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Abstract

We continue the study of token sliding reconfiguration graphs of independent sets initiated by
the authors in an earlier paper (arXiv:2203.16861). Two of the topics in that paper were to study
which graphs G are token sliding graphs and which properties of a graph are inherited by a token
sliding graph. In this paper we continue this study specializing on the case of when G and/or its
token sliding graph TSk(G) is a tree or forest, where k is the size of the independent sets considered.
We consider two problems. The first is to find necessary and sufficient conditions on G for TSk(G)
to be a forest. The second is to find necessary and sufficient conditions for a tree or forest to be
a token sliding graph. For the first problem we give a forbidden subgraph characterization for the
cases of k = 2, 3. For the second problem we show that for every k-ary tree T there is a graph G for
which TSk+1(G) is isomorphic to T . A number of other results are given along with a join operation
that aids in the construction of TSk(G)-graphs.

1 Introduction

In a reconfiguration variant of a computational problem (e.g., Satisfiability, Independent Set,
Vertex-Coloring, etc.), a transformation rule that describes an adjacency relation between feasi-
ble solutions (e.g., satisfying truth assignments, independent sets, proper vertex-colorings, etc.) of the
problem is given. One of the main goals is to decide whether there is a sequence of adjacent feasible
solutions that “reconfigures” one given solution into another. Another way of looking at these reconfig-
uration problems is via the so-called reconfiguration graph—a graph whose nodes are feasible solutions
and two nodes are adjacent if one can be obtained from the other by applying the given rule exactly once.
The mentioned question now becomes deciding whether there is a path between two given nodes in the
reconfiguration graph. Recently, reconfiguration problems have been intensively studied from different
perspectives [2, 6–8].

One of the most well-studied reconfiguration variants of Independent Set is the so-called Token
Sliding problem, which was first introduced by Hearn and Demaine [4] in 2005. We refer readers
to [2, 7, 8] and the references therein for more details. Surprisingly, though Token Sliding has been
well-investigated, the realizability and structural properties of its corresponding reconfiguration graph—
the one which we will refer to as the TSk-graph (which stands for Token Sliding (Reconfiguration)
graph)—have not been studied until recently [1]. On the other hand, when considering either general
vertex subsets, dominating sets, or proper vertex-colorings of a graph as the “input feasible solutions”,
their corresponding reconfiguration graphs have been very well-characterized [5, 6].

For any graph-theoretic terminology and notation not defined here, we refer readers to [3]. Given a
graph G = (V,E) and an integer k ≥ 2. For two sets X,Y , we sometimes use X + Y and X − Y to
indicate X ∪ Y and X \ Y . We abbreviate X ∪ {u} (resp., X \ {u}) by X + u (resp., X − u). We use
NG(u), or simply just N(u) when the graph G is clear from the context, to denote the (open) neighbors
of u, i.e., set of all vertices in G that are adjacent to u. The closed neighbors of u, denoted by NG[u]
or simply N [u], is the set NG(u) + u. The degree of u, denoted by degG(u), is nothing but the size of
NG(u). An independent set (or stable set) of G is a vertex subset I such that for every u, v ∈ I we
have uv /∈ E(G). The TSk-graph of G, denoted by TSk(G), takes all size-k independent sets of G as its
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nodes and two nodes I, J are adjacent (under Token Sliding (TS)) if there exist two vertices u, v ∈ V (G)
such that I − J = {u}, J − I = {v}, and uv ∈ E(G). Two graphs G and H are isomorphic, denoted
by G ' H, if there exists a bijective mapping f : V (G) → V (H) such that uv ∈ E(G) if and only if
f(u)f(v) ∈ E(H). A graph G is called a TSk-graph if there exists a graph H such that G ' TSk(H). A
forest is a graph having no cycles (i.e., it is acyclic) and a connected forest is a tree. A TSk-tree/forest
is a TSk-graph which is also a tree/forest. Figure 1 illustrates a TS2-tree on six vertices (right). In [1],

ab
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bd

ae ef ce

TS2(G)

a b

cd

ef

G

Figure 1: A graph G with TS2(G) = D1,3,2. Each node ab represents a size-2 stable set of G.

the authors studied various properties of the family of TSk-graphs. For a graph G, two of the questions
studied were:

(Q1) What are necessary and sufficient conditions for G so that TSk(G) is a forest?

(Q2) What are necessary and sufficient conditions for G to be a TSk-graph?

In this paper, we study these two questions for the case when G is a tree or a forest.
The union G∪H of two (labelled) graphs G and H is the graph with V (G∪H) = V (G)∪V (H) and

E(G ∪H) = E(G) ∪ E(H). When vertices and edges of G and H are considered distinct regardless of
their labels, we say that G ∪H is the disjoint union of G and H, and write G + H instead of G ∪H to
distinguish from their union. We respectively denote by Kn, Pn, and Cn the complete graph, path, and
cycle on n vertices. Km,n (m ≤ n) is the complete bipartite graph whose two partite sets are of sizes m
and n respectively. K1,n is also called a star—a tree obtained by attaching n leaves to a central vertex.
A family of graphs that we will use in the sequel generalizes stars and paths. For fix integers n, r, s ≥ 1,
let Dr,n,s be the tree obtained from Pn by appending r leaves at one end and s leaves at the other. Note
that D1,1,s is the star K1,s+1 and D1,n,1 is the path Pn+2. Figure 1 illustrates D1,3,2 (right). An n-ary
tree is a rooted tree in which each node has at most n children. Any tree with maximum degree at most
n+1 can be rooted at a vertex with degree at most n (e.g., a leaf) to produce a n-ary tree. In particular,
a 2-ary tree is nothing but the well-known binary tree.

In the next section, we begin by partially answering (Q1) when G is a tree/forest and k ∈ {2, 3} and
conclude the section by conjecturing for k ≥ 4. Then, before addressing (Q2) for some trees/forests, in
particular k-ary trees and Dr,n,s, we define an important graph operation which, under certain conditions,
can be used for combining two TSk-graphs by taking their union to obtain a new one. The final section
of the paper gives some concluding remarks.

2 Results on (Q1)

In this section, we prove the necessary and sufficient conditions on a tree/forest G such that TSk(G) is
acyclic for k ∈ {2, 3}, partially answering (Q1).

We begin with some definitions and observations. The complement G of a graph G is the graph
with V (G) = V (G) and E(G) = {uv : uv /∈ E(G)}. The size-m matching, denoted by mK2, is the
graph obtained by taking the disjoint union of m copies of K2. Observe that TS2(2K2) ' C4. We
label vertices in a Dr,n,s (r, s ≥ 1) as follows: Vertices of Pn are labelled p1, . . . , pn. The r leaves
attached to p1 are u1, . . . , ur and the s leaves attached to pn are v1, . . . , vn. D2,2,2 is shaped like an
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G TS2(G)

Figure 2: A list G of n-vertex graphs G (4 ≤ n ≤ 7) excluding Cn (n ≥ 5) such that if TS2(G′) has no
cycle then G′ does not contain any member G of G as an induced subgraph.
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H and TS2(D2,2,2) contains a cycle C8 whose vertex-set is {u1v1, u1p2, u1v2, p1v2, u2v2, u2p2, u2v1, p1v1}.
Indeed, respectively from Lemma 1 of [1] and Figure 2, if a n-vertex graph G is either Cn (n ≥ 5) or a
graph in the list G described in Figure 2 (which includes 2K2 and D2,2,2), the graph TS2(G) contains a
cycle. Additionally, we have:

Lemma 1. (a) For k ≥ 2, TSk(2K2 + nK1) contains a cycle C4 if n ≥ k − 2 otherwise it is acyclic.

(b) For k ∈ {2, 3}, s ≥ 1, TSk(D1,n,s) contains a cycle C4 if n ≥ 2k − 1 otherwise it is acyclic.

(c) For k ∈ {2, 3} and r, s ≥ 2, TSk(Dr,n,s) contains a cycle C8 if n ≥ 2k − 2 otherwise it is acyclic.

Proof. (a) If n < k − 2, there is no size-k independent set in 2K2 + nK1, thus its TSk-graph is
obviously acyclic. Otherwise, let I ⊆ V (nK1) be an arbitrary independent set of size k− 2, and let
E(2K2) = {ab, cd}. Then, {I +a+ c, I +a+d, I + b+ c, I + b+d} induce a C4 in TSk(2K2 +nK1).

(b) Observe that if n ≥ 2k − 1, D1,n,s contains an induced 2K2 + (k − 2)K1, which can be obtained
by taking u1p1 and pnv1 as edges of 2K2 and the remaining k − 2 independent vertices from the
path D1,n,s − {u1, p1, p2, pn−1, pn, v1, . . . , vs} on n − 4 vertices. (Since n ≥ 2k − 1, this path has
an independent set of size at least d(n − 4)/2e ≥ d(2k − 5)/2e = k − 2.) Then, using a similar
argument as in (a) we have TSk(D1,n,s) contains a C4.

On the other hand, if n ≤ 2k − 2 for k ∈ {2, 3}, since D1,n−1,s is always an induced subgraph of
D1,n,s for n ≥ 2, it follows that if TS2(D1,n−1,s) has a cycle then so is TS2(D1,n,s). Therefore,
it suffices to show that TSk(D1,2k−2,s) is acyclic for k ∈ {2, 3}. Indeed, based on the number of
tokens placed on the path u1p1 . . . pn (which is at most three), one can verify that each component
of TSk(D1,2k−2,s) is either an isolated vertex, a path, or a star.

(c) Observe that if n ≥ 2k−2, Dr,n,s contains the independent sets I +u1 +v1, I +u1 +pn, I +u1 +vs,
I + p1 + v1, I + p1 + vs, I + ur + v1, I + ur + pn, and I + ur + vs, where I = ∅ when n = 2 and
otherwise I is an independent set of the path p2 . . . pn−1 of size k − 2. (Note that p2 . . . pn−1 has
an independent set of size at most d(n− 2)/2e ≥ k − 2.) They indeed induce a C8 in TSk(Dr,n,s).

On the other hand, if n ≤ 2k−3 for k ∈ {2, 3}, using a similar case-analysis as in (b), one can verify
that each component of TSk(Dr,n,s) is either an isolated vertex, a path, or a star, and therefore it
is acyclic.

We are now ready to show the necessary and sufficient conditions for a tree/forest G such that TSk(G)
is acyclic, where k ∈ {2, 3}.

Proposition 2. Let T be a tree. Then TS2(T ) is acyclic if and only if T is {2K2, D2,2,2}-free.

Proof. (⇒) Suppose to the contrary that either 2K2 or D2,2,2 is an induced subgraph of T . In the first
case it follows from the discussion above that TS2(T ) contains a C4 and in the second case that it
contains a C8.

(⇐) We assume that TS2(T ) contains a cycle and show that it must contain one of the two forbidden
subgraphs. Firstly, suppose that T is a path Pn. Since TS2(T ) contains a cycle, it follows from
Lemma 1(b) that n ≥ 5 and so T contains an induced 2K2.

We now assume T has a vertex of at least degree 3. We will construct a copy T ′ of T by initially
choosing a vertex a of maximum degree in T and letting T ′ = N [a]. Note that TS2(T ′) is acyclic.
We add edges from T to T ′ and show after each addition that either T ′ contains a forbidden
subgraph, so we are done, or that TS2(T ′) remains acyclic so that T 6= T ′.

Let b be a child of a of highest degree, c be a child of next highest degree, and d be any other
child. Since TS2(T ′) is acyclic T 6= T ′ and b must have r ≥ 1 children. Let e be a child of b with
maximum degree. We add N [b] to T ′ obtaining a copy of Dr,2,s, where s = degT (a) − 1 ≥ 2. If
r ≥ 2, we have the required forbidden induced subgraph. If r = 1 then by Lemma 1(b) TS2(T ′)
is acyclic, so there must be extra edges to add to T ′. If c has a child y then {b, c, e, y} induce a
2K2. Otherwise, e must have at least one child g. Adding eg to T ′ we obtain 2K2 as an induced
subgraph on {a, d, e, g}. This completes the proof.
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Figure 3: Illustration for Proposition 2: Some trees T ′ containing N [b] whose TS2-graphs have a cycle.
Here r is the number of children of b. Copies of 2K2 and D2,2,2 are marked by red color.

Corollary 3. Let T be a tree. Then TS2(T ) is acyclic if and only if T is either K1,s or D1,2,s for some
positive integer s.

Proof. The proof of Proposition 2 can be viewed as an algorithm that takes a tree T and either terminates
with T = T ′ being one of the trees in the corollary or finds a forbidden induced graph in T .

Corollary 4. Let F be a forest. Then TS2(F ) is a acyclic if and only if F is {2K2, D2,2,2}-free.

Proof. We prove that TS2(F ) contains a cycle if and only if F contains one of the graphs in {2K2, D2,2,2}
as an induced subgraph.

Suppose that TS2(F ) contains a cycle. Since the independent sets have size two, both vertices of
each independent set must lie in the same connected component T of F . By Proposition 2, the tree T
must have either 2K2 or D2,2,2 as an induced subgraph.

Conversely if F contains 2K2 or D2,2,2 as an induced subgraph then TS2(F ) contains respectively a
C4 or a C8.

Moving to the case of stable sets of size three, the conditions for trees and forests differ slightly. We
deal with the tree case first.

Proposition 5. Let T be a tree. Then TS3(T ) is acyclic if and only if T is {2K2 + K1, D2,4,2}-free.

Proof. The structure of the proof is the same as for Proposition 2. However, there are more cases to
consider.

(⇒) Suppose to the contrary that either 2K2 + K1 or D2,4,2 is an induced subgraph of T . In the first
case it follows that TS3(T ) contains a C4 and in the second case that it contains a C8.

(⇐) We assume that TS3(T ) contains a cycle and show that it must contain one of the two forbidden
subgraphs. The first part of the proof is essentially the same as for Proposition 2 with minor
modifications. Firstly suppose that T is a path Pn. Since TS3(T ) contains a cycle it follows from
Lemma 1(b) that n ≥ 7 and so T contains an induced 2K2 + K1.

We now assume T has a vertex of at least degree 3. We will construct a copy T ′ of T by initially
choosing a vertex a of maximum degree in T and letting T ′ = N [a]. Note that TS3(T ′) is acyclic.
We add edges from T to T ′ showing after each addition that either T ′ contains a forbidden subgraph,
so we are done, or that TS3(T ′) remains acyclic so that T 6= T ′.

Let b be a child of a of highest degree, c be a child of next highest degree, and d be any other child.
Since TS3(T ′) is acyclic T 6= T ′ and b must have r ≥ 1 children. Let e be a child of b with maximum
degree. If c has a child y then {b, c, d, e, y} induce a 2K2 + K1 and we are done. Otherwise we
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add N [b] to T ′ obtaining a copy of Dr,2,s, where s = degT (a)− 1 ≥ 2. By Lemma 1(c), TS3(T ′) is
acyclic and so T 6= T ′. There are two cases:

(r ≥ 2) Let f be a second child of b and let g be a child of e. Adding eg to T ′ we obtain 2K2 + K1

as an induced subgraph on {a, d, e, f, g}.
(r = 1) Since e is the only child of b it must have children. Let t ≥ 1 be the number of children of e

and let h be the child of e of maximum degree. We add N [e] to T ′ obtaining a copy of Dt,3,s

and TS3(T ′) is acyclic by Lemma 1(c). There are two subcases:

(t ≥ 2) Let i be any other child of e. Since TS3(T ′) is acyclic h must have at least one child j.
We have now constructed an induced 2K2 + K1 on {a, d, h, i, j}.

(t = 1) If h has a single child k add hk to T ′ which is a copy of D1,4,s and again by Lemma 1(c)
TS3(T ′) is acyclic. So k has a child l. Adding kl to T ′ it contains an induced P7 and we
find the forbidden subgraph 2K2 +K1 on vertices {a, d, e, k, l}. Otherwise, h has at least
two children including vertices k and m. Adding edges hk and hm to T ′ we obtain the
forbidden subgraph D2,4,2. This completes the proof.

a

b c d

e f

g

a

c db

e

h i

j

a

c db

e

h

k

l

a

c db

h

i j

r ≥ 2 r = 1, t ≥ 2

r = 1, t = 1

e

Figure 4: Illustration for Proposition 5: Some trees T ′ containing N [b] whose TS3-graphs have a cycle.
Here r and t are respectively the number of children of b and its child e. Copies of 2K2 + K1 and D2,4,2

are marked by red color.

Corollary 6. Let T be a tree. Then TS3(T ) is a acyclic if and only if for some positive integer s, T is
either K1,s, D1,n,s where n ≤ 4, or Dr,n,s where r ≥ 2 and n ≤ 3.

Proof. The proof of Proposition 5 can be viewed as an algorithm that takes a tree T and either terminates
with T = T ′ being one of the trees in the corollary or finds a forbidden induced graph in T showing that
TS3(T ) has a cycle.
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Corollary 7. Let F be a forest. Then TS3(F ) is a forest if and only if F is {2K2 + K1, D2,2,2 +
K1, D2,4,2}-free.

Proof. We prove that TS3(F ) contains a cycle if and only if F contains one of the graphs in {2K2 +
K1, D2,2,2 + K1, D2,4,2} as an induced subgraph.

Suppose that TS3(F ) contains a cycle C. Since the independent sets have size three, there are three
cases to consider. Firstly, if the three vertices of each independent set in C lie in the same connected
component T of F , by Proposition 5, the tree T must have either 2K2 + K1 or D2,4,2 as an induced
subgraph. Secondly, suppose two of the vertices of each stable set lie in the same connected component
T of F , which must have at least two connected components. Thus, C induces a cycle in TS2(T ). So by
Proposition 2, the tree T must have either 2K2 or D2,2,2 as an induced subgraph. Since F has at least
two components, F contains 2K2 + K1 or D2,2,2 + K1. Finally, suppose each vertex of each stable set
lies in a different component of F , which therefore has at least three components. At least two of these
components must be non-trivial, i.e., contain an edge. Therefore, F contains an induced 2K2 + K1.

Conversely, suppose F contains 2K2 + K1, D2,2,2 + K1 or D2,4,2 as an induced subgraph. Then
TS3(F ) contains a C4 in the first instance or a C8 in the other two.

For k ≥ 4, we have the following proposition.

Proposition 8. Let F be a forest. For k ≥ 4, if F contains either 2K2+(k−2)K1, or D2,2,2+(k−2)K1,
or D2,4,2 + (k − 3)K1 as an induced subgraph, TSk(F ) has a cycle.

Proof. One can verify that TS2(2K2) contains a C4, and TS2(D2,2,2) and TS3(D2,4,2) both contain a
C8. As a result, so do TSk(2K2 + (k − 2)K1), TSk(D2,2,2 + (k − 2)K1), and TSk(D2,4,2 + (k − 3)K1),
respectively. Consequently, TSk(F ) has a cycle, as desired.

We conclude this section with the following conjecture for k ≥ 4.

Conjecture 9. Let F be a forest. For k ≥ 4, if TSk(F ) is a forest, F is {2K2 + (k− 2)K1, D2,2,2 + (k−
2)K1, D2,4,2 + (k − 3)K1}-free.

3 H-join and H-decomposition

Before considering (Q2), in this section, we describe an operation for combining TSk-graphs to produce
new ones. We first define a family of base graphs as follows. Let V be a set of k + 1 vertices including
two labelled u and v. Then Bk(V, uv) is the graph with vertex set V and single edge uv. We have
TSk(Bk(V, uv)) = K2 whose two vertices are labelled by the independent sets V − u and V − v. Next,
we define the H-join operation and its inverse.

Definition 10. Vertex-labelled graphs G1 and G2 are H-consistent if the (possibly empty) intersection
of their vertex sets define the same (possibly empty) common induced subgraph H. The H-join of H-
consistent graphs G1 and G2 is the graph H(G1, G2) with V (H(G1, G2)) = V (G1) ∪ V (G2). The edges
E(H(G1, G2)) consist of E(G1)∪E(G2) plus all edges vw with v ∈ V (G1)\V (H) and w ∈ V (G2)\V (H).

Recall that a (vertex) cut-set in a connected graph G is a vertex set W such that G−W is disconnected.
We extend this definition to the case where G is disconnected by allowing W = ∅. We say that W
decomposes G into two (not necessarily connected) induced subgraphs G1 and G2 for which V (G1) ∩
V (G2) = W and V (G1) ∪ V (G2) = V (G). If G −W has more than two (connected) components, the
decomposition is not unique.

Definition 11. Let G be a vertex-labelled graph. Let W ⊂ V (G) = V (G) decompose the complement
G into G1 and G2. Let H be the subgraph of G induced by W . We say that G can be H-decomposed
into G1 and G2.

It follows from the definitions that if G = H(G1, G2) then G can be H-decomposed into G1 and G2,
and vice versa. It is easy to verify that the size-k independent sets of H(G1, G2) are the union of those
of G1 and those of G2.

As an example consider the two 4-vertex graphs G1 and G2 that are paths with edge sets E(G1) =
{ad, bc, cd} and E(G2) = {ad, ae, eb}. These share a common induced subgraph H with V (H) = {a, b, d}
and E(H) = {ad}. We have V (H(G1, G2)) = {a, b, c, d, e} and E(H(G1, G2)) = {ad, ae, bc, cd, ce, be}.
Note that TS2(G1) is the path with edges {ac − ab, ab − bd} and that TS2(G2) is the path with edges
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a b

cd

G1

a b

ed

G2

c e

a b

d

H(G1, G2)

ab ac

bd

TS2(G1)

ab

debd

TS2(G2)

ab ac

debd

TS2(H(G1, G2))

Figure 5: The graphs G1, G2, H(G1, G2), and their corresponding TS2-graphs. Here TS2(H(G1, G2)) =
TS2(G1) ∪ TS2(G2).

{ab−bd, bd−de}. It can be verified that TS2(H(G1, G2)) is the path with edges {ac−ab, ab−bd, bd−de}
which is the union of two paths TS2(G1) and TS2(G2). (See Figure 5.)

Now consider the graph G3 which is the path with edges {ad, cd, ce}. G1 and G3 share a com-
mon induced subgraph H with V (H) = {a, c, d} and E(H) = {ad, cd}. We have E(H(G1, G3)) =
{ad, bc, be, cd, ce}. Note that TS2(G3) is the path with edges {ac−ae, ae−de}. In this case, TS2(H(G1, G3))
is the graph with edges {ab−ac, ac−ae, ae−de, de− bd, bd−ab, ab−ae} which is the union of TS2(G1),
TS2(G3), and the two additional edges de− bd, ab− ae. (See Figure 6.)

a b

cd

G1

a e

cd

G3

b ea

cd

H(G1, G3)

ab ac

bd

TS2(G1)

ac ae

ed

TS2(G3)

ab ac ae

bd ed

TS2(H(G1, G3))

Figure 6: The graphs G1, G3, H(G1, G3), and their corresponding TS2-graphs. Here TS2(H(G1, G3)) 6=
TS2(G1) ∪ TS2(G3).

As the last example in this section, consider the graphs G4 and G5 as follows. G4 is the cycle
with edges {ae, eb, bc, cd, ad} and G5 is the graph with edges {ae, eb, bc, ag, eg, bg}. G4 and G5 shares a
common induced subgraph H with V (H) = {a, e, b, c} and E(H) = {ae, eb, bc}. We have E(H(G4, G5)) =
{ae, eb, bc, cd, ad, ag, eg, bg, dg}. In this case, TS2(H(G4, G5)) is the (non-acyclic) graph with edges {ab−
ac, ac − ce, ce − de, de − bd, ab − bd, ac − cg, ce − cg} which is the union of TS2(G4) and TS2(G5). (See
Figure 7.)

In the next proposition, we show how to compute the TSk-graph of an H-join, generalizing the
examples given above.

Proposition 12. Let k ≥ 2 and let G1 and G2 be two H-consistent graphs. TSk(H(G1, G2)) is the
union of TSk(G1), TSk(G2) and for every pair of k-element independent sets S1 in G1 and S2 in G2

satisfying
|S1 ∩ V (H)| = |S2 ∩ V (H)| = |S1 ∩ S2| = k − 1, (1)

the edge between S1 and S2.
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Figure 7: The graphs G4, G5, H(G4, G5) and their corresponding (non-acyclic) TS2-graphs. Here
TS2(G4, G5) = TS2(G4) ∪ TS2(G5).

Proof. As remarked, the k-element independent sets of H(G1, G2) are the same as the union of those
of G1 and G2. Therefore, V (TSk(H(G1, G2))) = V (TSk(G1)) ∪ V (TSk(G2)). Next, consider an edge in
E(TSk(G1)) (respectively, E(TSk(G2))). It is a token-slide between two independent sets S1 and S2 in G1

(respectively, G2). This remains as a token-slide in H(G1, G2). Therefore, E(TSk(G1))∪E(TSk(G2)) ⊆
E(TSk(H(G1, G2))). Now, consider an edge in E(TSk(H(G1, G2))) between two independent sets S1

and S2. If both of these are independent sets are in G1 (respectively, G2) then the edge is also present
in E(TSk(G1)) (respectively, E(TSk(G2))). Otherwise, we may assume the edge in E(TSk(H(G1, G2)))
has as endpoints an independent set S1 in G1 (but not G2) and an independent set S2 in G2 (but not
G1). We have S1 ∩ S2 ⊂ V (H) and since S1 and S2 are adjacent |S1 ∩ S2| = k − 1. It follows that
|S1 ∩ V (H)| = |S2 ∩ V (H)| = k − 1 and so condition (1) is satisfied. We have shown that each edge in
E(TSk(H(G1, G2))) is either in TSk(G1), TSk(G2) or satisfies condition (1), proving the proposition.

For two H-consistent graphs G1 and G2, we say that H(G1, G2) is k-crossing free if there are no
k-element independent sets satisfying condition (1) of Proposition 12. For example, one can verify that
the graphs H(G1, G2) in Figure 5 and H(G4, G5) in Figure 7 are both k-crossing free, while the graph
H(G1, G3) in Figure 6 is not. The following result will be used for constructing TSk-trees/forests.

Corollary 13. Let k ≥ 2 and let G1 and G2 be two H-consistent graphs. H(G1, G2) is k-crossing free
if and only if

TSk(H(G1, G2)) = TSk(G1) ∪ TSk(G2). (2)

Proof. If H(G1, G2) is k-crossing free then (2) follows from Proposition 12. Otherwise their exist k-
element independent sets S1 is in G1 and S2 is in G2 satisfying (1). This implies that TSk(H(G1, G2))
contains an additional edge between S1 and S2.

Therefore, if H(G1, G2) is k-crossing free and both TSk(G1) and TSk(G2) are acyclic, then so is
TSk(H(G1, G2)). The reason for allowing H to be empty in defining an H-join is that the corollary
then applies to vertex disjoint graphs G1 and G2, since in this case H(G1, G2) is trivially k-crossing free.
Therefore, we can create reconfiguration graphs that are forests from reconfiguration graphs that are
trees (or forests).

The following result follows from the relationship between H-join and H-decomposition discussed
above.

Corollary 14. If G can be H-decomposed into G1 and G2 and H(G1, G2) is k-crossing free then TSk(G)
can be decomposed into TSk(G1) ∪ TSk(G2).
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4 Results on (Q2)

We currently have no general necessary and sufficient conditions for when a forest F is a TSk-graph,
but we present some partial results in this section. Firstly, we recall that in [1] it is shown that Pn is
a TSk-graph for all n ≥ 1 and k ≥ 2 and K1,n is a TSk-graph if and only if n ≤ k. In this section, we
show how to construct acyclic TSk-graphs from graphs that have a single edge using the join operation
that was introduced in Section 3. We show that it gives an alternate method of constructing TSk-graphs
which are paths and stars. Moreover, this operation can also be applied to construct more general TSk
trees/forests, especially members of the classes k-ary trees and Dr,n,s.

4.1 Paths and stars revisited

Using just the base graphs and the H-join operation defined in Section 3, we can obtain large families
of TSk trees/forests. We begin with paths. For any k ≥ 2, let Jk = {b1, . . . , bk} be an independent set
of size k and define the base graph Bi

k = Bk(Jk−2 ∪ {ai, ai+1, ai+2}, aiai+2) and let G2 = Bi
k.

Proposition 15. For i ≥ 2, Gi and Bi
k are H-consistent with H being the independent set Jk−2 ∪

{ai, ai+1}. Define Gi+1 := H(Gi, B
i
k). Then

TSk(Gi+1) = TSk(Gi) ∪ TSk(Bi
k) ' Pi+1.

Proof. We will prove by induction, for i ≥ 2, that TSk(Gi) is the path Pi with vertices labelled Jk−2 ∪
{aj , aj+1}, j = 1, . . . , i. For the base case i = 2, we observe that indeed TSk(Bi

k) is a P2 with vertices
labelled Jk−2 ∪ {a1, a2} and Jk−2 ∪ {a2, a3}.

For the inductive step we observe that, for i ≥ 2, Gi and Bi
k are H-consistent with H the independent

set Jk−2 ∪ {ai, ai+1}. To verify that H(Gi, B
i
k) is k-crossing free, note that the only independent set we

need to consider in Bi
k is Jk−2∪{ai+1, ai+2}. In the path Pi which is TSk(Gi), the candidate independent

sets are Jk−2 ∪ {aj , aj+1}, j = 1, . . . , i. Their intersection with Bi
k is Jk−2 which has cardinality k − 2.

Therefore condition (1) of Proposition 12 is not satisfied, which indeed confirms that H(Gi, B
i
k) is k-

crossing free. We define Gi+1 := H(Gi, B
i
k). By Corollary 13, TSk(Gi+1) is the union of the above

labelled Pi with a P2 with endpoints Jk−2 ∪ {ai, ai+1} and Jk−2 ∪ {ai+1, ai+2}. This is the required
Pi+1.

An easy inductive argument based on the H-join in the proposition shows that, for i ≥ 2, Gi is
isomorphic to Pn+1 ∪ Jk−2, a result proved in Corollary 5(a) of [1]. (Observe that the vertex ai+1 in Gi

is adjacent to every aj for 1 ≤ j ≤ i− 1.)
Next we consider graphs Gi such that TSk(Gi) is the star K1,i. For k ≥ 2 and 1 ≤ i ≤ k, let

Ik = {a1, . . . , ak} be an independent set of size k, define the base graph Ci
k = Bk(Ik + bi, aibi) and let

G1 = C1
k .

Proposition 16. For k ≥ 2 and 1 ≤ i ≤ k, Gi and Ci+1
k are H-consistent with H being the independent

set Ik. Define Gi+1 := H(Gi, C
i+1
k ). Then

TSk(Gi+1) = TSk(Gi) ∪ TSk(Ci+1
k ) ' K1,i+1.

Proof. We will prove by induction, for i ≥ 1, that TSk(Gi) is the star K1,i with centre labelled Ik and
leaves labelled Ik + bj − aj , j = 1, . . . , i. For the base case i = 1, we observe that indeed TSk(Ci

k) is a
K1,1 with centre labelled Ik and leaf labelled Ik + b1 − a1.

For the inductive step we observe that, for i ≥ 1, Gi and Ci+1
k are H-consistent with H the in-

dependent set Ik. To verify that H(Gi, C
i+1
k ) is k-crossing free, note that the only independent set

we need to consider in Ci+1
k is Ik + bi+1 − ai+1. In the above labelled K1,i which is TSk(Gi), the

candidate independent sets for condition (1) of Proposition 12 are Ik + bj − aj , j = 1, . . . , i. Their inter-
section with Ik + bi+1 − ai+1 has cardinality k − 2. Therefore, condition (1) is not satisfied. We define
Gi+1 := H(Gi, C

i+1
k ). By Corollary 13, TSk(Gi+1) is the union of the above labelled K1,i and a K1,1

with centre also labelled Ik and leaf labelled Ik + bi+1 − ai+1. This is the required K1,i+1.

4.2 k-ary trees

In this section, we show that for each k ≥ 2, every k-ary tree is a TSk+1-graph (Proposition 19). Next,
we show that any tree T is an induced subgraph of some TS2-forest (Proposition 22). Moreover, we
state and prove the necessary and sufficient conditions for T to be an induced subgraph of some TS2-tree
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(Proposition 23). Additionally, when T = K1,n, we describe a sufficient condition for T to be an induced
subgraph of some TSk-tree (Proposition 24).

We begin by defining a canonical vertex labelling. In this subsection, for any integer n, define
In := {a1, . . . , an} and Jn := {b1, . . . , bn}.

Definition 17. Let k ≥ 2 and G be a graph for which T := TSk+1(G) is a k-ary tree. We say that G
and T are canonically labelled if

(a) the root of T is labelled Ik+1,

(b) the d ≤ k children of the root are labelled Ik+1 − ai + bi, i = 1, . . . , d,

(c) the labels bj , j = d + 1, . . . , k (if any) are not used, and

(d) all other nodes in T receive a label S such that |Ik+1 ∩ S| ≤ k − 1.

It is clear that labelling K1,d, d ≤ k according to (a) and (b) with root the centre of the star is a
canonical labelling. In this subsection, we will show that every k-ary tree has canonical labelling hence
proving it is a TSk+1-graph. First, we give a lemma that shows how to combine canonically labelled
k-ary trees to get a larger k-ary tree that is canonically labelled.

Lemma 18. For integers k ≥ 2 and 1 ≤ i ≤ d ≤ k, let Gi be a graph for which TSk+1(Gi) a canonically
labelled k-ary tree. We can construct a canonically labelled k-ary tree T isomorphic to the tree formed
by choosing a new root and adjoining it to the root of each Ti.

Proof. The proof consists of showing that we can make a series of H-joins between the leaves of a
canonically labelled K1,d and the roots of the canonically labelled trees Ti, i = 1, . . . , d, after a suitable
relabelling. Suppose the root of Ti has ni ≤ k children. We relabel the vertices in the underlying graphs
as follows:

(i) relabel vertices of the Gi not in Ik+1 ∪ Jk to be distinct, ie, for 1 ≤ i ≤ j ≤ d, we have V (Gi) ∩
V (Gj) ⊆ Ik+1 ∪ Jk,

(ii) for i = 1, . . . d, j = 1, . . . , ni set bj ← bij , where the bij were previously unused, and

(iii) for i = 1, . . . d, set ai ← ak+1 and ak+1 ← bi.

By an abuse of notation, for simplicity we let for i = 1, . . . , d, Gi and Ti refer to the relabelled graphs
and trees. Item (i) ensures that the only labels shared between two trees are in Ik+1 ∪ Jk, (ii) ensures
that all labels from Jk in the Ti are given unique labels to avoid clashes, and (iii) gives the root of Ti a
correct label to be a child of a new root labelled Ik. We note that after relabelling bi only appears in
Ti, ai does not appear in Ti and the only labels shared between the Ti are in Ik. Furthermore all tree
vertices have unique labels.

Next take a canonically labelled graph G0 such that TSk+1(G0) ' K1,d, with the centre of the star
labelled Ik+1. For i = 1, . . . , d, we claim that the H-join Gi := H(Gi−1, Gi) is well-defined, k-crossing
free, and TSk+1(Gi) is canonically labelled. To see this, note at that iteration i, V (Gi−1) ∩ V (Gi) =
Ik+1−ai + bi which is the label of the root of Ti and a leaf of TSk+1(Gi−1). Definition 17(d) implies that
condition (1) of Proposition 12 is not satisfied. Therefore by Corollary 13, TSk+1(Gi) is obtained from
TSk+1(Gi−1) by appending Ti to the corresponding leaf in TSk+1(Gi−1). The conditions of Definition
17 are satisfied so TSk+1(Gi) is canonically labelled. At the end of iteration d, T := TSk+1(Gd) is the
required tree.

The construction described in the proof is illustrated in Figure 8. We may now prove the main result
of this section.

Proposition 19. For every k-ary tree T , there is a canonically labelled graph G such that T ' TSk+1(G).

Proof. Suppose that the root r of T has d ≤ k children. We prove the proposition by induction on the
height t of T , which is the length of the longest path to a leaf from the root. If t = 1 then T ' K1,d

and so has a canonically representation as described following Definition 17. Otherwise, by deleting r
we obtain d subtrees Ti, i = 1, . . . , d, which are also k-ary trees, with height less than t. Therefore, by
induction each Ti can be represented by a canonically labelled graph Gi. It follows from Proposition 18
that we can perform d H-joins to obtain a canonically labelled graph G for which T ' TSk+1(G).
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Figure 8: Construction of D2,3,2 from two K1,2.

As noted in Section 4 of [1], K1,k+1 is an example of a k-ary tree that is not an TSk-graph so the
proposition is tight. Nevertheless, if we add a sufficient number of isolated vertices to K1,t, for t > k, it
becomes a TS2-graph—a result we will now prove in general. We will need a special labelling of a tree
that will be defined next.

Definition 20. A tree T is well-labelled if

(a) the root r of T is labelled ab,

(b) the d children of r have roots labelled ri = bci, i = 1, . . . , d− 1 and rd = acd,

(c) the only labels containing a and b are ab, acd, bci, 1 ≤ i ≤ d− 1, and

(d) for i = 1, . . . , d label ci only occurs in the subtree with root ri.

We note that there is nothing special about the ordering of the subtrees of r. The subtree rooted
at ri can play the role of rd by relabelling those two subtrees with the exchanges a ↔ b and ci ↔ cd,
which leaves T well-labelled. As an example, for d ≥ 1 we can well-label K1,d simply by using (a) and
(b). Consider the graph G defined by V (G) = {a, b} ∪ {ci : 1 ≤ i ≤ d} and E(G) = {aci, cicd : 1 ≤
i ≤ d − 1} ∪ {bcd}. Furthermore let J = {cicj : 1 ≤ i < j ≤ d − 1}. Then it is not hard to verify that
TS2(G) ' K1,d + (d− 1)(d− 2)K1, where the K1,d is well-labelled and the K1 are labelled by the set J .
This motivates the following definition.

Definition 21. A tree T is well-labelled by a labelled graph G if there is an integer n such that TS2(G) '
T + nK1 and T is well-labelled.

We now show the following general result.

Proposition 22. For every tree T there is a graph G and integer n such that T is well-labelled by G
and TS2(G) ' T + nK1.

Proof. The proof is by induction on N , the number of nodes in a given tree T . As noted above, the
proposition is true for all stars K1,t and these act as base cases. For the inductive step, assume the
proposition is true for all trees on N nodes and consider a tree T with N + 1 nodes. If T is a star
we are done. Otherwise, let r be the root of T and assume r has degree d with its children ri being
roots of subtrees Ti, 1, . . . , d. We may also assume that Td is a subtree of T with height at least one.
We now construct two trees from T . The first, T 1 consists of T with subtree Td deleted and a pendant
vertex added to its root r. The second, T 2 consists of Td with a pendant vertex added to its root
rd. By induction, there are integers n1, n2 and graphs G1, G2 which well-label T 1 and T 2 such that
TS2(G1) ' T 1 + n1K1 and TS2(G2) ' T 2 + n2K1. Apart from the vertex labels used in Definition 20,
we may assume the vertex labels in G1 and G2 are different.

We will show that G1 and a relabelled G2 can be H-joined and that this will identify the pendant
edges added to T 1 and T 2 to give us back T . In T 1 we note that root r is labelled ab, and by relabelling
subtree roots if necessary, that the added pendent vertex can be labelled acd. In T 2 the root rd is also
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labelled ab and we can again assume the added pendant vertex is labelled acd. In T 2 we interchange the
labels b↔ cd and set ci ← c′i, i = 1, . . . , d−1, for labels c′i that are unused in either T 1 or T 2. Let G3 and
T 3 denote the relabelled G2 and T 2. Setting H = {a, b, cd}, we have V (G1) ∩ V (G3) = H. H induces
the same subgraph, containing the single edge bcd, in both G1 and G3. G1 and G3 are H-consistent and
since k = 2 and their vertex sets are otherwise disjoint, condition (1) of Proposition 12 is not satisfied.
Let G4 = H(G1, G3). Applying Corollary 13 we have that

T 4 := TS2(G4) ' TS2(G1) ∪ TS2(G3) ' {T 1 + n1K1} ∪ {T 3 + n2K1} ' T + (n1 + n2)K1.

is well-labelled by G4. This proves the proposition.

The proof of the proposition is illustrated in Figure 9. The proposition tells us that for every tree

r
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r4

T
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c4
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(relabelled) T 2
T 1

ac4

b

Figure 9: Illustrating Proposition 22.

T there is a graph G for which TS2(G) is forest containing T as an induced subgraph. Therefore, there
can be no forbidden induced subgraph characterization of which forests are TS2-graphs. However, this
does not imply that there can be no forbidden induced subgraph characterization of which trees are
TS2-graphs. Indeed, in the next propositions, we present some of such characterizations.

Proposition 23. Let T be a tree. Then there exists a TS2-tree containing T if and only if T is a 3-ary
tree.

Proof. (⇐) In the proof of Proposition 22, we see that isolated vertices are only added when the base
case of a star appears as a subproblem. Therefore, it suffices to consider only the case T = K1,t, 1 ≤
t ≤ 4. As we have noted, neither K1,3 nor K1,4 are TS2-graphs. It is not hard to see that there is
a G1 such that TS2(G1) ' K1,3 +K1. However, by adding an extra vertex to G1, we can construct
a graph G2 such that TS2(G2) ' D1,3,2. Furthermore, we can construct a graph G3 by applying
H-join to two copies of G2 with slightly different vertex-labellings such that TS2(G3) is isomorphic
to a P7 with two pendant vertices attached to the midpoint of the path. (See Figure 10.) Thus,
if follows that when T = K1,t, 1 ≤ t ≤ 4, we can embed it as an induced subgraph of a tree
T ′ = TS2(G), for some graph G (see Figure 10). Our proof of the if direction is complete.
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Figure 10: Taking H-join of two copies of G2, where H is the path adcb, results a graph G3 such that
TS2(G3) is isomorphic to a P7 with two pendant vertices attached to the midpoint of the path.

(⇒) We show that if T is a k-ary tree but not a 3-ary tree for k ≥ 4 then there does not exist any
TS2-tree T ′ containing T (as an induced subgraph). (By definition, any k-ary tree is also a `-ary
tree for ` ≥ k.) Let x be a vertex of T whose degree is at least five. (Since T is a k-ary tree but
not a 3-ary tree, such a vertex x exists.)

Suppose to the contrary that T ′ exists, i.e., there exists a graph G′ such that T ′ ' TS2(G′) contains
T . Without loss of generality, assume that x is labelled by ab, where {a, b} is a size-2 stable set
of G′. By the pigeonhole principle, we may further assume that three neighbors x1, x2, and x3

of x are labelled ac, ad, and ae, respectively. Since T ′ is a tree, it follows that cd, ce, and de are
respectively the labels of y1, y2, and y3 where yi is not adjacent to any of

⋃
j{xj}+x+

⋃
j 6=i{yj} for

1 ≤ i, j ≤ 3. It follows that T ′ contains the labelled graph F ' K1,3 + 3K1 and therefore G′ must

ab

ac ad ae

cd ce de

F

ab

c d e

G

Figure 11: The graphs F and G in the proof of Proposition 23.

contain the labelled graph G ' K1,3 + K1, both described in Figure 11, as an induced subgraph.

Since T ′ ' TS2(G′) is a tree and G′ contains G, it follows that G′ has exactly one non-trivial
component C (having more than two vertices) and C contains G, otherwise G′ must contain an
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induced 2K2 and by Proposition 2 its TS2-graph is not a tree, a contradiction.

– Case 1: a ∈ V (C). By definition, the distance from a to any of b, c, d, e in G′ must be at
least two. If there is a path of length at least two between a and one of c, d, e not passing
through b, the graph G′ contains a 2K2, a contradiction. Thus, any path between a and one
of c, d, e must go through b. Moreover, if there is a path of length at least three between a
and b not passing through any of c, d, e, again the graph G′ contains a 2K2, a contradiction.
Since a ∈ V (C), it follows that a and b must have a common neighbor in G′, say f . Observe
that for each y ∈ V (C) − {a, b, c, d, e, f}, y must be adjacent to b in G′, otherwise G′ either
contains 2K2 or D2,2,2 and again by Proposition 2 its TS2-graph is not a tree, a contradiction.
However, this implies that TS2(C) must be a forest and since G′ has exactly one non-trivial
component C, we have TS2(G′) is also a forest, a contradiction.

– Case 2: a /∈ V (C). In this case, there are two types of size-2 stable sets of G′: those
containing a and those do not. Since G′ contains G, each type has at least one member.
Moreover, since a is isolated (the only non-trivial component is C and a is not in it), no
member from one type is adjacent to a member from another type in TS2(G′), which means
TS2(G′) is indeed disconnected, a contradiction.

In the above cases, we proved that some contradiction must happen. Our proof is complete.

Indeed, for K1,n, in general we have

Proposition 24. There exists a TSk-ary tree T containing K1,n if n ≤ 2k.

Proof. From either [1] or Proposition 16, the proposition holds for n ≤ k. (Indeed, in this case, T = K1,n.)
Thus, it suffices to consider k + 1 ≤ n ≤ 2k. For each i ∈ {1, . . . , n− k}, let Ai = {1, . . . , k} − i.

Let Ik = {a1, . . . , ak} and Bn = {b1, . . . , bn}. We construct a graph G0 such that TSk(G0) '
K1,n + (n− k)(k− 1)K1. Let Ik = {a1, . . . , ak} and Bn = {b1, . . . , bn}. Let V (G) = Ik +Bn. Vertices in
Bn form a graph Kn−M where M is the matching that contains bibk+i for 1 ≤ i ≤ n− k. Additionally,
for each i ∈ {1, . . . , k}, we add an edge in G0 between ai and both bi and bk+i. Observe that V (TSk(G0))
consists of Ik, the sets Ik−ai +bi (1 ≤ i ≤ k), Ik−ai +bk+i (1 ≤ i ≤ n−k), and (Ik−ai +bi)−aj +bk+i

(1 ≤ i ≤ n− k and j ∈ Ai). Moreover, one can verify that the independent sets (Ik − ai + bi)− aj + bk+i

are isolated in TSk(G0) and the remaining independent sets form a K1,n in which Ik is adjacent to every
other set. In short, G0 is indeed our desired graph.

For each i ∈ {1, . . . , n − k}, we construct a graph Gi whose TSk-graph is a star K1,k−1 as follows.
Let V (Gi) = (Ik − ai + bi) +

⋃
j∈{1,...,k}−i{cij}. Vertices in

⋃
j∈Ai
{cij} form a clique in Gi of size k − 1.

We also add an edge in Gi between aj and cij for each j ∈ Ai. From either [1] or Proposition 16, one can

verify that TSk(Gi) ' K1,k−1 as desired. For each i ∈ {1, . . . , n − k} and j ∈ Ai, we construct a graph
Gi

j whose TSk-graph is a K2 as follows. Let V (Gi
j) = (Ik − ai + bi) − aj + bk+i + cij . The only edge in

Gi
j is the one joining cij and bk+i. From either [1] or Proposition 15, one can verify that TSk(Gi

j) ' K2

as desired.
Now, we construct a graph G whose TSk-graph is a tree containing K1,n as follows. For convenience,

we assume that for each i ∈ {1, . . . , n−k} the set Ai = {1, . . . , k}−i can be enumerated as {j1, . . . , jk−1}.
We define Ki

j0
= Gi and Ki

jp
= Hjp(Ki

jp−1
, Gi

jp
) for jp ∈ Ai where Hjp is the stable set (Ik − ai + bi) −

ajp + cijp for p ∈ {1, . . . , k−1}. Observe that the graphs Ki
jp−1

and Gi
jp

are Hjp -consistent, which implies

that Ki
jp

are well-defined. Moreover, one can also directly verify that the sets (Ik − ai + bi) − aj + cij
and (Ik − ai′ + bi′) − aj′ + ci

′

j′ always differ in at least two members, which means the condition (1) of

Proposition 12 is not satisfied. In short, for each i ∈ {1, . . . , n − k}, we obtain the graph Ki
jk−1

whose
TSk-graph is isomorphic to the one obtained from K1,k−1 by replacing each edge with a P3. Next, we
define K0 = G0 and Ki = Hi(Ki−1, Gi) where i ∈ {1, . . . , n − k} and Hi is the subgraph induced by
(Ik−ai +bi)+bk+i. Observe that the graphs Ki are well-defined because Ki−1 and Gi are Hi-consistent.
Moreover, we have Ik and each (Ik − ai + bi) − aj + cij for 1 ≤ i ≤ n − k and j ∈ Ai always differ in
at least two members. It follows that the condition (1) of Proposition 12 is not satisfied. In short, we
finally obtain the graph G = Kn−k whose TSk-graph is indeed a tree containing K1,n as desired.

Unfortunately, we have not been able to show whether the reverse statement of Proposition 24 also
holds. We conclude this section with the following open problems:
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Figure 12: Construction of a graph G such that TS4(G) is a tree containing K1,8. Vertices of G in the
yellow box form a clique having all dashed edges removed. The red induced subgraph of G forms a graph
G0 whose TS4(G0) ' K1,8 + 12K1.

Problem 25. For every k ≥ 3 and tree T , is there a graph G such that TSk(G) is a forest containing T
as an induced subgraph?

Problem 26. For every k ≥ 3 and (k + 1)-ary tree T , is there a graph G such that TSk(G) is a tree
containing T as an induced subgraph?

Problem 27. Does there exist a TSk-tree T containing K1,n for n > 2k?

4.3 Dr,n,s

We now consider graphs in the Dr,n,s family for whose TSk-graphs are trees and show how they can
be constructed by the H-join operation. We remark that when n = 1, Dr,n,s is nothing but a star
K1,r+s and this case was considered in [1] and revisited in Proposition 16. Furthermore, it follows from
Proposition 19 that for n, k ≥ 2 and 1 ≤ r ≤ s ≤ k − 1, Dr,n,s is a k-ary tree and so by Proposition 19
it is a TSk-graph. The reverse statement does not hold in general: there exists a TSk-graph Dr,n,s even
when s ≥ k. For example, one of such graphs, as already proved in [1], is D1,3,2 (r = 1, s = k = 2, and
n = 3). (See also Figure 1.) Indeed, as we will see in Proposition 29, it is the unique TS2-graph among
all trees D1,n,2 for n ≥ 1. Additionally, for the sake of completeness, we will also show in Proposition 30
that the reverse statement indeed holds when n = 2.

We are now characterizing which D1,n,2-graphs are TS2-graphs and show that this property is non-
hereditary for this simple class of trees. We then consider the Dr,2,s-graphs characterizing those that are
TSk-graphs.

Assume for some G, TS2(G) is a forest containing a K1,3. There are four stable sets in G corresponding
to the vertices of the K1,3. There are two ways of labelling the K1,3 but in each case there are five vertices,
say a, . . . , e, of G involved. Up to permutations of the labels, the corresponding stable sets in G are
either {ab, ac, bd, ae} or {ab, ac, ad, ae}. Using these definitions we have the following lemma.

Lemma 28. Let H be the subgraph of G induced by a, b, . . . , e. The edges of H are

(a) ad, de, eb, bc, cd, if the K1,3 is labelled {ab, ac, bd, ae}, or

(b) bc, bd, be if the K1,3 is labelled {ab, ac, ad, ae}.

Proof. (a) This labelling of K1,3 immediately gives edges ad, bc, be and non-edges ab, ac, ae, bd. That
leaves three edges of H to be decided:

(i) ce must be a non-edge else there is an edge ae, ac in the K1,3.

(ii) cd is an edge else there is a cycle ab, bd, cd, ad in TS2(G), so it is not a tree.
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Figure 13: If TS2(G) is a forest containing a K1,3 then G must contain one of the induced subgraphs H.

(iii) de is an edge else there is a cycle de, bd, ab, ae in TS2(G).

Note that ce must also be a vertex in TS2(G).

(b) This labelling of K1,3 immediately gives edges bc, bd, be and non-edges ab, ac, ad, ae. There are no
other edges in H as c, d, e form a stable set. This implies that TS2(G) must also contain vertices
cd, ce and de.

Using the lemma we show that precisely one of the D1,n,2-graphs is a TS2-graph, incidentally proving
the non-hereditary property mentioned above for this class of graphs.

Proposition 29. D1,n,2 is a TS2-graph if and only if n = 3.

Proof. We first consider 1 ≤ n ≤ 3 and show that D1,3,2 is a TS2-graph while D1,1,2 = K1,3 and D1,2,2

are not. (We note that the results for the first two graphs have also been proved in [1].) According to
Lemma 28, if D1,n,2 is a TS2-graph of some graph G, the unique star K1,3 in D1,n,2 can be labelled
in one of two ways. However, we may immediately eliminate the possibility of the labelling in Lemma
28(b). This is because, as pointed out in the proof, there must be additional vertices in D1,n,2 = TS2(G)
labelled cd, ce and de which are non-adjacent since c, d, e form a stable set in G. This implies that
n ≥ 6. So we may assume that if D1,n,2 is a TS2-graph, the K1,3 must be labelled as in Lemma 28(a)
with corresponding induced subgraph H of D1,n,2. From the proof of Lemma 28(a) there must be an
additional vertex ce in D1,n,2 however this cannot be adjacent to any of the other four vertices. This
implies that n ≥ 3 and so neither D1,1,2 nor D1,2,2 can be TS2-graphs. However we may extend H to
G by adding a vertex f adjacent to all vertices except e, as illustrated in Figure 1. This introduces the
new stable set ef which is adjacent to both ae and ce. Therefore D1,3,2 is isomorphic to TS2(G). We
note that G is the unique graph (up to label permutations) for which this is true, due to the uniqueness
of the labelling of K1,3.

It remains to consider n ≥ 4 and show that D1,n,2 is not a TS2-graph. Suppose to the contrary that
there exists a graph G such that D1,n,2 = TS2(G). Again, D1,n,2 must contain a copy of K1,3 with
exactly two ways of labelling (up to label permutations) by size-2 independent sets of G.

• Case 1: K1,3 is labelled {ab, ac, bd, ae}. Since ac and ae are not adjacent, ce must be a vertex
of D1,n,2 = TS2(G). We consider the following cases:

– Case 1.1: the distance between ce and any vertex of {ac, bd, ae} is at least three.
Since the roles of c and e are equal, we assume without loss of generality that ce is adjacent
to some vertex cf . Observe that a and f are not adjacent in G, otherwise ac and cf are
adjacent, which means the distance between ac and ce is two, a contradiction. Since ce and
cf are adjacent, so are ae and af . Moreover, bf must be a vertex, otherwise there is an edge
between ab and af in D1,n,2 = TS2(G) which creates a C3 having {ab, ae, af} as its vertex-set,
a contradiction. Since ab and ac are adjacent, so are cf and bf . Now, df must be a vertex,
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otherwise bd and bf are adjacent which contradicts D1,n,2 = TS2(G). Since ab and bd are
adjacent, so are af and df . From the proof of Lemma 28(a)(ii) c and d are adjacent in G, so
df and cf are adjacent, which again contradicts D1,n,2 = TS2(G).

– Case 1.2: the distance between ce and one of {ac, bd, ae} is exactly two. Observe
that bd and ce has no common neighbor, otherwise that neighbor must be labelled as one of
{bc, be, dc, de}: the first two can be ignored because ab and ac (resp., ab and ae) are adjacent,
the last two can be ignored because ab and bd are adjacent. Again, since the roles of c and
e are equal, we assume without loss of generality that ae and ce has a common neighbor ef .
Since n ≥ 4, ce must have another neighbor which is different from ef , which can be either
cg or eg for some vertex g of G.

∗ If it is cg then ag must be a vertex, otherwise cg and ac must be adjacent, which creates a
C6 whose vertex-set is {ac, ab, ae, ef, ce, cg}, a contradiction. Since ce and cg are adjacent,
so are ae and ag, which contradicts D1,n,2 = TS2(G).

∗ If it is eg then ag must be a vertex, otherwise eg and ae must be adjacent, which creates
a C4 whose vertex-set is {ae, ef, ce, eg}, a contradiction. Since ce and eg are adjacent, so
are ag and ac, which contradicts D1,n,2 = TS2(G).

• Case 2: K1,3 is labelled {ab, ac, ad, ae}. As before, cd, ce, and de must be vertices in D1,n,2.
Without loss of generality, since the roles of c, d, e are equal, we may assume that only ae is
adjacent to another vertex of D1,n,2. As shown in the proof of Lemma 28(b), D1,n,2 must also
contain vertices cd, ce, de. Let P be the path between ae and cd. Since the roles of c and d are
equal, we can assume without loss of generality that cd is adjacent to a vertex cf in P . Observe
that if af is not a vertex ac and cf are adjacent contradicting the choice of ae. So af is a vertex
and since cd and cf are adjacent so are ad and af , which contradicts D1,n,2 = TS2(G).

We remark that if we add a vertex g to G in Figure 1 joining it to all vertices except d the corresponding
TS2-graph is obtained by adding the edge between bd and dg to TS2(G). Note that this tree is not in
the class Dr,n,s.

In the next proposition we consider two arbitrary stars whose centers are connected by an edge.

Proposition 30. Dr,2,s (1 ≤ r ≤ s) is a TSk-graph if and only if s ≤ k − 1.

Proof. (⇐) It follows directly from Proposition 19.

(⇒) Suppose that Dr,2,s (r ≤ s) is obtained from P2 = p1p2 by attaching r leaves u1, . . . , ur at p1
and s leaves v1, . . . , vs at p2 for some s ≥ k. We show that this graph is not a TSk-graph for
any fixed k ≥ 2. Suppose to the contrary that there exists a graph G such that Dr,2,s ' TSk(G),
i.e., there exists a bijective mapping f : V (Dr,2,s) → V (TSk(G)) such that uv ∈ E(Dr,2,s) if and
only if f(u)f(v) ∈ E(TSk(G)). Without loss of generality, let f(p2) = I = {a1, . . . , ak}, where I
is a size-k independent set of G. Since p2 has s + 1 neighbors, from the pigeonhole principle, it
follows that there must be some i ∈ {1, . . . , k} such that f(u) = I − ai + x and f(v) = I − ai + y,
where u, v ∈ N(p2). Observe that J = (I − ai − aj) + x + y /∈ {f(p2), f(u), f(v)} must be a size-k
independent set of G, where j ∈ {1, . . . , k} − i and therefore there exists z ∈ V (Dr,2,s)− {p2, u, v}
such that f(z) = J . We consider the following cases:

– Neither u nor v is p1. In this case, we must have z /∈ N(p2), otherwise it must be adjacent to
p2, but then f(z) = J and f(p2) = I must be adjacent in TSk(G), a contradiction. It follows
that z ∈ N(p1)− p2 and thus f(p1) must be in {I − ai + x, I − ai + y, I − aj + x, I − aj + y}.
Since neither u nor v is p1, the first two can be ignored. Now, if f(p1) = I − aj + x, the
vertices x and aj must be adjacent in G, which contradicts the fact that f(u) ∈ TSk(G). A
similar contradiction can be derived for the case f(p1) = I − aj + y. Thus, f(p1) cannot be
defined.

– u is p1. Again, z /∈ N(p2). Thus, z ∈ N(p1) − p2, which implies that y and aj must be
adjacent in G. This contradicts f(v) ∈ TSk(G). Thus, f(z) cannot be defined.

In both cases, we showed that some contradiction must occur. Our proof is complete.
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5 Conclusions

In this paper, we considered two token sliding problems for trees and forests. The two questions studied
seem remarkably complicated, even for this simple class of graphs. For the first question, finding necessary
and sufficient conditions on G for TSk(G) to be a forest, we could only get a complete solution for
k = 2, 3. For the second question, finding necessary and sufficient conditions for a tree or forest to be
a token sliding graph, we could get more general results. Nevertheless, as noted in Section 4 several
interesting important questions remain. We expect the join and decomposition operations introduced
there will be of use for similar questions for more general graphs.
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