AUTOMORPHISMS OF CARTAN MODULAR CURVES OF PRIME
AND COMPOSITE LEVEL
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ABSTRACT. We study the automorphisms of modular curves associated to Cartan sub-
groups of GLy(Z/nZ) and certain subgroups of their normalizers. We prove that if n is
large enough, all the automorphisms are induced by the ramified covering of the com-
plex upper half-plane. We get new results for non-split curves of prime level p > 13: the
curve X} (p) has no non-trivial automorphisms, whereas the curve X,s(p) has exactly
one non-trivial automorphism. Moreover, as an immediate consequence of our results
we compute the automorphism group of XF(n) := Xo(n)/W, where W is the group
generated by the Atkin-Lehner involutions of X((n) and n is a large enough square.

INTRODUCTION

Since the 1970s many efforts have been made to determine automorphisms of modular
curves and in particular to establish whether a modular curve has other automorphisms
besides the expected ones. Indeed, infinite automorphisms naturally arise when the curve
has genus zero or one. Moreover, since the components of modular curves over C can be
seen as compactification of quotients of the complex upper half-plane H, some automor-
phisms of H induce automorphisms of the quotient modular curve. Such automorphisms
are called modular and their determination is a purely group theoretic problem.

The focus has been classically placed on the modular curves Xy(n) associated to a
Borel subgroup of GLy(Z/nZ) (e.g., upper triangular matrices), with n a positive integer.
For these curves, modular automorphisms played an important role in the development
of the theory of modular curves. They were determined in the seminal paper [ALT0],
with a small gap which was later filled in a couple of different ways (see [AS90], [Bar0g]).
Meanwhile, a complete picture about the remaining automorphisms of Xy(n) has been
painted through the decades by the works [Ogg75al, [Ogg77], [KMS8S], [E1k90], [Harll].
Also some works in this century (e.g., [BHO03|, [Merl8], [Gonl6]) took on the case of the
modular curves Xo(p)/{w,y and Xo(p?)/{w,2), where w, and w, are the Atkin-Lehner
involutions of the respective modular curve.

More recently, great interest has been generated in modular curves associated to differ-
ent subgroups of GLy(Z/nZ), in particular to normalizers of Cartan subgroups for n = p
prime. This is mainly due to the fact that rational points on these curves help classifying
rational elliptic curves whose associated Galois representation modulo p is not surjective.
This is directly linked to a question formulated by Serre (also known as uniformity con-
jecture) in the 1970s ([Ser72]). After the works [Maz78], on the Borel case, and [BP11],
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[BPR13], on the split Cartan case, the only part of this problem left to understand nowa-
days is equivalent to asking whether, for almost every prime p, the modular curve X (p)
associated to the normalizer of a non-split Cartan subgroup of GLy(Z/pZ) has other
rational points besides the expected ones, namely the CM points of class number one.
This equivalence led to a certain amount of research driven towards computing equations
and finding rational points of modular curves associated to non-split Cartan subgroups
and their normalizers (see for example [Bar09], [Bar14], [BDM™19|, [DFGS14], [DMS19],
[MS20]).

A curious connection between the problem of determining rational points and the one of
determining automorphisms in a modular curve is given by the fact that in the case of the
Borel modular curves Xy(p) of genus at least 2, the sole occurrence of unexpected rational
points (p = 37) in the setting of Serre’s uniformity conjecture, happens in the presence of
an unexpected automorphism of the corresponding modular curve. A further connection
is made in [Dos16], where is proven that, for p = 29, the absence of unexpected rational
points of the curve X (p) implies the absence of unexpected rational automorphisms of
the modular curve X,5(p) associated to a non-split Cartan subgroup of GLy(Z/pZ).

The first work centered on automorphisms of non-split Cartan modular curves has been
[DFGS14], in which the existence of an unexpected automorphism of X,s(11) is proven.
Some partial results on the automorphisms of X,s(p) and X% (p), for almost every prime
p, were proven in [Dos16], while in [Gonl7] the full determination of the automorphism
group is obtained for low primes (p < 31).

In the present work, we prove unconditionally that every automorphism of X 4(p) and
X5 (p) is modular for p > 13. In fact, we also extend this to composite level n where
we can define Cartan subgroups of mixed split/non-split type. The scope of our study
concerns Cartan subgroups and also a specific subgroup of their normalizer in GLy(Z/nZ)
which we call Cartan-plus subgroup. However, in most cases, for example when n is
odd, a Cartan-plus subgroup actually coincides with the normalizer of the relative Cartan
subgroup. We prove the following result:

Theorem Let n = 10 be an integer and let H < GLo(Z/nZ) be either a Cartan
or a Cartan-plus subgroup. Then every automorphism of Xg is modular, hence we have

N'/H' x 7Z)2Z, if n =2 mod 4 and H is a Cartan-plus split at 2,

Aut(Xpy) =
ut(Xn) {N’/H’, otherwise,

where N’ < SLo(Z/nZ) is the normalizer of H' := H n SLy(Z/nZ).

The huge bound of 10%° comes from Proposition [4.7] hence from our estimates of the
dimension of the CM part of Jy(n). However, explicit computations can make the method
work for low levels (see Table in the Appendix). It may be interesting to note that
the modular curve associated to a Cartan-plus subgroup of GLg(Z/nZ) which is split at
every prime dividing n is isomorphic to the modular curve X#(n?) := Xy(n?)/W, where
W is the group generated by Atkin-Lehner involutions of the Borel curve Xy(n?). For
these curves, the case where n is squarefree has been recently determined in [BG].

In the case n = p®, where p is a prime number, we can refine the techniques developed
and obtain a more complete result:

Theorem [5.11L Let p be a prime number and let e be a positive integer. If p¢ > 11 and
p° ¢ {33,24,25 25} then all the automorphisms of X,s(p®), X,5(p%), Xs(p®) and X (p®) are
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modular and

Aut(Xns(p°)) = Z/2, Aut(X(p%)) = {1},
(Z/8Z)* x (Z)2Z), ifp=2, 7/87Z, ifp=2,
Aut(X(p©)) = { Z/3Z x S, if p=3, Aut(X;](p°) =<7Z/3Z, ifp=3,
7,)27, ifp>3, (1}, ifp>3,

where the above semidirect product (Z/8Z)* x Z/2Z is described in Table [5.1]

Corollary Let p = 13 be a prime number. Then the group of automorphisms of
X (p) is trivial and the group of automorphisms of Xs(p) has order 2.

The idea of the proof is the following. We start by showing that an automorphism u of
Xp is defined over some explicit compositum of quadratic fields. This is done by studying
the endomorphisms of the jacobian of Xy, which, through an isogeny relation, can be seen
as endomorphisms of the well known modular jacobians Jy(n). The fact that u is defined
over a compositum of quadratic fields, together with the Eichler-Shimura Relation, allow
us to show that u “almost” commutes with the Hecke operators. We can then describe
the action of Hecke operators on cusps and branching points of the cover H — Xy, and
prove that u preserves both these sets. This allows to lift « to an automorphism of H.

The main technical novelty of our proofs is the analysis of the action of Hecke operators
mentioned above, which permits us to prove the result about automorphisms without
exploiting and worrying about the field of definition of the cusps and CM points, which has
been instead instrumental for determining automorphisms of modular curves throughout
the literature in the past. In fact, both [KMS8§] and [Dos16] use the field of definition of
the cusps to prove that an automorphism must preserve the set of cusps. In [KMS8S], this
is enough to exclude the existence of non-modular automorphisms, in combination with
the rich action of the modular automorphisms of Xy(n) on the set of cusps. In [Dos16l,
the lack of the preservation result on the set of branching points confines the analysis to
the levels where there are no branching points at all. We also give a la Chen results to
describe jacobians of Cartan modular curves in terms of jacobians of Borel modular curves
and we give an explicit upper bound on the dimension of the CM part of the jacobian of
Borel modular curves.

The structure of the paper is the following.

In Section [If we define modular curves associated to general subgroups of GLy(Z/nZ)
and we give an equivalent condition to the fact that a point of a modular curves branches
in the covering of the curve by H.

In Section [2l we study the action of Hecke operators on modular curves. In particular we
focus on the action on the cusps and the other points which could branch in the covering
by H. Such points are associated to elliptic curves with j-invariant equal to 0 or 1728.

In Section [3| we define Cartan and Cartan-plus subgroups of GLy(Z/nZ) for every
positive integer n. We also define the relative modular curves of composite level. Then
we prove that the jacobian of a Cartan modular curve is a quotient of the jacobian of
some Borel modular curve. When n = p€, this is done applying the techniques of [Che04]
and [dSE00] to a previously unexplored case, and for n general we combine these results.
We also extend the results of [Che04] to the case of even level.

In Section [4] we prove that all the automorphisms of Cartan modular curves must be
defined on a compositum of quadratic fields when the level n is large enough. To do
this, we use a geometrical criterion that we can apply by bounding the dimension of the
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CM part of the jacobian of Cartan modular curves. This last step is obtained using the
isogenies of Section [3| and computing explicit bounds for the CM part of the jacobians
of Borel modular curves. Furthermore, we refine the results in the case n = p¢, with p
prime.

Finally, in Section [5| we prove the results stated above about automorphisms. After
showing that each automorphism must preserve the cusps and the set of branching points
of the covering by H, we prove that there are no non-modular automorphisms. Thus, we
compute the modular automorphisms to complete the analysis and we discuss their field
of definition. We first concentrate on Cartan modular curves of general level n. Then we
adapt the strategy to the case n = p°, with p prime, giving the complete result for X ,4(p)
and XX (p), and improving the result we obtained for the general level in the cases of
X (p9), Xus(p®) and XX (p°). To treat some of the small level cases, we use the criterion
of [Gon17] and some ad hoc arguments which we verify through an algorithm implemented
in MAGMA ([BCES]) which is available at [Scr].

As we did for the case of level n = p°, with p prime in Theorem [5.11] the result on
Cartan modular curves of composite level can be sharpened, with our techniques, for
levels with a specific type of factorization. However, certain cases remain out of the reach
of the strategy described in this work: for example when we are not able to complete the
argument using the criterion of [GonI7] and either we have a low gonality lower bound
for the modular curve (e.g., Xus(16), X,5(27), X0s(27), X, 5(32), X0ns(32), XL(64)) or its
jacobian has a large CM part relative to its dimension (see Remark for the example
with the lowest level). A table with the relevant data for the totally split or totally
non-split curves of level n < 64, and the description of a few cases having exceptional
automorphisms, can be found in the Appendix.

1. MODULAR CURVES

Let n be a positive integer. We denote by Y(n) the (coarse if n < 3) moduli space
that parametrizes pairs (E,¢) where E is an elliptic curve over a Q-scheme S and
¢: (Z/nZ)% — E[n] is an isomorphism of S-group schemes. We denote by X (n) the
compactification of Y (n) and we call X (n) the modular curve of full level n.

Every matrix v € GLy(Z/nZ) gives an automorphism of the constant group scheme
(Z/nZ)%, hence v acts on Y (n) sending (E,®) to (E,$ o). This defines an action of
GL3(Z/nZ) on Y (n) that extends uniquely to X (n). For each subgroup H of GLy(Z/nZ),
let Xy be the quotient X(n)/H. By [DR73, IV.6.7], Xz has good reduction over each
prime that does not divide n and the smooth model of Yy = Y (n)/H over Z[1/n] is a
coarse moduli space for elliptic curves with H-structure, i.e., the equivalence classes of
pairs (E, ¢) where E is an elliptic curve over a Z[1/n]-scheme S and ¢: (Z/nZ)% — E[n]
is an isomorphism of S-group schemes, and the equivalence relation is given by:

(1.1) (E,¢) ~u (E',¢") = (¢') " otlgmo ¢ =h, for some he H and 1: E > E'.

In particular, for every algebraically closed field K of characteristic p t n, we have a
bijection between Yy (K') and the set of elliptic curves over K with H-structure. Note
that Equation , for fields with characteristic p 1 n, means that (E,¢) ~y (E',¢) if
and only if the matrix associated to the action of ¢|gp,) relatively to the Z/nZ-bases of
E[n] and E’[n] defined via ¢ and ¢, respectively, belongs to H.

Remark 1.2. Since —1 is an automorphism of every elliptic curve, then for every H, the
curve Xy is isomorphic to Xipg, where +H := {+Id}-H < GLy(Z/nZ). Hence, the
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equivalence relation ((1.1)) can be written as follows
(E,¢) ~u (E',¢)) = (¢/) " otlgmo¢=h, for some he +H and 1: E > E'.

Let H be the complex upper half-plane {r € C : Im(7) > 0}, let HF = C — R and
moreover let Il = H U PL(Q) and H™ = H* U P}(Q) be their “compactifications”. The
group GLy(Z) acts on H* and H~ by Mobius transformations. Moreover, every g in
GLy(Z) acts on pairs (z,v7H) € H* x (GLo(Z/nZ)/H) as (g(z),g TvH), where g(z) is
the image of z under the Mobius transformation given by ¢ and g7 is the transpose of
the inverse of the reduction g of g mod n. This action gives canonical isomorphisms of
Riemann surfaces

(1.3) GLo(Z)\ (H* x (GLy(Z/nZ)/H)) —> Yi(C),
(1.4) GLo(Z)\(H" x (GLy(Z/nZ)/H)) — X (C).

The isomorphism (1.3 is equivalent to that one described in [DR73, IV.5.3] and is
given by GLo(Z)(7,vH) — (E., ¢, o v), where E, is the elliptic curve C/(Z+Z1) and
¢,: (Z/nZ)E — E;[n] is the unique isomorphism such that

1 T 0 1
o()-3 +()-2

b
d
(Er, ¢r07) and (Ey(ry, dg(ry © g1 7) are equivalent because the map z — (cr + d)z gives
an isomorphism ¢: Ey ;) — E, such that ¢ ' o010 ¢y = g7. Consequently, we obtain an
action of GLy(Z) on pairs (F,, ¢, o y) which is the same as the action of Equation (|1.3)
and Equation . We notice that the transposition is necessary to make all the maps
and the actions compatible.

The isomorphism is just the extension of the previous one to the compactifications.
For each subgroup H of GLy(Z/nZ), we define

[y = {y€SLy(Z) : 4" (mod n) lies in H}.
If det H # (Z/nZ)*, then Xy (C) is not connected: the number of connected components

is [(Z/nZ)* : det(H)] and, for each connected component X§(C), there are isomorphisms
of Riemann surfaces

(1.5) Lyrrg1 \H — X§7(C), Typyr\H — Y5(C),
FgHgflT — (ET7 ¢T o g)a

for some g in GLy(Z/nZ). In particular, if det H = (Z/nZ)*, then Yy and Xy are
geometrically connected curves defined over Q.
The following proposition about the isomorphism (1.3]) is used in Section

We notice that for each g = <(Z > € GLy(Z) and for each v € GLy(Z/nZ), the two pairs

Proposition 1.6. Let n be a positive integer, let H be a subgroup of GLy(Z/nZ), let
g € GLo(Z/nZ) and consider the composition

H—— T,g,\H —— Yy (C),

gHg

where the left map is the natural projection and the right map s in . Then a point
(E,¢) € Yu(C) is a branch point for such composition if and only if there is a non-trivial
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automorphism u of E such that ¢_1ou|E[n]o¢ € +H. If this happens, then each point
T € H projecting to (E, ¢) has ramification index #Aut(E)/2.

Proof. By Remark we can suppose that H contains —Id. Instead of looking at a map
H — Yy (C) parametrizing a single component of Yy, we can work with the canonical
map

H* x GLy(Z/nZ) —"— Y (n)(C) —= Yy (C).

\_/’

Up to substituting n with 3n and H with its preimage under GLo(Z/3nZ) — GL2(Z/nZ),
we can suppose that n > 3. This implies that 7 is an (unramified) covering map, hence
the ramification index of the 7y o 7 in a point (7,7) is equal to the ramification index
of my in the point 7 (7, 7). Hence, we only need to look at the ramification points of 7.
A point (E,$) € Yy(C) is a branch point for 7y if and only if the fiber 7' (E, ¢) has
cardinality smaller than degmy = #H /2. The modular interpretation of Yz and Y (n)
implies that

(1.7) T (B, ¢) = {(E, u|godoh) : h € H,ue Aut(E)}/Aut(E),

where v € Aut(E) acts sending (E, 1) to (E,v|gp10¢0). Since n > 3, the map that sends
u to ¢~ tou| g, 09 gives an inclusion Aut(E) < GLy(Z/nZ), hence, by (1.7)), we have

#i (B, 0) = # ((H-Aut(E)/Aut(E) ) = #(H/(HAw(E))),

The group Aut(FE) always contains the multiplication by —1 and is cyclic of order 2,4
or 6. Finally, there are two options for Aut(E)nH:

e Aut(E)nH only contains +1d and (E, ¢) is not a branch point;
e Aut(E)nH has order equal to #Aut(E) > 2, in this case (£, ¢) is a branch point
and, since the map my is Galois, every point in WEI(E ,®) has ramification index

deg(mr)/#7y (B, ¢) = #Aut(E)/2.
U

Remark 1.8. Notice that all the statements of Section [I] and Section [2] are presented for
a subgroup H of GLy(Z/nZ), which is not defined for n = 1. However, we can deduce all
the same conclusions for the curve X (1) since it is isomorphic to Xy with, for example,
n =3 and H = GLy(Z/nZ) (in this case, of course n is not the level of the modular curve
in the usual sense).

2. HECKE OPERATORS

Let n be a positive integer and let H be a subgroup of GLs(Z/nZ). For every prime
¢ 1 n, there is a divisor D; € Xy x Xp inducing the ¢-th Hecke operator

T,: Div(Xg) — Div(Xy), T;: Jac(Xy) — Jac(Xg).
On Yy (C), it is described by
(21) T@(E7¢) = Z (E/Caﬂ—COQS)?
0<C<E[{]

where ¢ : E — E/C is the natural projection. Now we recall the definition of 7. Let H,
be the subgroup of GLy(Z/nlZ) containing the matrices whose reduction modulo n lies
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in H and whose reduction modulo ¢ is an upper triangular matrix. Given a Z[ﬁ]—seheme
S and an elliptic curve E/S with Hy-structure ¢: (Z/nlZ)* — E[nf], we have two ways
of constructing an elliptic curve over S with H-structure:

e The n-torsion subgroup of (Z/nfZ)?* is canonically isomorphic, via the Chinese
Remainder Theorem, to (Z/nZ)? and the restriction of ¢ to this subgroup gives
an isomorphism ¢|z/mzy2: (Z/nZ)> — E[n]. One can check that the class of
(E, ¢|(z/mzy2) modulo ~p does not depend on the choice of the representative
(E, ¢) in the equivalence class defined by ~p,, hence

pI‘(E7 ¢) = (Ea ¢|(Z/nZ)2)
is a well defined elliptic curve over S with H-structure.
e The subgroup C' © E[/] generated by ¢(§ ) is a subgroup of E of order ¢ and E/C
is an elliptic curve over S. Denoting by m¢: £ — E/C the natural projection, we
have that

qt(E, ¢) := (E/C, ¢ © | z/mz)>)
is a well defined elliptic curve over S with H-structure.

These two constructions define natural transformations between the functor of elliptic
curves with H,-structure and the functor of elliptic curves with H-structure restricted to
1

schemes over Z[-;]. We get induced morphisms between the coarse moduli spaces Y,

and (Yir)z 1 that can be extended by smoothness to the compactifications:
pr,qt: Xg, — (XH)Z[%Z]'
The image of Xy, under the map (pr, qt) defines a divisor inside (X H)Z[%] x (X H)Z[%g]'
Since Xy is smooth over Z[%], this divisor extends uniquely to D, € Xz x Xz whose irre-
ducible components project surjectively on each factor Xg. This correspondence induces
the operator T, = qt, o pr* and the definitions of qt and pr imply the equality (2.1).
The reduction of T, modulo ¢ is described by a celebrated theorem of Eichler and

Shimura. To state this theorem in the full generality, we recall the definition of diamond
operators. Let a € (Z/nZ)*, then the matrix (&9 ) normalizes H, hence

(@)(E,¢) = (E,¢o(§q))
defines an automorphism of the functor of elliptic curves with H-structure. So (a) induces
an automorphism of the coarse moduli space Yy and it extends to an automorphism of
the compactification Xg. Eichler-Shimura Relation is nowadays a common knowledge,
but in the literature is often stated in a different form than we need. The proof of [DS05,
Theorem 8.7.2] can be directly adapted to our case, and another proof is in [Shi7lal
Theorem 7.9 and Corollary 7.10]. We use the result in the following form.

Theorem (Eichler-Shimura Relation). Letn be a positive integer, let H be a subgroup
of GLy(Z/nZ), let £ be a prime number not dividing n, let Xy be the reduction of Xy
modulo £, let Ty, {0): Div(X ) — Div(Xy) be the reduction of the Hecke operator T, and
of the diamond operator {{) and let Frob,: Xy — Xy be the Frobenius morphism. Then

Ty = (Froby), + (), o (Frob,)*.

Notice that in general Xp is not geometrically connected and if X’ is a connected
component of X g, the Frobenius morphism Xy — Xy may not restrict to a morphism
X" — X’. Analogously, if = is a point on X', the divisor T;(x) may be not supported
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on X’. We are interested in Eichler-Shimura Relation because, as already pointed out
in [KMS8S8, Lemma 2.6], it implies that, in certain cases, the automorphisms of modular
curves automatically commute with all Hecke operators 7}.

Proposition 2.2. Let n be a positive integer, let H < GLo(Z/nZ) be a subgroup contain-
ing the scalar matrices and such that det H = (Z/nZ)*. Let { be a prime not dividing n
and let o € Gal(Q/Q) be a Frobenius element at £. Then, for any automorphism u of X
defined over a compositum of quadratic fields, in End(Jac(Xy)) we have

(23) Tg ou=u’o Tg,

where we identify u and u’ with their pushforward on Jac(Xg). Moreover, if the gonality
of X (C) is greater than 2(¢ + 1), then holds at level of divisors.

Proof. Let J := Jac(Xg), let Froby: Xy — Xy be the Frobenius morphism and let ¢,
be the Frobenius generator of Gal(IF,/F,). Let D € Div(Xy) and let @ be the reduction
of u modulo ¢. Using Eichler-Shimura Relation, we have

Tyou(D) = ((Froby)s + (Frob,)*) o a(D) = (Froby).u(D) + (Frob,)*u(D) =
— % (Froby),(D) + @%  (Frob,)*(D) = u?(Frob,)+(D) + u ' (Frobe)*(D).

Now, since u is defined over a compositum of quadratic fields, the Galois automorphisms
o and o~ ! act in the same way on w. This implies that the last term in the previous chain
of equalities is equal to u? o Ty(D) obtaining Ty o @ = u o Ty in End(Jg,).

Since J has good reduction at ¢, the natural map End(J) — End(Jg,) is injective,
hence holds in End(J). This means that, for any two points P and @) in Xz (C), the
divisor D := (Tyu — u®Ty)(P — Q) is principal. Hence, either D is the zero divisor or is
the divisor of a non-constant rational function on Xy of degree at most 2(¢ + 1).

Now we suppose that the gonality of Xy exceeds 2(¢ + 1). In this case, there are no
non-constant rational functions on Xy of degree at most 2(¢ + 1), hence D is the zero
divisor. This gives the following equality of divisors:

Tou(P) + uTy(Q) = u’Ty(P) + Tyu(Q).

For every point P, we can choose ) such that the supports of Tyu(P) and Tyu(Q) are
disjoint, and, therefore, last equality implies Tyu(P) = u”T,(P) as divisors. Up to a base
change to C, each divisor on Xy is a sum of points with integer coefficients, hence we

conclude that (2.3]) holds at level of divisors. O

Multiple points in the image of Hecke operators. In the proofs of Section [5| we
look at points P € Xy (C) and primes ¢ such that Ty(P) is not a sum of distinct points.
In this subsection we study this phenomenon. We denote by p = e5 the primitive third
root of unity contained in H. Moreover, for every 7 € H, we denote by E, the elliptic
curve C/(Z+7Zt). The main result is the following

Theorem 2.4. Let n be a positive integer, let H be a subgroup of GLa(Z/nZ) and let
¢ =5 be a prime not dividing n. Then, for all points P € Xy (C), we have that:
(1) in Ty(P) there is a point with multiplicity at least 4 if and only if P is a cusp;
(2) in Ty(P) there is a point with multiplicity 3 if and only if P = (E,, ¢) for some ¢
such that and the matriz ¢_1op|Ep[n]o¢ lies in +H;
(8) in Ty(P) there are two distinct points with multiplicity 2 if and only if P = (E;, ¢)
for some ¢ such that the matriz ¢~ oi| g, 00 lies in +H.
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Proof. This immediately follows from the following Propositions 2.5, 2.7 and 2.9] O
When P is a cusp, we have the following result.

Proposition 2.5. Let n be a positive integer and let H be a subgroup of GLo(Z/nZ). Let
€ be a prime number not dividing n, let o € Gal(Q/Q) be a Frobenius element at ¢ and let
C e Xy (Q) be a cusp. Then, at the level of divisors we have

Ty(C) = C7 +£{0)(C7 ).

Proof. The divisor T;(C') = qt,pr*(C) is supported on the cusps because the maps
pr,qt: Xy, — Xg send non-cuspidal points to non-cuspidal points and cusps to cusps.
If we fix a prime ideal [ in the algebraic integers such that [ | ¢, then, by [DR73, 1V.3.4],
each cusp in X H(@) reduces to a different point modulo [. Thus, it is enough to prove
that T;(C) is congruent to C7 4+ £{(¢)(C° ") modulo [, and this is true by Eichler-Shimura
Relation. 0

We need a criterion to characterize the points (E, ¢) € Yy (C) such that their image via
T, contains a point with multiplicity at least 2. It is given by the following lemma.

Lemma 2.6. Let n be a positive integer, let H be a subgroup of GLa(Z/nZ) and let ¢ be
a prime not dividing n. For all points (E,¢),(E’,¢') € Yy (C) and all positive integers
m = 2, the following are equivalent:
(1) T,(E, ¢) contains (E',¢') with multiplicity m;
(2) there are m isogenies oy, ...,an: E — E' of degree { with distinct kernels such
that (¢')toaj| prayo¢ lies in +H, for every j =1,...,m;
(3) there are m endomorphisms By = £, Ba, ..., Bm of E' of degree £* and an isogeny
a: B — FE of degree  such that:

P1: 3, #uop;, fori,j =1,...,m, such that i # j and for each u € Aut(E’);

P2: kera < ker 3;, for every j =1,.

P3: the matrices (¢~ oa| gz o¢ and E Y@')roB)| pmod’ lie in +H, for every
j=1,...,m, where {7 is the inverse of the scalar matriz ¢ mod n.

Proof. The equivalence between and follows by definition of Hecke operator. Now
we prove the equivalence between and . Let ay,...,a,, be isogenies of degree /
with distinct kernels, then it is enough to take o equal to the dual of o; and 3; = ajoq,
for j = 1,...,m. Conversely, if £1,..., B, respect the three properties above, then, for
every j = 1,...,m, we can take o; to be the unique isogeny such that 8; = «a;oa. U

In the next two propositions we study some cases in which T;(E, ¢) contains points with
higher multiplicity, with a particular attention to E; and E,. Namely, Proposition
characterizes when ¢~ 'o7|pg 100 belongs to + H, for 7 = p, 4, in terms of the multiplicities
shown in the divisor Ty(E,, ¢), while Proposition [2.7| proves that if T,(E, ¢) shows certain
multiplicities, then E has complex multiplication by Q(i) or Q(p).

Proposition 2.7. Let n be a positive integer, let H be a subgroup of GLo(Z/nZ), let ¢ be
a prime not dividing n and let (E,¢) be a C-point of Y. Then:
(1) the points in the image Ty;(E, ¢) have multiplicity at most 3;
(2) if Ty(E, ¢) contains a point with multiplicity 3, then E = E,;
(8) if there are two distinct points of Y (C) appearing with multiplicity 2 in Ty(E, ¢),
then E ~ E;.
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Proof. Parts (1) and (2).
First we prove that if 7;(E, ¢) contains a point with multiplicity at least 3, then F =~ E,.

Let (E',¢') € Yy (C) be such that T;(E, ¢) contains (E’, ¢') with multiplicity at least 3.
Lemma [2.6] implies the existence of isogenies ay, ag, az: E — E' of degree ¢ with different
kernels. For each j # k, we define v, := &; o o € End(E), where &; is the dual of «;.
Since ay, # *a;, for all j # k, then

(28) Vik = ééj ocQy F idj oqy = tle End(E),

80 ;1 is cyclic of degree (2. In particular £ has more than 2 endomorphisms of degree (2,
hence it has complex multiplication over some imaginary quadratic field K. We suppose
by contradiction that Aut(£) = {+1}. In this case Equation implies that ker(y; ) #
ker(¢) = E[{] and consequently that ker(v;;) n E[{] has order ¢. Hence, for all j # k,
we have that ker(v; ) N E[(] = ker(ay). In particular, the 12 endomorphisms ++; , with
J # k, are pairwise distinct: if we had &; o ag, = £&, o oy, then

ker(ay) = ker(éjoay) n E[l] = ker(&0a,,) N E[{] = ker(an,),

implying k£ = m and, consequently, 7 = r. Let Ok be the ring of integers of K and let m
be the unique positive integer such that End(E) = Z + mOg. If £ | m, the only elements
of Z + mOk having norm divisible by ¢ belong to /O, hence all the elements of End(F)
having degree ¢ have form (u, for u € OF. Hence there are at most 6 of such elements.
If £ { m, the ideals of norm ¢? inside End(F) are in bijection with the ideals of norm ¢?
inside O. Hence, by looking at the possible factorizations, there are at most 3 of such
ideals and therefore at most 6 elements of End(E) of degree £2. In all the cases there
are at most 6 elements of End(E) of degree (2, implying that the elements +7; are not
distinct, which is a contradiction.

We excluded the cases where Aut(E) = {+1}, it remains to exclude the case E =~ E.
We suppose £ =~ E; and we look at §y, := 73, for k = 1,2. Since +09, +01, +¢ are distinct,
then at least one of the d;’s is not contained in {£¢, +i¢} and, up to renaming, we can
suppose that this happens for d,. Hence, we can factor d, = i"\2, for some integer r and
some prime element A € Z[i] = End(£). We deduce that ker(asz) = ker(d2)nE[¢] = ker(\)
and consequently

E' =~ E/ker(as) = E/ker(\) =~ E;.

Up to units of End(FE), there are at most 2 elements of End(F) =~ Hom(E, E’) of degree ¢,
contradicting the existence of o, oy, a3 and proving that £ =~ F,.

Finally, we prove that T;(E, ¢) does not contain points with multiplicity greater than 3.
We suppose by contradiction that T,(F, ¢) contains (E’, ¢’) with multiplicity at least 4.
Because of the previous step, we have £ =~ F,. Since, up to unit, there are at most 2
elements of End(E,) of degree ¢, then there are at most 2 points of T;(E,, ¢) of the form
(E,,¢) and consequently £’ # E, which is equivalent to End(E’) # Z[p]. The isogenies
between E and E’ give an inclusion /End(E) < End(E’), implying that End(E") = Z[lp].
Hence the only elements in End(E’) of degree * are &/, +pl, +p*(, contradicting the
existence of By, 3, O3, P4 as in Lemma , Condition (3)). This contradiction concludes

the proof of Parts and .

Part .

Let (E',¢'), (E",¢") € Yu(C) be such that T;(E, ¢) = 2(E’',¢') + 2(E", ¢") + D where
the support of D does not contain neither (E’, ¢’) nor (E”, ¢"). By Lemma there are
isogenies ag,a0: F — E’ and az,a4: E — E” such that the subgroups ker(«;), for i =
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1,...,4, are four different subgroups of E|[¢] of order ¢. By looking at the endomorphisms
Yk = &j ooy € End(E) for (4,k) € {(1,2),(2,1),(3,4),(4,3)}, we can exclude the case
Aut(E) = {£1} with the same arguments used for Parts and (2). To prove Part
it remains to exclude the case &/ =~ E,. We suppose by contradiction £/ = E,. Since,
up to unit, there are at most 2 elements of End(E,) of degree ¢, then there are at most
2 points of Ty(E,, ¢) of the form (E,, ). Hence we can suppose E' % E, which, as
in the proof of Parts and (2)), implies End(E’) = Z[(p]. By Lemma there are
a, p1 = £ and [, satisfying P1, P2, P3 of Lemma . In Z[lp] the only elements of
norm ¢2 have form p*¢, hence (3 has the same form for some k € {1,2,4,5}. We define
B3 = p?* = (7152 that satisfies property P3 of Lemma [2.6/ and, since End(E’) = Z[{p],
the elements 1, 52, B3 satisfy the property P1. We now prove that (3 satisfies property
P2 as well. Since ker(a) < ker(f3;), we can write 3 = o a for some isogeny v: E, — E’
of degree ¢. Notice that, if @ oy € End(£,) was not a multiple of ¢, then we would have
a oy =ul?, for some u € Aut(E,) and some element A € End(E,) of degree ¢, implying

ker()\) = ker(uA?) n E,[(] > ker(7).

Since ker(\) and ker(«y) have the same cardinality, this implies that ker(\) = ker(y), and
therefore that £, =~ E,/ker(\) = E,/ker(y) = E’, which is absurd. We deduce that
a oy = {6 for some ¢ € End(E,), hence we can write

Bs=L1pl=v0doa = ker(a)c ker(Bs),

which is property P2 of Lemma [2.60 Applying Lemma [2.6] once again, we deduce that
(E', ¢') appears in Ty(E, ¢) with multiplicity 3, which is a contradiction. O

Proposition 2.9. Let n be a positive integer, let H be a subgroup of GLa(Z/nZ) and let
{ be a prime not dividing n.

(1) Let (E,, ¢) € Yy (C). The matriz ¢~"op|g, o0 lies in +H if and only if the divisor
Ti(E,, ¢) contains a point with multiplicity 3.

(2) Let (E;,¢) € Yu(C). If £ > 2: The matriz ¢~ oi|g,pn0¢ lies in +H if and only if
there are two distinct points of Y (C) appearing with multiplicity 2 in T;(E;, ¢).
If € = 2: The matriz ¢~ oi| 100 lies in +H if and only if there are two distinct
points Py, Py € Yy (C) such that To(E;, ¢) = 2P, + Ps.

Proof. Part .

If C < E,|(] is a subgroup of order ¢, then pC and p?’C' are subgroups of order ¢
as well and there are two unique isomorphisms u,v that make the following diagrams
commutative:

E,—" B, E,—" B,
lﬂc lﬂ'pc lﬂc lpr el
E,)C —— E,/pC, E,)C —— E,/p*C.

We have that pC' = C' if and only if p is an endomorphism of E,/C, which is in turn
equivalent to Aut(E,/C) # {£1} or End(E,/C) = Z|[p] and, since the class number of Z[p]
is equal to 1, this is equivalent to £,/C' =~ E,. Hence, if pC # C, then Aut(E,/C) = {£1}
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and, using that 7o and m,c are bijections on the n-torsion subgroups, we have

(E,/C,mco9) = (E,/pC,mocop) <= (Toc|p,m1o0)  oul(s,/c)mio(welp,mod) € +H
(2.10) — ¢_lop|Ep[n]ogb e +H.

Analogously, p*C # C if and only if Aut(E,/C) = {1} and when this happens
(2.11) (E,/C,mcop) = (E,/p*C,Tprcop) << ¢ 'op|g,mop € +H.

The endomorphism p does not act as a scalar on E,[{]: if it acted as a scalar k, then
p—k = la + lbp, with a,b € Z, implying ¢b = 1 that is impossible. Hence, there are at
most two non-trivial subgroups of E,[¢] that are p-stable. In particular we can take a
non-trivial subgroup Cj such that Cy, pCy and p>Cy are pairwise distinct.

If ¢~ 'op|g,m)o¢ lies in +H, then, by (2.10)) and (2.11)),

TZ(EP7¢) = (EP/COvWCoO¢)+(Ep/pOOa7TpCoO¢)+(Ep/9200aWPQCoo(b) = 3<EP/COa7TCoO¢)-

Conversely, if Ty(E,, ¢) contains a point with multiplicity 3, there are three pairwise
distinct subgroups Cy, Cy, C5 < E,[{] of order ¢ such that

(Ep/ClﬂrClOQﬁ) = (Ep/0277rCzo¢) = (Eﬂ/c3a7r030¢)-

If one of the C; is p-stable, then E,/Cy =~ E,/Cy = E,/C3 = E,, and Cy,C5,C5 are
all p-stable, contradicting that there are at most two non-trivial p-stable subgroups of
E,[¢]. In particular Z[p] 2 End(E,/C}) and since E/C} is ¢-isogenous to E, we deduce
that End(E,/C;) = Z[lp]. Hence, the only endomorphisms of F,/C; having degree (>
are +{, +pl, £p*¢ and so there are at most three subgroups C' < E,[{] of order ¢ such
that E,/C is isomorphic to E,/Cy, namely: C4, pC; and p*Cy. We deduce that, up to
reordering, Cy = pC hence, by , ¢~ 'op|g, o0 lies in +H.

Part .

If C < E;[{] is a subgroup of order ¢, then iC' is a subgroup of order ¢ as well and there
is a unique isomorphism u that makes the following diagram commutative:

|7 |me

We have that iC = C if and only if End(F;/C) = Z[i] if and only if Aut(E;/C) # {£1}.
Hence, if iC' # C, then Aut(E;/C) = {£1} and, using that 7 and m;c are bijections on
the n-torsion subgroups, we have

(E;/C,mcop) = (E;/iC,mcop) < (m-oogb)_lou](Ei/c)[n]o(ﬂco@ e+H

(2.12) o
— ¢ Loilpmod € +H.

Similarly to the action of p on E,[{], the endomorphism 7 does not act as multiplication
by a scalar on F;[¢], hence there are at most two non-trivial subgroups of E;[¢] that are
i-invariant. In other words, for each subgroup C' < E;[¢] of order ¢, except at most two, we
have C' # iC. If £ = 5, since Ty(E;, ¢) contains /41 > 6 points counted with multiplicity,
we deduce the existence of C7, Cy such that C, Cs,1C1,1Cy are different cyclic subgroups
of E;[¢]. When ¢ = 3, the same conclusion is true because there is no subgroup of F;[3]
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which is invariant under the endomorphism i. If ¢~ 'oi| E,[n)°¢ lies in =H, then, by the
equivalences (2.12)), we have
T,(E;, ¢) = (E’L'/Cl77r01o¢) + (Ei/iCy, mic,09) + (Ei/02>7T020¢) + (Ei/ic%']rngod)) =
= Q(EZ/Ol, 7T010¢) + Z(EZ'/CQ,WCQOgb).

Moreover (E;/Cy,m¢,0¢) and (F;/Co, mo,0¢0) do not appear with multiplicity greater
than 2 because of Proposition [2.7]

Now we assume that there are two distinct points (E;/Cy, m¢,0¢) and (E;/Ca, mc,00) in
Yy (C) appearing with multiplicity 2 in T;(E;, ¢). Since there are at most two subgroups
C' c E;[¢] such that C' = iC, then there are at most two points, counted with multiplicity,
in Ty(E;, ¢) having form (FE;,¢). Hence, up to reordering, we have FE;/C; % FE;, or
equivalently ¢Cy # C;. Thus End(E;/C,) = Z[{i], and this implies that +¢ and +¢i are
the only elements of End(F;/C}) having degree ¢*. Thus, applying Lemmaby checking
Condition [3 on the modular curve X (1) (see also Remark [1.8), we see that there is at
most one cyclic subgroup C' < E;[¢] such that E;/C = E;/Cy and C # ;. Since C' = iC}
has this property and since (E;/Cy,mc,00) appears in Ty(E;, ¢) with multiplicity 2, we
have

(Ei/Cb e Ogb) = (El/lch 7TiClo¢>a
and by the equivalences , we have that ¢~ 'oi|g,, 00 lies in +H.

The case ¢ = 2 can be proven with similar arguments. 0

3. CARTAN MODULAR CURVES AND THEIR JACOBIANS

We give the definition of Cartan modular curves following [Ser97, Appendix A.5]. Let
n>1 be an integer and let A be a free commutative étale Z/nZ-algebra of rank 2. For each
prime p | n, we have that A/pA is isomorphic either to IF, x F,, or to F2: in the former we
say that A is split at p, in the latter we say that A is non-split at p. Moreover, for every
assignment of each prime p|n to split or non-split, there is a unique, up to isomorphism,
algebra A which is split or non-split at every p | n accordingly to the assignment.

We fix a Z/nZ-basis of A and, consequently, we identify the automorphism group of
A, as Z/nZ-module, with GLy(Z/nZ). The group A* of the units of A acts on A by
multiplication, giving an embedding of A* inside GLy(Z/nZ). A subgroup of GLy(Z/nZ)
which is the image of such an embedding is called a Cartan subgroup. The normalizer
of A* inside GLy(Z/nZ) contains all the matrices representing automorphisms of the
ring A, hence H := (A*, Autping(A)) is a subgroup of GLy(Z/nZ) that contains A* as
normal subgroup. We call every such an H a Cartan-plus subgroup of GLy(Z/nZ). The
natural map Autring(4) — [, Autring(A ® F,) is an isomorphism, hence Autring(A) is
isomorphic to (Z/2Z)*™, where w(n) is the number of prime divisors of n. In particular,
given A, the Cartan subgroup has index 2" inside the Cartan-plus subgroup. Moreover,
if n is odd, the Cartan-plus is equal to the normalizer of the Cartan subgroup inside
GL2(Z/nZ). We call Cartan modular curves the modular curves associated to Cartan
subgroups or to Cartan-plus subgroups of GLy(Z/nZ).

When n = p° is a prime power, we use the following notation:

XL (p?) := Xy, if H is a Cartan-plus subgroup non-split at p;
Xus(p©) := Xy, if H is a Cartan subgroup non-split at p;

X (p°) := Xg, if H is a Cartan-plus subgroup split at p;
Xs(p®) := Xy, if H is a Cartan subgroup split at p.
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Remark 3.1. If H; and Hy are two conjugate subgroups of GLs(Z/nZ), then the corre-
sponding modular curves Xy, and Xy, are isomorphic. Moreover, given two Cartan or
two Cartan-plus subgroups C; and Cy of GLo(Z/nZ) with the same assignment of each
prime p | n to split or non-split, then C; and Cy are conjugate, so X¢, =~ X¢,. This
implies that the above definitions are unambiguous.

Remark 3.2. Let Hy and H, be subgroups of GLy(Z/nZ) such that I'y, = gl'y,g~! for a
suitable g € GLy(Q) with det(g) > 0. In this case there is an isomorphism of Riemann
surfaces given by

XHl ((C) - XHQ((C)7
1—‘H17_ e FHzg(T)'
See [DS05], Section 5.1] for more details about this.
We want to understand the structure, up to isogeny, of the jacobian of the Cartan modular
curves. This is achieved using Chen’s isogenies (see [Che9§|, [dSE00Q],|Che04]). Let p be
a prime and let e be a positive integer. We give an analogous of [Che04, Theorem 1.1]
involving the jacobian of X,s(p®) for every p, and, to do this, we extend the analysis in
[Che04] to the case p = 2. In order to state our result, we choose a non-square element

¢ € (Z/p°Z)* when p is odd and define the following subgroups of GLs(Z/p°Z) for every
prime p:

Calp) o= Cut) o { (7 %) ab e 2 Z ) # 0.0 mod ) ifpis 0dd

Br(pe):={< CTLH bZ),a,b,c,deZ/peZ, adgé()modp}, forr=0,1,...,e—1;

cp
We remark that T.(p®) = Cs(p®) and that Cs(p®), Chs(p®) are respectively a split and
a non-split Cartan subgroup of GLg(Z/p°Z) and Cf(p®), CL(p°) are the corresponding
Cartan-plus subgroups.

T,.(p%) = {( ar bZ ) ,a,b,c,d € Z/p°Z, ad — bep® € (Z/peZ)X}, forr=0,1,... e

Proposition 3.3. Let p be a prime, let e be a positive integer and let G = GLo(Z/p°Z).
We have the following isomorphism of Q-representations of G:

34 QIG/Culp)]® @ 201G/B.()] = QG/C,0)] ® D26/ T )]
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Proof. We follow the same strategy of [Che04]. It is enough to prove that the represen-
tation on the right hand side has the same character of the representation on the left
hand side. For every subgroup H < G, the character yg of the representation Q[G/H |
is not hard to compute: for each v € G we have v(gH) = (vg)H, hence, with respect to
the basis {gH}, the matrix M, associated to the action of 7 is a permutation matrix and
consequently

#{g:v9egH} 4g:9 'vge H}
#H #H ‘

Hence to compute x(7) it is enough to compute #{g : g~'vg € H} and #H. It is enough
to compute xy(7) for a set of representatives v up to conjugation. We choose the same
representatives as in [Che04, Table 2].

If p = 2, the character yy for the groups appearing in the statement is computed in
the of this article. If p is odd and H has the form B,,T, or Cs, the character
X is given in [Che04, Tables 3 and 4]; if p is odd and H = Cys(p°), then

(3.5) xu(y) =tr(M,) = #{gH : ygH = gH} =

(p—1)p**~!, if g is a scalar matrix (type I in [Che04, Tables 3, 4]),

(g) = 2p°H, if ¢ is a conjugate of (ﬂz“ wf“), with 3 € (Z/p°Z)*
Xy = and 0 < p < e—1 (types RI}, and T" in [Che04] Tables 3, 4]),
0, otherwise.

The characters of the representations in Equation (3.4) are sums of the previous charac-
ters. A straightforward computation proves the proposition. U

From the previous result about representations follows a result about jacobians of mod-
ular curves.

Proposition 3.6. Let p be a prime, let e be a positive integer and let Jus(p®) be the
jacobian of Xyns(p®). We have the following isogenies over Q:

e—1 e—1 e
Jns(pe) < Hjo(p2r+1)2 -~ Jo(p2e) % HJO(p2T>27 Jns(pe) N Hjélew(pQT)'
r=0 r=0 r=1
Proof. For every r = 0,...,e — 1, let w,r := (z?r _01), then we have
wp,.FBr(pe)w;Tl = To(p* ™) and wpv-FTr(pe)wz}l = To(p*),
that, by Remark imply
(3.7) Xo(p* ™) =~ XB,(p) and Xo(p*") = X1,00)

respectively.

As explained in |[dSE00, Théoréme 2 and the discussion below it], the representation
theoretic result in Proposition , together with the isomorphisms in Equation ,
implies the first isogeny. The argument to prove the second isogeny is the same, but
we also need the isogeny Jo(p¢) ~ [1:_, Jgew(p“)a‘)(pe*ﬂ, where o¢(m) is the number of
positive divisors of the integer m. U

The analogous statement for J(p®) and p odd is given in [Che04, Theorem 1.2]. For
jacobians of Cartan curves of composite level we have the following theorem.
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Theorem 3.8. Let n > 1 be an integer and let H < GLo(Z/nZ) be a Cartan or a Cartan-
plus subgroup. Then the jacobian of Xy is a quotient of Jo(n?). More precisely, if H is a
Cartan subgroup, we have:
a2
(3.9) Jac(Xg) ~ H Jrev(ed?) (),
ca®

djb

where oo(m) is the number of positive divisors of an integer m and a,b are positive integers
such that n = ab and such that H 1is split at all primes dividing a and non-split at all
primes dividing b.

Proof. Since all the Cartan-plus subgroups contain a Cartan subgroup, we can suppose
that H is a Cartan subgroup. If b = 1, then Xyz(n) =~ Xy(n?). Thus, we suppose that
b> 1. Let b = p§*---p;* be the prime factorization of b and for each j = 1,... k, we
set G := GLy(Z/p;Z) and H; := Cy(p;’) < G;. Moreover we set G := GLy(Z/nZ)
and Gy := GLy(Z/aZ), and we choose a totally split Cartan subgroup Hy < G5. Chinese
Remainder Theorem gives an identification between G and Gy x ]_[?:1 G sending H to a
conjugate of H, x ]_[;?:1 H

Instead of working with G-representations up to isomorphism, it is easier to work
inside the representation ring of G, namely the Grothendieck ring of the category of
finite-dimensional G-representations, where we can take differences of representations.
By Proposition [3.3| we have the following equality in the representation ring of G; over Q:

2€j—1

Q[G;/H;] = Q[G;/K;(p;”)] +2 Z |G/ K;(p})],

where K;(p3") := T,(p}’), for r = 0,...,¢e;, and Kj(p?’”“l) = By(p}’), for r =0,...,e;—1.
Interpreting G'j-representations as G-representations via the reduction modulo pjj map,
the above equality also holds in the representation ring of G over Q. We now get in-
formation about the representation Q[G/H] by taking the tensor product of the above
identities, for j = 1,..., k, and using that, for all the groups Gi, Gs and all the subgroups
H; < G;, we have the isomorphisms of (G; xGy)-representations

Q[G1/H1] ® Q[Ga/H2] = Q[(G1xG2)/(H1xH2)].
Denoting by ® the product in the representation ring of G' over Q, we have
k
0[G/H] = Q[G./H.] ® ® Q[G;/H;] =
2e;—1

(3.10) :@[GS/HS]®(>_§< G/ K5(p;)] + 2 Z [Gy/K; <pj>])
= Y e(d)m(d)Q[G/K(d)],

d|b?

where, for every d = p'--- pﬁk dividing b2, we have

k
e(d) := (=) m(d) = 27V K (d) = H, x ]_[Kj(p;?) <G.
j=1
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As explained in [dSE00], Equation ([3.10]) implies the following equality in the Grothendieck
group of the category of abelian varieties over Q up to isogeny:

Jac(Xpy) ~ H Jac(X m(d),
d|p2
Let

ko g
Hp?]’ pr ’ Hpﬂ

fj]gven fj odd fj odd
We have did3p, = d and the elements of ' (q) are exaclty those of the form ( Sadsds p o d2po ),
with o, 3,7,0 € Z and ad — Bya®’d = 1. Hence, wadldQFK(d)w;dlldQ = T'o(a®d), where
Wadydy = (ad?dz _01). By Remark , this gives an isomorphism Xg(a®d) =~ Xg (4 and
consequently we have
Jac(Xp) ~ [ [ Jo(a®d)
d|b?

a?d
Using Jo(a®d) ~ [],a24 Jélew(m)m( ) and the multiplicativity of the arithmetic func-
tions €(d) and m(d), one can compute that

Jac(Xg) ~ [ [ Jola*d)™® ~HﬁWf%%>
d|b? cla?
djb

Hence, in the Grothendieck group of the category of abelian varieties over Q up to isogeny,
Jac(Xp) is equal to an abelian subvariety of Jy(n?). This proves the theorem. O

Remark 3.11. In [Che04], Chen deals with Cartan curves and Cartan subroups whose
level is an odd prime power. The computations in our allow us to extend
Theorem 1.1 in [Che04], and therefore all the results contained in the paper, to the cases
of level 2¢, for e a positive integer. Notice that C(2°) is different from the normalizer
of Cs(29), in fact at least ((1) 0 1) always belongs to the normalizer but does not belong
to C;F(2°). Substituting C;F(p®) with the normalizer of Cs(p®), Theorem 1.1 in [Che04]
wouldn’t extend to the case of level 2°.

Now we give a lower bound for the genus of Cartan modular curves: we show that for
every € > 0 the genus of a Cartan modular curve of level n big enough is larger than n?—=.

Proposition 3.12. Let n = 10° be an integer and let H < GLy(Z/nZ) be either a Cartan
or a Cartan-plus subgroup. Denoting by g(T'y) the genus of Xy we have

0.96
" loglogn

9(Tx) >()0118§76§?Z
Proof. Since det(H) = (Z/nZ)*, then Xy = I'y\H. Given a congruence subgroup I' of
SLy(Z) containing —Id, we denote by d(I") the index [SLy(Z) : T']. Moreover, we denote
by e,(T) the number of cusps of T\H and by &5(T), respectively e3(T"), the number of
elliptic points of period 2, respectively 3, of I'\H. Then, by [DS05, Theorem 3.1.1], the
genus of T\ is

(3.13) gT) =14 = — -
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The numbers d(I"), e, ("), e2(I") and 3(I") are multiplicative with the following meaning:
Given two coprime integers ny, ns and two congruence subgroups I'1, I’y < SLy(Z) of level
ny and ng respectively, both containing —Id, then

d(F1 M Fg) = d(F1>d<F2), €OO(F1 M FQ) = 500(F1)500(F2)7

(3.14) £9(T'1 N Ty) = e5(Ty)ea(ly), e3(y N Ty) = e5(T)es(Iy).

Let n = p{'---p* the prime factorization of n and we denote by H; the reduction of
H modulo p;j . Then each Hj is either a Cartan or a Cartan-plus subgroup and, under
the isomorphism GLy(Z/nZ) =~ H§=1 GLQ(Z/pij), we have H ~ l_[f:l H; and therefore
I'y = ﬂle ['g;. Last equation, together with the multiplicativity and ([3.13
that we can estimate the genus of Xy estimating the quantities d(I'y), e (I'm), £2(T'x)
and e3(Ly) for n = p°. We write these values in Table [3.1] The numbers (L), e2(x)
and e3(I'y) can be computed determining, for each representative r of SLy(Z)/I'y, the
ramification index [SLy(Z), : v 'Tyr n (Tx),] at SLy(Z)7, for 7 € H, of the j-map
j: Xg — SLy(Z)\H, where (I'y;), is the stabilizer of 7 in I';;. The only non-trivial 7 to
check, i.e., those such that SLy(Z), is non-trivial, are 7 € {i,e%,oo} U Q. See [DS05,
Sections 3.7 and 3.8] and [DMS19l Section 4.1] for the split case and [Barl0), Proposition
7.10] for the non-split case. In the proof of [Barl0, Proposition 7.10] there is also an
explanation of the general method to carry on these calculations. The table implies that

, implies

TABLE 3.1. Degree, elliptic points and cusps for prime power levels.

H | dIy) | ex(Ty) es(Ty) | ew(Th)
2 ifp=1mod4 if p=1mod 3
Os e 2e—1 +1 e—1 +1
(") | P () 0 ifp#1mod4 fp£imods | P W
> fp=2 ifp=1mod3 | 2 ifp* =2
e—1 e— = 1 -
CF (p°) w 1#’# if p=1mod 4 ?fp 41 mod 3 pefl(f_,'_l)
-1 i mo B_pro)
PeH) i p = 3mod 4 P 2
0 ifpz#£3mod4 if p#£2mod 3
Cns e 2e—1 -1 e—1 -1
) | 7 (=) 2 if p=3mod4 fp—2moaz | ¥ PV
ge-1 if p=2 _ L
C'Jr‘(pe) p2€71(p—1) pe_l(pfl) 1f D= 1 mod 4 lf P % 2 mOd 3 1e_lf p = 2
e 2 2 if p=2mod3 | XU
1+2—F= if p=3 mod4
for every prime p; dividing n with exponent e; we have
d(Ty,) = 1p;7 (1 - o), eolm) <pf, es(Ty) <2, en(Tm,) <pi(1+ ).



AUTOMORPHISMS OF CARTAN MODULAR CURVES OF PRIME AND COMPOSITE LEVEL 19

These inequalities and the multiplicativity (3.14]) imply the following estimates for n > 15:

no(n) n? n? 2 Tologn

dT'yg) = > >
(T') 2¢(m) " 4.4 loglog(n)2w(™

>
(n)21'3841101§1% 4.4 loglogn’

eaT) <n, e3(Ty) <2°™ <n, e,(Ty) < nn(l + 1) < o1(n) < 2.59nloglogn,
j=1
where ¢(n) is Euler’s totient function which is estimated using [RS62, Theorem 15],
w(n) = k is the number of prime divisors of n which is estimated as in [Rob83al, Théoréme
11], and oq(n) is the sum of positive divisors of n which is estimated as in [Ivi77, Theorem
1]. For n > 10°, substituting in (3.13)), we get

F 1 nQ_IOQiZZn n n 1 3 1 1 O Oln _logizz‘n
>4+ === — . = 0.0l ——m.
9('n) 52.8 loglogn 3 4 nloglogn loglogn

4. FIELD OF DEFINITION OF AUTOMORPHISMS

In this section we prove that, when the level is large enough, every automorphism of
the modular curve Xy associated to a subgroup H of GLy(Z/nZ) is defined over the
compositum of some quadratic fields, and in some cases we find explicitly this field.

Whenever K is a field, X is a variety over K, and F' is an extension of K, we write
Autp(X) for the set of automorphisms of X defined over F; analogously we use the
notations Endg(X) and Homg(X,Y') for X and Y being abelian varieties over K. When-
ever we omit the dependency on the field, we mean automorphisms (or endomorphisms)
defined over the algebraic closure of K; in particular when X is a modular curve the
“group of the automorphisms of X” is Autg(X) or equivalently Autc(X). We start with
a straightforward generalization of [KMS88, Lemma 1.4].

Lemma 4.1. Let K be a perfect field with algebraic closure K, let X be a smooth projective
and geometrically connected curve defined over K of genus g(X) and let Jac(X) be its
jacobian variety. We suppose that there are two abelian varieties Ay and Ay over K such
that Homy(Ay, Ay) = 0 and such that Jac(X) is isogenous over K to AyxxAs. If

g(X) > 2dim(A4,) + 1,

and if F < K is an extension of K such that Endz(A:) = Endp(A;), then every auto-
morphism of X over K can be defined over F.

Proof. We fix isogenies ¢: Jac(X) — A;x Ay and ¢¥: A;x x Ay — Jac(X) whose com-
positions are multiplications by an integer. Let u € Autz(X) and ¢ € Gal(K/F) and
consider the automorphism v := u” o u~!. Let Y be the quotient of X by the sub-
group of automorphisms generated by v (which is finite since g(X) > 2) and let Jac(Y)
be the jacobian of Y. Because of ¢, and since Homp(A;, A2) = 0, we can identify
Uy, ug € Autg(Jac(X)) respectively with

(uy,us), (uf,ug) € (Endz(A4;) ® Q) x (Endg(42) ® Q)" =~ (Endg(A; x g A2) ® Q)™ .

Since Endi(A;) = Endgp(A;), then u; = uf, and v, = (id, vq).
This implies that

dim(A;) < dim((A; xx 4)14%)) < dim(Jac(X)?),
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where Jac(X)" is the v-invariant subvariety of Jac(X). A point of Jac(X%)" is associated
to a divisor D on X% which is equivalent to vD in Jac(X3). This implies, using the
cyclicity of (v) and [GGJ05, Corollary 7], that every element of Jac(X%)? is represented
by a v-invariant divisor on X7. This means that Jac(Xz)" is the image of the pullback
map 7*: Jac(Yz) — Jac(X%). So we have that

dim(Jac(X)?) = dim(Jac(X%)") = dim(Jac(Y)) = g(Y),
where ¢(Y) is the genus of Y, and, therefore, we have
9(X) — dim(Az) = dim(4;) < g(Y).
Hence, by the Riemann-Hurwitz formula applied to the projection X — Y, we have
dim(A4;) + dim(A2) — 1> d(g(Y) — 1) = ddim(A,) — d,

where d is the order of v. If d > 1, we get dim(A;) < dim(Ay) + 1, which is impossible
by hypothesis. Hence d = 1 and v is the identity. This implies that u” = w, for every
o€ Gal(K/F), i.e., since K is perfect, u € Autp(X). O

For every abelian variety A over a number field K, let A® be the maximal abelian
subvariety of Az that is isogenous to a product of simple CM abelian varieties and let AN
be the maximal abelian subvariety of A% that is isogenous to a product of simple non-CM
abelian varieties. We call A® the CM-part of A and AN the non-CM-part of A. Both
the CM part and the non-CM part of A are also defined K, since by definition we have
(A9)™ = AC and (AN)™ = AN for each 7 € Gal(K/K). The dimension of the CM-part and
the dimension of the non-CM part are invariant under isogeny on A. Hence, by looking
at the decomposition of A in simple factors, we see that dim(A®) + dim(AY) = dim(A).

We want to apply Lemma to the case A; = Jac(X)N and Ay = Jac(X)“. Hence,
we are interested in an upper bound on the dimension of the CM part of the jacobian of
Cartan modular curves. By Theorem [3.8] it is enough to know an upper bound in the
case X = Xy(n).

Proposition 4.2. For every integer n > 1, the dimension g§(n) of the CM part of Jo(n)

satisfies
1 2.816
g()c(n> < 910g<n)2n§+loglogn .

Proof. For every positive integer k, let J§V(k) be the new part of Jy(k) and let og(k) be
the number of positive divisors of k. Then we have a canonical isogeny

J()(n) ~ 1_[ JSGW(d)O’o(n/d)'

din
Denoting by gh™"(d) the dimension of the CM part of J2¥(d), we also have
(4.3) g5 (n) = D 00(n/d)g5™"(d).
d|

We know that Jg*"(d) is isogenous over Q to []; Ay, where [f] is the Galois orbit of
the newform f, and the cardinality of [f] is equal to the dimension of Ay (see [DS05,
Chapter 6]). We now look at the CM part of each factor Ay.

In order to do this, we describe a bijection between the set of normalized newforms con-
tributing to the CM part and a suitable set of triples (K, m, \), where K is an imaginary
quadratic field, m is an ideal of the ring of integers Ok of K and A is a primitive Grossen-
character of K defined modulo m (see [Shi71bl Section 4] for the definition of primitive
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Grossencharacter). Namely, let (K, m,\) be a triple as above such that the nebentypus
associated to A is trivial and let A be the discriminant of K, then, by [Shi71bl Lemma 3
and Theorem 1], we can construct a normalized newform f) of level |Ag||m| such that
the associated abelian variety Ay, is isogenous over C to a product of elliptic curves with
CM over K. On the other hand, by [Shi72, Proposition 1.6], for each normalized newform
[, if the associated abelian variety A; has non-trivial CM part, then f = f for a unique
triple (K, m, \) as above. This gives a bijection between the set of normalized newforms
f contributing to the CM part of JJ*¥(d) and the set of triples (K, m, \) described above
such that |[Ak||m| = d. By [Shi72, Proposition 1.6], an abelian variety A; has non-trivial
CM part if and only if it is isogenous over C to a product of elliptic curves with CM over
K. Hence the number of normalized newforms f of level d contributing to the CM part is
equal to the dimension of the CM part of J2*¥(d). In conclusion, gi®%(d) is equal to the
number of triples (K, m, \) where \ is a primitive Grossencharacter of K defined modulo
m with trivial nebentypus and |Ag||m| = d.

We now give an upper bound on the number of such triples. For every choice of K and
m, the set of primitive Grossencharacters of K defined modulo m is a subset of the set
of Grossencharacters of K defined modulo m. If this set is not empty, then there is at
least one Grossencharacter Ay and all other Grossencharacters are given by Agy, for y a
character of the group

Glm (K) = {fractional ideals of O coprime to m}

{(«) : Ja € Z coprime to m such that & = a mod m}’

Thus, for given K and m, the cardinality of élm(K ) is larger than the number of triples
(K, m, \) we are interested in, hence

(4.4) G < Y #C(K).

|Ak||m|=d

To give a bound on élm(K ) we look at the following short exact sequence

(Ok/m)*
Ok - (Z/(Znm))*
where Cl(K) is the class group of K and we write O and (Z/(Znm))* in place of their
natural image inside (Ox/m)*. We write m = [ [ m,, for p varying in the set of rational

primes and m,, being a product of primes of Ok dividing p. Thus the above short exact
sequence gives

#01n(1) = #0UK) ) =) [T ( o mtls ) =

1 —> — Clu(K) — CI(K) — 0,

Z/(Zrm)) o \(Z/(Znm,)”
< 3log(|Ax)v/IAx] [T (1 + 2)lmy|"2) = 3log(|Akl)v/[Axlm] TT(1+2)
pl|m| pl|m|

where the class number of K is estimated using [Nar04, Theorem 8.10 and Lemma 8.16]
and the bound on the cardinality of (O /m,)* /(Z/(Znm,))* is trivial after factoring m,,.
Substituting in (4.4]), we have

G < Y (3vdlog(ak)) [T +1)).

|Ak||m|=d pl{m|
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Let My := #{(K, m) : [Ag|[m| = d} and for m € Z,, we denote by o1(m) the sum of the
positive divisors of m. We have o1(m) < 3mlogm, for each m > 2 (see [Ivi77, Theorem 1]
if m > 7, it is trivial in the remaining cases). Then

gs™(d) < 3MyVdlog(d) | [(1+ 2) < 38Myvdlog(d) 2 < 9Myv/dlog(d)®.

pld

Substituting in (4.3), we get

§(n) <9 oo(n/d)Myv/dlog(d)® < 9v/nlog(n)® Y Myog(n/d) <
(4.5) dln dln
wﬁlog(n)?#{(z(,m, d) : |Ag||m|d divides n}

Writing the prime factorization n = [ [;_, p{*, we know that an imaginary quadratic field
K with discriminant dividing n must be K = Q(1/— [ [}_, p;"), with € € {0,1}". Hence

#{(K, m, d) : |Ag]||m|d divides n} < Y #{(m, d) : |Ag|[m|d divides n} <

eef{0,1}"

< Z #{m c Ok : |m| = m} : #{d € Zwo : dmnp? divides n}

ee{0,1}" i=1

MEZ=q
We have the factorizations m = [ [;_ lpl “and d = [[;_, pi’, where f;,¢; € {0,1,...,¢;}, for
t=1,...,r, and we denote by f the r-tuple whose components are the f;’s and similarly
we define ¢. Then the number of ideals m in O having norm m is lesser than [ [}_, (f;+1)
which is equal to the number of pairs (a,b) of elements of ZZ such that a +b = f. Hence
we get

#{(K, m, d):|Ag||m|d divides n}<#{(€, a,b,¢) € {0, 1} % (ZLo)* €; + aitbi+e; < ei}é

<

N

< H < { a;, b, ;) € Zio Da;+bi+c; < ei} + #{(ai,bi,ci) € Zio tai+bi+c < ei_1}>

1 <<€1;3) N (ei;2>><ﬁ (ei+2)§ei+1)2.

i=1

i

N
.:%

1

(2

Notice that og(n) = [ [;_, (e;+1) is the number of positive divisors of n and [ [}_, w

is the number of triples (di, ds, d3) of positive integers such that dydsds = n. Using the
upper bounds, contained in [NR83] and [Rob83b], for these two quantities, we get

1.538log 2 1.5921log 3 2.816

#{(K, m,d) : |Ag||m|d divides n} n Toglogn p loglogn < ploglogn

Substituting in (4.5]) we find
go (n) < 9\/ﬁlog(n)2n% = 910g(n)2n%+102g‘?§g6n.

When the level is a prime power, the previous upper bound is easier and smaller.
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Proposition 4.6. For every prime p and positive integer e, the dimension g5 (p°) of the
CM part of Jo(p°) satisfies

13+/2¢ if p=2,
g5 (") < {0 if p=1 mod 4,
5.54/p¢logp if p =3 mod 4.

The proof follows the same steps of the previous proposition and is simplified by the
fact that there are few quadratic imaginary fields K whose discriminant divides p¢. More
precisely: there are two fields when p = 2, there are no fields if p = 1 mod 4 and there is
only one field if p = 3 mod 4. We now give an upper bound for the field of definition of
the automorphisms of a Cartan modular curve of large enough level.

Proposition 4.7. Let n = 10" be an integer and let H < GLy(Z/nZ) be cither a
Cartan or a Cartan-plus subgroup. Then every automorphism of Xy is defined over the
compositum of all the quadratic fields whose discriminant divides n.

Proof. Let Jy be the jacobian of Xy and let Jg and JY be the CM part and the non-
CM part of Jy respectively. By Lemma it is enough to prove that 2dim(J§)+1 is
smaller than the genus of Xy and that every endomorphism of JY is defined over the
compositum of all the quadratic fields whose discriminant divides n. The latter is true
because, by Theorem , JY is a quotient of Jy(n?)N and by in [KMSS|, Proposition 1.3]
every endomorphism of Jy(n?)N is defined over the compositum of all the quadratic fields
whose discriminant divides n. By Theorem J§ is a quotient of Jy(n?)® hence we can
use Proposition to bound the dim(J§); this, together with the bound for the genus
g(Xg) of Xp given in Proposition implies the inequality we need when n > 10%;

0.96
2_1 I
5.632 n oglogn

2dim(JG) + 1 < 2dim(Jo(n?)C) + 1 < 73log(n)*n' " oeloen < T00Toglogn 9(Xn).

Proposition [£.7] can be made sharper when n is a prime power.

Proposition 4.8. Let p be a prime and e a positive integer and let X be a curve associated
to a Cartan or a Cartan-plus subgroup of level p°. If the genus of X is at least 2, then
every automorphism of X s defined over the field

Q(Za \/5)7 lfp = 27
K, = Q(\/ﬁ), if p=1mod 4,
QGH/=p), if p =3 mod 4.

A strategy of proof is the same of Proposition [4.7

(i) give an upper bound for dim(Jac(X));
(i) give a lower bound for the genus;
(iii) apply [KMS8S| Proposition 1.3] and Theorem to deduce that the endomorphisms
of Jac(X)N are defined over K;
(iv) apply Lemma [4.1]
In particular in the case of Xps(p¢) and X% (p€), when p® > 600, the propositions [3.6| and

and Table give bounds in ({i) and that are sharp enough for . If p* < 600,
the bounds in Proposition are sometimes not sharp enough. In these cases we can
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compute explicitly the CM part and notice that only a factor of it of low dimension has
endomorphisms defined over a field bigger than K,: whenever a CM factor is a rational
elliptic curve, we know by CM theory that its endomorphisms are defined over K, and
it can be discarded from the count. This is done in the MAGMA script available at
[Scr]. The case X (p®) =~ Xo(p*) follows from [KMSS8, Corollary 1.14] and the case
X (p®) = Xo(p*®) follows from the following proposition.

Proposition 4.9. Let p be a prime and e a positive integer. If the genus of X§(p®) is at
least 2, then every automorphism of X (p°) is defined over the field

Q<Z7 \/5)7 ifp = 27
K, = Q(\/ﬁ), if p=1mod 4,
QGH/=p), if p =3 mod 4.

Again, one can apply the same strategy used for Propositions 1.7 and [4.8 together with
the MAGMA script available at [Scr]. In particular we need a lower bound for the genus
of X (p®). Since we do not know an explicit reference giving a formula for this genus, we
write it in the following remark.

Remark 4.10. Given a positive integer n, let X (n) be the quotient of Xy(n) by the n-th
Atkin-Lehner operator. This curve is equal to X (n) when n is the power of a prime.

In [Ogg75b, Equation 9] there is a formula for the genus gg (n) of X (n) when n is
prime. When n = p** with p prime, we can compute gg (n) using Table since X (n)
is isomorphic to a split Cartan curve. For general n, [Ogg75bl Equation 9] can be easily
generalized applying Riemann-Hurwitz formula to the natural map Xy(n) — X (n) and
counting the number of fixed points of the n-th Atkin-Lehner operator. This gives

0, if ne{1,2,3,4},
g5 (n) = 1+920(n) — h(_n)zh(_4n), if n > 5 is odd,
1+go(n)  h(=4n)

if n > 5 is even,

2 4

where go(n) is the genus of Xy(n) and h(D) is the class number of the quadratic order
with discriminant D, with the convention (D) = 0 if D is a square or if D = 2,3 mod 4.

Remark 4.11. We are not always able to prove that every automorphism of a Cartan
modular curve is defined over a compositum of quadratic fields. For example, an anal-
ogous of Equation for Cartan-plus curves, proved using Chen’s isogeny in [Che04],
implies that the jacobian of the totally non-split Cartan-plus curve X of level 48 con-
tains J,°"*(48%). Since there are two CM (weight 2) newforms of level 482 of degree 2
and invariant under the action of both the Atkin-Lehner operators wg and wosg, then the
jacobian J,"*(48?) has a CM part of dimension at least 4 whose endomorphisms could
be defined over a field bigger than the compositum of quadratic fields. This prevents us
from applying Lemma in of the strategy above, because the genus of X is 9 (see

Table B.1)).

5. AUTOMORPHISMS

In this section we treat our main problem, namely to determine the automorphisms
of certain modular curves Xy over C for a subgroup H of GLy(Z/nZ). We restrict our
attention to Xy geometrically connected, i.e., det(H) = (Z/nZ)*. Every automorphism
we are interested in induces an automorphism of the Riemann surface Xz (C) = I'y\H
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and, since it is compact, each of these automorphisms comes from an automorphism of the
algebraic curve (Xg)c. Let P: GL3 (Q) — PGL; (Q) be the natural map. Each matrix

m € PGL; (Q) defines a Mobius transformation m: H — H and such an automorphism
of the Riemann surface H pushes down to an automorphism of I'y\H if and only if m

normalizes P(I'y).

Definition 5.1. Let H be a subgroup of GLy(Z/nZ) such that det(H) = (Z/nZ)*.
An automorphism of Xy defined over C is modular if its action on Xy (C) = I'g\H is
described by a Mobius transformation associated to a matrix m € PGL] (Q) normalizing

P(Ty).

When H has surjective determinant, Aut(X ) contains the subgroup of modular auto-
morphisms which is isomorphic to N/P(I'y), where N is the normalizer of P(I'y) inside

PGL; (Q).

Remark 5.2. Notice that we can define modular automorphisms of Yz looking at PGLJ (R),
instead of PGL3 (Q), as follows: an automorphism ¢ of Y (C) = I'g\H is modular if there
is a matrix m € PGL; (R) that normalizes the image of I'y in PGLJ (R) and hence de-
fines a Mobius transformation m: H — H that pushes down to ¢. This is equivalent
to the previous definition. Indeed if m € GLj (R) is a lift of m, then m normalizes
Iig = (R*T'y) n SLy(R), hence conjugation by m preserves the set of Q-linear combina-
tions of matrices in 'y g, which is equal to the set of matrices with entries in Q. Looking
at the conjugates by m of the matrices (39), (8¢), (99) and (39), we easily deduce that
m is a real multiple of a matrix in GL,(Q), and consequently m lies in PGL; (Q).

In other words: every modular automorphism of Y (C) extends to a modular automor-
phism of Xy and, conversely, every modular automorphism of Xy preserves the set of
cusps, hence restricts to a modular automorphism of Y (C).

If an automorphism is modular, then it preserves the set of cusps and the set of branch
points for the map H — T'y\H, because the map H — X (C) is branched on these
sets and P'(Q) is stable under PGLy(Q). The converse is also true, as shown in [Dos16,
Proposition 3.1]. In the following lemma we use this criterion to give a (different) sufficient
condition for an automorphism to be modular.

Lemma 5.3. Let n be a positive integer, let H be a subgroup of GLy(Z/nZ) containing
the scalar matrices and such that det(H) = (Z/nZ)*, and let gon(Xpg) be the gonality of
Xpy. If there is a prime ¢ not dividing n such that 5 < £ < %gon(XH) — 1, then every
automorphism of Xy defined over a compositum of quadratic fields is modular.

Proof. Let u be an automorphism of Xy defined over the compositum of some quadratic
fields and let P € Xz (C) be either a cusp or a branch point of the map H — I'y\H =
Yy (C). By Proposition [1.6] if P is branch point, then we have either P = (E;, ¢) with
¢~ 'oi|gmop € +H or P = (E,, ¢) with ¢~ 'op|g ,jo¢ € + H. Hence, in both cases (cusp
or branch point) we can apply Theorem and deduce which particular multiplicities
appear in T;(P): depending on the case, T,(P) contains either a point with multiplicity
at least 4 or a point with multiplicity 3 or two distinct points with multiplicity 2. Since
u is defined over a compositum of quadratic fields and ¢ < %gon(X ) — 1, we can apply
Proposition to deduce that T,(P) and Tyu(P) have the same “shape”. Since u is
defined over a compositum of quadratic fields and ¢ < %gon(X u) — 1, we can apply
Proposition to deduce that, under the definition of o given in the same proposition,
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Tou(P) = u’T,(P), hence the same coefficients appear in the divisors Tyu(P) and Ty(P),
since u’ is an automorphism. Hence, applying Theorem [2.4] once again, we have that
u(P) is a cusp if P is a cusp and u(P) is a branch point if P is branch point.

Therefore we proved that u preserves the set of cusps and the set of branch points.
Applying [Dosl6l, Proposition 3.1], we obtain that w is induced by an automorphism
v: H — H. We know that Aut(H) = PGL; (R), hence v is a Mdbius transformation
given by a matrix m € PGLJ (R). Since it factors through the quotient, m belongs to the
normalizer of the image of 'y in PGLJ (R). Hence the restriction of u to Yz is modular
and, by Remark [5.2], u itself is modular. O

We still need to determine which are the modular automorphisms of a modular curve
Xy for Cartan and Cartan-plus subgroups H of GLy(Z/nZ). Since in these cases we have
det(H) = (Z/nZ)*, then Yy also parametrizes pairs (F,¢) such that the Weil pairing
of (¢(§),0())) is fixed, up to the action of HnSLy(Z/nZ). With this interpretation,
every matrix v € SLy(Z/nZ) that normalizes HNSLy(Z/n7Z) defines an automorphism of
Yy sending (E, ¢) — (F, ¢ oy): such an automorphism is modular, induced by a lift of
v in SLy(Z). The next proposition implies that these are all the modular automorphisms
except when n = 2 mod 4 and H is a Cartan-plus which is split at 2. We now suppose we
are in this last case and we construct another modular automorphism. Letting n = 2n/,
we have

H = Hy x H,y © GLy(Z/2Z) x GlLo(Z/n'Z) = GLy(Z/nZ),
where Hy and H,, are the images of H in GLy(Z/27Z) and GLy(Z/n'Z) respectively. Since
we are assuming that Hs is a split Cartan-plus subgroup, there are three possibilities for
H, (all conjugated) and, depending on them, we define

($1), if Hy={Id,(}§)},
(5.4) Yo:=14($3), if Ho={Id, (§1)},

(33), if Ho={Id,({9)}
Since the projection SLo(Z) — SLo(Z/2n7Z) = SLo(Z/AZ)xSLo(Z/n'Z) is surjective and
since det(H,) = (Z/n'Z)*, there exists
(5.5) 41 €SLy(Z) suchthat ;= (39) (mod 4) and (y17)” (mod n') € H,.
The matrix P(y170) lies in the normalizer N of P(I'y) inside PGL] (Q) and we have that
P(y170)* € P(T'y), hence P(v;7) induces an involution on Xg. Since P(y170) ¢ P(SLa(Z)),

the modular automorphism defined by 717 is not of the form (£, ¢) — (FE, ¢ o~y) with
v € SLo(Z/nZ).

Proposition 5.6. Let n be a positive integer and let H < GLy(Z/nZ) be either a Cartan
subgroup or a Cartan-plus subgroup. Let N' < SLy(Z/nZ) be the normalizer of the group
H':= HnSLy(Z/nZ) and let N be the normalizer of P(T'y) in PGL (Q). If n =2 mod 4
and H 1s a Cartan-plus split at 2, then, for every choice of vy and v as in and
(5-3), N is generated by P(I'y+) and P(y17). Otherwise N is P(I'y).

Proof. Let N < GL3 (Q) be the normalizer of Q*I'g, or, equivalently, the normalizer of
'y (each matrix normalizing Q*I'y also normalizes (Q*I'y) N SLy(Q) = I'y, and since
scalar matrices commute with everything, each matrix normalizing 'y also normalizes
Q*I'y). The conclusion of the proposition is equivalent to

N =QTx or N =0Qyv,In),
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depending on the case. The inclusions 2 are trivial, hence we prove the other inclusions.
Since the normalizer of I'yy inside SLy(Z) is 'y, it is enough to show that

N € Q*SLy(Z) or N < Q*SLy(Z) U v17Q*SLs(Z),

depending on the case. We suppose that A contains a matrix m = (2%) not lying in

Q*SLy(Z): it is enough to prove, with this assumption, that n = 2 mod 4 and H is a
Cartan-plus subgroup split at 2 and m € v;70Q*SLy(Z).

Up to multiplication by a scalar matrix, we can suppose that a,b,c,d € Z and that
ged(a,b,c,d) = 1. Since m ¢ Q*SLy(Z), then det(m) # 1. Let p be a prime dividing
det(m), let Ay = (2), A2 = () € Z? and let A < Z? be the lattice generated by A1, A2. By
definition of A, for every v € 'y there is v/ = (£ ¥) € I'y such that ym = m~’. Hence,
looking at the columns of ym, we get YA = xA;+2Xy and YAy = yA+w,. Since 7 is
arbitrary and +' € SLy(Z), we have

CyA =A.

Let A be the image of A under the quotient map Z? — F2. Since at least one of a,b, ¢, d

is not multiple of p, we know that A # {0} and since det(m) is multiple of p, we know
that A # IFIQ,. Hence A is a line inside IFZ% which is left invariant by every matrix in the
image 'y of T'y in GLo(F,). This implies that ['y is contained in a Borel subgroup of
GLy(F,), thus p divides the level n and Ty = FTGSLQ(Z/pZ), where H is the image of
H in GLy(F,). We deduce that either H is a Cartan group split at p or p =2 and H is a
Cartan-plus group split at p.

First we suppose that H is a Cartan group split at p. Let p© be the maximum power of
p dividing n. Up to conjugacy, the image of H in GLy(Z/p°Z) is {(§ ?)}, hence m™tym =
(#9) (mod p°), as v € I'y. Applying this to v = ({7) and v = (1 9), we see, since
det(m) is a multiple of p, that p | a,b, ¢, d, which is a contradiction.

This contradiction implies that the only prime dividing det(m) is 2 and H is a Cartan-
plus group split at 2. Let 2¢ be the maximum power of 2 dividing n. Up to conjugacy, the
image of H in GLo(Z/2°Z) is {(§2),({ %)} In particular the image of H in GLy(Z/27Z)
is {(§9),(98)}, hence A = {(1)) is the only T'g-invariant line. With a similar argument
we see that the rows (ab), (cd) of m span {(11)) in F2. Hence m = ({1) (mod 2). For
every v € 'y, we have

(5.7) m~tym (mod 2°) € {(§2),(25)}-

When v = (§%), we see that m™tym = (#9) (mod 2¢) is not possible because both ¢
and d are odd, hence m™'ym = (%) (mod 2°) and, by explicit computations, we deduce
that det(m) = 2 and n = 2 mod 4. Finally, since m = (11) (mod 2) and det(m) = 2, we

see that (y170) " 'm € SLo(Z). O
We now prove the main results of this paper.

Theorem 5.8. Let n = 107 be an integer and let H < GLy(Z/nZ) be either a Cartan
or a Cartan-plus subgroup. Then every automorphism of Xy is modular, hence we have

N'/H' x )27, if n =2 mod 4 and H is a Cartan-plus split at 2,

Aut(Xy) >
u ( H) {N’/H,, otherwise,

where N' < SLo(Z/nZ) is the normalizer of H' := H n SLy(Z/nZ).
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Proof. Let N be the normalizer of P(T'y) inside PGL3 (Q). By Proposition [5.6| we have

N P(T )= P(Cn/)/P(T'y)xZ/2Z, if n=2mod 4 and H is a Cartan-plus split at 2,
= P(Tn/)/P(Ty), otherwise,

where the first case is true because P(y17'y) has order 2 in N/P(I'y) and commutes
with every element in P(FN/)/P(PH) Since P(FN/)/P(FH) = P(FN/)/P(FH/) = N//H/,
it is enough to prove that every automorphism of Xy is modular. For n > 10%%° every
automorphism is defined over the compositum of some quadratic fields by Proposition [£.7]
We can bound the gonality gon(Xpy) of Xy using [Abr96] and, with the same estimates
used in the proof of Proposition [3.12 we have

7 n?

Ly(Z) : Tyl = 10n.
s00!502(2) : Tl = goer ey ygem = 107

gon(Xy) =

So, there is at least one prime £ not dividing n with 5 < ¢ < 1gon(Xp)—1. By Lemma ,
we can conclude that every automorphism is modular. U

Remark 5.9. One can determine the groups N'/H’ in all cases. Indeed, let n = [[._, p{*
be any positive integer with its prime factorization, let H < GLy(Z/nZ) be either a
Cartan or a Cartan-plus subgroup and let N’ < SLy(Z/nZ) be the normalizer of the
group H' := H n SLy(Z/nZ). By Chinese Remainder Theorem we have

H =[[H and N =][N inside SLy(Z/nZ) = [ [SLa(Z/p"Z),

=1 =1 i=1

where H is the image of H' in SLy(Z/p*Z) and N] < SLy(Z/p®Z) is the normalizer
of H!. Hence the knowledge of N'/H' for H € {Cys(p°), Cus(p°), Cs(p®), C (p¢)} allows
to compute the group N’'/H' for every Cartan or Cartan-plus subgroup H of level n not
necessarily a prime power. For the prime power cases see Lemma [5.10[ and Table
below.

Lemma 5.10. Let e be a positive integer and let p be a prime. Let H < GLo(Z/p°Z) be
either a Cartan or a Cartan-plus subgroup and let N' < SLo(Z/p°Z) be the normalizer of
the group H' := H n SLo(Z/p°Z). Then:

if H= Cys(p®), then N'/H' = 7/27, since N' = CL(p°) n SLa(Z/p°Z);

if H=C}(p°) and p® # 3, then N'/H' = {1},

if H=Cy(p°) and p # 2,3, then N'/H' = (")) = Z/2Z;

if H=CF(p®) and p # 2,3 and p® # 5, then N'/H' = {1}.

The cases left out are listed in Table [5.1] below.

Proof. 1t is a direct computation. 0

Note that the groups N'/H' computed for H = Cs(p®) are the same determined in
[AL70], [AS90Q], [Bar08], in the setting of Borel modular curves.
For Cartan modular curves of prime power level we make Theorem more precise.

Theorem 5.11. Let p be a prime number and let e be a positive integer. If p¢ > 11 and
p° ¢ {33,24,25 25} then all the automorphisms of X,s(p®), X,5(p%), Xs(p¢) and X (p®) are
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TABLE 5.1. Automorphism groups.

H ‘ N'/H' ‘ Generators Comments
Crs(3) /3% (01)
CS<26> e e
L<e<3 PSLy(Z/2°7) SLo(Z/2°7.)
Dg %, (/87 Dg = 7,/87 x 7./27 is the
8 w'ih/ | (5 %).((7 24) for Dy dihed 1/ /f der 16;
Cu(2h wi ihedral group of order 16;
(p(1)) (1,0) = (5,0) and (1-2) for Z/SZ N'/H' is t}ne group labeled as
(p(1))(0,1) = (3,1) (128,68) in MAGMA, [Grd]
Cs(2°) (Z/8Z)* x, (Z/27Z) (527°).( _ges V) for (Z/8Z)? this group is labeled as
e>5 | with (¢(1)) (z,9)=(y, ) and (9 ) for Z/2Z (128,67) in MAGMA, [Grd]
C.(3) PSL,(Z/37) SL,(Z/37)
e 1 3671 . .
Cs(39) 737 % S (_36__1 ) foerilZ/BZ S3 1§ the symmetric group
e=2 and (9 3'), (L. %) for S acting on three elements
o) i
i) 222 47
i) 2/47 (13
Ci () 25z (%)
o () Z/5 =)
C: (26) 1 —2¢3
e=>6 Z/8Z (26—3 1 )
i3 7/2 0
CH(3°%) L _get
e > 2 Z/3Z (3571 1 )
C(5) /3L (13)

modular and

Aut(X,s(p?)) = Z/27,

(Z/87)* » (2,/27),

Aut(Xs(p®)) = { Z/3Z x Ss,

7./2Z,

Aut(X(p%)) = {1},

if p=2,
ifp =3, Aut(X () =
if p> 3,

Z/87, ifp=2,
7)37, ifp=3,
{13, ifp>3,

where the above semidirect product (Z/87)? x Z/2Z is described in Table[5.1]

Proof. We first treat the case p® > 49 with p® # 26 = 64. Up to conjugacy we can
assume that H € {Cs(p°), C(p®), Cus(p°), CL(p¢)} where these groups are the subgroups
of GLy(Z/p°Z) defined in Chapter |3| and Xg € {X,s(p®), X;5L(p°), Xs(p©), X.F(p©)} is the
corresponding associated modular curve. By [Abr96, Theorem 0.1] and Table , for
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p¢ > 87, we have the following lower bounds for the gonality of Xg:

7 7 p*(1—-1)  7.87
' ISL.(Z) : Tyl > —— b
g0o(512(@) 1 Tl = o ——— > 50

Hence either the prime ¢ = 5 or the prime ¢ = 7, are different from p, and satisfy
5 < (< tgon(Xy)— 1. With a similar computation one can show that gon(Xy) > 12,
for 49 < p® < 87, if p© # 64 and we can take ¢ = 5. Applying Lemma [5.3] we deduce
that all the automorphisms of Xy defined over a compositum of quadratic fields are
modular, hence, by Proposition 4.8], all the automorphisms of Xz are modular. Finally,
we can use Proposition [5.6] Lemma [5.10] and Remark [5.9] to obtain the group of modular
automorphisms.

We now assume 11 < p® < 49. All the cases X (p®) = Xo(p*®) are treated in [KMSS],
all the cases X" (p) are treated in [Gonl6] and the cases X,s(p), X.%(p), for 13 < p < 31,
are treated in [Gonl7]. The remaining cases X (25), X (49) and X,s(p®), X%(p¢), for
p¢ = 25,37,41,43,47,49, are treated in the MAGMA script available at [Scr]. O

> 16.

gon(Xy) =

Last theorem can be specialized to the prime level case, obtaining new results for non-
split Cartan curves. The split cases are treated in [Gonl6] and [KMSS].

Corollary 5.12. Let p > 13 be a prime number. Then the group of automorphisms of
XL (p) is trivial and the group of automorphisms of X,s(p) has order 2.

Remark 5.13. Theorem implies that, for p?* big enough, all the automorphisms
of X}(p*) =~ X (p°) are modular, extending [BHO3| and [Gonl6] that treat the cases
X#(p) and X (p?) and complementing in part [BG] which treats the case of X (n) for n
squarefree. Our techniques (in particular Lemma cannot be generalized to the case
X&(p?) with e odd, because some branch points of the natural map H — Y, (p®) have the
form {(E,C), (E/C, E[p°]/C)} with E # E;, E,. Anyway, the techniques used in [Gonl0,
Lemmas 4, 5, 6], together with Proposition , can be used to prove the modularity of
all elements in Aut(X(p°®)), without restrictions on e, for all but finitely many cases.

It is a natural question to ask whether modular automorphisms such as those described
in Lemma [5.10 are defined on a small field. The next proposition partially addresses this
issue.

Proposition 5.14. Let n be a positive integer, let H be a subgroup of GLo(Z/nZ) such
that det(H) = (Z/nZ)* and let H = H n SLy(Z/nZ). Let M € SLy(Z) such that its
reduction M mod n normalizes (H')T. Then M defines a modular automorphism of Xy
which is defined over the cyclotomic field Q((,). Moreover, this automorphism is defined
over Q if and only if M mod n normalizes HT.

Proof. Since M normalizes I'y, it defines a modular automorphism ¥ of Xy. From now
on, we only look at the restriction of ¥ to Yy. Let Y/ be the connected component of
Yi such that Y57 = I'y\H. Hence the natural map Yy — Yp restricts to an isomorphism
between Y55 and Yy defined over Q((,), which is also the field of definition of Y. The
curve Y55 /Q((,) can be interpreted as the coarse moduli space of elliptic curves with
H'-structure (F, ¢) such that the Weil pairing of (¢ (§),¢(9)) is a fixed root of unity .
Moreover, under the isomorphism Yy = Y7, we can describe ¥ as

(5.15) VY - Y, (B.9) > (E,dom),
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with m := M~T mod n. Since the map (E,¢) — (E,¢ o m) also defines a natural
transformation between the functor coarsely represented by Y57 and itself, we deduce
that W is defined over Q((,).

Notice that for every point P € Yy (C) the image ¥(P) can be described by Equa-
tion ([5.15) a priori only if we choose for P a representative (F,¢) such that the Weil
paiting of (& (1), (9)) is C.

We now prove that the map ¥ is defined over Q if and only if m normalizes the whole
H. One implication is trivial, since, when m normalizes H, the map (F, ¢) — (E, ¢ om)
also defines a natural transformation between the functor coarsely represented by Yy and
itself. For the other implication, suppose that m is in the normalizer of H' but not in the
normalizer of H and let h € H be such that m~*hm ¢ H. Let (E, $) be a point in Y5(Q)
such that E is defined over Q. Then, in Yy (Q), for every o € Gal(Q/Q), we have

o(E,¢) = (E,00¢)=(E,00¢0h).

If we choose o such that ¢(¢,) = (2" then the Weil pairing of (gogoh (}),oo¢oh (1))
is the same as the Weil pairing of (¢ ({),¢ (?)) which is equal to ¢. Hence, we can use
Equation (5.15)) to deduce that

S(W(E,)) = o(E,90m) = (.00 om)

U(o(FE,¢)) =V(E,00¢poh)=(E,c0pohom).
If ¥ was defined over Q, we would have o(V(E, ¢)) = U(o(FE, ¢)), implying that m~'hm
belongs to H which is a contradiction. U

Remark 5.16. The proposition above, together with Theorem [5.11] implies that, given a
prime power p¢ > 11 not in {33, 24,25 26} all the automorphisms of a Cartan curve of level
p° are defined over the cyclotomic field Q((pe). In general, not all such automorphisms
are defined over QQ, even though this is true when the prime p is at least 5 or when the
Cartan group is non-split.
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6. APPENDIX

Characters of GLy(Z/2°Z). Let G := GLy(Z/2°Z). For each H < G, let xg: G — Q be
the character of the representation Q[G/H| = @ gH - Q, computed using Equation ({3.5)).
Every element of GG is conjugated to a unique element appearing in the first column, hence
the table determines the characters xyg for H appearing in Proposition or in [Che04,
Theorem 1.1]. In the first column we have A\, a € (Z/2°7)*, b e (Z/2°7Z), k € {1,...,e—1},
and u € (Z/2°7%7)*.

Character table.

B.,r=0 |Tj T.,7 >0 C, ct Cls CH
A\d 3_227" 1 3_227"—1 3_22@—1 3_22@—2 226—1 22@—2
0a
() 0 1 0 0 0 2 1
b odd
((1’ a) 1 if r=0 2¢=1 if b=0 2¢=1if b=0
1 0 0 0
b even 0 if r>0 0 if b0 0 if b#0
2r 2r—1
(g )\+%ku) 3-2°7 if r<k . 3-2 if r<k o2k+1 o2k 0 0
22+ if >k 22+ if p>k
3-27" if r<k o1
\ ok or 3-277 it r<k
(22") || 2> ifr=k |1 . 0 0 0 0
0 if r>k
0 ifr>k
(2)2 /\zk;k> 3-27" if r<k 1 3-27—1 if r<k 0 0 Q21 o2k
* 0 ifr=k 0 ifr>k
3-27" if r<k o1
N o 3-2"F if r<k
(3a2e)| 22 itr=k |1 oo |0 0 0 0
0 ifr>k

Data for Cartan modular curves of level n < 64. In Table 6.1, we collect some
relevant data about totally split or totally non-split Cartan modular curves of low level.
Here n is the level of the curve, g is the genus, ¢m is the dimension of the CM part after
removing all factors isogenous to elliptic curves over Q, and A is the Abramovich’s lower
bound for the gonality of the curve (see [Abr96]). The values were computed through the
script at [Scr] using the data on modular forms at [LMF21].

We write in italic the cases of genus 0 or 1: in these cases we know that there are
infinitely many automorphisms which are not modular. We write in bold the cases where
we have ¢m < 9%1 and A > 2({+1) for some prime ¢ > 5 not dividing n: in these
cases we are able to prove that all the automorphisms are modular using Lemma (we
can apply it because of the first inequality) and Lemma (we can apply it because
of the second inequality). In the remaining cases we are not able to determine whether
all the automorphisms are modular just by looking at g, ¢cm and A. We notice that
in Theorem we mostly use the hypothesis “n > 10" in order to conclude that

the inequality ¢m < 971 holds. On the other hand, one can check that the inequality
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A > 2(¢+1) holds starting from a much smaller n. When looking at explicit examples, we
notice that, except for Xt (48), in all the cases of genus at least 2 in the table, we have
cm < gg—l and this implies that all the automorphisms are defined over a compositum of
quadratic fields.

Remark 6.1. We highlight two interesting examples with exceptional automorphisms. The
modular curves X[ (16) and X (20) have genus two, and hence they are hyperelliptic.
An equation for both curves and the description of all rational points can be found in
[Barl0, Section 5. We computed the automorphism group of both curves using the
built-in function in MAGMA: the automorphism group of X (16) is Z/27Z x 7,/27. while
the automorphism group of X[ (20) is Z/2Z. All the non-trivial automorphisms are
exceptional. Furthermore, in the case of X1 (16) the exceptional automorphisms give a
non-CM rational point.
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TABLE 6.1. Data for low level cases.

| Xk () | Xas(n) | XS (n) | X,(n)

| Xh(n) | Xus(n) | XS(n) | X(n)

n‘géf’nA‘géf’nA‘géf’nA‘g cm A

n‘gé?’nA‘g 6f’nA‘g 6rVnA‘g cm A

110 0 110 0 110 0 1|0 0 1 33|17 2 3|45 2 625 2 7109 2 14
210 0 110 01|10 010 0 1 346 0 337 0 528 0 9127 0 17
310 0 1|0 01|10 0 1|0 0 1 35[13 0 4159 6 8|27 0 8117 6 15
410 0 110 0 1|0 0 110 0 1 365 0 2|31 0 4(43 0 12{181 0 23
510 0 110 0 110 0 1|10 0 1 37143 0 6194 0 12|45 0 7(98 0 13
610 0 1|1 01|10 0 1|1 0 1 3818 0 3149 2 6|36 0 10161 2 20
710 0 1(1 0 1|0 0 1|1 0 1 39113 0 5]67 6 9|36 0 10155 6 20
810 0 1|1 0 1|1 01,3 0 1 40110 0 3|45 4 649 0 13[20512 26
910 0 112 0 1|1 014 0 1 41154 0 8117 0 15/57 0 8[123 0 16
1000 0 1/1 0 1|1 0 1|7 0 2 4211 0 8|37 2 5133 0 18/289 6 36
11117 0 1{4 0 112 01,6 0 2 43160 0 81130 0 16/63 0 9136 0 17
1210 0 113 0 113 0 2{13 0 3 44113 0 4163 4 8|55 2 14229 8 28
13/3 01|18 02|/3 01,8 0 2 45117 0 5|79 2 10|55 0 1523514 29
1410 0 1|15 0 1|13 0 2|17 0 3 46113 0 5|73 3 9|55 0 15241 9 29
151 0 1|17 2 2(4 0 2]19 2 4 47173 0 10]157 5 19|77 0 10{165 5 20
162 0 1|7 2 2(9 0 221 2 4 4819 4 4|57 16 7|81 4 21|3372041
17/6 0 2|15 0 3|7 0 2/17 0 3 49169 0 10/151 0 19/94 6 13]20112 25
1810 0 1|7 0 1|7 0 3[37 0 6 50(14 0 5|73 0 9|77 0 20331 0 40
198 0 2/1200 3({9 0 2{22 0 4 51125 5 81121 8 15/64 5 172271 8 33
2002 0 1}9 0 2{10 0 4,43 0 7 52121 0 6193 0 11|78 0 20323 0 39
2111 0 2{15 2 3|9 0 3|41 2 6 53196 0 13|204 0 25100 0 13212 0 26
2211 0 1]13 2 2|10 0 4|49 2 7 54112 0 573 0 9100 0 26433 0 52
23113 0 331 3 5|15 0 3|35 3 5 55|38 0 10/163 6 20/70 0 18295 6 35
2411 0 1113 0 2|17 0 6|73 0 11 5621 0 6101 4 12({97 4 24{40112 48
25014 0 332 0 5(22 0 4|48 0 7 57131 5 9153 8 18|81 5 20341 8 40
26|/3 0 221 0 3|15 0 5|71 0 10 58124 0 8121 0 15/91 0 231391 0 46
27112 0 3132 0 528 0 5|64 0 9 591121 3 151256 3 30/126 3 161266 3 31
2814 0 2123 0 3|21 0 6|89 0 12 607 0 5|73 4 9|79 0 386491276
29124 0 4154 0 8{26 0 4|58 0 8 6111310 17276 0 333|135 0 17284 0 34
3001 0 217 2 3|16 0 10145 6 19 62128 0 9141 3 17]105 0 27449 9 53
31128 0 563 3 9(30 0 5|67 3 9 63135 0 10/17110 20109 0 27|457 14 53
32114 2 335 3 5|49 8 7|10518 14 64|70 6 915514 1822530 27465 62 54
REFERENCES
[Abr96] D. Abramovich, A linear lower bound on the gonality of modular curves, Internat. Math. Res.

Notices (1996), no. 20, 1005-1011. MR 1422373



AUTOMORPHISMS OF CARTAN MODULAR CURVES OF PRIME AND COMPOSITE LEVEL 35

[AL70]
[AS90]
[Bar08]
[Bar09)]
[Bar10]
[Bar14]

[BCFS]

A. O. L. Atkin and J. Lehner, Hecke operators on T'o(m), Math. Ann. 185 (1970), 134-160.
MR 268123

M. Akbas and D. Singerman, The normalizer of To(N) in PSL(2,R), Glasgow Math. J. 32
(1990), no. 3, 317-327. MR 1073672

F. Bars, The group structure of the normalizer of T'o(N) after Atkin-Lehner, Comm. Algebra
36 (2008), no. 6, 2160-2170. MR 2418382

B. Baran, A modular curve of level 9 and the class number one problem, J. Number Theory
129 (2009), no. 3, 715-728. MR, 2488598

, Normalizers of non-split Cartan subgroups, modular curves, and the class number one
problem, J. Number Theory 130 (2010), no. 12, 2753-2772. MR 2684496 (2011i:11083)

, An exceptional isomorphism between modular curves of level 18, J. Number Theory
145 (2014), 273-300.

W. Bosma, J. J. Cannon, C. Fieker, and A. Steel, Handbook of magma functions,
http://magma.maths.usyd.edu.au/magma/handbook/.

[BDM*19] J. Balakrishnan, N. Dogra, J. S. Miiller, J. Tuitman, and J. Vonk, Explicit Chabauty-Kim

[BG]
[BHO3]
[BP11]
[BPR13]
[Che9g]

[Che04]

for the split Cartan modular curve of level 13, Ann. of Math. (2) 189 (2019), no. 3, 885-944.
MR 3961086

F. Bars and J. Gonzélez, The automorphism group of the modular curve X&(N) with square-free
level, Trans. Amer. Math. Soc., to appear.

M. Baker and Y. Hasegawa, Automorphisms of X§(p), J. Number Theory 100 (2003), no. 1,
72-87. MR 1971247 (2004c:11100)

Y. Bilu and P. Parent, Serre’s uniformity problem in the split Cartan case, Ann. of Math. (2)
173 (2011), no. 1, 569-584. MR 2753610 (2012a:11077)

Y. Bilu, P. Parent, and M. Rebolledo, Rational points on X (p”), Ann. Inst. Fourier (Grenoble)
63 (2013), no. 3, 957-984. MR 3137477

I. Chen, The Jacobians of non-split Cartan modular curves, Proc. London Math. Soc. (3) 77
(1998), no. 1, 1-38. MR 1625491 (99m:11068)

, Jacobians of modular curves associated to normalizers of Cartan subgroups of level p™,
C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 187-192. MR, 2078072

[DFGS14] V. Dose, J. Ferndndez, J. Gonzalez, and R. Schoof, The automorphism group of the non-split

[DMS19]
[Dos16]

[DR73]

[DS05]
[dSEO00]
[E1k90]

[GGJO5]

[Gonl16]
[Gonl7]
[Gro]

[Harll]
[Lvi77]

Cartan modular curve of level 11, J. Algebra 417 (2014), 95-102. MR 3244639

V. Dose, P. Mercuri, and C. Stirpe, Double covers of Cartan modular curves, J. Number Theory
195 (2019), 96-114. MR 3867436

V. Dose, On the automorphisms of the nonsplit Cartan modular curves of prime level, Nagoya
Math. J. 224 (2016), no. 1, 74-92. MR, 3572750

P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions
of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer,
Berlin, 1973, pp. 143-316. Lecture Notes in Math., Vol. 349. MR 0337993 (49 #2762)

F. Diamond and J. Shurman, A first course in modular forms, Graduate Texts in Mathematics,
vol. 228, Springer-Verlag, New York, 2005. MR 2112196 (2006f:11045)

B. de Smit and B. Edixhoven, Sur un résultat d’Imin Chen, Math. Res. Lett. 7 (2000), no. 2-3,
147-153. MR 1764312 (2001j:11043)

N. D. Elkies, The automorphism group of the modular curve Xy(63), Compositio Math. 74
(1990), no. 2, 203-208. MR 1047740 (91e:11064)

D. Goldstein, R. Guralnick, and D. Joyner, A question about Pic(X) as a G-module, Com-
putational aspects of algebraic curves, Lecture Notes Ser. Comput., vol. 13, World Sci. Publ.,
Hackensack, NJ, 2005, pp. 232-242. MR 2182042

J. Gonzdlez, Automorphism group of split Cartan modular curves, Bull. Lond. Math. Soc. 48
(2016), no. 4, 628-636. MR 3532138

, Constraints on the automorphism group of a curve, J. Théor. Nombres Bordeaux 29
(2017), no. 2, 535-548. MR, 3682478

Database of finite groups of small order, http://groupnames.org,.

M. C. Harrison, A New Automorphism Of X¢(108), arXiv:1108.5595 (2011).

A. Ivié, Two inequalities for the sum of divisors functions, Univ. u Novom Sadu Zb. Rad.
Prirod.-Mat. Fak. 7 (1977), 17-22.



http://magma.maths.usyd.edu.au/magma/handbook/
http://groupnames.org

36
[KMSS]
[LMF21]
[Maz78]
[Mer18]
[MS20]
[Nar04]
[NR83]
[Ogg75a]
[Ogg75b]
[Ogg77]

[Rob83a]

[Rob83D)]
[RS62]
[Ser]
[Ser72]

[Ser97]

[Shi71a]

[Shi71b]

[Shi72]

VALERIO DOSE, GUIDO LIDO, AND PIETRO MERCURI

M. A. Kenku and F. Momose, Automorphism groups of the modular curves Xo(N), Compositio
Math. 65 (1988), no. 1, 51-80. MR 930147 (88m:14015)

The LMFDB Collaboration, The L-functions and modular forms database, http://www.lmfdb.
org, 2021, [Online; accessed 5 June 2021].

B. Mazur, Rational isogenies of prime degree (with an appendiz by D. Goldfeld), Invent. Math.
44 (1978), no. 2, 129-162. MR 482230 (80h:14022)

P. Mercuri, Equations and rational points of the modular curves X (p), Ramanujan J. 47
(2018), no. 2, 291-308. MR, 3863642

P. Mercuri and R. Schoof, Modular forms invariant under non-split cartan subgorups, accepted
by Mathematics of Computation (2020).

W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Springer Monographs in
Mathematics, Springer Berlin Heidelberg, 2004.

J.-L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs de n, Canadian
Mathematical Bulletin 26 (1983), no. 4, 485-492.

A. P. Ogg, Automorphismes de courbes modulaires, Séminaire Delange-PisotPoitou (16e année:
1974/75), Théorie des nombres, Fasc. 1, Exp. No. 7, 1975, p. 8. MR 0417184

Andrew P Ogg, Diophantine equations and modular forms, Bulletin of the American Mathe-
matical Society 81 (1975), no. 1, 14-27.

A. P. Ogg, Uber die Automorphismengruppe von Xo(N), Math. Ann. 228 (1977), no. 3, 279-292.
MR 0562500 (58 #27775)

G. Robin, Estimation de la fonction de tchebychef 0 sur le k-iéme nombre premier et grandes
valeurs de la fonction w (n) nombre de diviseurs premiers de n, Acta Arithmetica 42 (1983),
no. 4, 367-389.

, Grandes valeurs de fonctions arithmétiques et probléemes d’optimisation en nombres
entiers, Ph.D. thesis, 1983.

J. B. Rosser and L. Schoenfeld, Approzimate formulas for some functions of prime numbers,
Ilinois Journal of Mathematics 6 (1962), no. 1, 64-94.

Magma  shared  code, https://github.com/guidoshore/automorphisms_of_Cartan_
modular_curves, Accessed: 2020-04-04.

J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math.
15 (1972), no. 4, 259-331. MR 0387283 (52 #8126)

, Lectures on the Mordell-Weil theorem, third ed., Aspects of Mathematics, Friedr.
Vieweg & Sohn, Braunschweig, 1997, Translated from the French and edited by Martin Brown
from notes by Michel Waldschmidt, With a foreword by Brown and Serre. MR, 1757192

G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of
the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton
University Press, Princeton, N.J., 1971, Kané Memorial Lectures, No. 1. MR 0314766

, On elliptic curves with complexr multiplication as factors of the Jacobians of modular
function fields, Nagoya Math. J. 43 (1971), 199-208. MR 0296050 (45 #5111)

_, Class fields over real quadratic fields and Hecke operators, Ann. of Math. (2) 95 (1972),
130-190. MR 0314801 (47 #3351)

Email address: vdose@luiss.it

DIPARTIMENTO DI EcoNOMIA E FINaNzA, LUISS ”Guipo CARLI”, VIALE ROMANIA 32, 00197
Rowma, ITALY

Email address: guidomaria.lido@gmail.com

UNIVERSITA “TOR VERGATA”, ROME 00133, ITALY

Email address: mercuri.ptr@gmail.com

UNIVERSITA “SAPIENZA”, ROME 00161, ITALY


http://www.lmfdb.org
http://www.lmfdb.org
https://github.com/guidoshore/automorphisms_of_Cartan_modular_curves
https://github.com/guidoshore/automorphisms_of_Cartan_modular_curves

	Introduction
	1. Modular curves
	2. Hecke operators
	Multiple points in the image of Hecke operators

	3. Cartan modular curves and their jacobians
	4. Field of definition of automorphisms
	5. Automorphisms
	6. Appendix
	Characters of GL2(Z/2eZ)
	Data for Cartan modular curves of level n64

	References

