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Abstract: Rindler wedges are fundamental localization regions in AQFT. They are
determined by the one-parameter group of boost symmetries fixing the wedge. The
algebraic canonical construction of the free field provided by Brunetti–Guido–Longo
(BGL) arises from the wedge-boost identification, the BW property and the PCT The-
orem. In this paper we generalize this picture in the following way. Firstly, given a
Z2-graded Lie group we define a (twisted-)local poset of abstract wedge regions. We
classify (semisimple) Lie algebras supporting abstract wedges and study special wedge
configurations. This allows us to exhibit an analog of the Haag–Kastler one-particle net
axioms for such general Lie groups without referring to any specific spacetime. This set
of axioms supports a first quantization net obtained by generalizing the BGL construc-
tion. The construction is possible for a large family of Lie groups and provides several
new models. We further comment on orthogonal wedges and extension of symmetries.
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1. Introduction

Quantum Field Theory (QFT) lives in a tension between the locality principle and the
underlying group of symmetries characterizing the theory. On one hand, it is a physical
principle that every interesting quantity of a theory should be deducible by local mea-
surements, namely—in the language of Algebraic Quantum Field Theory (AQFT)—by
the structure of the local algebras (see e.g. [Ha96]). On the other hand, the symmetries
of a theory provide a feature to describe physical objects, a “key to nature’s secrets,” as
it happens in the standard model [We05,We11].

In AQFT, models are specified by a net of von Neumann algebras associated to
causally complete spacetime regions satisfying fundamental quantum and relativistic
principles, such as isotony, locality, covariance, positivity of the energy, and existence of
a vacuum state. An important bridge between the geometry and the algebraic structure is
the Bisognano–Wichmann (BW) property of (A)QFT claiming that themodular group of
the algebra associated to any Rindler wedgeW insideMinkowski spacetimewith respect
to the vacuum state implements unitarily the covariant one-parameter group of boosts
fixing the wedgeW . As a consequence, the algebraic structure of the model, through the
Tomita–Takesaki theory, contains the information about the symmetry group acting on
the model. Starting with the BW property, one can enlarge the symmetry group of a QFT
[GLW98,MT18], find new relations among field theories [GLW98,LMPR19,MR20],
establish proper relations among spin and statistics [GL95], and compute entropy in
QFT [LX18,Wi18]. For recent results on this property we refer to [Gu19,DM20].

Particles are field-derived concepts that can be described as unitary positive energy
representations of the symmetry group. They are building blocks to construct Quantum
Field Theories. The operator-valued distribution�U defining the free field associated to
any particleU is not provided by a canonical construction, see e.g. [BGL02,LMR16]. On
the other hand, the von Neumann algebra net generated by �U satisfies the Bisognano–
Wichmann property and the PCT Theorem.1 These properties provide the tools for a
canonical construction of the free algebra net [BGL02]: Segal’s second quantization
gives the vacuum representation of the Weyl algebra on the Fock space associated with
the one-particle Hilbert space. The Araki lattice of von Neumann algebras is uniquely
determined by the local one-particle structure encoded in the lattice of closed real sub-
spaces, the first quantization [Ar63]. As a result of the Tomita–Takesaki modular theory

1 The spacetime reflection j1(t, x1, x2, . . . , xn) = (−t,−x1, x2, . . . , xn) is implemented by the modular
conjugation corresponding to the standard right wedge W1.
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for real subspaces, the set of real states for a particle U localized in a wedge region
is uniquely determined by the couple (e−2πKW ,U ( jW )) where U ( jW ) is the antiu-
nitary implementation of the wedge reflection and KW is the generator of the one-
parameter group of boosts associated to the wedge W . They satisfy the Tomita relation
U ( jW )e2πKWU ( jW ) = e−2πKW . The one-particle states and the local algebra associated
to bounded causally complete regions are obtained by wedge state spaces and algebra
intersection, respectively.

Conversely, every pair (x, σ ), consisting of an element x of the Poincaré–Lie algebra
and an involution σ satisfying Ad(σ )x = x specifies for every (anti-)unitary repre-
sentation (U,H) of the Poincaré group a pair (�, J ) = (e2π i∂U (x),U (σ )) that in turn
defines a standard subspace V ⊆ H. This construction, called the BGL construction,
was introduced in [BGL02] and allows us to observe: The algebraic construction of the
free fields is uniquely determined by its symmetries and the correspondence between
spacetime regions and their relative position with symmetries. In this sense, due to the
one-to-one correspondence between boosts and the corresponding wedges, one should
be able to specify the underlying symmetry structure of a quantum field theory without
any reference to the spacetime. Then one can reconstruct the spacetime features, such
as locality and region inclusions from the symmetry group.

With this claim in mind, we generalize the above picture as follows. Given a suitable
Lie group G, we first define an abstract wedge space. We then endow the wedge space
with a G-action, a notion of causal complement and an order structure. Eventually,
starting from an (anti-)unitary representation of a graded Lie group G, we construct the
analogue of the BGL one-particle net by the abstract setting.

We now collect the motivation and additional explanations of the fundamental struc-
ture we will use. In order to obtain a one-particle net by the Tomita–Takesaki theory
we need to start with a graded Lie group G = G↑ � Z2, such as the improper Möbius
group PGL2(R) or the proper Poincaré group P+. For the moment, we assume that
Z(G↑) = {e} and that G↑ is connected.

The key features of our approach are the following:
• Abstract boost generator. The abstract one-parameter group of boosts are generated
by elements x in the Lie algebra g of G defining a three grading g = g1 ⊕ g0 ⊕ g−1
in the adjoint representation by g j = ker(ad x − j idg). To see how this complies
with the well known models, see Examples 2.10. We call such elements x ∈ g Euler
elements because they corresponds to the linear Euler vector field on the open embedding
g1 ↪→ G/P, s �→ exp(s)P, where P ⊆ G is the connected subgroup corresponding to
the Lie algebra g0 +g−1. For more on the underlying geometry of theses spaces, we refer
to [BN04].
• The wedge reflection is obtained by analytic continuation of the one-parameter

group of boosts associated to the wedge at iπ . For instance, on Minkowski space, the
wedge reflection j1 = �1(iπ) is obtained by analytic extension of the one-parameter
group of boosts in the first direction �1(t) = exp(tσ1) where (σi )i=1,2,3 are the Pauli
matrices. In our general setting, the reflection σ , called Euler involution, associated to an
Euler element x is determined by the analytic continuation of the one-parameter group
in the adjoint representation of the Lie algebra via Ad(σ ) = eπ i ad x (see (2.10)).
• Euler wedge. An Euler wedge is defined as a couple W = (xW , σW ) of an Euler

element and the related Euler involution. The need to use the couple is to implement the
G-action on the wedge space (see (2.6)) and to establish the relation with the standard
subspaces V and the corresponding modular objects (�V, JV). We further remark that,
in principle, it is not necessary to assume that the involution σW satisfies
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Ad(σW ) = eπ i ad xW

in the adjoint representation, but only that it satisfies the proper commutation relation
Ad(σW )xW = xW , cf. Proposition 2.1.
• G↑-covariance. There is an action of the group G on the wedge space given by

an adjoint action on both components that takes care of the grading (see (2.8)). In this
way the language of Euler wedges is consistent with the one of the standard subspaces,
cf. Sect. 2.
• Locality. Complementary wedges correspond to inverted one-parameter groups of

boosts. For instance dilations associated to causally complementary intervals in chiral
theory or boosts associated to complementary wedges are inverse to each other. On
the abstract wedge space this is captured by defining the complementary wedge of
W = (x, σ ) by W ′ = (−x, σ ).
• Isotony. By the existence of a (positive) invariant cone C in the Lie algebra g, it

is possible to define a wedge endomorphism semigroup defining the wedge inclusion
relation. Given an Euler wedge W = (x, σ ), the generators in the positive cone lying
in the subspaces g±1 define proper wedge inclusions as each of them generates with x
a translation-dilation group (isomorphic to the affine group of the real line); see [Bo92,
Wi92,Wi93] and in particular [Bo00]. This is the case of wedge endomorphisms in
Minkowski spacetime given by lightlike shifting or Möbius transformations mapping an
interval into itself as the translations do for the half-lines. These properties define a local
partially ordered set of wedges that can support key features of an AQFT structure.

It is important to note that the wedge space only depends on the Lie group and
its Lie algebra, and the order structure given by the invariant cone C ⊆ g. The rela-
tions among the wedges specify the abstract spacetime structure to a large extent. For
example, PSL2(R) is the symmetry group for the 2-dimensional de Sitter spacetime
and for the chiral circle. If one considers PSL2(R) with the trivial cone in sl2(R)—no
proper inclusions of wedges—then it describes a QFT on de Sitter spacetime; if one
considers C ⊂ sl2(R) as in (2.17), inclusion relations among wedges arise, and we
obtain the wedge space on S

1.2 This correspondence between isotony and and positiv-
ity of the energy was also studied in [GL03]; see also [Bo92,Bo00,Wi92,Wi93] and
[NÓ17,Ne19,Ne19b]. For recent classification results for the triples (g, x,C), we refer
to [Oeh20,Oeh21].

There is more interesting structure on the abstract wedge space:
•Orthogonal wedges:We call two abstract wedgesW1 = (x1, σ1) andW2 = (x2, σ2)

orthogonal if σ1(x2) = −x2, i.e., W2 is reflected into its complement W ′
2. Examples of

orthogonal wedges are coordinate wedges on Minkowski spacetime,3 or the upper and
the right half-circle in chiral theories on S

1. This notion, which immediately generalizes
to the abstract setting, plays a central role in spin-statistics relations [GL95] and the
nuclearity property in conformal field theory [BDL07].
• Symmetric wedges.AwedgeW is called symmetric if there exists g ∈ G↑, such that

g.W = W ′. For instance, any couple of wedge regions, in 1+s-dimensional Minkowski
spacetime with s ≥ 2, are transformed one into the other by the action of the Poincaré
group G↑ = P↑+ . On the other hand, in 1 + 1-dimensional Minkowski space, the right
and the left wedges are not symmetric. Indeed

WR = {(t, x) ∈ R
1+1 : |t | < x} and WL = {(t, x) ∈ R

1+1 : |t | < −x}
2 In [GL03] it is used that the 2-dimensional de Sitter space dS2 ∼= SO1,2(R)↑/ SO1,1(R)↑ has the same

abstract wedge space as the circle SO1,2(R)/P to set up a dS /CFT correspondence.
3 For instance Wi and Wj for i �= j , where Wi = {(t, x) ∈ R

1+s : |t | < xi }.
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belong to disjoint transitive families with respect to the P↑+ -action. Further examples of
symmetric wedges are intervals in conformal theories on the circle. Half-lines in the real
line are not symmetric wedges with respect to the translation-dilation group. A transitive
family of wedges has the feature that algebras associated to complementary wedges are -
by covariance - unitary equivalent. On the other side, there is no contradiction in having
a G↑-covariant net of von Neumann algebras on a transitive family of non-symmetric
wedges with trivial algebras associated to the family of complements.

In the first part of the paper we define and investigate the abstract structure we have
described. When the center Z(G↑) is non trivial, for instance when covering groups
are considered, a generalized notion of complementary wedges has to be introduced.
Indeed, while Euler elements are uniquely determined as generators of one-parameter
groups in G↑, several involutions σ satisfying Ad(σ ) = eπ i ad x can be associated to
the same Euler element x . In an analogous way, different wedge complements can be
labeled by central elements. We classify wedge orbits and define a notion of a central
wedge complement. Furthermore, if W ′ does not belong to the G↑-orbit of W , a new
action of G on the wedge space is defined. This happens for instance in fermionic nets.

Having specified the abstract structures, we are prepared to answer the following
question:
“WhichLie algebras/groups support such a structure?”To this end,wefirst classifyEuler
elements in real simple Lie algebras in Theorem 3.10. The key point of this classification
is that Euler elements are conjugate under inner automorphisms to elements in any given
Cartan subspace of hyperbolic elements. Here the restriction to simple Lie algebras is
not restrictive because any symmetric Euler element is contained in a semi-simple Lie
subalgebra. Furthermore, an Euler element is symmetric if and only if it is contained
in an sl2(R)-subalgebra (see Theorem 3.13 for these results). As a consequence, there
is a large family of real Lie algebras supporting such wedge structures which properly
contains the well known models. Note that, for a Lie algebra g containing an Euler
element x ∈ g, there always exists a graded Lie group G with Lie algebra g and a
corresponding Euler wedge (x, σ ).

The second part of the paper is devoted to nets of standard subspaces.
Is it possible to construct one-particle models supporting this abstract setting? Starting
with a G↑-orbitW+ in the wedge space, we describe a set of axioms which, for the well
known models, reflect fundamental quantum and relativistic principles corresponding to
the one-particle Haag–Kastler axioms. This set of axioms is fulfilled by extending the
BGL construction to every graded Lie group G, supporting a suitable wedge space. A
twisted locality relation among complementary wedges is introduced in order to relate
central complementary wedges.

Do we get any new models out of this general construction? The answer is affirma-
tive. All the simple Lie algebras whose restricted root system appears in Theorem 3.10
correspond to a graded Lie group with a non-trivial wedge space. There are for instance
Lie algebras of type E7 that do not correspond to any known models. In this con-
text the Jordan spacetimes of Günaydin [Gu93,Gu00,Gu01] and the simple spacetime
manifolds in the sense of Mack–de Riese [MdR07] are homogeneous spaces of simple
hermitian Lie groups whose Lie algebras contain Euler elements, and the corresponding
abstract wedges correspond to domains in these causal manifolds. These Lie groups have
many (anti-)unitary representations, some of them with positive energy with respect to
a non-trivial invariant cone C in the Lie algebra. As a consequence, they support many
one-particle nets [NÓ20] and second quantization models of von Neumann algebras
whose physical meaning has to be investigated.
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The structure of this paper is as follows: In Sect. 2 the wedge space is defined and
its properties are studied. A number of examples are discussed in detail to show how
the abstract setting applies to the known models and realizes the well known structure.
In Sect. 3 we study the Euler elements in Lie algebras. We relate orthogonal and sym-
metric wedges and provide a classification of Lie algebras supporting (symmetric) Euler
elements. In Sect. 4 we apply this structure to define and construct one-particle nets asso-
ciated to graded Lie groups supporting a wedge structure. We further stress newmodels,
orthogonal wedges and extension of symmetries. An outlook on the construction is
contained in Sect. 5. We hope this paper is approachable for the Lie Theory community
as well as the Algebraic Quantum Field Theory community.

2. The Abstract Setting

In this section we develop an abstract perspective on wedge domains in spacetimes,
phrased completely in group theoretic terms. As wedge domains are supposed to corre-
spond to standard subspaces in Hilbert spaces, we orient our approach on how standard
subspaces are parametrized.

Let Stand(H) denote the set of standard subspaces of the complex Hilbert space H.
In Sect. 4 we shall see that every standard subspace V determines a pair (�V, JV) of
modular objects and that V can be recovered from this pair by V = Fix(JV�

1/2
V ). This

observation can be used to obtain a representation theoretic parametrization of Stand(H):
each standard subspace V specifies a continuous homomorphism

UV : R
× → AU(H) by UV(et ) := �

−i t/2π
V , UV(−1) := JV. (2.1)

We thus obtain a bijection between Stand(H) and the set Homgr(R
×,AU(H)) of con-

tinuous morphisms of graded topological groups.
The space Stand(H) carries three important features:

• an order structure, defined by set inclusion
• a duality operation V �→ V′ = {ξ ∈ H : (∀v ∈ V) Im〈ξ, v〉 = 0}
• the action of AU(H) as a symmetry group.

The order structure is hard to express in terms of the modular groups (see [Ne19b] for
some first steps in this direction), but the duality operation corresponds to inversion

UV′(r) = UV(r−1) for r ∈ R
×, (2.2)

and the action of AU(H) translates into

UgV(r) = gUV(rε(g))g−1 for g ∈ AU(H), r ∈ R
×, (2.3)

where ε(g) = 1 if g is unitary and ε(g) = −1 otherwise. So unitary operators g ∈ U(H)

simply act by conjugation, but antiunitary operators also involve inversion. In particular,
JVV = V′ corresponds to

UV′(r) = JVU
V(r−1)JV = UV(r−1) for r ∈ R

×.

We now develop the corresponding structures by replacing AU(H) by a finite dimen-
sional graded Lie group.
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2.1. Group theoretical setting. The basic ingredient of our approach is a finite dimen-
sional graded Lie group (G, εG), i.e., G is a Lie group and εG : G → {±1} a continuous
homomorphism. We write

G↑ = ε−1G (1) and G↓ = ε−1G (−1),
so thatG↑ � G is a normal subgroup of index 2 andG↓ = G \G↑. We also fix a pointed
closed convex cone C ⊆ g satisfying

Ad(g)C = εG(g)C for g ∈ G. (2.4)

As we shall see in the following, for graded Lie groups, it is more natural to work with
the twisted adjoint action

Adε : G → Aut(g), Adε(g) := εG(g)Ad(g), (2.5)

so that (2.4) actually means that C is invariant under the twisted adjoint action. The
cone C will play a role in specifying an order structure. It is related to positive spectrum
conditions on the level of unitary representations. We also allow C = {0}. For instance,
the Lie algebra g = so1,d(R) of the Lorentz group G = O1,d(R), the isometry group of
de Sitter space time dSd , contains no non-trivial invariant cone.

2.2. The space Homgr(R
×,G) and abstract wedges. In this section we define the fun-

damental objects we will need in the forthcoming discussion. We write Homgr(R
×,G)

for the space of continuous morphisms of graded Lie groups R
× → G, where R

× is
endowed with its canonical grading by ε(r) := sgn(r). On this space G acts by

(g.γ )(r) := gγ (rεG (g))g−1, (2.6)

where the twist is motivated by formula (2.2). Elements ofG↑ simply act by conjugation.
Since we are dealing with Lie groups, we also have the following simpler description

of the space Homgr(R
×,G) by the set

G := {(x, σ ) ∈ g× G↓ : σ 2 = e,Ad(σ )x = x}.
Proposition 2.1. The map

� : Homgr(R
×,G) → G, γ �→ (γ ′(1), γ (−1)) (2.7)

is a bijection. It is equivariant with respect to the action of G on G by

g.(x, σ ) := (Adε(g)x, gσg−1). (2.8)

Note that center Z(G↑) ofG↑ acts trivially on the Lie algebra but it may act non-trivially
on involutions in G↓.

Remark 2.2. For every involution σ ∈ G↓, the involutive automorphism σG(g) := σgσ
defines the structure of a symmetric Lie group (G↑, σG), and G ∼= G↑ � {id, σ }, so
that we can translate between G as a graded Lie group and the pair (G↑, σG), without
loosing information.

To indicate the analogy of elements of G with the wedge domains in QFT, we shall
often denote the elements of G by W = (x, σ ).
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Definition 2.3. (a) We assign to W = (x, σ ) ∈ G the one-parameter group

λW : R → G↑ by λW (t) := exp(t x) (2.9)

Then we have the graded homomorphism

γW : R
× → G, γW (et ) := λW (t), γW (−1) := σ.

Note that �(γW ) = W in terms of (2.7).

Definition 2.4. (a) We call an element x of the finite dimensional real Lie algebra g
an Euler element if ad x is diagonalizable with Spec(ad x) ⊆ {−1, 0, 1}, so that the
eigenspace decomposition with respect to ad x defines a 3-grading of g:

g = g1(x)⊕ g0(x)⊕ g−1(x), where gν(x) = ker(ad x − ν idg)

(see [BN04] for more details on Euler elements in more general Lie algebras). Then
σx (y j ) = (−1) j y j for y j ∈ g j (x) defines an involutive automorphism of g.

For an Euler element we write Ox = Inn(g)x ⊆ g for the orbit of x under the group
Inn(g) = 〈ead g〉 of inner automorphisms.4 We say that x is symmetric if −x ∈ Ox .

We write E(g) for the set of non-zero Euler elements in g and Esym(g) ⊆ E(g) for
the subset of symmetric Euler elements.
(b) An element (x, σ ) ∈ G is called an Euler couple or Euler wedge if

Ad(σ ) = eπ i ad x . (2.10)

Then σ is called an Euler involution and σ = σx as introduced before.Wewrite GE ⊆ G
for the subset of Euler couples and note that the relation eπ i ad x = e−π i ad x implies that
the subset GE is invariant under the G-action.

For an Euler element x ∈ E(g), the relation (2.10) only determines σ up to an element
z ∈ G↑ ∩ ker(Ad) for which (σ z)2 = e, i.e., σ zσ = z−1. Note that, if G↑ is connected,
then G↑ ∩ ker(Ad) = Z(G↑) is the center of G↑. The couples (x, σ ) that we have
seen in the physics literature are all Euler couples (cf. [NÓ17, Ex. 5.15]). This ensures
many properties, such as the proper relation between spin and statistics, see for instance
[GL95].

Definition 2.5. (a) (Duality operation) ForW = (x, σ ) ∈ G, we define W ′ := (−x, σ ).
Under �, this operation corresponds to inverting the homomorphism R

× → G point-
wise. Note that (W ′)′ = W and (gW )′ = gW ′ for g ∈ G by (2.8).
(b) (Order structure on G) We now define an order structure on G that depends on the
invariant cone C from (2.4). We associate to W = (x, σ ) ∈ G
• the Lie wedge

LW := L(x, σ ) := C+(W )⊕ (gσ ∩ ker(ad x))
︸ ︷︷ ︸

gW :=
⊕C−(W ),

where

C±(W ) = ±C ∩ g−σ ∩ ker(ad x ∓ 1) and g±σ := {y ∈ g : Ad(σ )(y) = ±y}.
• g(W ) := LW − LW , the Lie algebra generated by LW .

4 For a Lie subalgebra s ⊆ g, we write Inng(s) = 〈ead s〉 ⊆ Aut(g) for the subgroup generated by ead s.
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• the semigroup associated to the triple (C, x, σ ):

SW := exp(C+(W ))G↑W exp(C−(W )) = G↑W exp
(

C+(W ) + C−(W )
)

,

where

G↑W = {g ∈ G↑ : g.W = W } = {g ∈ G↑ : σG(g) = g,Ad(g)x = x}

is the stabilizer of W = (x, σ ) in G↑ (cf. [Ne19b, Thm. 3.4]).5

• the subgroups G↑(W ) := 〈exp g(W )〉G↑W and G(W ) := G↑(W ){e, σ } with Lie
algebra g(W ).

As the unit group of SW is given by SW ∩ S−1W = G↑W ([Ne19b, Thm. III.4]), the
semigroup SW defines a G↑-invariant partial order on the orbit G↑.W ⊆ G by

g1.W ≤ g2.W :⇐⇒ g−12 g1 ∈ SW . (2.11)

In particular, g.W ≤ W is equivalent to g ∈ SW .

We have the following relations among these objects:

Lemma 2.6. For every W = (xW , σW ) ∈ G, g ∈ G, and t ∈ R, the following assertions
hold:

(i) λW (t)W = W, λW (t)W ′ = W ′ and σW .W = W ′.
(ii) σW ′ = σW and λW ′(t) = λW (−t).
(iii) σW commutes with λW (R).
(iv) LW ′ = −LW and SW ′ = S−1W .
(v) C±(g.W ) = Ad(g)C±εG (g)(W ), Lg.W = Ad(g)LW , and Sg.W = gSWg−1.
(vi) For W1,W2 ∈ G, the relation W1 ≤ W2 in G implies g.W1 ≤ g.W2.

Proof. (i) For W = (x, σ ) ∈ G, the first two relations follow from the fact that
exp(Rx) commutes with x and σ . The second follows from σW .W = σ.(x, σ ) =
(−Ad(σ )x, σ ) = (−x, σ ) = W ′.
(ii) is clear from the definition of W ′.
(iii) follows from (i).
(iv) follows from C±(W ′) = −C∓(W ).
(v) The assertion is clear for g ∈ G↑. For g ∈ G↓, we have gσ ∈ G↑, so that

C±(g.W ) = C±(gσ.W ′) = Ad(gσ)C±(W ′) = −Ad(gσ)C∓(W ) = Ad(g)C∓(W )

= Ad(g)C±εG (g)(W ).

This implies in particular that Lg.W = Ad(g)LW . From G↑g.W = gG↑Wg−1, we thus

obtain Sg.W = gSWg−1.
(vi) If W1 ≤ W2, then W1 = s.W2 for s ∈ SW2 . Then g.W1 = gs.W2 = gsg−1.(g.W2)

with gsg−1 ∈ gSW2g
−1 = Sg.W2 implies g.W1 ≤ g.W2. ��

5 In [Ne19b] it is shown that the different descriptions as a product of two sets (polar decomposition) and
a product of two abelian subsemigroups and a group yield the same set SW which actually is a subsemigroup.
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In this discussion we started with a Lie group. We remark that one can also start
with a Lie algebra as follows: Consider a quadruple (g, σg, h,C) of a Lie algebra g, an
involutive automorphism σg of g, fixing the Euler element h and a pointed closed convex
invariant cone C ⊆ g with σg(C) = −C . Then σg integrates to an automorphism σG of
the 1-connected Lie group G↑ with Lie algebra g, so that we obtain all the data required
above with G := G↑ � {idG , σG}.

For two such quadruples (g j , τg, j , h j ,C j ) j=1,2, a homomorphism ϕ : g1 → g2 of
Lie algebras is compatible with this structure if

ϕ ◦ τg,1 = τg,2 ◦ ϕ, ϕ(h1) = h2 and ϕ(C1) ⊆ C2.

We thus obtain a category whose objects are the quadruples (g, τg, h,C) and its mor-
phisms are the compatible homomorphisms.

A similar category can be defined on the group level, but there are some subtle
ambiguities concerning the possible extensions of the group structure from G↑ to G.

Remark 2.7. (Twisted extensions of G↑ to G) We start with a graded group G for which
G↓ contains an involution σ , so that G ∼= G↑ � {e, σ }, where σ acts on G↑ by the
automorphism σG(g) := σgσ . This defines a split group extension

G↑ → G → Z2

and we are now asking for other group extensions

G↑ → ̂G → Z2

for which the elements in ̂G↓ define the same element in the group Out(G↑) =
Aut(G↑)/ Inn(G↑) of outer automorphisms of G↑. These extensions are parametrized
by the group

Z(G↑)+ := {z ∈ Z(G↑) : σG(z) = z},
by assigning to z ∈ Z(G↑)+ the group structure on G↑ × {1,−1} given by

(g, 1)(g′, ε′) = (gg′, ε′), (e,−1)(g′, 1) = (σG(g′),−1) and (e,−1)2 = (z, 1).

(2.12)

We write ̂Gz for the corresponding Lie group. Basically, this means that the element
σ̂ := (e,−1) has the same commutation relations with G↑ but its square is z instead
of e:

σ̂ gσ̂−1 = σG(g) for g ∈ G and σ̂ 2 = z. (2.13)

For two elements z, z′ ∈ Z(G↑)+, the corresponding extensions are equivalent if and
only if

z−1z′ ∈ B := {wσG(w) : w ∈ Z(G↑)}. (2.14)

This follows from [HN12, Thm 18.1.13], combined with [HN12, Ex. 18.3.5(b)].
(a) For G = On(R), n > 3, and G↑ = SOn(R), the situation depends on the parity
of n. If n is odd, then Z(G↑) = {e} and no twists exist. If n is even, then Z(G↑) =
{±1} = Z(G). Therefore Z(G↑)+ = {±1} �= B = {e}. We therefore have one twisted



Covariant Homogeneous Nets of Standard Subspaces 315

group ̂G = SOn(R){e, ̂σ }, where σ ∈ On(R) corresponds to a hyperplane reflection,
and σ̂ 2 = −1 in ̂G.
(b) The same phenomenon occurs for Spin groups. Let G := Pinn(R) ∼=
Spinn(R) � {e, σ }, where σ corresponds to a hyperplane reflection. If n is odd, then
Z(Spinn(R)) = {e, z} contains two elements, and we have a twisted group

̂G = Spinn(R){e, σ̂ } with σ̂ 2 = z

(cf. [HN12, Rem. B.3.25]). If n is even, then the situation is more complicated because
the center of Spinn(R) has order 4.

(c) ForG = M̃öb�{e, σ }, where σ corresponds to a reflection σ(x) = −x onR
∞ ∼= S

1,
we have Z(G↑) ∼= Z and σG(z) = z−1 for z ∈ Z(G↑). Hence Z(G↑)+ = {e}, so that
there are no twists.
(d) If G = Möb(2n)

� {e, σ }, where Möb(2n) is the covering of Möb of even order,
then Z(G↑) ∼= Z2n and σG(z) = z−1 for z ∈ Z(G↑). Therefore Z(G↑)+ = {e, γ },
where γ is the unique non-trivial involution in Z(G↑) and B = {e}. Hence there exists
a non-trivial twist ̂G = G↑{e, ̂σ } with σ̂ 2 = γ .
(e) As we shall see in Example 2.13 below, it may happen that, for the twisted groups ̂Gz ,
the coset ̂G↓z contains no involutions. In this example G↑ = SL2(R) and G = G↑{e, γ }
with γ 2 = −1.

In general, elements in ̂G↓z are of the form gσ̂ with g ∈ G↑, and then

(gσ̂ )2 = gσ̂gσ̂ = gσG(g)̂σ 2 = gσG(g)z. (2.15)

Hence ̂G↓z contains an involution if and only if

z ∈ {σG(g)−1g−1 : g ∈ G↑} = {gσG(g) : g ∈ G↑}.
If z = gσG(g) for some g ∈ G↑, then conjugating with g implies that g and σG(g)
commute.

The discussion in Example 2.13 shows that (2.15) is not satisfied for z = −1 and
the Euler involution of G↑ = SL2(R). For any odd degree covering SL2(R)(2k+1) →
SL2(R), the central involution is mapped onto −1, so that this observation carries over
to odd coverings of SL2(R).

The situation changes if we consider G↑ = SL2(C) instead. Then g := i

(

1 0
0 −1

)

satisfies g2 = −1, so that the group ̂G = G↑{1, ̂σ } with σ̂ 2 = −1 contains the non-
trivial involution gσ̂ ∈ ̂G↓. As this involution is central, ̂G ∼= ̂G↑ × Z2 is a direct
product.

2.3. The abstract wedge space, some fundamental examples.

Definition 2.8 (The abstract wedge space). Fromhere on, we always assume thatG �= ∅,
i.e., that G↓ contains an involution σ . Then

G ∼= G↑ � {id, σ }
(cf. Remark 2.2). For a fixed couple W0 = (h, σ ) ∈ G, the orbits

W+(W0) := G↑.W0 ⊆ G and W(W0) := G.W0 ⊆ G
are called the positive and the full wedge space containing W0.
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Remark 2.9. (a) As σ.W0 = (−h, σ ) = W ′
0, we have W(W0) = W+(W0) ∪W+(W ′

0),
and W(W0) coincides with W+(W0) if and only if W ′

0 = (−h, σ ) ∈ W+(W0). This is
equivalent to the existence of an element g ∈ G↑ with g.W0 = W ′

0, i.e., g ∈ (G↑)σ with
Ad(g)h = −h.
(b) If W0 is an Euler couple, thenW(W0) is a family of Euler couples, and we shall see
below that in this case we have W(W0) =W+(W0) in many important cases.

We collect some fundamental examples, starting from the low dimensional cases,
that we shall refer to throughout the paper.

Examples 2.10. (a) The smallest example is the abelian group G = R × {±1}, where
G↑ = R, C = {0} and L = g. For W0 = (h, σ ) with h = 1 and σ = (0, 1), we then
have the one-point setW+ = {(h, σ )}, and W = {(h, σ ), (−h, σ )}.
(b) The affine group G := Aff(R) ∼= R � R

× of the real line is two-dimensional.
Its elements are denoted (b, a), and they act by (b, a)x = ax + b on the real line. The
identity component G↑ = R�R

×
+ acts by orientation preserving maps, and G↓ consists

of reflections rp(x) = 2p − x , p ∈ R.
Let ζ(t) = (t, 1) and δ(t) = (0, et ) be the translation and dilation one-parameter groups,
respectively. We write λ = (0, 1) ∈ g = R � R for the infinitesimal generator of δ,
which is an Euler element. Therefore W := (λ, r0) is an Euler couple.

The cone C = R+ × {0} ⊆ g satisfies the invariance condition (2.4) and the corre-
sponding semigroup SW is

SW = [0,∞) � R
×
+ = {g = (b, a) : g.0 = b ≥ 0, a > 0} = {g ∈ G↑ : gR+ ⊆ R+}.

Therefore the map

W+(W ) � g.(λ, r0) �→ g(0,+∞)

defines an order preserving bijection between the abstract wedge spaceW+(W ) ⊆ G and
the set I+(R) = {(t,∞) : t ∈ R} of lower bounded open intervals in R. Accordingly,
we may write W(t,∞) = (�(t,∞), rt ) := ζ(t)W = (Ad(ζ(t))λ, rt ) for t ∈ R. Acting
with reflections, we also obtain the couples

W(−∞,t) := (�(−∞,t), rt ) = rt .W(t,∞) = (−Ad(ζ(t))λ, rt )

corresponding to past pointing half-lines (−∞, t) ⊂ R. We thus obtain a bijection
between the full wedge space W(W ) and the set I(R) of open semibounded intervals
in R. We shall denote with δI the one-parameter group of dilations with generator λI
corresponding to the half line I .

The set E(g) = Ad(G↑){±λ} of non-zero Euler elements in g consists of two G↑-
orbits and, for each non-zero Euler element ±Ad(ζ(t))λ ∈ E(g), the reflection rt is the
unique partner for which (±Ad(ζ(t))λ, rt ) ∈ G. Accordingly, Euler couples in G are in
one-to-one correspondence with semi-infinite open intervals in R.
(c) The Möbius group G := Möb2 := PGL2(R) ∼= GL2(R)/R

× acts on the compact-
ification R = R ∪ {∞} of the real line by

g.x := ax + b

cx + d
on R := R ∪ {∞}, for g =

(

a b
c d

)

∈ GL2(R).
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We write G↑ = Möb ∼= PSL2(R) for the subgroup of orientation preserving maps. The
Cayley transform

C : R → S
1 := {z ∈ C : |z| = 1}, C(x) := i − x

i + x
, C(∞) := −1,

is a homeomorphism, identifying R with the circle. Its inverse is the stereographic map

C−1 : S1 → R, C−1(z) = i
1− z

1 + z
.

It maps the upper semicircle {z ∈ S
1 : Im z > 0} to the positive half line (0,+∞). The

Cayley transform intertwines the action of Möb on R with the action of PSU1,1(C) =
SU1,1(C)/{±1}, given by

(

α β

β α

)

.z := αz + β

βz + α
for z ∈ S

1,

(

α β

β α

)

∈ SU1,1(C).

The three-dimensional Lie group Möb is generated by the following one-parameter
subgroups:

• Rotations: ρ(θ)(x) = cos(θ/2)x+sin(θ/2)
− sin(θ/2)x+cos(θ/2) for θ ∈ R; note thatC(ρ(θ)x) = eiθC(x).

• Dilations: δ(t)(x) = et x for t ∈ R.
• Translation: ζ(t)x = x + t for t ∈ R.

In the circle picture δ and ζ will be denoted by δ∩ and ζ∩, referring to the upper semicircle
with endpoints {−1, 1} = C({0,∞}). Note that −1 is the unique fixed point of ζ∩ and
one of the two fixed points {±1} of δ∩. On the circle, ρ(π) maps 1 to−1 and exchanges
the upper and the lower semicircle. Accordingly, ζ∪ = ρ(π)ζρ(π) is the subgroup of
conjugated translations fixing the point 1 ∈ S

1.
We writeK = ρ(R), A = δ(R), N+ = ζ(R) and N− = ζ∪(R) for the corresponding

one-dimensional subgroups of Möb, and P+ = AN+ = Möb∞, P− := AN− = Möb0
for the stabilizer groups of∞ and 0 in Möb. We observe that R ∼= Möb/P− and that
the circle group K = PSO2(R) acts simply transitively on R.

On the compactified line, the point reflection τ(x) = −x in 0 acts on the Lie algebra
by

Ad(τ )

(

a b
c −a

)

=
(−1 0

0 1

) (

a b
c −a

) (−1 0
0 1

)

=
(

a −b
−c −a

)

. (2.16)

Note that τ ∈ G↓.
The infinitesimal generator h :=

( 1
2 0
0 − 1

2

)

of δ is an Euler element and W := (h, τ )

is an Euler couple. SinceMöb2 ∼= PGL2(R) ∼= Aut(sl2(R)), for any Euler couple (x, τ ),
the involution τ is determined by the requirement that it acts on g = sl2(R) by eπ i ad x .
We conclude that the action of G↑ = Möb on the set of Euler couples is transitive, i.e.,
GE = G↑.(h, τ ).

To see the geometric side of Euler couples, let us call a non-dense, non-empty open
connected subset I ⊆ S

1 an interval and write I(S1) for the set of intervals in S
1. It is

easy to see thatMöb acts transitively on I(S1). To determine the stabilizer of an interval,
we consider the upper half circle, which corresponds to the half line (0,∞) ⊆ R. Each



318 V. Morinelli, K.-H. Neeb

element g ∈ Möb mapping (0,∞) onto itself fixes 0 and ∞. Since it is completely
determined by the image of a third point, it is of the form δ(t) if g.1 = et . Therefore the
stabilizer of (0,∞) inMöb is the subgroup δ(R), which coincides with the stabilizer of
h under the adjoint action. This already shows that W+(W ) and I(S1) are isomorphic
homogeneous spaces ofMöb. In particular, we can associate to an interval I = g(0,∞)

the reflection τI = gτg−1 and the one-parameter group δI := gδg−1. Note that τI is an
orientation reversing involution mapping I to the complementary open interval I ′. We
write xI := Ad(g)h for the infinitesimal generator of δI , so that the assignment I �→ xI
defines an equivariant bijection I(S1) → E(g). The anticlockwise orientation of S

1,
which can also be considered as a causal structure, is used here to pick the sign of xI
in such a way that the flow δI is counter clockwise (future pointing) on I . Accordingly,
xI ′ = −xI corresponds to the complementary interval I ′.

To identify the natural order on the abstract wedge space GE =W+(W ), we consider

for X =
(

a b
c −a

)

∈ g = sl2(R) the corresponding fundamental vector field

VX (x) = d

dt

∣

∣

∣

t=0 exp(t X).x = (a − d)x + b − cx2 = b + 2ax − cx2.

This shows that

C := {X ∈ g : VX ≥ 0} =
{

X =
(

a b
c −a

)

: b ≥ 0, c ≤ 0, a2 ≤ −bc
}

(2.17)

is a pointed generating invariant cone in g. The Liewedge specified by the triple (h, τ,C)

is

LW = L(h, τ,C) = R+

(

0 1
0 0

)

︸ ︷︷ ︸

C+

⊕Rh ⊕ R+

(

0 0
1 0

)

︸ ︷︷ ︸

C−

=
{

(

a b
c −a

)

: a ∈ R, b ≥ 0, c ≥ 0
}

.

We further have G(W ) = G↑, and the associated semigroup is

SW = exp(C+) exp(Rh) exp(C−) = {g ∈ G↑ : g(0,∞) ⊆ (0,∞)}.
Therefore the map

GE =W+(W ) =W(W ) → I(S1), g.W �→ g(0,∞) (2.18)

defines an order preserving bijection between the abstract wedge space W(W ) and the
ordered set I(S1).

(d) We now consider the universal covering of the Möbius group Möb. Concretely,
we put G := M̃öb � {1, τ̃ }, where τ̃ acts on M̃öb by integrating Ad(τ ) from (2.16)

to an automorphism of M̃öb. The group G is a graded Lie group and G↑ := M̃öb is
its identity component. We have a covering homomorphism qG : G → Möb2 whose

kernel Z(M̃öb) ∼= Z is discrete cyclic. We write ρ̃,˜δ,˜ζ and˜ζ∪ for the canonical lifts of
the one-parameter groups ρ, δ, ζ , ζ∪ ofMöb,˜P+ :=˜δ(R)˜ζ (R), and˜P− :=˜δ(R)˜ζ∪(R).

The action ofMöb on S
1 lifts canonically to an action of the connected group G↑ =

M̃öb on the universal covering ˜S1 ∼= R, where we fix the covering map qS1 : R → ˜

R,
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defined by qS1(θ) = ρ̃(θ).0, which corresponds to the map θ �→ eiθ = C(ρ̃(θ).0) in the

circle picture. We may thus identify ˜S1 with the homogeneous space M̃öb/˜P− ∼= R. As

conjugation with τ̃ on M̃öb preserves the subgroup˜P−, it also acts on ˜S1. From (2.16) it
follows that it simply acts by the point reflection τ̃ .x = −x in the base point 0. We also
note that Z := ker(qG) = ρ̃(2πZ) is the group of deck transformations of the covering
qS1 , which acts by

ρ̃(2πn).x = x + 2πn for n ∈ Z. (2.19)

We call a non-empty interval I ⊆ R admissible if its length is strictly smaller than
2π and write I(R) for the set of admissible intervals. An interval I ⊆ R is admissible
if and only if there exists an interval I ∈ I(S1) such that I is a connected component
of q−1

S1
(I ). The group Z acts transitively on the set of these connected components. As

Möb acts transitively on I(S1), it follows that the group M̃öb acts transitively on the set
I(R), and that composition with qS1 yields an equivariant covering map

I(R) ∼= M̃öb/˜δ(R)→ I(S1) ∼= Möb/δ(R), I �→ qS1(I ). (2.20)

We further have:

• The group˜P+ =˜δ(R)˜ζ (R) fixes the points {(2k + 1)π : k ∈ Z}.
• For I ∈ I(S1), let˜δI be the lift of the one-parameter group δI . Then˜δI preserves
every interval in the preimage q−1

S1
(I ).

• The inverse images of τ ∈ Möb2 in M̃öb2 are the elements τ̃n := ρ̃(2πn)̃τ , n ∈ Z.
These are involutions, acting by

τ̃n(x) = 2πn − x for x ∈ R (2.21)

which is a point reflection in the point πn. All pairs (h, τ̃n) are Euler couples in

G(M̃öb2), and from the discussion of the set of Euler couples GE (Möb2) under (c),
we know that the involutions τ̃n exhaust all possibilities for supplementing h to an
Euler couple.

There is an interesting difference to the situation forMöb2, whereMöb acts transitively

on the set GE (Möb2) of Euler couples. To see what happens for M̃öb2, recall that the
stabilizer of the element (h, τ ) ∈ GE (Möb2) in Möb is the subgroup δ(R). Its inverse
image is the group

˜δ(R)ρ̃(2πZ) ∼= R× Z.

An element g ∈ M̃öb fixes (h, τ̃n) if and only if Ad(g)h = h and gτ̃ng−1 = τ̃n . The
first condition is equivalent to g being of the form

g =˜δ(t)ρ̃(2πk) for some t ∈ R, k ∈ Z.

The second condition is equivalent to τ̃gτ̃ = τ̃ngτ̃n = g, which takes the form

˜δ(t)ρ̃(−2πk) =˜δ(t)ρ̃(2πk),

and this is equivalent to k = 0. We conclude that the stabilizer of (h, τ̃n) is

M̃öb(h ,̃τn) =˜δ(R). (2.22)



320 V. Morinelli, K.-H. Neeb

We also note that

ρ̃(πk).(h, τ̃n) = ((−1)kh, ρ̃(πk )̃τn ρ̃(−πk)) = ((−1)kh, ρ̃(2πk )̃τn) = ((−1)kh, τ̃n+k).

We conclude that the group M̃öb does not act transitively on the set GE of Euler couples.
It has two orbits:

GE (M̃öb2) = G↑.W0∪̇G↑.W1 =W+(W0)∪̇W+(W1) for W0 := (h, τ̃0),W1 := (h, τ̃1).

(2.23)

We also refer to Example 2.14 for a discussion of this issue from a different perspective.
• The subgroup˜δ(R) preserves every interval which is a non-trivial orbit of˜δ(R), acting

on R. If, conversely, g ∈ M̃öb preserves such an interval, then its image in Möb is
contained in δ(R), so that

g =˜δ(t)ρ̃(2πk) for some t ∈ R, k ∈ Z.

As every open orbit of˜δ(R) is an interval of length π , the element g can only preserve

such an orbit if k = 0. This shows that M̃öb(h ,̃τn) also is the stabilizer group of any open
˜δ(R)-orbit in R. We conclude that, for the Euler couple W0 = (h, τ̃0), the map

� : W+(W0)→ I(R), g.(h, τ̃0) �→ g(0, π) (2.24)

defines a G↑-equivariant bijection between the abstract wedge spaceW+(W0) ⊆ G and
the set I(R) of admissible intervals in R. Since the full group G acts on the space I(R)

of intervals, � can be used to transport this action to a G-action on the space W+(W0),
extending the action of the subgroup G↑. Since τ0(0, π) = (−π, 0) = ρ(−π)(0, π),

we have

�−1(τ0(0, π)) = �−1(ρ(−π)(0, π)) = ρ(−π).�((0, π))−1 = (−h, ρ(−2π)τ0),

so that τ0.W0 := (−h, ρ(−2π)τ0). By G↑-equivariance of the map�, we conclude that
the action of G↓ onW+(W0) is given by

g ∗ρ(−2π) (x, σ ) := (Adε(g), ρ(−2π)gσg−1) for every g ∈ G↓. (2.25)

Here we use that ρ̃(−2π) ∈ Z(G↑). Note that we have chosen (0, π) to be the image
of W0 through �. Further possible actions come from the identifications

�n : W+(Wn)→ I(R), g.(h, τ̃n) �→ g(0, π) with Wn = (h, τn), (2.26)

and one can likewise see that

g ∗αn (x, σ ) := (Adε(g), αngσg
−1) for g ∈ G↓ and αn = ρ̃((2n − 1)2π) ∈ Z(G↑),

extends the action of G↑ on W+(Wn) to G and � = �0 for n = 0 (see also (2.37) and
Section 2.4.2 for this kind of action).
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(e) Let q : Möb(n) → Möb be the n-fold covering group of Möb and ρ(n), δ(n), ζ (n)

and ζ
(n)
∪ be the lifts of the corresponding one-parameter groups ofMöb. We further put

P−,(n) := δ(n)(R)ζ
(n)
∪ (R), so that we obtain an n-fold covering

qn : S
1
n := Möb(n)/P−,(n) → S

1 = Möb/P−, gP−,(n) �→ q(g)P−

of the circle, and the action of the one-parameter group ρ(n) induces a diffeomorphism

R/2πnZ → S
1
n, [t] �→ ρ(n)(t).0

The set of wedges can be described analogously to the case (d), but there is a difference
depending on the parity of n. If n is even, the group G↑ has two orbits in the set GE
of Euler couples, but if n is odd, there is only one. Indeed, for n = 2k, the element
ρ(n)(2πk) acts as an involution on S

1
n . So it fixes all Euler couples (h, τ̃n), even if it does

NOT fix any proper interval in S
1
n (see also Example 2.14).

(f) The example arising most prominently in physics is the proper Poincaré group

G := P+ := R
1,d

� SO1,d(R), G↑ := P↑+ := R
1,d

� SO1,d(R)↑.

It acts on 1+d-dimensionalMinkowski spaceR
1,d as an isometry group of theLorentzian

metric given by (x, y) = x0y0 − xy for x = (x0, x) ∈ R
1,d . Writing

V+ := {(x0, x) ∈ R
1,d : x0 > 0, x20 > x2}

for the open future light cone, the grading on G is specified by time reversal, i.e.,
gV+ = ε(x, g)V+. In particular C := V+ is a pointed closed convex cone satisfying
(2.4). For d > 1, this is, up to sign, the only non-zero pointed invariant cone in the Lie
algebra g.

The generator k1 ∈ so1,d(R) of the Lorentz boost on the (x0, x1)-plane

k1(x0, x1, x2, . . . , xd) = (x1, x0, x2, . . . , xd)

is an Euler element. It combines with the spacetime reflection j1(x) =
(−x0,−x1, x2, . . . , xd) to the Euler couple (k1, j1). We associate to (k1, j1) the space-
time region

W1 = {x ∈ R
1+d : |x0| < x1},

the standard right wedge, and note that W1 is invariant under exp(Rk1). It turns out that
the semigroup S(k1, j1) associated to the couple (k1, j1) in Definition 2.5 satisfies

S(k1, j1) = {g ∈ G : gW1 ⊆ W1} =: SW1 (2.27)

(see [NÓ17, Lemma 4.12]). From (2.27) it follows that the map

W+ =W = G↑.(k1, j1) � g.(k1, j1) �→ gW1 (2.28)

defines an order preserving bijection between the abstract wedge spaceW ⊆ G and the
set ofwedge domains inMinkowski spaceR

1+d . For an abstract wedgeW = (kW , jW ) ∈
W , the Euler element kW is the corresponding boost generator. For an axial wedge
Wi := {x ∈ R

1+d : |x0| < xi }, i = 1, . . . , n, the corresponding Euler couple will be
denoted (ki , ji ).
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2.4. Nets of wedges, isotony, central locality and covering groups. In the following
sections we will focus on the description of relative positions of wedges, in particular
wedge inclusions and the locality principle.

2.4.1. Wedge inclusion Firstly consider this wedge inclusion configuration called half-
sided modular inclusion:

Definition 2.11. Let W0 = (x, σ ) ∈ G and y ∈ ±C with [x, y] = ±y. Then exp(y) ∈
SW0 (Definition 2.5(b)), so that

W1 := exp(y).W0 ≤ W0.

We then call W1 ≤ W0 a ±half-sided modular inclusion.

The next lemma shows that any wedge inclusion can be described in terms of positive
and negative half-sided modular inclusions.

Lemma 2.12. If W1 ≤ W3 in G, then there exists an element W2 ∈ G with W1 ≤ W2 ≤
W3 for which the inclusion W1 ≤ W2 is +half-sided modular and the inclusion W2 ≤ W3
is −half-sided modular.

Proof. That W1 ≤ W3 means that W1 = sW3 for some

s ∈ SW3 = exp(C−(W3)) exp(C+(W3))G
↑
W3

.

Accordingly, we write s = g−g+g0 and observe that W1 = g−g+W3 because g0W3 =
W3. Put W2 := g−W3. Then W2 ≤ W3 and g+W3 ≤ W3 implies W1 = g−g+W3 ≤
g−W3 = W2.

Further, the inclusionW2 ≤ W3 is−half-sidedmodular because g− ∈ exp(C−(W3)).
Likewise the inclusion g+W3 ≤ W3 is +half-sided modular, and therefore W1 ≤ W2 is
also +half-sided modular. ��
2.4.2. Central locality For a wedge W = (x, σ ), the dual wedge W ′ = (−x, σ ) need
not be contained in the orbit W+ = G↑.W . If, however, G↑ has a non-trivial central
subgroup Z such that, modulo Z , the complement W ′ is contained in W+, then we use
central elements α ∈ Z to define “twisted complements” W

′α which are contained in
W+, and this in turn leads to a twisted action of the full group G onW+. We also obtain
onW+ a complementation map W �→ W

′α .
Let Z ⊆ Z(G↑) be a closed normal subgroup of G, and q : G → G := G/Z be the

corresponding surjective morphism of graded Lie groups with kernel Z . If Z is discrete,
then q is a covering map. The morphism of graded Lie groups q induces a natural map

qG :G(G) → G :={(x, σ ) ∈ g×G↓ : σ 2 = e,Adg(σ )x = x}, (x, σ ) �→ (x, q(σ )),

(2.29)

where Adg : G → Aut(g) denotes the factorized adjoint action which exists because
Z = ker(q) acts trivially on g. It restricts to a map

GE (G) → GE := {(x, σ ) ∈ E(g)× G↓ : σ 2 = e,Adg(σ ) = eπ i ad x }. (2.30)

As the following example shows, neither of these maps is always surjective. The main
obstruction is that, although the differential L(q) : L(G) → L(G) is surjective, there
may be involutions τ ∈ G↓ for which no involution σ ∈ G↓ with q(σ ) = τ exists. This
phenomenon is tightly related to the twisted groups ̂Gz discussed in Remark 2.7 because
these twists disappear for z ∈ Z in ̂G/Z ∼= G/Z .
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Example 2.13. We consider the graded Lie group

G := SL2(R){1, γ } ⊆ SL2(C), where γ :=
(

i 0
0 −i

)

satisfies γ 2 = −1.

It has two connected component and G↑ = SL2(R).6 The subgroup Z := {±1} is
central and the quotient map q : G → G := G/Z is a 2-fold covering. The Euler

element x := 1
2

(

1 0
0 −1

)

∈ g = sl2(R) combines with the involution q(γ ) ∈ G↓ to

the Euler couple (x, q(γ )) ∈ G. However, the set G(G) is empty because G↓ contains

no involution. In fact, for g =
(

a b
c d

)

∈ SL2(R), the condition that gγ is an involution

is equivalent to
(−a b

c −d
)

= γ gγ = g−1 =
(

d −b
−c a

)

.

This is equivalent to a = −d and b = c = 0, contradicting that 1 = det(g) = −a2.
We conclude in particular that the maps G(G) → G and GE (G) → GE (G) are not
surjective.

We now discuss G↑-orbits in G(G). In the examples we have in mind, the central
subgroup Z is discrete.
Involution lifts and central wedge orbit. Each element σ ∈ G↓ acts in the same way
on the abelian normal subgroup Z by the involution

σZ : Z → Z , γ �→ γ σ := σγ σ

which restricts to an involution σZ ∈ Aut(Z) because Z is central in G↑ and a normal
subgroup of G. In the following we shall need the subgroups

Z− := {γ ∈ Z : γ σ = γ−1} ⊇ Z1 := {γ σ γ−1 : γ ∈ Z}. (2.31)

For γ ∈ Z−, the element γ 2 = (γ σ γ−1)−1 is contained in Z1, so that the quotient group
Z−/Z1 is an elementary abelian 2-group, i.e., isomorphic to Z

(B)
2 for some index set B.

For an involution σ ∈ G↓ and β ∈ Z(G↑), the element βσ ∈ G↓ is an involution if
and only if β ∈ Z−. Therefore

α ∗ (x, σ ) := (x, ασ ) (2.32)

defines an action of Z− on G(G), commuting with the conjugation action of G↑ and
satisfying

g.(α ∗ (x, σ )) = α−1 ∗ (g.(x, σ )) for g ∈ G↓, α ∈ Z−. (2.33)

For W = (x, σ ) ∈ G(G), the fiber over W := (x, q(σ )) is thus given by

Z− ∗W := {(x, ασ ) : α ∈ Z−}. (2.34)

The subgroup Z ⊆ G↑ acts by conjugation on the fiber Z− ∗W :

γ.(x, σ ) = (x, γ σγ−1) = (x, γ (γ σ )−1σ),

6 This is the twisted version of the 2-fold cover of the extended Möbius groups; see Remark 2.7(d).
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so that the quotient group Z−/Z1 parametrizes the Z -conjugation orbits in the fiber
Z− ∗W .7 Here is an example.

Example 2.14. (a) If Z ∼= Z and nσ = −n, then Z− = Z and Z1 = 2Z, so that
Z−/Z1 ∼= Z/2Z.
(b) If Z = Zn and nσ = −n, then Z− = Zn and Z1 = 2Zn , so that

Z−/Z1 ∼=
{

Z/2Z if n is even
{0} if n is odd.

Wedge G↑-orbits. Let W = (x, σ ) ∈ GE (G) and W = (x, q(σ )) ∈ G. In general the
group G↑ does not act transitively on the inverse image of the orbitW+ := G↑.W ⊆ G
under qG . We now describe how this set decomposes into orbits. By the transitivity of
the G↑-action onW+, it suffices to consider the orbits of the stabilizer

G↑W = {g ∈ G↑ : q(g).W = W }
on the fiber Z− ∗ W . That g ∈ G↑ fixes W implies in particular that gσg−1σ =
g(gσ )−1 ∈ Z . This leads to a homomorphism

∂ : G↑W → Z−, g �→ g(gσ )−1 with g.(x, σ ) = (Ad(g)x, gσg−1) = (x, ∂(g)σ ).

(2.35)

As Z ⊆ G↑W , the image Z2 := ∂(G↑W ) is a subgroup containing Z1.

Example 2.15 (An example where Z1 �= Z2.) We consider the group G = M̃öb� {1, τ̃ }
from Example 2.10(d) and the canonical homomorphism

q : G → G := SL2(R) � {1, σ }, σ :=
(−1 0

0 1

)

whose kernel is the central subgroup Z := 2Z(G↑) ⊆ Z(G↑) ∼= Z of index two. Now
W = (h, τ̃ ) ∈ G(G) is an Euler couple mapped to W = (h, σ ) ∈ G. As zτ̃ = z−1 for
every z ∈ Z , we have Z = Z− and Z1 = 2Z is a subgroup of index 2. To calculate Z2,
we observe that

G↑W = Gh = exp(Rh){±1} and G↑W = exp(Rh)Z(G↑).

We conclude that

Z2 = ∂
(

G↑
W

) = ∂(Z(G↑)) = 2Z(G↑) = Z− �= Z1.

The situation changes if we consider Z = Z(G↑) and the center-free group G =
Möb � {1, τ } instead. Then Z = Z− = Z(G↑) and Z1 = Z2 = 2Z .

As the G↑ orbits in q−1G (G↑.W ) = q−1G (W+) correspond to the G↑W -orbits in the

fiber q−1G (W ) = Z− ∗W , we obtain the following lemma.

7 Considering Z as amoduleZ2-module via the involutionσZ , we have Z
1(Z2, Z) ∼= Z− and B1(Z2, Z) ∼=

Z1, so that the cohomology group is H1(Z2, Z) := Z1(Z2, Z)/B1(Z2, Z) ∼= Z−/Z1. We refer to [HN12,
Ex. 18.3.15] or [ML63, Thm. IV.7.1] for more on group cohomology.
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Lemma 2.16. The quotient group Z−/Z2 parametrizes the set of G↑-orbits in q−1G (W+).

α-twisted complement. The following definition generalizes the notion of complemen-
tary wedge given in Definition 2.5 (a).

Definition 2.17. For α ∈ Z−, we define the α-twisted complement of W = (x, σ ) ∈
G(G) by

(x, σ )
′α := (−x, ασ ).

We will refer to couples of the form W
′α as complementary wedges. We consider

W
′α as a “complement” of W because qG maps W

′α to W ′ (see item (a) below).

Lemma 2.18. For each α ∈ Z−, the α-twisted complementation W �→ W
′α satisfies:

(a) For α ∈ Z−, W ′α is mapped by qG onto the complement W ′ = (−x, q(σ )) of
W = (x, q(σ )).

(b) The α-twisted complementation is not involutive if α2 �= e.
(c) The map

′α : G(G) → G(G), (x, σ ) �→ (−x, ασ ) is G↑-equivariant.
(d) In terms of the action (2.32) of Z− on G(G), we have

W
′α = α ∗W ′ for W ∈ G(G), α ∈ Z−. (2.36)

(e) The prescription

g ∗α (x, σ ) :=
{

g.(x, σ ) for g ∈ G↑
g.(α−1 ∗ (x, σ )) = α ∗ (g.(x, σ )) for g ∈ G↓. (2.37)

defines an action of G on G(G). This action satisfies

W
′α = σ ∗α W for W = (x, σ ) ∈ G(G), α ∈ Z−. (2.38)

If W
′α ∈ G↑.W, then W+ = G↑.W is invariant under the full group G with respect

to the α-twisted action.
(f) There exists an α ∈ Z− with W

′α ∈ W+ if and only if W ′ := (−x, q(σ )) ∈ G↑.W.
If this is the case, then W

′β ∈W+ for β ∈ Z− if and only if β−1α ∈ Z2. In this case,
the twisted actions of g ∈ G↓ are related by g∗β = (βα−1) ∗ g∗α .

Proof. (a) and (b) are easy to see.
(c) follows from α ∈ Z(G↑) and the G↑-equivariance of the complementation map.
(d) is immediate from the definition of α ∗W .
(e) That the prescription defines an action follows easily from the fact that
g1 ∗α (g2 ∗α W ) = (g1g2).W for g1, g2 ∈ G↓ (cf. (2.33))). The relation (2.38) fol-
lows from σ.W = σ.(x, σ ) = (−x, σ ). For the last statement, we note that by (2.38),
the relation W

′α ∈W+ implies

G ∗α W+ =W+ ∪ σ ∗α W+ =W+ ∪ G↑.W ′α =W+ ∪ G↑W+ =W+.

(f) As qG(W+) = W+ = G↑.W and qG(W
′α) = W ′, the inclusion W

′α ∈ W+ implies
that W ′ ∈W+. If, conversely, W

′ ∈W+, then there exists a g ∈ G↑ with

(−x, q(σ )) = g.(x, q(σ )) = (Ad(g)x, q(gσg−1)),
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so that α := gσg−1σ ∈ ker(q) = Z satisfies

W+ � g.W = g.(x, σ ) = (−x, gσg−1) = (−x, ασ ) = α ∗W ′ = W
′α.

Now suppose that W
′α = α ∗ W ′ ∈ W+. Then W

′β = β ∗ W ′ ∈ W+ is equivalent to
βα−1 ∗W ′α = W

′β ∈W+, and this is equivalent to β−1α ∗W+ =W+. Next we observe
that the relation βα−1 ∗ W ∈ W+ is equivalent to the existence of some g ∈ G↑W with

g.W = (x, β−1ασ), which means that βα−1 ∈ Z2 = ∂(G↑W ). ��

Example 2.19. Weshow that forG = M̃öb�{1, τ̃ } as in Example 2.10(d), we have to use
twisted complements to obtain a G↑-orbit in GE (G) invariant under complementation.

We have already seen that GE (M̃öb) contains two G↑-orbits, represented by the couples
W0 = (h, τ̃ ) and W1 = (h, τ̃1). The complement W ′

0 = (−h, τ̃ ) satisfies

ρ̃(π)W ′
0 = (h, ρ̃(π )̃τ ρ̃(−π)) = (h, ρ̃(2π)̃τ ) = (h, τ̃1) = W1,

so that complementation exchanges the two G↑-orbits in GE (M̃öb). On the other hand,
for the action ∗α defined in (2.37), the full group G preserves both G↑-orbits.

Since Ad(ρ(−π))h = −h, the element g := ρ̃(−π) can be used to define a suitable
α-twisted conjugation as follows. We note that

α := g(gτ̃ )−1 = ρ̃(−π)ρ̃(−π) = ρ̃(−2π)

is a generator of Z := Z(M̃öb) = Z−. We now have

W
′α
0 = (−h, ατ̃ ) = ρ̃(−π).(h, τ̃ ) = ρ̃(−π).W0 ∈ G↑.W0.

Thus GE (M̃öb2) consists of two G↑-orbits, none of which is invariant under comple-
mentation, but both are invariant under α-complementation. An analogous computation
leads to the same picture for even coverings ofMöb, in particular for the fermionic case.

3. Euler Elements and 3-graded Lie Algebras

In this section we exhibit a general relation between two notions that are a priori unre-
lated: complementary and orthogonal wedges. For the sake of simplicity we consider in
this introductory part the case of the Poincaré groupG = P+ onR

1+2 (cf. Example 2.10).
We have seen that if W = (kW , jW ) is a wedge of the group G, then W ′ = (−kW , jW )

is the opposite wedge. The π -spatial rotation ρ(π) takes W onto W ′ and vice versa.
Thus there exists a group element g ∈ G↑ = P↑+ such that Ad(g)kW = −kW , and in
this sense kW is symmetric. This ensures a symmetry between a wedge and its opposite
wedge, which corresponds to its causal complement in Minkowski spacetime.

Typical pairs of orthogonal wedges are the coordinate wedges

Wi = {(t, x) ∈ R
1+2 : |t | < xi } ≡ (ki , ji ) ∈ GE (G) for i = 1, 2. (3.1)

The importance of this couple of wedges comes by the clear geometric relation: the
wedge reflection of W1 acts on the orthogonal wedge as

j1.W2 = W2 resp. Ad( j1)(k2) = −k2.
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In [GL95] the authors study the orthogonality relation in order to extend the unitary
covariance representation of the Poincaré group P↑+ to an (anti-)unitary representation
of the graded group P+ and establish the Spin–Statistics Theorem. In this extension
process, orthogonal Euler wedges play a crucial role. This point will be discussed from
our abstract perspective in Section 4.4 below.

In this section we will see how, in our setting, the existence of a symmetric Euler ele-
ment in the Lie algebra ensures the existence of an orthogonal pair. For symmetric Euler
elements, the orthogonality relation for Euler elements is symmetric, and orthogonal
pairs of Euler elements generate a subalgebra isomorphic to sl2(R) in g.

3.1. Preliminaries on Lie algebras and algebraic groups. In this subsection we collect
some basic facts on finite dimensional real Lie algebras and on real algebraic groups
(see [HN12] for Lie algebras and [Ho81] for algebraic groups).

A Lie algebra g is called simple if g and {0} are the only ideals of g. It is called
semisimple if it is a direct sum of simple ideals g = g1 ⊕ · · · ⊕ gn . On the other side of
the spectrum, we have solvable Lie algebras. These are the ones for which the derived
series defined by D0(g) := g and Dn+1(g) := [Dn(g), Dn(g)] satisfies DN (g) = {0}
for some N ∈ N. Here

[g, g] = span{[x, y] : x, y ∈ g}
is the commutator algebra of g.

The fundamental theorem on the Levi decomposition asserts that, if r is the maximal
solvable ideal of g, then there exists a semisimple subalgebra s (a Levi complement),
such that

g ∼= r � s

is a semidirect sum, i.e., a vector space direct sum of the ideal r and the subalgebra s.
A key feature in the structure theory of semisimple real Lie algebras is the concept

of a compactly embedded subalgebra. A subalgebra k ⊆ g is said to be compactly
embedded if the subgroup Inng(k) = 〈ead k〉 ⊆ Aut(g) has compact closure. We write
Inn(g) := Inng(g) for the subgroup of inner automorphisms of g.

An element x ∈ g is called

• elliptic, if ad x is semisimplewith purely imaginary eigenvalues, which is equivalent
to the one-dimensional Lie subalgebra Rx being compactly embedded.
• hyperbolic, if ad x is diagonalizable.
• nilpotent, if ad x is nilpotent, i.e., (ad x)n = 0 for some n ∈ N.

The Cartan–Killing form

κ : g× g→ R, κ(x, y) := tr(ad x ad y)

is a symmetric bilinear form on g invariant under the automorphism group Aut(g).
Recall that a finite dimensional real Lie algebra is semisimple if and only if κ is non-
degenerate (Cartan’s criterion). Note that κ(x, x) = tr((ad x)2) ≥ 0 if x is hyperbolic
and κ(x, x) ≤ 0 if x is elliptic.

In the proof of Proposition 3.2 below we shall use some results from the theory of
linear algebraic groups. We now recall the basic concepts. If V is a finite dimensional
real vector space, then GL(V ) denotes the group of linear automorphisms of V . Any
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polynomial function on the linear space End(V ) defines a function on the group GL(V )

andwe call a subgroupG ⊆ GL(V )algebraic if it is the zero set of a family of polynomial
functions p j : End(V )→ R. An algebraic group G is said to be

• reductive, if eachG-invariant subspaceV1 ⊆ V has aG-invariant linear complement
V2.
• unipotent, if there exists a flag of linear subspaces

F0 = {0} ⊆ F1 ⊆ · · · ⊆ Fn = V

such that (g − 1)Fj ⊆ Fj−1 for j = 1, . . . , n and g ∈ G.

In this context one has a decomposition theorem (the Levi decomposition), asserting that
every algebraic subgroup G ⊆ GL(V ) is a semidirect product G ∼= U � L , where U
is unipotent and L is reductive. Moreover, for every reductive subgroup L1 ⊆ G there
exists an element g ∈ G with gL1g−1 ⊆ L ([Ho81, Thm. VIII.4.3]).

3.2. Symmetric and orthogonal Euler elements.

Definition 3.1. A pair (h, x) of Euler elements is called orthogonal if σh(x) = −x (cf.
Definition 2.4).

Proposition 3.2. The following assertions hold:

(i) An Euler element h ∈ g is symmetric, i.e., −h ∈ Oh, if and only if h is contained in
a Levi complement s and h is a symmetric Euler element in s.

(ii) Let g = r � s be a Levi decomposition.
(a) If h ∈ g is a symmetric Euler element, thenOh = Inn(g)(Oh ∩s) = Oq(h), where

q : g→ s is the projection map.
(b) Two symmetric Euler elements are conjugate under Inn(g) if and only if their

images in s are conjugate under Inn(s).

Proof. (i) As Oh ⊆ h + [g, g] follows from the invariance of the affine subspace
h + [g, g] under Inn(g), the relation −h ∈ Oh implies h ∈ [g, g]. Let g = r � s be
a Levi decomposition of g. As s = [s, s], the commutator algebra is adapted to this
decomposition:

[g, g] = [r + s, r + s] = [g, r] + s ∼= [g, r]� s.

Now h is an Euler element in the ideal [g, g] = [g, r] � s. This is the Lie algebra of
an algebraic group for which [g, r] is the Lie algebra of the unipotent radical and s
the Lie algebra of a reductive complement ([Ho81, Thm. VIII.3.3]). As the algebraic
group generated by exp(R ad h) is reductive, the conjugacy of Levi decompositions
([Ho81, Thm. VIII.4.3]) implies that ad h is contained in some Levi complement ad s of
ad([g, g]) = [ad g, ad g]. Replacing h by another element in Oh , we may thus assume
that h ∈ z(g) + s for some Levi complement s of g. Then r and s are ad h-invariant, so
that the ad h-eigenspaces of the restrictions satisfy

r = r1(h) + r0(h) + r−1(h) and s = s1(h) + s0(h) + s−1(h),

and define 3-gradings of r and s. Further g±1(h) ⊆ [h, g] ⊆ [g, g] and s = [s, s] ⊆ [g, g]
imply thatg = r0(h)+[g, g].As [g, g] is an ideal and r0(h) a subalgebra ofg, the subgroup
Inng([g, g]) of Inn(g) is normal, and Inn(g) = Inng([g, g]) Inn(r0(h)). As Inn(r0(h))
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fixes h, this in turn shows that Oh = Inng([g, g])h = Inng([g, r]) Inng(s)h. Writing
h = hz + hs with hz ∈ z(g) and hs ∈ E(s), we thus find x ∈ [g, r] and s ∈ Inng(s) such
that8

−hz − hs = −h = ead x s.h = hz + ead x s.hs .

Applying the Lie algebra homomorphism q to both sides, we derive from q(hz) = 0
and q ◦ ead x = q that −hs = s.hs , and therefore

ead xhs = hs + 2hz .

We conclude that the unipotent linear map ead x preserves the linear subspaceRhs +Rhz ,
and this implies that ad x = log(ead x ) also has this property. We thus arrive at

[h, x] = [hs, x] ⊆ Rhs + Rhz ⊆ g0(h),

so that wemust have x ∈ g0(h) = g0(hs), which in turn leads to 0 = ead xhs−hs = 2hz ,
i.e., h = hs ∈ s.

To prove the second assertion of (i), we observe that the homomorphism
q : g→ s ∼= g/r satisfies

q(Ox ) = Os
q(x) for x ∈ g. (3.2)

Hence q(Esym(g)) ⊆ Esym(s). If, conversely, h ∈ Esym(s), then we clearly have −h ∈
Inng(s)h ⊆ Inn(g)h, so that h ∈ Esym(g).
(ii)(a) As Oh intersects s by (i), q(Oh) ∩Oh �= ∅, and since Inn(s) acts transitively on
q(Oh) by (3.2), we obtain q(Oh) ⊆ Oh and thus q(Oh) = Oh ∩ s. This further leads to

Oh = Inn(g)(Oh ∩ s) = Inn(g)q(Oh) = Inn(g)Os
q(h) = Oq(h).

(ii)(b) follows immediately from (a). ��
Proposition 3.2 reduces the descriptionof symmetricEuler elements up to conjugation

by inner automorphisms to the case of simple Lie algebras.

Remark 3.3. Suppose that g is a finite dimensional Lie algebra containing a pointed
generating invariant cone C . If g is not reductive, then C ∩ z(g) �= {0} ([Ne99, Thm.
VII.3.10]). If τ = σh is an involution defined by a symmetric Euler element h, then τ

fixes every central element, so that we cannot have τ(C) = −C if g is not reductive.

Examples 3.4. (a) If s is a semisimple Lie algebra and h ∈ s an Euler element, then it also
is an Euler element in the semidirect sum T s := |s|� s, where |s| is the linear subspace
underlying s, endowedwith the s-module structure defined by the adjoint representation.
(b) In the simple Lie algebra g := sln(R), wewrite n×n-matrices as block 2×2-matrices
according to the partition n = k + (n − k). Then

hk := 1

n

(

(n − k)1k 0
0 −k1n−k

)

8 Here we use that the Lie algebra [g, r] is nilpotent, so that the exponential function of the corresponding
group Inng([g, r]) is surjective, see [HN12].



330 V. Morinelli, K.-H. Neeb

is diagonalizable with the two eigenvalue n−k
n = 1− k

n and− k
n . Therefore hk is an Euler

element whose 3-grading is given by

g0(h) =
{

(

a 0
0 d

)

: a ∈ glk(R), d ∈ gln−k(R), tr(a) + tr(d) = 0
}

,

g1(h) =
(

0 Mk,n−k(R)

0 0

)

, g−1(h) ∼=
(

0 0
Mn−k,k(R) 0

)

.

Example 3.5. For g = sl2(R), the Euler element

h := 1

2

(

1 0
0 −1

)

satisfies σh

(

a b
c d

)

=
(

a −b
−c d

)

.

Any element in Fix(−σh) is of the form x =
(

0 b
c 0

)

, and it is an Euler element if and

only if bc = − det(x) = 1
4 . If g ∈ SL2(R) commutes with h, then it is diagonal, i.e.,

g =
(

a 0
0 a−1

)

, and thus

Ad(g)

(

0 b
c 0

)

=
(

0 a2b
a−2c 0

)

.

We thus obtain two representatives

x± = ±1

2

(

0 1
1 0

)

of conjugacy classes of orthogonal pairs (h, x) of Euler elements for sl2(R). The invo-
lution corresponding to x± is given by

σx±

(

a b
c d

)

= eπ i x±
(

a b
c d

)

e−π i x± =
(

0 i
i 0

) (

a b
c d

)(

0 −i
−i 0

)

=
(

d c
b a

)

,

which shows in particular that

σx±(h) = −h. (3.3)

As a consequence of the preceding discussion, we see that the orthogonality relation
on E(sl2(R)) is symmetric:

Lemma 3.6. If (x, y) is an orthogonal pair of Euler elements in sl2(R), then σy(x) =
−x, so that (y, x) is also orthogonal.
Example 3.7. For g = gl2(R), the Euler element

h :=
(

1 0
0 0

)

satisfies σh

(

a b
c d

)

=
(−1 0

0 1

) (

a b
c d

) (−1 0
0 1

)

=
(

a −b
−c d

)

,

and we see, as for sl2(R), that the orthogonal Euler elements are given by

x± = ±1

2

(

0 1
1 0

)

with σx±

(

a b
c d

)

=
(

d c
b a

)

.
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This shows that

σx±(h) �= −h. (3.4)

Therefore gl2(R) contains a pair (h, x) of orthogonal Euler elements for which σx (h) �=
−h. From h �∈ [g, g] it immediately follows that h is not symmetric. We shall see in
Theorem 3.13 below that this pathology of the orthogonality relation on the set of Euler
elements does not occur for symmetric Euler elements.

Example 3.8. For g = sl3(R), the Euler element

h1 := 1

3

⎛

⎝

2 0 0
0 −1 0
0 0 −1

⎞

⎠ satisfies σh1

(

a b
c d

)

=
(

a −b
−c d

)

,

where we write matrices as 2 × 2-block matrices according to the partition 3 = 1 + 2.
Up to conjugacy under the centralizer of h1, the symmetric matrices in Fix(−σh1) are
represented by

x =
⎛

⎝

0 0 a
0 0 0
a 0 0

⎞

⎠ .

These matrices have three different eigenvalues, so that ad x has five eigenvalues, and
thus x cannot be an Euler elements of sl3(R). We conclude that there exists no Euler
element x ∈ E(sl3(R)) for which (h1, x) is orthogonal.

We shall see in Theorem 3.13(b) below that this never happens for symmetric Euler
elements, but h1 is not symmetric. It corresponds to h1 for the root system A2 in the
notation of Section 3.3.

Example 3.9. For g = sl4(R), the Euler element

h1 := 1

4

⎛

⎜

⎝

3 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎠ satisfies σh1

(

a b
c d

)

=
(

a −b
−c d

)

,

where we write matrices as 2 × 2-block matrices according to the partition 4 = 1 + 3.
Up to conjugacy under the centralizer of h1, the symmetric matrices in Fix(−σh1) are
represented by

x =
⎛

⎜

⎝

0 0 0 a
0 0 0 0
0 0 0 0
a 0 0 0

⎞

⎟

⎠ .

They all have three different eigenvalues and ad x has five eigenvalues, so that they are
not Euler elements. We conclude that there exists no Euler element x ∈ E(sl4(R)) for
which (h1, x) is orthogonal.

This is different for the symmetric Euler element

h2 := 1

2

⎛

⎜

⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎠ with σh2

(

a b
c d

)

=
(

a −b
−c d

)

,
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where we write matrices as 2 × 2-block matrices according to the partition 4 = 2 + 2.
Up to conjugacy under the centralizer of h2, the symmetric matrices in Fix(−σh2) are
represented by

x =
⎛

⎜

⎝

0 0 a 0
0 0 0 b
a 0 0 0
0 b 0 0

⎞

⎟

⎠ ,

and, for a = b = 1
2 , these are Euler elements orthogonal to h2.

3.3. Euler elements in simple real Lie algebras. In this section we take a systematic
look at Euler elements in simple real Lie algebras. In particular we determine which
of them are symmetric and show that pairs of orthogonal ones generate sl2-subalgebras
(Theorem 3.13). For the classification of 3-gradings of simple Lie algebras, we refer to
[KA88], the concrete list of the 18 types in [Kan98, p. 600] which is also listed below,
and Kaneyuki’s lecture notes [Kan00].

Let g is a real semisimple Lie algebra. An involutive automorphism θ ∈ Aut(g) is
called a Cartan involution if its eigenspaces

k := gθ = {x ∈ g : θ(x) = x} and p := g−θ = {x ∈ g : θ(x) = −x}
have the property that they are orthogonal with respect to κ , which is negative definite
on k and positive definite on p. Then

g = k⊕ p (3.5)

is called a Cartan decomposition. Cartan involutions always exist and two such invo-
lutions are conjugate under the group Inn(g) of inner automorphism, so they produce
isomorphic decompositions ([HN12, Thm. 13.2.11]).

If g = k ⊕ p is a Cartan decomposition, then k is a maximal compactly embedded
subalgebra of g, x ∈ g is elliptic if and only if its adjoint orbit Ox = Inn(g)x intersects
k, and x ∈ g is hyperbolic if and only if Ox ∩ p �= ∅.

For the finer structure theory, and also for classification purposes, one starts with a
Cartan involution θ and fixes a maximal abelian subspace a ⊆ p. As a is abelian, ad a is
a commuting set of diagonalizable operators, hence simultaneously diagonalizable. For
a linear functional 0 �= α ∈ a∗, the simultaneous eigenspaces

gα := {y ∈ g : (∀x ∈ a) [x, y] = α(x)y}
are called root spaces and

� := �(g, a) := {α ∈ a∗ \ {0} : gα �= 0}
is called the set of restricted roots. We pick a set

� := {α1, . . . , αn} ⊆ �

of simple roots. This is a subset with the property that every root α ∈ � is a linear
combination α = ∑n

j=1 n jα j , where the coefficients are either all in Z≥0 or in Z≤0.
The convex cone

�� := {x ∈ a : (∀α ∈ �) α(x) ≥ 0}
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is called the positive (Weyl) chamber corresponding to �.
We have the root space decomposition

g = g0 ⊕
⊕

α∈�

gα and g0 = m⊕ a, where m = g0 ∩ k.

Now θ(gα) = g−α , and for a non-zero element xα ∈ gα , the 3-dimensional subspace
spanned by xα, θ(xα) and [xα, θ(xα)] ∈ a is a Lie subalgebra isomorphic to sl2(R). In
particular, it contains a unique element α∨ ∈ a with α(α∨) = 2. Then

rα : a→ a, rα(x) := x − α(x)α∨

is a reflection, and the subgroup

W := 〈rα : α ∈ �〉 ⊆ GL(a)

is called theWeyl group. Its action on a provides a good description of the adjoint orbits
of hyperbolic elements: Every hyperbolic element in g is conjugate to a unique element
in �� and, for x ∈ a, the intersection Ox ∩ a = Wx is the Weyl group orbit ([KN96,
Thm. III.10]).

From now on we assume that g is simple. Then � is an irreducible root system,
hence of one of the following types:

An, Bn, Cn, Dn, E6, E7, E8, F4, G2 or BCn, n ≥ 1

(cf. [Bo90a]). If g is a complex simple Lie algebra, then it is also simple as a real Lie
algebra, and a Cartan decomposition takes the form

g = k⊕ ik,

where k ⊆ g is a compact real form. Then a = it, where t ⊆ k is maximal abelian.
In particular, the restricted root system �(g, a) coincides with the root system of the
complex Lie algebra g. This leads to a one-to-one correspondence between isomorphy
classes of simple complex Lie algebras and the irreducible reduced root systems. If g is
not complex, then neither the isomorphy class of g nor of gC is determined by the root
system �(g, a). For instance all Lie algebras so1,n(R) have the restricted root system
A1 with dim a = 1, but their complexifications son+1(C) have the root systems Bk for
n = 2k and Dk for n = 2k − 1.

The adjoint orbit of an Euler element in g contains a unique h ∈ ��. For any Euler
element h ∈ ��, we have α(h) ∈ {0, 1} for α ∈ � because the values of the roots on h
are the eigenvalues of ad h. If such an element exists, then the irreducible root system
� must be reduced. Otherwise, for any root α with 2α ∈ �, we must have α(h) = 0
because ad x has only three eigenvalues. As the set of such roots generates the same
linear space as �, this leads to the contradiction h = 0. This excludes the non-reduced
simple root systems of type BCn .

To see how many possibilities we have for Euler elements in a, we recall that � is
a linear basis of a, so that, for each j ∈ {1, . . . , n}, there exists a uniquely determined
element

h j ∈ a, satisfying αk(h j ) =
{

1 for j = k
0 otherwise.

(3.6)
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A simple Lie algebra g = k⊕ p is called hermitian if the center

z(k) = {x ∈ k : [x, k] = {0}}
of a maximal compactly embedded subalgebra k is non-zero. For hermitian Lie algebras,
the restricted root system � is either of type Cr or BCr (cf. Harish Chandra’s Theorem
[Ne99, Thm. XII.1.14]), and we say that g is of tube type if the restricted root system is
of type Cr .

The following theorem lists for each irreducible root system � the possible Euler
elements in the positive chamber ��. Since every adjoint orbit in E(g) has a unique
representative in��, this classifies the Inn(g)-orbits in E(g) for any non-compact simple
real Lie algebra. For semisimple algebras g = g1⊕· · ·⊕gk , an element x = (x1, . . . , xk)
is an Euler element if and only if its components x j ∈ g j are Euler elements, and its
orbit is

Ox = Ox1 × · · · ×Oxk .

Therefore it suffices to consider simple Lie algebras, and for these the root system � is
irreducible. As every complex simple Lie algebra g is also a real simple Lie algebra, our
discussion also covers complex Lie algebras.

Theorem 3.10. Suppose that g is a non-compact simple real Lie algebra, with restricted
root system � ⊆ a∗ of type Xn. We follow the conventions of the tables in [Bo90a] for
the classification of irreducible root systems and the enumeration of the simple roots
α1, . . . , αn. Then every Euler element h ∈ a on which � is non-negative is one of
h1, . . . , hn, and for every irreducible root system, the Euler elements among the h j are
the following:

An : h1, . . . , hn, Bn : h1, Cn : hn, Dn : h1, hn−1, hn, E6 : h1, h6, E7 : h7.
(3.7)

For the root systems BCn, E8, F4 and G2 no Euler element exists (they have no 3-
grading). The symmetric Euler elements are

A2n−1 : hn, Bn : h1, Cn : hn, Dn : h1, D2n : h2n−1, h2n, E7 : h7.
(3.8)

Proof. Writing the highest root in � with respect to the simple system � as αmax =
∑n

j=1 c jα j , we have c j ∈ Z>0 for each j . If h ∈ �� is an Euler element, then �(h) ⊆
{0, 1}, and 1 = αmax(h) =∑n

j=1 c jα j (h) implies that at most one value α j (h) can be 1,
and then the others are 0, i.e., h = h j for some j ∈ {1, . . . , n}. Moreover, h j is an Euler
element if and only if c j = 1. Consulting the tables on the irreducible root systems in
[Bo90a], we obtain the Euler elements listed in (3.7).

To determine the symmetric ones, let w0 ∈ W be the longest element of the Weyl
group, which is uniquely determined by w∗0� = −� for the dual action of W on a∗.
Then h′j := w0(−h j ) is the Euler element in the positive chamber representing the orbit
O−h j . Therefore h j is symmetric if and only if −h j ∈ Wh j , which is equivalent to
h′j = h j . Using the description of w0 and the root systems in [Bo90a], now leads to

An−1 : h′j = hn− j , Bn : h′1 = h1, Cn : h′n = hn, (3.9)

Dn : h′1 = h1, h
′
n =

{

hn−1 for n odd,
hn for n even,

(3.10)

E6 : h′1 = h6, E7 : h′7 = h7. (3.11)
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Hence the symmetric Euler elements are given by the list (3.8). ��
This theorem requires some interpretation. So let us first see what it says about

complex simple Lie algebras g. In (3.7) we see that only if g is not of type E8, F4 or G2,
the Lie algebra g contains an Euler element. Euler elements correspond to 3-gradings of
the root system and these in turn to hermitian real forms g◦, where ih j ∈ z(k◦) generates
the center of a maximal compactly embedded subalgebra k◦ ([Ne99, Thm. A.V.1]). We
thus obtain the following possibilities. In Table 1, we write g◦ for the hermitian real
form, g for the complex Lie algebra, � for its root system, and h j for the corresponding
Euler element:

Table 1. Simple hermitian Lie algebras g◦

g◦ (hermitian) �(g◦, a◦) g = (g◦)C �(g, a) Euler element
sup,q (C), 1 ≤ p ≤ q BCp(p < q), Cp(p = q) slp+q (C) Ap+q−1 h p
so2,2n−1(R), n > 1 C2 so2n+1(C) Bn h1
sp2n(R) Cn sp2n(C) Cn hn
so2,2n−2(R), n > 2 C2 so2n(C) Dn h1
so∗(2n) BCm (n = 2m + 1), Cm (n = 2m) so2n(C) Dn hn−1, hn
e6(−14) BC2 e6 E6 h1 = h′6
e7(−25) C3 e7 E7 h7

Note that sl2(R) ∼= so2,1(R) ∼= su1,1(C). More expectional isomorphisms are dis-
cussed in some detail in [HN12, Sect. 17].

In this correspondence, those hermitian simple Lie algebras corresponding to sym-
metric Euler elements are of particular interest. Comparing with the list of hermitian
simple Lie algebras of tube type (cf. [FK94, p. 213]), we see that they correspond pre-
cisely to the 3-gradings specified by symmetric Euler elements, as listed in (3.8). Since
the Euler elements hn−1 and hn for the root system of type Dn are conjugate under a
diagram automorphism, they correspond to isomorphic hermitian real forms.

Table 2. Simple hermitian Lie algebras g◦ of tube type
g◦ (hermitian) �(g◦, a◦) g = (g◦)C �(g, a) symm.Eulerelement h
sun,n(C) Cn sl2n(C) A2n−1 hn
so2,2n−1(R), n > 1 C2 so2n+1(C) Bn h1
sp2n(R) Cn sp2n(C) Cn hn
so2,2n−2(R), n > 2 C2 so2n(C) Dn h1
so∗(4n) Cn so4n(C) D2n h2n−1, h2n
e7(−25) C3 e7 E7 h7

In our context hermitian simple Lie algebras are of particular interest. We therefore
collect some of their main properties in the following proposition.

Proposition 3.11. For a simple real Lie algebra, the following assertions hold:

(a) g is hermitian if and only if there exists a closed convex Inn(g)-invariant cone C �=
{0}, g.

(b) A simple hermitian Lie algebra contains an Euler element if and only if it is of tube
type, and in this case Inn(g) acts transitively on E(g).
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Proof. (a) is a consequence of theKostant–VinbergTheorem (cf. [HÓ96,Lemma2.5.1]).
(b) Since the restricted root system of a hermitian simple Lie algebra is of type Cr or
BCr , and the first case characterizes the algebras of tube type, the assertion follows from
Theorem 3.10 because Cr only permits one class of Euler elements. ��

There are many types of simple 3-graded Lie algebras that are neither complex nor
hermitian of tube type; for instance theLorentzian algebras so1,n(R).We refer to [Kan98,
p. 600] or [Kan00]. for the list of all 18 types which is reproduced below.

Table 3. Simple 3-graded Lie algebras

g �(g, a) h g1(h)

1 sln(R) An−1 h j , 1 ≤ j ≤ n − 1 Mj,n− j (R)

2 sln(H) An−1 h j , 1 ≤ j ≤ n − 1 Mj,n− j (H)

3 sun,n(C) Cn hn Hermn(C)

4 sp2n(R) Cn hn Symn(R)

5 un,n(H) Cn hn Ahermn(H)

6 sop,q (R) Bp (p < q), Dp (p = q) h1 R
p+q−2

7 so∗(4n) Cn hn Hermn(H)

8 son,n(R) Cn hn Altn(R)

9 e6(R) E6 h1 = h′6 M1,2(Osplit)
10 e6(−26) A2 h1 M1,2(O)

11 e7(R) E7 h7 Herm3(Osplit)
12 e7(−25) C3 h3 Herm3(O)

13 sln(C) An−1 h j , 1 ≤ j ≤ n − 1 Mj,n− j (C)

14 sp2n(C) Cn hn Symn(C)

15a so2n+1(C) Bn h1 C
n

15b so2n(C) Dn h1 C
n

16 so2n(C) Dn hn−1, hn Altn(C)

17 e6(C) E6 h1 = h′6 M1,2(O)C
18 e7(C) E7 h7 Herm3(O)C

Remark 3.12. As h ∈ a implies θ(h) = −h, the Cartan involution θ always maps h
into −h, but this only implies that h is symmetric if θ ∈ Inn(g). This is the case if g is
hermitian, so that in these Lie algebras all Euler elements are symmetric.

We conclude this section with some finer results concerning orthogonality and sym-
metry of Euler elements.

Theorem 3.13. If g is simple and h ∈ E(g), then the following assertions hold:

(a) If x ∈ E(g) is such that (h, x) is orthogonal, then
(i) h and x are symmetric,
(ii) the Lie algebra generated by h and x is isomorphic to sl2(R), and
(iii) σx (h) = −h, so that (x, h) is also orthogonal.

(b) There exists an Euler element x such that (h, x) is orthogonal if and only if h is
symmetric.

Proof. (a) We split the proof into the two cases, according to whether g is a complex
Lie algebra or not. We then reduce the second case to the first one.
Case 1: g is complex: A simple complex Lie algebra g contains an Euler element,
i.e., it possesses a 3-graded root system, if and only if it has a real form g◦ which is
hermitian, i.e., g = (g◦)C = g◦ ⊕ ig◦. This follows for example by comparing the list of
irreducible root systems for which Euler elements exist (see (3.7)) with the classification
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of hermitian simple Lie algebras g◦ (see [Ne99, Thm. A.V.1] and Table 1). In this case
the real Lie algebra g◦ has a Cartan decomposition g◦ = k◦ ⊕ p◦ and the center z(k◦)
is one-dimensional and generated by an element z with Spec(ad z) = {0,±i} ([Ne99,
Thm. A.V.1]). Then h = i z is an Euler element in the complexification g for which
k◦ = ker(ad z) ∩ g◦ and [z, g◦] = p◦, where ad z|p◦ is a complex structure on the real
vector space p◦. The corresponding Euler involution σh = eπ i ad h = eπ ad z ∈ AutC(g)
thus restricts to the Cartan involution on g◦, corresponding to the decomposition k◦⊕p◦.
Accordingly, we obtain

h := Fix(σh) = (k◦)C and q := Fix(−σh) = (p◦)C.

A Cartan decomposition of g is obtained by k = k◦ + ip◦ and p = p◦ + ik◦. If t ⊆ k◦
is a maximal abelian Lie subalgebra, then a := it ⊆ p is a maximal abelian subspace
which contains h = i z ∈ iz(k◦) ⊆ it. The orthogonality of the pair (h, x) means that
x ∈ q = Fix(−σh). By [KN96, Cor. III.9], x ∈ E(g)∩q is conjugate under the centralizer
of h to an element in q ∩ p = p◦. Fixing a maximal abelian subspace a◦ ⊆ p◦, we may
therefore assume that x is an Euler element for the corresponding restricted root system
�◦ := �(g◦, a◦) ⊆ (a◦)∗, which is of type Cr or BCr (cf. [Ne99, Thm. XII.1.14]). As
we have already observed above, the existence of an Euler element x ∈ a◦ implies that
the restricted root system �◦ is reduced, which excludes the case BCr . Therefore g◦ is
of tube type (cf. Proposition 3.11) and Table 2 thus implies that h is symmetric.

The fact that g◦ is of tube type implies that x ∈ a◦ corresponds to the unique Euler
element hr for the restricted root system �◦ of type Cr (see (3.7)). From (3.8) it now
follows that x is symmetric (see also Proposition 3.11). This proves (i).

To verify (ii) and (iii), we observe that the root systemCr contains themaximal subset
{2ε1, . . . , 2εr } of strongly orthogonal roots, i.e., neither sums nor differences of these
roots are roots. The multiplicities of these restricted roots are 1 ([Ne99, Thm. XII.1.14]),
and

s :=
r

⊕

j=1
(g◦2ε j

+ g◦−2ε j
+ R(2ε j )

∨) = a◦ ⊕
r

⊕

j=1
(g◦2ε j

+ g◦−2ε j
) ∼= sl2(R)r

(cf. [Ne99, Lemma XII.1.11], [Ta79, p. 12]). As the roots 2ε j all take the value 1 on the
Euler element x ∈ a◦, we have x = 1

2

∑r
j=1(2ε j )

∨, which is the diagonal element in

sl2(R)r , corresponding to

( 1
2 0
0 − 1

2

)

. Likewise, ih is contained in s ∼= sl2(R)r as the

diagonal element corresponding to

(

0 1
2

1
2 0

)

. As the Lie subalgebra of gl2(C), generated

by
(

0 1
2

1
2 0

)

and

( 1
2 0
0 − 1

2

)

is isomorphic to sl2(R), the same holds for the real Lie subalgebra of g generated by h
and x . Now (ii) and (iii) follow from Lemma 3.6.
Case 2: g is not complex: Then gC is a simple complex Lie algebra to which all
arguments in Case 1 apply. In particular, the real Lie subalgebra s spanned by h, x and
[h, x] is isomorphic to sl2(R). This proves (ii) and (iii). As s ⊆ g and all Euler elements
in sl2(R) are symmetric, we also obtain (i).
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(b) If there exists an Euler element x for which (h, x) is orthogonal, then (a)(i) implies
that h is a symmetric Euler element. Suppose, conversely, that h is a symmetric Euler
element. For a Cartan involution θ with θ(h) = −h, we choose a maximal abelian
subspace a ⊆ p = Fix(−θ) containing h and choose in the subset

�1 := {α ∈ �(g, a) : α(h) = 1}
a maximal set {γ1, . . . , γr } of strongly orthogonal roots (cf. [Ta79, p.13] or [Kan00,
p. 134]). From these references we further infer the existence of elements e j ∈ gγ j such
that, for each j , the subalgebra s j := spanR{e j , θ(e j ), [e j , θ(e j )]} is isomorphic to
sl2(R). We normalize e j in such a way that x j := e j − θ(e j ) is an Euler element of s j .
Then loc. cit. further implies that

aq := span{x j : j = 1, . . . , r}
is maximal abelian in qp = q ∩ p for q := g−σh . Since h is a symmetric Euler element
and the root system �(g, a) is irreducible, h corresponds to some h j in the list (3.8).
The restricted root system �(g, aq) is always of type Cr . The explicit description of the
restricted roots in [Kan98, p. 596] now implies that x := ∑r

j=1 x j ∈ aq is an Euler
element. By construction, it satisfies σh(x) = −x , so that (h, x) is orthogonal. This
completes the proof. ��
Corollary 3.14. Let g be a finite dimensional Lie algebra and (h, x) be orthogonal Euler
elements such that h is also symmetric. Then the following assertions hold:

(a) There exists a Levi complement containing h and x.
(b) The Lie algebra generated by h and x is isomorphic to sl2(R).
(c) (x, h) is also orthogonal.

Proof. By Proposition 3.2(i), there exists a Levi decompositions g = r � s with h ∈ s.
We then have for q := Fix(−σh) the decompositions

q := g1(h)⊕ g−1(h) = qr ⊕ qs with qr = q ∩ r and qs = q ∩ s,

and x ∈ q is an Euler element, hence in particular hyperbolic. Let ar ⊆ qr be a maximal
hyperbolic subspace, i.e., ar is abelian, consists of ad-diagonalizable elements and is
maximal with respect to this property. Then ar ⊆ [h, r] ⊆ [g, r] consists also of ad-
nilpotent elements, hence is central. As ad h|q is injective, it follows that ar = {0}. By
[KN96, Prop. III.5], qs contains a maximal hyperbolic subspace a of q and x is conjugate
under Inng(h) to an element of a ⊆ qs. This proves(a).
(b) In view of (a), we may w.l.o.g. assume that g is semisimple, and by Theorem 3.13,
which applies to each simple ideal, even that g ∼= sl2(R)r for some r ∈ N. As
Aut(sl2(R)) ∼= PGL2(R) acts transitively on the set of orthogonal pairs of Euler el-
ements in sl2(R) (Example 3.5), we may further assume that

h = (h0, · · · , h0) and x = (x0, · · · , x0) for h0 =
(

1
2 0
0 − 1

2

)

, x0 :=
(

0 1
2

1
2 0

)

,

so that the Lie subalgebra generated by x and h is the diagonal in sl2(R)r , hence
isomorphic to sl2(R).
(c) follows directly from (b) and Lemma 3.6. ��
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4. Covariant Nets of Real Subspaces

In this section we develop an axiomatic setting for covariant nets of standard subspaces
parametrized by G↑-orbits in GE (G).

4.1. Standard subspaces. Here we collect some fundamental notions concerning real
subspaces of a complex Hilbert space H with scalar product 〈·, ·〉, linear in the second
argument.We call a closed real subspaceH ⊆ H cyclic ifH+iH is dense inH, separating
ifH∩iH = {0}, and standard if it is cyclic and separating. The symplectic “complement”
of a real subspace H is defined by the symplectic form Im〈·, ·〉, namely

H′ = {ξ ∈ H : (∀η ∈ H) Im〈ξ, η〉 = 0}.
Note that H is separating if and only if H′ is cyclic, hence H is standard if and only if
H′ is standard. For a standard subspace H, we define the Tomita operator as the closed
antilinear involution

SH : H + iH→ H + iH, ξ + iη �→ ξ − iη.

The polar decomposition SH = JH�
1
2
H defines an antiunitary involution JH and the

modular operator �H. For the modular group (�i t
H)t∈R, we then have

JHH = H′ and �i t
HH = H for every t ∈ R

([Lo08, Thm. 3.4]). This construction leads to a one-to-one correspondence between
Tomita operators and standard subspaces:

Proposition 4.1 ([Lo08, Prop. 3.2]). The map H �→ SH is a bijection between the set of
standard subspaces ofH and the set of closed, densely defined, antilinear involutions on
H. Moreover, polar decomposition S = J�1/2 defines a one-to-one correspondence be-
tween such involutions and pairs (�, J ), where J is a conjugation and� > 0 selfadjoint
with J�J = �−1.

The modular operators of symplectic complements satisfy the following relations

SH′ = S∗H, �H′ = �−1H , JH′ = JH.

From Proposition 4.1 we easily deduce:

Lemma 4.2 ([Mo18, Lemma 2.2]). LetH ⊂ H be a standard subspace andU ∈ AU(H)

be a unitary or anti-unitary operator. Then UH is also standard and U�HU∗ = �
ε(U )

UH
and U JHU∗ = JUH.

Lemma 4.3 ([Lo08, Cor. 2.1.8]). Let H ⊂ H be a standard subspace, and K ⊂ H be
a closed, real linear subspace of H. If �i t

HK = K for all t ∈ R, then K is a standard

subspace of K := K + iK and �H|K is the modular operator of K on K. If, in addition,
K is a cyclic subspace ofH, then H = K.

The following theorem relates positive generators and inclusions of real subspaces.

Theorem 4.4 ([Lo08, Thms. 3.15, 3.17], [BGL02, Thm. 3.2]). LetH ⊂ H be a standard
subspace and U (t) = eit P be a unitary one-parameter group onH with a generator P.
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(a) If ±P > 0 and U (t)H ⊂ H for all t ≥ 0, then

�
−is/2π
H U (t)�is/2π

H = U (e±s t) and JHU (t)JH = U (−t) for all t, s ∈ R.

(4.1)

(b) If �−is/2πH U (t)�is/2π
H = U (e±s t) for s, t ∈ R, then the following are equivalent:

(1) U (t)H ⊂ H for t ≥ 0;
(2) ±P is positive.

Part (a) is also called the One-particle Borchers Theorem. Borchers originally proved
it for von Neumann algebras with a cyclic and separating vectors, see [Bo92]. Part (b)
is in [BGL02].

With the notation introduced in Examples 2.10(b), we have seen that any couple
(U,H) of a one-parameter group (Ut )t∈R with positive (resp. negative) generator and
a standard subspace H satisfying the assumptions of Theorem 4.4(a) defines a unitary,
positive energy representation of the affine group Aff(R) ∼= R � R

× implemented by

U (ζ(t)) = U (t), U (δ(t)) = �
− i t

2π
H , U (r0) = JH for t ∈ R.

A representation of Aff(R) can also be obtained by looking at some peculiar relative
positions of standard subspaces: The half-sided modular inclusions.

Definition 4.5. An inclusion K ⊆ H of standard subspaces ofH is called a ±half-sided
modular inclusion (±HSMI) if

�−i tH K ⊆ K for ± t ≥ 0.

Theorem 4.6 ([Lo08, Cor. 3.6.6.], [NÓ17, Thm. 3.15]). K ⊆ H is a positive half-
sided modular inclusion if and only if there exists an (anti-)unitary positive energy

representation (U,H) of Aff(R) ∼= R � R
× with U (δ(t)) = �

− i t
2π

H , U (r0) = JH,

U (δ(1,∞)(t)) = �
− i t

2π
K , U (r1) = JK. Suppose that W0 = (λ, r0) corresponds to the

half-line (0,∞). For g ∈ Aff(R), let N(g.W0) be the standard subspace associated to
g.W0 = (xg.W0 , σg.W0) through the (anti-)unitary representation U. In this picture,

K = N((1, 1).W0) and H = N(W0),

and the translations satisfy

K = U (1)H and U (1− et ) = �
−i t/2π
K �

i t/2π
H for t ∈ R.

As a consequence, negative half-sided modular inclusions K ⊆ H are in in 1-1
correspondence with (anti-)unitary negative energy representation (U,H) of Aff(R) ∼=
R � R

× with

K = N((−1, 1).W ′
0) = U (−1)N(W0)

′ and H = N(W ′
0) = N(W0)

′

and with U (δ(−t)) = �
− i t

2π
H , U (r0) = JH, U (δ(−∞,−1)(t)) = �

− i t
2π

K , U (r−1) = JK.

Corollary 4.7 ([Lo08, Corollary 2.4.3.]). If K ⊂ H is +HSMI, then H′ ⊂ K′ is -HSMI
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4.2. The axiomatics of abstract covariant nets. Hereafter we will make the following
assumption on the group G.

Assumption 1. We assume that GE (G) �= ∅ and write G = G↑� {e, σ } for some Euler
involution σ .

Example 4.8. Note that G↓ may contain involutions which are not Euler.
We consider the graded Lie group G := SO1,n(R) with the identity component

G↑ = SO1,n(R)↑. For n ≥ 2, the Lie algebra g = so1,n(R) is simple, θ(x) = −x" is
a Cartan involution, and a := so1,1(R) ⊆ p (acting on the first two components) is a
maximal abelian subspace. As the corresponding restricted root system is of type A1,
our classification scheme (see (3.8) in Theorem 3.10) implies that all Euler elements in
g are conjugate to the one corresponding to the boost generator

h(x0, . . . , xn) = (x1, x0, 0, . . . , 0).

Accordingly, an involution σ ∈ G is Euler if and only if σ or −σ is the orthogonal
reflection in a 2-dimensional Lorentzian plane.

However, G↓ contains all reflections of the type

τ(x) = (ε0x0, . . . , εnxn) with ε j ∈ {±1} satisfying
n

∏

j=0
ε j = 1.

In particular neither Fix(τ ) nor Fix(−τ) must have dimension 2.

We now present the analogs of the one-particle Haag–Kastler axioms and further
fundamental properties in our general setting.

Definition 4.9. Let G = G↑ � {e, σ } be as above, C ⊆ g be a closed convex Adε(G)-
invariant cone in g, and fix a G↑-orbitW+ = G↑.W ⊆ GE (G). Let (U,H) be a unitary
representation of G↑ and

N : W+ → Stand(H) (4.2)

be a map, also called a net of standard subspaces. In the following we denote this data
as (W+,U,N). We consider the following properties:

(HK1) Isotony: N(W1) ⊆ N(W2) for W1 ≤ W2.
(HK2) Covariance: N(gW ) = U (g)N(W ) for g ∈ G↑, W ∈W+.
(HK3) Spectral condition: C ⊆ CU := {x ∈ g : − i∂U (x) ≥ 0}. We then say that U is

C-positive.
(HK4) Central twisted locality: For α ∈ Z(G↑)− and W ∈W+ with W

′α ∈W+, there
exists a unitary Zα ∈ U (G↑)′ satisfying

Z2
α = U (α) and JN(W )Zα JN(W ) = Z−1α , (4.3)

such that

N(W
′α) ⊂ ZαN(W )′. (4.4)

Moreoever, such an α exists.

When Zα is trivial, for instance when ∂(G↑W ) = {e}, then the central twisted locality
reduces to the more familiar locality relation.
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(HK4e) Locality: If W ∈W+ is such that W ′ ∈W+, then N(W ′) ⊂ N(W )′.
Concerning (HK3), note thatCU is pointed if and only if ker(U ) is discrete. Therefore the
assumption thatC is pointed is compatible with the possible existence of representations
with discrete kernel satisfying (HK3). Furthermore, if C = {0}, then (HK3) trivially
holds.

The following property will be central in our discussion because it connects the
modular groups of standard subspaces to the unitary representation U of G↑.

(HK5) Bisognano–Wichmann (BW) property: U (λW (t)) = �
−i t/2π
N(W )

for W ∈ W+,

t ∈ R.

We will see in Proposition 4.19 that a consequence of (HK1-5) is the following stronger
form of (HK4):

(HK6) Central Haag Duality: N(W
′α) = ZαN(W )′ for α ∈ Z(G↑)−, W ∈ W+ with

W
′α ∈W+ and Zα as in (4.3).

If the representation U extends antiunitarily to G we can further require:

(HK7) G-covariance: For any α ∈ Z(G↑)− such that W
′α ∈ W+, there exists an

(anti-)unitary extensionUα ofU fromG↑ toG such that the following condition
is satisfied:

N(g ∗α W ) = Uα(g)N(W ) for g ∈ G, (4.5)

where ∗α is the α-twisted action (2.37) of G on W+ defined in Lemma 2.18(e).

It is enough to provide an extensionUα w.r.t. one α ∈ Z(G↑)− such thatW
′α ∈W+. All

the other extensions come as described in Lemma 2.18(f). The modular conjugation of
standard subspaces can have a geometric meaning when the extension Uα from (HK7)
has the following specific form:

(HK8) Modular reflection: Uα(σW ) = Zα JN(W ) for α ∈ Z(G↑)−, W ∈ W+ with
W

′α ∈W+ and Zα as in (4.3).

In the next sections wewill show that there exist nets of standard subspaces satisfying
all the above assumptions. It is the analog of the BGL construction in this general setting.

4.2.1. Wedge isotony and half-sided modular inclusions Taking the wedge modular
inclusion defined in Section 2.4.1 into account, we nowprove that isotony can be deduced
from covariance, the Bisognano–Wichmann property and the C-spectral condition. On
specific models this has been checked in [BGL02,Lo08].

Proposition 4.10. Let (W+,N,U ) be a net of standard subspaces. Then the spectral
condition (HK3), the BW property (HK5) and G↑-covariance (HK2) imply isotony
(HK1).

Proof. Let W0 = (h, τ ) ∈ GE and H0 = N(W0). By covariance, the net N is isotone if
and only if

SW0 = G↑W0
exp(C+) exp(C−) ⊆ SH0 := {g ∈ G↑ : U (g)H0 ⊆ H0}.

As the stabilizer G↑W0
stabilizesH0 by covariance, isotony is equivalent to exp(x) ∈ SH0

for every x ∈ C+ ∪ C−.
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By the spectral condition (HK3), we have ∓i∂U (x) ≥ 0. Therefore Theorem 4.4
shows that isotony is equivalent to

UH0(es)U (exp t x)UH0(e−s) = U (exp e±s t x) for s, t ∈ R, x ∈ C±. (4.6)

By the BW property (HK5), UH0(es) = �
−is/2π
H0

= U (exp sh), so that [h, x] = ±x for
x ∈ C± implies (4.6). ��

4.2.2. The Brunetti–Guido–Longo (BGL) construction Wehave seen in the introduction
to Section 2 that each standard subspace H specifies a homomorphism

UH : R
× → AU(H) by UH(et ) := �

−i t/2π
H , UH(−1) := JH, (4.7)

and that this leads to a bijection

� : Homgr(R
×,AU(H))→ Stand(H), UH �→ H

between continuous (anti-)unitary representations of the graded Lie group R
× and stan-

dard subspaces ([NÓ17, Prop. 3.2]). By Lemma 4.2, � is equivariant with respect to the
natural action of AU(H) on Stand(H) and the action (2.3) on Homgr(R

×,AU(H)).
Now every (anti-)unitary representation U : G → AU(H) defines by composition a

natural G-equivariant map

G �−1−−−−−−→Homgr(R
×,G)

U◦−−−−→Homgr(R
×,AU(H)), W �→ U ◦ γW .

Combining this with � leads to the so-called Brunetti–Guido–Longo (BGL) construc-
tion:

Definition 4.11 (Brunetti–Guido–Longo (BGL) net.) If (U,G) is an (anti-)unitary rep-
resentation, then we obtain a G-equivariant map NU : G → Stand(H) determined for
W = (kW , σW ) by

JNU (W ) = U (σW ) and �
−i t/2π
NU (W )

= U (exp tkW ) for t ∈ R. (4.8)

This means that, with respect to Definition 2.3, UNU (W ) = U ◦ γW for W ∈ G (see
[BGL02], [NÓ17, Prop. 5.6]).

The BGL net associates to everywedgeW ∈ G a standard subspaceNU (W ).We shall
denote with (W+,NU ,U ) the restriction of the BGL net to the G↑-orbitW+ ⊆ GE (G).

Theorem 4.12. The restriction of the BGL net NU associated to an (anti-)unitary
C-positive representation U of G = G↑ � {e, σ } to a G↑-orbit W+ ⊆ GE satisfies
all the axioms (HK1)-(HK3) and (HK5).

We shall see in Proposition 4.16 that the twisted locality (HK4), Central Haag Duality
(HK6) and (HK7-8) are also satisfied.

Proof. LetW+ ⊆ GE (G) be a G↑-orbit. By construction, the restriction of the BGL net
NU to W+ satisfies (HK2) and by construction it satisfies (HK5). By Proposition 4.10,
isotony (HK1) follows from the Spectral Condition (HK3), which is the C-positivity
of U . ��
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As a last remark in this sectionwe stress that two (anti-)unitary extensions of a unitary
representation (U,H) of G↑ are unitarily equivalent, but the corresponding BGL nets
depend on the choice of the (anti-)unitary extension. The following proposition makes
this dependence explicit and provides a natural parameter space.

Proposition 4.13 (The space of (anti-)unitary extensions). Fix (h, τ ) ∈ G, let
U : G → AU(H) be an (anti-)unitary representation and let M := U (G↑)′. Then
the following assertions hold:

(i) All (anti-)unitary representations (˜U ,H) extendingU |G↑ are of the form ˜U = TUT ∗
for some T ∈ U(M). The corresponding BGL nets are related by

N
˜U (W ) = TNU (W ) for W ∈ G. (4.9)

(ii) (Parametrization of (anti-)unitary extensions) Let J := U (τ ), τ ∈ G↓. For every

N ∈ U(M)− := {M ∈ U(M) : JM J = M−1},
there exists a unique (anti-)unitary extension ˜U of U |G↑ with ˜U (τ ) = N J, and we
thus obtain a bijection between the setU(M)− and the set of (anti-)unitary extensions
of U |G↑ to G.

Proof. (i) follows from Proposition A.1 and the assertion on the BGL nets is an imme-
diate consequence of the definitions.
(ii) Let T ∈ U(M), so that ˜U = TUT−1 : G → AU(H) is an (anti-)unitary extension
of U |G↑ with ˜J := ˜U (τ ) = T JT−1. Since ˜U and U extend the same representation of
G↑,

N := ˜J J = ˜J J−1 ∈ U(M).

This element satisfies J N J = J ˜J = N−1, so that N ∈ U(M)− and ˜J = N J .
If, conversely, N ∈ U(M)−, then Lemma A.2 implies the existence of an X =

−X∗ ∈M with N = e2X and J X J = −X . For T := eX ∈ U(M) and ˜J := T JT−1,
we then have

˜J J = T JT−1 J = T 2 = e2X = N .

Therefore the manifold U(M)− parametrizes the (anti-)unitary extensions of U |G↑ . ��

4.2.3. Twisted locality We have seen in Section 2.4.2 that it can happen that W ′ /∈
W+ = G↑.W . One can anyway attach to W ′ a real subspace by the BGL net and by
construction obtain the relation H(W ′) = H(W )′. On the other hand one can define
natural complementary wedges W

′α indexed by central elements α. In this section we
will see that in the BGL construction, the complementary wedge subspaces satisfy the
central Haag duality condition (HK6), hence the twisted locality relation (HK4). We
start with a lemma on standard subspaces.

Lemma 4.14. LetH ⊂ H be a standard subspace, and U ∈ U(H) be a unitary operator
commuting with �H and satisfying JHU JH = U−1. Let H1 be the standard subspace
defined by (�H,U JH). There exists a unitary square root Z of U commuting with �H
such that JHZ JH = Z−1 and ZH = H1. The standard subspace H1 does not depend on
this choice of Z.
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Proof. The existence of the square root and the commutation relation with the modular
conjugation and the modular operator follows by Lemma A.3. Then

Z(JH�
1/2
H )Z−1 = Z JHZ

−1�1/2
H = Z2 JH�

1/2
H = U JH�

1/2
H

implies that H1 = ZH. It is clear that H1 does not depend on the choice of Z . ��
In order to conclude (HK6), hence the central locality condition on a BGL net NU ,

we will need an analogous statement relating complementary wedge subspaces.

Proposition 4.15. Let (U,H) be an (anti-)unitary representation of the graded group
G = G↑ � {e, σ } and α ∈ Z(G↑)−. Then the commutant U (G↑)′ contains a unitary
square root Zα of U (α) satisfying

U (g)ZαU (g)−1 = Z−1α for every g ∈ G↓. (4.10)

Proof. First we note that U (α) ∈ M := U (G↑)′. We fix σ0 ∈ Inv(G↓) and observe
that conjugation withU (σ0) defines an antilinear isomorphism β ofM. As β(U (α)) =
U (α)−1 follows from α ∈ Z(G↑)−, we find with Lemma A.3(c) in the appendix, a
unitary square root Zα of U (α) satisfying

U (σ0)ZαU (σ0) = β(Zα) = Z−1α . (4.11)

For any other σ ∈ G↓ we have σ = σ0g with g ∈ G↑, so that

U (σ )ZαU (σ ) = U (σ )ZαU (σ )−1 = U (σ0)U (g)ZαU (g)−1U (σ0) = U (σ0)ZαU (σ0) = Z−1α .

��
Weare now ready to verify that theBGLnet is compatiblewith the twistings appearing

in (HK4), (HK6) and (HK7).

Proposition 4.16. For every (anti-)unitary representation (U,H) of G, the BGL netNU

satisfies (HK4) and (HK6). Moreover, for α ∈ Z(G↑)−, W ∈ W+ with W
′α ∈ W+

and Zα ∈ U (G↑)′ satisfying (4.3), the (anti-)unitary extension (Uα,H) of U |G↑ to G,
determined by Uα(σW ) := ZαU (σW ), satisfies (HK7) and (HK8).

Proof. Let α ∈ Z(G↑)− and W = (x, σ ) ∈ W+ be such that W
′α = (−x, ασ ) ∈ W+.

Proposition 4.15 implies the existence of Zα ∈ U (G↑)′ satisfying (4.3). Then

�
−i t/2π
NU (W ′α)

= U (exp(−t x)) and JNU (W ′α)
= U (ασ) = Z2

α JNU (W ) = Zα JNU (W )Z
−1
α

imply that NU (W
′α) = ZαNU (W )′. This shows that (HK6), hence also (HK4) are

satisfied. We also have

NU (σ ∗α W ) = NU (W
′α) = ZαNU (W )′ = ZαU (σ )NU (W ).

Since NU is G-equivariant on G, this leads for g ∈ G↑ to

NU (gσ ∗α W ) = NU (g.(σ ∗α W )) = U (g)NU (σ ∗α W ) = U (g)ZαNU (W )′

= U (g)ZαU (σ )NU (W ) = U (g)Uα(σ )NU (W ) = Uα(gσ)NU (W ).

This proves (HK7). As JNU (W ) = U (σW ) by definition, we also have

Uα(σW ) = ZαU (σW ) = Zα JNU (W ),

so that Uα also satisfies (HK8). ��
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Remark 4.17. (a) IfU |G↑ is irreducible, then U (Z(G↑)) ⊆ T1, so that, we find for any
α ∈ Z(G↑) that U (α) = ζ1 with |ζ | = 1. We may thus put Zα := z1 for any complex
number z with z2 = ζ . In this case J Zα J = Z∗α holds for any antiunitary operator J .
(b) Let (U,H) be an (anti-)unitary representation of G. For any other square root Z
of U (α) satisfying the same requirements as Zα , the unitary operator Z−1Zα is an
involution commuting with U (G), so that it leaves all standard subspaces N(W ) of the
BGL net invariant.
(c) If α ∈ Z(G↑) satisfies ασ = α for σ ∈ G↓, then α acts trivially on G(G) and,
by covariance of N, leaves all standard subspaces N(W ) invariant. This happens in
particular if α2 = e. Then also α ∈ Z(G↑)−, so that α-twisted complements are useful
in the context of fermionic theories. Here U (α) is an involution and one choice of a
square root of U (α) is given by

Zα := 1 + iU (α)

1 + i
. (4.12)

Given a net satisfying (HK1)-(HK5), the commutation relation among twist operators
and the wedge modular operators immediately hold.

Proposition 4.18. Let (W+,U,N) be a G-covariant net satisfying (HK1)-(HK5), sup-
pose that U extends to an (anti-)unitary representation of G, and let Zα ∈ U (G↑)′ as
in (4.3). Then, for every W ∈W+, we have

Zα�N(W )Z
−1
α = �N(W ).

The latter proposition allows to conclude that (HK6) is a consequence of (HK1)-
(HK5).

Proposition 4.19. Let (W+,N,U ) be a net of standard subspace satisfying (HK1)-
(HK5). Then it also satisfies central Haag duality (HK6):

N(W
′α) = ZαN(W )′ for α ∈ Z(G↑)−,W ∈W+,W

′α ∈W+.

In particular, the right hand side does not depend on the choice of Zα .

Proof. By (HK5), the unitary operator Zα ∈ U (G↑)′ commutes with the modular oper-
ator of N(W ), by Proposition 4.18. Therefore the two standard subspaces N(W

′α) and
ZαN(W )′ have the same modular operator. By twisted locality N(W

′α) ⊆ ZαN(W )′,
so that Lemma 4.3 implies that they coincide. ��
Remark 4.20. Let (W+,N,U ) be a net of standard subspaces with a unitary C-positive
representation (U,H) of G↑. Let W0 = (x, σ ) ∈ W+ ⊂ GE and H0 := N(W0). We
claim that (HK1-3) imply that

˜U (σ ) := JH0

defines an (anti-)unitary extension of U |G↑(W0)
to the graded subgroup G(W0) =

G↑(W0) � {e, σ } of G. In fact, JH0 commutes with G↑W0
by Lemma 4.2. Further, the

C-positivity and Theorem 4.4(b) imply that it also has the correct commutation relation
with exp(C±), hence also with G↑(W0). We shall see in Section 4.4, when we actually
obtain an extension to the full group G.
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Example 4.21 (The Poincaré case). Let G := P+ := R
1,3

� SO1,3(R)
↑
0 be the proper

Poincaré group and

G = ˜P+ = R
1,d−1

� Spin1,3(R)0

be its simply connected covering. We write λW for the one-parameter group lifting the
boost group �W associated to a wedge W ∈ W = G.W1 (see e.g. [Mo18]). For G↑,
a wedge is defined by a pair W = (x, rx ), where x generates �W and rx = eπ i x is
the spacetime reflection in the direction of the wedge. Since Z = Z(G) = {±1} is a
2-element group, a wedge W ∈ G has two lifts which belong to two different G↑-orbits
in G(G). To see this, we note that Z = Z− and Z2 = {e}. For the second equality we
use the isomorphism Spin1,3(R) with SL2(C) and note that the centralizer of any Euler

element x , which may be assumed to be x =
( 1

2 0
0 − 1

2

)

, is connected and isomorphic

to the multiplicative group C
×, on which the involution σx acts trivially. Therefore the

central elements ∂(g) = gσ g−1, g ∈ G↑(x,σx ), are all trivial, which leads to Z2 = {e}.
For α := −1, the twisted complement of W = (kW , σW ) is W

′−1 = (−kW ,−σW ).
Any lift r̃ : R → G↑ of a rotation one-parameter group ρ : R → SO2(R) ↪→ SO1,3(R)

in G↑ satisfying Ad(ρ(π))kW = −kW now satisfies ρ̃(2π) = −1. This shows that,
W ′ = (−kW , σW ) �∈ G↑.W , but that W

′−1 = (−kW ,−σW ) �∈ G↑.W .
Let (U,H) be an irreducible unitary positive energy representation of G↑ for which

U (−1) �= 1, then U (−1) = −1 by Schur’s Lemma. For the BGL net
N : G(G) → Stand(H) we therefore have N(W

′−1) = iN(W )′ and Zα = i1 is a
suitable twist operator (cf. [Mo18, Thm. 2.8]).

Example 4.22 (Finite coverings of the Möbius group). Consider the n-fold covering
of the Möbius group G↑ := Möb(n) ⊆ G := Möb(n)

2 , where G = Möb2 (cf. Ex-

ample 2.10(e)). This group is obtained from M̃öb2 by factorization of the subgroup

nZ(M̃öb). Then Z := Z(G↑) ∼= Zn is a cyclic group of order n. Let α := ρ̃(2π) ∈ Z
be a generator, where ρ̃ : R → G↑ is the lift of the rotation group.

Let (U,H) be an (anti-)unitary representation of G whose restriction to G↑ is irre-
ducible. Then, by Schur’s Lemma, U (αn) = U (ρ̃(πn)) is an involution in T1, hence
±1. We now define n-twisted local nets of real subspaces as follows:

• n is even. As βτ = β−1 for β ∈ Z , we have Z− = Z and Z1 ∼= Zn/2 is a

subgroup of index 2. As for M̃öb2, we have Z2 = Z1. We therefore obtain for every
Euler couple W = (x, σ )∈ GE (G) two G↑-orbits G↑.(±x, σ ) covering G↑.W ⊆
GE (G). Choosing G↑.(x, σ ), one obtains with the BGL construction a net of real
subspaces I �→ N(I ), where I denotes an interval of length smaller than 2π in the
n
2 -coveringS

1
(n/2)# R/πnZofS1.Wecan realize the net on intervals inS

1
(n/2) because

U (ρ̃(nπ))N(I ) = ±N(I ) = N(I ). For the central element α = ρ̃(−2π) ∈ Z ,
twisted complements look as follows. For I = (a, b) ⊂ R/πnZwith b−a < 2π , we
have I

′α = I c, where I c = (b− 2π, a) is the “complement” obtained by conformal
reflection on the left endpoint, cf. (2.25). All the other twisted complement, belonging
to the same orbit, are obtained by covariance.

The locality relation then is given by

N(I
′α) = ωkN(I )′, k ∈ Z,



348 V. Morinelli, K.-H. Neeb

where α = ρ̃(2πk) and ω ∈ T satisfies ω21 = U (ρ̃(2π)). Since U is irreducible and Z
is a cyclic group of order n, U (ρ̃(2π)) is an n-th root of the unity, hence ω2n = 1 and
Zα = ωk1.
• n is odd. Then Z− = Z1 implies that G↑ acts transitively on the inverse images of
G↑-orbits in G. Fixing the orbit G↑.(x, σ ), we have by the BGL construction a net of
real subspaces I �→ N(I ), where, again, I is an interval of length smaller than 2π in the
n-fold covering of S

1. Here the locality relation is

N(I
′α) = ωkN(I )′, k ∈ Z,

where α = ρ̃(2πk) and ω2n = 1, I
′α and Zα are as above.

4.3. New models. Theorem 3.10 provides the list of restricted root systems for real sim-
ple Lie algebras containing (symmetric) Euler elements, hence supporting (symmetric)
Euler wedges. Any such Lie algebra g is the Lie algebra of a simply connected Lie
group G↑. Then (2.10) defines an Euler involution on the group G↑, so that we obtain
the extension to G = G↑ � {id, σ }.

Such a Lie group G↑ has many unitary representations, possibly with positive en-
ergy if the Lie algebra g is hermitian. By unitary induction, one can construct a unitary
representation ofG↑ froma unitary representation of a subgroup, for instance froma cov-
ering of PSL2(R) ⊂ G↑ [Ma52]. It is always possible, to extend a unitary representation
(U,HU ) of G↑ to an (anti-)unitary representation of G by doubling the Hilbert space, if
the representation does not extend onHU itself. Indeed, we can choose any conjugation
C on HU and observe that the representation defined by ˜U (g) = U (g)⊕ CU (σgσ)C

onHU ⊕HU extends to G by U (σ ) =
(

0 C
C 0

)

. By the BGL construction there exists

a (twisted-)local one-particle net satisfying (HK1-8).
As a consequence we have the theorem:

Theorem 4.23. Let g be a simple real Lie algebra containing an Euler element, i.e.,
whose restricted root system occurs in Theorem 3.10. Then there exists a graded Lie
group G = G↑ ∪ G↓ as in Section 2.1 with an (anti-)unitary representations U, and
these in turn define twisted G-covariant BGL nets (W+,U,N).

This theorem shows, for instance, that it is possible to associate a covariant homo-
geneous net of standard subspace to a Lie algebra g with restricted root system E7. The
subgroupsG±1 = exp(g±1(x)) ⊆ G↑ are closed, and ifG0 := {g ∈ G↑ : Ad(g)x = x},
then so is P := G0G−1. Then M := G↑/P is a homogeneous space whose tangent
space in the base point can be identified with the eigenspace g1(x) = ker(ad x − 1). If g
is simple hermitian of tube type and C ⊆ g is a pointed generating invariant cone, then
C+ := C ∩ g1(x) defines a G↑-invariant causal structure on M . The so-obtained man-
ifolds include the Jordan space-times of Günaydin [Gu93,Gu00,Gu01] and the simple
spacetime manifolds in the sense of Mack–de Riese [MdR07]. If the rank of the re-
stricted root system � of (g, a) is 2, then M is a Lorentzian manifold, but in general it
is not. As a consequence of Proposition 3.11 and Table 2, there exists a real form with a
non-trivial positive cone i.e., g is hermitian of tube type, for every root system appearing
in Theorem 3.10. Thus models with a proper notion of positive energy can be associated
to every root system supporting symmetric Euler elements.

Recently, in [NÓ20] it has been shown that irreducible (anti-)unitary representations
(U,H) of G which are of positive energy in the sense that −i∂U (y) ≥ 0 for y ∈ C ,
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lead to G-covariant nets (VO) of real subspace of H, indexed by open subsets O ⊆ M .
If O �= ∅, then VO is generating, and it is standard if O is not “too big”. In particular,
the open subset O = exp(C0

+)P ⊆ M corresponds to a standard subspace with the
Bisognano–Wichmann property for which the modular group is represented by the one-
parameter group (exp t x)t∈R of G (see [NÓ20, §5.2]).

4.4. The SL2-problem, symmetry extension. In Section 3.2 we have seen that the ex-
istence of orthogonal Euler wedges corresponds to the existence of an sl2-subalgebra
containing both Euler elements. In this section we will discuss when we can extend a co-
variant net of standard subspaces (W+,N,U ) of Euler wedges satisfying (HK1)-(HK5)
to a G-covariant net.

We first look at the (anti-)unitary extensions of unitary representations of ˜SL2(R). In
sl2(R), we consider the two Euler elements

h := 1

2

(

1 0
0 −1

)

and k := 1

2

(

0 1
1 0

)

. (4.13)

Let (U,H) be a unitary representation of the group G := ˜SL2(R) and consider the two
selfadjoint operators

H := −2π i∂U (h) and K := −2π i∂U (k).

Theorem 4.24. Every continuous unitary representation of ˜SL2(R) extends to an (anti-
)unitary representation of the group

˜GL2(R) := ˜SL2(R) � {1, τG},
where τG is the involutive automorphism of ˜SL2(R) induced by the Lie algebra auto-
morphism

τ

(

a b
c d

)

=
(

a −b
−c d

)

corresponding to the Euler element h.

In [GL95,Lo08] this theoremwas proved for SL2(R)-representations of the principal
and discrete series. Here the argument does not depend on the family of the representa-
tion.

Proof. Since ˜SL2(R) is a type I group, every unitary representation has a unique direct
integral decomposition into irreducible unitary representations. This reduces the problem
to the irreducible case. We have to show that U ◦ τG ∼= U∗ (the dual representation).
Let

u := [h, k] = 1

2

(

0 −1
1 0

)

.

Then h, k, u is a basis of sl2(R) and

ω := h2 + k2 − u2 ∈ U(sl2(R))

is a Casimir element, so that

∂U (ω) = c1 for some c ∈ R.
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The antilinear extension τ of τ to sl2(C) satisfies τ(iu) = iu and the operator i∂U (u)

is selfadjoint and diagonalizable. We have

∂U∗(u) = −∂U (u) = ∂U (τ (u)),

so that U∗ ◦ τG is an irreducible with the same u-weights and the same Casimir eigen-
value c. Below we argue thatU is uniquely determined by any pair (μ, c), where μ is an
eigenvalue of i∂U (u) occurring in the representation ([Sa67], [Lo08]), and this implies
that U ◦ τG ∼= U∗.

To see that U is determined by the pair (μ, c), we first recall that H decomposes
into one-dimensional eigenspaces of i∂U (u) and, by irreducibility, it is generated by
any eigenvector ξμ of eigenvalue μ. Let U(g) denote the complex enveloping algebra
of g. Then Vμ := U(g)ξμ is a dense subspace consisting of analytic vectors, so that
the representation U is determined by the g-representation on this space. In U(g) the
centralizer Cu of u is generated by u and the Casimir element. Therefore ξμ is a Cu-
eigenvector and the corresponding homomorphismχ : Cu → C is determined byχ(u) =
μ andχ(ω) = c. It is now easy to verify that these two values determine theU(g)-module
structure on Vμ, hence the unitary representation U . ��
Remark 4.25. Here the determination of the representation is obtained by considering in
the enveloping algebra U(sl2(R)), the centralizer subalgebra C[ω, u] of u. Any cyclic
weight vector ξμ,c defines a character χ of this subalgebra by χ(iu) = μ and χ(ω) = c,
and U(g)ξμ,c is isomorphic to the quotient of U(g) by the left ideal generated byμ1− iu
and ω − c1.

Now, we consider the positive selfadjoint operator

�h := e−H = e2π i∂U (h).

By Theorem 4.24,U extends to an (anti-)unitary representation of ˜GL2(R), and we put

J := U (τG), S := J�
−1/2
h = Je−π i∂U (h) and V := Fix(S).

Lemma 4.26. For a unitary operator T ∈ U(H), the following assertions are equiva-
lent:

(a) ST S ⊆ T holds on a dense subspace.
(b) T−1V ∩ V is standard.

If these conditions are satisfied, then (a) holds on T−1V ∩ V.

Proof. If (b) holds, then any ξ ∈ T−1V ∩ V satisfies ST Sξ = ST ξ = T ξ, so that (a)
holds.

Conversely, assume that

D := {ξ ∈ D(S) : ST Sξ = T ξ}
is dense inH. For any ξ ∈ D we then have T ξ ∈ R(S) = D(S) and

ST S(Sξ) = ST ξ = S(ST Sξ) = T (Sξ),

so that D is S-invariant. This implies that D = (D ∩ V) + i(D ∩ V), so that D ∩ V is
standard. For ξ ∈ V, we have T ξ ∈ V if and only if ξ ∈ D, so that D ∩ V = T−1V = V.

This proves the lemma. ��
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Proposition 4.27. The following assertions are equivalent:

(a) �
−1/2
h eitK�

1/2
h ⊆ e−i t K holds for every t ∈ R on a dense subspace of H.

(b) SeitK S ⊆ eitK holds for every t ∈ R on a dense subspace of H.
(c) e−i t KV ∩ V is standard for every t ∈ R.

If these conditions are satisfied, then (a) holds on J (e−i t KV∩V) and (b) on e−i t KV∩V.
Proof. (a)⇔ (b): From τ(k) = −k it follows that

JU (exp tk)J = U (τG(exp tk)) = U (exp(−tk)),
so that conjugating with J translates (a) into (b).
(b)⇔ (c) follows from Lemma 4.26. ��

From [GL95, Thm. 1.1, Cor. 1.3(c)] one can deduce that the equivalent conditions in
Proposition 4.27 are satisfied for principal series representations and lowest and highest
weight representations, but it is not known for complementary series representations.

The following theorem shows that an isotone, central twisted local G↑-covariant net
of standard subspaces satisfying the BW property is actuallyG-covariant. The argument
needs the density property described in Proposition 4.27 for ˜SL2(R). The extension is
done by (HK8).The proof generalizes the argument in [GL95].

Theorem 4.28 (Extension Theorem). Let G = G↑ � {id, σ } be a graded Lie group,
where σ is an Euler involution. Let (U,H) be a unitary C-positive representation of
G↑, W+ ⊆ GE (G) be a G↑-orbit, and (W+,N,U ) be a net of standard subspaces
satisfying (HK1-4) and the BW property (HK5). If h1, . . . , hn, n ≥ 2, is a pairwise
orthogonal family of Euler elements generating the Lie algebra g, and the conditions in
Proposition 4.27 hold for the representations of the connected subgroups corresponding
to the sl2-subalgebras generated by h1 and h j for j = 2, . . . , n, then U extends to an
(anti-)unitary representation of G such that G-covariance (HK7) andmodular reflection
(HK8) hold.

Proof. Let (W+,N,U )be anet of standard subspaces satisfying (HK1-5).TheBisognano–
Wichmann property (HK5) implies Central Haag Duality (HK6) by Proposition 4.19.
Let Hj := −i∂U (h j ) be the selfadjoint generators of the unitary one-parameter group
corresponding to h j . By Corollary 3.14, every pair (h1, h j ) generates a subalgebra iso-
morphic to sl2(R) and the generators H1 and Hj integrate to a representation of ˜SL2(R).
Consider the Euler wedges W1,Wj ∈W+ associated to h1 and h j , respectively.

We claim that Proposition 4.27 implies that U (σh1) := JN(W1) associated to the
standard subspace N(W1) extends the ˜SL2(R)-representation to an (anti-) unitary rep-
resentation of P̃GL2(R). Indeed, by Proposition 4.27(b) we have that

�
−1/2
h1

eit Hj �
1/2
h1
⊂ JN(W1)e

it Hj JN(W1) (4.14)

on the dense domain JN(W1)(e
−i t H jV ∩ V) with V = Fix(JN(W1)�

1/2
N(W1)

) = N(W1),
cf. condition (c) in Proposition 4.27. On the previous domain we then have

�
−1/2
h1

eit Hj �
1/2
h1
⊂ U (σh1)e

it HjU (σh1).

With Proposition 4.27(a) we can now conclude that

U (σh1)e
it HjU (σh1) = e−i t H j for t ∈ R (4.15)
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because both sides are bounded operators which coincide on a dense subspace. Since
the Lie algebra g is generated by h1, . . . , hn, we obtain

U (σh1)U (g)U (σh1) = U (σh1gσh1) for all g ∈ G↑. (4.16)

In particular,U defines an (anti-)unitary representation ofG. Pickα ∈ Z(G↑)− such that
(HK4) is satisfied and consider the twisted representation of G defined by Uα(σh1) :=
Zα JN(W1) = ZαU (σh1). Since N coincides with the restriction to W+ of the BGL net
of the (anti-)unitary representation U of G, the representation Uα satisfies (HK7) and
(HK8) by Proposition 4.16. ��

Note that the density property as well as the existence of orthogonal wedges are suf-
ficient but not necessary to have a G-covariant action: Consider the BGL net associated
to the unique irreducible positive energy representationU of theG = Aff(R) on the real
line. Then the standard subspaces NU (a,∞) and NU (−∞, b) are associated to positive
and negative half-lines and satisfy (HK1)-(HK5). There are no-orthogonal wedges in
this case but the extension to an (anti-)unitary representation of G is given by

U (σW ) = JNU (W ).

We further remarks that in this case σW does not preserve the wedge family W+.
For the Poincaré group, with the identification of wedge regions and Euler elements

(see (2.28)), the axial wedges

Wj = {(t, x) ∈ R
1+d : |t | < x j }, j = 1, . . . , d,

define a family of orthogonal wedge regions, namely wedge regions associated to or-
thogonal Euler elements. Considering wedges as subsets of Minkowski spaces one can
define further regions by wedge intersection. Spacelike cones are particularly important:
they are defined, up to translations by finite intersection of wedges obtained by Lorentz
transforms of W1. Analogously one can define, by intersecting wedge subspaces, sub-
spaces associated to any spacelike cone. In principle this can also be trivial, but if they
are standard, the cyclicity assumption of 4.27(c) is ensured, cf. [GL95].

Consider G = M̃öb� {id, τ̃ }. Let (W+,U,N) be a net of standard subspaces satisfy-
ing (HK1)-(HK5). Let˜I⊃ ⊆ R be an intervalwith q(˜I⊃) = I⊃where the latter is the right
semicircle with endpoints (−i, i) ⊂ S

1. Then the dilation generators˜δ∩ and˜δ⊃ define

orthogonal Euler elements generating M̃öb. Considering the wedges W∩ = (x∩, σ∩)
and W⊃ = (x⊃, σ⊃) with W∩ = ρ̃(π/2)W⊃, the intersection is again a wedge interval
˜I = ˜I∩ ∩˜I⊃. In particular, by isotony, N(˜I∩)∩N(˜I⊃) ⊃ N(˜I ) is standard and condition
(c) in Proposition 4.27 holds.

5. Outlook

5.1. Nets of von Neumann algebras and standard subspaces. The fundamental objects
in algebraic quantum field theory are the local algebras of observables depicted by von
Neumann algebras. In this setting standard subspaces arise naturally in the modular the-
ory of von Neumann algebras when the vacuum state is specified. Indeed, ifM ⊆ B(H)

is a von Neumann algebra and� ∈ H is a cyclic and separating vector, then the modular
conjugation JM,� and the modular operator �M,� specified by the Tomita–Takesaki
Theorem coincide respectively with the modular conjugation JV and the modular oper-
ator �V determined by the standard subspace V := {M� : M = M∗ ∈M}. However,
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our discussion aims at another realization of von Neumann algebra nets. One can use
the Second Quantization procedure to associate to each standard subspace V ⊆ H a pair
(R+(V),�), whereR+(V) is a von Neumann algebra on the bosonic Fock spaceF+(H),
see e.g. [LRT78], [NÓ17, §6]. For other statistics, such as fermions and anyons, we
refer to [EO73,BJL02,Sc97]. This correspondence permits to translate between results
on configurations of standard subspaces and configurations of von Neumann algebras
and to construct a net of von Neumann algebras out of a one particle net of standard
subspaces (see for instance [LRT78]).

This procedure can be applied in our case. For instance it is straightforward to con-
struct the bosonic second quantization of the BGL net associated to an (anti-)unitary
positive energy representation of a Z2-graded Lie group G supporting Euler wedges,
provided Z(G) = e. In the general case an appropriate symmetrization of the Fock
space has to be carried out, which requires a finer analysis of the twisted locality in the
second quantization picture. This first example suggests that a generalized axiomatic
framework for Haag–Kastler nets of von Neumann algebras on the abstract set of Euler
wedges is possible and deserves to be explored.

Once wedge localization of one particle states or von Neumann algebra has been
properly defined, the next step is to look for finer localization properties in our abstract
setting. In general, due to the a priori lack of a reference spacetime for the orbits of Euler
wedges, a possible definition of wedge intersection is an intriguing step to face. Indeed,
very different configurations are visible in the literature for the well known models. For
example fundamental localization regions on the Minkowski spacetime are obtained by
intersecting wedges. They can be bounded, for instance doublecones,9 or unbounded.
The latter are called spacelike cones when—up to a Poincaré transformation—we con-
sider an intersection of a family of wedges through the origin. In this case the spacelike
cones are characterized by a semigroup of translations sending the cone into itself. In
a chiral theory, wedges are intervals on the circle and connected regions obtained by
wedge intersections are intervals again. In this case, intersections can be described again
in terms of Euler wedges. On the de Sitter spacetime, wedge intersections are still pos-
sible. On the other hand it is not clear how to define them at the group level: for instance
there is no Lorentz transformation fixing or sending intersections into themselves. Once
a proper notion of spacelike cone is determined in our abstract setting, it will be possible
to explore fundamental properties and notions in AQFT such as spin-statistics relations
or nuclearity properties [GL95,DF84,BDL07].

5.2. 3-graded Lie algebras. For an orbitW+ := G↑.(x, σ ) in the abstract wedge space
of G, any (anti-)unitary representation leads by the BGL construction to an equivariant
map N : W+ → Stand(H), which can be considered as a homogeneous net of standard
subspaces. To see which of these nets are most interesting, one may ask which of the
orbitsU (G↑)V ⊆ Stand(H) carry a non-degenerate order structure in the sense that the
semigroup

SV := {g ∈ G↑ : U (g)V ⊆ V}
is “large”, meaning that its interior clusters in e. From [Ne19,Ne19b] we know that this
happens if and only if (ad x)3 = ad x , i.e., if ad x defines a 3-grading on the Lie algebra
g (cf. Definition 2.4) and the positive cone CU := {x ∈ g : − i∂U (x) ≥ 0} is such that

9 Up to Poincaré transformations, these are the causal closures of a ball in the time-zero surface.



354 V. Morinelli, K.-H. Neeb

the intersectionsCU ∩g±1(x) generate g±1(x). This motivates our focus on pairs (x, σ ),
where x is an Euler element and Ad(σ ) the corresponding Lie algebra involution σx .

On the abstract level, this leads to configurations representedbyquadruples (g, σ,C, x),
where g is a Lie algebra, σ ∈ Aut(g) an involution, x ∈ E(g) an Euler element with
σ(x) = x , and C ⊆ g an invariant convex cone with σ(C) = −C . For classifica-
tion results concerning such configurations, we refer to the recent work of D. Oeh
([Oeh20,Oeh21]).

Now consider a general net of standard subspaces N undergoing an action of the
group G satisfying the assumptions (HK1-4). It is a consequence of Lemma 4.2 and
Theorem 4.4 that

ZN(W )(t) = �i t
N(W )U (λW (2π t))

is a one-parameter group in U (SN(W ))
′. So the Bisognano-Wichmann property holds

if ZN(W )(t) ≡ 1. In particular an analysis of the gauge space U (SN(W ))
′ will allow us

to understand possible counterexamples to the BW property, possibly generalizing the
ones contained in [Mo18,LMR16], to the case where the modular theory of the net does
not implement any geometric global action.

5.3. Geometric realization of wedge spaces. In the present paper, we studied the abstract
wedge spacesW+ = G↑.(x, σ ) on an algebraic level, having in mind that there are many
interesting concrete situations, where the elements of this space correspond to “wedge
domains” in various kinds of space-time manifolds.

A systematic descriptions of “wedge domains” in causal symmetric spaces has to be
undertaken. A causal symmetric space is a homogeneous space M = G/H , where G
is a connected Lie group,10 and there exists an involution τ on G for which H ⊆ Gτ

is an open subgroup (i.e., a union of connected components) such that M carries a
G-invariant field of pointed open cones V+(m) ⊆ Tm(M) (the causal structure). The
non-flat causal symmetric spaces come in two flavors, the compactly causal ones with
closed causal geodesics, and the non-compactly causal ones for whichM carries a global
order structure defined by the causal curves (see [HÓ96] for details on these concepts).
Important examples are de Sitter space dSd ∼= SO↑1,d(R)/SO1,d−1(R)↑ (non-compactly

causal) and anti deSitter spaceAdSd ∼= SO2,d−1(R)e/SO1,d−1(R)↑ (compactly causal).
In particular, any Lie group G is a symmetric space with respect to the transitive

action of G × G by (g1, g2).g = g1gg
−1
2 , and any pointed generating invariant cone

C ⊆ g ∼= Te(G) defines a (G × G)-invariant causal structure. In this case any Euler
element h forwhich the conesC± := ±C∩g±1(h) are generating, leads to the semigroup

S := exp(C0
+)G

h
e exp(C

0−),

which plays in the symmetric space G the role of a wedge domain. If G = (R1,d−1,+)

is d-dimensional Minkowski space, C = V+ is the open light cone and h the generator
of a Lorentz boost, then S coincides with the corresponding Rindler wedge.

It is also possible to describe for any reductive causal symmetric space M = G/H
and Euler elements h ∈ g generating a flow on M fixing the base point, a wedge
domainWM (h). ThenWM (h) := {gWM (h) : g ∈ G} is a geometric wedge space. Up to
coverings, this construction leads in particular to a geometric realisation of all abstract

10 In this subsection we write G instead of G↑ to simplify notation.
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wedge spaces corresponding to Euler couples of semisimple Lie algebras. The geometric
wedge spaces have a natural order if M is compactly causal (such as Minkowski space
or anti-de Sitter space), but if M is non-compactly causal, there is no natural order
structure (as for de Sitter space). This picture can be used to obtain, for compactly
causal spaces, from certain unitary representations of G satisfying a spectral condition
covariant nets of real subspace V(O) ⊆ H, O ⊆ M open, that assign to the wedge
domain WM (h) the standard subspace V associated to the pair (h, τ ). In this sense, they
have the Bisognano–Wichmann property ([NÓ20]). Several aspects of the underlying
geometry will be discussed in the forthcoming papers [NÓ21a,NÓ21b].

These constructions are only first steps in a theory that needs to be developed. Impor-
tant open questions concern characterizations of (irreducible) representations for which
such geometric nets exist. In particular, the case of non-compactly causal spaces, which
corresponds to non-ordered wedge spaces, is largely open, but there are well known nets
on de Sitter space (such as the ones obtained from covariant quantum fields) that fit into
this picture.
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A. Toolbox

Proposition A.1 ([NÓ17, Thm. 2.11(a)]). If (U,H) is a unitary representation of G↑,
then any two (anti-)unitary extensions (˜Uj ,H), j = 1, 2, of U to G are unitarily
equivalent, i.e., there exists � ∈ U (G↑)′ with

� ◦ ˜U1(g) = ˜U2(g) ◦ � for g ∈ G.

Lemma A.2. Let M ⊆ B(H) be a von Neumann algebra and J ∈ Conj(H) such that
JMJ =M. Then the exponential function of the Banach symmetric space

U(M)J,− := {U ∈ U(M) : JU J = U−1}
is surjective, i.e., for every U ∈ U(M)J,− there exists an element X = −X∗ ∈M with
J X J = −X such that U = eX .

http://creativecommons.org/licenses/by/4.0/
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Proof. We consider the antilinear automorphism

α : M→M, α(M) := JM J

of the von Neumann algebra M. Let N ⊆ M be the abelian von Neumann algebra
generated by a fixed element U ∈ U(M)J,−. Then α(U ) = U−1 = U∗ implies that
α(N ) = N with α(A) = A∗ for every A ∈ N . Any spectral resolution of U in N
and any bounded measurable function f : T → iR with e f = idT yields an element
X := f (U ) ∈ N with X∗ = −X and eX = U . Then J X J = α(X) = X∗ = −X. ��

The following lemma is [NÓ17, Lemma A.1]:

Lemma A.3. Let M ⊆ H be a von Neumann algebra, α : M → M a real-linear
weakly continuous automorphism and U ∈ U(M) be a unitary element. Then the
following assertions hold:

(a) If α is complex linear and α(U ) = U, then there exists a V ∈ U(M) with α(V ) = V
and V 2 = U.

(b) If α is complex linear and α(U ) = U−1 with ker(U + 1) = {0}, then there exists a
V ∈ U(M) with α(V ) = V−1 and V 2 = U.

(c) If α is antilinear and α(U ) = U−1, then there exists a V ∈ U(M)with α(V ) = V−1
and V 2 = U.

(d) Ifα is antilinear and α(U ) = U with ker(U +1) = {0}, then there exists a V ∈ U(M)

with α(V ) = V and V 2 = U.
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