(p, n) := \{ X \in \BbbR n\times p | XTX = Ip\} , where p \leq n [22, 62]. Any optimiza-
tion problem in \BbbR n\times p with the constraint XTX = Ip (and without any other con-
straint) on the decision variable matrix X can be considered as an unconstrained
optimization problem on St(p, n). Another example is the manifold SPD(n), which
comprises all n \times n symmetric positive definite matrices [15, 42]. Furthermore,
the class of unconstrained Riemannian optimization problems also covers problems
that are not defined in Euclidean space, e.g., optimization problems on the Grass-
mann manifold Grass(p, n) := \{ W \subset \BbbR n | W is a p-dimensional subspace of \BbbR n\} 
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for p \leq n, whose decision variable W is a subspace of \BbbR n, not a vector or matrix
[22, 64].

An important feature of unconstrained Riemannian optimization problems is
that they may be solved using the generalized versions of unconstrained Euclid-
ean optimization methods, which have been studied intensively, if we successfully
generalize the Euclidean methods to those on Riemannian manifolds appropriately.
Various Euclidean optimization methods have been generalized to the Riemannian
case, such as cyclic proximal point algorithms [9, 14], stochastic optimization algo-
rithms [16, 54, 60], and multiobjective optimization algorithms [11, 24]. One of the
challenges in Riemannian optimization lies in the accomplishment of the generaliza-
tion of Euclidean optimization algorithms to the Riemannian case with attention to
geometric structures. Other challenges include linking the theory of Riemannian opti-
mization with real-world applications [27, 55] and analyzing geometry of and providing
geometric tools on various manifolds that can be exploited in optimization [28, 33].

In this paper, we address the CG methods on Riemannian manifolds, which we
refer to as the Riemannian conjugate gradient (R-CG) methods. The CG methods
are appealing when large-scale optimization problems are to be solved because each
iteration computationally costs much less than the second-order methods; hence, the
CG methods find an approximate solution in a moderately fast time. Several types of
R-CG methods have been studied. In some of these studies, parallel translation along
the geodesics is utilized [22, 23, 39, 57]. This type of approach is theoretically natural;
nonetheless, there is room for computational improvement. Other studies use a more
general map called vector transport [3, 47, 48, 49, 50, 53]. Using a vector transport
typically enables the execution of each iteration of R-CG methods more easily than
using parallel translation, whereas it may negatively affect or sometimes destroy the
convergence property of the algorithm. Therefore, in this paper, we provide a general
framework of the R-CG methods, which includes successful existing methods, and
we clarify the conditions with which the R-CG methods have a good convergence
property.

The contributions of this paper are twofold: (i) We provide a novel general frame-
work of the R-CG methods, which unifies the existing R-CG methods and covers a
wider class, and we clarify the assumptions that are naturally required to apply an R-
CG method to a Riemannian optimization problem. (ii) We generalize several types of
standard Euclidean CG methods to the Riemannian case in our proposed framework.
We also provide global convergence analyses for some specific practical algorithms.
Although we do not generalize all the Euclidean CG methods in this paper because
there are various algorithms, this paper provides a basis for studies on R-CG methods.

This paper is organized as follows. In section 2, we introduce the notation used
throughout the paper. In section 3, we review the Euclidean CG and some existing
R-CG methods, and we clarify what should be further addressed for the existing
methods using some examples as a motivation for this study. In section 4, we propose
our new general framework of R-CG methods. Thereafter, we introduce several types
of practical R-CG methods as examples of the proposed framework. Some conditions
that are imposed on step lengths are also proposed. In section 5, we summarize
some standard assumptions for a Riemannian optimization problem to be solved. We
also generalize Zoutendijk's theorem to our framework. In section 6, we provide the
convergence analyses of several types of R-CG methods and discuss their behavior
in our framework. Section 7 provides the results of some numerical experiments of
different types of R-CG methods, in which they are compared. Finally, we conclude
the paper in section 8.
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2. Preliminaries. In this section, we summarize the notation and problem set-
ting used throughout the paper.

The tangent space of a finite-dimensional manifold \scrM at x \in \scrM is denoted as
Tx\scrM , and the tangent bundle of\scrM is denoted as T\scrM := \{ (x, \eta ) | \eta \in Tx\scrM , x \in \scrM \} .
For a map F : \scrM \rightarrow \scrN between two manifolds \scrM and \scrN , DF (x) : Tx\scrM \rightarrow TF (x)\scrN 
denotes the derivative (pushforward) of F at x \in \scrM .

In what follows, \scrM denotes a finite-dimensional Riemannian manifold with a
Riemannian metric \langle \cdot , \cdot \rangle ; therefore, the tangent space Tx\scrM at any x \in \scrM is an
inner product space with the inner product \langle \cdot , \cdot \rangle x, which is given by the Riemannian
metric \langle \cdot , \cdot \rangle . In the tangent space Tx\scrM with the inner product \langle \cdot , \cdot \rangle x, the norm of
\eta \in Tx\scrM is defined as \| \eta \| x :=

\sqrt{} 
\langle \eta , \eta \rangle x. The Riemannian gradient grad f(x) of a

function f : \scrM \rightarrow \BbbR at x \in \scrM is defined as a unique tangent vector at x satisfying
\langle grad f(x), \eta \rangle x = Df(x)[\eta ] for any \eta \in Tx\scrM .

The Euclidean space \BbbR n with the standard inner product can be regarded as a
Riemannian manifold with the Riemannian metric \langle \cdot , \cdot \rangle defined by \langle \xi , \eta \rangle x := \xi T \eta for
any \xi , \eta \in Tx\BbbR n \simeq \BbbR n and x \in \BbbR n. In the Euclidean space \BbbR n with this Riemannian
metric, the Riemannian gradient grad f(x) of f : \BbbR n \rightarrow \BbbR at x \in \BbbR n is equal to
\nabla f(x) := (\partial f(x)/\partial xi) \in \BbbR n. We refer to this as the Euclidean gradient.1 The

Euclidean norm (i.e., the 2-norm) of a \in \BbbR n is denoted by \| a\| 2 :=
\surd 
aTa. The

orthogonal group is denoted as \scrO (n) := St(n, n) = \{ X \in \BbbR n\times n | XTX = In\} .
We consider the following unconstrained optimization problem for minimizing a

sufficiently smooth2 objective function f : \scrM \rightarrow \BbbR on a Riemannian manifold \scrM .

Problem 2.1.

minimize f(x)

subject to x \in \scrM .

In most Riemannian optimization algorithms, we use a retraction R : T\scrM \rightarrow \scrM ,
which is a generalization of the exponential map on \scrM [3, 6]. With the notation
Rx := R| Tx\scrM : Tx\scrM \rightarrow \scrM , a retraction R on \scrM is defined to satisfy Rx(0x) = x and
DRx(0x) = idTx\scrM for all x \in \scrM , where 0x and idTx\scrM are the zero vector of Tx\scrM 
and identity map in Tx\scrM , respectively. While the exponential map is theoretically
natural, a retraction is used to increase efficiency in numerical optimization. Regard-
ing the manifold of fixed-rank matrices, for example, no closed-form expression of the
exponential map is known for the embedded geometry in general [4, 5]. Therefore,
using a retraction is essential to efficiently solve optimization problems on this mani-
fold. Furthermore, studies have been conducted on retractions that can be computed
efficiently. For example, a Cholesky-QR-based retraction on the generalized Stiefel
manifold was proposed to improve the computational efficiency [52].

3. Review of and discussion on the existing Riemannian CG methods.
In this section, we review the extension of the CG methods in Euclidean spaces to
Riemannian optimization, i.e., R-CG methods. In particular, we discuss what has
been done so far and what should be further studied in generalizing the Euclidean CG

1In Riemannian geometry, the symbol \nabla usually denotes an affine connection on Riemannian
manifold \scrM . However, because we do not explicitly use affine connections in this paper and we
sometimes compare the Euclidean and Riemannian CG methods, we distinguish between the Euclid-
ean and Riemannian gradients of function f in \BbbR n and on \scrM by writing them as \nabla f and grad f ,
respectively.

2In section 5, we will clarify the condition on smoothness of f required in convergence analyses
in section 6.
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methods to Riemannian ones, providing some examples to clarify the issues resolved
in this paper.

In the Euclidean case, the CG methods are line search algorithms to solve Prob-
lem 2.1 with \scrM = \BbbR n and an objective function f : \BbbR n \rightarrow \BbbR , where a sequence \{ xk\} 
in \BbbR n is generated by

(3.1) xk+1 = xk + tk\eta k

with tk > 0 for k \geq 0 from an initial point x0 \in \BbbR n, and the search directions \eta k \in \BbbR n

are computed using the gradient gk := \nabla f(xk) as \eta 0 =  - g0 and

(3.2) \eta k+1 =  - gk+1 + \beta k+1\eta k

for k \geq 0 [44, section 5.2]. The computation of real values \beta k+1 is crucial for the
performance of CG methods. Defining yk := gk  - gk - 1, the following six types of
\beta k+1 are considered as standard ones:

(3.3)

\beta FR
k+1 =

\| gk+1\| 22
\| gk\| 22

, \beta DY
k+1 =

\| gk+1\| 22
yTk+1\eta k

, \beta CD
k+1 =

\| gk+1\| 22
 - gTk \eta k

,

\beta PRP
k+1 =

gTk+1yk+1

\| gk\| 22
, \beta HS

k+1 =
gTk+1yk+1

yTk+1\eta k
, \beta LS

k+1 =
gTk+1yk+1

 - gTk \eta k
.

They were proposed by Fletcher and Reeves [26], Dai and Yuan [20], Fletcher [25],
Polak and Ribi\`ere [45] and Polyak [46], Hestenes and Stiefel [34], and Liu and
Storey [41], respectively. Here, ``CD"" in \beta CD

k+1 represents ``conjugate descent."" Al-
though we do not describe all the existing CG methods here, various other types
of \beta k+1 have also been examined. An important example is \beta HZ

k+1 = 1
yT
k+1\eta k

(yk+1  - 

2\eta k
\| yk+1\| 22
yT
k+1\eta k

)T gk+1 by Hager and Zhang [31], whose Riemannian version is studied

in [49].
In the R-CG methods, like many other Riemannian optimization algorithms, a

sequence \{ xk\} on \scrM is generated from an initial point x0 \in \scrM by

(3.4) xk+1 = Rxk
(tk\eta k)

for k \geq 0, where R : T\scrM \rightarrow \scrM is a retraction on \scrM and the search direction \eta k
is in Txk

\scrM [3, Algorithm 13]. This is because \scrM is not a linear space in general,
and the line search strategy (3.1) is not applicable if the half-line \{ xk + t\eta k | t > 0\} 
does not lie on \scrM . The formula (3.4) indicates that, given xk \in \scrM , we find the
subsequent point xk+1 on the curve \gamma k(t) := Rxk

(t\eta k) with \gamma k(0) = Rxk
(0) = xk and

\.\gamma k(0) = DRxk
(0)[\eta k] = \eta k, instead of on a line. This is one of the main differences

between Euclidean and Riemannian optimization. In the R-CG methods, conditions
for step lengths tk and how to compute search directions \eta k also differ from the
Euclidean case, as described below.

In the remainder of this section, we define gk := grad f(xk) and assume that \eta k
is a descent direction, i.e., \langle gk, \eta k\rangle xk

< 0. Then, step lengths tk should be chosen to
satisfy some conditions such as the Riemannian version of the Wolfe conditions

(3.5) f(Rxk
(tk\eta k)) \leq f(xk) + c1tk\langle gk, \eta k\rangle xk

and

(3.6) \langle grad f(Rxk
(tk\eta k)),DRxk

(tk\eta k)[\eta k]\rangle Rxk
(tk\eta k) \geq c2\langle gk, \eta k\rangle xk

,
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or strong Wolfe conditions (3.5) and

(3.7) | \langle grad f(Rxk
(tk\eta k)),DRxk

(tk\eta k)[\eta k]\rangle Rxk
(tk\eta k)| \leq c2| \langle gk, \eta k\rangle xk

| ,

where c1 and c2 are constants satisfying 0 < c1 < c2 < 1 [51, section 3.5]. An
algorithm to find a step length satisfying the Riemannian (strong) Wolfe conditions is
discussed in [50], which is a generalization of the Euclidean case discussed in [38, 44].
Furthermore, in this paper, we define the (Riemannian) generalized Wolfe conditions
as (3.5) and

(3.8)
c2\langle gk, \eta k\rangle xk

\leq \langle grad f(Rxk
(tk\eta k)),DRxk

(tk\eta k)[\eta k]\rangle Rxk
(tk\eta k)

\leq  - c3\langle gk, \eta k\rangle xk
,

where c3 \geq 0 is a constant. Theoretically, if c3 = c2, then the generalized Wolfe
conditions are equivalent to the strong Wolfe conditions. However, in some practical
cases, c3 can be much larger than c2; thus, it is not so restrictive. If c3 is sufficiently
large, the generalized Wolfe conditions are close to the Wolfe conditions. On the
other hand, if c3 = 0, then the generalized Wolfe conditions are stricter than the
strong Wolfe conditions.

We proceed to generalizing the computation of the search directions (3.2) in
the CG methods to the Riemannian case. The search direction at the initial point
x0 \in \scrM is naturally determined, i.e., \eta 0 =  - g0 =  - grad f(x0). At the right-hand
side of (3.2),  - \nabla f(xk+1) \in \BbbR n is generalized to the negative Riemannian gradient
 - gk+1 = - grad f(xk+1) \in Txk+1

\scrM on \scrM , whereas \beta k+1 \in \BbbR and \eta k \in Txk
\scrM on \scrM .

Consequently, two vectors  - gk+1 and \beta k+1\eta k belong to the distinct tangent spaces
Txk+1

\scrM and Txk
\scrM , respectively; therefore, they cannot be added together. To re-

solve this issue, several approaches were considered in the literature which we outline
below.

In [22, 39, 57], R-CG methods were discussed in which \eta k \in Txk
\scrM is parallel

translated to Txk+1
\scrM to compute \eta k+1, i.e., \eta k+1 is computed as

(3.9) \eta k+1 =  - gk+1 + \beta k+1P
1\leftarrow 0
\gamma k

(\eta k),

where P1\leftarrow 0
\gamma k

: Txk
\scrM \rightarrow Txk+1

\scrM is the parallel translation along the geodesic \gamma k con-
necting xk and xk+1 as \gamma k(0) = xk and \gamma k(1) = xk+1. However, in some cases, the
parallel translation is numerically impractical. For example, no closed form for the
parallel translation along the geodesic on the Stiefel manifold is known [3, Example
8.1.2].

In [3, Definition 8.1.1], the concept of a more general map, called a vector trans-
port, was proposed. Let T\scrM \oplus T\scrM := \{ (\xi , \eta ) | \xi , \eta \in Tx\scrM , x \in \scrM \} denote the
Whitney sum. A map \scrT : T\scrM \oplus T\scrM \rightarrow T\scrM is called a vector transport on \scrM if
it satisfies the following conditions: (1) There exists a retraction R on \scrM such that
\scrT \eta (\xi ) \in TRx(\eta )\scrM for all x \in \scrM and \xi , \eta \in Tx\scrM . (2) For any x \in \scrM and \xi \in Tx\scrM ,
\scrT 0x(\xi ) = \xi holds, where 0x is the zero vector of Tx\scrM , i.e., \scrT 0x is the identity map.
(3) For any a, b \in \BbbR , x \in \scrM , and \xi , \eta , \zeta \in Tx\scrM , \scrT \eta (a\xi + b\zeta ) = a\scrT \eta (\xi ) + b\scrT \eta (\zeta )
holds, i.e., \scrT \eta is a linear map from Tx\scrM to TRx(\eta )\scrM . Note that a map \scrT defined by
\scrT \eta (\xi ) := P1\leftarrow 0

\gamma x,\eta 
(\xi ) is a vector transport, where P1\leftarrow 0

\gamma x,\eta 
is the parallel translation along

the geodesic \gamma x,\eta (t) := Expx(t\eta ) connecting \gamma x,\eta (0) = x and \gamma x,\eta (1) = Expx(\eta ) with
the exponential map Exp as a retraction.

Using a general vector transport \scrT on \scrM , the formula (3.9) is generalized to

(3.10) \eta k+1 =  - gk+1 + \beta k+1\scrT tk\eta k
(\eta k).
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Note that the right-hand side is well defined because the first condition in the definition
of vector transport ensures \scrT tk\eta k

(\eta k) \in TRxk
(tk\eta k)\scrM = Txk+1

\scrM . The formula (3.10) is

more general than (3.9) since (3.10) includes (3.9) as a special case. However, careful
consideration is required to make the resultant R-CG method work appropriately. A
specific vector transport and its modified version (called a scaled vector transport)
have been studied to be utilized in R-CG methods as follows.

In [47], Ring andWirth analyzed the R-CG method (3.4) and (3.10) with a specific
type of \beta k+1 defined by \beta k+1 = \| gk+1\| 2xk+1

/\| gk\| 2xk
, which is a natural generalization

of \beta FR
k+1 in (3.3). They proved the global convergence property of this type of R-CG

method with the differentiated retraction \scrT R as a vector transport \scrT in (3.10), i.e.,

(3.11) \eta k+1 =  - gk+1 + \beta k+1\scrT R
tk\eta k

(\eta k)

with

(3.12) \scrT R
\eta (\xi ) := DRx(\eta )[\xi ], \xi , \eta \in Tx\scrM , x \in \scrM ,

assuming the inequality

(3.13) \| \scrT R
tk\eta k

(\eta k)\| xk+1
\leq \| \eta k\| xk

for all k \geq 0.

However, this inequality does not necessarily hold, even in very natural situations, as
shown by the following example.

Example 3.1. We consider the following QR-based retraction3 R on the Stiefel
manifold St(p, n) with p \leq n:

(3.14) RX(\eta ) := qf(X + \eta ), \eta \in TX St(p, n), X \in St(p, n),

where TX St(p, n) = \{ \xi \in \BbbR n\times p | XT \xi + \xi TX = 0\} and qf(\cdot ) returns the Q-factor of
the QR decomposition of the full-rank matrix in parentheses, i.e., if A \in \BbbR n\times p is of
full rank4 and is uniquely decomposed as A = QR with Q \in St(p, n) and R being an
upper triangular matrix with positive diagonal elements, then qf(A) = Q. For this
retraction R, the differentiated retraction \scrT R is computed as [3, Example 8.1.5]

(3.15) \scrT R
\eta (\xi ) := DRX(\eta )[\xi ] = X+\rho skew(X

T
+\xi R

 - 1
+ ) + (In  - X+X

T
+)\xi R

 - 1
+

forX \in St(p, n) and \xi , \eta \in TX St(p, n), whereX+\eta = X+R+ is the QR decomposition
of X + \eta (i.e., X+ = qf(X + \eta ) and R+ = XT

+(X + \eta )) and \rho skew(\cdot ) returns the skew-
symmetric matrix that has the same size and strict lower part as those of the matrix
in parentheses.

When n \geq p \geq 2, inequality (3.13) does not necessarily hold. As an example,
we consider the Stiefel manifold St(p, n) with n = p = 3, which is reduced to the
orthogonal group \scrO (p) = \scrO (3), as a Riemannian submanifold of the Euclidean space
\BbbR p\times p, i.e., the Riemannian metric on St(p, n) is defined as \langle \xi , \eta \rangle X = tr(\xi T \eta ) for
X \in St(p, n) and \xi , \eta \in TX St(p, n). Assume that Xk = I3 \in \scrO (3), the search
direction is

\eta k =

\left(  0  - 1  - 1
1 0  - 1
1 1 0

\right)  \in TXk
\scrO (3) = TI3\scrO (3) = \{ Y \in \BbbR 3\times 3 | Y + Y T = 0\} ,

3Another popular retraction is the one based on the polar decomposition [3, Example 4.1.3].
Furthermore, a recent study [10] implies that retractions can be efficient and still close to geodesics.

4In (3.14), X + \eta is always of full rank because rank(X + \eta ) = rank((X + \eta )T (X + \eta )) =
rank(Ip + \eta T \eta ) = p. The last equality follows from the fact that Ip + \eta T \eta is invertible because it is
positive definite.
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and the step length is tk = 0.1. Then, from (3.15), a straightforward calculation yields

\| \scrT R
tk\eta k

(\eta k)\| RXk
(tk\eta k) \approx 2.47 >

\surd 
6 = \| \eta k\| Xk

,

which violates (3.13).5

While inequality (3.13) is important for the global convergence property, the lin-
earity of a vector transport is not crucial in R-CG methods. Based on this important
observation, Sato and Iwai [53] proposed the notion of a scaled vector transport \scrT (0)

associated with a vector transport \scrT defined as

\scrT (0)
\eta (\xi ) :=

\| \xi \| x
\| \scrT \eta (\xi )\| Rx(\eta )

\scrT \eta (\xi )

for x \in \scrM and \xi , \eta \in Tx\scrM . They also proposed a strategy where, in (3.11), the
scaled vector transport \scrT (0) associated with the differentiated retraction \scrT R is used
instead of \scrT R only when inequality (3.13) is violated, and \scrT R itself without scaling
is used if otherwise. This approach can be regarded as

(3.16) \eta k+1 =  - gk+1 + \beta k+1sk\scrT R
tk\eta k

(\eta k)

with the scaling parameter sk := min\{ 1, \| \eta k\| xk
/\| \scrT R

tk\eta k
(\eta k)\| Rxk

(tk\eta k)\} > 0, where

tk\eta k \not = 0. Note that \scrT (0) is not a vector transport because \scrT (0)
\eta : Tx\scrM \rightarrow TRx(\eta )\scrM 

for x \in \scrM and \eta \in Tx\scrM is not a linear map. Considering the same framework,
Sato [50], Sakai and Iiduka [48], and Sakai and Iiduka [49] analyzed the Dai--Yuan-
type, some hybrid \beta k+1-based, and Hager--Zhang-type of R-CG methods, respectively.

Recently, Zhu and Sato [63] proposed a completely different approach from (3.10)
or (3.11). Their algorithm uses an additional retraction Rbw, where ``bw"" represents
``backward"" and Rbw can be the same as or different from R in (3.4). Specifically,
given \eta k \in Txk

\scrM and xk+1 \in \scrM , the search direction \eta k+1 at xk+1 is computed as

(3.17) \eta k+1 =  - gk+1  - \beta k+1skt
 - 1
k (Rbw

xk+1
) - 1(xk)

with the scaling parameter sk := min
\bigl\{ 
1, \| \eta k\| xk

\big/ 
\| t - 1k

\bigl( 
Rbw

xk+1

\bigr)  - 1
(xk)\| xk+1

\bigr\} 
. This

means that the quantity  - t - 1k (Rbw
xk+1

) - 1(xk) is used in (3.17) instead of \scrT R
tk\eta k

(\eta k)
in (3.16). In [63], the FR- and DY-types of R-CG methods with inverse retraction
are analyzed. Furthermore, the inverse retraction is easily computed in some specific
cases (e.g., when Rbw is the orthographic retraction). An example of inverse retraction
(Rbw) - 1 on the manifold of symmetric positive definite matrices, without the necessity
of knowing the explicit expression of Rbw, is found in [30]. Since (3.17) is vector
transport free, other approaches can also be possible for the R-CG methods, leading
to the idea of the general framework proposed in the subsequent section.

4. New general framework of Riemannian CG methods. In this section,
we propose a new framework of R-CG methods, which contains the existing R-CG
methods as special cases. Furthermore, we generalize standard formulas for \beta k+1

in (3.3) to the Riemannian case. Some conditions for step lengths in the proposed
framework are also introduced.

5An exact calculation shows that \| \scrT R
tk\eta k

(\eta k)\| RXk
(tk\eta k)

= 200
\surd 
42849907/530553.

D
ow

nl
oa

de
d 

01
/1

0/
23

 to
 1

30
.5

4.
13

0.
25

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

RIEMANNIAN CONJUGATE GRADIENT METHODS 2697

4.1. Algorithm. We propose a new general framework of R-CG methods in
which we use a general map T (k) : Txk

\scrM \rightarrow Txk+1
\scrM to transport \eta k \in Txk

\scrM to
Txk+1

\scrM , i.e., the search direction \eta k+1 is computed as

(4.1) \eta k+1 =  - gk+1 + \beta k+1skT
(k)(\eta k),

where gk+1 := grad f(xk+1) and sk is a scaling parameter satisfying

(4.2) 0 < sk \leq min

\biggl\{ 
1,

\| \eta k\| xk

\| T (k)(\eta k)\| xk+1

\biggr\} 
,

which stems from the same idea as a scaled vector transport (see subsection 4.2
for more details). We summarize the proposed framework of the R-CG methods as
Algorithm 4.1.

Algorithm 4.1. General framework of the R-CG methods for Problem 2.1 on Rie-
mannian manifold \scrM with retraction R.
1: Choose an initial point x0 \in \scrM and set \eta 0 :=  - grad f(x0).
2: for k = 0, 1, 2, . . . do
3: Compute a step length tk > 0 and xk+1 := Rxk

(tk\eta k).
4: Compute gk+1 := grad f(xk+1) and \beta k+1 \in \BbbR .
5: Compute a search direction as \eta k+1 :=  - gk+1 + \beta k+1skT (k) (\eta k), where

T (k) : Txk
\scrM \rightarrow Txk+1

\scrM and 0 < sk \leq min
\bigl\{ 
1, \| \eta k\| xk

/\| T (k)(\eta k)\| xk+1

\bigr\} 
.

6: k := k + 1.
7: end for

We need to clarify what conditions T (k) should satisfy, how to compute \beta k, and
how step lengths tk should be chosen. We address these in the subsequent subsections.

4.2. Map T (\bfitk ) and scaling parameter \bfits \bfitk . The map T (k) in Algorithm 4.1
can be any map such that it appropriately transports \eta k \in Txk

\scrM to Txk+1
\scrM . Several

conditions used in convergence analyses in section 6 are discussed at the end of this
subsection. An important feature of Algorithm 4.1 is that we do not necessarily require
T (k) to be based on a vector transport. Furthermore, T (k) is not necessarily a linear
map. Therefore, the R-CG method with inverse retraction introduced in (3.17) is also
contained in this framework as specifically explained in Example 4.1.

Furthermore, any inequality corresponding to (3.13) is not required in terms of
T (k). Instead, the scaling parameter sk \in (0,min\{ 1, \| \eta k\| xk

/\| T (k)(\eta k)\| xk+1
\} ] plays

a role to ensure a similar inequality \| skT (k)(\eta k)\| xk+1
\leq \| \eta k\| xk

for all k \geq 0.

Example 4.1. In Algorithm 4.1, we know several choices of T (k) since this algo-
rithm includes all the R-CG methods introduced in section 3. For example, if we set
T (k)(\eta k) := P1\leftarrow 0

\gamma k
(\eta k) and sk := 1 in Algorithm 4.1 with parallel translation P\gamma k

along
the geodesic \gamma k connecting xk and xk+1, then (4.1) reduces to (3.9). Here, we can take
sk = 1 because the parallel translation is isometric, i.e., \| P1\leftarrow 0

\gamma k
(\eta k)\| xk+1

= \| \eta k\| xk
. If

we set T (k)(\eta k) := \scrT R
tk\eta k

(\eta k) with the differentiated retraction \scrT R defined by (3.12)

and sk := min\{ 1, \| \eta k\| xk
/\| \scrT R

tk\eta k
(\eta k)\| xk+1

\} , then (4.1) reduces to (3.16). Further-

more, if we set T (k)(\eta k) :=  - t - 1k (Rbw
Rxk

(tk\eta k)
) - 1(xk) with the inverse of a retrac-

tion Rbw on \scrM and sk := min
\bigl\{ 
1, \| \eta k\| xk

\big/ 
\| t - 1k

\bigl( 
Rbw

xk+1

\bigr)  - 1
(xk)\| xk+1

\bigr\} 
, then (4.1) re-

duces to (3.17). For these three examples, the chosen sk can be uniformly written as
sk = min\{ 1, \| \eta k\| xk

/\| T (k)(\eta k)\| xk+1
\} .
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In [51, Algorithm 4.2], Sato proposed a prototype of Algorithm 4.1, where sk
satisfies (4.2) and T (k)(\eta k) := \scrT R

tk\eta k
(\eta k). However, Algorithm 4.1 is more general than

the algorithm in [51] because T (k) is not restricted to the differentiated retraction-
based map.

Algorithm 4.1 covers a wider class of R-CG methods than the existing ones partly
because we do not limit the scaling parameter sk > 0 to be a specific form such as sk =
min\{ 1, \| \eta k\| xk

/\| T (k)(\eta k)\| xk+1
\} . Moreover, it contains R-CG methods with T (k) that

have not been discussed in the literature. An example is to use a vector transport
based on the orthogonal projection to the tangent spaces, which we will detail for the
sphere and Grassmann manifold cases in Examples 4.5 and 4.6, respectively.

Subsequently, we introduce two conditions (4.3) and (4.4) on T (k), which will be
used in global convergence analyses of R-CG methods in section 6.

Assumption 4.2. For maps T (k) in Algorithm 4.1, there exist C \geq 0 and index
sets K1 \subset \BbbN and K2 = \BbbN \setminus K1 (the complement of K1) such that

(4.3) \| T (k)(\eta k) - DRxk
(tk\eta k)[\eta k]\| xk+1

\leq Ctk\| \eta k\| 2xk
for all k \in K1

and

(4.4) \| T (k)(\eta k) - DRxk
(tk\eta k)[\eta k]\| xk+1

\leq C(tk + t2k)\| \eta k\| 2xk
for all k \in K2

hold, where \BbbN is the set of nonnegative integers.

Remark 4.3. In fact, for any k \geq 0, the inequality in (4.4) is weaker than that
in (4.3). Therefore, Assumption 4.2 is equivalent to the condition that there exists
C \geq 0 such that \| T (k)(\eta k)  - DRxk

(tk\eta k)[\eta k]\| xk+1
\leq C(tk + t2k)\| \eta k\| 2xk

holds for all
k \geq 0. We write Assumption 4.2 with a stricter inequality (4.3) because we can
weaken the condition imposed on tk when T (k) satisfies the inequality in (4.3) in
forthcoming Theorem 5.3.

Assumption 4.2 requires that T (k) is an approximation of the differentiated re-
traction \scrT R. The R-CG methods with the differentiated retraction trivially satisfies
the assumption, especially (4.3) with C = 0 and K1 = \BbbN . Furthermore, this assump-
tion, especially (4.4) with K2 = \BbbN , is also natural for the R-CG methods with inverse
retraction, as discussed in [63].

The proposed R-CG methods (Algorithm 4.1) will be analyzed in section 6 with
Assumption 4.2. We realize that R-CG methods with some vector transports \scrT that
have not been analyzed yet also have convergence properties if T (k) defined by \scrT 
satisfies Assumption 4.2. Examples of such vector transports are shown as follows.

First, we prepare the following lemma used in Examples 4.5 and 4.6.

Lemma 4.4. Let h be a one-variable function defined for t > 0 as

h(t) =
1 - 1/

\surd 
1 + t2

t
\surd 
1 + t2

.

Then, 0 < h(t) \leq C0 holds for all t > 0, where C0 = 4
\sqrt{} 
2/(349 + 85

\surd 
17) \approx 0.2139.

This lemma can be straightforwardly proved by differentiating h to obtain the
maximum value of h, which is equal to C0.

Example 4.5. Consider the sphere Sn - 1 := \{ x \in \BbbR n | xTx = 1\} with a retraction
R and Riemannian metric \langle \cdot , \cdot \rangle defined as Rx(\eta ) := (x+\eta )/\| x+\eta \| 2 and \langle \xi , \eta \rangle x := \xi T \eta 
for x \in Sn - 1 and \xi , \eta \in TxS

n - 1, respectively. Thus, we regard Sn - 1 as a Riemannian
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submanifold of \BbbR n. Generally, for a Riemannian submanifold, the orthogonal projec-
tions to the tangent spaces define a vector transport [3, section 8.1.3]. We can define
such a vector transport \scrT P on Sn - 1 based on the orthogonal projection as

\scrT P
\eta (\xi ) := PRx(\eta )(\xi ) = (In  - Rx(\eta )Rx(\eta )

T )\xi =

\biggl( 
In  - (x+ \eta )(x+ \eta )T

\| x+ \eta \| 22

\biggr) 
\xi 

for x \in Sn - 1 and \eta , \xi \in TxS
n - 1, where Py(d) = (In  - yyT )d is the orthogonal

projection of d \in \BbbR n to the tangent space TyS
n - 1 = \{ z \in \BbbR n | yT z = 0\} at y \in Sn - 1.

This vector transport is typically used in R-CGmethods practically (e.g., implemented
in Manopt [18], Pymanopt [58], and Manopt.jl [12]); nevertheless, to the author's
knowledge, it has not been theoretically discussed in detail in terms of the convergence
properties of the R-CG methods. Therefore, it is meaningful to verify that T (k)

defined by \scrT P satisfies Assumption 4.2.
The differentiated retraction \scrT R is written as

\scrT R
\eta (\xi ) := DRx(\eta )[\xi ] =

1

\| x+ \eta \| 2

\biggl( 
In  - (x+ \eta )(x+ \eta )T

\| x+ \eta \| 22

\biggr) 
\xi =

1

\| x+ \eta \| 2
PRx(\eta )(\xi ).

Therefore, in Algorithm 4.1 with \scrM = Sn - 1, we can evaluate the difference of the
two vector transports, with \eta = tk\eta k and \xi = \eta k \in Txk

Sn - 1, as

(4.5) \| \scrT P
tk\eta k

(\eta k) - \scrT R
tk\eta k

(\eta k)\| Rxk
(tk\eta k) =

\bigm| \bigm| \bigm| \bigm| 1 - 1

\| xk + tk\eta k\| 2

\bigm| \bigm| \bigm| \bigm| \| PRxk
(tk\eta k)(\eta k)\| Rxk

(tk\eta k).

Considering xT
k xk = 1 and xT

k \eta k = 0, we get \| xk + tk\eta k\| 2 =
\sqrt{} 
1 + t2k\| \eta k\| 22 > 0 and

(4.6) \| PRxk
(tk\eta k)(\eta k)\| 

2
Rxk

(tk\eta k)
=

\bigm\| \bigm\| \bigm\| \bigm\| \eta k  - tk\| \eta k\| 22
1 + t2k\| \eta k\| 22

(xk + tk\eta k)

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

=
\| \eta k\| 22

1 + t2k\| \eta k\| 22
.

If tk\| \eta k\| 2 > 0, using h and C0 in Lemma 4.4 and combining (4.5) and (4.6), we obtain

\| \scrT P
tk\eta k

(\eta k) - \scrT R
tk\eta k

(\eta k)\| Rxk
(tk\eta k) =

\biggl( 
1 - 1\sqrt{} 

1 + (tk\| \eta k\| 2)2

\biggr) 
\| \eta k\| 2\sqrt{} 

1 + (tk\| \eta k\| 2)2

= h(tk\| \eta k\| 2) \cdot tk\| \eta k\| 22 \leq C0tk\| \eta k\| 22 = C0tk\| \eta k\| 2xk
,

whereas if tk\eta k = 0, we have \| \scrT P
0 (\eta k)  - \scrT R

0 (\eta k)\| xk
= \| \eta k  - \eta k\| xk

= 0. Therefore,
for the sphere Sn - 1, T (k)(\eta k) := \scrT P

tk\eta k
(\eta k) satisfies the condition in Assumption 4.2

with C = C0 and K1 = \BbbN .
Example 4.6. Consider the Grassmann manifold Grass(p, n) \simeq St(p, n)/\scrO (p) with

p \leq n. For X \in Grass(p, n), let \=X \in St(p, n) denote a representative of X and let \=\eta 
denote the horizontal lift of any \eta \in TX Grass(p, n) at \=X. We endow Grass(p, n) with
the Riemannian metric \langle \xi , \eta \rangle X := tr(\=\xi T \=\eta ) for \xi , \eta \in TX Grass(p, n) and the retraction
R based on the polar decomposition defined through RX(\eta ) := ( \=X+\=\eta )(Ip+\=\eta T \=\eta ) - 1/2.
For this retraction R, similarly to the previous example, the projection-based vector
transport \scrT P and differentiated retraction \scrT R are written as [3, 36]

\scrT P
\eta (\xi ) = (In  - Y Y T )\=\xi , \scrT R

\eta (\xi ) = (In  - Y Y T )\=\xi (Y T ( \=X + \=\eta )) - 1,

where Y = RX(\eta ). We can generalize the discussion in Example 4.5 to this case.
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We consider Algorithm 4.1 with \scrM = Grass(p, n). Here, we omit the subscript
k for simplicity. Since \=\eta T \=\eta is symmetric positive semidefinite, it is decomposed as
\=\eta T \=\eta =: Qdiag(\lambda 1, \lambda 2, . . . , \lambda p)Q

T with Q \in \scrO (p) and \lambda 1, \lambda 2, . . . , \lambda p \geq 0. Defining

Z := RX(t\eta ) = ( \=X + t\=\eta )(Ip + t2\=\eta T \=\eta ) - 1/2, noting \=XT \=\eta = 0, and using h and C0 in
Lemma 4.4, we obtain

\| \scrT P
t\eta (\eta ) - \scrT R

t\eta (\eta )\| 2RX(t\eta ) = \| (In  - ZZT )\=\eta (Ip  - (ZT ( \=X + t\=\eta )) - 1)\| 2F
= tr(\=\eta T \=\eta (Ip + t2\=\eta T \=\eta ) - 1(Ip  - (Ip + t2\=\eta T \=\eta ) - 1/2)2)

=

p\sum 
i=1

\biggl( 
1 - 1\surd 

1 + t2\lambda i

\biggr) 2
\lambda i

1 + t2\lambda i

=

p\sum 
i=1

h
\bigl( 
t
\sqrt{} 
\lambda i

\bigr) 2
t2\lambda 2

i

\leq C0
2t2

\biggl( p\sum 
i=1

\lambda i

\biggr) 2

= (C0t\| \=\eta \| 2F )2= (C0t\| \eta \| 2X)2,

implying that \| \scrT P
t\eta (\eta ) - \scrT R

t\eta (\eta )\| RX(t\eta ) \leq C0t\| \eta \| 2X . Therefore, T (k)(\eta k) := \scrT P
tk\eta k

(\eta k)
satisfies the condition in Assumption 4.2 with C = C0 and K1 = \BbbN .

4.3. Computation of \bfitbeta \bfitk +\bfone in R-CG methods. In Algorithm 4.1, the compu-
tation of \beta k+1 in each iteration is crucial, and it affects the performance of the R-CG
methods. Some of the six types of \beta k+1 in Euclidean CG methods shown in (3.3)
have been generalized to the Riemannian case in each R-CG algorithm with a specific
choice of T (k) in the literature. For example, Smith [57] and Edelman, Arias, and
Smith [22] proposed the generalization of \beta LS

k+1 and \beta PRP
k+1 with parallel translation

along the geodesic, respectively. Ring and Wirth [47] and Sato and Iwai [53] analyzed
the generalization of \beta FR

k+1 with the (scaled) vector transport defined through the dif-

ferentiated retraction. Sato [50] proposed and analyzed the generalization of \beta DY
k+1 in

the same framework as in [53]. Sakai and Iiduka [48] recently discussed a class of
\beta k+1 containing a combination of the generalizations of \beta DY

k+1 and \beta HS
k+1 with the same

(scaled) vector transports. Furthermore, Zhu and Sato [63] proposed and analyzed
the generalizations of \beta FR

k+1 and \beta DY
k+1 with inverse retraction.

Here, we propose the Riemannian versions of the six types of \beta k+1, general-
ized from (3.3) in the Euclidean CG methods. We put gk := grad f(xk) \in Txk

\scrM .
From (3.3), we observe that \beta FR

k+1, \beta 
DY
k+1, and \beta CD

k+1 have a common numerator \| gk+1\| 22
in the Euclidean case. This quantity can be easily and naturally generalized to the
Riemannian case as \| gk+1\| 2xk+1

, i.e., the Euclidean gradient is replaced with the Rie-
mannian gradient and the Euclidean norm is generalized to the norm in Txk+1

\scrM 
defined by the Riemannian metric. On the other hand, \beta PRP

k+1 , \beta 
HS
k+1, and \beta LS

k+1 have

the common numerator gTk+1yk+1, where yk+1 := gk+1  - gk. This is generalized to
the Riemannian case on \scrM by transporting gk \in Txk

\scrM to Txk+1
\scrM using some map

S (k) : Txk
\scrM \rightarrow Txk+1

\scrM (which is possibly equal to T (k)) and some scaling parame-

ter lk > 0, and taking the inner product \langle gk+1, gk+1  - lkS (k)(gk)\rangle xk
in Txk

\scrM . Note
that the map S (k) is used to transport gk, while T (k) is used to transport \eta k. Since
the two maps play similar but different roles, we do not necessarily require S (k) to
be equal to T (k).

Further, \beta FR
k+1 and \beta PRP

k+1 have the common denominator \| gk\| 22, which is general-

ized to \| gk\| 2xk
, and \beta CD

k+1 and \beta LS
k+1 have the common denominator - gTk \eta k, which is gen-

eralized to  - \langle gk, \eta k\rangle xk
. Finally, \beta DY

k+1 and \beta HS
k+1 have the common denominator yTk+1\eta k.
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In [50], where T (k)(\eta k) := \scrT R
tk\eta k

(\eta k) and sk := min\{ 1, \| \eta k\| xk
/\| \scrT R

tk\eta k
(\eta k)\| xk+1

\} , the
quantity yTk+1\eta k = gTk+1\eta k  - gTk \eta k in the Euclidean case is generalized to the quantity

\langle gk+1, skT (k)(\eta k)\rangle xk+1
 - \langle gk, \eta k\rangle xk

. We follow this approach in (4.8) and (4.11) below.
In summary, we obtain the following formulas for the Riemannian version of \beta k+1

in (4.1), some of which depend on maps T (k) and S (k):

\beta R-FR
k+1 =

\| gk+1\| 2xk+1

\| gk\| 2xk

,(4.7)

\beta R-DY
k+1 =

\| gk+1\| 2xk+1

\langle gk+1, skT (k)(\eta k)\rangle xk+1
 - \langle gk, \eta k\rangle xk

,(4.8)

\beta R-CD
k+1 =

\| gk+1\| 2xk+1

 - \langle gk, \eta k\rangle xk

,(4.9)

\beta R-PRP
k+1 =

\| gk+1\| 2xk+1
 - \langle gk+1, lkS (k)(gk)\rangle xk+1

\| gk\| 2xk

,(4.10)

\beta R-HS
k+1 =

\| gk+1\| 2xk+1
 - \langle gk+1, lkS (k)(gk)\rangle xk+1

\langle gk+1, skT (k)(\eta k)\rangle xk+1
 - \langle gk, \eta k\rangle xk

,(4.11)

\beta R-LS
k+1 =

\| gk+1\| 2xk+1
 - \langle gk+1, lkS (k)(gk)\rangle xk+1

 - \langle gk, \eta k\rangle xk

.(4.12)

Here, lk > 0 and S (k) : Txk
\scrM \rightarrow Txk+1

\scrM in (4.10)--(4.12) play similar roles to those

of sk and T (k), respectively. However, we do not impose any specific conditions on
lk and S (k) at this stage. Practically, it may be desirable that lkS (k)(gk) \approx gk
holds when tk\eta k \approx 0, indicating when xk+1 \approx xk. The R-CG methods with modified
\beta R-PRP
k+1 , \beta R-HS

k+1 , and \beta R-LS
k+1 will be discussed in detail in subsection 6.2.

We can verify that they all reduce to the corresponding existing \beta k (if the liter-
ature exists, e.g., [50, 53, 63]) by specifying maps T (k) and S (k), such as a vector
transport or inverse retraction. These discussions on generalization of several types
of \beta k+1 will be justified through the convergence analyses in section 6.

4.4. Step length \bfitt \bfitk . In the R-CG methods, the (strong) Wolfe conditions are
especially important to guarantee their convergence properties. Because we introduce
T (k) in Algorithm 4.1, we need to slightly modify the conditions. In this subsection,
we assume that the current iteration xk \in \scrM and search direction \eta k \in Txk

\scrM are
given. Further, we assume that \eta k is a descent direction, i.e., \langle gk, \eta k\rangle xk

< 0.
We revisit conditions (3.6)--(3.8), which appear in the (strong/generalized) Wolfe

conditions. In these three conditions, the quantity DRxk
(tk\eta k)[\eta k] is commonly used.

This is written as DRxk
(tk\eta k)[\eta k] = \scrT R

tk\eta k
(\eta k) for the differentiated retraction \scrT R de-

fined as (3.12). We generalize the (strong/generalized) Wolfe conditions by replacing
\scrT R
tk\eta k

(\eta k) with T (k)(\eta k). Specifically, (3.6)--(3.8) are generalized as

(4.13) \langle grad f(Rxk
(tk\eta k)),T

(k)(\eta k)\rangle Rxk
(tk\eta k) \geq c2\langle gk, \eta k\rangle xk

,

(4.14) | \langle grad f(Rxk
(tk\eta k)),T

(k)(\eta k)\rangle Rxk
(tk\eta k)| \leq c2| \langle gk, \eta k\rangle xk

| ,

and

c2\langle gk, \eta k\rangle xk
\leq \langle grad f(Rxk

(tk\eta k)),T
(k)(\eta k)\rangle Rxk

(tk\eta k) \leq  - c3\langle gk, \eta k\rangle xk
,(4.15)
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respectively. We define the T (k)-Wolfe conditions as (3.5) and (4.13), strong T (k)-
Wolfe conditions as (3.5) and (4.14), and generalized T (k)-Wolfe conditions as (3.5)
and (4.15), where 0 < c1 < c2 < 1 and c3 \geq 0. Note that the scaling parameter sk in
Algorithm 4.1 does not appear in these conditions.

Subsequently, we discuss whether tk satisfying the (strong/generalized) T (k)-
Wolfe conditions exists. It is sufficient to show that tk satisfying the generalized T (k)-
Wolfe conditions (3.5) and (4.15) with c3 = 0 exists because such tk also satisfies the
T (k)-Wolfe conditions (3.5) and (4.13), strong T (k)-Wolfe conditions (3.5) and (4.14),
and generalized T (k)-Wolfe conditions (3.5) and (4.15) with any c3 \geq 0.

If T (k)(\eta k) := DRxk
(tk\eta k)[\eta k], then the (strong/generalized) T (k)-Wolfe con-

ditions are reduced to the Riemannian (strong/generalized) Wolfe conditions, i.e.,
(4.13)--(4.15) simplify to (3.6)--(3.8), respectively. In particular, in this case, by defin-
ing \phi k(t) := f(Rxk

(t\eta k)), the generalized T (k)-Wolfe conditions (3.5) and (4.15) with
c3 = 0 are rewritten as \phi k(tk) \leq \phi k(0) + c1tk\phi 

\prime 
k(0) and c2\phi 

\prime 
k(0) \leq \phi \prime k(tk) \leq 0, respec-

tively. Then, we can prove that tk > 0 satisfying the two inequalities exists, similar
to those in the Euclidean case. A complete proof for the Riemannian case is found
in [51, Proposition 3.5]. If T (k)(\eta k) :=  - t - 1k (Rbw

Rxk
(tk\eta k)

) - 1(xk), then the study on

R-CG methods with inverse retraction [63] reveals that there exists tk satisfying the
generalized T (k)-Wolfe conditions (3.5) and (4.15) with c3 = 0.

5. Assumptions and Zoutendijk's theorem. In this section, we discuss and
summarize assumptions required for guaranteeing the global convergence of the R-
CG methods. Although the proposed framework (Algorithm 4.1) is quite general, it is
important to clarify the conditions with which the R-CG methods work appropriately.
We have already discussed the conditions for T (k) and tk in Algorithm 4.1 in section 4.
In subsection 5.1, we state the conditions imposed on Problem 2.1. Furthermore, we
extend (the Riemannian version of) Zoutendijk's theorem to a theorem (Theorem 5.3)
in the framework of Algorithm 4.1.

5.1. Assumptions for retraction and objective function. We assume the
following condition on the objective function f .

Assumption 5.1. The Riemannian manifold \scrM in Problem 2.1 is endowed with
a retraction R : T\scrM \rightarrow \scrM . The objective function f in Problem 2.1 is of class C1,
bounded below on \scrM , i.e., there exists a constant f\ast \in \BbbR such that f(x) \geq f\ast for all
x \in \scrM , and satisfies the following condition:

(5.1)
There exists a constant L > 0 such that, for all x \in \scrM , \eta \in Tx\scrM with

\| \eta \| x = 1, and t \geq 0, it holds | D(f \circ Rx)(t\eta )[\eta ] - D(f \circ Rx)(0)[\eta ]| \leq Lt.

Furthermore, the norm of the gradient of f is upper bounded on the sublevel set
\{ x \in \scrM | f(x) \leq f(x0)\} for the initial point x0 of Algorithm 4.1. This implies that
there exists Lg > 0 such that \| gk\| xk

\leq Lg if tk in Algorithm 4.1 satisfies the Armijo
condition (3.5) because (3.5) guarantees that \{ f(xk)\} is monotonically nonincreasing.

Remark 5.2. Condition (5.1) is weaker than the condition that grad(f \circ Rx) is
Lipschitz continuous for all x \in \scrM with the same Lipschitz constant L > 0, i.e.,

(5.2) \| grad(f \circ Rx)(\xi ) - grad(f \circ Rx)(\eta )\| x \leq L\| \xi  - \eta \| x for all \xi , \eta \in Tx\scrM 

holds for all x \in \scrM . Indeed, if (5.2) holds for all x \in \scrM , then (5.1) holds because we
have, for any \eta \in Tx\scrM with \| \eta \| x = 1 and any t \geq 0,
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| D(f \circ Rx)(t\eta )[\eta ] - D(f \circ Rx)(0)[\eta ]| = | \langle grad(f \circ Rx)(t\eta ) - grad(f \circ Rx)(0), \eta \rangle x| 
\leq \| grad(f \circ Rx)(t\eta ) - grad(f \circ Rx)(0)\| x\| \eta \| x
\leq L\| t\eta \| x\| \eta \| x = Lt.

Condition (5.1) is also closely related to the condition that f \circ R is radially
Lipschitz continuously differentiable [3, Definition 7.4.1], i.e., there exist real values
L > 0 and \delta > 0 such that, for all x \in \scrM , \eta \in Tx\scrM with \| \eta \| x = 1, and t < \delta , it
holds that \bigm| \bigm| \bigm| \bigm| dd\tau (f \circ Rx)(\tau \eta )| \tau =t  - 

d

d\tau 
(f \circ Rx)(\tau \eta )| \tau =0

\bigm| \bigm| \bigm| \bigm| \leq Lt.

Indeed, when \delta = \infty , this condition is equivalent to (5.1).

5.2. Riemannian version of Zoutendijk's theorem with T (\bfitk ). In Euclid-
ean optimization, Zoutendijk's theorem plays an important role in analyzing various
optimization algorithms (see, e.g., [44, Theorem 3.2]). Its Riemannian version is also
discussed in [47, 51, 53]. They normally state a property for a sequence generated
with step lengths that satisfy the Wolfe conditions. Here, to analyze the proposed R-
CG methods with T (k), we provide a similar theorem about the sequences generated
by step lengths tk > 0, each of which satisfies the T (k)-Wolfe conditions. Note that
the following result is not limited to the case of CG methods.

Theorem 5.3. Consider Problem 2.1 on a Riemannian manifold \scrM with a re-
traction R and suppose Assumption 5.1. We also assume that T (k) satisfies Assump-
tion 4.2 and tk satisfies the T (k)-Wolfe conditions (3.5) and (4.13) with 0 < c1 <
c2 < 1 for all k \geq 0. Let gk := grad f(xk). If \langle gk, \eta k\rangle xk

< 0 for all k \geq 0 and there
exists \mu > 0 such that \| gk\| xk

\leq \mu \| \eta k\| xk
for all k \in K2, then we have

(5.3)

\infty \sum 
k=0

\langle gk, \eta k\rangle 2xk

\| \eta k\| 2xk

< \infty ,

where K2 is the subset of \BbbN in Assumption 4.2.

Proof. The proof is done by combining the discussions in [51, Theorem 3.2]
and [63, Theorem 3].

From the assumption as well as the triangle and Cauchy--Schwarz inequalities, we
obtain

(c2  - 1)\langle gk, \eta k\rangle xk

(4.13)

\leq \langle gk+1,T
(k)(\eta k)\rangle xk+1

 - \langle gk, \eta k\rangle xk

\leq | \langle gk+1,T
(k)(\eta k) - DRxk

(tk\eta k)[\eta k]\rangle xk+1
| 

+ | \langle gk+1,DRxk
(tk\eta k)[\eta k]\rangle xk+1

 - \langle gk, \eta k\rangle xk
| 

= | \langle gk+1,T
(k)(\eta k) - DRxk

(tk\eta k)[\eta k]\rangle xk+1
| 

+ \| \eta k\| xk

\bigm| \bigm| \bigm| \bigm| D(f \circ Rxk
)

\biggl( 
tk\| \eta k\| xk

\eta k
\| \eta k\| xk

\biggr) \biggl[ 
\eta k

\| \eta k\| xk

\biggr] 
 - D(f \circ Rxk

)(0)

\biggl[ 
\eta k

\| \eta k\| xk

\biggr] \bigm| \bigm| \bigm| \bigm| 
(5.1)

\leq \| gk+1\| xk+1
\| T (k)(\eta k) - DRxk

(tk\eta k)[\eta k]\| xk+1
+ Ltk\| \eta k\| 2xk

(4.3),(4.4)

\leq 

\Biggl\{ 
C\| gk+1\| xk+1

tk\| \eta k\| 2xk
+ Ltk\| \eta k\| 2xk

, k \in K1,

C\| gk+1\| xk+1
(tk + t2k)\| \eta k\| 2xk

+ Ltk\| \eta k\| 2xk
, k \in K2.
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Therefore, we obtain

(5.4) tk \geq  - 1 - c2
C\| gk+1\| xk+1

+ L

\langle gk, \eta k\rangle xk

\| \eta k\| 2xk

\geq  - 1 - c2
CLg + L

\langle gk, \eta k\rangle xk

\| \eta k\| 2xk

, k \in K1.

For k \in K2, we have

C\| gk+1\| xk+1
\| \eta k\| 2xk

t2k + (L+ C\| gk+1\| xk+1
)\| \eta k\| 2xk

tk + (1 - c2)\langle gk, \eta k\rangle xk
\geq 0.

It follows from tk > 0 and (1 - c2)\langle gk, \eta k\rangle xk
< 0 that

tk \geq  - 2(1 - c2)

uk

\langle gk, \eta k\rangle xk

\| \eta k\| 2xk

, k \in K2,

where

uk := L+ C\| gk+1\| xk+1
+

\sqrt{} 
(L+ C\| gk+1\| xk+1

)2  - 4C(1 - c2)\| gk+1\| xk+1

\langle gk, \eta k\rangle xk

\| \eta k\| 2xk

\leq L+ CLg +
\sqrt{} 

(L+ CLg)2 + 4C(1 - c2)Lg\mu =: u.

Here, we used \| gk+1\| xk+1
\leq Lg and  - \langle gk, \eta k\rangle xk

\leq \| gk\| xk
\| \eta k\| xk

\leq \mu \| \eta k\| 2xk
from the

assumption \| gk\| xk
\leq \mu \| \eta k\| xk

for k \in K2. Using the constant u > 0, we obtain

(5.5) tk \geq  - 2(1 - c2)

u

\langle gk, \eta k\rangle xk

\| \eta k\| 2xk

, k \in K2.

With the constant U := min\{ (1  - c2)/(CLg + L), 2(1  - c2)/u\} > 0, (5.4) and (5.5)
yield tk \geq  - U\langle gk, \eta k\rangle xk

/\| \eta k\| 2xk
for all k \geq 0. This and (3.5) yield

f(xk+1) \leq f(xk) - c1U
\langle gk, \eta k\rangle 2xk

\| \eta k\| 2xk

\leq f(x0) - c1U

k\sum 
j=0

\langle gj , \eta j\rangle 2xj

\| \eta j\| 2xj

.

It follows from Assumption 5.1 that f(x) \geq f\ast for all x \in \scrM . Therefore, we have

k\sum 
j=0

\langle gj , \eta j\rangle 2xj

\| \eta j\| 2xj

\leq f(x0) - f(xk+1)

c1U
\leq f(x0) - f\ast 

c1U
(= const.).

Taking the limit k \rightarrow \infty , we obtain the desired result. This completes the proof.

Remark 5.4. In Theorem 5.3, we assume that there exists \mu > 0 such that
\| gk\| xk

\leq \mu \| \eta k\| xk
for all k \in K2. This assumption does not appear when we dis-

cuss Zoutendijk's theorem with the standard Wolfe conditions (3.5) and (3.6) [47, 51],
i.e., the case of T (k)(\eta k) = \scrT R

tk\eta k
(\eta k). This is because we can take K1 = \BbbN and K2 = \emptyset 

for this case. Thus, this assumption may seem restrictive. However, fortunately, in
the subsequent analyses of our R-CG methods, we realize that this assumption auto-
matically holds (requiring the generalized T (k)-Wolfe conditions with c3 = 0 for the
CD-type in subsection 6.1.3). Therefore, we do not need to explicitly suppose this
assumption in the R-CG methods, and Theorem 5.3 is still a powerful tool, even for
general T (k).

Practically, we consider taking K1 as large as possible in Assumption 4.2. There-
fore, K2 is expected to consist of only those values of k for which (4.3) does not
(or is not shown to) hold. Taking K2 as small as possible, we require the condition
\| gk\| xk

\leq \mu \| \eta k\| xk
for as small number of k as possible in Theorem 5.3.
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6. Convergence analyses of the R-CG methods. Considering the theoret-
ical convergence properties, the quantity in the numerator of the formulas for \beta k+1

is influential. In what follows, we divide the six types of \beta k+1 into two categories,
depending on their numerators. One consists of \beta R-FR

k+1 , \beta R-DY
k+1 , and \beta R-CD

k+1 with the

numerator \| gk+1\| 2xk+1
, and the other consists of \beta R-PRP

k+1 , \beta R-HS
k+1 , and \beta R-LS

k+1 with the

numerator \| gk+1\| 2xk+1
 - \langle gk+1, skS (k)(gk)\rangle xk+1

.

6.1. Global convergence analyses of the R-CG methods with \bfitbeta \bfR -\bfF \bfR ,
\bfitbeta \bfR -\bfD \bfY , and \bfitbeta \bfR -\bfC \bfD . We prove the global convergence properties of the R-CG meth-
ods with \beta R-FR

k+1 , \beta R-DY
k+1 , and \beta R-CD

k+1 , defined in (4.7)--(4.9), and with some other related
\beta k+1. In the subsequent analyses, a key property is that the algorithms with appro-
priately chosen step lengths satisfy the sufficient descent condition, i.e., there exists
a constant c > 0 such that \langle gk, \eta k\rangle xk

\leq  - c\| gk\| 2xk
holds for all k \geq 0.

6.1.1. R-CG methods based on \bfitbeta \bfR -\bfF \bfR . We recall that \beta R-FR
k+1 is defined

in (4.7) as \beta R-FR
k+1 := \| gk+1\| 2xk+1

/\| gk\| 2xk
. The convergence analysis of the R-CG

method with \beta k+1 = \beta R-FR
k+1 can be completed following the standard discussion in

the existing ones (e.g., [51, section 4.4]). Here, we provide an analysis for the more
general class of \beta k+1, i.e., \beta k+1 satisfying | \beta k+1| \leq \beta R-FR

k+1 . This generalization can be

used to develop other \beta k+1 based on \beta R-FR
k+1 (see, e.g., subsection 6.2.1). We first show

that \beta k+1 satisfying | \beta k+1| \leq \beta R-FR
k+1 guarantees sufficient descent directions and that

the ratio \| gk\| xk
/\| \eta k\| xk

is bounded above.

Proposition 6.1. Let sequence \{ xk\} be generated by Algorithm 4.1 with \beta k+1

satisfying | \beta k+1| \leq \beta R-FR
k+1 , where \beta R-FR

k+1 is defined as (4.7). If, for all k \geq 0,

gk := grad f(xk) \not = 0 and step lengths tk satisfy the strong T (k)-Wolfe conditions (3.5)
and (4.14) with 0 < c1 < c2 < 1/2, then we have

(6.1)  - 1

1 - c2
\leq \langle gk, \eta k\rangle xk

\| gk\| 2xk

\leq  - 1 - 2c2
1 - c2

and

(6.2) \| gk\| xk
\leq 1 - c2

1 - 2c2
\| \eta k\| xk

.

Proof. We define ak := \langle gk, \eta k\rangle xk
/\| gk\| 2xk

and prove (6.1) by induction. For k = 0,
(6.1) clearly holds since a0 =  - 1 from \eta 0 =  - g0. Subsequently, assume that (6.1) is
true for some k \geq 0. Then, (4.1) yields

ak+1 =
\langle gk+1, - gk+1 + \beta k+1skT (k)(\eta k)\rangle xk+1

\| gk+1\| 2xk+1

=  - 1 + \beta k+1sk
\langle gk+1,T (k)(\eta k)\rangle xk+1

\| gk+1\| 2xk+1

.

Here, (4.14) implies | \langle gk+1,T (k)(\eta k)\rangle xk+1
| \leq  - c2\langle gk, \eta k\rangle xk

. Considering 0 < sk \leq 1
from (4.2) and | \beta k+1| \leq \beta R-FR

k+1 = \| gk+1\| 2xk+1
/\| gk\| 2xk

, we obtain

| ak+1 + 1| \leq | \beta k+1| 
\| gk+1\| 2xk+1

| \langle gk+1,T
(k)(\eta k)\rangle xk+1

| \leq  - c2
\langle gk, \eta k\rangle xk

\| gk\| 2xk

=  - c2ak,

indicating  - 1 + c2ak \leq ak+1 \leq  - 1  - c2ak. Since (6.1) yields ak \geq  - 1/(1  - c2), we
have  - 1/(1  - c2) \leq ak+1 \leq  - (1  - 2c2)/(1  - c2), i.e., (6.1) also holds if k is replaced
with k + 1. This ends the proof of (6.1) for all k \geq 0.

It follows from the Cauchy--Schwarz inequality \langle gk, \eta k\rangle xk
\geq  - \| gk\| xk

\| \eta k\| xk
that

ak \geq  - \| \eta k\| xk
/\| gk\| xk

, which, together with (6.1), yields (6.2).
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Using this theorem, we show the global convergence property of R-CG methods
with \beta k+1 satisfying \beta k+1 \leq | \beta R-FR

k+1 | .
Theorem 6.2. Under Assumption 5.1, let sequence \{ xk\} be generated by Algo-

rithm 4.1 with \beta k+1 satisfying | \beta k+1| \leq \beta R-FR
k+1 , where \beta R-FR

k+1 is defined as (4.7). If

T (k) satisfies Assumption 4.2 and the step lengths satisfy the strong T (k)-Wolfe con-
ditions (3.5) and (4.14) with 0 < c1 < c2 < 1/2, then for gk := grad f(xk), we
have

(6.3) lim inf
k\rightarrow \infty 

\| gk\| xk
= 0.

Proof. If gk0
= 0 holds for some k0 \geq 0, then (4.1) and (4.7) imply that gk = 0

for all k \geq k0; thus, (6.3) holds.
Subsequently, we assume gk \not = 0 for all k \geq 0 and prove (6.3) by contradiction. To

this end, we assume that (6.3) does not hold, indicating that there exists \varepsilon > 0 such
that \| gk\| xk

\geq \varepsilon for all k \geq 0. Furthermore, since the assumption in Proposition 6.1
holds, we have (6.1) and (6.2). Hence, the assumption in Theorem 5.3 is also ensured
to imply (5.3). With c := (1 + c2)/(1 - c2), we can evaluate \| \eta k+1\| 2xk+1

as

\| \eta k+1\| 2xk+1

(4.1)
= \| gk+1\| 2xk+1

 - 2\beta k+1sk\langle gk+1,T
(k)(\eta k)\rangle xk+1

+ \beta 2
k+1s

2
k\| T (k)(\eta k)\| 2xk+1

(4.2)

\leq \| gk+1\| 2xk+1
+ 2| \beta k+1| | \langle gk+1,T

(k)(\eta k)\rangle xk+1
| + | \beta k+1| 2\| \eta k\| 2xk

(4.14)

\leq \| gk+1\| 2xk+1
 - 2c2\beta 

R-FR
k+1 \langle gk, \eta k\rangle xk

+ (\beta R-FR
k+1 )2\| \eta k\| 2xk

(6.1)

\leq \| gk+1\| 2xk+1
+

2c2
1 - c2

\beta R-FR
k+1 \| gk\| 2xk

+ (\beta R-FR
k+1 )2\| \eta k\| 2xk

(4.7)
= c\| gk+1\| 2xk+1

+ (\beta R-FR
k+1 )2\| \eta k\| 2xk

.

This recurrence relation together with \| \eta 0\| x0
= \| g0\| x0

and c > 1 gives

\| \eta k\| 2xk
\leq c

\biggl( 
\| gk\| 2xk

+

k - 1\sum 
j=1

(\beta R-FR
k )2(\beta R-FR

k - 1 )2 \cdot \cdot \cdot (\beta R-FR
j+1 )2\| gj\| 2xj

\biggr) 
+ (\beta R-FR

k )2(\beta R-FR
k - 1 )2 \cdot \cdot \cdot (\beta R-FR

1 )2\| \eta 0\| 2x0

(4.7)
< c\| gk\| 4xk

k\sum 
j=0

\| gj\|  - 2xj
\leq c

\varepsilon 2
\| gk\| 4xk

(k + 1).

Therefore, using (6.1) again, we obtain

k\sum 
j=0

\langle gj , \eta j\rangle 2xj

\| \eta j\| 2xj

>
\varepsilon 2

c

k\sum 
j=0

\langle gj , \eta j\rangle 2xj

\| gj\| 4xj

1

j + 1
\geq \varepsilon 2(1 - 2c2)

2

c(1 - c2)2

k+1\sum 
j=1

1

j
\rightarrow \infty (k \rightarrow \infty ).

Thus, the left-hand side also diverges to infinity. This contradicts (5.3), ending the
proof.

The global convergence property is ensured for Algorithm 4.1 with \beta k+1 = \beta R-FR
k+1

as a corollary of Theorem 6.2. Because we have analyzed a class of \beta k+1, rather than
the specific \beta R-FR

k+1 only, we can apply the results here to other R-CG methods such

as one with \beta R-CD
k+1 (see subsection 6.1.3).
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6.1.2. R-CG methods based on \bfitbeta \bfR -\bfD \bfY . In this subsection, we give a global
convergence analysis of the R-CG methods with a class of \beta k+1 containing \beta R-DY

k+1 :=

\| gk+1\| 2xk+1
/(\langle gk+1, skT (k)(\eta k)\rangle xk+1

 - \langle gk, \eta k\rangle xk
) in (4.8). We first show that such R-

CG methods generate descent search directions and that, with additional assumptions,
the search directions are sufficient descent directions. Thereafter, we build a global
convergence result. Proposition 6.3 and Theorem 6.4 are inspired by, but are more
general than, the results in [51, section 4.5] and [63, section 4.3]. Therefore, their
proofs are not verbatim.

Proposition 6.3. Let sequence \{ xk\} be generated by Algorithm 4.1 with \beta k+1

satisfying 0 \leq \beta k+1 \leq \beta R-DY
k+1 , where \beta R-DY

k+1 is defined as (4.8). Assume that, for all

k \geq 0, gk := grad f(xk) \not = 0 and the step lengths tk satisfy the T (k)-Wolfe condi-
tions (3.5) and (4.13) with 0 < c1 < c2 < 1. Then, the algorithm is well defined, i.e.,
\beta R-DY
k+1 > 0 holds, and \beta k+1 satisfying 0 \leq \beta k+1 \leq \beta R-DY

k+1 exists for every k \geq 0, and
we have

(6.4) \langle gk, \eta k\rangle xk
< min\{ 0, \langle gk+1, skT

(k)(\eta k)\rangle xk+1
\} .

Furthermore, if, for an arbitrary k \geq 16, tk - 1 satisfies the generalized T (k - 1)-Wolfe
conditions (3.5) and (4.15) with 0 < c1 < c2 < 1 and c3 \geq 0, then for this k, it holds
that

(6.5)  - 1

1 - c2
\leq \langle gk, \eta k\rangle xk

\| gk\| 2xk

\leq  - 1

1 + c3

and

(6.6) \| gk\| xk
\leq (1 + c3)\| \eta k\| xk

.

Proof. We first prove \beta R-DY
k+1 > 0 and (6.4) by induction.

For k = 0, \langle g0, \eta 0\rangle x0
=  - \| g0\| 2x0

< 0. If \langle g1,T (0)(\eta 0)\rangle x1
\geq 0, then (6.4) holds from

s0 > 0. Otherwise, from \langle g1,T (0)(\eta 0)\rangle x1 , \langle g0, \eta 0\rangle x0 < 0, s0 \leq 1, c2 < 1, and (4.13),
we have \langle g1, s0T (0)(\eta 0)\rangle x1

\geq \langle g1,T (0)(\eta 0)\rangle x1
\geq c2\langle g0, \eta 0\rangle x0

> \langle g0, \eta 0\rangle x0
, indicating

that (6.4) holds. Moreover, (6.4) directly ensures \beta R-DY
1 > 0.

Now assume that, for some k \geq 0, \beta R-DY
k+1 > 0 and (6.4) hold. Then, \beta k+1

satisfying 0 \leq \beta k+1 \leq \beta R-DY
k+1 exists. If 0 < \beta k+1 \leq \beta R-DY

k+1 , we obtain

\langle gk+1, \eta k+1\rangle xk+1

(4.1)
=  - \| gk+1\| 2xk+1

+ \beta k+1\langle gk+1, skT
(k)(\eta k)\rangle xk+1

=  - \| gk+1\| 2xk+1
+ \beta k+1(\langle gk+1, skT

(k)(\eta k)\rangle xk+1
 - \langle gk, \eta k\rangle xk

) + \beta k+1\langle gk, \eta k\rangle xk

(6.4)

\leq  - \| gk+1\| 2xk+1
+ \beta R-DY

k+1 (\langle gk+1, skT
(k)(\eta k)\rangle xk+1

 - \langle gk, \eta k\rangle xk
) + \beta k+1\langle gk, \eta k\rangle xk

(4.8)
= \beta k+1\langle gk, \eta k\rangle xk

< 0.

If \beta k+1 = 0, then we have \langle gk+1, \eta k+1\rangle xk+1
=  - \| gk+1\| 2xk+1

< 0. We can also

prove \langle gk+1, \eta k+1\rangle xk+1
< \langle gk+2, sk+1T (k+1)(\eta k+1)\rangle xk+2

as in the previous paragraph.
Therefore, (6.4) holds if k is replaced with k+1. Hence, (6.4) is proved for all k \geq 0.

We proceed to prove (6.5) and (6.6) for any k \geq 1 with which tk - 1 satisfies the
generalized T (k - 1)-Wolfe conditions (3.5) and (4.15). It follows from (4.1) that

(6.7) \langle gk, \eta k\rangle xk
=  - \| gk\| 2xk

+ \beta k\langle gk, sk - 1T (k - 1)(\eta k - 1)\rangle xk
.

6For k = 0, (6.5) and (6.6) clearly hold without any assumption since \eta 0 =  - g0.
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We now prove the first inequality in (6.5). Here, from (4.15) and sk \leq 1, we observe
that \langle gk, sk - 1T (k - 1)(\eta k - 1)\rangle xk

\geq sk - 1c2\langle gk - 1, \eta k - 1\rangle xk - 1
\geq c2\langle gk - 1, \eta k - 1\rangle xk - 1

. Thus,
it follows from (6.7), 0 \leq \beta k \leq \beta R-DY

k , (4.8), (4.15), and c2\langle gk - 1, \eta k - 1\rangle xk - 1
< 0 that

\langle gk, \eta k\rangle xk
\geq  - \| gk\| 2xk

+ c2\beta k\langle gk - 1, \eta k - 1\rangle xk - 1

\geq  - \| gk\| 2xk
+ c2\beta 

R-DY
k \langle gk - 1, \eta k - 1\rangle xk - 1

= \| gk\| 2xk

\biggl( 
 - 1 +

c2\langle gk - 1, \eta k - 1\rangle xk - 1

\langle gk, sk - 1T (k - 1)(\eta k - 1)\rangle xk
 - \langle gk - 1, \eta k - 1\rangle xk - 1

\biggr) 
\geq \| gk\| 2xk

\biggl( 
 - 1 +

c2\langle gk - 1, \eta k - 1\rangle xk - 1

c2\langle gk - 1, \eta k - 1\rangle xk - 1
 - \langle gk - 1, \eta k - 1\rangle xk - 1

\biggr) 
=

\| gk\| 2xk

c2  - 1
.

To prove the second inequality in (6.5), we consider the following two cases. If
\langle gk, sk - 1T (k - 1)(\eta k - 1)\rangle xk

\leq 0, then (6.7) and \beta k \geq 0 yield

\langle gk, \eta k\rangle xk
\leq  - \| gk\| 2xk

\leq  - 
\| gk\| 2xk

1 + c3
.

Otherwise (i.e., if \langle gk, sk - 1T (k - 1)(\eta k - 1)\rangle xk
> 0), (6.7), \beta k \leq \beta R-DY

k , and (4.8) give

\langle gk, \eta k\rangle xk
\leq  - \| gk\| 2xk

+ \beta R-DY
k \langle gk, sk - 1T (k - 1)(\eta k - 1)\rangle xk

=
\| gk\| 2xk

\langle gk - 1, \eta k - 1\rangle xk - 1

\langle gk, sk - 1T (k - 1)(\eta k - 1)\rangle xk
 - \langle gk - 1, \eta k - 1\rangle xk - 1

.

Noting \langle gk - 1, \eta k - 1\rangle xk - 1
< 0 and \langle gk, sk - 1T (k - 1)(\eta k - 1)\rangle xk

\leq  - c3\langle gk - 1, \eta k - 1\rangle xk - 1

from (4.15), we obtain

\langle gk, \eta k\rangle xk
\leq 

\| gk\| 2xk

 - c3  - 1
,

indicating that the second inequality in (6.5) always holds. Finally, (6.6) is a direct
consequence from (6.5) and the Cauchy--Schwarz inequality, completing the proof.

Theorem 6.4. Under Assumption 5.1, let sequence \{ xk\} be generated by Algo-
rithm 4.1 with T (k) satisfying Assumption 4.2. We assume that \beta k+1 in the algo-
rithm satisfies 0 \leq \beta k+1 \leq \beta R-DY

k+1 for all k \geq 0 and tk satisfies the T (k)-Wolfe
conditions (3.5) and (4.13) with 0 < c1 < c2 < 1. Furthermore, assume that for
k \in K2\setminus \{ 0\} , tk - 1 satisfies the generalized T (k - 1)-Wolfe conditions (3.5) and (4.15)
with 0 < c1 < c2 < 1 and c3 \geq 0, where \beta R-DY

k+1 is defined as (4.8), and K2 is the index
set in Assumption 4.2. Then, for gk := grad f(xk), we have

(6.8) lim inf
k\rightarrow \infty 

\| gk\| xk
= 0.

Proof. It is sufficient to show (6.8) for the case gk \not = 0 for all k \geq 0. From (4.1),
we have \eta k+1 + gk+1 = \beta k+1skT (k)(\eta k). Taking the norm and squaring, we obtain

(6.9) \| \eta k+1\| 2xk+1
= \beta 2

k+1s
2
k\| T (k)(\eta k)\| 2xk+1

 - 2\langle gk+1, \eta k+1\rangle xk+1
 - \| gk+1\| 2xk+1

.

From the proof of Proposition 6.3, for all k \geq 0, we can confirm the inequality
\langle gk+1, \eta k+1\rangle xk+1

\leq \beta k+1\langle gk, \eta k\rangle xk
\leq 0 (the two equal signs do not hold simultane-

ously), leading to \beta 2
k+1\langle gk, \eta k\rangle 2xk

\leq \langle gk+1, \eta k+1\rangle 2xk+1
. Dividing both sides of (6.9) by

\langle gk+1, \eta k+1\rangle 2xk+1
> 0, we obtain
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\| \eta k+1\| 2xk+1

\langle gk+1, \eta k+1\rangle 2xk+1

\leq 
s2k\| T (k)(\eta k)\| 2xk+1

\langle gk, \eta k\rangle 2xk

 - 2

\langle gk+1, \eta k+1\rangle xk+1

 - 
\| gk+1\| 2xk+1

\langle gk+1, \eta k+1\rangle 2xk+1

(4.2)

\leq 
\| \eta k\| 2xk

\langle gk, \eta k\rangle 2xk

+
1

\| gk+1\| 2xk+1

 - 
\biggl( 

1

\| gk+1\| xk+1

+
\| gk+1\| xk+1

\langle gk+1, \eta k+1\rangle xk+1

\biggr) 2

\leq 
\| \eta k\| 2xk

\langle gk, \eta k\rangle 2xk

+
1

\| gk+1\| 2xk+1

.(6.10)

To accomplish the proof by contradiction, we assume lim infk\rightarrow \infty \| gk\| xk
> 0,

which, together with gk \not = 0 for all k \geq 0, implies that there exists \varepsilon > 0 such that
\| gk\| xk

\geq \varepsilon for all k \geq 0. Therefore, from (6.10), we obtain

\| \eta k\| 2xk

\langle gk, \eta k\rangle 2xk

\leq 
\| \eta 0\| 2x0

\langle g0, \eta 0\rangle 2x0

+

k\sum 
j=1

1

\| gj\| 2xj

=

k\sum 
j=0

1

\| gj\| 2xj

\leq k + 1

\varepsilon 2
,

which gives

(6.11)

N\sum 
k=0

\langle gk, \eta k\rangle 2xk

\| \eta k\| 2xk

\geq \varepsilon 2
N+1\sum 
k=1

1

k
\rightarrow \infty (N \rightarrow \infty ).

On the other hand, Proposition 6.3 indicates that the assumption in Theorem 5.3
holds, and we have (5.3), contradicting (6.11). Therefore, (6.8) must hold.

The DY-type R-CG methods have an advantage over the FR-type in that they do
not require the strong T (k)-Wolfe conditions. Although the generalized T (k)-Wolfe
conditions are required for k such that (4.3) does not hold, the constant c3 \geq 0 can
be taken as any large constant. Therefore, the conditions are not too restrictive and
are much weaker than the strong T (k)-Wolfe conditions.

6.1.3. R-CG methods based on \bfitbeta \bfR -\bfC \bfD . The following proposition provides
important properties of \beta R-CD

k+1 := \| gk+1\| 2xk+1
/( - \langle gk, \eta k\rangle xk

) defined as (4.9).

Proposition 6.5. Let sequence \{ xk\} be generated by Algorithm 4.1 with \beta k+1

satisfying 0 \leq \beta k+1 \leq \beta R-CD
k+1 , where \beta R-CD

k+1 is defined as (4.9). Assume that, for all

k \geq 0, gk := grad f(xk) \not = 0 and step lengths tk satisfy the T (k)-generalized Wolfe
conditions (3.5) and (4.15) with 0 < c1 < c2 < 1 and c3 = 0. Then, the algorithm
is well defined, i.e., \beta R-CD

k+1 > 0 holds, and \beta k+1 satisfying 0 \leq \beta k+1 \leq \beta R-CD
k+1 exists

for every k \geq 0. Furthermore, we have the sufficient descent condition on \eta k as
\langle gk, \eta k\rangle xk

\leq  - \| gk\| 2xk
and 0 \leq \beta k+1 \leq \beta R-FR

k+1 for all k \geq 0, where \beta R-FR
k+1 is defined

as (4.7). In particular, 0 < \beta R-CD
k+1 \leq \beta R-FR

k+1 holds for all k \geq 0.

Proof. We first show \langle gk, \eta k\rangle xk
\leq  - \| gk\| 2xk

for all k \geq 0 by induction. For any
k \geq 0, if this inequality holds, then \beta R-CD

k+1 > 0 directly follows from \langle gk, \eta k\rangle xk
< 0,

and \beta k+1 \in [0, \beta R-CD
k+1 ] actually exists. For k = 0, it is clear that \langle g0, \eta 0\rangle x0

=  - \| g0\| 2x0
.

Subsequently, we assume that \langle gk, \eta k\rangle xk
\leq  - \| gk\| 2xk

(< 0) for some k \geq 0. Then,

considering \beta R-CD
k+1 > 0 and the inequality \langle gk+1,T (k)(\eta k)\rangle xk+1

\leq 0 from (4.15) with
c3 = 0, we use (4.1) and (4.9) to obtain

\langle gk+1, \eta k+1\rangle xk+1

\| gk+1\| 2xk+1

=
\langle gk+1, - gk+1 + \beta k+1skT (k)(\eta k)\rangle xk+1

\| gk+1\| 2xk+1

=  - 1 - sk
\beta k+1

\beta R-CD
k+1

\langle gk+1,T (k)(\eta k)\rangle xk+1

\langle gk, \eta k\rangle xk

\leq  - 1.
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Thus, \langle gk+1, \eta k+1\rangle xk+1
\leq  - \| gk+1\| 2xk+1

holds as desired, and by induction, we have

\langle gk, \eta k\rangle xk
\leq  - \| gk\| 2xk

for all k \geq 0.
Furthermore, this result directly leads to

\beta R-CD
k+1 =

\| gk+1\| 2xk+1

 - \langle gk, \eta k\rangle xk

\leq 
\| gk+1\| 2xk+1

\| gk\| 2xk

= \beta R-FR
k+1 .

Combining this relationship with 0 \leq \beta k+1 \leq \beta R-CD
k+1 yields 0 \leq \beta k+1 \leq \beta R-FR

k+1 .

As a special case of the result in Proposition 6.5, we have | \beta R-CD
k+1 | \leq \beta R-FR

k+1 when

we choose \beta k+1 \equiv \beta R-CD
k+1 for all k \geq 0. Therefore, as a corollary of Theorem 6.2,

we obtain the convergence result for \beta R-CD
k+1 , requiring tk to satisfy the generalized

T (k)-Wolfe conditions with 0 < c1 < c2 < 1/2 and c3 = 0. Furthermore, in fact, as
the following theorem states, the condition on c2 can be weaken as 0 < c1 < c2 < 1,
and \beta k+1 can be any value satisfying 0 \leq \beta k+1 \leq \beta R-CD

k+1 .

Theorem 6.6. Under Assumption 5.1, let sequence \{ xk\} be generated by Algo-
rithm 4.1 with \beta k+1 satisfying 0 \leq \beta k+1 \leq \beta R-CD

k+1 , where \beta R-CD
k+1 is defined as (4.9).

If T (k) satisfies Assumption 4.2 and the step lengths satisfy the generalized T (k)-
Wolfe conditions (3.5) and (4.15) with 0 < c1 < c2 < 1 and c3 = 0, then for
gk := grad f(xk), we have

lim inf
k\rightarrow \infty 

\| gk\| xk
= 0.

Proof. Following the discussion in the proof of Proposition 6.1, we can prove
 - 1  - c2 \leq \langle gk, \eta k\rangle xk

/\| gk\| 2xk
\leq  - 1 and \| gk\| xk

\leq \| \eta k\| xk
instead of (6.1) and (6.2),

respectively. Therefore, the assumption in Zoutendijk's theorem (Theorem 5.3) is
satisfied, and the subsequent proof is the same as that of Theorem 6.2, where we note
| \beta k+1| \leq | \beta R-FR

k+1 | from Proposition 6.5.

The discussion on FR- and DY-types of R-CG methods here is partly similar
to that in previous studies, where some specific choices of sk and T (k) are utilized.
However, the analyses provided in this section are meaningful and not trivial since
they address our general framework of R-CG methods (i.e., Algorithm 4.1) and more
general classes of \beta k+1. Furthermore, to the author's knowledge, no discussion on the
CD-type of the R-CG method has been conducted before, even for a specific T (k)

such as those based on parallel translation or vector transport.

6.2. Global convergence analyses of R-CG methods with variants of
\bfitbeta \bfR -\bfP \bfR \bfP , \bfitbeta \bfR -\bfH \bfS , and \bfitbeta \bfR -\bfL \bfS . While some existing studies discuss the FR- and DY-
types of R-CG methods, the theoretical properties of the PRP-, HS-, and LS-types of
R-CG methods were not well known until now. Furthermore, even in Euclidean spaces,
these three types of CG methods with the (strong) Wolfe conditions are not generally
guaranteed to converge [8, section 4.2]. Therefore, various variants are proposed and
analyzed. For example, \beta PRP+

k+1 := max\{ \beta PRP
k+1 , 0\} is known to generate convergent

sequences under some assumptions in the Euclidean case [29]. Some comprehensive
surveys on the Euclidean CG methods are found in [7, 8, 32, 43]. In this subsection,
we generalize some examples of such variants by exploiting the theoretical results in
subsection 6.1.

Considering the Euclidean CG methods, the FR-, DY-, and CD-types may suffer
from jamming, i.e., if the search direction is nearly orthogonal to the gradient at some
iteration and the corresponding step is small, the subsequent sequences are likely to
make little progress [44, section 5.2]. An important feature of the PRP-, HS-, and LS-
types is that they can avoid jamming. This is because the quantity in the numerator of
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\beta PRP
k+1 , \beta 

HS
k+1, and \beta LS

k+1 becomes close to 0 when xk+1 \approx xk, and the search direction is
almost the steepest descent (SD) direction  - \nabla f(xk+1). This phenomenon can also be
explained in the R-CG methods, assuming that lkS (k)(gk) \approx gk when xk+1 \approx xk. For
example, consider \beta R-PRP

k+1 := (\| gk+1\| 2xk+1
 - \langle gk+1, lkS (k)(gk)\rangle xk+1

)/\| gk\| 2xk
as defined

in (4.10). If xk+1 \approx xk, then gk+1 \approx gk when grad f is continuous, and the numerator
is approximated as \| gk+1\| 2xk+1

 - \langle gk+1, lkS (k)(gk)\rangle xk+1
\approx \| gk\| 2xk

 - \langle gk, gk\rangle xk
= 0.

Therefore, the subsequent search direction in Algorithm 4.1 is \eta k+1 \approx  - gk+1, which
is the negative gradient of f at xk+1. Therefore, the PRP-type of R-CG methods can
be considered to be equipped with an automatic restart strategy, indicating that the
search direction is almost reset as the SD direction when xk+1 \approx xk. The same is also
applied to the HS- and LS-types of R-CG methods.

As mentioned, although the PRP-, HS-, and LS-types of (R-)CG methods may be
practically superior to the FR-, DY-, and CD-types, they do not necessarily generate
convergent sequences. Here, we observe that \beta FR

k+1 and \beta PRP
k+1 have the same form of

denominator. Therefore, the PRP-type R-CG methods can be regarded as practically
modified versions of the FR-type R-CG methods so that they have the aforementioned
restart mechanism, while the FR-types have theoretically better convergence proper-
ties than the PRP-types. Based on this discussion, a natural modification of \beta R-PRP

k+1 is

\beta k+1 = max\{ 0,min\{ \beta R-PRP
k+1 , \beta R-FR

k+1 \} \} , which ensures the condition 0 \leq \beta k+1 \leq \beta R-FR
k+1

in Theorem 6.2. We can also develop this discussion for HS--DY- and CD--LS-types.

6.2.1. R-CG methods with modified \bfitbeta \bfR -\bfP \bfR \bfP . Based on the above dis-
cussion, a practical implementation of the PRP-type \beta k+1 defined in (4.10), which
is \beta R-PRP

k+1 := (\| gk+1\| 2xk+1
 - \langle gk+1, lkS (k)(gk)\rangle xk+1

)/\| gk\| 2xk
, may be to combine it

with \beta R-FR
k+1 as \beta k+1 = max\{ 0,min\{ \beta R-PRP

k+1 , \beta R-FR
k+1 \} \} . The Euclidean version of this

approach (i.e., \beta k+1 = max\{ 0,min\{ \beta PRP
k+1 , \beta 

FR
k+1\} \} ) is mentioned in [35]. Because

0 \leq \beta k+1 \leq \beta R-FR
k+1 holds, Theorem 6.2 implies the following result.

Theorem 6.7. Let \{ xk\} be a sequence generated by Algorithm 4.1 under the as-
sumption in Theorem 6.2 and \beta k+1 = \beta R-PRP--FR

k+1 := max\{ 0,min\{ \beta R-PRP
k+1 , \beta R-FR

k+1 \} \} .
Then, for gk := grad f(xk), we have lim infk\rightarrow \infty \| gk\| xk

= 0.

6.2.2. R-CG methods with modified \bfitbeta \bfR -\bfH \bfS . We here discuss the HS-type
\beta R-HS
k+1 := (\| gk+1\| 2xk+1

 - \langle gk+1, lkS (k)(gk)\rangle xk+1
)/(\langle gk+1, skT (k)(\eta k)\rangle xk+1

 - \langle gk, \eta k\rangle xk
)

defined as in (4.11). We develop the idea discussed in subsection 6.2.1 and use Theo-
rem 6.4 to propose and analyze the following algorithm, whose Euclidean counterpart
\beta k+1 = max\{ 0,min\{ \beta HS

k+1, \beta 
DY
k+1\} \} is proposed in [21].

Theorem 6.8. Let \{ xk\} be a sequence generated by Algorithm 4.1 under the
assumption in Theorem 6.4 and \beta k+1 = \beta R-HS--DY

k+1 := max\{ 0,min\{ \beta R-HS
k+1 , \beta R-DY

k+1 \} \} .
Then, for gk := grad f(xk), we have lim infk\rightarrow \infty \| gk\| xk

= 0.

6.2.3. R-CG methods with modified \bfitbeta \bfR -\bfL \bfS . Finally, we discuss the LS-type
\beta R-LS
k+1 := (\| gk+1\| 2xk+1

 - \langle gk+1, lkS (k)(gk)\rangle xk+1
)/( - \langle gk, \eta k\rangle xk

) defined in (4.12). From
Theorem 6.6, we can similarly propose and analyze the following algorithm, which is
a generalization of \beta k+1 = max\{ 0,min\{ \beta LS

k+1, \beta 
CD
k+1\} \} for the Euclidean case [7].

Theorem 6.9. Let \{ xk\} be a sequence generated by Algorithm 4.1 under the
assumption in Theorem 6.6 and \beta k+1 = \beta R-LS--CD

k+1 := max\{ 0,min\{ \beta R-LS
k+1 , \beta R-CD

k+1 \} \} .
Then, for gk := grad f(xk), we have lim infk\rightarrow \infty \| gk\| xk

= 0.

7. Numerical experiments. In this section, we compare Algorithm 4.1 with
several choices of \beta k+1. Specifically, we use \beta 

R-FR
k+1 , \beta R-DY

k+1 , \beta R-CD
k+1 , \beta R-PRP

k+1 , \beta R-HS
k+1 , and
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\beta R-LS
k+1 in (4.7)--(4.12) and \beta R-PRP--FR

k+1 , \beta R-HS--DY
k+1 , and \beta R-LS--CD

k+1 in subsection 6.2 as
hybrid methods. Since one of our contributions is that the proposed class of R-CG
methods (Algorithm 4.1) offers the use of a user-selected map T (k), we deal with two
optimization problems using different choices of T (k).

The experiments were carried out in double-precision floating-point arithmetic
on a PC (Intel Xeon CPU E5-2620 v4, 128 GB RAM) equipped with MATLAB
R2021b. In all the experiments below, we implemented the R-CG methods based on
conjugategradient in Manopt [18], which is a MATLAB toolbox for Riemannian
optimization. The step length computed in each iteration satisfies the Armijo con-
dition (3.5) by default. The iterations of the R-CG methods were terminated when
\| gk\| xk

/\| g0\| x0 < 10 - 6 was attained.

7.1. R-CG methods on the product of Grassmann manifolds with the
projection-based vector transport for singular value decomposition. We
consider Problem 2.1 of large size with the manifold \scrM := Grass(p,m)\times Grass(p, n),
where m = 50,000, n = 3,000, and p = 100, implying that the dimension of the
search space is dim\scrM = p(m  - p) + p(n  - p) = 5,280,000. Each point W on the
Grassmann manifold Grass(p, n) \simeq St(p, n)/\scrO (p) is expressed as an equivalence class
[U ] := \{ UQ | Q \in \scrO (p)\} with a representative U \in St(p, n). We define the objective
function f on \scrM as f([U ], [V ]) :=  - \| UTAV \| 2F /2, where A is a randomly generated
m\times n matrix and \| \cdot \| F is the Frobenius norm. This problem is for the singular value
decomposition of A.

In the experiments, we used the polar-based retraction and the projection-based
vector transport \scrT P , which are the default settings in Manopt's grassmannfactory,
and set T (k)(\eta k) := \scrT P

tk\eta k
(\eta k) and sk := min\{ 1, \| \eta k\| xk

/\| T (k)(\eta k)\| xk+1
\} in Algo-

rithm 4.1. Note that this T (k) satisfies Assumption 4.2 as discussed in Example 4.6.
Similarly, we set S (k)(gk) := \scrT P

tk\eta k
(gk) and lk := min\{ 1, \| gk\| xk

/\| S (k)(gk)\| xk+1
\} 

in (4.10)--(4.12). We compared \beta R-SD
k+1 := 0 (SD method) and the nine types of \beta k+1

mentioned above (six standard types and three hybrid ones) with the same initial
point, which was randomly generated.

Figure 1 shows the convergence histories of the 10 methods. In this figure, we
observe several clusters of the graphs: SD and FR; DY, CD, and LS--CD; PRP, HS,
LS, PRP--FR, and HS--DY. We observe that SD is the slowest, as expected, and FR,
DY, and CD are not so fast either. These three types of R-CG methods are considered
similar as discussed in section 6. The other three types, PRP, HS, and LS, are faster
than FR, DY, and CD. Regarding the hybrid methods, PRP--FR and HS--DY methods
showed similar performance to PRP and HS. On the other hand, LS--CD is slower
than LS. In this case, LS--CD seems to be slowed down by the effect of CD.

We further applied the Riemannian trust-region (TR) method [1] for the same
problem with the same initial point and compared computational time. The time (in
seconds) taken for the relative gradient norm to become less than 10 - 6 is summarized
in Table 1. As Figure 1 implies, SD and FR did not achieve the stopping criterion
within 30 minutes. Furthermore, although the convergence of HS was fast, it failed
to find a step length satisfying the Armijo condition at k = 656. The minimum value
of the relative gradient norm that HS attained was 1.47 \times 10 - 6 > 10 - 6 (at k = 651
in 827.7 seconds). It is worth noting that the TR method took much longer time
than most CG methods. Of course, the TR method has the advantage of superlinear
convergence once a point sufficiently close to an optimal solution is obtained. How-
ever, Table 1 shows that the CG methods are competitive enough for the purpose of
obtaining a reasonably good solution.
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Fig. 1. Numerical results for Problem 2.1 on \scrM = Grass(p,m) \times Grass(p, n). The horizontal
axis represents the iteration number k, and the vertical axis represents the relative norm of the
gradient of the objective function \| gk\| xk/\| g0\| x0 . A marker is put on each graph at the last iteration
for visibility.

Table 1
Computation time [s] required for \| gk\| xk/\| g0\| x0 < 10 - 6 to be satisfied.

SD FR DY CD PRP HS LS PRP--FR HS--DY LS--CD TR
Time [s] -- -- 1594.9 1590.6 1026.5 -- 974.6 951.3 890.2 1610.0 25961.6

7.2. R-CG methods on the manifold of symmetric positive definite ma-
trices for solving Lyapunov equation. Subsequently, we consider Problem 2.1
with\scrM := SPD(n) endowed with the Bures--Wasserstein geometry [42], where n = 50,
implying that dim\scrM = n(n+1)/2 = 1,275. We define the objective function f on \scrM 
as f(X) := tr(XAX) - tr(XC), where A,C \in Sym(n) are generated in the same way
as in (Ex2) of [33]. The resultant optimization problem is for solving the Lyapunov
equation AX +XA = C for X \in \scrM .

We used the exponential retraction and set T (k)(\eta k) := \eta k and sk := 1 in Algo-
rithm 4.1, and S (k)(gk) := gk and lk := 1 for (4.10)--(4.12). We again compared the
R-SD and nine types of R-CG methods, where the initial point was X0 = In.

Overall, the results of Figure 2 can be explained similarly to those in the previous
subsection. It is observed that SD is the slowest, as expected. Among the R-CG
methods, CD is faster than FR, but slower than DY, PRP, HS, LS, and the hybrid
methods (except for LS--CD). LS--CD is slower than PRP--FR and HS--DY, possibly
because CD negatively affected the performance of LS.

8. Concluding remarks. In this paper, to address unconstrained Riemannian
optimization problems (Problem 2.1), we proposed a general framework of R-CG
methods (Algorithm 4.1) with maps T (k) and scaling parameters sk for k \geq 0. Several
conditions on T (k), sk, and the step lengths tk were developed to provide convergence
analyses for the types of Algorithm 4.1.

An important parameter characterizing the (R-)CG methods is \beta k+1 in (3.2)
(Euclidean case) and (4.1) (Riemannian case). As the six standard types of R-CG
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Fig. 2. Numerical results for Problem 2.1 on \scrM = SPD(n). The horizontal axis represents the
iteration number k, and the vertical axis represents the relative norm of the gradient of the objective
function \| gk\| Xk

/\| g0\| X0
. A marker is put on each graph at the last iteration for visibility.

methods, we generalized (omitting the subscript k + 1) \beta FR, \beta DY, \beta CD, \beta PRP, \beta HS,
and \beta LS in Euclidean spaces to the Riemannian counterparts \beta R-FR, \beta R-DY, \beta R-CD,
\beta R-PRP, \beta R-HS, and \beta R-LS, respectively. We extended Zoutendijk's theorem to our
proposed framework of the R-CG methods and extensively analyzed the FR-, DY-,
and CD-types of R-CG methods to guarantee the global convergence properties. The
analyses also claim that any choice of nonnegative \beta that is smaller or equal to \beta R-FR,
\beta R-DY, or \beta R-CD with appropriate assumptions ensures the global convergence of R-
CG methods. For the PRP-, HS-, and LS-types of R-CG methods, even whose Euclid-
ean versions are not necessarily globally convergent, we discussed why they can outper-
form the other three types of R-CG methods by explaining that they are considered to
be equipped with a restart mechanism when jamming occurs. Furthermore, modifying
them and exploiting the analyses of the FR-, DY-, and CD types of R-CG methods,
we proposed several practically and theoretically appropriate hybrid methods.

We demonstrated numerical experiments to observe the performances of several
R-CG methods in the framework of Algorithm 4.1. The CD-type of R-CG methods
have been rarely used in the literature; however, they are possibly superior to the FR-
or DY-type methods. On the other hand, considering our experiments, the PRP-, HS-,
and LS-types of R-CG methods behaved much better than the FR-, DY-, and CD-
types. If guaranteeing the global convergence is important, it is also nice to use the
hybrid types, i.e., PRP--FR, HS--DY, and LS--CD types of methods.

Since there are various types of CG methods even for the Euclidean case, this
paper does not cover all the existing methods in detail. However, we believe that
the proposed general framework will be the foundation for future studies on R-CG
methods.
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