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ARTICLE

Anapole superconductivity from PT -symmetric
mixed-parity interband pairing
Shota Kanasugi 1✉ & Youichi Yanase1,2✉

Recently, superconductivity with spontaneous time-reversal or parity symmetry breaking is

attracting much attention owing to its exotic properties, such as nontrivial topology and

nonreciprocal transport. Particularly fascinating phenomena are expected when the time-

reversal and parity symmetry are simultaneously broken. This work shows that time-reversal

symmetry-breaking mixed-parity superconducting states generally exhibit an unusual

asymmetric Bogoliubov spectrum due to nonunitary interband pairing. For generic two-band

models, we derive the necessary conditions for the asymmetric Bogoliubov spectrum. We

also demonstrate that the asymmetric Bogoliubov quasiparticles lead to the effective anapole

moment of the superconducting state, which stabilizes a nonuniform Fulde-Ferrell-Larkin-

Ovchinnikov state at zero magnetic fields. The concept of anapole order employed in nuclear

physics, magnetic materials science, strongly correlated electron systems, and optoelec-

tronics is extended to superconductors by this work. Our conclusions are relevant for any

multiband superconductors with competing even- and odd-parity pairing channels. Especially,

we discuss the superconductivity in UTe2.
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Parity symmetry (P-symmetry) and time-reversal symmetry
(T -symmetry) are fundamental properties of quantum
materials, such as insulators, metals, magnets, and super-

conductors. Superconductivity is caused by the quantum con-
densation of either even-parity or odd-parity Cooper pairs, which
correspond to spin-singlet or spin-triplet superconductivity due
to the fermion antisymmetry1. The order parameter of conven-
tional superconductors breaks neither P-symmetry nor T -sym-
metry. However, competition and coexistence of multiple pairing
instabilities lead to exotic superconductivity, such as chiral
superconductivity with spontaneous T -symmetry breaking2

related to the nontrivial topology3,4 and anomalous transport5.
In particular, mixed-parity superconductivity with coexistent

even- and odd-parity pairing channels has been widely discussed
in noncentrosymmetric superconductors6,7, ultracold fermion
systems8,9, and spin-orbit-coupled systems in the vicinity of the
P-symmetry broken phase10–14. The P-symmetry is broken in
such superconductors. Furthermore, spontaneous T -symmetry
breaking realized by the ±π/2 phase difference between even- and
odd-parity pairing potentials is energetically favored15–17

(Fig. 1a), when the spin-orbit coupling (SOC) due to non-
centrosymmetric crystal structure is absent or weak. This class of
superconducting states spontaneously breaks both P- and
T -symmetries but maintain the combined PT -symmetry. There
have been considerable interests in studying such PT -symmetric
mixed-parity superconductivity. The three-dimensional s+ ip-
wave superconductivity has attracted much theoretical attention
as a superconducting analog of axion insulators18–23. The
PT -symmetric mixed-parity pairing has also been theoretically
proposed in Sr2RuO4

24. Furthermore, a mixed-parity

superconducting state in UTe225 has been predicted to explain
experimentally-observed multiple superconducting phases26–33.

In previous works, the mixed-parity superconductivity has
been theoretically studied mainly in single-band models for spin-
1/2 fermions15,16,18–21,23. On the other hand, it has recently been
recognized that the multiband structure of the Cooper pair’s wave
function arising from internal electronic degrees of freedom
(DOF) (e.g., orbital and sublattice) induces exotic super-
conducting phenomena. For instance, multiband super-
conductors have attracted much attention as a platform realizing
odd-frequency pairing34. In T -symmetry breaking super-
conductors, an intrinsic anomalous Hall effect emerges owing to
the multiband nature of Cooper pairs5,35–38. In particular, even-
parity T -symmetry breaking superconductors host topologically
protected Bogoliubov Fermi surfaces in the presence of interband
pairing39,40.

In this work, we show that PT -symmetric mixed-parity
superconducting states generally exhibit an asymmetric Bogo-
liubov spectrum (BS) in multiband systems, although it is over-
looked in single-band models. We demonstrate that such
asymmetric deformation of the BS is induced by a nonunitary
interband pairing (see Fig. 1b), and derive the necessary condi-
tions for generic two-band models. Although we consider two-
band systems for simplicity throughout this paper, our theory is
relevant for any multiband superconductors with multiple bands
near the Fermi level. In addition, we show that the Bogoliubov
quasiparticles with asymmetric BS stabilize the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) superconductivity41,42, which is
evident from the Lifshitz invariants43, namely linear gradient
terms, in the Ginzburg-Landau free energy. The Lifshitz

Fig. 1 Schematics of PT -symmetric mixed-parity superconductivity (SC). a Schematic phase diagram in a superconductor with comparable strength of
even- and odd-parity pairing interactions. The transition between the even-parity superconducting phase (Γg) and the odd-parity superconducting phase
(Γu) is induced by tuning a control parameter x. For centrosymmetric systems with T -symmetry, there is generally an intermediate mixed-parity
superconducting phase (Γg+ iΓu) where even- and odd-parity pairing components are coexistent with the relative phase difference ± π/2. b Illustration for
a mechanism of the asymmetric Bogoliubov spectrum (BS) in PT -symmetric mixed-parity multiband superconductors. P- and T -symmetry breaking
interband pairing induces an asymmetric modulation of the BS. c Schematic figure of the anapole superconducting states. In real space, the phase of the
superconducting order parameter Δ(r) becomes nonuniform along a direction parallel to the effective anapole moment T as Δ(r)∝ eiq⋅r with q∥T, where q
is the center-of-mass momentum of Cooper pairs.
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invariants are nonzero only for the anapole superconducting
states, whose order parameters are equivalent to an anapole
(magnetic toroidal) moment, namely a polar and time-reversal
odd multipole44, from the viewpoint of symmetry. It is shown
that the phase of the superconducting order parameter is spatially
modulated along the effective anapole moment of the super-
conducting state (see Fig. 1c). The concept of anapole order has
been employed in nuclear physics45, magnetic materials science44,
strongly correlated electron systems46,47, and optoelectronics48,49,
and it is extended to superconductors by this work. In previous
works, the FFLO superconductivity has been proposed in the
presence of an external magnetic field41–43,50 or coexistent
magnetic multipole order51,52. However, the magnetic field causes
superconducting vortices, prohibiting pure FFLO states, and the
proposed multipole superconducting state has not been estab-
lished in condensed matters. In contrast, the anapole super-
conductivity realizes the FFLO state without the aid of any other
perturbation or electronic order. Note that an intrinsic nonuni-
form superconducting state has also been discussed in the
Bogoliubov Fermi surface states53, although its mechanism and
symmetry are different from those of the anapole FFLO state.

Based on the obtained results, we predict the possible asym-
metric BS and anapole superconductivity in UTe2, a recently-
discovered candidate of a spin-triplet superconductor54. The
multiple pairing instabilities26–33 and T -symmetry breaking55–58

were recently observed there.

Results
General two-band Bogoliubov-de Gennes Hamiltonian. We
begin our discussion by considering the general form of the
Bogoliubov-de Gennes (BdG) Hamiltonian for two-band systems:

H ¼ 1
2
∑
k
ð̂cyk; ĉT�kÞ

H0ðkÞ ΔðkÞ
ΔyðkÞ �H�

0ð�kÞ

� �
ĉk
ĉ��k

� �
; ð1Þ

where ĉTk ¼ ðck1"; ck1#; ck2"; ck2#Þ is a spinor encoding the four
internal electronic DOF stem from spin-1/2 and extra two-valued
DOF, such as orbitals and sublattices. Then, the 4 × 4 matrices
H0(k) and Δ(k) can be generally expressed as a linear combina-
tion of σμ⊗ τν matrices, where σμ and τν (μ, ν= 0, x, y, z) are the
Pauli matrices for the spin and extra DOF, respectively. However,
we here introduce a more convenient form of the two-band BdG
Hamiltonian using the Euclidean Dirac matrices γn
(n= 1, 2, 3, 4, 5), which satisfy {γm, γn}= 2δmn. See “Methods” for
the correspondence between the σμ⊗ τν and Dirac matrices.
Assuming that the normal state preserves both P- and T -sym-
metries, the general form of the normal state Hamiltonian H0(k)
can be expressed as

H0ðkÞ ¼ ðϵ0k � μÞ14 þ ϵk � γ; ð2Þ
where 14 is the 4 × 4 unit matrix, γ= (γ1, γ2, γ3, γ4, γ5) is the
vector of the five Dirac matrices, ϵ0k and ϵk ¼ ðϵ1k; ϵ2k; ϵ3k; ϵ4k; ϵ5kÞ
are the real-valued coefficients of these matrices, and μ is the
chemical potential. Whereas ϵ0k is an even function of momen-
tum, k-parity of other coefficients ϵnk (n > 0) depends on the
details of the extra DOF. The superconducting state is assumed to
be a mixture of even- and odd-parity pairing components. The
pairing potential Δ(k) for such mixed-parity superconducting
states has the general form

Δ̂ðkÞ ¼ Δ1ðη0k14 þ ηk � γÞ þ Δ2 ∑
m<n

ηmn
k iγmγn; ð3Þ

where Δ̂ðkÞ � ΔðkÞUy
T and UT is the unitary part of the time-

reversal operator. The complex-valued constants Δ1 and Δ2

represent the superconducting order parameters for the even- and
odd-parity pairing channels, respectively. As a consequence of the

fermionic antisymmetry Δ(k)=− ΔT(− k), the even-parity
(odd-parity) part of Δ̂ðkÞ is expressed by a linear combination
of 14 and γn (iγmγn) as shown in Eq. (3) (see “Methods”). The
real-valued functions η0k , ηk ¼ ðη1k; η2k; η3k; η4k; η5kÞ, and ηmn

k
(1 ≤m < n ≤ 5) determine the details of order parameters.
Whereas η0k is an even function of momentum, k-parity of others
ηnk and ηmn

k depends on the details of the extra DOF. Note that the
k-parity of ηnk must be the same as that of ϵnk . Although we adopt
a BCS-type description of superconductivity in this work, we
consider that our argument is hardly affected by enhanced
quantum fluctuations in low-dimensional systems when the long-
range order occurs.

Asymmetric BS from PT -symmetric mixed-parity interband
pairing. We here consider general BdG Hamiltonian including
more than two band models, and later focus on the two-band
models. In the following, we assume that each band is weakly
coupled and the intraband pairing is dominant compared to the
interband pairing. In such situations, spontaneous T -symmetry
breaking with maintaining the PT -symmetry is energetically
favored in the mixed-parity superconducting states15,16, and the
symmetry of the superconducting order parameter becomes
equivalent to that of odd-parity magnetic multipoles44. A char-
acteristic feature of the odd-parity magnetic multipole ordered
state is the asymmetric modulation of the band
structure51,52,59,60, which leads to peculiar nonequilibrium
responses such as nonreciprocal transport61, magnetopiezo-
electric effect62,63, and photocurrent generation48,49. Therefore,
the appearance of the asymmetric BS is naturally expected in the
PT -symmetric mixed-parity superconductors. However, the
asymmetric BS is not obtained in single-band models (see later
discussions).

To induce such asymmetric modulation in the BS, effects of the
P- and T -symmetry breaking in the particle-particle super-
conducting channel should be transferred into the particle-hole
channel. This suggests that it is not sufficient to consider only the
pairing potential Δ(k), since it is not gauge invariant. Instead of
Δ(k) alone, we need to consider gauge-invariant bilinear products
of Δ(k) and Δ†(k)36 in order to reveal conditions for realizing the
asymmetric BS. Here, we focus on the simplest bilinear products,
that is, Δ(k)Δ†(k). The parity-odd and time-reversal-odd
(P; T -odd) part of this bilinear product is calculated as

Mð1Þ
� ðkÞ ¼ 1

2
½Δ̂gðkÞ; Δ̂uyðkÞ� þ ½Δ̂uðkÞ; Δ̂gyðkÞ�

� �
; ð4Þ

where Δ̂
gðkÞ and Δ̂

uðkÞ are the even- and odd-parity part of Δ̂ðkÞ,
respectively (see Supplementary Note 1 for the derivation of Eq.
(4)). Owing to the gauge invariance and P; T -odd behavior of
Mð1Þ

� ðkÞ, a nonzero Mð1Þ
� ðkÞ can be a measure of the P- and

T -symmetry breaking in the particle-hole channel, which permits
emergence of the asymmetric BS. Note that the pairing state must
be nonunitary to induce a nonzero Mð1Þ

� ðkÞ, since Mð1Þ
� ðkÞ ¼ 0

when Δ(k)Δ†(k) is proportional to the unit matrix. In analogy
with the spin polarization of nonunitary spin-triplet super-
conducting states in spin-1/2 single-band models1, the P; T -odd
bilinear product Mð1Þ

� ðkÞ can be interpreted as a polarization of an
internal DOF in the superconducting state.

The emergence of a nonzero P; T -odd bilinear product
Mð1Þ

� ðkÞ requires the interband pairing. To see this, we consider
the problem in the band basis. Since H0(k) is assumed to preserve
the P- and T -symmetries, the energy eigenvalues are doubly
degenerate and labeled by a pseudospin index. Especially, we
choose the so-called manifestly covariant Bloch basis10, in which
the pseudospin index transforms like a true spin-1/2 under time-
reversal and crystalline symmetry operations. In this basis, the
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intraband pairing potential is generally expressed as
Δk = (ψk + dk ⋅ s)isy, where s= (sx, sy, sz) are Pauli matrices
in pseudospin space. The complex-valued functions ψk and dk
are even and odd functions of k, respectively. Then, in the
absence of the interband pairing, the multiband BdG
Hamiltonian matrix reduces to a series of decoupled blocks
describing spin-1/2 single-band superconductors. The bilinear
product for this intraband pairing potential is obtained as
ΔkΔ

y
k ¼ ðjψkj2 þ jdkj2Þ12 þ 2Reðψkd

�
kÞ � sþ iðdk ´ d�kÞ � s, and

the second and third terms are nonunitary components that
break P- and T -symmetries, respectively. Here, 12 is the 2 × 2
unit matrix. However, there appears no term breaking both P-
and T -symmetries, and hence the P; T -odd bilinear product
for this Δk must vanish. This indicates that the interband
pairing is necessary for a nonzero P; T -odd bilinear product
Mð1Þ

� ðkÞ, which is essential for realizing the asymmetric BS.
This is also the reason the asymmetric BS is not obtained in
single-band models.

The presence of interband pairing can be characterized by the
so-called superconducting fitness F(k), which is defined as
FðkÞUT ¼ H0ðkÞΔðkÞ � ΔðkÞH�

0ð�kÞ64,65. Since a nonvanishing
F(k)F†(k) quantifies the strength of interband pairing by
definition64,65, its P; T -odd part should be nonzero to realize a
nonvanishing Mð1Þ

� ðkÞ. The P; T -odd part of F(k)F†(k) is
obtained as

Mð2Þ
� ðkÞ ¼ 1

2
½FgðkÞ; FuyðkÞ� þ ½FuðkÞ; FgyðkÞ�� �

; ð5Þ

where Fg(k) and Fu(k) are the even- and odd-parity part of F(k),
respectively. If the normal state preserves both P- and
T -symmetries, they are obtained as Fg;uðkÞ ¼ ½H0ðkÞ; Δ̂

g;uðkÞ�.
Note that the P; T -odd part of F(k)F†(k) can be extracted in the
same way as Δ(k)Δ†(k) [compare Eq. (5) with Eq. (4)], since the
transformation of F(k)F†(k) under space-inversion and time-
reversal can be described in the same way as that of Δ(k)Δ†(k).
Based on Eq. (5), not only the pair potential Δ(k) but also the
normal part H0(k) must satisfy a proper condition to realize
Mð2Þ

� ðkÞ≠ 0 and asymmetric BS.
From the above discussions, we conclude that the necessary

(but not sufficient) condition for the asymmetric BS can be
written as Mð1Þ

� ðkÞ≠ 0 \ Mð2Þ
� ðkÞ≠ 0, which implies the

superconductivity-driven P- and T -symmetry breaking in the
particle-hole channel. We here write down this necessary
condition for the general two-band BdG Hamiltonian. By
substituting Eqs. (2) and (3) to Eqs. (4) and (5), we obtain the
P; T -odd bilinear products Mð1Þ

� ðkÞ and Mð2Þ
� ðkÞ as follows:

Mð1Þ
� ðkÞ ¼ 2ImðΔ1Δ

�
2Þ ∑

m<n
ηmn
k ðηnkγm � ηmk γnÞ; ð6Þ

Mð2Þ
� ðkÞ ¼ Tr½Mð1Þ

� ðkÞ~H0ðkÞ�~H0ðkÞ; ð7Þ
where ~H0ðkÞ � H0ðkÞ � ðϵ0k � μÞ14. We see that Mð1Þ

� ðkÞ appears
inside the expression of Mð2Þ

� ðkÞ, and hence the necessary
condition for the asymmetric BS can be simplified as
Tr½Mð1Þ

� ðkÞ~H0ðkÞ�≠ 0 in two-band models. Note that it is not
clear whether Mð2Þ

� ðkÞ can be written in terms of Mð1Þ
� ðkÞ in more

than two band models since Eq. (7) is derived for the general two-
band model by using the properties of Dirac matrices. From Eqs.
(6) and (7), the necessary condition (i.e., Tr½Mð1Þ

� ðkÞ~H0ðkÞ�≠ 0)
can be summarized as following two criteria; (i) the relative phase
difference between even- and odd-parity pairing potentials must
be nonzero so that ImðΔ1Δ

�
2Þ≠0, and (ii) the BdG Hamiltonian

must satisfy ϵmk η
n
kη

mn
k ≠ 0 or ϵnkη

m
k η

mn
k ≠ 0 for 1 ≤ ∃m < ∃n ≤ 5.

Interpretations of these requirements in the σμ⊗ τν basis are
shown in “Methods” section.

We now confirm that the asymmetric BS indeed appears when
the above two criteria are fulfilled. A minimal two-band model
satisfying the criterion (ii) can be obtained by substituting
ϵk ¼ rϵakea þ ð1� rÞϵbkeb, ηk ¼ ð1� rÞηakea þ rηbkeb, and ηmn

k ¼
δmaδnbη

ab
k into Eqs. (2) and (3). Here, a and b are specific integers

satisfying 1 ≤ a < b ≤ 5, en is the unit vector for the n-th
component, and r takes the value either 0 or 1. Under this setup,
we can analytically diagonalize the BdG Hamiltonian as
diagðEþ

k 12; E
�
k 12;�Eþ

�k12;�E�
�k12Þ. Based on the correspon-

dence between the Dirac matrices and σμ⊗ τν matrices the
energy spectrum E ±

k can be obtained as

E ±
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ

1
4
Tr ΔðkÞΔyðkÞ± Mð1Þ

� ðkÞ~H0ðkÞ
rϵak þ ð1� rÞϵbk

	 
s

± ½rϵak þ ð1� rÞϵbk�;
ð8Þ

where ξk � ϵ0k � μ. By using the transformation properties of the
BdG Hamiltonian under space-inversion and time-reversal, we
can confirm that Eq. (8) satisfies Eþ

�k≠E
±
k and E�

�k≠E
±
k (i.e., the

BS is asymmetric) when Tr½Mð1Þ
� ðkÞ~H0ðkÞ�≠ 0. See “Methods” for

the proof. This implies that Mð1Þ
� ðkÞ≠ 0 \ Mð2Þ

� ðkÞ≠ 0 is indeed a
necessary condition of the asymmetric BS.

Lifshitz invariants and effective anapole moment. To obtain
further insight into the asymmetric BS, we now investigate the
free energy of the above minimal model satisfying
Mð1Þ

� ðkÞ≠ 0 \ Mð2Þ
� ðkÞ≠ 0. By differentiating Eq. (8) with respect

to Δj and Δ�
j (j= 1, 2), the Ginzburg-Landau free energy for

superconductivity is derived as follows (see Supplementary
Note 2):

F ¼ α1jΔ1j2 þ α2jΔ2j2 þ β1jΔ1j4 þ β2jΔ2j4

þ 4~βjΔ1j2jΔ2j2 � ~βðΔ2
1Δ

�2
2 þ Δ2

2Δ
�2
1 Þ

þ ∑
ν¼x;y;z

ðκ1;νjΔ1j2 þ κ2;νjΔ2j2Þq2ν þ T � q;
ð9Þ

where q= (qx, qy, qz) is the center-of-mass momentum of Cooper
pairs. The analytical expressions of αj, βj( > 0), ~βð> 0Þ, and
κj,ν( > 0) are shown in Supplementary Note 2. The last term is the
Lifshitz invariant43 stabilizing the FFLO state with q∥T. Since the
Cooper pair condensation occurs at a single q in our model, the
superconducting order parameter is expressed as Δ(r)∝ eiq⋅r in
real space (Fig. 1c). The coefficient vector T= (Tx, Ty, Tz) is given
by

T ¼ ρ0hTr½Mð1Þ
� ðkÞ~H0ðkÞ�vkiFS

7ζð3Þ
16π2T2 ; ð10Þ

where ρ0 is the density of states at the Fermi energy, 〈⋯ 〉FS
denotes the average over the Fermi surface, vk≡∇kξk, T is the
temperature, and ζ(x) is the Riemann zeta function. T can be
interpreted as the effective anapole moment of the super-
conducting state. To see this, we here consider conditions for
T ≠ 0. Eq. (10) indicates that T is nonzero only for P- and
T -symmetry breaking pairing states with Mð1Þ

� ðkÞ≠ 0. In addition,
hTr½Mð1Þ

� ðkÞ~H0ðkÞ�vkiFS is nonzero only when the super-
conducting order parameter belongs to a polar irreducible
representation (IR), since the velocity vk is a polar vector and
~H0ðkÞ is assumed to be P-symmetric. Therefore, T is a polar and
time-reversal-odd vector; the symmetry is equivalent to the
anapole moment44,45. Hereafter, we refer to the superconductivity
with T ≠ 0 as the anapole superconductivity. The anapole
superconductivity realizes a nonuniform FFLO state with q∥T
(see Fig. 1c) to compensate a polar asymmetry in the BS. The
PT -symmetric mixed-parity pairing is an origin of the anapole

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00804-7

4 COMMUNICATIONS PHYSICS |            (2022) 5:39 | https://doi.org/10.1038/s42005-022-00804-7 | www.nature.com/commsphys

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

www.nature.com/commsphys


superconductivity. Although the stability of such pairing has been
revealed15, a self-consistent calculation is desirable to justify the
stability of the anapole FFLO state and clarify the properties
further. Such detailed analysis is left for future work.

Finally, we comment that the anapole moment must be aligned
in the conducting direction in low-dimensional systems. This
restriction naturally appears through the above expression (10) of
the effective anapole moment T.

Application to UTe2. We now discuss the asymmetric BS and
anapole superconductivity in UTe2. Intensive studies after the
discovery of superconductivity evidenced odd-parity spin-triplet
superconductivity in UTe254–56,66–79. However, multiple super-
conducting phases similar to Fig. 1a have been observed under
pressure26–33, and the antiferromagnetic quantum criticality
implies the spin-singlet superconductivity there31. A theoretical
study based on the periodic Anderson model verified this naive
expectation and predicted the parity-mixed superconducting state
in the intermediate pressure region25. Note that the interband
pairing, which is an essential ingredient for the asymmetric BS
and anapole superconductivity, may have considerable impacts
on the superconductivity in UTe2 owing to multiple bands near
the Fermi level25,80–86.

First, let us discuss the symmetry of superconductivity. Since
the crystal structure of UTe2 preserves D2h point group
symmetry, the superconducting order parameter is classified
based on the IRs of D2h. Below we consider all the odd-parity IRs,
namely, Au, B1u, B2u, and B3u, although the Au and B3u IRs may be
promising candidates25,77,78,80,87. Moreover, a recent calculation
has shown that the even-parity Ag superconducting state is
favored by antiferromagnetic fluctuation under pressure25.
Therefore, we study a mixture of the even-parity Ag and odd-
parity either Au, B1u, B2u, or B3u states, while we particularly focus
on the Au or B3u pairing.

Based on the above facts, we introduce a minimal model for
UTe2 as follows:

H0ðkÞ ¼ ðεk � μÞσ0 � τ0 þ gk � σ � τz; ð11Þ

Δ̂ðkÞ ¼Δ1ðψg
kσ0 � τ0 þ dgk � σ � τzÞ

þ Δ2ðduk � σ � τ0 þ ψu
kσ0 � τzÞ;

ð12Þ

where τν represent the Pauli matrices for a sublattice DOF
originating from a ladder structure of U atoms (Fig. 2). We
assume a simple form of the single-particle kinetic energy as
εk ¼ �2∑ν¼x;y;ztν cos kν . The second term of Eq. (11) is a
sublattice-dependent staggered form of Rashba SOC with
gk ¼ αðsin kyx̂ � sin kxŷÞ, arising from the local P-symmetry
breaking at U sites25,88. Since the local site symmetry descends to

C2v from D2h owing to the ladder structure of U atoms, the
existence of the Rashba-type SOC with opposite coupling
constants ± α at each sublattice is naturally expected (see Fig. 2).
The local P-symmetry breaking also leads to a sublattice-
dependent parity mixing of the pair potential89. Then, the
even-parity (odd-parity) pair potential is assumed to be a mixture
of intrasublattice spin-singlet (spin-triplet) and staggered spin-
triplet (spin-singlet) components as shown in Eq. (12). We
assume the form of the k-dependent coefficients ψg

k and dgk (duk
and ψu

k) so as to be consistent with the basis functions of the Ag

IR (Au, B1u, B2u, or B3u IRs).
We now consider the necessary conditions for an asymmetric

BS in UTe2. As discussed in the above sections, a nonzero
Tr½Mð1Þ

� ðkÞ~H0ðkÞ� is necessary for the asymmetric BS in a two-
band model. For Eqs. (11) and (12), this quantity is obtained as
Tr½Mð1Þ

� ðkÞ~H0ðkÞ� ¼ �8ImðΔ1Δ
�
2Þ½gk � ðdgk ´ dukÞ�. Therefore, gk �

ðdgk ´ dukÞ≠ 0 must be satisfied to realize the asymmetric BS. This
indicates that the sublattice-dependent SOC and spin-triplet
pairing components dg;uk are essential for the asymmetric BS. In
contrast, the spin-singlet pairing components ψg;u

k do not play an
important role for realizing the asymmetric BS in this model.
Hereafter, we assume ψg

k ¼ 1 and ψu
k ¼ 0 for simplicity. The basis

functions of dg;uk and corresponding gk � ðdgk ´ dukÞ for possible
mixed-parity superconducting states in UTe2 are summarized in
Table 1. As shown in Table 1, gk � ðdgk ´ dukÞ / αðϕgx þ ϕgyÞϕuz for all
patterns of the superconducting state, where ϕg;uν is a real-valued
coefficient of the ν-th component of dg;uk . Therefore, ϕgx þ ϕgy ≠ 0
and ϕuz ≠ 0 are necessary for the asymmetric BS. According to a
recent numerical calculation25, the magnetic anisotropy of UTe2
leads to jϕgyj � jϕgxj for the Ag state. Then, we assume dgk ¼
sin kxŷ (i.e., ϕgx ¼ 0 and ϕgy ¼ 1) in the following calculations. On
the other hand, we assume ϕuν ¼ δνz for the odd-parity pairing
component to extract only the essential ingredient for the
asymmetric BS and make a clear discussion.

The numerical results of the BS for this UTe2 model are shown
in Fig. 3. We here consider only the Ag+ iAu (d

u
k ¼ sin kz ẑ) and

Ag+ iB3u (duk ¼ sin kyẑ) states as promising candidates of the
PT -symmetric mixed-parity superconductivity in UTe2. It is
shown that the BS of both Ag+ iAu and Ag+ iB3u states are
indeed asymmetric along some directions in the Brillouin zone
(see Fig. 3a, b). The BS in the Ag+ iAu state exhibits a kxkykz-type
tetrahedral asymmetry as depicted in Fig. 3c, while the BS in the
Ag+ iB3u state shows a kxk

2
y-type unidirectional asymmetry as

depicted in Fig. 3d. Consistent with these numerical results,
Table 1 reveals that gk � ðdgk ´ dukÞ of the Ag+ iAu and Ag+ iB3u
states are proportional to kxkykz and kxk

2
y , respectively. This

implies that the type of asymmetry in the BS is determined by the
symmetry of Tr½Mð1Þ

� ðkÞ~H0ðkÞ�, which is an essential ingredient
for realizing the asymmetric BS.

Finally, we discuss the possible anapole superconductivity in
UTe2. The Ag+ iAu state belongs to the nonpolar A�

u IR (IRs with
odd time-reversal parity are denoted by Γ−), which corresponds
to nonpolar odd-parity magnetic multipoles such as magnetic
monopole, quadrupole, and hexadecapole from the viewpoint of
symmetry. On the other hand, the Ag+ iB3u state belongs to the
polar B�

3u IR with the polar x axis, which is symmetrically
equivalent to the anapole moment Tx. Since the anapole
superconducting states are allowed only when the superconduct-
ing order parameter belongs to a polar IR, the Ag+ iB3u state is a
possible candidate of the anapole superconductivity. Indeed, as
discussed above, the BS of the Ag+ iB3u state exhibits a polar
kxk

2
y-type asymmetry, while the BS of the Ag+ iAu state exhibits a

Fig. 2 Schematic of local P-symmetry breaking in UTe2. U atoms form a
ladder structure along the a axis. The ladder structure generates two non-
equivalent sublattices U1 (blue circle) and U2 (orange circle). Since the
P-symmetry is locally broken in this crystal structure, a sublattice-
dependent Rashba-type spin-orbit coupling (SOC) appears. To maintain the
global P-symmetry, the magnitude of Rashba SOC α changes sign at each
sublattice (i.e., +α for U1 and −α for U2).
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nonpolar kxkykz-type asymmetry (see Fig. 3). It should also be
noted that the BS in the Ag+ iB3u state possesses the polarity
along the kx axis, which coincides with the polar axis of the
B�
3u IR.
Based on the above classification and the Ginzburg-Landau

free energy (9), the anapole FFLO state with q / T k x̂ should be
naturally realized in the Ag+ iB3u state. In the same manner, we
expect the anapole superconducting states with T k ŷ and T k ẑ
in the Ag+ iB2u and Ag+ iB1u states, respectively (see Supple-
mentary Note 3 for possible anapole superconductivity in UTe2).

Discussion
From the analogy with magnetic states, we can predict various
exotic superconducting phenomena closely related to the asym-
metric BS. For instance, the asymmetry of the BS will significantly
affect the superconducting piezoelectric effect90, nonreciprocal
optical responses91, and nonreciprocal Meissner effect92. All of
these phenomena are caused by the absence of P- and T -sym-
metries in the superconducting state. Hence, they will be useful
probes to offer conclusive evidence for the P; T -symmetry

breaking and the BS asymmetry in superconductors. Studies for
the interplay of these exotic superconducting phenomena and
asymmetric BS will be presented elsewhere.

Experimental detection of the anapole superconductivity
should be possible by observing its domain structure. The anapole
superconducting state effectively carries a supercurrent along the
anapole moment T, since the order parameter is spatially
modulated with eiq⋅r ~ eiT⋅r. This indicates the emergence of
superconducting vortices at the anapole domain boundaries (see
Fig. 4a) even though an external magnetic field is absent. The
anapole domains can be generally formed owing to the degen-
eracy between the Γg+ iΓu pairing and Γg− iΓu pairing states,
which have the opposite anapole moment. Therefore, the obser-
vation of vortices at a zero magnetic field can be solid evidence of
the anapole superconductivity. In addition, the anapole domain
can be switched by the supercurrent in a similar way to the
electrical switching of antiferromagnets93,94. In an anapole
superconductor, the effective anapole moment T couples to the
applied electric current j, which is a symmetry-adapted field of
the anapole moment. Then, the anapole superconducting domain

Table 1 Symmetry analysis of Bogoliubov spectrum asymmetry for UTe2.

Pairing dgk duk gk � ðdgk ´ dukÞ T

Ag+ iAu ϕgxky x̂þ ϕgykxŷ ϕux kxx̂þ ϕuy ky ŷþ ϕuz kzẑ αðϕgx þ ϕgy Þϕuz kxkykz T= 0
Ag+ iB3u ϕgxky x̂þ ϕgykxŷ ϕuy kzŷþ ϕuz ky ẑ αðϕgx þ ϕgy Þϕuz kxk2y T k x̂
Ag+ iB2u ϕgxky x̂þ ϕgykxŷ ϕux kzx̂þ ϕuz kxẑ αðϕgx þ ϕgy Þϕuz k2x ky T k ŷ
Ag+ iB1u ϕgxky x̂þ ϕgykxŷ ϕux kyx̂þ ϕuy kxŷþ ϕuz kxkykzẑ αðϕgx þ ϕgy Þϕuz k2x k2y kz T k ẑ

Basis functions of dg;uk and corresponding gk � ðdgk ´duk Þ for possible PT -symmetric mixed-parity pairing states in UTe2 are shown. The last column shows the form of the effective anapole moment T for
each pairing state.
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Fig. 3 Asymmetric Bogoliubov spectrum (BS) for the UTe2 model. a, b Numerical results of BS in the UTe2 model for the Ag+ iAu state and the Ag+ iB3u
state. c Schematic of kxkykz-type asymmetric modulation in the Brillouin zone that is induced in the BS of Ag+ iAu state in a. d Schematic of kx-type
asymmetric modulation that is induced in the BS of Ag+ iB3u state in b. The symbols of the horizontal axis in a and b denote the k-points in the Brillouin
zone of a primitive orthorhombic lattice; Γ= (0, 0, 0), X ¼ ��X ¼ ðπ;0;0Þ, S ¼ ��S ¼ ðπ; π;0Þ, T ¼ ��T ¼ ð0; π; πÞ, R ¼ ��R ¼ ðπ; π; πÞ, Γy= (0, π/4, 0),
and Xy ¼ ��Xy ¼ ðπ; π=4;0Þ. In the numerical calculations, parameters are set to be tν= 1.0, μ=− 4.0, α= 0.4, and (Δ1,Δ2)= (0.2, 0.2i). The BS
asymmetry appears in a and b consistent with the symmetry analysis of Tr½Mð1Þ

� ðkÞ~H0ðkÞ� / gk � ðdgk ´ dukÞ.
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should be switched to align the effective anapole moments along
the injected supercurrent j (see Fig. 4b). It should also be noticed
that the anapole domain switching eliminates the internal mag-
netic field from the vortices at the domain boundaries, since the
domain structure disappears by applying the supercurrent.
Therefore, the anapole superconducting domain switching can be
regarded as a process of erasing magnetic information. These
properties indicate potential applications of anapole super-
conductivity as a novel quantum device for magnetic information
storage and processing.

Conclusions
In summary, we have established that the PT -symmetric
mixed-parity superconductors generally exhibit asymmetry in
the BS. The essential ingredient for the asymmetric BS is the
P; T -odd nonunitary part of the bilinear product ΔΔ† arising
from the interband pairing. Therefore, the multiband nature of
superconductivity is essential. Especially, we have shown that
an FFLO state is stabilized in the absence of an external mag-
netic field when the superconducting state belongs to a polar
and time-reversal-odd IR. The stabilization of the FFLO state is
evidenced by the emergence of Lifshitz invariants in the free
energy due to the effective anapole moment. The physics of
asymmetric BS appears in any multiband superconductors
when even- and odd-parity pairing interactions are comparable
in strength. As a specific example, we considered the mixed-
parity pairing states in UTe2, which is caused by an accidental
competition of ferromagnetic and antiferromagnetic spin fluc-
tuations under pressure25. We have shown that the mixed-
parity superconductivity in UTe2 realizes the asymmetric BS
and anapole superconductivity owing to the locally non-
centrosymmetric crystal structure. The asymmetric BS may be
linked to the asymmetric spectrum in the scanning tunneling
microscope measurement55, although it was interpreted based
on the chiral superconductivity. The vortex structure near the
anapole domain boundary (Fig. 4a) may also cause the polar
Kerr effect, reported for UTe258. Spontaneous ordering of
strongly parity-mixed pairing state and resulting asymmetric BS
can also be expected in superconductivity mediated by parity-
breaking fluctuations11. To further broaden the scope of
application of our theory, it is important to find microscopic
electronic interactions that induce competing even- and odd-
parity pairing instabilities.

We predicted various superconducting phenomena induced by
the asymmetric BS, such as the superconducting piezoelectric
effect, nonlinear optical responses, nonreciprocal Meissner effect,
and anapole domain switching from the analogy with magnetic
materials. Topological properties and collective modes associated
with the asymmetric BS may also be intriguing issues. Exploration

of such exotic phenomena will be a promising route for future
research.

Methods
Correspondence between Pauli matrices and Dirac matrices. In this section, we
show that the general form of the BdG Hamiltonian with spin-1/2 and a two-
valued extra DOF can be expressed by using the Euclidean Dirac matrices.

Since we assume that the normal state preserves both P- and T -symmetries,
H0(k) transforms under the space-inversion P and the time-reversal T as

H0ðkÞ!
P
Uy

PH0ð�kÞUP ¼ H0ðkÞ; ð13Þ

H0ðkÞ!
T

Uy
TH

�
0ð�kÞUT ¼ H0ðkÞ; ð14Þ

where UP and UT are unitary matrices. In this paper, we consider a spin-1/2 system
satisfying UTU

�
T ¼ �14. In addition, we require that the time-reversal commute

with the space-inversion (i.e., UPUT ¼ UTU
�
P), and the space-inversion operator is

its own inverse (i.e., U2
P ¼ 14). Under the above assumptions, H0(k) can be

generally expressed as

H0ðkÞ ¼ ðϵ0k � μÞσ0 � τ0 þ f kσ0 � τxi
þ gk � σ � τyi þ hkσ0 � τzi ;

ð15Þ

where σ= (σx, σy, σz) and σ0⊗ τ0= 14. Hermiticity requires all coefficients in Eq
(15) are real. The index i specifies the extra DOF and (xi, yi, zi) is a permutation of
(x, y, z). Since UP and UT vary depending on the extra DOF, the general models
(15) are classified by the index i. In this paper, we consider three representative
examples shown in Table 2. For i= 1 (i= 2), the extra DOF is orbitals with the
same (opposite) parity, and UP= σ0⊗ τ0 (UP= σ0⊗ τz). For i= 3, the extra DOF
is sublattices in a locally noncentrosymmetric crystal structure, and UP= σ0⊗ τx.
In these cases, UT= iσy⊗ τ0. Although the extra DOF can be other than the above
three cases, Eq. (15) holds for all the cases unless UPUT≠UTU

�
P, UPUP ≠ 14, or

UTU
�
T≠� 14

37. Since the set of σμ⊗ τν matrices is completely anticommuting in
Eq. (15), we can substitute them by the five anticommuting Euclidean Dirac
matrices. Then, we can rewrite Eq. (15) as Eq. (2).

The pairing potential Δ(k) transforms under the space-inversion and the time-
reversal as Δ(k) P

�!Uy
PΔð�kÞU�

P and Δ(k) T
�!Uy

TΔ
�ð�kÞU�

T, respectively. In terms

of Δ̂ðkÞ ¼ ΔðkÞUy
T, these relations can be rewritten as

Δ̂ðkÞ!P Uy
PΔ̂ð�kÞUP; ð16Þ

Δ̂ðkÞ!T Δ̂
yðkÞ: ð17Þ

We note that Eq. (16) is equivalent to the transformation of H0(k) under the space-
inversion [see Eq. (13)], while Eq. (17) corresponds to the Hermiticity condition.
Whereas H0(k) is assumed to preserve both P- and T -symmetries, we admit that
Δ(k) spontaneously breaks the P- and T -symmetries. The only requirements for
the pairing potential is satisfying the fermionic antisymmetry Δ(k)=− ΔT(− k),
which can be rewritten as

Δ̂ðkÞ ¼ Uy
TΔ̂

Tð�kÞUT; ð18Þ

where we used the fact that Uy
T ¼ UT

T ¼ �UT by choosing UT as real (i.e.,
UT ¼ U�

T). It should be noticed that Eq. (18) is formally equivalent to the time-
reversal symmetry for H0(k) [see Eq. (14)]. Since the even-parity part of Δ̂ðkÞ obeys
transformation properties completely equivalent to those of H0(k) under the time-
reversal and the space-inversion, it can be expressed as a linear combination of six
σμ⊗ τν matrices allowed to appear in H0(k). On the other hand, the other ten
σμ⊗ τν matrices, which correspond to iγmγn (1 ≤m < n ≤ 5), constitute the odd-
parity pairing potential. Then, we obtain a general form of Δ(k) as

Table 2 Classification of two-band models based on the
extra degrees of freedom (DOF).

(xi, yi, zi) UP UT DOF

i= 1 (x, y, z) σ0⊗ τ0 iσy⊗ τ0 orbitals (same
parity)

i= 2 (z, x, y) σ0⊗ τz iσy⊗ τ0 orbitals (opposite
parity)

i= 3 (y, z, x) σ0⊗ τx iσy⊗ τ0 sublattices

Definition of (xi, yi, zi), UP, UT, and physical meaning of the extra DOF for i= 1, 2, 3 are listed.
Here, UP and UT are unitary matrices representing the parity and time-reversal operations. σμ
and τμ (μ= 0, x, y, z) are the Pauli matrices for the spin and extra DOF.

a b

Anapole moment

Vortex

j

T

Fig. 4 Anapole domain and domain switching through supercurrent. a
Vortices at the boundary of anapole superconducting domains. b The
proposed domain switching in anapole superconductors. The effective
anapole moment T is aligned along the injected supercurrent j.
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Δ̂ðkÞ ¼Δ1 ∑
ν¼0;xi ;zi

ψν
kσ0 � τν þ dyik � σ � τyi

	 


þ Δ2 ∑
ν¼0;xi ;zi

dνk � σ � τν þ ψ
yi
k σ0 � τyi

	 

;

ð19Þ

where ψν
k and dνk are real-valued coefficients. Note that Δ1 and Δ2 are complex

valued since Δ̂ðkÞ≠Δ̂yðkÞ in T -symmetry breaking superconducting phases. From
Eq. (19), we obtain Eq. (3) as a general form of Δ(k) in two-band models.

From Eqs. (15) and (19), we obtain

Tr½Mð1Þ
� ðkÞ~H0ðkÞ� ¼ 8ImðΔ1Δ

�
2Þ ´ ðψzi

k ψ
yi
k � dyik � dzik Þf k

�
þ ðψxi

k d
zi
k � ψzi

k d
xi
k � dyik ´ d0kÞ � gk

þ ðdyik � dxik � ψxi
k ψ

yi
k Þhk

�
:

ð20Þ

Then, in the σμ⊗ τν basis, the necessary conditions for the asymmetric BS (i.e.,
Tr½Mð1Þ

� ðkÞ~H0ðkÞ�≠ 0) can be summarized as shown in Table 3. For example, the
condition (I) means that the asymmetric BS appears when ImðΔ1Δ

�
2Þ≠ 0 and

ψzi
k ψ

yi
k f k ≠ 0.

Asymmetry of BS in the minimal two-band model. We here prove that Eq. (8)
indeed expresses the asymmetric BS. For r= 1, Eq. (8) leads to

E ±
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ jΔ1η

b
k j2 þ jΔ2η

ab
k j2 ± 2ImðΔ1Δ

�
2Þηbkηabk

q
± ϵak : ð21Þ

Then, we need to specify the k-parity of ϵak , η
b
k , and ηabk , which depend on the

details of the extra DOF, to investigate the property of the BS E ±
�k . We here denote

ϵa�k ¼ paϵ
a
k , η

b
�k ¼ pbη

b
k , and ηab�k ¼ pabη

ab
k (pa, pb, pab= ± 1). From Eqs. (13) and

(14), we obtain paγa ¼ Uy
Tγ

�
aUT ¼ Uy

PγaUP. On the other hand, the P; T -odd
behavior of Mð1Þ

� ðkÞ ¼ 2ImðΔ1Δ
�
2Þηbkηabk γa leads to

�pbpabγa ¼ Uy
Tγ

�
aUT ¼ Uy

PγaUP. Thus, pa=− pbpab holds in general. Using this
relation, we obtain

E ±
�k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ jΔ1η

b
kj2 þ jΔ2η

ab
k j2 	 pa2ImðΔ1Δ

�
2Þηbkηabk

q
± paϵ

a
k ; ð22Þ

where pa ¼ ± 1. Comparing Eq. (22) with (21), we can safely say that E ±
�k≠E

þ
k ;E

�
k

and the BS is asymmetric. In the same manner, we can prove the asymmetry of Eq.
(8) for r= 0.
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