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Understanding and quantifying the mutual influence between systems remain crucial but challenging tasks in any scientific
enterprise.$e Pearson correlation coefficient, the mutual information, and the information quality ratio are the most widely used
indicators, only the last two being valid for nonlinear interactions. Given their limitations, a new criterion is proposed, the
reciprocal influence criterion, which is very simple conceptually and does not make any assumption about the statistics of the
stochastic variables involved. In addition to being normalised as the information quality ratio, it provides a much better resilience
to noise and much higher stability to the issues related to the determination of the involved probability distribution functions. A
conditional version, to counteract the effects of confounding variables, has also been developed, showing the same advantages
compared to the more traditional indicators. A series of systematic tests with numerical examples is reported, to compare the
properties of the new indicator with the more traditional ones, proving its clear superiority in practically all respects.

1. Determining Statistical
Dependence between Quantities

$e investigation of the reciprocal influence between sys-
tems is a major scientific objective in practically all disci-
plines. Both linear and nonlinear effects can be important,
the latter becoming often dominant in complex phenomena
[1].$e information about systems is typically obtained with
measurements affected by various forms of uncertainties.
$e measurands can therefore be considered as random
variables, and their mutual influence is partly deterministic
and partly probabilistic in nature.

Quantifying the dependence between random variables
is an essential statistical task for both bivariate and multi-
variate data. $e most popular measure of dependence
between two quantities is the Pearson product-moment
correlation coefficient or “Pearson’s correlation coefficient”
(PCC) [2]. To alleviate its limitations (see Section 2), at the
beginning of the last century, various alternative indicators
based on ranked variables were developed, such as the

Spearman ρ or Spearman rank correlation coefficient [3] and
the rank correlation coefficient or Kendall τ [4]. After the
Second World War information theoretic criteria, such as
mutual information, became quite popular [5]. At the dawn
of the new century, a lot of work was devoted to consoli-
dating distance correlation, an indicator that is zero only
when the two variables are not correlated [6]. In the last
years, the advances in genetics have also motivated the
development of various techniques for the analysis of the
dependence between vectors in high dimensions. For this
multivariate inference, very sophisticated approaches have
been proposed, ranging from projection correlation [7] to
Ball covariance [8] and Brownian distance [9]. All these
techniques are based on specific assumptions about the
statistical properties of the vectors of random variables to
consider.$ey are also quite involved, both conceptually and
numerically.

$e indicators proposed in this paper are meant to deal
only with bivariate cases, for which no prior information is
known about the statistics of the data, so fully general
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techniques are required. A conditional version to counteract
the effects of confounding variables has also been developed.
$e indicators are also very simple from the point of view of
the conceptual background, interpretation of the results, and
implementation requirements.

Regarding the structure of the paper, Section 2 intro-
duces the most consolidated indicators, typically used to
assess the dependence between two variables. Section 3
discusses the main rationale behind the proposed alternative
indicator: the reciprocal influence criterion. $e systematic
tests, comparing the properties of RIC with PCC and IQR,
are reported in Sections 4 and 5, for functional and non-
functional dependencies, respectively. $e robustness
against the noise of statistics, different from the Gaussian
and against outliers, is discussed in Section 6. $e condi-
tional version of RIC is introduced in Section 7, before
conclusions are drawn in Section 8.

2. Traditional and Alternative Criteria to
Quantify the
Correlations between Quantities

In order to fully appreciate the potential of the new indi-
cators proposed in the paper, it is worth starting the dis-
cussion with a review of the traditional and alternative tools
most used by practitioners for the analysis of bivariate
dependence. $e linear correlations between two quantities
are typically calculated with the Pearson correlation coef-
ficient (PCC). For a couple of random variables X and Y,
indicating with cov as the covariance and with σ as the
standard deviation, the PCC is calculated as [10]

PCC �
cov(X, Y)

σxσy

. (1)

Even if it is very useful in practice, some limitations of
the PCC, particularly, its vulnerability to noise, are very
often overlooked. In any case, the detection of nonlinear
correlations between two variables is a much more serious
matter. To quantify nonlinear dependencies, historically, the
first techniques developed were based on ranking variables

(see Section 2.1). After the Second World War, indicators
based on the probability distribution function (pdf) of the
data have been developed; particularly, information theo-
retic criteria are popular (Section 2.2). Distance correlation
is a muchmore recent development, first introduced in 2005,
to remedy the problem that the Pearson correlation coef-
ficient can be zero for dependent variables (Section 2.3).

2.1. Rank-Based Criteria. In this paper, the symbol ρS in-
dicates the extension of the Pearson correlation coefficient
introduced by Charles Spearman. Spearman’s ρS is a non-
parametric measure of the statistical dependence between
the rankings of two variables; as such, it quantifies how well
the relationship between two variables can be modelled by a
monotonic function [11]. Spearman’s ρS is calculated as the
Pearson correlation between the rank values of the quantities
involved and assesses how monotonic the relation between
them is (whether linear or not). If there are no repeated data
values, ρS assumes the values +1 or − 1 when the two var-
iables are perfect monotone functions of each other.

To calculate Spearman’s ρS, the raw data Xi and Yi are
converted into ranks first: rankX and rankY; the standard
deviations of these two ranked variables are indicated with
the symbols σrankX

and σrankY
. Spearman’s ρS is then defined

as

ρS �
cov rankx, ranky􏼐 􏼑

σrankx
σranky

. (2)

$e Kendall rank correlation coefficient, named after
Maurice Kendall, was developed at the end of the 30 s, and it
is usually indicated with the Greek letter τ. It is meant to
measure the rank correlation, i.e., the similarity of the or-
dering of the data when ranked. Intuitively, the higher the
Kendall correlation between two variables, the more similar
their rank; the Kendall τ is also normalised in the sense that
it ranges between 1 and − 1 [11].

Mathematically, the Kendall rank correlation coefficient
is calculated as

τ �
(Number of concordant pairs) − (Number of discordant pairs)

n

2
􏼠 􏼡

,
(3)

where the denominator is the binomial coefficient
n

2􏼠 􏼡 � n(n − 1)/2.

2.2. Information 6eoretic Criteria. A widely used indicator
to investigate nonlinear interactions is the mutual infor-
mation, which quantifies the information shared by two

systems. $e Shannon or discrete version is defined as
[12, 13]

MIShan � 􏽘 􏽘 pxylog
pxy

pxpy

􏼠 􏼡􏼠 􏼡, (4)

where px and py are the discrete probabilities of two random
variables X and Y and pxy is their joint probability.
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A differential version of the indicator can be formulated
in terms of the probability densities fx and fy:

fx �
px

Δx
,

fy �
py

Δy
,

fxy �
pxy

ΔxΔy
,

(5)

where Δx and Δy are the dimensions of the bins. $e dif-
ferential mutual information, MIdiff, is defined as

MIDiff � 􏽚 􏽚 fxylog
fxy

fx fy

􏼠 􏼡dx dy􏼠 􏼡. (6)

It can be easily demonstrated that the two relations (4)
and (6) are equivalent; the mutual information is, therefore,
referred to as MI in the rest of the paper. MI has various
positive properties but presents the main limitation of not
being normalised. To obviate this drawback, the mutual
information is typically divided by the joint entropy to
obtain the so-called information quality ratio (IQR) [14]:

IQR �
MI

H(X, Y)
. (7)

$is quantity is normalised in the sense that it assumes
only values between zero and one. It is important to re-
member that, in equation (7), the discrete or Shannon
version of the joint entropy is to be used:

HS,XY � − 􏽘 􏽘 pxylog pxy􏼐 􏼑. (8)

$e Shannon entropy is to be compared with the dif-
ferential one, which can also assume negative values:

HD,XY � − 􏽚 􏽚 fxylog fxy􏼐 􏼑dxdy􏼐 􏼑. (9)

Equation (7) is the commonly accepted version of the
information quality ratio, normally adopted because the
differential version of the joint entropy can be negative, with
the obvious related problems and difficulties.

Unfortunately, mainly due to the denominator, the IQRS
has some limitations, particularly, a lack of robustness to
noise and a strong dependence on the choice of the bins.

2.3. Distance Correlation. $e objective of distance corre-
lation (Dcorr) consists of quantifying the dependence be-
tween two random vectors, which do not need to have
necessarily equal dimension. Dcorr has the clear advantage,
compared to the PCC, that the population distance corre-
lation coefficient assumes a zero value only if the two
random vectors are independent. $erefore, distance cor-
relation is meant to quantify both linear and nonlinear
association between two random variables or random
vectors [5].

$e calculation of Dcorr requires the definition of some
other preliminary quantities. Indicating with (Xk, Yk), k� 1,

2, . . ., n, a sample from a pair of real-valued or vector-valued
random variables (X, Y), the elements of the n by n distance
matrices (aj, k) and (bj, k) are all pairwise distances:

aj,k � Xj − Xk

�����

�����, j, k � 1, 2, . . . , n,

bj,k � Yj − Yk

�����

�����, j, k � 1, 2, . . . , n,
(10)

where || || denotes the Euclidean norm. Defining aj and akas
the jth rowmean and the kth columnmean, respectively, and
with a the grand mean of the first vector mutual distance X
matrix, one can then calculate all doubly centred distances
(with the same notation for the Y vector matrix):

Aj,k � aj,k − aj − ak + a,

Bj,k � bj,k − bj − bk + b.
(11)

$e desired sample distance covariance is then simply
the arithmetic average of the product Aj,kBj,k:

dCov2n(X, Y) ≔
1

n
2 􏽘

n

j�1
􏽘

n

k�1
Aj,k Bj,k. (12)

Indicating with distance variance,

dVar2n(X, X) ≔
1

n
2 􏽘

n

k,l�1
A
2
k,l, (13)

finally, the distance correlation is

dCor(X, Y) ≔
dCov(X, Y)

���������������
dVar(X)dVar(Y)

􏽰 . (14)

$e main properties of dCor are that it assumes values
between 0 and 1, and it is zero only if the two vectors are
independent. $e distance correlation software used in this
work is the one published by Shen Liu [15].

3. TheReciprocal InfluenceCriterion:Rationale

As will be shown in the rest of the paper, all criteria
summarised in the previous section have several drawbacks.
In this work, a new indicator, able to quantify linear and
nonlinear correlations between variables, is introduced. $e
new indicator, based on information theoretic quantities and
named reciprocal influence criterion (RIC), has been
designed to have the following properties.

3.1. Property 1. $e indicator ranges from zero (no corre-
lation) to one (perfectly correlated). $e definition of cor-
relation for this indicator is the following.

Two variables i and j are correlated when the knowledge
of i helps to predict j and vice versa.$e correlation indicator
tends to one when the uncertainty of i (j) known j (i) goes to
zero. Correlation must be equal to zero when the uncertainty
of i (j) does not change when the j (i) is known. Note that, in
this definition, symmetric equations cannot reach the value
of one; as, for example, for the function y � x2, since y is
known, there are two valid values of x (excluded x� 0 and
y� 0).
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3.2. Property 2. $e indicator does not vary as a function of
the binning used for the probability density or distribution
function calculations, i.e.,

ΔNbin

Nbin
≫
ΔRIC
RIC

, (15)

where ΔRIC denotes the difference between the indicator
values calculated with and without the outliers.

3.3. Property 3. $e indicator can be calculated indifferently
for either discrete or continuous random variables.

3.4. Property 4. Small sensitivity to outliers is quantified as
Noutliers

N
≫
ΔRIC
RIC

. (16)

$e formulation of the RIC that ensures the former
properties is

RIC � 1 −
A

Hxy

A
Hx+Hy

� 1 −
A

Hxy

A
Hx+Hy

� 1 −
1

A
MI.

(17)

$e RIC indicator is based on the ratio between the
amount of information (uncertainty) shared by the two
variables with respect to the sum of their individual in-
formation (uncertainty). In some ways, its definition is very
similar to the IQR indicator, with the main difference that
the RIC is based on the exponential of the entropy AH. $is
approach allows obtaining a much more reliable indicator,
which satisfies the aforementioned four desirable properties,
as demonstrated in the following, and presents some ad-
ditional positive qualities, namely, symmetry, asymptotic
consistency, and unbiasedness, which are discussed in
Appendix A.

With regard to the free parameter A, the choice of its
numerical value can be optimised, depending on the nature
of the data and the objectives of the investigation. $e re-
sults, reported in the rest of the paper, have been obtained by
setting A� 10, to maximise the coherence of RIC with PCC
in case of linear correlations; the equations in the following
are also particularised for this numerical value. A detailed
discussion of the RIC behaviour with the parameter A is
provided in Appendix B.

Some of the aforementioned four properties can be
analytically demonstrated. First, property 1 can be proven as
follows. For not correlated variables, Hx + Hy � Hxy and
MI⟶ 0; thus,

lim
MI⟶0

RIC � lim
MI⟶0

1 −
10HD,xy

10HD,x+HD,y
� lim

MI⟶0
1 −

1
10MI � 0.

(18)

In the case of partially correlated quantities, RIC is al-
ways positive, and for high mutual information, it tends to
one. More specifically, it is known that, for high correlation
levels, the joint entropy tends to the lowest entropy of the
two variables (Hxy⟶ min(Hx, Hy)) [16], which means
that MI⟶ max(Hx, Hy). Assuming Hy>Hx, it follows

lim
Hxy⟶ Hx

RIC � lim
Hxy⟶ Hx

1 −
10Hxy

10Hx+Hy
� lim

Hxy⟶ Hx

1

−
10Hx

10Hx+Hy
� lim

Hxy⟶ Hx

1 −
1

10Hy
> 0.

(19)

Property 3 can also be proved. Indeed, writing the RIC
using the differential information theoretic quantities and
remembering that the sum of the entropies is equal to the
sum of the mutual information and the joint entropy, it is
possible to demonstrate that RICD is the same as RICS:

RICD � 1 −
10HD,xy

10HD,x+HD,y
� 1 −

1
10MI

� 1 −
10HS,xy

10HS,x+HS,y
� RICS.

(20)

Moreover, RIC is directly correlated to the mutual in-
formation value; also, property 2 is expected to be satisfied
(and it is validated in Section 4).

In terms of interpretation, RIC remains an information
theoretic indicator, since it relies on the mutual information.
On the contrary, the monotonic transformation of (15)
provides a practically normalised indicator without having
to make recourse to the joint entropy. $e advantages of
such a reformulation will be illustrated in detail, with the
help of numerical tests, in the next sections.

4. The Reciprocal Influence Criterion:
NumericalTests forFunctionalDependencies

In this section, the properties of RIC are investigated with
the help of a series of numerical tests with synthetic data.$e
reference indicators to benchmark the performance of RIC
are the ones reviewed in Section 2, the most used by the
practitioners. Only bivariate dependences due to functional
relations are considered; nonfunctional dependencies are the
subject of Section 4.1. A general overview of the results is

Table 1: $e value of the various indicators for the cases of Figure 1.

y � x y � x2 y � ex y � sin(3x)

Pearson 0.99 0.03 0.93 0.01
Spearman 0.99 0.03 0.98 0.03
Kendall 0.93 0.02 0.90 0.01
Distance correlation 0.99 0.49 0.96 0.35
IQR 0.47 0.35 0.46 0.33
RIC 0.97 0.93 0.96 0.90
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Figure 1: $e main classes of functions tested. (a) Examples of synthetic data. (b) $e numerical values of the indicators.
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provided first and some specific aspects are discussed in
dedicated sections.

4.1. Comparison Overview. A first comparison between the
RIC and the other criteria has been performed for the
functional dependencies linear, quadratic, sinusoidal, and
exponential. $e results for a series of representative cases
are reported in Table 1. A graphical overview is provided in
Figure 1. Random noise of Gaussian distribution, with
standard deviation equal to 10% of the quantity value, has
been added to all variables.

$e values of Table 1 and inspection of Figure 1 reveal
that RIC never performs significantly worse than the other
criteria for linear dependencies. RIC starts outperforming all
other indicators in the case of nonlinear functions. More-
over, as expected, RIC provides much more reliable and
reasonable results whenever the functional dependence is
nonmonotonic and when even the ranked methods fail
miserably. Also, the indicators based on the pdf, IQR, and
distance correlation show significant difficulties to provide
acceptable results for the nonmonotonic dependencies. All
these are general properties not only true for the examples
reported but also confirmed in all cases tested.

4.2. Linear Correlations: Effects of Gaussian Noise and
Binning. $is section, with the help of Figure 2, is simply
aimed at supporting the statement that RIC can reproduce
well the values of the PCC for linear correlations. $e be-
haviour of the other indicators is also shown for com-
pleteness. $e plots of Figure 2 refer to the case of perfect
linear correlation between quantities: y� x. On the x-axis,

the standard deviation of additive noise and zero mean and
sampled randomly from a Gaussian distribution is reported.
$e results are fully general. $e RIC reproduces quite well
the values of the PCC, whereas the IQR is significantly more
vulnerable to both noise and binning. A similar analysis
indicates that RIC is also more robust against the presence of
outliers; indeed, it can tolerate about even one order of
magnitudemore outliers than IQR, confirming that property
4 of Section 3 is satisfied (with 5% of outliers, the average
Pearson coefficient variation is about 10% and the IQR
variation is 12%, while the ΔRIC is 0.7%).

4.3. Nonlinear Correlations: Effects of Gaussian Noise and
Binning. $e competitive advantages of RIC become even
more evident in the case of nonlinear correlations. $ree
exemplificative cases are reported in Figure 3, in which the
proposed new criterion is compared with IQRS. $e func-
tional dependencies reported are y� x2, y� sin (x), and
y� exp (x).

As expected, IQR is much more sensitive to the choice of
the binning and the level of noise. RIC remains stable at a
value very close to 1 for a much wider range of these factors.
Moreover, IQR does not output a value of 1 even for perfect
correlation between the two variables. $is is a consequence
of the denominator not being a normalised quantity. Again,
also in the case of nonlinear correlations, RIC provides much
more consistent results also in the presence of a significant
number of outliers (the comparative resilience is similar to
the case of linear correlations).

$e positive qualities of RIC, compared to PCC and IQR,
are not a negligible matter in practice because, in real-life
applications, the effects of the noise and the uncertainties
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Figure 2: (a) Behavior of PCC, IQR, and RIC with the standard deviation of the additive noise for linear correlations between two variables:
y� x. (b) Behavior of PCC, IQR, and RIC with the standard deviation of the additive noise when varying the binning.
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about the details of the pdfs can have a strong effect on the
conclusions.

It should be noted that, from the analysis performed as a
function of the binning, it is clear that property 2 of Section 3
is satisfied, i.e., ΔNbin/Nbin≫ΔRIC/RIC.

5. The Reciprocal Influence Criterion:
Numerical Tests for
Nonfunctional Dependencies

$e cases treated in this section, to exemplify the properties
of RIC for nonfunctional dependencies (with additive
Gaussian noise of mean equal to zero and standard deviation
equal to 0.1), are shown in Figure 4. $ese types of

dependencies are quite involved and difficult to resolve.$ey
are fully nonlinear and they cannot even be represented by
functions. For all these cases, RIC performs significantly
better than all other indicators. A synthetic overview of the
results is reported in Table 2.

Inspection of Table 2 and Figure 4 reveals that the RIC
criterion is always higher than the others by a factor. A part
of the case of the rhomboid dependence always provides a
value of 0.8 or higher, whereas the other indicators are closer
to zero. $e RIC, therefore, provides a much more reliable
indication that there is a strong correlation between the two
variables involved. Even the two other most sophisticated
criteria, the IQR and distance correlation, perform signifi-
cantly worse for all the examples investigated.
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Figure 3: Behavior of PCC, IQR, and RIC with the standard deviation of the additive noise for various nonlinear dependencies. (a) y� x2.
(b) y� sin (x). (c) y� exp (x).
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6. Robustness to Noise of Different Statistics
and Outliers

$e signals and data acquired in many scientific disciplines
are typically affected by noise. $e assumption of Gaussian

statistics is often justified, but there are also other important
types of noise of great practical and theoretical importance.
Two of the most relevant distributions are certainly the
Poisson and gamma.

Poisson distribution:
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Figure 4: Main examples of the main functional dependencies investigated. (a) Examples of synthetic data. (b) $e numerical values of the
indicators.
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Table 2: $e value of the various indicators for the case of Figure 4.

Circular Double squared Rhombus
Pearson 0.00 0.00 0.03
Spearman 0.00 0.00 0.04
Kendall 0.00 0.00 0.02
Distance correlation 0.19 0.31 0.15
IQR 0.21 0.31 0.05
RIC 0.80 0.89 0.38
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Figure 5: Comparison of RIC and the other criteria for nonlinear correlations, y� 30 sin (3x), in which the signals are affected by additive
noise of different statistics.
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f(x) �
λn

n!
e

− λ
, ∀n ∈ N. (21)

Gamma distribution:

f(x) �
x

k− 1
e

− x/θ

θkΓ(k)
, ∀x> 0, k, θ ∈ N. (22)

Figure 5 reports some comparative examples of the
performance of the various indicators for these two distri-
butions.$e cases reported are full representatives of a series
of systematic tests performed to investigate this point. In
general, as for the Gaussian distribution reported in Figure 5
as a reference, RIC is also much less affected by additive
noise of different distributions.

Another potential source of data contamination, of great
practical relevance, is the presence of outliers. If the user is
aware of the problem and has some prior information about
the statistics of the outliers, some measures to remedy the
situation can be taken before applying the dependence in-
dicators [17, 18]. $ese measures belong to the family of
robust statistics and can be quite effective. On the contrary, it
is not always the case that the practitioner is aware of the
issue and therefore investigating the robustness of the
various dependence criteria to outliers remains a significant
subject. Some representative results of a series of systematic
tests, performed to assess this aspect, are shown in Figure 6
for the main classes of functional dependencies. In these
cases, the outliers are generated as random Gaussian points
with a mean equal to zero and standard deviation
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Figure 6: Robustness of RIC and other criteria against outliers. $e x-axis reports the percentage of outliers generated randomly using a
Gaussian distribution of large standard deviation.
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comparable to the range of the function. As expected, the
most vulnerable indicator is the PCC. $e rank-based cri-
teria and the distance correlation are slightly more insen-
sitive; the outliers must be relatively high both in number
and amplitude to affect the ranking, before they have a
detrimental effect on the values of these indicators. In any
case, even in the presence of outliers, RIC remains the most
robust criterion.

7. The Conditional Version of the Reciprocal
Influence Criterion

In many applications of correlation analysis, one funda-
mental objective consists of determining the mutual influ-
ence between variables in the presence of confounding
factors. It is therefore natural to investigate the potential of a
conditional version of RIC:

RICcond(X, Z|Y) � 1 −
1

10MIcond(X,Z|Y)
. (23)

In the following plots, the performances of RICcond are
compared with the ones of a conditional version of IQR:

IQRcond(X, Z|Y) �
MIcond(X, Z|Y)

HXZ

. (24)

$e plots of Figure 7 report only the cases of nonlinear
correlations (z� x2+ y, z� x3+ y, z� ex + y), but the same
conclusions apply also to linear effects.

In addition, in this application, RIC provides much
better resilience to noise, and it is less dependent on the
choice of the binning to determine the pdfs of the quantities
involved. Moreover, even for very low levels of uncertainty,
in the limit of no noise, it manages to identify more clearly
the mutual correlations actually at play.

8. Discussion and Conclusions

To quantify the mutual influence between quantities, a new
indicator has been introduced, the reciprocal influence
criterion. A conditional version to separate the effects of
confounding factors has also been devised. RIC reproduces
the results of PCC in the case of linear correlations but is
more robust against the influence of additive noise and
outliers. In the case of nonlinear influences, RIC outper-
forms not only the ranked criteria and the distance co-
variance but also the information theoretic indicators such
as the IQR in many respects; it provides more interpretable
results and is more robust against noise and less sensitive to
the choice of the binning of the pdfs involved. All these
competitive advantages can be quite important in practice.

Other aspects, not to be neglected in the perspective of a
wide application of the proposed indicator, are the fact that
RIC is conceptually very simple, easy to implement, and fully
general, in the sense that it does not rely on specific as-
sumptions about the properties of the stochastic variables
involved. In terms of requirements on the data, of course,
enough examples must be available to properly calculate the
pdfs, but again RIC is more parsimonious than the other
indicators, which require estimating the probability distri-
bution functions of the quantities involved.

Regarding future developments, it is planned to inves-
tigate whether alternative versions of the entropy and,
therefore, of the derived quantities, can help improve the
performance of RIC [19–22]. Furthermore, additional for-
mulations, more suited to the investigation of actual causal
relations than simple correlations, are also under consid-
eration [23–26]. In terms of practical applications, some of
the most immediate range from the investigation of syn-
chronization experiments and disruptions in thermonuclear
fusion [27–37] to the refinement of measurement techniques
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Figure 8: Trends of RIC versus the squared Pearson correlation coefficient for various values of A.
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and data analysis methods in earth sciences and plasma
physics [38–40].

Appendix

A. Additional Useful Properties of the
Reciprocal Influence Criterion

$is appendix is devoted to showing how RIC satisfies some
basic properties, which are desirable of any correlation
criterion. $ey are symmetry, asymptotic consistency, and
unbiasedness (independence from offset).

Symmetry: RIC (X, Y) is equal to RIC (Y, X). $is is
obviously true, being the mutual information sym-
metric. Indeed,

RIC(X, Y) � 1 −
1

10MI(X,Y)
� 1 −

1
10MI(Y,X)

� RIC(Y, X).

(A.1)

Asymptotical consistency: this property means basi-
cally that the indicator assumes appropriate values
when the MI decreases toward zero or becomes very
large. Also, in this respect, RIC behaves very satisfac-
torily. $e indicator ranges from 0 to 1 and increases
monotonically with MI, as can be derived directly from
equations (19) and (20).
Independence to offset (unbiased): this additional very
important property assures that a constant offset or bias
in the data does not affect the results and can be written
as RIC (X+ a, Y+ b)�RIC (X, Y) ∀a, b ϵ P. Also, this
property is a direct consequence of the unbiased nature
of the mutual information. Indeed,

RIC(X + a, Y + b) � 1 −
1

10MI(X+a,Y+b)
� 1 −

1
10MI(X,Y)

� RIC(X, Y).

(A.2)

B. The Choice of Parameter A

In general, the RIC indicator is defined as

RIC � 1 −
A

Hxy

A
Hx+Hy

� 1 −
1

A
MI.

(B.1)

In this appendix, the behaviour of RIC with respect to A
is discussed. $e parameter A can indeed be optimised
depending on the situation and the objectives of the analysis.
$is degree of freedom can become handy in various ap-
plications. $e reason why A has been set equal to 10, to
obtain the results presented in his work, is that, for this
choice, RIC produces quite well the trends of the PCC in case
the correlation between the two quantities analysed is linear.
Figure 8 shows how the RIC values vary as a function of the
linear correlations between x and y and A.

For A� 10, RIC varies almost linearly with squared PCC,
and the consistency with this very popular indicator can be
considered a positive quality in most applications.
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[9] G. J. Székely andM. L. Rizzo, “Brownian distance covariance,”
Annals of Applied Statistics, vol. 3, no. 4, pp. 1236–1265, 2009.

[10] SPSS Tutorials: Pearson Correlation, 2017, https://libguides.
library.kent.edu/SPSS/PearsonCorr.

[11] G. W. Corder and D. I. Foreman, Nonparametric Statistics: A
Step-by-Step Approach, Wiley, Hoboken, NJ, USA, 2014.

[12] D. J. C. MacKay, Information 6eory, Inference and Learning
Algorithms, Cambridge University Press, Cambridge, UK,
2003.

[13] C. Arndt, Information Measures, Information and its De-
scription in Science and Engineering, Springer Series: Signals
and Communication Technology, 2004.

[14] T. Cover and J. A. $omas, Elements of Information 6eory,
Wiley-Interscience, New York, NY, USA, 2nd edition, 2006.

Complexity 13

https://libguides.library.kent.edu/SPSS/PearsonCorr
https://libguides.library.kent.edu/SPSS/PearsonCorr


[15] R. Wilcox, “Introduction to robust estimation and hypothesis
testing,” Statistical Modeling and Decision Science, Elsevier/
Academic Press, Amsterdam, Netherlands, 3rd edition, 2012.

[16] P. Baudot, M. Tapia, D. Bennequin, and J.-M. Goaillard,
“Topological information data analysis,” Entropy, vol. 21,
no. 9, p. 869, 2019.

[17] S. Liu, Distance Correlation, 2020, https://www.mathworks.
com/matlabcentral/fileexchange/39905-distance-correlation.

[18] T. P. Hettmansperger and J. W. McKean, Robust Nonpara-
metric Statistical Methods, Kendall’s Library of Statistics, John
Wiley & Sons, Inc., New York, NY, USA, 1998.

[19] F. Nielsen and R. Nock, “A closed-form expression for the
Sharma-Mittal entropy of exponential families,” Journal of
Physics A: Mathematical and6eoretical, vol. 45, no. 3, Article
ID 032003, 2011.
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