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Abstract
Based on the construction provided in our paper “Covariant homogeneous nets of stan-
dard subspaces”, Comm Math Phys 386:305–358, (2021), we construct non-modular
covariant one-particle nets on the two-dimensional de Sitter spacetime and on the
three-dimensional Minkowski space.
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1 Introduction

The modular theory of von Neumann algebras, based on the Tomita–Takesaki Theo-
rem has applications in many different areas of mathematics and physics because it
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generates rich structures from very basic assumptions, such as the existence of cyclic
separating vectors. In Algebraic QuantumField Theory (AQFT), the verification of the
Bisognano–Wichmann property was a fundamental breakthrough [1]. This property
deeply relates the geometry of the models to the modular structure of von Neumann
algebras of observables.

The description of the QFTmodels through operator algebras is based on an assign-
ment of von Neumann algebras A(O) to spacetime regionsO satisfying isotony. Basic
features of QFT can be expressed as natural properties of such a Haag–Kastler net
O �→ A(O) ⊂ B(H) ([13]): Algebras associated with spacelike separated regions
are required to commute (locality), and covariance is formulated in terms of a uni-
tary positive energy representation of the symmetry group (the Poincaré group on the
Minkowski spacetime or the Lorentz group on de Sitter spacetime) that acts covari-
antly on the observable algebras. Together with an invariant vacuum vector state, this
defines the vacuum representation of a net of observables as introduced by Haag and
Kastler in 1964 ([14]).

Given a von Neumann algebraM with a cyclic and separating vector, the Tomita–
Takesaki Theorem provides a unitary one-parameter group, called modular group,
whose adjoint action on the algebra defines a one-parameter group of automorphism.
The modular groups of some algebras with particular localization properties actually
correspond to global geometric symmetries. This is called the Bisognano–Wichmann
(BW) property. It marked one of the formidable successes of modular theory: The
modular structure of some observable algebras in the vacuum sector has geometric
meaning.

The BW property has been verified for large number of models (see e.g. [5, 11,
26]) and applied in various ways with feedback both for mathematics and for physics.
For recent developments concerning entropy of QFT’s we refer to [9, 18, 21, 22, 32,
33] and for some new constructions exploiting geometric symmetries and modular
theory to [19, 25]. The property of so-called “modular covariance” of a net is weaker
than the Bisognano–Wichmann property [4, 8, 34]. On one hand, the Bisognano–
Wichmann property assumes covariance with respect to a Poincaré (on Minkowski
spacetime) or Lorentz (on de Sitter spacetime) representation and states that the unitary
representation of the Lorentz boosts coincides with the modular group of the algebra
associated to a wedge domain, properly parametrized. On the other hand, modular
covariance ensures that the modular groups of wedge region algebras act on the net
geometrically as the Lorentz boosts, but not that they belong to the given representation
of the symmetry group. On Minkowski spacetime the modular group of the wedge
regions generate a covariant representation of thePoincaré group satisfying the positive
energy condition, under the Reeh-Schlieder property assumption for space-like cones
[12]. This result does not directly extend to de Sitter spacetime because a specific
domain for the modular operator of orthogonal wedges has not been proved yet to be
dense in the case of complementary series representations of PSL2(R) as a subgroup
of the Lorentz group (cf. [24, §4.4]).

A long standing question is how to characterize models where just modular covari-
ance fails or, more generally, that are not modular covariant. Most of the models
violating the Bisognano–Wichmann property are still modular covariant, see [10, 20,
23]. A first family of models without modular covariance in Minkowski space with
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dimension 1+ d > 2 has been provided by Yngvason in [34]. For a certain two-point
function, he constructs translation covariant nets of von Neumann algebras with pos-
itive energy, computes the modular operators of wedge algebras and concludes that
they do not act covariantly on the net. However, these models are not expected to be
Lorentz covariant.

A new approach to geometric features in AQFT models has been provided in
[24], where wedge regions are replaced by abstract data associated to a graded Lie
group, which in representations correspond to modular operators and conjugations
as produced by the Tomita–Takesaki Theorem. This Lie theoretic perspective on the
wedge–boost correspondence creates a means to construct AQFT models. In [24] we
also determine a class of Lie groups which are compatible with a notion of wedge
localization, including the known cases from physics (see also [29–31] for related
recent work in this direction).

The construction of the models is based on the Brunetti–Guido–Longo (BGL)
construction of the free fields: Nets of von Neumann algebras are constructed through
the second quantization canonical procedure starting fromone-particle nets of standard
subspaces defined by (anti-)unitary representations of graded Lie groups ([7]). Thus,
in this context, in order to obtain a net of von Neumann algebras, one has to construct
nets of standard subspaces on the one-particle Hilbert space.

In this paper we present a structural condition that can be used to construct non-
modular covariant nets in the abstract setting of [24]. Then we construct a family
of Lorentz and Poincaré covariant models based on one-particle nets that are non-
modular covariant, on two-dimensional de Sitter spacetime and on three-dimensional
Minkowski spacetime. The idea is to construct aBGLone-particle net of real subspaces
from a representation of a “large” group G that has a restriction to the de Sitter or
to the Minkowski symmetry group which is not modular covariant. It is central that
the Lie algebra g of G contains non-symmetric Euler elements. A non-symmentric
Euler element is associated to a wedge orbit under the G-action that does not contain
complement wedges. Note that this is not the case of the two (or higher) dimensional
de Sitter or three (or higher) dimensional Minkowski spacetime with respect to their
symmetry groups. Several groups of this kind are described in [24]. With the proper
identifications, we first obtain non-local nets on two-dimensional de Sitter spacetime
which are Lorentz covariant. Thenwe generalize the construction to three-dimensional
Minkowski space.

The paper is organized as follows. In Sect. 2 we present the construction of the
generalized AQFT models provided in [24]. In Sect. 3 we present a general construc-
tion of non-modular covariant nets and give sufficient criteria for its applicability. In
Sect. 3.2.2 we present an explicit example of this method. In Sect. 3.2.3 we show how
the construction can be applied to Minkowski space. An outlook on disintegration of
covariant representations, locality and higher dimensional examples is given in Sect. 4.
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2 Preliminaries

In this sectionwe collect background on several concepts and their properties: standard
subspaces, abstract Euler wedges and the BGL construction. In Sect. 2.4 we prepare
the group theoretic background for our construction of non-modular covariant nets.

2.1 One-particle subspaces

We call a closed real subspace H of the complex Hilbert space H cyclic if H+iH is
dense in H, separating if H∩iH= {0}, and standard if it is cyclic and separating.
The symplectic “complement” of a real subspace H is defined by the symplectic form
Im〈·, ·〉 via

H′ = {ξ ∈ H : (∀η ∈ H) Im〈ξ, η〉 = 0}.

Then H is separating if and only if H′ is cyclic, hence H is standard if and only if H′
is standard. For a standard subspace H, we define the Tomita operator as the closed
antilinear involution

SH : H+ iH→ H+ iH, ξ + iη �→ ξ − iη.

The polar decomposition SH = JH�
1
2
H defines an antiunitary involution JH (a con-

jugation) and the modular operator �H. For the modular group (�i t
H )t∈R, we then

have

JHH = H′, �i t
HH = H and JH�i t

H JH = �i t
H for every t ∈ R.

One also hasH = ker(SH−1) ([17, Thm. 3.4]). This construction leads to a one-to-one
correspondence between Tomita operators and standard subspaces:

Proposition 2.1 ([17, Prop. 3.2]) The map H �→ SH is a bijection between the set of
standard subspaces ofH and the set of closed, densely defined, antilinear involutions
on H. Moreover, polar decomposition S = J�1/2 defines a one-to-one correspon-
dence between such involutions and pairs (�, J ), where J is a conjugation and� > 0
selfadjoint with J�J = �−1.

The modular operators of symplectic complements satisfy the following relations

SH′ = S∗H, �H′ = �−1
H , JH′ = JH.

From Proposition 2.1 we easily deduce:

Lemma 2.2 ([23, Lemma 2.2]) Let H ⊂ H be a standard subspace and U ∈ AU(H)

be a unitary or anti-unitary operator. ThenUH is also standard andU�HU∗ = �
ε(U )
UH

andU JHU∗ = JUH, where ε(U ) = 1 if U is unitary and ε(U ) = −1 if it is antiunitary.
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2.2 Euler wedges

Let G be a finite dimensional Z2-graded Lie group (G, εG), i.e., G is a Lie group and
εG : G → {±1} a continuous homomorphism. We write

G↑ = ε−1G (1) and G↓ = ε−1G (−1),

so that G↑ � G is a normal subgroup of index 2 and G↓ = G \ G↑. As the subgroup
G↑ is open and closed, it contains the connected componentGe of the neutral element e
in G.

Definition 2.3 (a) We call an element x of the finite dimensional real Lie algebra g an
Euler element if ad x is non-zero and diagonalizable with Spec(ad x) ⊆ {−1, 0, 1}. In
particular the eigenspace decomposition with respect to ad x defines a 3-grading of g:

g = g1(x)⊕ g0(x)⊕ g−1(x), where gν(x) = ker(ad x − ν idg)

Then σx (y j ) = (−1) j y j for y j ∈ g j (x) defines an involutive automorphism of g.
We write E(g) for the set of Euler elements in g. The orbit of an Euler element

x under the group Inn(g) = 〈ead g〉 of inner automorphisms is denoted with Ox =
Inn(g)x ⊆ g.1

We say that x is symmetric if −x ∈ Ox .
(b) The set

G:= G(G) := {(x, σ ) ∈ g× G↓ : σ 2 = e,Ad(σ )x = x}

is called the abstract wedge space of G. We assign to W = (x, σ ) ∈ G the one-
parameter group

λW : R → G↑ by λW (t) := exp(t x). (2.1)

An element (x, σ ) ∈ G is called an Euler couple or Euler wedge if

Ad(σ ) = σx := eπ i ad x . (2.2)

Then σ is called an Euler involution. We write GE ⊆ G for the subset of Euler couples.
(c) For the graded group (G, ε), we consider on g the twisted adjoint action which
changes the sign on odd group elements:

Adε : G → Aut(g), Adε(g) := εG(g)Ad(g). (2.3)

It extends to an action of G on G by

g.(x, σ ) := (Adε(g)x, gσ g−1). (2.4)

1 For a Lie subalgebra s ⊆ g, we write Inng(s) = 〈ead s〉 ⊆ Aut(g) for the subgroup generated by ead s.
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(d) (Duality operation) We define the notion of a “causal complement” on the
abstract wedge space: For W = (x, σ ) ∈ G, we define the dual wedge by W ′ :=
(−x, σ )= σ.W . Note that (W ′)′ = W and (gW )′ = gW ′ for g ∈ G by (2.4).

The relation σ.W = W ′ is our main motivation to work with the twisted adjoint
action. This relation fits the geometric interpretation in the context of wedge domains
in spacetime manifolds.
(e) (Order structure on G) For a given invariant closed convex cone C ⊆ g, we obtain
an order structure on G as follows. We associate to W = (x, σ ) ∈ G a semigroup SW

whose unit group is SW ∩ S−1W = G↑
W , the stabilizer of W ([27, Thm. III.4]). It is

specified by

SW := exp(C+)G↑
W exp(C−) = G↑

W exp
(
C+ + C−

)
,

where the convex cones C± are the following intersections

C± := ±C ∩ g−σ ∩ ker(ad x ∓ 1) and g±σ := {y ∈ g : Ad(σ )(y) = ±y}.

Then SW defines a G↑-invariant partial order on the orbit G↑.W ⊆ G by

g1.W ≤ g2.W :⇐⇒ g−12 g1 ∈ SW . (2.5)

In particular, g.W ≤ W is equivalent to g ∈ SW .

Lemma 2.4 ([24, Lemma 2.6]) For every W = (xW , σW ) ∈ G, g ∈ G, and t ∈ R, the
following assertions hold:

(i) λW (t).W = W , λW (t).W ′ = W ′ and σW .W = W ′.
(ii) σW ′ = σW and λW ′(t) = λW (−t).
(iii) σW commutes with λW (R).

Remark 2.5 Let W = (x, σ ) ∈ G and consider y ∈ g. Then exp(Ry) fixes W if and
only if

[y, x] = 0 and y = Ad(σ )y.

If (x, σ ) is an Euler couple, then Ad(σ )y = eπ i ad x y = y follows from [y, x] = 0,
so that

gW := {y ∈ g : exp(Ry) ⊆ G↑
W } = ker(ad x). (2.6)

Definition 2.6 (The abstract wedge space) From here on, we always assume that
G �= ∅, i.e., that G↓ contains an involution σ . Then

G ∼= G↑
� {id, σ }

For a fixed couple W0 = (h, σ ) ∈ G, the orbits

W+(W0) := G↑.W0 ⊆ G and W(W0) := G.W0 ⊆ G
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are called the positive and the full wedge space containing W0.

Remark 2.7 (Lorentz wedges on de Sitter spacetime) The de Sitter spacetime is the
manifold dSd = {(t, x) ∈ R

1+d : x2 − t2 = 1}, endowed with the metric obtained by
restriction of the Minkowski metric

ds2 = dt2 − dx21 − . . .− dx2d

to dSd .
The generator k1 ∈ so1,d(R) of the Lorentz boost on the (x0, x1)-plane

k1(x0, x1, x2, . . . , xd) = (x1, x0, 0, . . . , 0)

is an Euler element. It combines with the spacetime reflection

j1(x) = (−x0,−x1, x2, . . . , xd)

to the Euler couple (k1, j1) for the graded Lie group SO1,d(R). The spacetime region

Wx1 = {x ∈ R
1+d : |x0| < x1}

is called the standard right wedge and we put

W dS
x1 := Wx1 ∩ dSd .

Note that Wx1 and therefore W dS
x1 are invariant under exp(Rk1). Lorentz transforms

W dS = g.W dS
x1 of W dS

x1 with g ∈ SO1,d(R) are called wedge regions in de Sitter
space. They are in 1-1 correspondence with Euler couples in G(SO1,d(R)) and one
can associate to Wx1 the couple (k1, j1) ∈ GE (SO1,d(R)) (cf. [28, Lemma 4.13] and
[7, Sect. 5.2]). For 
 = 2, . . . , d, one likewise obtains couples (k
, j
) corresponding
to the wedges Wx


= {x ∈ R
1+d : |x0| < x
}.

In this paper we will focus on 2-dimensional de Sitter spacetime. The orbit of
the wedge W dS

x1 under the Lorentz group is indicated with WdS+ = L↑+Wx1 where

L↑+ := SO1,2(R)↑. In this case the orthochronous symmetry group SO1,2(R)↑ is
isomorphic to PSL2(R) = SL2(R)/{±1} and the action on dS2 can be visualized by
the adjoint action of PSL2(R) on the orbit generated by the matrix 1

2 diag(1,−1). We
shall use the following matrix picture of dS2, which is implemented by the bijection

dS2 → dS2mat :=
{
X ∈ M2(R) : tr X = 0, det X = −1

4

}
⊆ sl2(R)

x = (x0, x1, x2) �→ x̃ := 1

2

(
x1 −x0 − x2

x0 − x2 −x1

)
,

and

σ0 = 1

2

(
0 −1
1 0

)
, σ1 = 1

2

(
0 1
1 0

)
, σ2 = 1

2

(
1 0
0 −1

)
.
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Note that, for X ∈ dS2mat, the vector y = (−2 Tr(Xσ0), 2 Tr(Xσ2),−2 Tr(Xσ1)) ∈
dS2 satisfies ỹ = X . The Minkowski quadratic form x2 = x20 − x21 − x22 corresponds
to the determinant by x2 = 4 det x̃ , so that x ∈ dS2 if and only if det x̃ = − 1

4 .

We write � : SL2(R) → L↑+ for the quotient map defined by the relation:

(�(g)x )̃ = gx̃g−1 for x ∈ dS2, g ∈ SL2(R). (2.7)

Then it is easy to see that dS2mat = {gσ1g−1 : g ∈ SL2(R)}. The one-parameter
groups

λxi (t) = exp(σi t) ∈ SL2(R), i = 1, 2, (2.8)

are the lifts of the boosts �Wxi
(t) ∈ L↑+, and r(θ) = exp(−σ0θ) is the one-parameter

group lifting the one-parameter group

�(r(θ)) = R(θ) =
⎛

⎝
1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞

⎠ (2.9)

of space rotations.

Theorem 2.8 ([24, Thm. 3.10]) Suppose that g is a non-compact simple real Lie
algebra and that a ⊆ g is maximal ad-diagonalizable with restricted root system
 = (g, a) ⊆ a∗ of type Xn. We follow the conventions of the tables in [2] for
the classification of irreducible root systems and the enumeration of the simple roots
α1, . . . , αn. For each j ∈ {1, . . . , n}, we consider the uniquely determined element
h j ∈ a satisfying αk(h j ) = δ jk . Then every Euler element in g is conjugate under
inner automorphism to exactly one h j .For every irreducible root system, the Euler
elements among the h j are the following:

An : h1, . . . , hn, Bn : h1, Cn : hn, Dn : h1, hn−1, hn,
E6 : h1, h6, E7 : h7. (2.10)

For the root systems BCn, E8, F4 and G2 no Euler element exists (they have no
3-grading). The symmetric Euler elements are

A2n−1 : hn, Bn : h1, Cn : hn, Dn : h1, D2n : h2n−1, h2n,
E7 : h7. (2.11)

Remark 2.9 The preceding theorem shows that non-symmetric Euler elements exist
for the root systems of type An, n ≥ 2, Dn, n ≥ 4, and E6.

Example 2.10 For g = sln(R), the subspace

a =
{
diag(x1, . . . , xn) :

∑

j

x j = 0
}
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of diagonal matrices is maximal abelian. In terms of the linear functionals ε j (diag(x))
= x j on a, the root system is

An−1 = {εi − ε j : i �= j ∈ {1, . . . , n}}.

The matrices

h j = 1

n

(
(n − j)1 j 0

0 − j1n− j

)
, j = 1, . . . , n − 1,

are Euler elements. They are symmetric if and only if n = 2 j . A corresponding graded
Lie group is G = PGLn(R) with G↑ = PSLn(R).

2.3 Nets of standard subspaces

Hereafter we will consider orbits of Euler elements W+ ⊂ GE (G) (Definition 2.6).

Definition 2.11 Let G = G↑
� {e, σ } be as above,C ⊆ g be a closed convex Adε(G)-

invariant cone in g, and fix a G↑-orbit W+ ⊆ GE (G). Let (U ,H) be a unitary
representation of G↑ and

N : W+ → Stand(H) (2.12)

be a map, also called a net of standard subspaces. In the following we denote this data
as (W+,U ,N). We consider the following properties:

(HK1) Isotony: N(W1) ⊆ N(W2) for W1 ≤ W2. 2

(HK2) Covariance: N(gW ) = U (g)N(W ) for g ∈ G↑, W ∈W+.
(HK3) Spectral condition: C ⊆ CU := {x ∈ g : − i∂U (x) ≥ 0}, where

U (exp t x) = et∂U (x) for t ∈ R. We then say that U is C-positive.
(HK4) Locality: If W ∈W+ is such that W ′ ∈W+, then N(W ′) ⊂ N(W )′.
(HK5) Bisognano–Wichmann (BW) property:U (λW (t)) = �

−i t/2π
N(W ) for allW ∈

W+, t ∈ R.
(HK6) Haag Duality: N(W ′) = N(W )′ for all W ∈W+ with W ′ ∈W+.
(HK7) G-covariance: There exists an (anti-)unitary extension of U from G↑ to G

such that

N(g.W ) = U (g)N(W ) for g ∈ G,W ∈W+. (2.13)

(HK8) PCTproperty:Suppose that (HK7) is satisfied and thatU is the correspond-
ing representation. Then U (σW ) = JN(W ) for W ∈W+ with W

′ ∈W+.

Theorem 2.12 (Brunetti–Guido–Longo (BGL) net generalization, [24]) If (U ,G) is
an (anti-)unitary representation, then we obtain a G-equivariant map

2 Here we refer to the order structure onW+ introduced in Definition 2.3(e).
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NU : G → Stand(H) determined for W = (kW , σW ) by

JNU (W ) = U (σW ) and �
−i t/2π
NU (W ) = U (exp tkW ) for t ∈ R. (2.14)

The BGL net associates to every wedge W ∈ G a standard subspace NU (W ).
We shall denote with (W+,NU ,U ) the restriction of the BGL net to the G↑-orbit
W+ ⊆ GE (G).

Theorem 2.13 ([24, Thm. 4.12, Prop. 4.16]) The restriction of the BGL net NU asso-
ciated to an (anti-)unitary C-positive representation U of G = G↑

� {e, σ } to a
G↑-orbitW+ ⊆ GE satisfies all the axioms (HK1)–(HK8).

We are interested in models where the following property fails.

(MC) Modular covariance: �−i t
N(Wa)

N(Wb) = N(λWa (2π t).Wb) for Wa,Wb ∈ W+,
t ∈ R.

Modular covariance is an immediate consequence of the Bisognano–Wichmann
property. Indeed, (HK2) and the BW property imply

�−i t
N(Wa)

N(Wb) = U (λWa (2π t))N(Wb) = N(λWa (2π t).Wb).

2.4 Symmetric and non-symmetric Euler elements

For the graded group G := PGL2(R)with Lie algebra g = sl2(R), the abstract wedge
space W+ can be identified with the set E(g) of Euler elements in sl2(R). Since
ker(Ad) is trivial, for any Euler element h ∈ g, we have

Gh = {g ∈ G : Ad(g)h = h} = G(h,σh),

and

E(g) ∼= Ad(G↑)h ∼= G↑/G↑
h . (2.15)

Depending on the choice of the positive cone in g we have wedge spaces with
different order structures:

Remark 2.14 The (ordered) symmetric space E(sl2(R)) can be identified with the
following spaces:

• For a non-trivial order (corresponding to C �= {0}): The set of non-dense open
intervals in S

1 (wedge space of the conformal structure on S
1) ([24, Rem. 2.9(c)])

and the set of wedge domains in two-dimensional Anti-de Sitter space AdS2 ([31,
§11]).

• For a trivial order (corresponding to C = {0}): The set of wedge domains in
two-dimensional de Sitter space dS2 (see Remark 2.7) ([28, Lemma 4.13] and
[30]).
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Let (U ,H) be an (anti-)unitary representation of G and V ⊆ H be a standard sub-
space with modular objects (�V, JV). Then there exists a well-defined G-equivariant
map

E(g) → Stand(H), Ad(g)h �→ U (g)V

if and only if G↑
h is contained in the stabilizer group G↑

V of V:

G↑
V = {g ∈ G↑ : U (g)V = V}
= {g ∈ G↑ : U (g)JVU (g)−1 = JV,U (g)�VU (g)−1 = �V}. (2.16)

For h := 1
2 diag(1,−1) ∈ E(g), the stabilizer group in PSL2(R) = Ad(G↑) is the

adjoint image of

SL2(R)h =
{ (

a 0
0 a−1

)
: a ∈ R

×} ∼= R
×,

hence connected because −1 ∈ Z(SL2(R)). Therefore

G↑
h = exp(Rh),

and thus G↑
h ⊆ GV is equivalent to U (expRh) commuting with JV and �V.

Lemma 2.15 Let g be a finite-dimensional Lie algebra and h ∈ E(g) an Euler element.
If the image of h in the semisimple quotient g/ rad(g) is non-zero, then there exists a
Lie subalgebra b ⊆ g containing h such that

(a) b ∼= sl2(R) if and only if h is symmetric, and
(b) b ∼= gl2(R) if h is not symmetric.
(c) If h is symmetric, then Inng(b) ∼= PSL2(R).
(d) If h is not symmetric and g is simple, then Inng([b, b]) ∼= SL2(R).

Proof (a) As all Euler elements in sl2(R) are symmetric (Inn(sl2(R)) acts transitively
on E(sl2(R))), this follows from [24, Thm. 3.13].

(b) Suppose that h is not symmetric and pick a maximal abelian hyperbolic subspace
a ⊆ g containing h. With [16, Prop. I.2] we find an a-invariant Levi complement
s ⊆ g. Then as := a ∩ s is maximal hyperbolic in s and a = as + za(s). We pick
a root α ∈ �(s, a) with α(h) = 1 and root vectors xα ∈ sα and yα ∈ s−α with
hα := [xα, yα] �= 0. We stress that xα ∈ s1(h). We use that

[xα, yα] = κ(xα, yα)aα,

where aα ∈ a is the unique element with α(a) = κ(aα, a) for all a ∈ a, and that
the Cartan–Killing form κ induces a dual pairing sα × s−α → R. Then

bα := Rxα + Ryα + Rhα
∼= sl2(R)
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and [h, bα] ⊆ bα . Hence b := Rh + bα is a Lie subalgebra of g. As h is not
symmetric, h /∈ bα , and therefore b ∼= gl2(R).

(c) If h is symmetric, then b = [b, b] ∼= sl2(R) by (a) and the fact that b contains an
Euler element of g implies that all simple b-submodules of g are either trivial of
isomorphic to the adjoint representation of sl2(R) (consider eigenspaces of ad h).
This implies that Inng(b) ∼= PSL2(R).

(d) Suppose that g is simple. If h is not symmetric, then the Weyl group reflection sα
corresponding to the root α from above satisfies

sα(h) = h − α(h)α∨ = h − α∨.

As h is not contained in Rα∨ ⊆ bα , we have sα(h) /∈ Rh.
The simplicity of g ensures that the root system � = �(g, a) is irreducible and

3-graded by h ∈ a. Therefore

�0 := {α ∈ � : α(h) = 0}

spans a hyperplane in a∗, which coincides with h⊥, and thus Rh = �⊥
0 by duality.

Since sα(h) is not contained in Rh, there exists a β ∈ �0 with β(sα(h)) �= 0. Now
β(h) = 0 implies

0 �= β(sα(h)) = −β(α∨).

As sα(h) is an Euler element, we obtain |β(α∨)| = 1. Therefore the central element
eπ i ad α∨ of Inng(bα) acts non-trivially, and this implies that Inng(bα) ∼= SL2(R)

because it is a linear group with non-trivial center ([15, Ex. 9.5.18]).

Remark 2.16 Note that the sl2(R)-subalgebra bα generated by xα, yα, hα does not
centralize h. We actually have

h = hc + 1

2
α∨ with hc �= 0 and [hc, bα] = {0}.

3 One-particle nets which are not modular covariant

Based on the preceding discussion, we describe in in Sect. 3.1 a general principle
that can be used to construct one-particle nets that are not modular covariant. This is
then applied to obtain such nets on two-dimensional de Sitter space dS2 and three-
dimensional Minkowski space.

3.1 A general construction principle

We describe a construction principle for non-modular covariant nets of standard sub-
spaces. Let G = G↑

� {1, τ } be a graded Lie group and (U ,H) an (anti-)unitary
representation of G. We consider the following situation:



A family of non-modular covariant AQFTs Page 13 of 25 124

• a graded subgroup H ⊆ G,
• W1 = (h1, τ1) ∈ GE (H) and an Euler couple W2 = (h2, τ2) ∈ GE (G), so that
Ad(τ2) = eπ i ad h2 .

• the stabilizer H↑
W1

of W1 in H↑ fixes W2. As exp(Rh1) ⊆ H↑
W1

, this implies
[h1, h2] = 0 (Remark 2.5).

Then the BGL construction provides a standard subspace N2 = N(h2, τ2,U ) with

JN2 = U (τ2) and �N2 = e2π i ·∂U (h2).

As the BGL net G(G) → Stand(H) is G-equivariant, maps W2 to N2, and H↑ fixes
W2, we obtain an H↑-equivariant map

N : G(H) ⊇W+ :=W+(H , h1, τ1) := H↑.W1 → Stand(H), g.W1 �→ U (g)N2

which is uniquely determined by

N(W1) = N2. (3.1)

Lemma 3.1 The net N on W+(H , h1, τ1) satisfies modular covariance if and only if,
for all g ∈ H↑, t ∈ R, the operator

U (g)U (exp t(h1 − h2))U (g)−1

fixes the standard subspace N2, i.e.,

g exp(t(h1 − h2))g
−1 ∈ GN2 for g ∈ H↑, t ∈ R. (3.2)

Proof The net N satisfies modular covariance if and only if

N(λg1W1(t)g2W1)
!= �

−i t/2π
N(g1W1)

N(g2W1) for g1, g2 ∈ H↑, t ∈ R. (3.3)

By covariance of N, the left hand side equals
U (λg1W1(t))N(g2W1) = U (g1 exp(th1)g

−1
1 )U (g2)N(W1)

= U (g1)U (exp(th1)U (g−11 g2)N2,

and the right hand side is

�
−i t/2π
N(g1W1)

U (g2)N2 = �
−i t/2π
U (g1)N2

U (g2)N2 = U (g1)�
−i t/2π
N2

U (g1)
−1U (g2)N2

= U (g1) exp(th2)U (g−11 g2)N2.

Note that [h1, h2] = 0 implies that U (exp th1)U (exp−th2) = U (exp t(h1 − h2)).
So (3.3) means that

U (g−12 g1)U (exp−th2)U (exp th1)U (g−11 g2)

= U (g−12 g1)U (exp t(h1 − h2))U (g−11 g2)

fixes N2 for g1, g2 ∈ H↑, t ∈ R. This is (3.2).
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Remark 3.2 (a) Condition (3.2) is not easy to evaluate, but one can easily formulate
sufficient conditions for it to be satisfied. As gGN2g

−1 = GU (g)N2 by covariance, it
is equivalent to

exp(t(h1 − h2)) ∈ Gg.N2 for all g ∈ H↑, t ∈ R (3.4)

or

U (exp(R(h1 − h2))) ⊆ {U ∈ U(H) : (∀H ∈ N(W+)) UH = H}. (3.5)

(b) If ker(U ) is discrete, then the representation of the Lie algebra g is faithful, so
that any element in the Lie algebra gN2 of the stabilizer group GN2 commutes with h2,
hence is contained in gW2 = ker(ad h2) (cf. Remark 2.5). We thus have

gN2 = gW2 = ker(ad h2).

Therefore (3.2) is equivalent to

Ad(H↑)(h1 − h2) ⊆ gN2 = ker(ad h2), (3.6)

which implies in particular, by derivation and by the closedness of the Lie subalgebra,
that

[h, h1 − h2] ⊆ ker(ad h2). (3.7)

We conclude that (3.6) is violated if

[h, h1 − h2] �⊆ ker(ad h2). (3.8)

(c) If, in addition, ad(h2)|h = − ad(h1), then [h, h1 − h2] = [h, h1] ⊆ h, so that
(3.8) is equivalent to [h1, h] ⊆ ker(ad h1), which, by semisimplicity of ad h1 on h, is
equivalent to h1 ∈ z(h). Therefore h1 /∈ z(h) implies (3.8).
(d) The condition under (c) is always satisfied if

h = g and h1 = −h2 ∈ E(g).

Example 3.3 An easy example satisfying the construction is the following. LetU be an
(anti-)unitary representation of the proper Lorentz group L+ = L↑+ ∪L↓+ on a Hilbert
spaceHU and letNU be the correspondingBGLnet of standard subspaces. Fix awedge
W ∈ GE (L+) and consider the net of standard subspaces obtained by N′U (W ) :=
NU (W )′. Then N′U is a local net in the sense that it satisfies (HK4). But it does not
satisfy modular covariance, since �i t

N′U (W )
= U (�W (2π t)) acts with the inverted

boost flow with respect to the Lorentz action on Minkowski spacetime. In particular
it is easy to see that, with the previous notation h1 = −h2.
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3.2 Non-modular covariant nets

3.2.1 On de Sitter space dS2

Herewe apply the previous prescription in order to construct nets of standard subspaces
without the modular covariance property. We can specify the assumption (HK2) for
the (double covering) of the Lorentz group as follows. We say that a net of standard
subspaces on the two-dimensional de Sitter spacetime W dS �→ N(W dS) is Lorentz
covariant with respect to a unitary representation U of SL2(R) � L̃↑+ if

U (g)N(W dS) = N(�(g)W dS) for g ∈ SL2(R), (3.9)

where � : SL2(R) → SO1,2(R)↑ is the covering homomorphism, see (2.7). We shall
say that a net of standard subspaces on the three-dimensional Minkowski spacetime
R
1+2 ⊃ WR

1+2 �→ N(WR
1+2

) is Poincaré covariant with respect to a unitary repre-
sentation U of the (double covering of the) Poincaré group P̃↑

+ � R
1+2

�� SL2(R)

if

U (g)N(W dS) = N(�(s)W dS + a) for g = (a, s) ∈ R
1+2

� SL2(R). (3.10)

Let G↑ = Inn(g) with g a simple non-compact Lie algebra as in Theorem 2.8
and let G be the graded extension G↑

� {1, σ }, where σ is an Euler involution. We
consider an (anti-)unitary representation U of G on a Hilbert space H. We pick a
non-symmetric Euler element h ∈ g and the associated wedge Wh = (h, σh) ∈
GE (G). By Lemma 2.15 there exists a gl2-subalgebra b ⊆ g containing h such that
h := [b, b] ∼= sl2(R) satisfies [h, h] �= 0. We consider H↑ := Inng(h) ∼= SL2(R)

and H = H↑
� {1, σh} (Lemma 2.15(d)). The Euler element h ∈ b has a central

component hc, so that

h = hc − h1 with hc ∈ z(b) and h1 ∈ E(h). (3.11)

Choosing the isomorphims h→ sl2(R) suitably, we may henceforth assume that

h1 = σ1 = 1

2

(
0 1
1 0

)
. (3.12)

Let V be the restriction U |H . The group H↑ ∼= SL2(R) is the double cover-
ing of PSL2(R) ∼= L↑+. So it acts on de Sitter space dS2 through the covering map
� : SL2(R) � g �→ �(g) ∈ PSL2(R) from Remark 2.7.

We thus obtain a net HdS on de Sitter spacetime.

Theorem 3.4 There exists a net of standard subspaces on de Sitter spacetime dS2

WdS � W dS �→ HdS(W dS) ⊂ HU
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such that

HdS(�(g)W dS
x1 ) := V (g)NU (Wh) for g ∈ H↑ ∼= SL2(R), (3.13)

where NU is the BGL net defined by U, satisfying the Lorentz covariance property
(3.9) w.r.t. the representation V of H↑ and the action defined by (2.7). The net HdS is
Lorentz covariant and does not satisfy modular covariance.

We remark that since all the wedge inclusions are trivial and since the positive cone
C is {0} for the Lorentz group, (HK1) and (HK3) are also satisfied by HdS for trivial
reasons.

Proof ForHdS to bewell-defined,wehave to argue that the stabilizer ofW dS
x1 in SL2(R),

which is the centralizer H↑
h1
= {±1} exp(Rh1), fixes the standard subspace NU (Wh).

This follows from the fact that h = hc−h1, where hc is fixed by H↑. Hence h is fixed
by H↑

h1
, and therefore H↑

h1
leaves NU (Wh) invariant by covariance of the BGL net NU

under V = U |H .
The covariance of the net HdS follows immediately from its definition in (3.13). To

see that it is not modular covariant, recall that the Euler element h is not symmetric,
so that it is not contained in any sl2-subalgebra ([24, Thm. 3.13]), and the same holds
for all elements in Ad(H↑)h.

We put h2 := h and, as above, we write h = hc − h1, where hc ∈ z(b) and
h1 ∈ h = [b, b] is an Euler element in h. Then h2 − h1 = hc − 2h1 satisfies

[h2 − h1, h] = [h1, h] �⊆ ker(ad h1),

so that Remark 3.2(b),(c) imply that the net is not modular covariant. More concretely,

Ad(H↑)(h2 − h1) = hc − 2Ad(H↑)h1 ∈ hc − 2E(h)

is not contained in the centralizer of h = h2 (cf. (3.6)). So the action of the modular
groupU (exp(−2π th)) = �i t

HdS(W dS
x1

)
on the net differs from that of the one-parameter

group U (exp(−2π th1)) of the corresponding boost. � 

3.2.2 An explicit example on de Sitter space dS2

In this section we will present an explicit construction in PSLn(R) for the previous
construction.

With the previous notation we specify the case PGLn(R) as an example. Let G↑ :=
PSLn(R) with Lie algebra g = sln(R), so that G↑ ∼= Inn(g). The conjugacy classes
of Euler elements in g are represented by the diagonal matrices h j , j = 1, . . . , n− 1,
from Example 2.10. As the dimensions of the eigenspaces show, no two of these
elements are conjugate. This follows from the classification for the root system An−1
(Theorem 2.8). The Euler element h j is symmetric if n is even and j = n

2 .
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Moregenerally, there exist non-symmetricEuler elementswhich are diagonalmatri-
ces of the form

h = diag(a1, . . . , an) with
n∑

i=1
ai = 0 and ai − a j ∈ {−1, 0, 1} for i �= j .

(3.14)

We fix such a non-symmetric Euler element h. After a permutation of the entries,
we may assume that a2 − a1 = 1, so that h does not commute with the subalgebra
h ∼= sl2(R), generated by the Euler elements

k1 = 1

2

⎛

⎝
1 0 0
0 −1 0
0 0 0n−2

⎞

⎠ and k2 = 1

2

⎛

⎝
0 1 0
1 0 0
0 0 0n−2

⎞

⎠ .

Then

h = hc − k1 with 0 �= hc = diag(a1 + 1
2 , a1 + 1

2 , a3, . . . , an). (3.15)

Let σh ∈ Aut(g) be the involution defined by h and G := G↑{1, σh} ⊆ Aut(g).
Let H ⊂ G be the graded subgroup generated by the two one-parameter groups
exp(Rk1,2) and σh . The Lie subalgebra b ⊆ g generated by h, k1 and k2 is easily
seen to be isomorphic to gl2(R) with commutator algebra h = [b, b] ∼= sl2(R). By
Lemma 2.15(d), we have H↑ ∼= SL2(R), realized via

SL2(R) � g �→ gPSLn :=
[ (

g 0
0 1n−2

)]
∈ PSLn(R).

Observe that σh |h = σk1 . Let Wh = (h, σh) ∈ GE (G) be the Euler wedge associated
to h and observe that its stabilizer in H↑ coincides with the stabilizer of (k1, σh) ∈
G(H).

Let (U ,HU ) be an (anti-)unitary representation of G = PGLn(R), so that U is
unitary on G↑ = PSLn(R) (see [28, Lemma 2.10] for existence). In order to fit with
Remark 2.7 (note that k1 corresponds to σ2), we construct the net with base pointW dS

x2 .
We consider the net NdS of standard subspaces on de Sitter spacetime defined as in
(3.13) by

W+ � W dS �→ NdS(W dS) ⊂ HU defined by NdS(�(g)W dS
x2 ) := V (g)NU (Wh). (3.16)

By Theorem 3.4, this net is Lorentz covariant but not modular covariant. To match
notation, take h1 := k1 and h2 := h.

Remark 3.5 Consider the previous identification of SL2(R) ∼= H↑ ⊂ PSLn(R), where
h = hc − k1, and k1 and k2 are the Euler elements in h ∼= sl2(R) associated to the
wedge domains W dS

x2 and W dS
x1 in dS2, respectively. Then

k1 = r(π/2)k2r(π/2)−1, where r(θ) =
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
.



124 Page 18 of 25 V. Morinelli, K-H. Neeb

By the BGL construction and (2.9),

U (e−2π i t ·h) = U (e−2π i t ·(hc−k1)) = �i t
NdS(W dS

x2
)

and

U (e−2π i t ·(hc−k2)) = �i t
NdS(W dS

x1
)
.

As the two Euler elements h = hc − k1 and hc − k2 generate b ∼= gl2(R), we also
observe that modular covariance manifestly fails because these two one-parameter
groups do not generate a representation of S̃L2(R) (cf. [6, Thm. 1.7]).

3.2.3 Counterexamples on Minkowski spacetime

Let N be a net of standard subspaces:

WdS+ � W dS �−→ N(W dS) ⊂ H

which is covariant for a unitary representation V of the double covering SL2(R) � L̃↑+
of the Lorentz group on theHilbert spaceH.We assume that the couple (V ,N) satisfies
(3.9). We further assume that the net N does not satisfy modular covariance, i.e., that
there exist g ∈ SL2(R) and t ∈ R such that

�−i t
N(W dS

x1
)
N(gW dS

x1 ) �= N(�W dS
x1

(2π t)gW dS
x1 ) = N(�(exp(th1))gW

dS
x1 ). (3.17)

(Note that the two wedges W dS
x1 andW dS

x2 are Lorentz conjugate, so that the base point
in the wedge space does not matter.)We constructed such nets in Sects. 3.2.1 and 3.2.2.

The proper Poincaré group

P+ = P↑
+ ∪ P↓

+ with P↑↓
+ = R

1+2
� L↑↓+

is the inhomogeneousLorentz group acting on theMinkowski spacetime: the real space
R
1+2 endowed with the Lorentzian metric with signature (1,−1,−1). We write

WR
1+2

+ = P↑
+.Wx1

for the set of wedges of (1+ 2)-dimensional Minkowski spacetime. Note that dS2 ⊂
R
1+2 and that, for every W dS ⊆ dS2, there exists a unique WR

1+2 ∈ L↑+.WR
1+2

x1 ⊆
WR

1+2
+ such that W dS = WR

1+2 ∩ dS2 (cf. Remark 2.7). We may thus identify WdS+
with a subset of WR

1+2
+ . The Poincaré group P↑

+ = R
1+2

� L↑+ act on WdS+ through

the projection onto L↑+, so that the translation group acts trivially.
With this identification, N extends to a net N̂ on Minkowski wedges by

WR
1+2

+ � WR
1+2 �→ N̂(WR

1+2
) ⊂ H
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with

N̂
(
�R

1+2
(a, g)WR

1+2
x1

) := V (g)N(W dS
x1 ), (a, g) ∈ P̃↑

+

and �R
1+2 : P̃↑

+ = R
1+2

� L̃↑+ � (a, g) �−→ (a,�(g)) ∈ P↑
+ is the quotient map.

As above, this construction requires that the stabilizer subgroup of the standard right
wedge WR := WR

1+2
x1 in P↑

+ preserves W dS
x1 ([28, Lemma 4.13]).

Now let U0 be an (anti-)unitary positive energy3 representation of P+ on the
Hilbert space K. We write NU0 for the BGL-net of standard subspaces associated
to U0 (Theorem 2.13). We define a unitary positive energy representation of P̃↑

+ =
R
1+2

�SL2(R), the double covering ofP↑
+, on the tensor product Hilbert spaceH⊗K

by

U : P̃↑
+ = R

1+2
� SL2(R) � (a, g) �−→ V (g)⊗U0(a, g) ∈ U(H⊗K). (3.18)

The tensor product subspaces N̂(WR
1+2

)⊗NU0(W
R
1+2

) ⊂ H⊗K are standard by [20,
Prop. 2.6].We obtain a (non-local) net of standard subspaces onMinkowski spacetime

H : WR
1+2

+ � WR
1+2 �−→ H(WR

1+2
) ⊂ H⊗K,

whereH(WR) = N̂(WR)⊗NU0(WR) and, for the standard right wedgeWR := WR
1+2

x1 :

H(WR
1+2

) = H(�R
1+2

((a, g)).WR) = U ((a, g))H(WR)

= (V (g)⊗U0(a, g))(N̂(WR)⊗ NU0(WR))

for (a, g) ∈ P̃↑
+ = R

1+2
� SL2(R).

Poincaré covariance is satisfied by construction, but modular covariance is broken.
Indeed, by [20, Sect. 2],

�i t
N̂(W )⊗NU0 (W )

= �i t
N̂(W )

⊗�i t
NU0 (W )

and since N̂ does not satisfy modular covariance, there exists a g ∈ L̃↑+ ⊆ P̃↑
+ such

that we obtain:

�−i t
H(WR)H(gWR) = (�−i t

N̂(WR)
⊗�−i t

NU0 (WR))(N̂(gWR)⊗ NU0(gWR))

= (�−i t
N̂(WR)

N̂(gWR))⊗�−i t
NU0 (WR)NU0(gWR)

= (�−i t
N̂(WR)

N̂(gWR))⊗U0(�WR (2π t))NU0(gWR)

= (�−i t
N̂(WR)

N̂(gWR))⊗ NU0(�WR (2π t)gWR)

3 Positive energy means that the joint spectrum of the translation generator lies inside the forward light
cone C = {x ∈ R

1+2 : x20 − x21 − x22 ≥ 0, x0 ≥ 0}
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�= N̂(�WR (2π t)gWR)⊗ NU0(�WR (2π t)gWR)

where the last inequality follows from (3.17).

4 Outlook: Disintegration, locality and higher dimensions

Comments on the representation theory. Let NU be the BGL-net associated to an
anti-unitary (positive energy) representationU of a Z2-graded Lie group G whose Lie
algebra g contains Euler elements, cf. [24]. The counterexamples to the BW property
described in [20, 23] (see also [3, Thm. 3.1]) can be interpreted in our general setting
in the following sense:

Proposition 4.1 Let (U ,H) be an (anti-)unitary representation of the graded group
G and

ζ : G → U (G)′ ∩ U(H)

be a group homomorphism. Then

Ũ (g) := U (g)ζ(g) = ζ(g)U (g)

defines an (anti-)unitary representation of G on H, and if N := NU : G(G) →
Stand(H) is the BGL net corresponding to U, then N is Ũ -covariant and satisfies
the modular covariance condition.

Proof The net N is modular covariant by construction and since each ζ(g) fixes all
subspaces in the net by Lemma 2.2, the N is Ũ -covariant.

In the setting of Proposition 4.1, ifU is an infinite multiple of an irreducible Poincaré
representation, then Ũ disintegrates with infinitely many disjoint Poincaré represen-
tations, see e.g. [23, Sect. 5], [20, Sect. 7].

In the current paper, our family of counterexamples to the modular covariance
property on de Sitter spacetime relies on the inclusion

H↑ = SL2(R) ⊂ G := GL2(R) with h := sl2(R) ⊂ g = gl2(R),

where we consider a non-symmetric Euler element h ∈ gl2(R) and observe that
gh � [g, g] = sl2(R). Note that gl2(R) = sl2(R)⊕ z(g) where z(g) = R · 1.

Let (V ,H) be a net of standard subspaces satisfying (3.9) on the two-dimensional
de Sitter spacetime, where V is a representation of the (covering of the) Lorentz
group acting covariantly on H. Assume that H has been constructed as in Sect. 3.2.1,
with respect the group G = GL2(R). Then h is a non-symmetric Euler element in
g = gl2(R) as above and H↑ = 〈exp h〉 = SL2(R) ⊂ GL2(R).

An irreducible unitary representation of G↑ = R
×+ SL2(R) is of the form

Up(g, a) = V (g)eipa where V is an irreducible representation of SL2(R) and
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R � p �= 0. The representation V extends to an (anti-)unitary irreducible representa-
tion of H = H↑

� Z2 on the same space (see e.g. [24, Thm. 2.24]). An (anti)-unitary
representation of G = G↑

� Z2 which is non-trivial on the center 1 × R
×+ ⊂ G↑

decomposes on G↑ as U := Up ⊕ U−p because of the antilinearity of the action of
the involution.

Let V = U |H and H(W dS
x1 ) = NU (Wh). So the net H(gW dS

x1 ) = V (g)H(Wh) is
defined by covariance but it does not satisfy modular covariance. We conclude that, on
de Sitter spacetime, even if V is a two-fold direct sum of irreducible representations
of SL2(R), it is possible that a Lorentz covariant net of standard subspaces (V ,H) is
not modular covariant. On the other hand, on Minkowski spacetime, due to the tensor
product representation (3.18), the Poincaré representation U contains infinitely many
inequivalent representations in the direct integral decomposition (cf. [23, Sect. 5], [20,
Sect. 7]).

Counterexamples with bosonic representations. Lemma 2.15 claims that if g is
simple then Inng([b, b]) � SL2(R). Then, going back to the construction presented
in Sect. 3.2.1, the covariant representation of the symmetry group acting on the two-
dimensional de Sitter spacetime is actually a representation of the double covering of
the Lorentz group that does not factor through the Lorentz group. In order to consider
representations of the Lorentz group, one can get rid of the assumption on g to be
simple. Note that Lemma 2.15(a)-(c) do not require g to be simple.

With thenotationofSect. 3.2.1, consider a (non simple)Lie algebrag = sl2(R)⊕ Rξ ,
where z(g) = R · ξ is the one-dimensional center of g. Then h2 = ξ − h1 ∈ g is a
non-symmetric Euler element of g and h1 is an Euler element in h = sl2(R). It is clear
that [h, h1 − h2] � ker(h2). Let G↑ = PSL2(R) × R and H↑ = PSL2(R) × {0},
then Lie(G↑) = g and Lie(H↑) = h. Consider the Z2-graded extension H of H↑
obtained adding an Euler involution. ThenG = H×R is aZ2-graded extension ofG↑.
Let U be an (anti-)unitary representation of G on a Hilbert space HU and NU be the
BGL-net with respect to the wedge setW+(Wh2). One can replicate the construction
of the non-modular covariant net presented in Sect. 3.2.1 since Hh1 = exp(Rh1), and
obtain a net of standard subspaces indexed by wedge regions on two-dimensional de
Sitter spacetime

WdS ⊃ W dS �−→ N(W dS) ⊂ HU .

The netN is Lorentz covariant with respect to V = U |H as in (3.9), where V is already
defined on L↑+ and not only on the 2-fold covering.

Twisted-local non modular Lorentz covarariant nets on de Sitter spacetime. The
counterexamples to the modular covariance property we provided in this paper are not
compatible with locality since the Euler element we start the construction with is not
symmetric. Indeed, the subspaces corresponding to causal complementary wedges
(cf. Definition 2.3(d)) are not local in the sense that, if W1 ⊂ W ′

2, then H(W1) ⊂
H(W2)

′. Clearly, on de Sitter spacetime, since there are no wedge inclusions, the
locality condition becomes H(W dS′) ⊂ H(W dS)′. On the other hand we can construct
twisted-local nets that are not modular covariant as follows.
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We refer to the notation contained in Sect. 3.2.1. Let (N,U ) be a non-modular
covariant net on de Sitter spacetime as constructed in Sect. 3.2.1, with N(Wx1) =
NU (Wh) where h is a non-symmetric Euler element in g. We can define a second
Lorentz covariant net of standard subspaces on de Sitter spacetime by covariance
under U , starting from

K(W ′ dS
x1 ) := NU (W−h) = NU (Wh)

′ ⊂ H,

and putting

K(�(g)W dS
x1

′
) := U (g)NU (Wh)

′.

Note that W dS
x1

′ = R(π)W dS
x1 , so K(W dS

x1 ) = U (r(π))N(W dS
x1 )′, and by covariance

N(W dS′) = K(W dS)′. (4.1)

The net is Lorentz covariant (3.9) since, for g ∈ H↑ = SL2(R), �(g)W dS = W dS is
equivalent to �(g)W dS′ = W dS′. With the notation of Sect. 3.1, we put h2 := h and
h1 := hWx1

, so that (3.8) holds:

[h, h1 − h2] � ker(h2).

In particular, for hW ′
h
= −h2 and hW ′

x1
= −h1, we get again [h, h2 − h1] � ker(h2),

hence K is not modular covariant. The net

WdS+ � W dS �−→ H̃(W dS) = N(W dS)⊕ K(W dS) ⊂ H⊕H

is Lorentz covariant with respect to the representation

SL2(R) � g �−→ Ũ (g) = U (g)⊕U (g).

Consider the operator

Z =
(
0 1
1 0

)
∈ Ũ (SL2(R))′.

The net H̃ is twisted Haag dual (cf. [GL95, MN21]) with respect to the twist operator
Z , in the sense that

H̃(W ′) = Z H̃(W )′. (4.2)
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Indeed, (4.2) follows from

H̃(W dS
x1

′
) = Ũ (r(π))H̃(W dS

x1 ) = U (r(π))N(W dS
x1 )⊕U (r(π))K(W dS

x1 )

= U (r(π))N(W dS
x1 )⊕U (r(π))U (r(π))N(W dS

x1 )′

= N(W dS
x1

′
)⊕U (r(2π))N(W dS

x1 )′

(4.1)= K(W dS
x1 )′ ⊕ N(W dS

x1 )′

= Z(N(W dS
x1 )′ ⊕ K(W dS

x1 )′)
= Z H̃(W dS

x1 )′.

By covariance we obtain H̃(W dS′) = Z H̃(W dS)′ for every wedge on de Sitter space-
time. An analogous example can be constructed on Minkowski spacetime.

Higher dimensional spacetimes. In this paper we provide counterexamples to
modular covariance on two-dimensional de Sitter spacetime and three-dimensional
Minkowski spacetime. The general construction principle (Sect. 3.1) depends neither
on the spacetime dimension nor on the manifold we consider. Here we sketch how
to extend the concrete construction presented in Sect. 3.2.2 to higher dimensional
de Sitter or Minkowski spacetimes. Let h := so1,n(R) ⊂ g := slm(R) and h be a
non-symmetric Euler element of slm(R) such that {0} �= [so1,n(R), h] ⊆ so1,n(R)

and let U be an (anti-)unitary representation of the Z2-graded extension PGLm(R) of

PSLm(R). LetW dS,R1+n
x1 be the wedge in the x1-direction on de Sitter or onMinkowski

spacetime, with the identification H(Wx1) = NU (Wh). One can define by covariance
a Lorentz (3.9) or a Poincaré covariant (3.10) net of standard subspaces if and only if

StabL̃↑
+
Wx1 = {g ∈ L̃↑+ : �(g)Wx1 = Wx1} ⊂ (L̃↑+)h

or

StabP̃↑
+
Wx1 = {g ∈ P̃↑

+ : �(g)Wx1 = Wx1} ⊂ (P̃↑
+)h,

respectively. In this case, the covariance conditions (3.9) and (3.10) define standard
subspaces

H(�(g)W dS,R1+s
x1 ) := NU (gWh) for g ∈ L̃↑+ or g ∈ P̃↑

+,

where L̃↑+ and P̃↑
+ are the double (and universal) covering of the Lorentz and the

Poincaré group respectively, and � is the covering homomorphism.
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