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Abstract: Human activity recognition (HAR) by wearable sensor devices embedded in the Internet
of things (IOT) can play a significant role in remote health monitoring and emergency notification
to provide healthcare of higher standards. The purpose of this study is to investigate a human
activity recognition method of accrued decision accuracy and speed of execution to be applicable in
healthcare. This method classifies wearable sensor acceleration time series data of human movement
using an efficient classifier combination of feature engineering-based and feature learning-based
data representation. Leave-one-subject-out cross-validation of the method with data acquired from
44 subjects wearing a single waist-worn accelerometer on a smart textile, and engaged in a variety
of 10 activities, yielded an average recognition rate of 90%, performing significantly better than
individual classifiers. The method easily accommodates functional and computational parallelization
to bring execution time significantly down.

Keywords: machine learning; deep learning; big data; data streams; Internet of things; sensor data;
intelligent systems; multivariate time series; tensor

1. Introduction

Miniaturization of complex electrical devices at continually lower cost has brought
about the development of a variety of wearable sensors and their embedding in healthcare-
dedicated Internet of things (IoT). The broad purpose of a healthcare IoT, sometimes called
Internet of medical things, abbreviated as IoMT, is to provide a network of embedded
systems to acquire, communicate, and analyze data for remote medical practice of accrued
quality. Sensors in the embedded systems of IoMT can perform a variety of useful mea-
surements, such as heart rate, body temperature, blood pressure, temporal data, as with
electrocardiography (ECG), and activity data, such as movement acceleration. The purpose
of this study is to investigate a human activity recognition (HAR) method of accrued
decision accuracy and speed of execution to be applicable and practicable in healthcare IoT
applications. The method uses acceleration data of human movement recorded by a single,
comfortably worn accelerometer. Recent HAR research in healthcare has used various
wearable sensors for health monitoring and physical rehabilitation systems [1]. For in-
stance, ref. [2] provided a qualitative synthesis of studies using wearable body sensors for
health monitoring, pointing out a number of shortcomings in prior research with respect to
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both sample size and participant demographics. Such systems aim at developing methods
for automatically recognizing human physical activities by analyzing data gathered by
sensors in wearable devices. The basic problem is to assign a time series segment of sensor
data to a corresponding activity during that time segment [3].

Machine learning can model a wide range of human physical activities for HAR in
wearable-sensor embedded systems. However, serious challenges remain. First, both train-
ing and learning technique evaluation require large annotated data sets. This can be
both a data-intensive and computation-intensive process. Thus, it is important to design
parallel algorithms that fully exploit the computational capacity of the target machine
and reduce the training time. Moreover, technical issues such as parallel ensemble learning
algorithms that aim at optimizing both the accuracy and computational costs are not yet
fully addressed by previous research works.

There have been several HAR studies using wearable sensors that we detail in the next
section. The results of current research firmly establish the merit and feasibility of wearable
sensor HAR and justify further investigation to develop practicable, parallel efficient
algorithms. The purpose of this study is to investigate a parallel classifier combination
method toward this end. Specifically, the contributions of this study are:

* A large dataset to serve HAR system development, recorded on participants using a
comfortable smart textile garment with an embedded single waist-worn accelerometer.

® A parallel architecture to combine traditional and deep learning pattern classification
algorithms, for accrued computational and classification accuracy, that we referred to
as an ensemble learning architecture. This architecture includes both the training and
testing aspects of algorithm development, for ease of application development.

e A parallel implementation of this ensemble learning architecture.

The proposed ensemble architecture is novel because it combines feature engineering
and feature learning, and does so with a parallel implementation of cross-validation:
it fuses the decisions of distinct classifiers in a manner that increases the robustness and
accuracy of the final decision. The method is demonstrated in the important field of health
monitoring and rehabilitation. It is tractable so as to easily allow the inclusion of additional
classification models. The remainder of this paper is organized as follows: Section 2 gives
an overview of sensor-based HAR systems, Section 3 presents a detailed description of the
materials and methods used in this study, which includes data acquisition, preprocessing,
and the proposed parallel architecture framework. Section 4 describes and discusses
the experimental results. Finally, Section 5 contains a conclusion and perspectives for
further research.

2. Related Work

This paper deals with the problem of wearable sensor-based HAR to recognize ac-
tivity data collected from a single accelerometer embedded in a wearable device using
an ensemble architecture that combines both feature engineering and feature learning
approaches with a parallel implementation of the leave-one-subject-out cross-validation
method. We highlight in this section the particularities of this work, in terms of research
goals and contributions, compared to the related work of wearable sensor-based HAR.

Sensor-based HAR can be defined as the process of interpreting sensor data to recog-
nize a set of human physical activities [4]. More specifically, sensor-based HAR is a classical
multivariate time series analysis problem that aims at classifying contiguous portions of
sensor data streams which cover activities of interest for a given target application.

Several approaches have been proposed for wearable sensor-based HAR, in which
various human activities were investigated, including common daily activities, ambulation,
and fitness exercise, and they have been well surveyed. Lara et al. [5] surveyed the state
of the art in HAR based on wearable sensors. The authors evaluated the state-of-the-
art HAR systems by defining a taxonomy that allows one to compare and analyze them
within groups that share common characteristics such as the recognized activities, the type
of sensors and the measured attributes, the integration device, the obtrusiveness level,
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the type of data collection protocol, the energy consumption level, the classifier flexibility
level, the feature extraction method, the learning algorithm, and the overall accuracy for
all activities. Twenty eight HAR systems present in the literature have been compared
according to the aforementioned aspects. Attal et al. [6] presented a review of recognition
of human activities using wearable sensors and focused on wearable sensors’ placement,
preprocessing data including feature extraction and selection and classification techniques.
Nweke et al. [7] reviewed deep learning methods for mobile and wearable sensor-based
human activity recognition. The review presents the methods and their advantages and
limitations. Wang et al. [8] presented a survey on the wearable sensor modality centred
HAR in health care, including the sensors used in HAR, the sensor placement on different
body parts, the most commonly seen sensor platforms in HAR, activities defined in this
field, data segmentation, feature learning, classification, etc.

As expected, most of the sensor measurements used in the existing studies are catego-
rized as related to the user’s movement (e.g., using accelerometers or GPS), environmental
variables (e.g., temperature and humidity), or physiological signals (e.g., heart rate or
electrocardiogram). These are typically collected from a small number of subjects and
in restrictive settings. For instance, Bao and Intille [9] reported the number of subjects
who participated in past studies on activity recognition using acceleration as ranging from
1 to 24. In a more recent review, Wang et al. [10] presented several widely used public HAR
datasets of acceleration samples and reported the number of subjects who participated in
these studies, ranging from 1 to 36. Moreover, these approaches vary depending on the sen-
sor technologies used to acquire the data, the features used to train the model: handcrafted
feature extraction (feature engineering) or automatic feature extraction (feature learning),
and the learning-based classification techniques, namely classical machine learning and
deep approaches.

The majority of the research works on wearable sensor-based HAR have so far focused
on using accelerometers. They are particularly effective in monitoring activities that involve
repetitive body motions, such as walking, running, sitting, standing, and climbing stairs.

Smartphones and wearables equipped with accelerometers, such as smart clothes,
are widely used modalities in sensor-based HAR. Garcia et al. [11] discussed publicly
available datasets collected from different wearables and/or smartphone sensors such as
the WISDM [12], PAMAP2 [13], and MHealth [14] datasets. Particularly, for the smartphone-
based HAR, a review of related work was presented in [15], with an emphasis on the
activities analysed, types of sensor data used, features extracted, classification method
applied, and accuracy achieved. For instance, Kwapisz et al. [12] collected sensor data from
phone-based accelerometers using an application installed on each user’s phone. Three-axis
accelerometer sensors were collected from 36 users carrying a smartphone placed on their
front pants pocket. Bayat et al. [16] collected three-axis accelerometer sensor data from 4
subjects, each carrying a cell phone, in either the in-hand or in-pocket position. Nowadays,
almost everyone carries a smartphone, which provides a convenient way to collect raw
sensor data to infer physical activity. However, one drawback is that smartphones are
usually carried in bags or pockets, and generally not positioned on the body.

Another approach to detect a broad range of physical activities is to wear multiple
accelerometers placed simultaneously at different locations on the subject body (hip, chest,
ankle, waist, etc.). For instance, Kern et al. [17] placed three-axis accelerometer sensors in all
major joints on the human body to recognize everyday postures and activities: just above
the ankle, just above the knee, on the hip, on the wrist, just above the elbow, and on
the shoulder. Bao and Intille [9] collected sensor data from five biaxial accelerometers
placed on each subject’s right hip, dominant wrist, non-dominant upper arm, dominant
ankle, and non-dominant thigh to recognize ambulation, posture, and other everyday
activities. Even though this approach is known for yielding strong performance rates, it is
not practical in clinical settings, for instance.

Other studies, like ours, have focused on the use of a single waist-worn accelerometer
for the activity recognition. For example, Bidargaddi et al. [18] analyzed acceleration signals
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recorded with a three-axis accelerometer, which is mounted on the waist of patients
undergoing cardiac rehabilitation.

The ideal sensor location for particular applications is still a subject of much debate.
Bao and Intille [9] concluded that the accelerometer placed on the thigh was the most
powerful for distinguishing between a range of common everyday household activities.
Cheung et al. [19] concluded that the use of a single waist-mounted triaxial accelerometer
is the most practical solution for health monitoring. Cleland et al. [20] concluded that the
sensor placed on the hip provides the best measures to recognize most everyday activities.

In general, a HAR system is composed of the following steps: (1) sensor data time
series acquisition, (2) raw data preprocessing, (3) time series segmentation, (4) feature
engineering or learning and feature selection, and (5) classification.

First, wearable sensors collect time series data from users. Then, the raw data collected
is processed and represented in the form of labeled multivariate time series.

The purpose of data fusion is to combine data acquired by different sensors or in
different axes to increase the reliability, robustness and generalization ability of HAR
systems. Data fusion can be achieved at the following three levels: data level, feature
level, and decision level [21]. Some existing methods allowing one to fuse different data
modalities for human activity recognition include the weighted average and least square
method, Kalman filtering and Dempster-Shafer theory [22]. Another common method is to
consider the data acquired by different sensors or in different axes, i.e., the multivariate
time series, individually in a separate channel, and consider each channel separately as an
input of the models [23]. Cai et al. [24] considers three-axis data of a tri-axial accelerometer
as an integration and classifies activities based on the resultant acceleration. In the feature-
level fusion, conventional feature fusion methods simply concatenate several kinds of
extracted features together. For instance, Fu et al. [25] proposed to fuse multiple features
in a generalized subspace learning framework. Tao et al. [26] selected the representative
frequency features of acceleration along each axis, respectively, and combined them into
a vector. The decision-level fusion involves systematic fusion of individual classifier
decisions to obtain a final decision in order to increase the accuracy, robustness and
generalization [27]. The commonly used classifier combination schemes are simple voting,
majority voting, weighted majority, fusion score and posterior probability [28].

Segmentation is the process of dividing the continuous data stream into smaller data
segments. Most of the segmentation techniques can be divided into three categories:
activity-defined windowing, event-defined windowing, and sliding windowing. The slid-
ing window strategy, which allows a degree of overlap between fixed-size windows,
has been prevalent [14].

Feature engineering uses domain knowledge to define the features of data repre-
sentation [29], and feature learning determines a mapping from the data domain to the
feature domain without relying on any domain knowledge. Current research has not
clearly established which of feature engineering or feature learning is more potent in
HAR. Figo et al. [30] discussed several feature engineering schemes for accelerometer
data in HAR, including time domain, frequency domain and discrete domain metrics.
Plotz et al. [3] evaluated the effectiveness of feature learning for physical activity classifica-
tion tasks without involving domain-specific knowledge, compared to feature engineering
techniques. He et al. [31] proposed a HAR system based on discrete cosine transform
(DCT) as an automatic feature extraction technique. Atallah et al. [32] investigated three
methods of feature selection, namely Relief, Simba, and Minimum Redundancy Maximum
Relevance (MRMR) methods.

The issue of recognizing physical activities on the basis of accelerometer data has
been solved many times by different classification approaches, e.g., k-Nearest Neighbour
(k-NN) [33], Decision Trees (DTs) [34], Support Vector Machines (SVMs) [35], Artificial
Neural Networks (ANNSs), deep learning [3], the hidden Markov model [36], as well as
ensemble learning techniques, such as in [37]. Bayat et al. [16] combined three classifiers by
the average of the probability fusion method, using accelerometer data from smartphones
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on two datasets: in-hand phone position and in-pocket phone position. For in-hand phone
position, the classifiers consist of the multilayer perceptron, LogitBoost and SVM classifiers,
with 91.15% accuracy. For the in-pocket phone position, the best combination is of multi-
layer perceptron, random forest and simple logistic with 90.34% accuracy. Catal et al. [38]
combined three classifiers by the average of probabilities fusion method using accelerom-
eter data from smartphones (the WISDM dataset [12]). The classifiers consist of the J48,
logistic regression, and MLP classifiers. Experimental results showed that this new model
exhibited a better performance than the standalone classifiers.

This study differs from most prior work in that we use a single device conveniently
worn rather than multiple devices distributed across the body, and we require neither
additional actions by the user nor any additional specialized equipment. Moreover, this ap-
proach enables practical real-world applications for the proposed models, specifically in
health monitoring and rehabilitation. Furthermore, we have generated and tested the
proposed models using more users than most of the previous studies in accelerometer
sensor-based HAR we reviewed and expect this number to grow substantially since we are
continuing to collect data. In the light of the previous investigated studies, we proposed
ensemble architecture that combines feature engineering and feature learning techniques,
which not only allows us to compare heterogeneous classifiers, but also combines their
predictions. Obviously, the ensemble learning architectures for human activity recognition
have been used many times before and it can be concluded from the literature that ensemble
methods produce better results compared to standalone algorithms [37]. However, what is
new in this approach is that first, we ran a large database using a parallel implementation
of cross-validation to estimate the generalization capabilities of the proposed learning
techniques, and second, we applied different fusion approaches (data, feature and decision)
all along the pipelines.

3. Materials and Methods

Figure 1 shows the different steps of the overall process, from data acquisition to segmen-
tation and data labeling.

Accelerometer data acquisition

Accelerometer data preprocessing

Labeling procedure

ﬂGmund truth
y =4 csvfile

Raw annotated

accelerometer s L N
e £l - o T “AM\‘ -

| | [

Semi-automatic labelisation of
accelerometer data

Raw accelerometer data Label validation
from Hexoskin server

Leave-one-subject-out cross-validation

Segmentation

Figure 1. The detailed preprocessing steps of raw accelerometer data .

3.1. Data Acquisition
3.1.1. Participants

Data acquisition is performed in two stages. At the first stage, a convenience sample of
14 healthy and young volunteers (age 25.43 & 7.51 years, weight 60.7 & 6.7 kg, and height
172.7 £7.2 c¢m) is retained to participate in the data acquisition. At the second stage,
30 healthy and young volunteers (age 24.26 & 3.35 years, weight 68.4 & 12.3 kg, and height
170.3 £ 0.08 cm) participate in the data acquisition. The two merged datasets will be the
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input of the HAR system for healthcare. The study is approved by the Ethics committee
(ethical approval code: RDCPJ 522843-17) of the Centre Hospitalier de I'Université de
Montréal (CHUM), the Ecole de Technologie Supérieure (ETS), and the TELUQ university,
Canada. Data collection was performed in the biomechanics laboratory on the 7th floor of
the research center of CHUM (CRCHUM). Informed consent was obtained from all subjects
involved in the study.

3.1.2. Equipment

Data were acquired with a single waist-mounted three-axial accelerometer (a non-
invasive sensor with a 13-bit resolution and a frequency of 64 Hz) embedded in a health
monitoring wearable shirt, Hexoskin (Carré Technologies, Inc. in Montréal, QC, Canada).
The latter also includes three other sensors to record cardiac and respiratory data. These
sensor data are not used in the present study. The sleeveless shirt is made of a stretchable
fabric (73% micro polyamide and 27% elastane), with anti-bacterial, breathable, lightweight,
UV-protective and quick-dry properties. Thus, it is easy to put on, comfortable and can be
used in any ambient environment. The accelerometer data acquisition can be performed
continuously without hampering the movements of the person wearing it. When in use,
the recording device connector slot is plugged into the shirt connector. Once connected,
the accelerometer data are transmitted from the recording device to Hexoskin servers via
Bluetooth and a dedicated cell phone application (the Hexoskin app), which outputs a
report capturing health-related information of the performer. The data can be downloaded
later to a PC via a USB cable and the HxServices software. The validity of the Hexoskin as
an accelerometer-based physical activity monitor has been already approved [39].

3.1.3. Research Protocol

The dataset used in this study is acquired by our research team. It will serve as a
basis for the development of human physical activity recognition systems for medical
purposes. In the experiments, 44 participants wearing the Hexoskin shirt, performed
10 activities. Before the acquisition, the participant anthropometrics were recorded (i.e.,
age, gender, height, weight). In order to capture the intra-subject variability and collect a
big dataset, each subject was asked to perform 6 trials for each sequence of activities—that
is, the participant performed the different activities in a different order in each trial. A
sequence of the activities performed in the laboratory environment is: go up the stairs
two floors (A1), go down the stairs two floors (A2), walk for 30 s along the corridor (A3),
run for 30 s along the same corridor (A4), sit for 30 s on a chair (A5), fall-right, -left, -front
and -black (respectively, A6 to A9), and lie intentionally on a mattress (A10) (Figure 2).
The 11th class corresponds to transitional activities. This class was removed from the
dataset before training.

Figure 2. Experimental setup showing some of the performed physical activities in our research
protocol: going down stairs, going up stairs, running, sitting, walking, and lying down.
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We note that trials were video recorded using a separate smartphone. Then, the video
was used as a benchmark to annotate the activities. Each video was tagged by a timestamp
in milliseconds.

3.2. Preprocessing
3.2.1. Labeling Procedure

First, two members of our research team analyzed each video. They manually and
precisely annotated the temporal bounds of the observed activities (i.e., start and end
times of each activity) in the video. Hence, a ground truth csv file was created for each
video with the start and end times of the activities, as well as the class labels. Then, two
other members of our research team verified the annotation process. The raw unlabeled
accelerometer records of each axis were downloaded separately from the Hexoskin server.
The first column represents the timestamp (in seconds) and the second column represents
the data themselves. We retrieve the start date and time of the data acquisition from
the “statistics.csv” file downloaded from the Hexoskin server. A second csv file was
then automatically generated. In this file, the first column represents the timestamp (in
milliseconds). Data from the x, y, and z axis were, respectively, in the 2nd, 3rd and
4th columns. The Euclidean norm was automatically computed and stored in the 5th
column. Then, we automatically assigned a ground truth label to each timestamp of the
data stream based on the ground truth csv file. To fine-tune the labeling procedure, we
visually inspected the plots of the raw three-axis labeled accelerometer data. Each data
cluster corresponding to an activity label has a different color on the plot, as depicted in
Figure 3.

The raw data were processed using Matlab R2019a. All the raw and processed data
were anonymized and stored in the server of the Imaging and Orthopaedics Research
Laboratory (LIO), which is affiliated with the ETS and CRCHUM.

Let Ay, Ay and A; denote, respectively, the accelerometer data along the x-axis, y-axis
and z-axis. We also computed the Euclidean norm A, of the three-axis acceleration signal

(Figure 4):
— 2 2 2
Ay = /A2 + A2+ A2 1)
A, - Patient (P01_290416) - Trial : 4/5
0.03
0.02 4
0.01 1
N& | o | ‘
§ 0.00 - % R u ‘ \j b |
o W) i ” l —_— Ay
o | HN] down the stairs
Q@ fLA
S —0.01 il fall-back
£ —— fall-front
fall-left
—0.02 —— fall-right
= |ying
— run
-0.03 1 — sit
: —— up the stairs
—— walk
O NI PP O ANTORONTORONTORONTORONTORONTODONT DO NS
HeEAAAANANANNNOOOOMOMNSTTITTITINNDNDNNOOOOWORNNNNNOO®®
Time (s)

(a) Raw x-axis labeled accelerometer data.

Figure 3. Cont.
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(b) Raw y-axis labeled accelerometer data.
A, - Patient (P01_290416) - Trial : 4/5

A;

down the stairs
fall-back

—— fall-front
fall-left
fall-right

lying

run

sit

up the stairs

WW"WWW‘MWWWWW e

|||||||||||||||||||||||||||||||||||||||||||

(c) Raw z-axis labeled accelerometer data.

Figure 3. Plots of the raw three-axis labeled accelerometer data corresponding to one trial of a given

participant (P01_290416). Each data cluster corresponding to an activity label has a different color on
the plot.

The data are represented in a csv file (the dataset D) in a structured format, with the
following attributes

Index: line number in the csv file (N = 3,5 millions data points);
Participant number, in {1, ...,44};

Participant reference: nomenclature as saved in the LIO server PXX_ddmmYY;

Trial number, in {1,...,6};
Timestamp YYYY — mm —dd HH : MM : SS.FFF (format in milliseconds);
Ay: data from the x-axis accelerometer sensor;

A

y: data from the y-axis accelerometer sensor;

Aj,: data from the z-axis accelerometer sensor;
A, euclidean norm;
activity name.

Since this dataset represents activities in real contexts, class imbalances occur. For ex-
ample, as can be seen in Figure 5, there are more instances of walking than other activities.
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Figure 4. Plot of the raw normalized and labeled accelerometer data corresponding to one trial of a
given participant (P01_290416). Each data cluster corresponding to an activity label has a different
color on the plot.
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Figure 5. Bar chart of class distribution of all trials of a given participant (P01_290416), providing a
strong visual indication of class imbalance in the dataset.

3.2.2. Validation

The validation was performed using leave-one-subject-out cross-validation of the
dataset [40], using the scikit-learn package. The dataset was split according to the number
of subjects in the dataset—that is, in each fold the model, was trained on all the subjects
except one, which was used for testing. In this case, the number of folds is equal to the
number of subjects in the dataset. In order to have an accurate estimation of the proposed
method performance, this procedure was repeated until all the subjects had been used as
test datasets. Obviously, activity patterns are subject-dependent—that is, the performed
activities vary considerably among subjects according to their personal styles and anthro-
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pometry, which we refer to as inter-subject variability. Moreover, the way a given activity is
performed by a given subject at different times may show variations, which we refer to as
intra-subject variability. In our work, the intra-subject variability was considered when the
participants were instructed to repeat the sequence of activities a given number of times
(i.e., the number of trials). Using the leave-one-subject-out strategy guarantees that data
from the same subject are either present in the train set or in the test set. This is a subject
independent (inter-subject) validation technique to estimate generalization capabilities of
learning techniques, and also allows performance analysis results per subject. We note that
the number of samples slightly varies from one subject to another. For instance, for the
subject having the reference P01_290416 and for whom we displayed the acceleration data
in Figures 3 and 4, there are 284, 516 segments in the training set and 1552 in the testing set.

3.2.3. Segmentation

Here, the input data (Ay, Ay, A;, and Ay) are chronologically sequenced to form
multivariate time series signals (of length N). We segmented these raw and continuous
data flow signals using a 1-s fixed-size overlapping sliding window (FOSW), into K fixed-
length segments, with a 50% overlap, in order to search for useful patterns in the time
series. The window size T =1 s corresponds to 64 data points and was chosen according
to the accelerometer frequency (64 Hz). The segments were stored in a three-dimensional
tensor of size K x T x m, where K is the number of segments, T is the time step (window
size), and m is the number of multivariate time series. The three-dimensional tensor was
used as the input of the classifier. The tensor-based approach allows one to reduce the
computational cost when dealing with big data. Here, m = 4, which corresponds to Ay,
Ay, Az and Ay.

In temporal segmentation, the problem of impure segments may occur. Since for the
transition points between activities, a segment is composed of more than one label [41].
To overcome the multiclass segment problem, ambiguous segments, that contain more than
a label, were discarded. We also note that we have performed the train/test split before the
segmentation, in order to avoid train and test data overlapping.

3.3. Overview of the Proposed Architecture

We considered a multiclass pattern classification task, where the input (i.e., multivari-
ate time series signals) is to be classified into one, and only one, of the ! non-overlapping
classes referring to the considered human physical activities in Section 3.

The main contribution of this study is the development of a reference architecture
design based on an ensemble learning system that uses both machine learning and deep
learning techniques on a large dataset in order to achieve the highest generalization perfor-
mance. Moreover, a parallel training approach for the proposed architecture was developed
to accelerate the cross-validation procedure by running multiple independent training
tasks on multiple cores or processors in parallel. In other words, we built an ensemble
learning system with an efficient cross-validation implementation using parallel processing
in order to balance the generalization performance and to reduce the computational cost of
the system. Figure 6 shows the proposed ensemble learning architecture. The proposed en-
semble learning architecture combines three data representation-based approaches. In the
remainder of the paper, the process of tying together different learning algorithms is re-
ferred to as a pipeline. The pipeline ensures that the base classifiers to be combined later in
an ensemble are diverse, i.e., independent of each other. The first pipeline encompasses
feature engineering-based classifiers, in which features are manually extracted and later
processed by machine learning algorithms. The second and third pipelines encompass
feature learning-based classifiers. In the former, features are automatically extracted from
the raw accelerometer data without relying on domain knowledge using a basic form of
feature learning. In the latter, we explored deep learning-derived features from the raw
accelerometer data. In each pipeline, we selected three classifiers that are commonly used
for practical activity recognition. Moreover, this architecture is tractable so as to allow easily
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the inclusion of additional classification models inside each pipeline—that is, each pipeline
in the proposed ensemble learning architecture could be extended by evaluating more than
one standard learning algorithm belonging to each approach, on the data at hand, and
fusing their predictions to achieve a better recognition rate, instead of only retaining the
best classifier and discarding those providing a lower accuracy. We should note that the
adopted learning algorithm used within each pipeline serves as a proof of concept of the
proposed ensemble learning architecture. Ultimately, this approach not only allows us to
compare heterogeneous classifiers, but also combines their predictions, thus decreasing
the risk of selecting an inadequate single classifier—that is, a decision fusion method, as
explained in Section 2, was used to yield the final prediction results [28] in order to combine
the resulting three pipeline decisions.
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Figure 6. Overview of the proposed algorithm architecture.

Moreover, the proposed architecture deals with multivariate accelerometer time se-
ries data. Hence, in each stand-alone classifier, we separated multivariate time series
into univariate ones (Ay, Ay, A; and A, separately, i.e., data fusion method), and we
performedeither feature engineering or feature learning on each univariate time series
individually. Axis-based feature fusion concatenatesdifferent resulting features from all
the univariate time series inputs before the classification [25].

3.3.1. First Pipeline

The first pipeline encompasses feature engineering-based classifiers, in which time
and frequency domain features were manually extracted, then relevant ones were selected
and later processed by base-level classifiers. In this case, we use ReliefF for feature selection
combined with a Support Vector Machine (SVM).

The motivation for using time and frequency domain features in our architecture is
that they are often used in practical activity recognition algorithms due to their simplicity to
setup and their lower computational complexity [5]. Moreover, time domain features show
how the signal changes in time. Frequency domain features show the distribution of the
signal energy and are used to capture the repetitive nature of sensor signals [30]. We also
note that the usefulness of the time and frequency domain features has been demonstrated
in a prior study [39] on the convenience sample.

Furthermore, we decided to use ReliefF for feature selection due to its advantages
in terms of both the learning time and the accuracy of the learned concept, as well as its
practicality [42]. We used SVM, a well-known high performance classifier method, as a
classifier in the first pipeline since the combination of the ReliefF-based feature selection
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and the SVM-based machine learning algorithm has been previously investigated by our
research group [39] and gave promising results on the convenience sample.

Handcrafted Feature Extraction

For each feature univariate time series, commonly used time and frequency domain
metrics were computed for each segment to extract basic signal information from raw
accelerometer data [30].

e  Time domain metrics: mean, variance, standard deviation, maximum, minimum,
Root Mean Square (RMS), kurtosis, skewness, euclidean norm and 11-norm;

¢  FPrequency domain metrics: energy and maximum magnitude of the Fast Fourier
Transform (FFT).

Moreover, the cross-correlation was computed in a pairwise fashion between two
features (i.e., (Ax, Ay), (Ax, Az), (Ay, Az)) ... on each segment.

The handcrafted feature extraction procedure leads to a total of 55 time-frequency
features per segment that were z-score normalized.

Feature Selection Using ReliefF

The resulting features were ranked using the ReliefF feature selection algorithm [43].
The algorithm is based on computing the importance of the features by randomly choosing
a given number of instances in the dataset (this number is a user-defined parameter) and
searching for its two nearest neighbors: one from the same class and the other from a
different class.

Multiclass Support Vector Machine (SVM) Classifier

The next step in this classification pipeline is the use of the SVM, which is a supervised
machine learning algorithm [44]. For the binary classification SVM, the idea is to construct
a hyperplane to separate the two classes so that the distance between the hyperplane and
the sample points is maximal.

One approach to solve the [-class SVM (I > 2) problem is to consider the problem as
I binary SVMs. This approach is called a one-vs.-all SVM. Another approach consists of
considering the problem as I x (I —1)/2 binary classifiers using all the binary pair-wise
combinations of the I classes. This approach is called one-vs.-one SVM. In this study,
we considered the one-vs.-all SVM. The kernel (i.e., the type of hyperplane used to separate
the data), gamma (i.e., a parameter for non-linear hyperplanes), and C (i.e., the penalty
parameter of the error term) are the hyperparameters of SVM, which need to be fine-tuned.
In our case, we manually tuned these hyperparameters, we used the Radial Basis Function
(RBF) kernel SVM and we set gamma to 0.001 and C to 1000.

3.3.2. Second Pipeline

The second pipeline encompasses feature learning-based classifiers, in which features
are automatically extracted from the raw accelerometer data without relying on domain
knowledge using a basic form of feature learning and are later processed by base-level
classifiers. We used Linear discriminant analysis (LDA) as an automatic feature extractor for
the following advantages. It is a traditional statistical technique that reduces dimensionality
while preserving as much of the class discriminatory information as possible [45]. Unlike
Principal Component Analysis (PCA), which tries to maintain data information as much
as possible, LDA is able to make the data points more distinguishable after dimension
reduction [6]. We selected KNN as our base-learner classifier in this pipeline following
Bicocchi et al. [33], who used the KNN algorithm to infer user activities on the basis of
accelerometer data acquired from body-worn sensors and highlighted that it exhibits a
state-of-the-art performance, is simple to implement, and can run on resource-constrained
sensor platforms. Furthermore, they showed that it can achieve remarkable precision and
accuracy levels in classifying simple and specific activities.
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Automatic Feature Extraction Using LDA

Automatic feature extraction consists of mapping the raw data onto a lower dimen-
sional space. LDA is a supervised feature extraction algorithm that takes the labels of the
training data into account and aims at maximizing the class discrimination on the projected
space [45]. The LDA algorithm was applied to each feature (i.e., the univariate time series).
Then, the feature fusion concatenated the different transformed features to use them as an
input for the K-nearest neighbor (K-NN) classifier.

K-NN Classifier

The principle of the K-NN algorithm is to find the closest k in distance training sam-
ples to the current sample and predict its label based on these k neighbors [46]. Generally,
the value of k is specified by the user. The distance can, in general, be any metric mea-
sure. We note, however, that the standard Euclidean distance is the most common choice.
The optimal choice of k is highly data-dependent and needs to be fine-tuned.

3.3.3. Third Pipeline

We adopted a convolutional neural network (CNN) architecture for multivariate time
series trained for both feature extraction and classification.

CNN for Multivariate Time Series

Let us first recall that a deep neural network has an input layer, an output layer and
more than two hidden layers. A layer is a collection of neurons. A neuron takes a group of
weighted inputs, applies a non-linear activation function, and returns an output.

®  The input layer has T x m neurons.

¢ Hidden layers of a deep network are designed to learn the hierarchical feature repre-
sentations of the data. During the training, a set of hyperparameters was manually
tuned, and the weights were initialized randomly [47]. By gradient descent, the
weights were updated using the back propagation algorithm in a way that minimizes
the cost function on the training set. The choice of the model, the architecture and the
cost function was crucial to obtain a network that generalizes well, and is in general
problem- and data-dependent.

e The output layer has | neurons, which corresponds to the multiclass classification
problem in this application.

In this work, we trained a CNN-based architecture. We recall that CNNs can capture
the local connections of multimodal sensory data [48]. CNN combines three architec-
tural ideas: local receptive fields, shared weights, and pooling, and it is based on two
building blocks:

®  The convolution block, which is composed of the convolution layer and the pooling
layer. These two layers form the essential components of the feature extractor, which
learns the features from the raw data automatically (feature learning).
The convolutional layer implements the receptive field and shared weight concepts.
Neurons in the convolutional layers are locally connected to neurons inside its re-
ceptive field in the previous layer. Neurons in a given layer are organized in planes
where all the neurons share the same set of weights (also called filters or kernels).
The set of outputs of the neurons in such a plane is called a feature map. The number
of feature maps are the same as the number of filters. A pooling layer performs either
an average subsampling (mean-pooling) or a maximum subsampling (max-pooling).
For a time series, the pooling layers simply reduce the length, and thus the resolution,
of the feature maps.

¢ The fully connected block, which performs the classification based on the learned
features from the convolutional blocks.
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The different hyperparameters of CNNs are the optimization algorithm (momen-
tum), the number of epochs, the number of layers, the number of filters, the filter size,
the activation function, the cost function, the batch size and the weight initialization [49].

We applied a CNN model to the multivariate time series classification task at hand.
First, we separated multivariate time series into univariate ones and performed feature
learning on each univariate time series individually. Then, we concatenated the resulting
features at the end of the feature learning step to conduct the classification. Our CNN-based
model has three layers including two convolutional blocks, and two fully connected layers,
as depicted in Figure 7—that is, for each feature, the input (i.e., univariate time series) is
fed into a one-stage feature extractor (the convolutional block). The convolutional block
consists of a convolution layer with three filters, a filter size of 20, a REctified Linear Units
(ReLU) activation layer and a max pooling layer with pooling size of 3. At the end of the
feature extraction step, we flattened the feature maps of each univariate time series and
combined them as the input of subsequent fully connected block for classification. The
fully connected block consists of two fully connected layers with 1024 and 30 neurons,
respectively, with a ReLU activation function [23].
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Figure 7. The three-dimensional tensor representation of the multivarite time series data is the input
of the convolutional neural network pipeline of our architecture.

3.3.4. Fusion Stage

Each pipeline computes a prediction vector for the same training dataset. The final
decision is made by a combination of the three pipeline decisions (prediction vectors) using
a decision rule (majority voting) [50] to produce the final classification result. We used
majority voting for decision fusion because it is simple yet tractable, and can cope easily
with a change in the number and type of classification models.

Here, we predict the final class label [ based on the majority (plurality) voting of each
classifier I;:

[ = mode{l;, 1,15}

i.e., the final class label [ corresponds to the class label that has been predicted most
frequently by the three used classifiers within the three pipelines of our architecture.

3.3.5. Computational Optimization

One of the issue to consider when designing and developing machine and deep
learning applications is the computational cost. In fact, on the one hand, the more data
we consider the more robust the application is, but, on the other hand, the more time
consuming the application is as well, regarding both the data processing and the best
model building and selection. To overcome such an issue, one should consider a more
efficient usage of the computing resources by considering parallel and/or distributed
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programs. For example, the leave-one-subject-out cross-validation that we used in our
architecture is computationally expensive. However, since the tasks performed on each
fold are completely independent from the rest of the remaining folds, we ran as many
folds as the core number of the target architecture in parallel. To do so, we used the
multiprocessing parallel python package [51]. For the parallel implementation of the
leave-one-subject-out cross-validation, we developed our own version. There are some
other parallel versions of this method [52] but, to the best of our knowledge, such parallel
versions have not been used in the context of HAR systems, probably because the training
datasets were not as large as our dataset. We also note that in order to further enhance the
performance of our system, we used a GPU accelerator to run the mutivariate CNN model
from the python keras package with tensorflow backend [53]. To ensure a good balance
between the generalization performance of the model and its computational performance,
the different hyperparameters of the deep learning model such as the batch_size should be
carefully chosen [54]. In this application, we first used the python multiprocessing package
which allows, just by adding a few lines of code, to run up to 5x faster comparing to the
sequential code using a machine with 8 cores and 1 NVIDIA TITAN RTX GPU. A more
detailed description of the machine will be given in the following section.

4. Results
4.1. Experimental Design
4.1.1. Weighting Imbalanced Classes

To handle the class imbalance problem, we do not include any oversampling but an
algorithm-level method—that is, class weight is added that automatically assigns higher
weights to the minority classes in the learning process, in order to reduce bias towards the
majority group [55].

4.1.2. Multiclass Performance Measures

The result of an I-class classification can be visualized in a confusion matrix of size  x I.
Each row in a confusion matrix represents an actual class, while each column represents a
predicted class. By definition, each entry C;; in a confusion matrix C denotes the number
of observations (segments) from class 7 predicted to be of class j.

The recall, precision and F1-score are used as performance metrics to evaluate the cor-
rectness of a classification. The F1-score metric is particularly interesting for its robustness
to class imbalance [56]. The recall (R;), precision (P;) and F1-measure (F1;) for class i in a
multiclass problem can be defined by the following equations,

TP, TP,

. R — PiXRi
TP, +FP,’ "' TP +FN;’

P‘ 7
! P; + R;

and F1l; =2x

@

where TP; is the number of objects from class i assigned correctly to class i, FP; is the
number of objects that do not belong to class i but are assigned to class i, and FN; is the
number of objects from class i predicted to another class.

The quality of the overall classification is usually assessed in two ways: macro-
averaging and micro-averaging. The first computes the measure separately for each class
and then takes their unweighted mean. A weighted average could be computed by support
(i.e., the number of true instances for each label) to account for class imbalance. The second
calculates the measure globally by counting the total true positives, false negatives and
false positives.

In the following equations, x and y indices refer to the macro- and micro-averaging,
respectively. P, R, and F1 are the total precision, recall and F1 measures [56].
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4.2. Experimental Results

The classification was performed using a leave-one-subject-out cross-validation as
detailed in Section 3.2.2. Instead of averaging the performance measures of each holdout
fold, predictions were computed and stored in a list. Then, at the end of the run, the
predictions were compared to the expected values for each holdout test set and a single
performance measure is reported.

4.2.1. Classification Result Using the Handcrafted Feature Engineering Based Approach

Figure 8 presents the confusion matrix for inter-subject activity recognition obtained
using the adopted method with time and frequency domain features, ReliefF feature
selection, and SVM classifier (first pipeline). Table 1 shows medium to high precision
scores (from 77% to 100%), medium to high recall scores (from 67% to 100%), and high F1-
scores (from 80% to 100%) on each activity class. The overall weighted averaged precision,
recall, and F1-score across all activities are 93%, 92%, and 92%, respectively.

Table 1. Classification report using the handcrafted feature engineering-based approach.

Class Precision Recall F1-Score Support

up the stairs 0.87 0.96 0.91 268
down the stairs 0.99 0.88 0.93 199

walk 0.98 0.94 0.96 702

run 0.94 1.00 0.97 372

sit 0.77 1.00 0.87 345
fall-right 1.00 1.00 1.00 5
fall-left 1.00 1.00 1.00 6
fall-front 1.00 0.67 0.80 6
fall-back 0.83 1.00 0.91 10

lying 1.00 0.73 0.85 394

macro avg 0.94 0.92 0.92 2307

weighted avg 0.93 0.92 0.92 2307
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Figure 8. Confusion matrix using the handcrafted feature engineering based approach.
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If we examine the recognition performance for each activity individually, walking
up the stairs is confused with walking (0.04%), walking down the stairs is confused with
running (0.11%), walking is confused with walking up the stairs (0.26%), and lying is
confused with sitting (0.27%).

4.2.2. Classification Result Using the Automatic Feature Extraction-Based Approach

Figure 9 presents the confusion matrix for inter-subject activity recognition obtained
using the adopted automatic feature extraction based on LDA and KNN classifier (second
pipeline). Table 2 shows medium to high precision scores (from 77% to 100%), low to high
recall scores (from 35% to 100%), and low to high Fl-scores (from 48% to 100%) on each
activity class.

Table 2. Classification report using the automatic feature extraction based approach.

Class Precision Recall F1-Score Support

up the stairs 091 0.81 0.85 268

down the stairs 0.77 0.35 0.48 199

walk 0.77 0.96 0.86 702

run 0.97 0.82 0.89 372

sit 0.94 1.00 0.97 345
fall-right 1.00 0.80 0.89 5
fall-left 1.00 1.00 1.00 6
fall-front 1.00 0.83 0.91 6
fall-back 1.00 0.70 0.82 10

lying 0.99 1.00 1.00 394

macro avg 0.93 0.83 0.87 2307

weighted avg 0.88 0.88 0.87 2307
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Figure 9. Confusion matrix using the automatic feature extraction based approach.

The overall weighted averaged precision, recall and Fl-score, across all activities,
are 88%, 88%, and 87%, respectively. If we examine the recognition performance for each
activity individually, we can see that, again, walking up the stairs is confused with walking
(0.18%), walking down the stairs is confused with walking (0.77%), walking is confused
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with sitting (0.02%), and running is confused with walking up the stairs (0.02%), down the
stairs (0.05%) and walking (0.10%). We notice that this approach performs worse than the
previous approach on dynamic activities (walking, walking up and down the stairs and
running). However, it performs better on static activities (sitting and lying).

4.2.3. Classification Result Using Feature Learning-Based Approach

Figure 10 presents the confusion matrix for inter-subject activity recognition obtained
using the adopted multivariate CNN classifier (third pipeline). Table 3 shows high precision
(from 86% to 100%), high recall (from 90% to 100%), and high F1-score (from 92% to 100%)
on each activity class. The overall weighted averaged precision, recall, and F1-score across
all activities are all equal to 99%. If we examine the recognition performance for each
activity individually, walking up the stairs is confused with walking (0.05%), walking
down the stairs is confused with running (0.03%), and walking is confused with walking
up the stairs (0.002%) and down the stairs (0.001%). We notice that this approach performs
better than the two previous approaches on recognizing both dynamic and static activities.

Table 3. Classification report using feature learning-based approach.

Class Precision Recall F1-Score Support

up the stairs 0.99 0.94 0.97 268
down the stairs 0.99 0.96 0.98 199

walk 0.98 1.00 0.99 702

run 0.98 1.00 0.99 372

sit 1.00 1.00 1.00 345
fall-right 1.00 1.00 1.00 5
fall-left 0.86 1.00 0.92 6
fall-front 0.86 1.00 0.92 6
fall-back 1.00 0.90 0.95 10

lying 1.00 1.00 1.00 394

macro avg 0.97 0.98 0.97 2307

weighted avg 0.99 0.99 0.99 2307
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Figure 10. Confusion matrix using feature learning based approach.
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4.2 4. Classification Results Using the Ensemble Learning Based Approach

Figure 11 presents the confusion matrix for inter-subject activity recognition obtained
using the proposed ensemble learning approach, which combines the results of the three
previous pipelines. Table 4 shows high precision (from 86% to 100%), high recall (from
90% to 100%) and high F1-score (from 92% to 100%) on each activity class. The overall
weighted averaged precision, recall and F1-score across all activities are about 99%. If we
examine the recognition performance for each activity individually, walking up the stairs is
confused with walking (0.05%), walking down the stairs is confused with running (0.03%),
and walking is confused with walking up the stairs (0.002%). The proposed ensemble
learning approach performed extremely well in recognizing the ten different activities
compared to the three previous approaches considered individually.

Table 4. Classification report using the ensemble learning-based approach.

Class Precision Recall F1-Score Support

up the stairs 0.98 0.94 0.96 268
down the stairs 1.00 0.96 0.98 199

walk 0.98 0.99 0.99 702

run 0.98 1.00 0.99 372

sit 1.00 1.00 1.00 345
fall-right 1.00 1.00 1.00 5
fall-left 0.86 1.00 0.92 6
fall-front 1.00 1.00 1.00 6
fall-back 1.00 0.90 0.95 10

lying 1.00 1.00 1.00 394

macro avg 0.98 0.98 0.98 2307

weighted avg 0.99 0.99 0.99 2307

Confusion Matrix

up the stairs4223 0 15 0 0 0 0 0 0 O
down the stairs{ 1 192 0 6 0 0 0 0 0 O 600
walk{ 4 O 0O 0 0 0 0 0 0
500
run4 0 0 O 0 0 0 0 0 O
8 tl0o 0o o 0B o o o o0 o0 400
|
E fallight { © 0 0 0 0 5 0 0 0 0 200
fallleft4{ 0 0 0O 0O 0 O 6 0 0 O
fallfront{ 0 0 0 0 0O 0 O 6 0 O - 200
fall-back /0 0 0 0 0 0 1 0 9 0 100
lying{ 0 0 0 0 1 0 o o o FEE
T T T T T T T T T —_0
4 [ [ = R R R BV o
= = = S ) < "'q—) c o] 2
g g s 2222283
= ® = =
£ 2 E - 8 3
[}
o C
5 =
[e]
©

Predicted Label

Figure 11. Confusion matrix using the ensemble learning-based approach.

4.3. Discussion of the Recognition Rate Results

In this paper, we focus on the recognition of three types of human physical activities
(static activity, dynamic activity, and hazardous situations such as falling). Each of the
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three tested approaches has its own strengths and weaknesses when classifying different
types of activities. Sitting and lying are static activities. Dynamic activities include walking,
walking up and down the stairs and running. Concerning dynamic activities, we recall
that walking generates a periodic pattern and running implies a motion similar to walking,
but is executed faster. Looking at Figure 3, a periodic pattern can also be seen for running,
with a shorter time difference between periods compared to walking. Some false positives
and negatives showed up when trying to distinguish and recognize these two activities
using the automatic feature extraction-based approach. Moreover, walking and walking
up and down the stairs are almost similar (see Figure 3) and can be performed in many
ways. Thus, they are easily confused. However, the proposed ensemble learning model
performed extremely well when identifying the different dynamic activities compared to
standalone approaches.

Concerning static activities, We note that lying down and sitting are confused in
the handcrafted feature engineering approach since the orientation of the waist-worn
accelerometer is similar for both activities. We also note that the proposed models were
trained with less lying and sitting data than for others classes (as depicted in Figure 5),
which makes it even more difficult for the models to learn them. As described in the confu-
sion matrices in Figures 8-11, we can see that for the four fall classes, labeled observations
are scarce compared to the other classes such as walking and running (see Figure 5). This is
explained by the short duration of the falls. The consideration of this class in our system
aims at detecting a fall if it occurs during the rehabilitation process. We recall, however, as
previously explained in the protocol, that the falls we are considering here are simulated
and may be different from an actual fall. We also consider four classes of falling to show
that our system is able to capture the direction of the fall, which is very important since
falling front or back have in general a more important impact.

In order to compare the four models over the physical activities classes, following
Fawaz et al. [57], we conducted statistical analysis by using the Friedman test to reject the
null hypothesis. The test addresses the hypothesis that all methods perform equally well.
For the post hoc analysis, following the recent recommendations in [58], we perform the
pairwise comparisons of the post hoc analysis using the Wilcoxon signed rank test instead
of the average rank comparison. In order to visualize the comparison, we used a critical
difference diagram [59] to display the results of these statistical tests projected onto the
average rank axis, with a thick horizontal line showing a of classifiers that are not signifi-
cantly different [57]. Following Fawaz et al. [57], we perform the pairwise comparisons
of the post hoc analysis using the Wilcoxon signed rank test [58]. We used the Python
code provided in [57]. The corresponding critical difference diagram is depicted in the
Figure 12 below, where the statistical test failed to find any significant difference between
all 4 models. Indeed, the CNN classifier results are very close to those obtained using
the whole ensemble learning architecture. We also noticed that the two other approaches
correct misclassification errors of the feature leaning approach with CNN. Moreover, the
proposed architecture allows us to understand the learned features by each proposed ap-
proach (feature engineering and feature learning) and compare the corresponding output
feature vectors, to counterbalance interpretability and generalization.

Accuracy
4 3 2 1
L - I . I ! I
LDA'KNN 3.3500 I 1.8000 CNN
RF-SVM =2 % ensemble

Figure 12. Statistical comparison of the 4 models over the physical activities classes. Average ranks
of examined models are presented. A thick horizontal line shows a group of classifiers that are not
significantly different in terms of accuracy.
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4.4. Performance Speed Analysis

Here, we present the computational cost of the parallel HAR system we developed.
We ran our experiments on a machine with an intel Core i7-9700 processor having 8 cores
and a 64 GB RAM connected to a GPU accelerator of type NVIDIA TITAN RTX. One of
the bottlenecks in terms of running time in our system corresponds to the segmentation
stage. In fact, running a sequential segmentation (using only one core of the cpu) relative
to the 44 participants based on the leave-one-subject-out validation technique takes around
6.5 days. However, when we ran the segmentation in parallel making full usage of the
8 cores of our machine via a parallel implementation based on the multiprocessing python
package, it takes around 32 h, which is almost 5x faster than the sequential version.
As described in Section 3.3.5, each fold training relative to one of the train/test split was
run as an independent task. Thus, a task queue formed and the different tasks were
assigned to the 8 cores of the machine. Each task is a succession of the three pipelines of our
learning models applied to the considered fold. Here again, we used the multiprocessing
python package, and we obtained a speed up of almost 3 compared to the sequential
implementation. We also note that, within each task, the third pipeline, which corresponds
to the multivariate CNN method, was run on the GPU accelerator, which takes around 15 s,
which is 80 x faster than a purely cpu version, which takes around 20 min. We mention
here that given that each task is running on an independent data subset, our performance
results regarding the computational time could be further improved by using a larger
number of cores and/or processors.

4.5. Comparison Results

To validate the collected dataset using the Hexoskin t-shirt, we considered the previ-
ously available WISDM dataset as a benchmark dataset and compared its results to those of
the collected dataset. The WISDM dataset is used for human activity recognition to classify
different physical activities using cell phone accelerometers [12]. It contains accelerometer
data collected from 36 subjects performing six activities, namely walking, jogging, ascend-
ing stairs, descending stairs, sitting, and standing. These subjects carried an Android phone
in the front pocket of their pants leg when performing these activities. We recall that the
collected hexoskin dataset is 2.5x larger than the WISDM dataset. We also compare the
ensemble approach that we proposed to a selection of classifier algorithms including an
ensemble approach, referred to as ensemble (DT-LR-MLP), that combines J48 decision tree,
Multilayer Perceptrons (MLPs) and Logistic Regression [38] along with Random Forest [60]
and Adaboost [61] using the default parameters available in the sklearn library. To ensure
a fair comparison, we applied the selected classifiers to both the WISDM and the Hexoskin
datasets following the same process as in the proposed approach described throughout
this work by:

e  Partitioning the dataset into training and testing subsets using the leave-one-subject-
out cross-validation;

¢  Segmenting the raw accelerometer signals, using a 1-s fixed-size overlapping sliding
window (FOSW), with a 50% overlap;

¢  Handling class imbalance in all the learning techniques;

¢  Making a comparative analysis on the basis of performance measures such as F1-score,
precision, and recall as well as confusion matrices using the mean score estimated on
each group of out-of-fold predictions.

Table 5 represents the classification performance for different classifiers on both the
collected Hexoskin dataset and the WISDM dataset. The obtained results show that the
proposed ensemble learning-based heterogeneous machine learning and deep learning
algorithms applied to the collected dataset using the Hexoskin t-shirt outperforms the
other classifier algorithms used. These results are displayed in bold in Table 5.
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Table 5. Comparison with state-of-the-art ensemble learning techniques applied to the WISDM and
Hexoskin datasets.

Dataset Methods F1-Score Precison Recall
The proposed method 0.77 £ 0.07 0.77 £ 0.07 0.77 £ 0.07
WISDM Ensemble (DT-LR-MLP) [38] 0.73+0.11 0.73 +£0.11 0.73 £0.11
Adaboost [61] 0.46 £0.13 0.46 £0.13 0.46 £0.13
Random Forest [60] 0.72+0.11 0.72+£0.11 0.72 £0.11
The proposed method 0.85 £ 0.12 0.85 £ 0.12 0.85 £ 0.12
Hexoskin Ensemble (DT-LR-MLP) [38] 0.79+ 0.14 0.79+ 0.14 0.79+0.14
Adaboost [61] 0.49 +0.11 0.49 £0.11 0.49 +£0.11
Random Forest [60] 0.81 +0.14 0.81+0.14 0.81 +0.14

5. Discussion

The main goal of this research work is the development of an adherence measurement
system that is completely objective, precise and efficient in terms of computational resource
usage. This requires the development of a recognition system for human physical activity,
which is what we focus on in this paper. In the following, we summarize our contributions
and the limitations of the proposed method. Then, we present some possible perspectives
and insights.

The first part of this research is the acquisition of a large multimodal dataset based
on a wearable sensor vest that captures cardiac, respiratory, and accelerometer data from
healthy and young volunteers. Each participant undergoes a sequence of ten real-life
physical activities, including static and dynamic activities, that are likely to occur during a
patient rehabilitation protocol [62]. The purpose of this data acquisition is to establish a
proof of concept that the recorded acceleration data from the waist-worn accelerometer
during physical activity could be modeled for a HAR system using learning techniques for
the purpose of health monitoring in an upcoming stage of a more global research project.

The second part is the development of a recognition system for these human physical
activities using accelerometer data collected from a waist-mounted accelerometer in the
vest. We note that the model may be extended by some other activities. Later, the pretrained
HAR system should be able to classify activities of patients undergoing a cardiac rehabili-
tation program. The developed HAR system is based on an ensemble learning architecture
that combines different data representation-based classifiers (feature engineering and fea-
ture learning). The output of these classifiers are combined to improve the classification
performance (minimizing false positives and false negatives). An inter-subject validation
strategy (leave-one-subject-out cross-validation) is used to make a realistic estimate of the
performance generalization of each classifier independently, as well as the ensemble archi-
tecture. However, classifier ensembles combined with the leave-one-subject-out validation
technique are clearly more expensive on large datasets, computationally speaking, as they
require several models to be trained. Hence, we propose a parallel implementation for our
architecture to accelerate the cross-validation procedure by running multiple fold trainings
simultaneously. We also enhance the computation relative to each fold by the use of a
GPU accelerator. Another advantage of our implementation is the fact that the segmented
multivariate time series are stored into a fourth-order 3D tensor. Finally, we demonstrate
that forms of locomotion such as walking, running, and climbing the stairs, and postures
such as sitting and lying down, as well as some hazardous situations such as falling, can be
recognized at up to a 99% recognition rate using the waist-worn accelerator.

Nevertheless, this study has some limitations. For example, in this work, we focus on
classifying activities collected in a laboratory environment. Thus, the population sample
includes only young and healthy subjects. We should train our system on a heterogeneous
population sample (able-bodied, elderly, cardiovascular diseased patients) that can benefit
from HAR. In fact, for the more general research project, it is important to train and test
activity recognition systems on data collected under naturalistic circumstances, with pa-
tients undergoing a rehabilitation program. We note that we planned to collect data from a
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pathological population following a cardiac rehabilitation program in collaboration with
the Centre de cardiologie préventive (CCP) in the Centre Hospitalier de I'Université de
Montréal (CHUM) to rigorously validate the efficiency of the proposed HAR system. Un-
fortunately, the recruitment process has been interrupted by the pandemic circumstances.

In addition, ground truth data have been semi-automatically annotated. The anno-
tation procedure may be fine-tuned, and a real-time automatic annotation may be inves-
tigated in order to increase the volume of data collected. Moreover, we do not take into
account transitional activities neither in the segmentation nor in the classification processes.
Transition-aware and activity-based segmentation approaches could be investigated.

Here, we examine the similarities and differences between this work and other en-
semble learning methods for HAR [37,63]. The reviewed methods use different datasets.
Therefore, the reported accuracies and execution times cannot be compared. For instance,
Rahim et al. [63] discussed the performance of five types of ensemble classifiers: bag-
ging, adboost, rotation forest, ensemble of nested dichotomies, and random subspace, all
with either support vector machine (SVM) or random forest (RF) as the basic learning
scheme. Two open datasets were considered, containing, respectively, 5447 and 10,299 sam-
ples, collected, respectively, on 31 and 30 participants using smartphone inertial sensors.
They also used 17 features from the time and frequency domains. Data classification is
evaluated with the holdout (70-30%) and 10-fold cross-validation methods. They observed
that, overall, SVM produced better accuracy rates, reaching 99.22% compared to RF with
97.91%. The authors do not discuss computational cost or implementation aspects. Rahim
et al. mainly focused on data sampling methods, where they considered the five different
strategies mentioned above. In this study, we use K-fold cross-validation, with K being
the number of subjects in the dataset, that is 44, as the resampling method. To make a
fair comparison, we intend to test other resampling methods, such as random splits and
bootstrap aggregation, more commonly referred to as bagging. As to training, Rahim et al.
used solely handcrafted feature-based classifiers (SVM and RF), while we consider both
feature engineering and feature learning approaches. Moreover, our dataset is significantly
larger (3.5 millions samples) than the two datasets they use for the performance evaluation.
Similar to our study, Xu et al. [37] applied cascade ensemble learning (called CELearning)
to model human activity recognition. However, they applied feature fusion of handcrafted
and automatically extracted Fast Fourier Transform (FFT) features before classification.

In the following, we enumerate seven possible directions for future work. The first is
to assess performance measures separately for different demographic categories and collect
more training data while ensuring diversity of the demographic characteristics, in order to
ensure the diversity of our data to mitigate any bias. The second is to automatically tune the
hyperparameters of the used learning algorithms in this paper in order to ensure the best
performance when using our dataset. The third is to investigate open-source feature engi-
neering libraries (for instance, tsfel [64] and tsfresh [65]) for time series, to capture as many
discriminative signal characteristics of human physical activities as possible. The fourth
is to understand the learned features by each proposed approach (feature engineering,
automatic feature extraction and feature learning) by applying a Class Activation Map
(CAM) [66], for example, and then comparing the corresponding output feature vectors.
The fifth is to smooth and fuse the predicted activity labels of consecutive segments. Thus,
identifying the start and end points of each activity is very useful for physical rehabilitation,
to have better information about activity transitions and the duration of each activity. More-
over, each pipeline in the proposed ensemble learning architecture could be extended by
evaluating more than one standard learning algorithm belonging to each approach, on the
data at hand, and fusing their predictions to achieve a better recognition rate. We should
note that the adopted learning algorithms used at each pipeline serve as a proof of concept
of the proposed ensemble learning architecture. Finally, we intend to compare different
classifier fusion methods such as bagging and boosting.
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