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1 ABSTRACT 

This paper considers the processes of target tracking complicated by big data gaps in complex media such as 
Distributed Maritime Observation System (DMOS). The main purpose of DMOS is to support the favorable 
navigation conditions, monitoring, life-saving on the sea for different ships in harbors, maritime roads and 
open sea. DMOS can be considered as a heterogeneous distributed computer system, it includes different 
layers of services at different levels of abstraction: ship, harbor; regional and global levels. Such a 
framework is based on several satellite and maritime information systems that nowadays favor the 
integration of maritime data (e.g., AIS, ECDIS, OPTIMARE, GMDSS).  Despite of the input data big 
volume the situations exist when gaps (e.g., time delays from minutes to hours) between target observations’ 
points are different. Well known algorithms of target tracking do not work properly in such situations. The 
proposed approach describes synthesis of analytical and simulation methods at tactical hypothesis 
development for the cases when suitable direct analytics is not applicable. Also, a joined artificial 
techniques’ scenario approach to tactical situation hypothesis development is proposed.  

2 INTRODUCTION 

An experience so far accumulated by this paper’s authors at developing grand distributed systems of 
maritime monitoring shows that disregarding a great number of various interacting systems (e.g., AIS, 
ECDIS, OPTIMARE, GMDSS, etc) the problem of objects’ tracking in the sea remains actual and is 
somewhat far from its solution. Even in the coastal zone the occurrences arise when the information systems 
and radars discontinue the release of information as caused by different reasons.  

The case when many targets are clumping within one space’s resolution gives a rise to other problems. The 
above problem is known under a special notation “Cloud Targets”. In spite of their heterogeneous nature the 
given problems in their mathematical statement are homothetic. The currently available literature does not 
present any appropriate mathematical solutions of the above problems, and in this regard this paper proposes 
and discusses an originally developed approach.  

2.1 Statement of the information integration problem in DMOS 

In some area functions a distributed maritime observation system (DMOS) that incorporates N information 
sources and controls. The following elements are used as sources of information about situations:  

• Space-distributed monitoring facilities (mobile and immobile), that possess different capabilities in 
registration of the objects under monitoring, in measuring coordinates and parameters of the objects’ 
motion, and in intensity of the information release to the controls; 

• Other distributed observation systems that release their data discretely in an integrated form. 

Upon the processing the data from the i – th monitoring facility or from the  - th distributed system ( ) are 
send to the DMOS controls in a form f discrete messages, at that, each message is related to one, j-th object 
(j = 1,…, M, М – is a number of objects operating within the system function zone) Each message could be 
represented as vector : 

,tPvkhKjiC ijijijijijijijijij ][ λϕ=  

Here   i – is the information source number; 

  j – is the object number assigned by the i-th information source; 

 jiK - is the monitoring object class;  

 jiϕ  - is the object’s locality latitude; 
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 ijλ  - is the object’s locality longitude;  

  hij  - is the object’s locality height (depth); 

  kij – is the object’s source; 

  vij – is the object’s velocity (speed); 

 Pij – other object’s features that can be generated by the monitoring facility, like feature of novelty, feature 
of object’s maneuver attribute, feature of the object’s loss, etc.  

        tij – the time of an information receipt (may differ from the message receipt time). 

        For all i, j the covariance matrices that describe an uncertainty of the j-th object coordinates’ assessment 
by the i-th source are known; 
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where 2
xσ , 2

yσ   - are variances of the object’s locality assessments in the x and y directions correspondingly, 

Kxy – is the above assessments covariance.  

The monitoring system controls have available the additional information that specifies a situation within a 
region and affects the information processing, like information about the: 

• Localities of the monitoring system’s elements;  

• monitoring facilities characteristics (detection range of the objects from various classes, resolution, 
silent spaces, etc.); 

• Region infrastructure (fairwaters, navigable waterways, navigational aids and other);   

• Hydrometeorological situation; 

• Ice conditions; 

• Fishing conditions. 

This additional information allow for putting forward certain tactical situational hypotheses that are 
formalized in a form of exogenous Bayes distributions being sequentially shaped as messages continue to 
arrive. 

DMOS is intended to solve problems of integrating the information arriving from various monitoring 
facilities and other distributed systems; these problems are as follows:   

(a) calculation and construction of the zones of monitoring objects’ possible localities. 

(b) extrapolation of the discriminated object locality at a definite point of time. 

(c) identification and mapping of the tracks for objects followed by the observation system elements. 

3 BAYES RECURSIVE ASSESSMENT UNDER RESTRICTIVE STATEM ENT 

Task of the track analysis [5] represents one of the versions in the problem of recursive non-linear 
assessment [2], and an extended Kalman filter is the most commonly used approach for the case. The task is 
exposed to linearization within a neighborhood of the predicted value and the sought density is approximated 
by the Gaussian density that may not match the real data structure and, in particular, lead to divergence. 
Other analytic approaches are based upon the approximation of the first two density moments [4, 7]. The 
better direct numerical approach uses the density assessment at the grid nodes in the state space [3], at that, 
the case of multi dimensional space requires calculations for an excessively great number of points (nodes), 
thus, involving considerable computational power for each point (node). 

It is assumed that a state vector  
n

k Rx ∈  keeps evolving in accordance with the dynamics model  

,w,xfx kkkk )(1=+                                                            (1m) 

where nmnk RRR:f →×  - is the system transient function, m
k Rw ∈  - is a sequence of errors with a zero 

average (mean) and independent of the state vector past and future values.  The probability density kw  is 
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assumed known. In terms of a discrete time there exist measurements 
p

k Ry ∈  linked to the state vector 

values by the observation equation:  

,v,xhy kkkk )(=                                                             (2m) 

where prn
k RRR:h →×    - is the measurements’ transient function and r

k Rv ∈    -  is the other sequence 

with a zero average (mean) and known probability density independent of the past and future system states 
and noises. The initial density is assumed known for the state vector and function fi, hi, i =1,…, k.  

       Exogenuos information based upon the current tactical situational hypothesis in most cases is formalized 
as an even distribution in some polygon Uk, independent of the past and future system states and noises. Let 
us denote the appropriate density as uk(xk).       

      So, at the step k the available information is represented by the sequence of measurements’ {yi} and the 
exogenous density uk(xk): )}.(1{ kkik xu,k,...,i,yD ==  The task consists in arriving at the values of state 

vector )( kk Dxp  based on complete information available by the moment k. This process is performed 

recurrently in two stages: prognosis and update. 

       Suppose that the sough density )( 11 −− kk Dxp  at step k-1 is already received. Then using the system 

dynamics model a priory density can be received as follows: 

∫ −−−−− = .dxDxpxxpDxp kkkkkkk 11111 )()()(                                  (3m) 

The probability model for the state vector )xx(p kk 1−  is the Markov one and is determined by the system of 

equations:  

∫ −−−−−− = 111111 )()()( kkkkkkkk dwxwpw,xxpxxp . 

Under an assumption )w(p)xw(p kkk 111 −−− =  we have 

∫ −−−−−−− −= 1111111 )())(()( kkkkkkkk dwwpw,xfxxxp δ , 

Where )( ⋅δ  - the Dirac delta function. Delta function appears since under the unknown xk-1 and wk-1 the 

assessment xk is received from the determinate relation (1m). At the step k become available the 
measurement yk and exogenous distribution uk(xk) that are used to update a priori distribution of the state 
vector based on the Bayes rule  

)(

)()()(
)( 1

kk

kkkkkk
kk

Dyp

xuDxpxyp
Dxp −= ,                                                 (4m) 

where a normalizing multiplier is determined through the relation  

∫ −= kkkkkkkkk dxxuDxpxypDyp )()()()( 1 .                                            (5m) 

The conditional density yk under the given xk,  p(yk|xk) is determined by the measurements’ model and by the 
known statistics distribution vk: 

∫ −= .dvvpv,xhyxyp kkkkkkkk )())(()( δ                                            (6m) 

In the equation (4m) the measurement yk and density uk are used for a correction of the prognosis starting 
from the preceding step and the receiving of a posteriori distribution for the state vector.  

The equations (4m) and (6m) give a formal solution for the problem of the Bayes recurrent assessment. Here 
an analytical solution is only possible within a restricted class of evolution models, measurements and 
exogenous information. The case when fk and hk are linear, wk and vk are the additive Gaussian noises with 
the known covariance matrices, and uk are the Gaussian densities is considered to be the most important, 
though for many applications this problem statement turns out the inadequate one. 
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4 RESTRICTIVE BAYES BOOTSTRAP-FILTER 

Suppose that there exists a set of independent realizations for a random vector 

{ xk-1(i), i = 1,…, N }, 

conforming to the distribution )( 11 −− kk Dxp . Bootstrap-filter [2,3] is an algorithm allowing based on the 

above to receive a set of independent realizations { xk(i), i=1,…, N }, approximately conforming to the 

distribution  )Dx(p kk  Such a filter presents a mechanism approximately emulating relations (3m) and 

(4m).   
Prognosis: each sampling realization is transformed in accordance with the formula 

N,...,i,iw,ixfi*x kkkk 1))()(()( 111 == −−− , 

Where wk-1(i) – are sampling realizations of the random vector with distribution p(wk-1). So, in accordance 

with (3m), )(i*x k - is a vector sample matching distribution )( 1−kk Dxp . 

Update: Based on yk measurement the likelihood function is derived and weight coefficients are received for 
each realization:  

∑
=

⋅

⋅
= N

j
kkkk

kkkk
i

j*xuj*xyp

i*xui*xyp
q

1

))(())((

))(())((
.                                                           (7m) 

In this way is defined the discrete distribution over the ensemble of points {xk*( i), i =1,…,N} with a 
probabilistic weight qi in the i-th point. Let us construct out of this discrete distribution N random 
realizations and generate a sample {xk(i), i =1,…, N } so that for any i, j  

.qi*xixP ikk == })()({  

These prognosis and update procedures compose one the k-th iteration step. At the first step the process is 
being initialized by N realizations of the random vector with a known distribution p(x1).  
The update procedure is based on the results received by Smith and Gelfand in [14]. Their work proves that 
Bayes formula could be interpreted as a weighted bootstrap [5]. Suppose that set {xk*( i)} is received as a 
random sample out of a continuous distribution with density G(x), and it is necessary to receive a sample out 
of distribution with a density proportional to L(x) G(x), where L(x) – is a known nonnegative function. The 
Smith-Gelfand theorem claims that an empirical distribution of a random sample out of discrete distribution 
concentrated in points {xk*( i)} with probabilistic weights  
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is a distribution converging one assumed that ∞→N  to a distribution with sought density. In the case 
under consideration G(x) replaced by p(xk|Dk-1), and L(x) – by  p(yk|xk)

.uk(xk). 
The main advantage of the proposed approach is that it imposes no constrains on the functions’ fk , hk and uk 
form. The major requirements consist in the following: 

• Distribution p(x1) is known and assumes modeling based on Monte-Carlo techniques; 

• Distribution  p(yk|xk) is known; 

• Distributions p(wk) and uk(xk) are known and  assume modeling based on Monte-Carlo techniques. 

At each step of the filter output appears a vector sample that could be disposed in a variety of ways. Say, a 
posteriori probability of hitting some zone could be assessed as a rate of the sample values that have hit this 
zone. In case the reasons exist to suppose that a posteriori distribution is a unimodal one the statistic 
characteristics for each component of the state vector and their any function.  

The proofs of the proposed approach appropriateness are based upon the asymptotic results [8]. To study the 
bootstrap properties for the finite samples is difficult enough. Moreover, the relation between the samples N 
volume and the received results accuracy is not clear [2,3], it is influenced upon by three factors: 

• The states space dimension; 

• The goodness of a priori and a posteriori distributions;  
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• The number of steps required for recurrence.  

It should be expected that N grows rapidly along with the task dimension growth, at that, the rapidity 
depends on the correlation between the components. Same time under the independent components this 
rapidity does not depend on the task dimension. 

If the state space region where the likelihood function )xy(p kk  takes on relatively great values is somewhat 

restricted in comparison with a similar region for a priori density )( 1−kk Dxp , many values xk*( i) will be 

assigned low weights qi. At that, the points from the first region will gain the greatest value. In the absence of 
the system noises all N vectors after several steps can get concentrated in the vicinity of one point. So, 
modification of the basic algorithm will be possible together with the growth of the points’ number emulated 
by a priory distribution 

5 CONCLUSION 

Simulation and the developed real time algorithms operation demonstrate their good convergence. 
Probability of the tracks’ recovery for 24 objects within one “cloud” composes over 80%. On the other hand 
the coordination of data received from heterogeneous sources in one “cloud” is not yet a completely solved 
problem for the case of large blanks. This problem is not expected to be solved exclusively via mathematic 
and scenario approach; its solution requires special organizational efforts in information processing and 
priorities identification among the sources.   

6 REFERENCES 
1. Gordon N., Salmond D., Smith A. Novel approach to nonlinear/nongaussian state estimation. – Proc. Inst. Elect. Eng., ser.F, 1993, 

v.40, No. 2, pp.107-113. 
2. Doucet A., de Freitas N. (editors). Sequential Monte-Сarlo methods in practice. – New York: Springer-Verlag, 2001. 
3. Carlin B.P., Polson N.G., Stoffer D.S. A Monte-Carlo approach to nonnormal and nonlinear state space modeling. – JASA, 1992, 

No. 87, pp. 493-500. 
4. West M., Harrison P.J., Migon H.S. Dynamic generalized linear model and Bayesian forecasting (with discussion). – JASA, 1985, 

80, pp.73-97. 
5. Эфрон Б. Нетрадиционные методы многомерного статистического анализа. – М.: Финансы и статистика, 1988. 
6. Chang K.C., Bar-Shalom Y. Joint Probabilistic Data Association for Multitarget Tracking with Possibly Unresolved 

Measurements and Maneuvers. – IEEE Trans. Auto. Control, 1984, vol. AC-29, pp.585-594. 
7. Alspach D.L., Sorensen H.W. Nonlinear Bayesian estimation using Gaussian sum approximation. – IEE Trans. Auto. Control, 

1972, vol. AC-17, pp.439-447. 
8. Smith A.F.M., Gelfand A.E. Bayesian statistics without tears: a sampling-resampling perspective. – Amer. Stat., 1992, No.46, pp. 

84-88. 
9. Intelligent GIS for Maritime Observation Systems. Edited by V. Popovich. M.: Nauka, 2013, 283pp 
10. Vasily Popovich, Christophe Claramunt.  Distributed Maritime Observation Systems for Navigation //Proceedings of the ENC, 

Vienna, April 23-25, 2013. 
 


