
����������
�������

Citation: Pomella, S.; Cassandri, M.;

Braghini, M.R.; Marampon, F.; Alisi,

A.; Rota, R. New Insights on the

Nuclear Functions and Targeting of

FAK in Cancer. Int. J. Mol. Sci. 2022,

23, 1998. https://doi.org/10.3390/

ijms23041998

Academic Editor: Atsushi

Matsuzawa

Received: 31 December 2021

Accepted: 9 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

New Insights on the Nuclear Functions and Targeting of FAK
in Cancer
Silvia Pomella 1,† , Matteo Cassandri 1,2,† , Maria Rita Braghini 3,†, Francesco Marampon 2, Anna Alisi 3,*,‡

and Rossella Rota 1,*,‡

1 Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
silvia.pomella@opbg.net (S.P.); matteo.cassandri@opbg.net (M.C.)

2 Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy;
francesco.marampon@uniroma1.it

3 Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS,
00146 Rome, Italy; mariarita.braghini@opbg.net

* Correspondence: anna.alisi@opbg.net (A.A.); rossella.rota@opbg.net (R.R.); Tel.: +39-06-68592186 (A.A.);
+39-06-68592648 (R.R.)

† These authors contributed equally to this work.
‡ These authors contributed equally to this work.

Abstract: Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed and activated
in both adult and pediatric cancers, where it plays important roles in the regulation of pathogenesis
and progression of the malignant phenotype. FAK exerts its functions in cancer by two different ways:
a kinase activity in the cytoplasm, mainly dependent on the integrin signaling, and a scaffolding
activity into the nucleus by networking with different gene expression regulators. For this reason,
FAK has to be considered a target with high therapeutic values. Indeed, evidence suggests that FAK
targeting could be effective, either alone or in combination, with other already available treatments.
Here, we propose an overview of the novel insights about FAK’s structure and nuclear functions,
with a special focus on the recent findings concerning the roles of this protein in cancer. Additionally,
we provide a recent update on FAK inhibitors that are currently in clinical trials for patients with
cancer, and discuss the challenge and future directions of drug-based anti-FAK targeted therapies.

Keywords: FAK; adult cancers; pediatric cancers; targeted therapy; combination therapy; PROTACs;
ATP-competitive inhibitors; allosteric inhibitors

1. Introduction

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase with a molecular weight
of 125 kDa that contributes to the regulation of different cellular processes, including cell
survival, proliferation, apoptosis, adhesion, migration and mechano-transduction (ref. [1]
and reviewed in [2]). The FAK gene, also known as protein tyrosine kinase 2 (PTK2),
maps onto the human chromosome 8q24.3 region and encodes for the FAK protein that
is ubiquitously expressed in different types of cells, with a prevalent localization in the
plasma membrane and cytoplasm. FAK was described for the first time in 1992 by Schaller
et al. as a central protein associated to the sub-cellular structures named focal adhesions
(FAs), which regulate signaling events in response to the extracellular matrix (ECM) [3].
Indeed, FAK was long considered only as the central transducer of extracellular signaling,
the most important triggered by integrins or growth factors, through its association with
several proteins located in close proximity to the focal contacts. Over the last ten years, in
addition to this kinase-dependent function, an unexpected kinase-independent role in the
scaffolding and regulation of gene transcription was also discovered for FAK (ref. [4] and
reviewed in [5,6]).

Several studies have shown the ability of FAK in regulating angiogenesis, immune
cell recruitment, ECM remodeling, epithelial–mesenchymal transformation and stem cell

Int. J. Mol. Sci. 2022, 23, 1998. https://doi.org/10.3390/ijms23041998 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23041998
https://doi.org/10.3390/ijms23041998
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-7007-4238
https://orcid.org/0000-0002-2919-676X
https://orcid.org/0000-0001-7241-6329
https://orcid.org/0000-0002-9408-7711
https://doi.org/10.3390/ijms23041998
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23041998?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 1998 2 of 16

maintenance, thus supporting the crucial role of this protein in cancer development and
progression (reviewed in [7,8]). As a matter of fact, the last two decades of research have
provided evidence for a role of FAK in promoting different types of tumors, including the
most common adult breast cancer and hepatocellular carcinoma (HCC), but also pediatric
cancers such as Ewing sarcoma and rhabdomyosarcoma (ref. [9] and reviewed in [10–12]).

In the present review, we summarize the current knowledge on FAK structure and the
novel insights into its scaffolding nuclear functions, mainly focusing on recent updates of
its role in cancer.

We also give an overview of FAK inhibitors currently in clinical trials on patients
with cancer and discuss the challenge and future directions of drug-based anti-FAK tar-
geted therapies.

2. FAK Structure and Activation

FAK’s structure includes three main domains: an N-terminal FERM (four-point—1,
ezrin, radixin and moesin—domain, a central kinase domain followed and a C-terminal FAT
(focal adhesion targeting) domain (reviewed in [13]) that are separated by three proline-rich
regions (PR1-3) working as binding sites for the Src homology (SH) 3 domain-containing
proteins (Figure 1). The FERM domain contains nuclear export signals (NES) and nuclear
localization signals (NLS), while another NES is located in the central kinase domain
(reviewed in [14]). The FAT domain consists of a four-helical bundle, wherein the major role
of FAK recruitment to FAs is by the interaction with other proteins, such as talin and paxillin
(reviewed in [15]). The FAT domain also contains the Tyr925 phosphorylation site, which
is relevant for its binding to the SH2 domain of Src kinase and the consequent activation
thereof [16]. It has been suggested that, to be phosphorylated at Tyr925, the FERM domain
should be unfolded (reviewed in [13]). The FAK/Src complex represents a platform for the
docking and phosphorylation of additional signaling molecules, including the extracellular
signal-regulated kinase 2 (ERK2)/mitogen-activated protein kinase (MAPK), which is a key
regulator of cell proliferation and differentiation [17]. The central kinase domain includes
the ATP binding site with the activation loop from residues 564–585 [18].

The activation of FAK occurs through auto-phosphorylation in the Tyr397 residue,
which is located in a linker segment that connect the FERM with the kinase domain
(Figure 1) [14]. Once this site is phosphorylated, the full catalytic activation of FAK is
achieved by the binding of Src to the phosphorylated Tyr397 site and consequent phospho-
rylation of the FAK activation loop on Tyr576 and Tyr577 residues [14]. Once activated, FAK
takes part in a number of different downstream signaling pathways involved in the regula-
tion of cell survival, proliferation and motility. In particular, FAK promotes the recruitment
of paxillin and talin, involved in the assembling and correct turnover of FAs, essential
dynamic events for the control of cell motility and directional cell migration. FAK also
plays an important role in the regulation of the actin cytoskeleton through interactions with
several regulatory proteins connected to the activation of Rho family proteins. Moreover,
FAK assures the transmission of survival signals through integrin-dependent adhesion and
signaling, in a process called anoikis, in the absence of which the cells undergo apoptosis.
Indeed, in adherent cells, FAK transmits signals blocking anoikis [19]. Furthermore, in
response to stress signals or cell detachment from the extracellular matrix, FAK can enter in
the nucleus via its NLS to regulate different intranuclear pathways [20].



Int. J. Mol. Sci. 2022, 23, 1998 3 of 16
Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. Schematic representation of the molecular structure of FAK and some of its interactors. 
FAK structure consists of three main domains: the N-terminal FERM, the central kinase and the C-
terminal FAT domain. The FERM domain includes three lobes, i.e., F1, F2 and F3, which are bound 
from transcription factors (among which are GATA4 and p53) and E3 ubiquitin ligases (among 
which are CHIP and MDM2). While it is known that p53 and MDM2, respectively, bind the F1 and 
F3 lobes of the FERM of FAK, for GATA4 and CHIP it is, only known that they bind the FERM 
domain, but unknown is to which of its three lobes. In the FERM domain a nuclear export signal 
(NES) in the lobe F1 and a nuclear localization signal (NLS) in the lobe F2, responsible for the nuclear 
export and localization of the protein, are reported. A NES is also found in the kinase domain. FAK 
structure further comprises three proline-rich (PR) regions that serve as binding sites for the Src 
homology (SH) 3 domains of several proteins. The main phosphorylation sites are shown with 
brown circles. In particular, the Tyr397 activation site, the Tyr576 and Tyr577 in the activation loop 
and the Tyr925 binding site for the SH2 domains are reported. The arrows indicate the FAK domain 
to which some of its interactors bind, while the grey rectangle shows the FAK interactors with still 
unknown binding sites. 

3. Nuclear FAK Functions Related to Cancer 
A number of evidences suggest that FAK can translocate into the nucleus in response 

to specific conditions such as the detachment of the cells from the ECM, the activation of 
stress signals and the inhibition of kinase activity (reviewed in [5]). In the nucleus, FAK 
(i) controls the functions of a variety of transcription factors (TFs), impacting gene regu-
lation; (ii) acts as a scaffold for several oncogenic and tumor-suppressor proteins by sta-
bilizing their complexes with different ubiquitin protein ligases E3, thus, promoting their 
turnover through enhanced ubiquitination and the consequent proteasomal degradation 
(reviewed in [5]) (Figure 2). 

One of the earliest discovered kinase-independent scaffolding functions of FAK in 
the nucleus regards its ability to stabilize a p53-MDM2 (an ubiquitin E3 ligase) complex, 
leading to the tumor suppressor p53 poly-ubiquitination and subsequent degradation by 
the proteasome promoting survival of normal cells [20]. This feature plays a role during 
development, when p53 must be expressed at low levels to allow the proliferation of cell 
precursors [20]. Golubovskaya et al. previously discovered that FAK directly interacts 
with p53 through the N-terminal domain (see Figure 1), forming a complex localized in 
both the cytoplasm and nucleus [21]. The authors also showed that, in the human osteo-
genic sarcoma p53-null cell line SAOS-2, the inhibition of FAK, when p53 is re-expressed, 
resulted in cell death, suggesting that FAK was responsible for the blockade of p53-medi-
ated apoptosis and transcriptional activity [21]. The enhancement of p53 degradation by 
FAK interaction with p53-MDM2 complex in the nuclear and perinuclear compartments 

Figure 1. Schematic representation of the molecular structure of FAK and some of its interactors.
FAK structure consists of three main domains: the N-terminal FERM, the central kinase and the
C-terminal FAT domain. The FERM domain includes three lobes, i.e., F1, F2 and F3, which are bound
from transcription factors (among which are GATA4 and p53) and E3 ubiquitin ligases (among which
are CHIP and MDM2). While it is known that p53 and MDM2, respectively, bind the F1 and F3
lobes of the FERM of FAK, for GATA4 and CHIP it is, only known that they bind the FERM domain,
but unknown is to which of its three lobes. In the FERM domain a nuclear export signal (NES)
in the lobe F1 and a nuclear localization signal (NLS) in the lobe F2, responsible for the nuclear
export and localization of the protein, are reported. A NES is also found in the kinase domain. FAK
structure further comprises three proline-rich (PR) regions that serve as binding sites for the Src
homology (SH) 3 domains of several proteins. The main phosphorylation sites are shown with brown
circles. In particular, the Tyr397 activation site, the Tyr576 and Tyr577 in the activation loop and the
Tyr925 binding site for the SH2 domains are reported. The arrows indicate the FAK domain to which
some of its interactors bind, while the grey rectangle shows the FAK interactors with still unknown
binding sites.

3. Nuclear FAK Functions Related to Cancer

A number of evidences suggest that FAK can translocate into the nucleus in response
to specific conditions such as the detachment of the cells from the ECM, the activation
of stress signals and the inhibition of kinase activity (reviewed in [5]). In the nucleus,
FAK (i) controls the functions of a variety of transcription factors (TFs), impacting gene
regulation; (ii) acts as a scaffold for several oncogenic and tumor-suppressor proteins by
stabilizing their complexes with different ubiquitin protein ligases E3, thus, promoting their
turnover through enhanced ubiquitination and the consequent proteasomal degradation
(reviewed in [5]) (Figure 2).
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Figure 2. FAK functions in the nucleus. Graphical representation of the nuclear functions of FAK 
and its interactors. (A) FAK acts as a scaffold to stabilize complexes between p53 or GATA4 and the 
ubiquitin E3 ligases Mdm2 or CHIP, respectively. This leads to p53 and GATA4 polyubiquitination 
and subsequent degradation by the proteasome; (B) FAK acts as a regulator of gene expression by 
controlling chromatin accessibility, acting on a variety of epigenetic modulators (MBD2, Ezh2, 
NuRD complex); transcriptionally regulating the expression of transcription factors, such as IL33 
and ST2; or forming molecular complexes with transcription factors such as TAF9 and Runx1. By 
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der.com/, Accessed 27 December 2021). 

4. FAK Inhibitors 
The critical and important role of FAK in the cancer progression of a plethora of hu-

man tumors [11,12,39,40] led to the development of selective FAK-targeting small mole-
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Figure 2. FAK functions in the nucleus. Graphical representation of the nuclear functions of FAK
and its interactors. (A) FAK acts as a scaffold to stabilize complexes between p53 or GATA4 and the
ubiquitin E3 ligases Mdm2 or CHIP, respectively. This leads to p53 and GATA4 polyubiquitination
and subsequent degradation by the proteasome; (B) FAK acts as a regulator of gene expression by
controlling chromatin accessibility, acting on a variety of epigenetic modulators (MBD2, Ezh2, NuRD
complex); transcriptionally regulating the expression of transcription factors, such as IL33 and ST2;
or forming molecular complexes with transcription factors such as TAF9 and Runx1. By regulating
gene expression, nuclear FAK can be involved in apoptosis, inflammation, cell cycle, angiogenesis
and cytokine expression. Figure realized with BioRender software (https://biorender.com/, accessed
on 27 December 2021).

One of the earliest discovered kinase-independent scaffolding functions of FAK in
the nucleus regards its ability to stabilize a p53-MDM2 (an ubiquitin E3 ligase) complex,
leading to the tumor suppressor p53 poly-ubiquitination and subsequent degradation by
the proteasome promoting survival of normal cells [20]. This feature plays a role during
development, when p53 must be expressed at low levels to allow the proliferation of cell
precursors [20]. Golubovskaya et al. previously discovered that FAK directly interacts
with p53 through the N-terminal domain (see Figure 1), forming a complex localized
in both the cytoplasm and nucleus [21]. The authors also showed that, in the human
osteogenic sarcoma p53-null cell line SAOS-2, the inhibition of FAK, when p53 is re-
expressed, resulted in cell death, suggesting that FAK was responsible for the blockade
of p53-mediated apoptosis and transcriptional activity [21]. The enhancement of p53
degradation by FAK interaction with p53-MDM2 complex in the nuclear and perinuclear
compartments may explain why the activity of p53, as a tumor suppressor, could be
impaired in p53 wild-type (wt) tumors (such as neuroblastoma) despite its functional
integrity [22]. In agreement, small molecule-inhibiting FAK-p53 interactions screened
on colon cancer cells reduced cell viability, reactivating p53-dependent transcriptional
activity and was synergic with conventional anti-cancer chemotherapeutics [23]. These
findings demonstrated that, through the shuttling of the FAK-p53 complex between the
two cellular compartments, FAK acts on p53 through distinct mechanisms by promoting
its degradation and, in the meantime, by inhibiting p53-mediated gene transcription and

https://biorender.com/
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anti-survival functions. Further, Serrels et al. demonstrated that nuclear FAK can also
regulate cell-cycle progression by controlling the RUNX1-dependent expression of the
insulin-like growth factor-binding protein 3 (IGFBP3) in skin squamous cell carcinoma [24].
Specifically, FAK into the nucleus recruits Sin3a, which represses the transcriptional activity
of RUNX1, to a complex with RUNX1, thus inhibiting the expression of IGFBP3. The
latter, when re-expressed in FAK-depleted cells, prevented proliferation and tumor growth
in vivo [24]. Notably, RUNX1 is known to interact with an array of proteins, including
kinases, chromatin remodeling enzymes and ubiquitin ligases, a number of which interact
with FAK that, thus, can regulate RUNX1 activity in different manners [24].

Moreover, several studies suggest a scaffolding role of nuclear FAK in complexes that
modulate chromatin accessibility. Luo et al. described, for the first time, a mechanism
through which nuclear FAK interacted with methyl CpG-binding domain protein 2 (MBD2)
in myogenic cells, shuttling to the nucleus where the MBD2-FAK complex altered het-
erochromatin reorganization, decreasing the MBD2 association with HDAC1 (histone
deacetylase complex 1) and methyl CpG site at the myogenin promoter [25]. As a result,
myogenin was then expressed, followed by muscle differentiation [25]. Both MBD2 and
HDAC1 take part of the nucleosome remodeling and deacetylase (NuRD) complex, one of
the major chromatin remodeling complexes mainly associated with gene silencing [26,27].
In line with this study, we analyzed the nuclear interactome of FAK and the components
of FAK complexes in HCC by mass spectrometry and noticed that HDAC1 and HDAC2
emerged as novel FAK nuclear interactors [4]. Genetic or pharmacological suppression of
FAK functions decreased the nuclear amount of HDAC1/2 proteins, reduced their activity
and, so, determined an increase of lysine 27 acetylation on histone H3 (H3K27ac), poten-
tially indicating activation of gene transcription [4]. In a previous work, we reported an
inverse role for FAK in promoting the translocation of a target protein from the nucleus
to the cytoplasm, thus, hampering its nuclear functions. Indeed, we showed that FAK
interacted with EZH2, a histone methyltransferase that trimethylates histone H3 on lysine
27 (H3K27me3), repressing gene transcription [28], and that this interaction delocalized
EZH2 from the nucleus blocking its nuclear functions [29]. As a result, the expression
of genes directly repressed by EZH2, such as NOTCH2, a well-known EZH2 target in
HCC [30], was restored [29]. Moreover, we demonstrated an additional layer of regulation
by FAK of EZH2, since FAK depletion reduced HCC growth in vitro and in vivo by pre-
venting the expression of EZH2 and other cancer-promoting genes, through the reduction
of the binding of the TFs E2F2/3 to the EZH2 promoter, thus causing a consequent decrease
of H3K27me3 levels [29]. Of note, in our subsequent works, this FAK–EZH2 complex has
been shown to be crucial also for the β-catenin-driven hepatocarcinogenesis [31,32].

The ability of FAK in the regulation of chromatin accessibility and TFs binding to
DNA is also discussed by several studies that describe the protein in an immunomodula-
tory context. GATA4 is another TF modulated by FAK scaffolding functions to regulate
inflammation-induced gene expression. As a matter of fact, in cardiac endothelial cells
in vivo, nuclear FAK interacts with CHIP (C terminus of Hsp70-interacting protein), an
E3 ligase that polyubiquitinates GATA4, thus leading to GATA4 degradation and the con-
sequent limitation of GATA4-induced VCAM-1 expression in response to tumor necrosis
factor-α (TNF-α) [33]. This effect was triggered by the inhibition of FAK kinase, which
promoted FAK nuclear shuttling and was independent from NF-kB [33]. VCAM-1 is an
adhesion molecule that plays a major role in transendothelial migration of lymphocytes
and cancer cells and, in agreement with this data, the pharmacological inhibition of FAK
reduced VCAM-1 expression in tissues, in vivo, and impaired metastasis in a murine
model of melanoma [34]. Furthermore, nuclear FAK has been be shown to be associated
with chromatin and to interact with TFs, including the TBP-associated factor TAF9 and
others transcriptional regulators reported or predicted to regulate the expression of the
chemokine Ccl5 [35]. Then, the same authors showed that both IL33 and ST2 are transcrip-
tionally regulated by nuclear FAK, confirming its role in regulating cytokine expression and
tumor growth [36]. A recent study demonstrated that nuclear FAK regulates IL33 expres-
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sion by controlling c-Jun binding at the IL-33 enhancer region via chromatin accessibility
changes [37]. All these findings suggest that FAK may also control the transcription of
chemokines, thus expanding the capacity of the FAK nuclear interactome to regulate the
composition of the immunosuppressive tumor microenvironment. Lastly, nuclear FAK is
required for angiogenesis. Indeed, a direct role for nuclear FAK in the transcriptional regu-
lation of vascular endothelial growth-factor receptor 2, a central mediator of endothelial
cell proliferation and migration in angiogenesis, has been recently reported [38].

Looking at all this evidence, nuclear FAK influences multiple cellular pathways by
direct protein interactions, but the mechanisms that underly this probably non-catalytic
aptitude of the protein still remain to be clarified.

4. FAK Inhibitors

The critical and important role of FAK in the cancer progression of a plethora of human
tumors [11,12,39,40] led to the development of selective FAK-targeting small molecules.

FAK inhibitors can be divided into three different categories: (i) kinase domain in-
hibitors, (ii) allosteric inhibitors and (iii) proteolysis-targeting chimera (PROTACs).

(i) Among the kinase domain inhibitors, the ATP-competitive ones are the most
investigated FAK inhibitors. The ATP-competitive molecules bind to the FAK–kinase
domain, directly competing with ATP, thus, inhibiting FAK signal transduction activity and
the activation of several FAK downstream pathways (reviewed in [41,42]). Being able to
selectively bind to the FAK ATP-binding domain, they are considered the most promising
molecules to be translated and applied in clinical practice. Indeed, all the compounds
inhibiting FAK that have accessed clinical trials and are currently under evaluation in
Phase I and II belong to this category [42] (Table 1). One of the major challenges in
the development of FAK inhibitors is to achieve a high selectivity towards proline-rich
tyrosine kinase 2 (PYK2), another member of the FAK family. PYK2 is a tissue-specific
non-receptor tyrosine kinase encoded by the protein tyrosin kinase 2 beta (PTK2B) gene
(on Chr. 8p21.2), sharing 78% homology with FAK at the ATP binding site and a similar
multi-domain organization [43,44]. Additionally, PYK2 regulates FAs formation and has
been shown upregulated during FAK signaling suppression, thus, compensating for the
loss of FAK, potentially promoting resistance [45,46]. Moreover, similarly to FAK, PYK2 can
translocate from the cytoplasm to the nucleus thanks to its inability to associate with talin,
which reduces its localization on FAs [47]. Additional similarities have been demonstrated
between FAK and PYK2 in the nucleus, where, also, PYK2 can form complexes with p53
and MDM2, promoting p53 degradation in normal and cancer cells [47], and it can bind
MDB2 [25]. However, differently from FAK, PYK2 has a unique characteristic, translocating
to the nucleus in response to Ca++ signals in neurons [48]. Overall, the differences between
PYK2’s and FAK’s nuclear functions, and their importance in FAK’ signaling and inhibition,
still remain to be clarified.

(ii) The allosteric inhibitors of FAK are non-ATP-competitive compounds still under-
going pre-clinical investigation. Allosteric inhibitors have been developed that bind an
allosteric site within the kinase domain, but, differently from the ATP-binding site, and
seem to be highly specific to FAK [49–52]. These inhibitors induce an inactive conformation
of the kinase domain, hampering interactions with receptor tyrosine kinases (RTKs) or
auto-phosphorylation at Tyr397.

Among the allosteric inhibitors are also those compounds that bind to non-kinase
domains of FAK, such as FERM and FAT, acting on the scaffolding functions of the kinase
by interrupting or avoiding protein–protein interactions (PPIs) between FAK domains
and their associated proteins. FAK-MDM2, FAK-p53 and FAK-VEGFR3 PPIs have been
intensely studied and specific allosteric compounds were discovered (reviewed in [53]).

(iii) PROTACs are new-generation compounds developed in the last years as inducers
of protein degradation (ref. [54] and reviewed in [55]). PROTACs are heterobifunctional
molecules able to hijack the ubiquitin–proteasome system (UPS) to degrade specific target
proteins by concomitantly binding an E3 ubiquitin ligase, among which Von Hippel Lindau
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(VHL) or Cereblon (CRBN), and the selected protein. Conversely to traditional small
molecules, PROTACs can target “undruggable” proteins lacking relevant binding sites
but having pockets with small affinity for compounds that can be designed or found by
screening, such as transcription factors or nuclear proteins. PROTACs against kinases have
been developed and tested in pre-clinical settings [56,57]. Notably, one of the major benefits
of PROTACs is their selectivity due to the specific interaction between the E3 ligase and the
protein target.

Table 1. Summary of FAK inhibitors in clinical trials.

Drug
(Code Name),
Trade Name

Target (IC50) Clinical Trial Studies (a, b) No. of Clinical
Trials (a) Phase (a)

GSK2256098
(GTPL7939) FAK (0.4 nM)

adenocarcinoma, adult healthy subject,
intracranial and recurrent

meningioma mesothelioma,
pancreatic cancer, pulmonary arterial

hypertension, solid cancer

6; 4 completed,
2 active

Phase I: 4
Phase II: 2

VS-4718
(PND-1186) FAK (1.5 nM)

relapsed or refractory AML, relapsed
or refractory B-Cell ALL, metastatic

cancer, non-hematologic cancers,
pancreatic cancer

3; 2 terminated,
1 withdrawn Phase I: 3

Defactinib
(PF04554878,

VS-6063)

FAK (0.6 nM)
Pyk2 (0.6 nM)

advanced solid cancer, lung cancer,
relapsed malignant and pleural
mesothelioma, non-hematologic
cancers, NSCLC, ovarian cancer,

pancreatic cancer, PDAC

21; 4 terminated,
6 completed

10 active
1 withdrawn

Phase I: 9
Phase I/II: 2
Phase II: 10

VS-6062
(PF00562271)

FAK (1.5 nM)
Pyk2 (14 nM)

head and neck cancer, pancreatic
cancer, prostatic cancer 1; 1 completed Phase I: 1

CEP-37440 FAK (2.3 nM)
ALK (120 nM) advanced or metastatic solid tumors 1; 1 completed Phase I: 1

BI-853520
(IN10018) FAK

colorectal cancer, metastatic
melanoma, metastatic non

hematologic malignancies, soft tissue
sarcoma, stomach cancer

3; 2 completed,
1 active Phase I: 3

(a) From www.clinicaltrials.gov (accessed 18 October 2021); (b) AML—acute myeloid leukemia; ALL—acute
lymphocytic leukemia; NSCLC—non-small-cell lung carcinoma; PDAC—pancreatic ductal adenocarcinoma.

Recently, a number of PROTACs against FAK that include a binder for the VHL
E3 ligase have been developed [58–60]. PROTAC-3 was developed based on the ATP-
competitive FAK inhibitor Defactinib (Table 1) fusing to the E3 ubiquitin ligase VHL,
and has been shown to be more effective in inhibiting the activation of FAK and FAK-
dependent cell migration and invasion in breast cancer cells in vitro [58]. FC-11 is a
FAK PROTAC molecule obtained by the fusion of the VS-6062 ATP-competitive inhibitor
(Table 1) with the E3 ubiquitin ligase CRBN. In vivo experiments showed FAK degradation
in reproductive mouse tissues associated with a more than 90% reduction of total and
phosphorylated (Tyr397) protein levels [59]. Very recently, the GSK215 FAK PROTAC
has been developed from the ATP-competitive FAK inhibitor VS-4718 (Table 1) [60]. The
efficiency of GSK215 was testified to by the marked reduction of FAK levels in liver tissues,
in vivo. This pharmacologic study clearly shows that FAK inhibition and FAK degradation
have different effects, since GSK215 inhibited in vitro cell motility and 3D growth while
VS-4718 was unable to do so.

www.clinicaltrials.gov
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5. FAK Inhibitors in Clinical Trials

In Table 1 we summarize FAK inhibitors that are being evaluated in clinical trials as
single agents or in combination. Of note, all the clinical trials using FAK inhibitors are
focused on adult patients.

GSK2256098 (GTPL7939) is a potent, highly selective and reversible ATP-competitive
FAK inhibitor (dissociation constant (Ki) = 0.4 nM). GSK2256098 inhibits FAK Y397 phos-
phorylation in several cancer cells. The drug treatment affects AKT and ERK downstream
pathways, thus, impairing cell viability and anchorage -independent growth and inducing
caspase-mediated apoptosis in L3.6P1 pancreatic ductal adenocarcinoma cells [61]. HepG2
HCC cells treated with GSK2256098 decreased phosphorylation levels of PI3K, AKT, STAT3
and JNK correlated with an anti-proliferative effect [62]. Preclinical data showed that
GSK2256098 treatment reduces microvessel density and cellular proliferation and induces
apoptosis more efficiently in PTEN-mutated than in PTEN wt uterine cancer cells [63].
Glioblastoma cells were found to be among the most sensitive to GSK2256098 in a screening
of 95 cancer cell lines [64]. In agreement, in vivo experiments demonstrated that, in a
human glioblastoma xenografted model, GSK2256098 treatment induced a time- and dose-
dependent inhibition of FAK by reducing its phosphorylation [64]. To date, GSK2256098 is
under investigation in six clinical trials, of which four are in Phase I (completed) and two
in Phase II (one recruiting and one active but not recruiting) (Table 1). Two Phase I studies
have enrolled healthy volunteers to evaluate and determine safety and biodistribution of
GSK2256098 (NCT00996671, NCT02551653). A Phase I study, in the United Kingdom, on
62 patients with advanced solid tumors showed encouraging results on the acceptable
safety profile and activity of GSK2256098 in mesothelioma patients (NCT01138033) [65].
A Phase Ib trial of GSK2256098 in combination with trametinib, a MEK/MAPK inhibitor,
was conducted on 34 patients (of which 21 had malignant mesothelioma). Results from
the study suggested that co-administration with GSK2256098 increases the trametinib
uptake (NCT01938443) [66]. Moreover, two Phase II clinical trials have been activated to
evaluate: (1) GSK225098 in combination with trametinib in advanced pancreatic cancer
(NCT02428270; active, not recruiting) and (2) GSK225098 in combination with vismodegib,
a hedgehog inhibitor, in intracranial and recurrent meningioma (NCT02523014; recruiting).

VS-4718 (PND-1186) is a potent, reversible and selective FAK inhibitor (Ki = 1.5 nM).
VS-4718 IC50 dose reduced FAK Y397 phosphorylation in breast carcinoma cells, leading
to tumor growth arrest and apoptosis induction [67]. A panel of 47 human cancer cell
lines were tested for sensitivity to VS-4718, among which were renal cancer, thyroid cancer,
ovarian cancer, breast carcinoma, melanoma, mesothelioma and non-small-cell lung cancer
cell lines [68]. Overall, data from this study suggested that the absence of the Merlin
tumor suppressor correlates with high sensitivity to VS-4718 treatment in malignant pleural
mesothelioma in vitro and in vivo. VS-4718 showed potent inhibition activity in vitro in a
pediatric preclinical testing program (PPTP) and excellent tolerance in vivo [69]. Moreover,
VS-4718 can act as a competitive substrate for ABCB1 and ABCB2, thus affecting the activity
of these transporters and leading to the intracellular accumulation and increased efficacy of
small molecules [70]. Recently, transcriptomic analysis performed on a uveal melanoma cell
line treated with VS-4718 revealed that the treatment downregulates genes stimulated by
KRAS, EGFR and cytokines, such as IL-21 and IL-15. VS-4718 repressed also the expression
of genes downregulated by JAK2, p53 and BMI. Interestingly the authors observed a down-
regulation of YAP signature genes due to a strong reduction of YAP nuclear localization
after VS-4718 treatment [71]. In a preclinical study unrelated to cancer, VS-4718 was used to
inhibit FAK in proliferating vascular smooth cells (vsmc) to show that inactive FAK enters
to the nucleus where it forms a complex with Skp2, an E3-ubiquitin ligase, and CDH1, an
activator for APC/C E3 ligase complex, to promote their degradation [72]. The results were
the increase of the two cyclin-dependent kinase inhibitors, p21 and p27, and the consequent
blockade of vsmc proliferation [72]. VS-4718 was investigated in three Phase I clinical trials
(Table 1) but all of them were either terminated with no available results (NCT01849744,
NCT02651727) or withdrawn (NCT02215629).
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Defactinib (PF04554878, VS-6063) is a potent dual and reversible ATP-competitive
inhibitor of FAK and PYK2 (Ki = 0.6 nM, both) [73,74]. Preclinical studies revealed that
Defactinib reduced FAK Y397 phosphorylation in a dose-dependent manner, and combi-
natorial treatment with paclitaxel, a chemotherapy drug, reduced cell proliferation and
induced apoptosis in ovarian cancer cells [75]. Moreover, Defactinib can overcome the
in vitro paclitaxel-resistance mediated by the DNA- and RNA-binding proteins YB-1 [75].
Defactinib induces dissociation of PI3K from FAK in esophageal squamous cell carcinoma,
thus resulting in impaired AKT signaling and in the transcriptional downregulation of
several oncogenes such as SOX2, MYC, EGFR, MET, MDM2 and TGFBR2, thus reducing
tumor growth and metastatic ability [76]. Human malignant mesothelioma (MM) cells
overexpressing calreticulin, a Ca2+-binding protein critical for MM cell survival in vitro,
show increased nuclear FAK and resistance to Defactinib in vitro [77]. The co-treatment
with Defactinib and docetaxel, another chemotherapy drug, impaired the proliferation
of castration-resistant prostate cancer cells in vitro and in vivo [78]. Defactinib is under
evaluation in 21 clinical trials: 9 in Phase I (2 terminated, 5 completed, 1 recruiting and
1 withdrawn), 2 in Phase I/II (both recruiting) and 10 in Phase II (2 terminated, 1 com-
pleted, 6 recruiting and 1 active but not recruiting) (Table 1). Phase I studies established the
acceptable safety, tolerability, pharmacokinetics profile and clinical activity in 9 patients
(NCT01943292) [74] and 46 patients with advanced solid tumors (mostly colorectal, ovarian
or pancreatic cancer) (NCT00787033) [79]. In the Phase II trial NCT01951690, Defactinib
monotherapy showed modest clinical activity in heavily pretreated KRAS mutant non-
small cell lung carcinoma (NSCLC) patients [80]. A Phase II study, involving 344 patients
affected by malignant pleural mesothelioma, demonstrated that Defactinib treatment after
first line chemotherapy did not improve either progression-free survival (PFS) or overall
survival (OS) (NCT01870609) [81].

VS-6062 (PF00562271) is a potent dual and reversible ATP-competitive inhibitor of
FAK and PYK2 (Ki = 1.5 nM and Ki = 14 nM, respectively) [82]. VS-6062 potently reduces
FAK Y397 phosphorylation in epidermal squamous cell carcinoma [82] and Ewing sarcoma
cell lines [83], resulting in the repression of downstream pathways. Preclinical studies
demonstrated that co-treatment with VS-6062 and Sunitinib, a multi-targeted RTK inhibitor
(RTKi), strongly inhibits angiogenesis and proliferation in liver and epithelial ovarian
cancers [84,85]. Furthermore, VS-6062 treatment impairs T cell proliferation, adhesion
to ICAM-1 (intercellular adhesion molecule-1) and interactions with antigen-presenting
cells [86]. VS-6062 treatment reduced FAK activation and consequently SRC and BCAR1
phosphorylation, inhibiting cell growth and inducing apoptosis in liposarcoma cells [87].
VS-6062 was evaluated in a Phase I clinical trial (Table 1) in which 99 patients with advanced
solid tumors were enrolled. Results from the trial showed a safety profile of VS-6062 and a
time-dose dependent non-linear absorption, distribution, bioavailability, metabolism and
excretion (NCT00666926; completed) [88].

CEP-37440 is a potent dual and reversible ATP-competitive inhibitor of FAK and ALK
(Ki = 2.3 nM and Ki = 120 nM, respectively). In vitro treatment with CEP-37440 reduced
the cell proliferation of anaplastic large-cell lymphoma cells [89]. CEP-37440 was able to
completely inhibit the proliferation of FC-IBC02 breast cancer cells in vitro, affecting the
transcriptional expression of genes related to apoptosis, interferon signaling and cytokines
such as IFI27, IFI6, IFI35, IRF7, CCL5, IL32, IL23A, OAS2, OAS3, OAS1, MX1, ISG15,
BIK and KDR [90]. Furthermore, CEP-37440 showed efficacy in breast cancer preclinical
models both in vitro and in vivo [90]. It also exhibited good oral ADME (absorption,
distribution, metabolism and excretion) properties, high bioavailability in several animal
species (mouse, rat and monkey) and excellent activities in in vivo models of ALK- and
FAK-positive tumors [89,90]. Furthermore, CEP-37440 is a brain-penetrant drug [91]. CEP-
37440 was evaluated and successfully completed Phase I clinical trials (Table 1). Thirty-two
patients with advanced or metastatic solid tumors were enrolled to determine the maximum
tolerated dose (MTD), safety and tolerability of oral CEP-37440 (NCT01922752), but the
results are not available.
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BI-853520 is a selective and potent FAK inhibitor that binds the FAK kinase region,
blocking ATP access [73]. It inhibits FAK Y397 phosphorylation in prostate cancer cell lines
with an IC50 of 1 nM [92]. Furthermore, it has been demonstrated that it reduces tumor-
sphere formation and in vivo orthotopic malignant pleural mesothelioma growth [93]. In
addition, recent studies reported that BI-853520 has high specificity for FAK in breast cancer
cells [94]. Indeed, it represses FAK activity through the inhibition of Y397 autophosphory-
lation, while in FAK’s homologue PYK2 phosphorylation was unaffected [94]. RNA-seq
analysis performed on BI-853520-treated 4T1 breast cancer cells xenografted in mice re-
vealed the downregulation of genes involved in proliferation and cell cycle progression,
such as CDK1 and CDK4, and the upregulation of genes involved in T-cell differentiation
and proliferation, cytokine production and leukocyte activation [94]. Currently, BI-853520
effects are under investigations in three different Phase I clinical trials, of which two are com-
pleted (NCT01905111, NCT01335269) and one is recruiting (NCT04109456). NCT01905111
clinical trial assessed the safety, tolerability, MTD and preliminary data on antitumor effects
of BI-853520 monotherapy in a cohort of 21 Taiwanese and Japanese patients affected by
various advanced or metastatic tumors. The results showed that BI-853520 has an accept-
able safety profile and potential antitumor effects [95]. BI-853520 MTD and antitumor
efficacy was assessed also in a Phase I clinical trial on 96 patients affected by advanced and
metastatic non-hematologic tumors (NCT01335269). The trial was completed and showed
that BI 853520 has an acceptable safety profile and modest antitumor activity at a MTD
of 200 mg in the selected patients’ cohort [96]. Finally, a recruiting, Phase Ib clinical trial
(NCT04109456) is aimed to investigate safety, tolerability, pharmacokinetics and anti-tumor
effects in metastatic melanoma patients.

6. Future Directions and Concluding Remarks

FAK signaling represents a convergence node of key cellular processes regulated
by integrins and growth factor receptors to drive numerous cell functions. It was found
de-regulated in several tumor types, including both adult and pediatric forms, suggesting
its targeting is helpful for the treatment of patients with cancer. So, over the last years, a
big effort is ongoing to discover novel FAK inhibitors with growing selectivity that could
be translated to the clinic. However, although FAK inhibitors as monotherapies showed
good tolerability and pharmacokinetic profiles, they seem to mainly have cytostatic effects
and limited efficacy in extending progression-free survival [66,73]. In addition, targeted
therapy with single agents often results in drug resistance through different mechanisms,
orienting the clinical approach to combinatorial treatments.

Based on this evidence, several clinical studies are evaluating FAK inhibitors in combi-
nation with other agents, as reported in Table 1. Indeed, anti-FAK compounds are under
clinical study in combination with RTKi, such as the MEK1/2 inhibitors Trametinib and
Cobimetinib and the RAF/MEK inhibitor VS-6766 (reviewed in [97]). The combination
with the chemotherapeutics Paclitaxel alone or with Carboplatin is under evaluation. More-
over, since nuclear FAK has been shown to remodel chromatin to lead the transcription of
pro-inflammatory cytokines, thus contributing to immunoevasion, evaluation of the combi-
nation with the immune checkpoint inhibitor Pembrolizumab is also ongoing (reviewed
in [97]).

Small molecules targeting FAK PPIs could be pharmacological tools to block the non-
kinase activity of FAK, avoiding the selectivity issues of ATP-competitive compounds
(reviewed in [53]). However, the development of FAK scaffolding inhibitors still retains
the limitations related to stoichiometric drug binding and occupation of the binding site
needed to modulate protein function, thus, resulting in a weak potency [60].

An additional aspect that should not be underestimated is that FAK and PYK2 can
have opposite, redundant or synergistic effects, depending on the cell type and condition
(reviewed in [98]). Therefore, the choice of dual FAK/PYK2 inhibitors in the clinical setting
should be carefully evaluated and corroborated by supportive preclinical studies.
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The development of PROTACs seems to have a great clinical potentiality allowing the
degradation of a specific protein even when it is mutated during treatment. It is noteworthy
that PROTACs against FAK have the potentiality to affect both kinase dependent and
independent (scaffolding) functions. Moreover, FAK can be activated by compensatory
signaling pathways such as other RTKs that trans-phosphorylate Tyr397 overcoming the
inhibition of FAK activation by conventional kinase-domain inhibitors [99]. This happens
through the reprogramming of the kinome that represents a mechanism of drug resistance
in response to kinase inhibitors. Therefore, the degradation approach with PROTACs can
potentially target all of these aspects avoiding the emergence of drug resistance. Unfortu-
nately, very recently, mechanisms of resistance to bromodomain and extra-terminal domain
(BET) proteins degraders have been discovered [100]. The inability of the compounds to
degrade the target protein is due to the loss of function of the cullin-RING ligase (CRL)
complex specific for each PROTAC, i.e., CRBN- or VHL-related, and can be overcome by
sequential administration of the two classes of degraders [100].

Of note, FAK has been found activated or up-regulated in several pediatric cancers,
such as renal cancer, neuroblastoma, ewing sarcoma, rhabdomyosarcoma and hepatocellu-
lar carcinoma, and FAK depletion or pharmacologic inhibition has resulted in tumor growth
impairment, both in vitro and in vivo [4,9,22,32,101–105]. Moreover, FAK expression has
been correlated to a worst prognosis in neuroblastoma patients [106]. In a pre-clinical
trial on several types of pediatric solid cancer cell lines, such as rhabdomyosarcoma,
medulloblastoma, ependymoma, glioblastoma, neuroblastoma and osteosarcoma, VS-4718
(PND-1186) showed limited activity, with event-free survival distribution significantly dif-
ferent compared with controls but with a small shift in magnitude [69]. At present, patients
with pediatric cancers are not included in clinical trials with FAK inhibitors. However, the
multikinase inhibitor Dasatinib (BMS-354825, SPRYCEL), which targets FAK together with
Abl, Src and c-Kit, is under evaluation for rhabdomyosarcoma, neuroblastoma and ewing
sarcoma [12].

In summary, identifying the best conditions and drugs that can reduce and/or block
FAK functions still remains a challenge. Future investigations should yield novel insights
on the knowledge of mechanisms regulated by FAK that can help to develop novel, more
selective inhibitors. Moreover, the identification of the best combinations for clinical
approaches could also be helpful. Finally, pediatric cancers should be also evaluated
to clarify the role of FAK in disease progression and to define an anti-FAK strategy for
young patients.
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