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Abstract

The aim of this paper is to use a unified approach in order to obtain new inequal-
ities for a large family of topological indices restricted to trees and to characterize
the set of extremal trees with respect to them. Our main results provide upper
and lower bounds for a large class of topological indices on trees, fixing or not the
maximum degree or the number of pendant vertices. This class includes the variable
first Zagreb, the multiplicative second Zagreb, the Narumi-Katayama and the sum
lordeg indices. In particular, our results on the sum lordeg index partially solve an
open problem on this index.

1 Introduction

A topological descriptor is a single number that represents a chemical structure in graph-

theoretical terms via the molecular graph. They play a significant role in mathematical

chemistry especially in the QSPR/QSAR investigations. A topological descriptor is called

a topological index if it correlates with a molecular property. Topological indices are used

to understand physicochemical properties of chemical compounds, since they capture some

properties of a molecule in a single number. Hundreds of topological indices have been
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introduced and studied, starting with the seminal work by Wiener [44]. The Wiener index

of G is defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v),

where {u, v} runs over every pair of vertices in G.

Topological indices based on end-vertex degrees of edges have been used over 40 years.

Among them, several indices are recognized to be useful tools in chemical researches.

Probably, the best know such descriptor is the Randić connectivity index (R) [33].

Two of the main successors of the Randić index are the first and second Zagreb indices,

denoted by M1 and M2, respectively, and introduced by Gutman et al. in [22] and [20].

They are defined as

M1(G) =
∑

u∈V (G)

d2
u, M2(G) =

∑
uv∈E(G)

dudv,

where uv denotes the edge of the graph G connecting the vertices u and v, and du is the

degree of the vertex u. See the recent surveys on the Zagreb indices [1], [6] and [19] as

well as [24], [25].

Along the paper, we will denote by m and n, the cardinality of the sets E(G) and

V (G), respectively.

Miličević and Nikolić defined in [29] the variable first and second Zagreb indices as

Mα
1 (G) =

∑
u∈V (G)

dαu , Mα
2 (G) =

∑
uv∈E(G)

(dudv)
α,

with α ∈ R.

Note that M0
1 is n, M1

1 is 2m, M2
1 is the first Zagreb index M1, M−1

1 is the inverse

index ID [14], M3
1 is the forgotten index F , etc.; also, M0

2 is m, M
−1/2
2 is the usual Randić

index, M1
2 is the second Zagreb index M2, M−1

2 is the modified second Zagreb index [31],

etc.

The concept of variable molecular descriptors was proposed as a new way of character-

izing heteroatoms in molecules (see [34], [35]), but also to assess the structural differences

(e.g., the relative role of carbon atoms of acyclic and cyclic parts in alkylcycloalkanes [36]).

The idea behind the variable molecular descriptors is that the variables are determined

during the regression so that the standard error of estimate for a particular studied prop-

erty is as small as possible.
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In the paper of Gutman and Tošović [21], the correlation abilities of 20 vertex-degree-

based topological indices occurring in the chemical literature were tested for the case of

standard heats of formation and normal boiling points of octane isomers. It is remarkable

to realize that the variable second Zagreb index Mα
2 with exponent α = −1 (and to a

lesser extent with exponent α = −2) performs significantly better than the Randić index

(R = M
−1/2
2 ).

The variable second Zagreb index is used in the structure-boiling point modeling

of benzenoid hydrocarbons [32]. Various properties and relations of these indices are

discussed in several papers (see, e.g., [3], [27], [28], [37], [45], [46]).

The sum lordeg index is one of the Adriatic indices introduced in [41]. It is defined as

SL(G) =
∑

u∈V (G)

du
√

log du .

This index is interesting from an applied viewpoint since it is the best predictor of octanol-

water partition coefficient for octane isomers [41], and so, it appears in numerical packages

for the computation of topological indices [39]. For these reasons, in [42] is stated the

open problem of find (sharp) lower and upper bounds for this index.

Recall that a main topic in the study of topological indices is to find bounds of the

indices involving several parameters. The aim of this paper is to use a unified approach

in order to obtain new inequalities for a large family of topological indices restricted to

trees or graphs and to characterize the set of extremal trees or graphs with respect to

them. Our main results provide upper and lower bounds for a large class of topological

indices on trees or graphs, fixing or not the maximum degree or the number of pendant

vertices. This class includes the variable first Zagreb, the multiplicative second Zagreb

and the Narumi-Katayama indices. Also, our results can be applied to the sum lordeg

index, and partially solve an open problem on this index (see Propositions 3.1 and 3.6,

Remark 3.10 and Theorems 3.2, 3.5, 3.8 and 3.9).

A main tool of many proofs in this paper is the majorization method, which has

already been successfully applied in several papers (see, e.g., [9], [15], [26]). An interesting

fact is that although the majorization method requires to deal with convex (or concave)

functions, our methods of proof allow to obtain inequalities also for the sum lordeg index,

an interesting topological index involving a function which is neither convex nor concave.

Throughout this work, G = (V (G), E(G)) denotes a (non-oriented) finite connected

simple (without multiple edges and loops) non-trivial (E(G) 6= ∅) graph. T denotes a
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tree, i.e., a graph without cycles. Note that the connectivity of G is not an important

restriction, since any graph representing a molecule is connected.

2 Trees with a fixed number of pendant vertices

Given two n-tuples x = (x1, . . . , xn), y = (y1, . . . , yn) with x1 ≥ x2 ≥ · · · ≥ xn and

y1 ≥ y2 ≥ · · · ≥ yn, then x majorizes y (and we write x � y or y ≺ x) if

k∑
i=1

xi ≥
k∑
i=1

yi,

for 1 ≤ k ≤ n− 1 and
n∑
i=1

xi =
n∑
i=1

yi.

A function Φ: Rn → R is called Schur-convex if Φ(x) ≥ Φ(y) for all x � y. Similarly,

the function is Schur-concave if Φ(x) ≤ Φ(y) for all x � y. We say that Φ is strictly Schur-

convex (respectively, strictly Schur-concave) if Φ(x) > Φ(y) (respectively, Φ(x) < Φ(y))

for all x � y with x 6= y.

If

Φ(x) =
n∑
i=1

f(xi),

where f is a convex (respectively, concave) function defined on a real interval, then Φ is

Schur-convex (respectively, Schur-concave). If f is strictly convex (respectively, strictly

concave), then Φ is strictly Schur-convex (respectively, strictly Schur-concave).

Thus,

Mα
1 (G) =

∑
u∈V (G)

dαu ,

is strictly Schur-convex if α ∈ (−∞, 0) ∪ (1,∞) and strictly Schur-concave if α ∈ (0, 1).

A pendant vertex in a graph is a vertex with degree one. If the graph is a tree, a

pendant vertex is also called a leaf.

Given n ≥ 3 and 2 ≤ p ≤ n−1, let Sn,p be the set of n-tuples x = (x1, x2, . . . , xn−p, 1, . . . , 1)

with xi ∈ Z+ such that x1 ≥ x2 ≥ · · · ≥ xn−p ≥ 2 and
∑n−p

i=1 xi = 2n− 2− p.

Remark 2.1. Consider any tree T with n vertices v1, . . . , vn, ordered in such a way that if

x = x
T

= (x1, . . . , xn) is the n-tuple where xi is the degree of the vertex vi, then xi ≥ xi+1

for every 1 ≤ i ≤ n− 1. If T has p pendant vertices, one can check that x
T
∈ Sn,p.

Lemma 2.2. Let n ≥ 3 and 2 ≤ p ≤ n− 1. If r =
⌊
n−2
n−p

⌋
, y = (y1, y2, . . . , yn) is such that
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• y1 = p,

• yj = 2 for every 1 < j ≤ n− p,

• yj = 1 for every n− p < j ≤ n,

and z = (z1, z2, . . . , zn) is such that

• zj = r + 2 for every 1 ≤ j ≤ n− 2− (n− p)r,

• zj = r + 1 for every n− 2− (n− p)r < j ≤ n− p,

• zj = 1 for every n− p < j ≤ n,

then y, z ∈ Sn,p and

z ≺ x ≺ y

for all x ∈ Sn,p.

Proof. First of all note that 1 ≤ r ≤ n − 2: Since p ≤ n − 1, we have r ≤ n − 2. Since

p ≥ 2, we have r ≥ 1.

Also, note that 0 ≤ n− 2− (n− p)r ≤ n− p− 1.

We have
n−p∑
j=1

yj = p+ 2(n− p− 1) = 2n− 2− p,

and so, y ∈ Sn,p.

If n− 2− (n− p)r = 0, then r = n−2
n−p ∈ Z and

n−p∑
j=1

zj = (r + 1)(n− p) =
( n− 2

n− p
+ 1
)

(n− p) = 2n− 2− p.

If n− 2− (n− p)r > 0, then

n−p∑
j=1

zj = (r + 2)(n− 2− (n− p)r) + (r + 1)(n− p− (n− 2) + (n− p)r) = 2n− 2− p.

Also, r + 1 ≥ 2 and so, z ∈ Sn,p.

Seeking for a contradiction assume that

p+ 2(k − 1) =
k∑
i=1

yi <

k∑
i=1

xi,
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for some k < n− p. Thus,

n−p∑
i=1

xi =
k∑
i=1

xi +

n−p∑
i=k+1

xi >

k∑
i=1

yi +

n−p∑
i=k+1

2 =

n−p∑
i=1

yi = 2n− 2− p,

leading to a contradiction. Hence, we have for every k < n− p,

p+ 2(k − 1) =
k∑
i=1

yi ≥
k∑
i=1

xi,

and so, x ≺ y.

Seeking for a contradiction assume that

n−p∑
i=k+1

zi <

k∑
i=1

xi

for some k < n− p. Thus, zk+1 < xk+1.

If k + 1 > n− 2− (n− p)r, then r + 1 = zk+1 < xk+1 and so, zi ≤ r + 2 ≤ xk+1 ≤ xi

for every 1 ≤ i ≤ k. Therefore,

2n− 2− p =

n−p∑
i=1

zi =
k∑
i=1

zi +

n−p∑
i=k+1

zi <

k∑
i=1

xi +

n−p∑
i=k+1

xi =

n−p∑
i=1

xi,

a contradiction.

If k + 1 ≤ n− 2− (n− p)r, then r + 2 = zk+1 < xk+1 and so, zi = r + 2 ≤ xk+1 ≤ xi

for every 1 ≤ i ≤ k. Therefore,

2n− 2− p =

n−p∑
i=1

zi =
k∑
i=1

zi +

n−p∑
i=k+1

zi <

k∑
i=1

xi +

n−p∑
i=k+1

xi =

n−p∑
i=1

xi,

a contradiction.

Hence, we have for every k < n− p,

n−p∑
i=k+1

zi ≥
n−p∑
i=k+1

xi,

k∑
i=1

zi = 2n− 2− p−
n∑

i=k+1

zi ≤ 2n− 2− p−
n∑

i=k+1

xi =
k∑
i=1

xi.

Thus, z ≺ x.

For a graph G and for any function f : {du : u ∈ V (G)} → R, let us define the index

If (G) =
∑

u∈V (G)

f(du).
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Besides, if f takes positive values, then we can define the index

IIf (G) =
∏

u∈V (G)

f(du).

Lemma 2.2 has the following consequences. Along this section we will use the notation

of r, z and y in Lemma 2.2.

Theorem 2.3. If T is a tree with n ≥ 3 vertices and p pendant vertices, and f : [1,∞)→

R is a convex function on [2,∞), then

If (T ) ≥ (n− 2− (n− p)r)f(r + 2) + ((n− p)(r + 1)− n+ 2)f(r + 1) + pf(1),

If (T ) ≤ f(p) + (n− p− 1)f(2) + pf(1).

Moreover, if f is a strictly convex function, then the lower bound is attained if and only

if the degree sequence of T is z, and the upper bound is attained if and only if the degree

sequence of T is y.

Proof. Let us define

S ′n,p =
{
x = (x1, . . . , xn−p) : (x1, . . . , xn−p, 1, . . . , 1) ∈ Sn,p

}
,

i.e., S ′n,p = Π(Sn,p), where Π : Rn → Rn−p is the canonical projection on the first n − p

variables. If x ∈ S ′n,p, then xi ≥ 2 for every 1 ≤ i ≤ n− p. It is clear that Lemma 2.2 can

be formulated in terms of S ′n,p instead of Sn,p. Note that

If (T ) = pf(1) + If (T )− pf(1), If (T )− pf(1) =
∑

u∈V (T ), du≥2

f(du).

Since f is a convex function on [2,∞), Lemma 2.2, applied to If (T ) − pf(1), gives the

result.

Using the argument in the proof of Theorem 2.3, we can obtain, in a similar way, the

following results.

Theorem 2.4. If T is a tree with n ≥ 3 vertices and p pendant vertices, and f : [1,∞)→

R is a concave function on [2,∞), then

If (T ) ≥ f(p) + (n− p− 1)f(2) + pf(1),

If (T ) ≤ (n− 2− (n− p)r)f(r + 2) + ((n− p)(r + 1)− n+ 2)f(r + 1) + pf(1).

Moreover, if f is a strictly concave function, then the lower bound is attained if and only

if the degree sequence of T is y, and the upper bound is attained if and only if the degree

sequence of T is z.
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Since the logarithm is a strictly increasing function, a tree is extremal for IIf (T ) if

and only if it is extremal for

log IIf (T ) =
∑

u∈V (G)

log f(du).

Thus, Lemma 2.2 implies the following results.

Theorem 2.5. If T is a tree with n ≥ 3 vertices and p pendant vertices, and f : [1,∞)→

R+ is a function such that log f is convex on [2,∞), then

IIf (T ) ≥ f(r + 2)n−2−(n−p)rf(r + 1)(n−p)(r+1)−n+2f(1)p,

IIf (T ) ≤ f(p)f(2)n−p−1f(1)p.

Moreover, if log f is a strictly convex function on [2,∞), then the lower bound is attained

if and only if the degree sequence of T is z, and the upper bound is attained if and only if

the degree sequence of T is y.

Theorem 2.6. If T is a tree with n ≥ 3 vertices and p pendant vertices, and f : [1,∞)→

R+ is a function such that log f is concave on [2,∞), then

IIf (T ) ≥ f(p)f(2)n−p−1f(1)p,

IIf (T ) ≤ f(r + 2)n−2−(n−p)rf(r + 1)(n−p)(r+1)−n+2f(1)p.

Moreover, if log f is a strictly concave function on [2,∞), then the lower bound is attained

if and only if the degree sequence of T is y, and the upper bound is attained if and only if

the degree sequence of T is z.

Since tα is strictly convex if α ∈ (−∞, 0) ∪ (1,∞) and strictly concave if α ∈ (0, 1),

Theorems 2.3 and 2.4 imply, respectively, the following results.

Theorem 2.7. If T is a tree with n ≥ 3 vertices and p pendant vertices, and α ∈

(−∞, 0) ∪ (1,∞), then

Mα
1 (T ) ≥ (n− 2− (n− p)r)(r + 2)α + ((n− p)(r + 1)− n+ 2)(r + 1)α + p,

Mα
1 (T ) ≤ pα + (n− p− 1)2α + p.

Moreover, the lower bound is attained if and only if the degree sequence of T is z, and the

upper bound is attained if and only if the degree sequence of T is y.

Theorem 2.8. If T is a tree with n ≥ 3 vertices and p pendant vertices, and α ∈ (0, 1),

then

Mα
1 (T ) ≥ pα + (n− p− 1)2α + p,

Mα
1 (T ) ≤ (n− 2− (n− p)r)(r + 2)α + ((n− p)(r + 1)− n+ 2)(r + 1)α + p.
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Moreover, the lower bound is attained if and only if the degree sequence of T is y, and the

upper bound is attained if and only if the degree sequence of T is z.

The inequalities in Theorem 2.7 and 2.8 were proved in [26] with a different argument.

The Narumi-Katayama index is defined in [30] as

NK(G) =
∏

u∈V (G)

du.

The multiplicative second Zagreb index or modified Narumi-Katayama index

NK∗(G) =
∏

uv∈E(G)

dudv =
∏

u∈V (G)

dduu

was introduced in [23] and [16].

Since t log t is a strictly convex function and log t is a strictly concave function, The-

orems 2.5 and 2.6 imply, respectively, the following results.

Theorem 2.9. If T is a tree with n ≥ 3 vertices and p pendant vertices, then

NK∗(T ) ≥ (r + 2)(r+2)(n−2−(n−p)r)(r + 1)(r+1)((n−p)(r+1)−n+2),

NK∗(T ) ≤ pp4n−p−1.

Moreover, the lower bound is attained if and only if the degree sequence of T is z, and the

upper bound is attained if and only if the degree sequence of T is y.

Theorem 2.10. If T is a tree with n ≥ 3 vertices and p pendant vertices, then

NK(T ) ≥ p 2n−p−1,

NK(T ) ≤ (r + 2)n−2−(n−p)r(r + 1)(n−p)(r+1)−n+2.

Moreover, the lower bound is attained if and only if the degree sequence of T is y, and the

upper bound is attained if and only if the degree sequence of T is z.

The lower bounds in Theorems 2.9 and 2.10 were proved in [43] with different argu-

ments.

3 Upper and lower bounds for the sum lordeg index

Although only about 1000 benzenoid hydrocarbons are known, the number of possi-

ble benzenoid hydrocarbons is huge. For instance, the number of possible benzenoid

hydrocarbons with 35 benzene rings is 5.85 × 1021 [40]. Hence, the modeling of their
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physico-chemical properties is very important in order to predict properties of currently

unknown species. The main reason for the use of topological indices is to obtain predic-

tions of some property of certain molecules (see, e.g., [13], [17], [21], [36]). Therefore, given

some fixed parameters, a natural problem is to find the graphs that minimize (or maxi-

mize) the value of a topological index (which correlates with a physico-chemical property)

on the set of graphs (or trees) satisfying the restrictions given by the parameters (see,

e.g., [2], [4], [5], [7], [8], [10], [11], [12], [18]).

In [42] is stated the open problem of finding (sharp) lower and upper bounds for the

sum lordeg index. When the number of vertices is fixed, we solve here this open problem

in the case of graphs, graphs with a fixed maximum degree ∆, trees and trees with a fixed

number of pendant vertices. Also, we characterize the extremal graphs or trees. Recall

that the sum lordeg index is the best predictor of octanol-water partition coefficient for

octane isomers [41].

Proposition 3.1. If G is a graph with n vertices, then

SL(G) ≤ n(n− 1)
√

log(n− 1) ,

and the equality is attained if and only if G is the complete graph. If G is a minimal graph

for SL, then G is a tree.

Besides, if G has maximum degree ∆ and minimum degree δ, then

2m
√

log δ ≤ SL(G) ≤ 2m
√

log ∆ , nδ
√

log δ ≤ SL(G) ≤ n∆
√

log ∆ ,

and each equality is attained if and only if G is a regular graph.

Proof. The first inequality holds since du ≤ n− 1 for every u ∈ V (G) and f(t) = t
√

log t

is an increasing function. The equality is attained if and only if du = n − 1 for every

u ∈ V (G), i.e., G is the complete graph.

We have the two last inequalities since f(t) = t
√

log t is an increasing function and

δ ≤ du ≤ ∆ for every u ∈ V (G). This fact and

SL(G) =
∑

u∈V (G)

du
√

log du =
∑

uv∈E(G)

(√
log du +

√
log dv

)
give the other inequalities. It is clear that each equality is attained if and only if du = δ

for every u ∈ V (G) or du = ∆ for every u ∈ V (G), i.e., G is a regular graph.
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Finally, assume that G is a minimal graph for SL, and that G is not a tree. Thus, there

exists an edge uv ∈ E(G) such that the graph G \ uv (defined by V (G \ uv) = V (G) and

E(G\uv) = E(G)\{uv}) is connected. Since the degree of any w ∈ V (G)\{u, v} in G\uv

is also dw and the degree of u in G \ uv is du − 1, we conclude SL(G \ uv) < SL(G). By

applying this argument a finite number of times we obtain a tree T with SL(T ) < SL(G).

Hence, if G is a minimal graph for SL, it is a tree.

Since ifG is a minimal graph for SL, thenG is a tree by Proposition 3.1, it is interesting

to study this index for trees.

The function f(t) = t
√

log t satisfies

f ′(t) =
1

2

(
log t

)−1/2(
2 log t+ 1

)
,

f ′′(t) =
1

4t

(
log t

)−3/2(
2 log t− 1

)
,

and so, f is concave on [1, e1/2] and it is convex on [e1/2,∞). Thus, f is not convex on

[1,∞), but it is strictly convex on [2,∞), and Theorem 2.3 gives the following result.

Theorem 3.2. If T is a tree with n ≥ 3 vertices and p pendant vertices, then

SL(T ) ≥ (n− 2− (n− p)r)(r + 2)
√

log(r + 2) + ((n− p)(r + 1)− n+ 2)(r + 1)
√

log(r + 1) ,

SL(T ) ≤ p
√

log p+ (n− p− 1)2
√

log 2 .

Moreover, the lower bound is attained if and only if the degree sequence of T is z, and the

upper bound is attained if and only if the degree sequence of T is y.

By using Theorem 2.3 we can obtain also the following result.

Theorem 3.3. If T is a tree with n ≥ 3 vertices and f : [1,∞)→ R is a convex function

on [2,∞), then

If (T ) ≤ max
{
f(2) + (n− 3)f(2) + 2f(1), f(n− 1) + (n− 1)f(1)

}
.

Proof. Since the number p of pendant vertices of a tree satisfies 2 ≤ p ≤ n− 1, Theorem

2.3 gives

If (T ) ≤ max
2≤p≤n−1

(
f(p) + (n− p− 1)f(2) + pf(1)

)
.

Let us consider the function F : [2, n−1]→ R given by F (s) = f(s)+(n−s−1)f(2)+sf(1).

Since f is a convex function on [2,∞) and (n − s − 1)f(2) + sf(1) is a polynomial of

degree 1, F is convex on [2, n− 1] and so,

max
{
F (2), F (n− 1)

}
≤ max

2≤p≤n−1
F (p) ≤ max

s∈[2,n−1]
F (s) = max

{
F (2), F (n− 1)

}
.
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Therefore,

max
2≤p≤n−1

(
f(p)+(n−p−1)f(2)+pf(1)

)
= max

{
f(2)+(n−3)f(2)+2f(1), f(n−1)+(n−1)f(1)

}
,

and this finishes the proof.

The argument in the proof of Theorem 3.3 allows to prove the following result.

Theorem 3.4. If T is a tree with n ≥ 3 vertices and f : [1,∞)→ R is a concave function

on [2,∞), then

If (T ) ≥ min
{
f(2) + (n− 3)f(2) + 2f(1), f(n− 1) + (n− 1)f(1)

}
.

Theorem 3.3 allows to obtain another bound for the sum lordeg index.

Theorem 3.5. Let T be a tree with n ≥ 3 vertices.

(1) If n < 10, then

SL(T ) ≤ (n− 2)2
√

log 2 ,

and the equality is attained if and only if T is the path graph.

(2) If n ≥ 10, then

SL(T ) ≤ (n− 1)
√

log(n− 1) ,

and the equality is attained if and only if T is the star graph.

Proof. Theorem 3.3 gives

SL(T ) ≤ max
{

(n− 2)2
√

log 2 , (n− 1)
√

log(n− 1)
}
,

Furthermore, the argument in the proof of Theorem 3.3 gives that if (n − 2)2
√

log 2 >

(n− 1)
√

log(n− 1) , then the equality is attained if and only if T is the path graph, and

that if (n− 2)2
√

log 2 < (n− 1)
√

log(n− 1) , then the equality is attained if and only if

T is the star graph.

If n = 3, then T = P3 = S3 and the inequality is, in fact, an equality. Assume now

n ≥ 4.

Let us consider the functions

U(s) =
s

s− 1

√
log s , V (s) = s− 1− 2 log s.

We have

U ′(s) =

(
log s

)−1/2

2(s− 1)2

(
s− 1− 2 log s

)
=

(
log s

)−1/2

2(s− 1)2
V (s).
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Since V ′ > 0 on (2,∞), the function V is increasing on (2,∞). Since V (4) > 0, we have

that V (s) ≥ V (4) > 0 for every s ∈ [4,∞), and so, U ′(s) > 0 for every s ∈ [4,∞).

Since U(9) > 2
√

log 2 , we have U(s) ≥ U(9) > 2
√

log 2 for every s ∈ [9,∞), and so

(n− 2)2
√

log 2 < (n− 1)
√

log(n− 1) for every n ≥ 10.

One can check that (n − 2)2
√

log 2 > (n − 1)
√

log(n− 1) for 3 < n < 10, and this

finishes the proof.

Proposition 3.6. Let G be a graph with 3 ≤ n ≤ 5 vertices. Then

SL(G) ≥ (n− 1)
√

log(n− 1) ,

and the equality is attained if and only if G is the star graph.

Proof. By Proposition 3.1, if G is minimal, then G is a tree. Let T be a tree with n

vertices. If n = 3, then T = P3 = S3. If n = 4 it is immediate to check that either T = S4

or T = P4 and

3.1 ≈ 3
√

log 3 = SL(S4) < SL(P4) = 4
√

log 2 ≈ 3.3.

If n = 5, then T = S5 and SL(T ) = 4
√

log 4 ≈ 4.7, or T = P5 and SL(T ) = 6
√

log 2 ≈ 5.0,

or the degree sequence of T is (3, 2, 1, 1, 1) and SL(T ) = 3
√

log 3 + 2
√

log 2 ≈ 4.8.

Lemma 3.7. If d ≥ 6,

d
√

log d > (d− 1)
√

log(d− 1) + 2
√

log 2 ,

and if 3 ≤ d ≤ 5,

d
√

log d < (d− 1)
√

log(d− 1) + 2
√

log 2 .

Proof. Since f(t) = t
√

log t is convex on [2,∞),

(d+ 1)
√

log(d+ 1)− d
√

log d > d
√

log d− (d− 1)
√

log(d− 1)

for every d ≥ 3. Thus, it suffices to check that

1.69 ≈ 6
√

log 6− 5
√

log 5 > 2
√

log 2 ≈ 1.67,

and

1.67 ≈ 2
√

log 2 > 5
√

log 5− 4
√

log 4 ≈ 1.63.
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Let n ≥ 6. If r =
⌈
n−2

3

⌉
and s = 3r − n+ 2, let us define z = (z1, z2, . . . , zn) as

• zj = 4 for every 1 ≤ j ≤ r − s,

• zj = 3 for every r − s < j ≤ r,

• zj = 1 for every r < j ≤ n.

Note that 0 ≤ s ≤ 2 ≤ r ≤ n− 4.

Theorem 3.8. Let G be a graph with n ≥ 6 vertices. If r =
⌈
n−2

3

⌉
and s = 3r − n + 2,

then

SL(G) ≥ 4(r − s)
√

log 4 + 3s
√

log 3 ,

and the equality is attained if and only if G is a tree and its degree sequence is z.

Proof. By Proposition 3.1, if G is minimal, then G is a tree. Suppose T is minimal for

SL and has maximum degree ∆.

Claim 1: ∆ ≤ 5. Suppose there is a vertex w with deg(w) = d ≥ 6. Then consider

any adjacent vertex v and any pendant vertex u in the connected component of T \ {wv}

containing w, and let

T ′ =
(
T \ {wv}

)
∪ {uv}.

Thus, in T ′, degT ′(w) = d− 1, degT ′(u) = 2 and, by Lemma 3.7,

SL(T )− SL(T ′) = d
√

log d− (d− 1)
√

log(d− 1)− 2
√

log 2 > 0,

leading to contradiction.

Claim 2: ∆ ≤ 4. Suppose there is a vertex w with deg(w) = 5. Let v1, v2 be two

vertices adjacent to w and u a pendant vertex in the connected component of T \
(
{wv1}∪

{wv2}
)

containing w, and let

T ′ = T \
(
{wv1} ∪ {wv2}

)
∪
(
{uv1} ∪ {uv2}

)
.

Thus, in T ′, degT ′(w) = 3, degT ′(u) = 3 and

SL(T )− SL(T ′) = 5
√

log 5− 6
√

log 3 > 0,

and we obtain a contradiction.

Claim 3: No vertex has degree 2. Suppose there is a vertex w with degree 2. Since∑
u∈V (G), du>1(du − 1) = n − 2 ≥ 4, there exists a vertex v in T distinct from w with

deg(v) > 1, and so, 2 ≤ deg(v) ≤ 4.
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• If deg(v) = 2, let u be the vertex adjacent to w such that w, v are in the same

connected component of T \ {u}, and let

T ′ =
(
T \ {wu}

)
∪ {uv}.

Thus, in T ′, degT ′(w) = 1, degT ′(v) = 3 and

SL(T )− SL(T ′) = 4
√

log 2− 3
√

log 3 > 0,

leading to contradiction.

• If deg(v) = 3, let u be the vertex adjacent to w such that w, v are in the same

connected component of T \ {u}, and let

T ′ =
(
T \ {wu}

)
∪ {uv}.

Thus, in T ′, degT ′(w) = 1, degT ′(v) = 4 and

SL(T )− SL(T ′) = 2
√

log 2 + 3
√

log 3− 4
√

log 4 > 0,

and we obtain a contradiction.

• If deg(v) = 4, let u be a vertex adjacent to v such that w, v are in the same connected

component of T \ {u} and let

T ′ =
(
T \ {vu}

)
∪ {uw}.

Thus, in T ′, degT ′(w) = 3, degT ′(v) = 3 and

SL(T )− SL(T ′) = 2
√

log 2 + 4
√

log 4− 6
√

log 3 > 0,

leading to contradiction.

Claim 4: there are at most two vertices with degree 3. Suppose there exist three

vertices v1, v2, v3 with deg(vi) = 3 for 1 ≤ i ≤ 3. Hence, there is a vertex, let us assume

it is v1, with two adjacent vertices, u1, u2, for which v1, v2, v3 are in the same connected

component of T \ {uj} for j = 1, 2. Let

T ′ = T \
(
{v1u1} ∪ {v1u2}

)
∪
(
{v2u1} ∪ {v3u2}

)
.

Thus, in T ′, degT ′(v1) = 1, degT ′(v2) = 4, degT ′(v3) = 4 and

SL(T )− SL(T ′) = 9
√

log 3− 8
√

log 4 > 0,
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and we obtain a contradiction.

Thus, from the claims above, for every vertex v with dv > 1, we have either dv = 3 or

dv = 4 with, at most, two vertices with degree 3. Since
∑

u∈V (G), du>1(du − 1) = n− 2, it

follows that the degree sequence of T is necessarily z.

Let 4 < ∆ < n − 2. If r =
⌈
n−∆−1

3

⌉
and s = 3r − n + ∆ + 1, let us define a =

(a1, a2, . . . , an) as

• a1 = ∆,

• aj = 4 for every 2 ≤ j ≤ r − s+ 1,

• aj = 3 for every r − s+ 1 < j ≤ r + 1,

• aj = 1 for every r + 1 < j ≤ n.

Note that 0 ≤ s ≤ r ≤ n− 6.

Theorem 3.9. Let G be a graph with n vertices, maximum degree ∆ and 4 < ∆ < n− 2.

If r =
⌈
n−∆−1

3

⌉
and s = 3r − n+ ∆ + 1, then

SL(G) ≥ ∆
√

log ∆ + 4(r − s)
√

log 4 + 3s
√

log 3 ,

and the equality is attained if and only if G is a tree and its degree sequence is a.

Proof. First, let us see that if G is a minimal for SL in the class of graphs with maximum

degree ∆, then G is a tree. Suppose w ∈ G with deg(w) = ∆. Then, if G is not a tree,

there is an edge uv ∈ E(G) (with u 6= w 6= v) such that G′ = G \ uv is connected. Hence,

SL(G′) < SL(G) and degG′(v) ≤ degG′(w) = ∆ for every v 6= w leading to contradiction.

Now, the same claims from the proof of Theorem 3.8 imply that for every vertex v 6= w,

3 ≤ deg(v) ≤ 4 and there are at most two vertices with degree 3. Therefore, the degree

sequence of G is necessarily a.

Remark 3.10. Let G be a graph with n vertices and maximum degree 3 ≤ ∆ ≤ n− 2.

• If ∆ = n− 2, then

SL(G) ≥ ∆
√

log ∆ + 2
√

log 2 ,

and the equality is attained if and only if G is a tree and its degree sequence is

(∆, 2, 1, . . . , 1).
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• If 4 = ∆ < n− 2 then, by Theorem 3.8,

SL(G) ≥ 4(r − s)
√

log 4 + 3s
√

log 3 ,

and the equality is attained if and only if G is a tree and its degree sequence is z.

• If 3 = ∆ < n−2, with the same argument from Claim 3 in the proof of Theorem 3.8,

we conclude that there is at most one vertex with degree 2. Thus, let r =
⌊
n−2

2

⌋
and

s = n−2−2r, (note that 0 ≤ s ≤ 1 < r ≤ n−4) and let us define b = (b1, b2, . . . , bn)

as

– bj = 3 for every 1 ≤ j ≤ r,

– bj = 2 for every r < j ≤ r + s,

– bj = 1 for every r + s < j ≤ n.

Then,

SL(G) ≥ 3r
√

log 3 + 2s
√

log 2 ,

and the equality is attained if and only if G is a tree and its degree sequence is b.
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[33] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975)

6609–6615.

-697-



[34] M. Randić, Novel graph theoretical approach to heteroatoms in QSAR, Chemometrics

Intel. Lab. Syst. 10 (1991) 213–227.
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