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Abstract. Epileptic seizures are caused by abnormal electrical activity of brain 

cells, frequently accompanied by a short-lived loss of control or awareness. Epi-

leptic seizures differ depending on their origin in the brain. They can be catego-

rized as either focal or generalized in onset. The identification of seizure category 

is essential in brain surgery and in selecting medications that could help bring 

seizures under control. It is not always feasible to find out exactly if the seizure 

was generalized or focal without a thorough analysis of the continuous prolonged 

EEG waveforms. In this study, we propose an automatic classification method 

based on Hjorth parameters measured in electroencephalographic records (EEG).  

1497 EEG signals from the Temple University Hospital Seizure Corpus (v.1.5.1) 

are used. Hjorth parameters (activity, complexity, and mobility) are extracted 

from these EEG records. To address class imbalance, data was rebalanced by 

Synthetic Minority Over Sampling (SMOTE). We also investigated the impact 

of changing the window length on the random forest classifier. For comparison, 

cost-sensitive learning has been applied by providing more weight to the minority 

class (generalized seizure) directly in the classifier. The performance of the pro-

posed method was compared using accuracy, recall, and precision measures. Our 

method achieved a highest accuracy rate of 92.3% with a recall of 92.7% and 

precision of 91.8% using Hjorth parameters extracted from 10 seconds windows 

and rebalanced using SMOTE. A slight variation in performance measures oc-

curred according to window size. 

 

Keywords: Generalized and focal seizures, EEG, Hjorth parameters, SMOTE, 

Weighted random forest classification.  



1 Introduction  

Epileptic seizures are characterized by an intense sudden burst of electrical activity in 

the brain. They have various causes and treatments and can affect people of all ages. 

Epileptic seizures can be classified into two main categories: generalized and focal. 

Generalized seizures occur when an abnormal electrical activity involves concurrently 

both sides of the brain. Focal seizures, instead, are characterized by excessive electrical 

discharge in areas of a single brain side. Around seventy percent of seizures can be 

controlled by medications. Following  recent advances in machine learning based solu-

tions for seizure detection [1, 2], the next challenge is the classification of seizures into 

focal or generalized. Recognition of epileptic seizure localization is crucial for drugs 

selection and surgery procedures. EEG signal interpretation remains the most effective 

and simple way for the localization of seizure origin. Because EEG visual inspection 

and interpretation is laborious, time consuming, and requires a trained expert, efficient 

automatic methods are necessary. 

There have been several studies of automatic classification of seizures to characterize 

focal versus non-focal seizures: Sharma et al. [3] used a wavelet EEG representation to 

classify focal versus non-focal EEG signals, and reported an accuracy of 94.25%, 

whereas Bhattacharyya et al.[4] used rhythms extracted from empirical wavelet trans-

forms to obtain an accuracy of 90%.  A novel method based on empirical mode decom-

position and phase space reconstruction was proposed in [5] , results showed an accu-

racy of 96% in classifying focal EEG signals. In [6] Saputro et al. combined Mel Fre-

quency Cepstral Coefficients, Hjorth components, and independent component analy-

sis, reaching 91.4% recognition using a support vector machine. In [7] Roy et al.  uti-

lized a features extraction step based on calculating the eigenvalues by magnitude of 

the Fast Fourier Transform across all EEG channels and showed that a classification of 

seizure type is possible with an accuracy of 90.1% using the k-NN classifier. Das et al. 

in [8] discriminates between focal and non-focal signals, by using log-energy entropy 

derived from the combined empirical mode decomposition and discrete wavelet domain 

and reported a maximum accuracy of 89.4% with k-NN.  

The automated ability to differentiate seizure types such as focal vs generalized remains 

a largely neglected topic due to both a lack of clinical datasets and annotations com-

plexity. The TUH EEG corpus [9] has recently become the largest publicly available 

dataset to support epilepsy research, offering the opportunity to develop automatic pre-

diction, detection and classification systems for epileptic seizures. To date, only a lim-

ited number of studies have used this challenging database for the task of seizure clas-

sification [6, 7]. While these previous works showed promising results in classifying 

seizure types by analyzing EEG signals in time and frequency domains, computing 

complexity remains a major issue. 

The Hjorth descriptor is a set of nonlinear features providing spectral properties of the 

EEG signals in the time domain [10]. It consists of three parameters: activity, mobility, 

and complexity (see Table 1). The activity represents the mean power of the signal and 

mobility its mean frequency. Complexity is the estimate of the signal bandwidth [10]. 

Hjorth parameters can be computed fast, and implementation is straightforward because 

their calculation is based on the signal variance and its derivatives. The computational 



cost is generally considered low compared to other methods. The Hjorth descriptor was 

shown by several studies to be useful to  analyze nonstationary EEG signals and was 

successfully used in different applications, such as emotion recognition, mental-task 

discrimination, epilepsy prediction, and focal EEG signals classification [6, 11–13].  

Over the last decade, Random forest classifier (RF) has received growing attention due 

to its robust performance across a wide range of medical applications such as early 

seizure detection, automated sleep stage identification and recognition of Alzheimer’s 

disease [14, 15]. The RF classifier, an ensemble learning method, uses a bagging 

scheme where classification is determined by majority voting [16]. Since medical data 

is often subject to class imbalance, which means the different classification categories 

are not equally represented, classifiers generally tend to be biased in favor of the ma-

jority class when equal weights are assigned to classes. Therefore, two techniques were 

introduced to address data imbalance: (1) cost-sensitive learning (giving each class a 

mis-classification cost or weight according to its distribution in the whole training da-

taset) and, (2) data resampling (under-sampling or over-sampling). The Synthetic Mi-

nority Oversampling Technique (SMOTE) is based on generating synthetic minority 

examples by interpolation to oversample the minority class in the original training set 

[17]. In this study, we propose and investigate a method based on Hjorth parameters 

representation and random forest classification to distinguish focal from generalized 

epileptic seizures. We study the effect of varying the processing EEG window size. To 

address class imbalance, which is due to the uneven representation of generalized and 

focal seizure classes, we implemented the weighted sampler function [18] into the clas-

sifier and compared its results to a conventional random forest classifier preceded with 

a Synthetic Minority Oversampling Technique (SMOTE) [17]. We show that the latter 

method enhanced the overall performance of the classifier.   

Table 1. Hjorth Parameters- y(t) is the signal and y’(t) is its derivative and var is the variance 

Parameter                     Equation 

Activity 𝑣𝑎𝑟(𝑦(𝑡)) 

Mobility 

√
𝑣𝑎𝑟 (𝑦′(𝑡))

𝑣𝑎𝑟 (𝑦(𝑡))
 

Complexity 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑦′(𝑡))

𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑦(𝑡))
 

2 Materials and Methods 

2.1 Database  

Data is from the TUH EEG Seizure Corpus (TUSZ) v1.5.1 [19]. It was recorded in a 
real-time clinical environment using the International standard 10/20 system with 24 to 
36 channels. The standard 19 EEG channels were used in this study. EEG segments have 
been labeled by experts. All uninteresting portions of the data, including eye blinks, ar-
tifacts, and noise were eliminated from the EEG records. The seizure segments annotated 



as generalized and focal were considered by this study.  The dataset consists of EEG 
signals collected from 115 patients of which 61 are females. The data contains 218 ses-
sions that were broken to 1497 files, of which 1069 contain focal seizures. The sampling 
frequency varies between 250 and 500 Hz. Table 1 summarizes the database of this 
study. Figure 1 shows plots of generalized and focal seizure EEG records  . More details 
about the dataset can be found in [9, 19], for instance. 

Table 2. Overview of the subset of the tusz eeg corpus used in our study for seizure type 

classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.   A) An example of raw EEG illustrating focal seizure epochs. B) An example of raw EEG 

illustrating generalized seizure epochs 

2.2 The proposed method 

A bandpass filter with cutoff frequencies (0.5:75) Hz has been used, followed by a 60Hz 
notch filter. The data has been re-referenced to the average of all electrodes, followed 
by re-sampling to 256Hz. Window sizes of 5-, 10-, 15- and 20-seconds were considered. 
Hjorth activity, mobility, and complexity parameters were then extracted from each 
channel of the pre-processed EEG signals and for each window size separately. A feature 
vector of dimension 57 was considered at each run. The supervised classification was 
carried out using the RF Classifier. The classifier was chosen based on its successful use 
in previous works [14, 15, 20]. 10-fold cross validation was employed for training and 
testing to avoid overfitting and to ensure  stable and reliable results, where EEG signals 
are partitioned  randomly into 10  subsets, where nine are for training and the remainder 

Nb of Patients (F) 115 (61) 

Nb of Sessions 218 

Nb of Files 1497 

Nb of Focal Seizures 1069 

Nb of Generalized Seizures 428 

Duration of Focal Seizure in hrs 147.49 

Total duration in hrs 287.79 



for testing. In a first set of experiments, the weighted random forest classifier was 
considered to balance class weights. In a second set of experiments, data was rebalanced 
using the SMOTE prior to being used as input to classification. The performance of the 
classifier was evaluated using accuracy, recall and precision measures.  

3 Experimental Results  

The analysis described in this work was carried out using Matlab R2020b and Python. The study 

explored the use of four window sizes. Results of classification of focal vs generalized seizure 

EEG records are summarized in Tables 3 and Table 4. The performance of classification was 

calculated by averaging the accuracy, recall, and precision obtained using the test data in each of 

the 10 iterations. In both Tables 3 and Table 4, windows of 5, 10, 15, and 20s, were compared. 

The first evaluation uses the weighted random forest classifier. Results in Table 3 show a maxi-

mum accuracy of 87.3% obtained using the 10s window with a recall of 58.9% and precision of 

90.6%. The second evaluation uses SMOTE followed by a conventional random forest. Results 

in Table 4 show a maximum accuracy of 92.3% with a recall of 91.9%, and precision of 92.6%, 

obtained using the 10s window size. An increase in window size corresponds to a slight decrease 

in performance.  

Table 3. classification performance of the weighted random forest classifier using four window 

sizes  

Performance was also investigated using the receiver operating characteristic (ROC) 

curve analysis and area under the curve (AUC) metric. The ROC curve represents the 

cut-off values between the true positive and false positive rates. Figure 2 displays ROC 

curves when weighted RF is used. Figure 3 displays ROC curves when SMOTE is used fol-

lowed by a conventional RF. Figures 3 and 4 give the performance with 10-fold cross validation. 

AUC for each fold is shown in each figure, in addition to the mean of AUC. 

Table 4. classification performance of the our approach using smote followed by random forest 

classifier 

 Window Size in second 

 
5s 10s 15s 20s 

Accuracy 0.867 0.873 0.867 0.862 

Recall 0.619 0.589 0.562 0.485 

Precision 0.896 0.906 0.891 0.894 

 Window Size in second 

 
5s 10s 15s 20s 

Accuracy 0.918 0.923 0.922 0.921 

Recall 0.903 0.919 0.927 0.928 

Precision 0.931 0.926 0.918 0.916 



Results indicate that performance is good for all folds, giving an average of AUC equal 
to 92% for weighted RF. A high value of 98% AUC is obtained with RF preceded with 
SMOTE. In summary, RF classification preceded by SMOTE yields the best 
performance for each of the 10-folds compared to weighted RF.  

 

 

 

 

 

 

 

Fig. 2. Receiver Operating Characteristic (ROC) curve for the weighted RF classifier. Each curve 

denotes the ROC of one-fold of the 10-fold cross validation: AUC is displayed for each fold and 

mean AUC for the 10-fold.  

 

 

 

 

 

 

Fig. 3. Receiver Operating Characteristic (ROC) curve for RF classifier preceded with SMOTE. 

Each curve denotes the ROC of one-fold of the 10-fold cross validation: AUC is displayed for 

each fold and mean AUC for the 10-fold.  

As can be seen from results in Tables 3 and 4, the proposed hybrid method (combination 
of Hjorth descriptor, SMOTE and RF) outperforms the weighted RF with consistent 
improvement of 5% in classification accuracy. The method achieved an accuracy of   
92.3% for the focal and generalized seizures classification. The precision and recall were 
also good. These results demonstrate the advantage in balancing the input feature space 
using SMOTE before classification, instead of giving each class a mis-classification 
cost. With regard to the window size, the results show a slight difference in accuracy, 
recall and precision as the window size varies between 5 and 20 seconds. The best results 
were obtained for a 10s window size in both experiments.      

4 Conclusion 

In this study, we investigated focal vs generalized seizure classification using a sub-
set of the TUSZ corpus. We investigated two ways to address imbalanced data, Random 
Forest supervised classification, and Hjorth data description extracted from 19 EEG 



channels. Weighted Random Forest classification was compared to a conventional Ran-
dom Forest classifier preceded by SMOTE oversampling. Results indicate a good sepa-
ration between focal and generalized seizure using SMOTE applied on EEG segments 
of 10s window size. A system for classifying seizure types could be a clinically relevant 
tool for experts to have better diagnosis. In future work, we intend to expand our study 
to include classification of specific types of generalized and focal seizures such as tonic, 
clonic, tonic-clonic, complex partial, and simple partial seizures.   
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