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A revisit to the Cercignani–Lampis model:
Langevin picture and its numerical simulation

Shigeru Takata, Shigenori Akasobe, and Masanari Hattori

Abstract The Cercignani–Lampis (CL) model for the gas–surface interaction is re-
visited from the Langevin dynamics viewpoint. Starting from a time-independent
Fokker–Planck formalism by Cercignani, its time-dependent extension and the cor-
responding Langevin description are introduced. The Langevin description sheds
light on dynamical features of a stochastic process corresponding to the CL model.
Numerical simulations on the basis of the Langevin description are performed as
well to reproduce the scattering kernel and reflection intensity distribution numeri-
cally. Although the noise in the stochastic process is apparently simple, the Milstein
scheme rather than the Euler–Maruyama scheme has to be adopted to achieve a
satisfactory numerical convergence in time discretisation.

1 Introduction

Gas flows in low pressure and small-scale circumstances, which we generically call
rarefied gas flows, require the kinetic theory description rather than the usual fluid
dynamics description because the latter is implicitly limited to the local equilibrium
states [16, 4]. Inter-molecular collisions inside the gas are not necessarily frequent
in such circumstances, and sometimes molecular velocities inside the gas can be
traced back without changes to the velocities just after the reflection on a container
surface, a wall. Hence, the velocity distribution of reflected molecules can have a
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2 S. Takata, S. Akasobe, and M. Hattori

direct impact on the gas behavior in the bulk region. An enough simple but realistic
gas–surface interaction model has been desired for a long time.

Many efforts have been devoted even in rather recent years by Molecular Dynam-
ics (MD), theoretical, and experimental approaches (e.g., [18, 1, 2] and references
therein; a very good survey of the gas–surface interaction models before 90’s can
be found in [4]). Nevertheless, the progress so far is not necessarily satisfactory,
probably due to difficulties of background physics in such interface problems. Even
now, the diffuse reflection condition and/or its convex combination with the specular
reflection condition, the so-called Maxwell condition, are primarily used and re-
garded as the standard in the literature [16, 4]. The former implicitly assumes perfect
accommodation of incident molecules with the wall and reproduces the Lambert
cosine law of the reflection intensity, while the latter is introduced by Maxwell to
take account of imperfect accommodation. Although the latter reproduces some ef-
fects of the imperfect accommodation at a macroscopic level, the specular reflection
part induces a spike in the reflection intensity distribution, which is different from
observations in molecular beam experiments.

After Maxwell, the concept of accommodation has been developed to introduce
different coefficients to represent a possible difference of accommodation in mo-
mentum and energy exchanges [15, 11, 4]. Cercignani and Lampis [5] proposed in
1971 a mathematical physical model, which is now called the Cercignani–Lampis
(CL) model. A similar model was independently proposed by Kǔscer et al. [12].
Their models have an impact in their capability to reproduce typical features of the
reflection intensity distributions experimentally observed.

The CL model has been enjoying successful practical applications, including
its extension and easy implementation [13] to the Direct Simulation Monte Carlo
(DSMC) algorithm since 90’s. Nevertheless, it seems that the dynamical background
is still behind a mysterious veil, though its physical interpretation and alternative
derivation were reported in 70’s (e.g., [17, 6]). No further attempts have been made
to shed light on the dynamical aspects of the model. It is the main motivation of the
present study.

In the present paper, we discuss the CL model mainly along the lines laid by Cer-
cignani in [4]. We, however, modify his original discussions for a time-dependent
problem in order to have a stochastic dynamical picture, the Langevin equation
description. Results of numerical simulations and scheme accuracy in time discreti-
sation will be presented as well.

2 Scattering kernel and Cercignani–Lampis (CL) model

Let us denote by f (t, x, ξ) the velocity distribution function of gas molecules, where
t is a time, x is a position, and ξ is a molecular velocity. Assuming that a resting
solid wall occupies the region x1 < 0, the reflection law for gas molecules on the
wall is expressed as
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A revisit to the Cercignani–Lampis model 3

f (t, x ‖, x1 = 0, ξ) =
∫
ξ1<0

K(x ‖, ξ, ξ) f (t, x ‖, x1 = 0, ξ)dξ, ξ1 > 0, (1)

or equivalently as

ξ1 f (t, x ‖, x1 = 0, ξ) =
∫
ξ1<0
R(x ‖, ξ, ξ)|ξ1 | f (t, x ‖, x1 = 0, ξ)dξ, ξ1 > 0. (2)

Here x ‖ = (x2, x3), which will be suppressed mostly in what follows because the
discussion is not concerned with the variation of K (or R) in that direction. In the
present paper, we shall call K the scattering kernel and R the reflection probability,
respectively. 1 They are related to each other as

|ξ1 |K(ξ, ξ) = |ξ1 |R(ξ, ξ), (3)

and are usually supposed to be independent of f both in physics and mathematics.
Physically, it implies that the microscopic properties of the wall do not change by the
interaction with the gas. We follow this convention, and thus the right-hand sides of
(1) and (2) are linear with respect to f . Experiments of mono-collimated molecular
beam scattering are performed on the basis of the same convention, though it is not
explicitly mentioned. In the case of the diffuse reflection condition, the scattering
kernel reads

K =
|ξ1 |

2π(RTw)
2 exp(−

|ξ |2

2RTw
), (4)

where Tw is the wall temperature and R is the specific gas constant (the Boltzmann’s
constant kB divided by the mass of a molecule m; R = kB/m). Cercignani and
Lampis [5] proposed the following form of the scattering kernel:

K =
|ξ1 |

2π(RTw)
2

1
αt (2 − αt )αn

I0(
ξ1ξ1
RTw

√
1 − αn
αn

) exp(−
ξ2

1 + ξ
2
1(1 − αn)

2RTwαn
)

× exp(−
|ξ ‖ − ξ ‖(1 − αt )|2

2RTwαt (2 − αt )
), (5)

where ξ ‖ = (ξ2, ξ3) and I0 is the modified Bessel function of the first kind and zeroth
order:

I0(x) ≡
1

2π

∫ 2π

0
exp(x cos ϕ)dϕ. (6)

The boundary condition (1) with the kernel (5) is called the Cercignani–Lampis
(CL) model and contains two adjustable parameters: 0 ≤ αn ≤ 1 and 0 ≤ αt ≤ 2.
When αn = αt = 1, it recovers the diffuse reflection condition (4).

1 We have adopted the terminology in [16]. In [4], R is called the scattering kernel, which is a flux
based terminology like (2). As

∫
ξ1>0 Rdξ = 1 and R ≥ 0, R can be interpreted as the probability

density of finding a reflected molecule at a specific value of the velocity.
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0-d
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potential barrier

Solid

solid surface
(the bound of the interaction range)

Fig. 1 Schematics of scattering of a gas molecule

3 Cercignani’s Fokker–Planck (FP) system

In [3], Cercignani introduced a time-independent Fokker–Planck system for the
probability density P(x1, ξ) of amolecule at position x1 with velocity ξ . It reproduces
the CL model in the parameter range 0 ≤ αn ≤ 1 and 0 ≤ αt ≤ 1 and reads

ξ1
∂P
∂x1
+
∂P
∂ξi

Xi = LP, (−d < x1 < 0), (7a)

LP =
∂2

∂ξj∂ξi

(
Di jP

)
+

∂

∂ξi

[(
Fi jξj −

∂Di j

∂ξj

)
P
]
, (7b)

b.c. P(x1 = 0, ξ1 < 0, ξ ‖) = δ(ξ − ξin), (7c)
P(x1 = −d, ξ1, ξ ‖) = P(x1 = −d,−ξ1, ξ ‖), ξ1 > 0. (7d)

Here ξin is the molecular velocity of incidence, the interaction with the wall is
supposed to occur in x1 < 0, and x1 = −d is the position of the potential barrier
beyond which a molecule is forbidden to proceed (Fig. 1). The Xi , Di j , and Fi j in
the above are defined as follows:

Xi = 0, D11 =
2RTw

`n
|ξ1 |, D22 = D33 =

2RTw

`t
|ξ1 |, (7e)

Di j = 0 (i , j), Fi j =
1

RTw
Di j, (7f)

where `t and `n are a characteristic length of molecular velocity diffusion in the
x2x3-plane and that in the x1-direction, respectively. By solving the above system
(7), we have the velocity distribution P(x1 = 0, ξ1 > 0, ξ ‖) of reflected molecules
against the incident molecular beam δ(ξ − ξin). Substitution of f = δ(ξ − ξin) into
(1) or (2) gives the relation
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R(ξ1 > 0, ξin) =
|ξ1 |

|ξin1 |
K(ξ1 > 0, ξin) =

|ξ1 |

|ξin1 |
P(x1 = 0, ξ1 > 0), (8)

(see [4, Sec. III. 2, Eq. (2.12)]). Hence, finding the form of K is identical to finding
P at x1 = 0 for ξ1 > 0. Here and in what follows, we suppress ξ ‖ in the argument of
K etc., if no confusion is expected.

4 From Fokker–Planck to Langevin system

The time-independent Fokker–Planck (FP) system in Sec. 3 is the starting point
of our discussions. We first introduce its simple but natural extension to the time-
dependent situation. Then, we identify the Langevin system, namely the stochastic
dynamics of a test particle, which is equivalent to the extended system.

4.1 Time-dependent Fokker–Planck system

In order to draw out a dynamical picture behind the CL model, we simply add a
time derivative term to the left-hand side of (7a), allow the spatial dependence in
(x2, x3)-directions, and modify the condition (7c) in accordance with the time and
spatial localization of the incident molecular beam. Then, we have the following
initial- and boundary-value problem:

∂Q
∂t
= −ξi

∂Q
∂xi
+

∂2

∂ξj∂ξi

(
Di jQ

)
+

∂

∂ξi

[(
Fi jξj −

∂Di j

∂ξj

)
Q

]
, (−d < x1 < 0), (9a)

b.c. Q(t, x, ξ) = δ(t)δ(x)δ(ξ − ξin), ξ1 < 0, x1 = 0, (9b)
Q(t, x1 = −d, ξ1) = Q(t, x1 = −d,−ξ1), ξ1 > 0, (9c)

where Q(t, x, ξ) is the probability density finding a molecule at time t, position x,
and velocity ξ . As Q is the fundamental solution (the Green function) to the initial-
and boundary-value problems for the same FP equation, we switch its notation to
G(0,0, ξin; t, x, ξ) from now on. Here, the first three arguments of G indicate that the
time, position, and velocity of incidence are t = 0, x = 0, and ξ = ξin, respectively.
Since the microscopic property of the wall, or the coefficients Di j and Fi j , are
independent of t and x ‖ , the solution is invariant under the translation both in time
and in the x2x3-plane:

G(s, xin, ξin; t, x, ξ) = G(0,0, ξin; t − s, x − xin, ξ), s ≤ t, (10)

where xin = (0, xin‖). Thismotivates us to defineG ≡
∫ t

−∞

∫
R2 G(s, xin, ξin; t, x, ξ)dx ‖ds.

The following property holds:
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G =
∫ t

−∞

∫
R2

G(s, xin, ξin; t, x, ξ)dx ‖ds

=

∫ t

−∞

∫
R2

G(0,0, ξin; t − s, x − xin, ξ)dx ‖ds

=

∫ ∞

0

∫
R2

G(0,0, ξin; τ, x, ξ)dx ‖dτ. (11)

It is seen from the last equality that G is a solution of (9a) independent of xin‖ as
well as t and x ‖ ; accordingly it will be denoted as G(ξin; x1, ξ). Note that G solves
(7a) as well. It is readily seen from (9b) and (9c) that G satisfies the conditions (7c)
and (7d). Thus, G is a solution of the system (7).

In Sec. 4.2, we present the Langevin system corresponding to the above system (9).
The observation on G tells that the scattering kernel K is identical with G(ξin; x1 =
0, ξ) and thus can be constructed fromG. This implies that the kernel of the CLmodel
can be reproduced by many samples of a test particle simulation of the Langevin
system. We will come back to this issue in Sec. 5.2.

4.2 Langevin system for the CL model: A stochastic dynamical picture

We first consider the following Langevin equation:

dxi = ξidt, dξi = (−γi jξj + Fi)dt + Si jdWj, (12)

where Wj is the Wiener process that satisfies 〈dWidWj〉 = dt δi j . Just for conve-
nience, let us introduce a six-dimensional vector variable yα (α = 1, . . . ,6) defined
by yi = xi and yi+3 = ξi (i = 1, . . . ,3) and rewrite (12) as follows:

dyα = (Aαβyβ + Bα)dt + ΘαidWi, (13a)

where

[Aαβ] =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −γ11 −γ12 −γ13
0 0 0 −γ21 −γ22 −γ23
0 0 0 −γ31 −γ32 −γ33


, (13b)
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[Bα] =



0
0
0
F1
F2
F3


, [Θαi] =



0 0 0
0 0 0
0 0 0

S11 S12 S13
S21 S22 S23
S31 S32 S33


. (13c)

The corresponding Fokker–Planck equation is known to take the following form [7]:

∂g

∂t
= −

∂

∂yα
([Aαβyβ + Bα]g) +

1
2

∂2

∂yα∂yβ
(ΘαiΘβig). (14)

Using the original pair of three-dimensional vector variables (xi , ξi) in place of yα,
(14) is rewritten as

∂g

∂t
= −

∂

∂xi
(ξig) −

∂

∂ξi
(−γi jξjg + Fig) +

1
2

∂2

∂ξi∂ξj
(SikSjkg). (15)

Now, comparing (15) and (9a) leads us to find the correspondence of coefficients:

1
2

SikSjk = Di j, γi jξj − Fi = Fi jξj −
∂Di j

∂ξj
. (16)

Note that, because of the definition (7e),

∂Di j

∂ξj
=

ξ1
|ξ1 |

2RTw

`n
δi1. (17)

Thus, γi j , Si j , and Fi are identified as

γi j = Fi j =
1

RTw
Di j = 2[

|ξ1 |

`n
δi1δj1 +

|ξ1 |

`t
(δi2δj2 + δi3δj3)], (18a)

Fi =
ξ1
|ξ1 |

2RTw

`n
δi1, (18b)

Si j = 2

√
RTw
|ξ1 |

`n
δi1δj1 + 2

√
RTw
|ξ1 |

`t
(δi2δj2 + δi3δj3). (18c)

Here, we have chosen Si j to be symmetric.
To summarize, we have identified the Langevin system corresponding to the

time-dependent FP system (9):

dxi = ξidt, (i = 1,2,3), (19a)

dξ1 = −
2
`n
(|ξ1 |ξ1 −

ξ1
|ξ1 |

RTw)dt + 2

√
RTw
|ξ1 |

`n
dW1, (19b)
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8 S. Takata, S. Akasobe, and M. Hattori

dξ2 = −
2
`t
|ξ1 |ξ2dt + 2

√
RTw
|ξ1 |

`t
dW2, (19c)

dξ3 = −
2
`t
|ξ1 |ξ3dt + 2

√
RTw
|ξ1 |

`t
dW3, (19d)

supplemented by the specular reflection at the potential barrier x1 = −d and the
initial condition

x(0) = 0, ξ(0) = ξin. (19e)

5 Discussions

5.1 Dynamical aspects of the CL model

The Langevin system (19) tells that, after the incidence, the molecule changes its
velocity under two types of interactions with the wall. One is the first term on the
right-hand side of (19b)–(19d), which we call a drift part. The other is the second
term on the same side of (19b)–(19d), while we call a diffusion part. Below we
discard the spatial translation (19a) and concentrate on the dynamics described by
(19b)–(19d). Before going into details, it should be noted that the motion in the
normal direction is seen to be independent of those in tangential directions. The
reverse is not true.

Role of the drift part

In the direction normal to the surface, the drift part decelerates a molecule if the
kinetic energy (1/2)mξ2

1 in that direction is beyond the thermodynamic energy
(1/2)kBTw distributed by the equipartition law [8]. If not, it accelerates the molecule
until the kinetic energy (1/2)mξ2

1 reaches that energy. To see the mechanism more
closely, discard the second term in (19b) and integrate it in time. Then, we have for
ξ1 < 0

ξ1 = −
√

RTw

1 ∓ c− exp(− 4
√
RTw
`n

t)

1 ± c− exp(− 4
√
RTw
`n

t)
, −

√
RTw ≶ ξ1(< 0), (20a)

and for ξ1 > 0
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ξ1 =
√

RTw

1 ± c+ exp(− 4
√
RTw
`n

t)

1 ∓ c+ exp(− 4
√
RTw
`n

t)
,

√
RTw ≶ ξ1(> 0), (20b)

where c± is a positive constant not larger than unity. Hence, there is no reversal of
motion in the normal direction if neither thermal noise nor potential barrier exist.
The drift part thus drives ξ1 towards ±

√
RTw depending on its sign exponentially in

time.2
In directions tangential to the surface, the drift part always decelerates the molec-

ular motion in proportion to the momentum transferred by the incoming molecule,
i.e., −|ξ1 |ξ ‖ , where ξ ‖ = (ξ2, ξ3). Thus, it works on the molecule in a similar way
to the viscous drag. To see the effect more closely, consider the motion in the x2-
direction. The motion in the x3-direction follows the same dynamics, as is clear from
(19c) and (19d). As before, discarding the second term in (19c) and integrating it in
time give

ξ2 = c0 exp(−
2
`t

∫
|ξ1 |dt), (21)

where c0 is a constant. Hence, as far as ξ1 , 0, the drift-part force decelerates ξ2 and
makes it vanish if the integration of |ξ1 | in time is not bounded. It is also seen that
the larger |ξ1 | is, the larger the decaying rate is.

Role of the diffusion part and competition with the drift part

In order to see the role of the diffusion part and its competition with the drift part, we
go back to the time-dependent FP system, (9a) without the spatial translation term
and (9b).

Let us first single out the diffusion part. The FP system without the spatial
translation and the drift part admits a stationary solution inversely proportional to
|ξ1 | in the normal direction, provided that the integrability condition is discarded. In
the tangential directions, it is just a usual diffusion process without center shifting,
and only its time scale depends on |ξ1 |. A couple of examples of particle simulations
of (19b) and (19c) without the drift part are shown in Figs. 2 (a) and (b), which
clearly demonstrate those features. The diffusion part competes with the drift part to
form the half-rangeMaxwellian in the normal direction and the full Maxwellian with
the zero mean velocity in the tangential directions as a stationary state; see Figs. 2 (c)
and (d). The admitted stationary solution under the competition corresponds to the
full accommodation situation, namely the diffuse reflection model. In the CL model,

2 Using the relation (31) that appears later, the exponential factor can be rewritten as

exp(−
4
√
RTw

`n
t) = (1 − αn)

√
RTw
2d t .

Hence, if |ξ1 | <
√
RTw , the molecule stays longer than 2d/

√
RTw in the interaction region, making

the above factor smaller and smaller until leaving. If |ξ1 | >
√
RTw , the molecule stays shorter,

keeping the same factor between 1 − αn and unity.
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10 S. Takata, S. Akasobe, and M. Hattori

(a) (b)

(c) (d)

Fig. 2 The diffusion-part effect and the competition between the drift and the diffusion part in the
case |ξin |/

√
2RTw = 1.56718 with (ξin2, ξin3)/

√
2RTw = (−0.78359, 0). No spatial translation is

considered. (a) the diffusion-part effect in the normal direction, (b) the diffusion-part effect in the
incident tangential direction, (c) the competition between the drift- and the diffusion-part in the
normal direction, and (d) the competition between the drift- and the diffusion-part in the incident
tangential direction. Here, t̂ = (

√
2RTw/`)t with ` being ` = −(1/8)(ln 0.7)`n = −(1/4)(ln 0.9)`t

and Fα(ξα) =
∑N

i=1 χ[ξα , ξα+∆ξα ](ξ
(i)
α )/(N∆ξα/

√
2RTw ) (α = 1, 2) with ξ(i) and χA being the

molecular velocity of the i-th sample of simulation and the characteristic function of A, respectively
[see the sentence following (29) that appears later]. The Milstein scheme to be explained later is
used with the timestep ∆t = 0.0002(`/

√
2RTw ), and the number of sampling and the intervals for

the histogram of Fα in molecular velocity are respectivelyN = 107 and∆ξ1 = ∆ξ2 = 0.05
√

2RTw .

however, molecules spatially translate in the interaction region and may leave there
before reaching the full accommodation.
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A revisit to the Cercignani–Lampis model 11

5.2 Langevin system and the reflection intensity distribution

We first consider the way how to recover G from the samples (test particles) of the
Langevin system simulation. The base of our discussion is the identity

G(ξ ; 0, ξ) =
∫ ∞

0

∫
R2

G(0,0, ξ ; τ, x1 = 0, x ‖, ξ)dx ‖dτ, (22)

which has already appeared in Sec. 4.1. Remind that solving the Langevin system is
identical to getting the above integrand G.

Taking account of the time and the spatial integration in (22), let us first count the
number of sample molecular velocities at the instance of exit from the interaction
region x1 < 0, irrespective of the x ‖ position and exit time. Then,N samples for the
common velocity of incidence ξ yields a normalized distribution in the molecular
velocity:

1
N

N∑
i=1

δ(ξ − ξ (i)), (23)

where ξ (i) is the molecular velocity at the instance of exit in the i-th sample of
simulation. The above simple counting is, however, not directly connected with G
(or more precisely G) because G (or G) is the quantity that is concerned with the
small interval [0, dx1]. The time duration for which the molecule is in the small
interval should have been taken into account in (23) to have a direct connection with
G. Hence, the counting with weight dx1/ξ

(i)
1 should be taken

G(ξ ; 0, ξ)dx1 ∝
1
N

N∑
i=1

dx1

ξ
(i)
1

δ(ξ − ξ (i)). (24)

Remember that the left-hand side is nothing else than K(ξ, ξ)dx1. Thus, from (8)
and

∫
ξ1>0 R(ξ, ξ)dξ = 1 (see footnote 1), we arrive at the relation (in the sense of

weak formulation) that

|ξ1 |G =
|ξ1 |

N

N∑
i=1

δ(ξ − ξ (i)), (25)

which establishes the way how to construct the scattering kernel from the Langevin
system simulation.

Next, we proceed to the reflection intensity distribution. Introducing the polar co-
ordinates (ξ, θ, ϕ) of the molecular velocity with positive x1 being the polar direction,
the normalized intensity distribution I(θ, ϕ) is expressed as
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12 S. Takata, S. Akasobe, and M. Hattori

I(θ, ϕ) =
1
Iin

∫ ∞

0
f (ξ) ξ cos θ ξ2dξ, cos θ > 0, (26a)

Iin =

∫
ξ1<0
|ξ1 | f (ξ)dξ, (26b)

where f is the velocity distribution function of molecules on the wall. Substitution
of (2) into (26a) gives

I(θ, ϕ) =
1
Iin

∫ ∞

0

( ∫
ξ1<0
|ξ1 |R(ξ, ξ) f (ξ)dξ

)
ξ2dξ, ξ1 > 0. (27)

In the case of the mono-collimated molecular beam, f (ξ) = δ(ξ − ξin), the intensity
distribution is reduced to

I(θ, ϕ) =
∫ ∞

0
R(ξ, ξin) ξ

2dξ =
1
|ξin1 |

∫ ∞

0
ξ2ξ1 G dξ

=
1
|ξin1 |

∫ ∞

0
ξ3 cos θ G dξ, (cos θ > 0). (28)

Here it has been used that Iin =
∫
ξ1<0 |ξ1 |δ(ξ − ξin)dξ = |ξin1 |. Note that I follows

the Lambert cosine law, if G is isotropic as the diffuse reflection case. The deviation
from the cosine law implies the non-isotropy of G. Now using (25), the intensity
distribution can be reproduced by the following sample counting of the Langevin
system simulation:

I sin θ∆θ∆ϕ =
1
N

N∑
i=1

∫ ∞

0
dξ ξ2

∫ ϕ+∆ϕ

ϕ
dϕ

∫ θ+∆θ

θ
dθ sin θ

δ(ξ − ξ(i))δ(θ − θ(i))δ(ϕ − ϕ(i))

ξ2 sin θ

=
1
N

N∑
i=1

χ[θ,θ+∆θ](θ
(i))χ[ϕ,ϕ+∆ϕ](ϕ

(i)), (29)

where (θ(i), ϕ(i)) are the polar and the azimuth angle of ξ (i) and χA(x) is the char-
acteristic function: it takes unity when x ∈ A and zero otherwise. The results of
the above sample counting (29) are to be compared with the following intensity
distribution ICL for the CL model (5):

ICL =
1
|ξin1 |

∫ ∞

0
dξ

ξ2ξ1

2π(RTw)
2

|ξin1 |

αt (2 − αt )αn
I0(
ξ1ξin1
RTw

√
1 − αn
αn

)

× exp(−
ξ2

1 + ξ
2
in1(1 − αn)

2RTwαn
) exp(−

|ξ ‖ − ξin‖(1 − αt )|2

2RTwαt (2 − αt )
)
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(a) (b)

Fig. 3 In-plane and off-plane reflections of the mono-collimated molecular beam obtained by
108 particle simulations of the Langevin system (19): the case αn = 0.3 and αt = 0.1. The
speed of the incident molecule is set as |ξin |/

√
2RTw = 0.522394. (a) θC

in = 30◦, (b) θC
in = 75◦,

where θC
in(≡ π − θin) is the angle of incidence of the velocity of the molecular beam ξin. ϕ is the

azimuth angle measured clockwise from the direction of the projection of ξin to the ξ2-ξ3 plane
(−π < ϕ ≤ π). Symbols indicate the simulation results. Corresponding ICL’s in (30) are also
shown for reference by solid lines. The arrow in each panel indicates the direction of ξin. Note the
relation (31). The Milstein scheme with ∆t = 0.002 d/

√
2RTw and p = 2 has been used.

=
1

2π(RTw)
2

cos θ
αt (2 − αt )αn

∫ ∞

0
dξ ξ3I0(

ξξin cos θ cos θin
RTw

√
1 − αn
αn

)

× exp(−
ξ2 sin2 θ + ξ2

in sin2 θin(1 − αt )2

2RTwαt (2 − αt )
−
ξ2 cos2 θ + ξ2

in cos2 θin(1 − αn)
2RTwαn

+
ξξin sin θin sin θ cos(ϕ − ϕin)(1 − αt )

RTwαt (2 − αt )
). (30)

Figure 3 shows a couple of comparisons of the simulation results of (29) to (30). Good
agreement is achieved, telling that the present construction of the Langevin system
is appropriate. In the numerical simulations of the Langevin system, the Milstein
scheme [10] has been adopted to achieve a sufficient numerical convergence with
respect to the time-step size, see Sec. 5.3. Comparisons are made in the figure by
using the relation between the parameters (αn, αt ) and (`n, `t, d) in [4]:3

αn = 1 − exp(−
8d
`n
), αt = 1 − exp(−

4d
`t
). (31)

3 There are misprints in (7.23) of [4], probably due to the inconsistent use of the notations `n and
`t between [4] and [3].
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14 S. Takata, S. Akasobe, and M. Hattori

5.3 Some aspects of the numerical method for the Langevin system

Probably the simplest and widespread numerical algorithm for solving the Langevin
equation is the Euler–Maruyama method, the scheme of which reads in the present
case

x(n+1)
i =x(n)i + ξ

(n)
i ∆t, (i = 1,2,3), (32a)

ξ
(n+1)
1 =ξ

(n)
1 −

2
`n
{|ξ
(n)
1 |ξ

(n)
1 −

ξ
(n)
1

|ξ
(n)
1 |

RTw}∆t + 2

√
RTw

|ξ
(n)
1 |

`n
∆t∆B(n)1 , (32b)

ξ
(n+1)
2 =ξ

(n)
2 −

2
`t
|ξ
(n)
1 |ξ

(n)
2 ∆t + 2

√
RTw

|ξ
(n)
1 |

`t
∆t∆B(n)2 , (32c)

ξ
(n+1)
3 =ξ

(n)
3 −

2
`t
|ξ
(n)
1 |ξ

(n)
3 ∆t + 2

√
RTw

|ξ
(n)
1 |

`t
∆t∆B(n)3 . (32d)

Here, x(n)i = xi(tn), ξ(n)i = ξi(tn), tn = n∆t (n = 0,1,2, . . . ) is the discretised time,
∆t is the size of time step, and ∆B(n)i (i = 1,2,3) are mutually independent standard
Gaussian random variables and are related to Wi as

√
∆t∆B(n)i = Wi(tn+1) −Wi(tn).

The Euler–Maruyama scheme is 1/2-order in the strong-order of convergence. In
fortunate cases where Si j is constant, the scheme becomes first-order [10, 9], which
does not apply in the present case because of (18c). Indeed, the implementation of
the Euler–Maruyama scheme shows a very slow convergence with respect to the
size of time discretisation, see Fig. 4(a). The difficulty of the slow convergence is,
however, resolved dramatically by switching to the Milstein scheme, which is known
to be first-order in the strong-order of convergence [10], see Fig. 4(b). In the present
case, as the noise is not commutative4 for ξ2 and ξ3, the scheme becomes rather
complicated as5

ξ
(n+1)
1 = ξ

(n)
1 −

2
`n
(|ξ
(n)
1 |ξ

(n)
1 −

ξ
(n)
1

|ξ
(n)
1 |

RTw)∆t + 2

√
RTw

|ξ
(n)
1 |

`n
∆t∆B(n)1

+
ξ
(n)
1

|ξ
(n)
1 |

2RTw

`n
I(n)11 , (33a)

ξ
(n+1)
2 = ξ

(n)
2 −

2
`t
|ξ
(n)
1 |ξ

(n)
2 ∆t + 2

√
RTw

|ξ
(n)
1 |

`t
∆t∆B(n)2 +

ξ
(n)
1

|ξ
(n)
1 |

2RTw
√
`t`n

I(n)p12 , (33b)

4 The noise is said to be commutative, if Θαi in (13a) satisfies the condition Θβi (∂Θα j/∂yβ ) =
Θβ j (∂Θαi/∂yβ ).
5 See [10], pp. 346–347 for the details. Unfortunately, there are misprints in the corresponding
formula in Sec. 6.4.3 of [9], though the latter reference is an excellent textbook. Incidentally, in
[9], the Milstein scheme for the non-commutative noise is referred to as Kloeden and Platen’s
approximation.
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(a) (b)

Fig. 4 Numerical convergence: the Euler–Maruyama scheme vs. the Milstein scheme. The results
for the in-plane reflection of molecules (ϕ = 0◦, 180◦) for the same parameters as Fig. 3(b), except
for the time step. (a) The Euler–Maruyama scheme, (b) the Milstein scheme with p = 2. Here,
∆t̂ = (

√
2RTw/d)∆t . Symbols indicate the simulation results, while thick solid lines indicate ICL

in (30). Note the difference of ∆t̂ between (a) and (b). Common symbols are used for common
values of ∆t̂ .

ξ
(n+1)
3 = ξ

(n)
3 −

2
`t
|ξ
(n)
1 |ξ

(n)
3 ∆t + 2

√
RTw

|ξ
(n)
1 |

`t
∆t∆B(n)3 +

ξ
(n)
1

|ξ
(n)
1 |

2RTw
√
`t`n

I(n)p13 , (33c)

where

I(n)11 =
∆t
2
{(∆B(n)1 )

2 − 1}, (34a)

I(n)p12 =
∆t
2
∆B(n)1 ∆B(n)2 +

∆t
2π

p∑
q=1

1
q
{ζ2q(

√
2∆B(n)1 − η1q) − ζ1q(

√
2∆B(n)2 − η2q)}

+ ∆t
√
ρ(p)(µ

(p)
2 ∆B(n)1 − µ

(p)
1 ∆B(n)2 ), (34b)

I(n)p13 =
∆t
2
∆B(n)1 ∆B(n)3 +

∆t
2π

p∑
q=1

1
q
{ζ3q(

√
2∆B(n)1 − η1q) − ζ1q(

√
2∆B(n)3 − η3q)}

+ ∆t
√
ρ(p)(µ

(p)
3 ∆B(n)1 − µ

(p)
1 ∆B(n)3 ), (34c)

ρ(p) =
1
12
−

1
2π2

p∑
q=1

1
q2 . (34d)

Here, µ(p)i , ηiq , and ζiq are mutually independent standard Gaussian random vari-
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16 S. Takata, S. Akasobe, and M. Hattori

Fig. 5 Influence of the truncation number p in the Milstein scheme: the in-plane reflection of
molecules (ϕ = 0◦, 180◦) for the same parameters as Fig. 3(b), though a coarser time step
∆t = 0.2 d/

√
2RTw is used here. Symbols indicate the simulation results, while the solid line

indicates ICL in (30).

ables,6 and p is the truncation number of the infinite series, which should be chosen
so that p > C/∆t for a positive constantC. As is clear from (33) and (34), theMilstein
scheme requires the generation of 6(p + 1) standard Gaussian variables at each time
step, which is 2(p + 1)-times as many as in the Euler–Maruyama scheme and looks
a serious drawback at a glance. Fortunately, however, numerical experiments show
that the convergence rate with respect to p is excellent and that the setting p = 2 is
found to be good enough, see Fig. 5.

5.4 A further observation: Some features of time delay in exit

We have so far focused on the way to construct the scattering kernel and/or the
reflection intensity distribution without time delay. The scattering model without
time delay supposes that the time duration of interaction with the wall is so short
that the process may be regarded to occur instantaneously in the time scale of our
interest. However, if we change the sample counting to that at a specified exit time
τ, a closer observation of the dynamics is possible. It would also give a hint toward

6 Originally, µ(p)i is defined as

µ
(p)
i =

1√
ρ(p)∆t

∞∑
q=p+1

1
πq

√
∆t

2
ζiq .

According to [10], however, µ(p)i thus defined becomes a standard Gaussian random variable. This
property is very useful from the actual computational point of view.
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Fig. 6 Distribution of reflected molecules with respect to the exit time τ for various angle of
incidence θC

in. The parameters are the same as Fig. 3, except for a part of values of θC
in. Here

P(τ̂) =
∑N

i=1 χ[τ̂ , τ̂+∆τ̂]/(N∆τ̂) with τ̂ = τ(2RTw )
1/2/d, ∆τ̂ = 0.05, and N = 108.

(a) (b)

Fig. 7 Time-dependent in-plane reflection intensity distribution I: the same case as Fig. 3. (a)
θC

in = 30◦, (b) θC
in = 75◦. I is computed by the sample counting I(τ̂ ∈ A, θ, ϕ)∆τ̂A sin θ∆θ∆ϕ =

(1/N)
∑N

i=1 χA(τ̂
(i))χ[θ ,θ+∆θ ](θ

(i))χ[ϕ,ϕ+∆ϕ](ϕ
(i)), where N = 1010, ∆τ̂A is the size of time

interval A, and τ̂(i) is the dimensionless time of exit of the i-th sample. See the caption of Fig. 6.

the construction of the scattering kernel with a time-delay effect. Here, we present a
few examples of such sample counting as well.

Figure 6 shows the distribution of the exit time of samples in the same simulation
as Fig. 3. As is observed, the larger the angle of incidence is, the longer the time
duration of interaction is. We have also observed that there are no test particles that
experience the reversal of motion in the normal direction except for the reflection at
the potential barrier [see also Fig. 2(c)]. Hence, they commonly travel 2d in depth.
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18 S. Takata, S. Akasobe, and M. Hattori

These numerical observations suggest that in the CL model molecules of tangential
incidence have more chance to remain at a low speed in the normal direction, and
thus to need a longer time duration before leaving.

The common travelling distance 2d in depth implies that
∫
|ξ1 |dt = 2d holds, so

that the drift-part deceleration yields ξ ‖ = ξin‖ exp(−4d/`t ) = ξin‖(1−αt ) at the exit
time; see (21). This coincides with the central velocity of the Gaussian in tangential
directions in the kernel of CL model; see (5). Finally, an example of the in-plane
reflection intensity distribution in a specified interval of exit time is shown in Fig. 7.
The distribution inclines more to the tangential direction for the molecules of larger
exit time.

6 Conclusion

In the present paper, we have revisited the Cercignani–Lampis model for the
gas–surface interaction, along the lines of Cercignani in [4]. Starting from his
time-independent Fokker–Planck system, we have introduced its simple and natural
time-dependent extension and have identified the corresponding Langevin system.

In the Langevin system, there are two types of interactions with the wall. One
is a stochastic thermal agitation, which we call the diffusion part, and the size of
agitation depends on the random variable ξ1. The other is what we call the drift
part, which leads |ξ1 | toward the speed of kinetic energy given by the equipartition
law. In the tangential directions it decelerates the molecule by the viscous-like drag
proportional to the moment transferred by that molecule.

The appropriate sample counting of the Langevin system simulation has also been
discussed, and the capability of reproducing the scattering kernel and/or the reflection
intensity distribution have been numerically demonstrated. It has also been remarked
that the present stochastic noise causes the application of the Euler–Maruyama
method to be inefficient and requires the Milstein method.

Finally, we stress that, from a numerical point of view, the Langevin system is
advantageous to the FP system in that the incident mono-collimated molecular beam
is easily handled to allow a close observation as in Sec. 5.4. Indeed, the sampling
there gives a way toward a construction of the time-delay effect in the scattering
model. Such an extension has a potential importance for such as an evacuation-speed
prediction in vacuum technologies. Modifications of the dynamics by coupling with
strong scatterings suggested in [4] will also be possible in the same numerical
framework, if desired. Unlike the concise expression of the original CL model, the
extensions above suggested might require a data fitting to construct a ready-to-use
kinetic boundary condition. Nevertheless, a flexibility of the present simple approach
is an advantage ofmodern computational facilities over the tools/techniques available
in 70’s.
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Appendix

The numerical simulation of the Langevin system is performed particle by particle.
The process of computations for each test particle, say k-th particle (k = 1,2, . . . ),
is as follows.

Suppose that the size of time step ∆t is given. Set the initial position x(0) and
velocity ξ (0) of the test particle as x(0) = 0 and ξ (0) = ξin. Let x(n) and ξ (n) be
known, where x(n)1 ∈ [−d,0] and n = 0,1,2, . . .

Step 1. Compute the particle position x(n+1) at time t(n+1) by (32a). If x(n+1)
1 < −d,

discard it and reset x(n+1)
1 as x(n+1)

1 = −2d − x(n)1 − ξ
(n)
1 ∆t. This is due to the

specular reflection at the potential barrier.
Step 2. Compute the particle velocity ξ (n+1) at time t(n+1) by (33) with (34).

2a. If x(n+1)
1 < −d occurs in Step 1, change the sign of ξ(n+1)

1 ; then go to 2c.
2b. If x(n+1)

1 > 0, put ∆t] = ∆t − x(n+1)
1 /ξ

(n)
1 , and compute x] and ξ] by

(32a) and (33) using ∆t] in place of ∆t. If ξ]1 ≥ 0, which is the case
usually, record n∆t + ∆t], x], and ξ] as the exit instance, position, and
velocity of the k-th particle, and stop the computation. In case ξ]1 < 0
happens to occur, continue the computation to reset x(n+1) and ξ (n+1)

by (32a) and (33) using (∆t − ∆t]), x], and ξ] in place of ∆t, x(n), and
ξ (n); then go to 2c.

2c. If x(n+1)
1 ≤ 0, go back to Step 1 and shift n to n + 1.

Repeat the above steps until an enough number of samples have been collected. In
the actual computations, the Mersenne Twister pseudo-random number generator
[14] has been used in generating the standard Gaussian variables.
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