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Abstract

The concept of geometric-arithmetic index was introduced in the chemical graph
theory recently, but it has shown to be useful. The aim of this paper is to obtain new
upper bounds of the geometric-arithmetic index and characterize graphs extremal
with respect to them.

1 Introduction

A single number, representing a chemical structure in graph-theoretical terms via the

molecular graph, is called a topological descriptor and if it in addition correlates with a

molecular property it is called topological index, which is used to understand physico-

chemical properties of chemical compounds. Topological indices are interesting since they

capture some of the properties of a molecule in a single number. Hundreds of topological

indices have been introduced and studied, starting with the seminal work by Wiener in

which he used the sum of all shortest-path distances of a (molecular) graph for modeling

physical properties of alkanes (see [41]).

Topological indices based on end-vertex degrees of edges have been used over 40 years.

Among them, several indices are recognized to be useful tools in chemical researches.
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Probably, the best know such descriptors are the Randić connectivity index (R) and the

Zagreb indices.

The first and second Zagreb indices, denoted by M1 and M2, respectively, were intro-

duced by Gutman and Trinajstić in 1972 (see [15]) as

M1(G) =
∑

u∈V (G)

d2u, M2(G) =
∑

uv∈E(G)

dudv,

where uv denotes the edge of the graph G connecting the vertices u and v, and du is the

degree of the vertex u.

There is a vast amount of research on the Zagreb indices. For details of their chemical

applications and mathematical theory see [11], [12], [13], and the references therein.

In [19], [18], [22], the first and second variable Zagreb indices are defined as

Mα
1 (G) =

∑
u∈V (G)

dαu , Mα
2 (G) =

∑
uv∈E(G)

(dudv)
α,

with α ∈ R.

The concept of variable molecular descriptors was proposed as a new way of character-

izing heteroatoms in molecules (see [27], [28]), but also to assess the structural differences

(e.g., the relative role of carbon atoms of acyclic and cyclic parts in alkylcycloalkanes [29]).

The idea behind the variable molecular descriptors is that the variables are determined

during the regression so that the standard error of estimate for a particular studied prop-

erty is as small as possible (see, e.g., [22]).

In the paper of Gutman and Tošović [14], the correlation abilities of 20 vertex-degree-

based topological indices occurring in the chemical literature were tested for the case of

standard heats of formation and normal boiling points of octane isomers. It is remarkable

to realize that the second variable Zagreb index Mα
2 with exponent α = −1 (and to a

lesser extent with exponent α = −2) performs significantly better than the Randić index

(R = M−0.5
2 ).

The second variable Zagreb index is used in the structure-boiling point modeling of

benzenoid hydrocarbons [25]. Also, variable Zagreb indices exhibit a potential applica-

bility for deriving multi-linear regression models [7]. Various properties and relations of

these indices are discussed in several papers (see, e.g., [3], [18], [20], [36], [42], [43]).

Note that M2
1 is the first Zagreb index M1, M

−1
1 is the inverse index ID, M3

1 is the

forgotten index F , etc.; also, M
−1/2
2 is the usual Randić index, M1

2 is the second Zagreb

index M2, M
−1
2 is the modified Zagreb index, etc.
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Thegeneralsum-connectivityindexwasdefinedbyZhouandTrinajstícin[47]as

χα(G)=
uv∈E(G)

(du+dv)
α.

Notethatχ1 isthefirstZagrebindexM1,2χ1 istheharmonicindexH,χ
1/2

isthe

sum-connectivityindexχ,etc.

The(first)geometric-arithmeticindexGAisdefinedin[38]as

GA=GA(G)=
uv∈E(G)

√
dudv

1
2
(du+dv)

.

AlthoughGAwasintroducedin2009,therearemanypapersdealingwiththisindex(see,

e.g.,[4],[5],[6],[16],[21],[24],[26],[31],[35],[38]andthereferencestherein). There

areothergeometric-arithmeticindices,likeZp,q(Z0,1=GA),buttheresultsin[5,p.598]

showthattheGAindexgathersthesameinformationonobservedmoleculeasotherZp,q

indices.

Althoughonlyabout1000benzenoidhydrocarbonsareknown,thenumberofpos-

siblebenzenoidhydrocarbonsishuge. Forinstance,thenumberofpossiblebenzenoid

hydrocarbonswith35benzeneringsis5.85·1021[37].Therefore,modelingtheirphysico-

chemicalpropertiesisimportantinordertopredictpropertiesofcurrentlyunknown

species. ThepredictingabilityoftheGAindexcomparedwithRandícindexisreason-

ablybetter(see[5,Table1]).Thegraphicin[5,Fig.7](from[5,Table2],[33])showsthat

thereexistsagoodlinearcorrelationbetweenGAandtheheatofformationofbenzenoid

hydrocarbons(thecorrelationcoefficientisequalto0.972).

Furthermore,theimprovementinprediction withGA indexcomparingto Randíc

indexinthecaseofstandardenthalpyofvaporizationismorethan9%.Thatiswhyone

canthinkthatGAindexshouldbeconsideredintheQSPR/QSARresearches.

Throughoutthiswork,G=(V(G),E(G))denotesa(non-oriented)finitesimple(with-

out multipleedgesandloops)suchthateachconnectedconnectedcomponentofGhas

atleastanedge. Wedenoteby∆,δ,n,mthemaximumdegree,theminimumdegreeand

thecardinalityofthesetofverticesandedgesofG,respectively.

A maintopicinthestudyoftopologicalindicesistofindboundsoftheindices

involvingseveralparameters.[23]provesthat manyupperboundsofGAarenotuseful,

andshowstheimportanceofobtainingupperboundsofGAlessthanm. Withthisaim,

weobtaininthispaperseveralnewupperboundsofGA,whicharelessthanm,andwe

characterizegraphsextremalwithrespecttothem.
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2 Upper bounds involving other indices

Theorem 2.1. If G is a graph with m edges and maximum degree ∆, then

GA(G) ≤ m− M1(G)− 2M
1/2
2 (G)

2∆
,

and the equality is attained if and only if G is regular.

Proof. We have

2
√
dudv

du + dv
+

(√
du −

√
dv
)2

du + dv
= 1,

GA(G) +
∑

uv∈E(G)

(√
du −

√
dv
)2

du + dv
= m.

Since

∑
uv∈E(G)

(√
du −

√
dv
)2

du + dv
≥ 1

2∆

∑
uv∈E(G)

(√
du −

√
dv
)2

=
1

2∆

( ∑
uv∈E(G)

(
du + dv

)
− 2

∑
uv∈E(G)

√
dudv

)
=
M1(G)− 2M

1/2
2 (G)

2∆
,

we conclude

GA(G) ≤ m− M1(G)− 2M
1/2
2 (G)

2∆
.

If G is regular, then

m− M1(G)− 2M
1/2
2 (G)

2∆
= m− 2∆m− 2∆m

2∆
= m = GA(G).

If the equality is attained, then du + dv = 2∆ for every uv ∈ E(G); thus, du = ∆ for

every u ∈ V (G), and G is a regular graph.

Remark 2.2. Since Cauchy-Schwarz inequality gives

M1(G)− 2M
1/2
2 (G) =

∑
uv∈E(G)

(√
du −

√
dv
)2

=
∑

uv∈E(G)

(√
du −

√
dv
)2 1

m

∑
uv∈E(G)

12

≥ 1

m

( ∑
uv∈E(G)

∣∣√du −
√
dv
∣∣)2,

we have M1(G)− 2M
1/2
2 (G) ≥ 0.
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As usual, let us define

∆e = max
uv∈E(G)

(du + dv), δe = max
uv∈E(G)

(du + dv).

Thus, the argument in the proof of Theorem 2.1 has the following consequence.

Theorem 2.3. If G is a graph with m edges and maximum degree ∆, then

GA(G) ≤ m− M1(G)− 2M
1/2
2 (G)

∆e

,

and the equality is attained if and only if the line graph of G is regular.

The misbalance rodeg index is defined as

MR (G) =
∑

uv∈E(G)

∣∣√du −
√
dv
∣∣.

This is a significant predictor of enthalpy of vaporization and of standard enthalpy of

vaporization for octane isomers (see [39]).

Since Remark 2.2 gives

M1(G)− 2M
1/2
2 (G) ≥ 1

m
MR (G)2,

Theorems 2.1 and 2.3 have the following consequences, respectively.

Corollary 2.4. If G is a graph with m edges and maximum degree ∆, then

GA(G) ≤ m− 1

2∆m
MR (G)2,

and the equality is attained if and only if G is regular.

Corollary 2.5. If G is a graph with m edges and maximum degree ∆, then

GA(G) ≤ m− 1

∆em
MR (G)2,

and the equality is attained if and only if the line graph of G is regular.

In the same paper, where Zagreb indices were introduced, the forgotten topological

index (or F-index ) is defined as

F (G) =
∑

u∈V (G)

d3u.
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Both the forgotten topological index and the first Zagreb index were employed in the

formulas for total π-electron energy in [15], as a measure of branching extent of the

carbon-atom skeleton of the underlying molecule. However, this index never got attention

except recently, when Furtula and Gutman in [10] established some basic properties of

the F-index and showed that its predictive ability is almost similar to that of first Zagreb

index and for the entropy and acetic factor, both of them yield correlation coefficients

greater than 0.95. Besides, [10] pointed out the importance of the F-index: it can be used

to obtain a high accuracy of the prediction of logarithm of the octanol-water partition

coefficient (see also [1]).

The Albertson index is defined in [2] as

Alb(G) =
∑

uv∈E(G)

|du − dv| .

This index is much used as a measure of non-regularity of a graph. The Albertson index

is also known as misbalance deg index (see [39] and [40]). This is a significant predictor

of standard enthalpy of vaporization for octane isomers (see [39]).

Theorem 2.6. If G is a graph with maximum degree ∆ and minimum degree δ, then

GA(G) ≤ F (G)

2δ2
− Alb(G)2

δM1(G)
,

and the equality is attained if and only if G is regular.

Proof. Since

d2u + d2v
2δ

≥ d2u + d2v
du + dv

=
2dudv
du + dv

+
(du − dv)2

du + dv
≥ 2δ

√
dudv

du + dv
+

(du − dv)2

du + dv
,

for every uv ∈ E(G), and

F (G) =
∑

u∈V (G)

d3u =
∑

uv∈E(G)

(
d2u + d2v

)
,

we have
F (G)

2δ
≥ δ GA(G) +

∑
uv∈E(G)

(du − dv)2

du + dv
.

Cauchy-Schwarz inequality gives

Alb(G)2 =
( ∑
uv∈E(G)

|du − dv|
(du + dv)1/2

(du + dv)
1/2
)2

≤
( ∑
uv∈E(G)

(du − dv)2

du + dv

)( ∑
uv∈E(G)

(du + dv)
)

= M1(G)
∑

uv∈E(G)

(du − dv)2

du + dv
,
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and we conclude
F (G)

2δ
≥ δ GA(G) +

Alb(G)2

M1(G)
.

If the graph is regular, then

F (G)

2δ2
− Alb(G)2

δM1(G)
=
F (G)

2δ2
=

2δ2m

2δ2
= m = GA(G).

The previous argument gives that if the bound is attained, then du+dv = 2δ for every

uv ∈ E(G). Thus, du = δ for every u ∈ V (G) and G is regular.

The argument in the proof of Theorem has the following consequence.

Theorem 2.7. If G is a graph with maximum degree ∆ and minimum degree δ, then

GA(G) ≤ F (G)

δe δ
− Alb(G)2

δM1(G)
,

and the equality is attained if and only if the line graph of G is regular.

The following Kober’s inequalities appear in [17] (see also [46, Lemma 1]).

Lemma 2.8. If aj > 0 for 1 ≤ j ≤ k, then

k∑
j=1

aj + k(k − 1)
( k∏
j=1

aj

)1/k
≤
( k∑
j=1

√
aj

)2
≤ (k − 1)

k∑
j=1

aj + k
( k∏
j=1

aj

)1/k
.

Another remarkable topological descriptor is the harmonic index, defined in [9] as

H(G) =
∑

uv∈E(G)

2

du + dv
,

This index has attracted a great interest in the lasts years (see, e.g., [44], [45] and [32]).

Multiplicative versions of the first and the second Zagreb indices, Π1 and Π2, were

first considered in [34], defined as

Π1(G) =
∏

u∈V (G)

d2u, Π2(G) =
∏

uv∈E(G)

dudv.

Also, the multiplicative sum–Zagreb index Π∗1 was introduced in [8] as

Π∗1(G) =
∏

uv∈E(G)

(du + dv).

Theorem 2.9. If G is a graph with m edges, then

GA(G) ≤M
1/2
2 (G)H(G)− 2m(m− 1)

Π2(G)1/(2m)

Π∗1(G)1/m
,

and the equality is attained for every regular graph.
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Proof. The first inequality in Lemma 2.8 and Cauchy-Schwarz inequality give

∑
uv∈E(G)

√
dudv

du + dv
+m(m− 1)

( ∏
uv∈E(G)

√
dudv

du + dv

)1/m
≤
( ∑
uv∈E(G)

(dudv)
1/4

(du + dv)1/2

)2
≤

∑
uv∈E(G)

(dudv)
1/2

∑
uv∈E(G)

1

du + dv
= M

1/2
2 (G)

1

2
H(G),

GA(G) + 2m(m− 1)
Π2(G)1/(2m)

Π∗1(G)1/m
≤M

1/2
2 (G)H(G).

If G is a regular graph, then

M
1/2
2 (G)H(G)− 2m(m− 1)

Π2(G)1/(2m)

Π∗1(G)1/m

= ∆m
m

∆
− 2m(m− 1)

(∆2m)1/(2m)

((2∆)m)1/m
= m = GA(G).

3 Other upper bounds

We obtain in this section additional upper bounds of GA which do not involve other

topological indices.

Theorem 3.1. Let G be a graph with m edges, minimum degree δ, maximum degree δ+1,

and α the cardinality of the set of edges uv ∈ E(G) with du + dv = 2δ + 1. Then α is an

even integer and

GA(G) = m− α + α
2
√
δ(δ + 1)

2δ + 1
.

Proof. Since the minimum degree of G is δ and its maximum degree is δ + 1, we have

du + dv ∈ {2δ, 2δ + 1, 2δ + 2} for every uv ∈ E(G). If du + dv = 2δ or du + dv = 2δ + 2,

then du = dv = δ or du = dv = δ + 1, respectively, and

2
√
dudv

du + dv
= 1.

Since there are exactly α edges uv ∈ E(G) with du + dv = 2δ + 1 and m− α edges with

du + dv ∈ {2δ, 2δ + 2}, we have

GA(G) = m− α + α
2
√
δ(δ + 1)

2δ + 1
.

Seeking for a contradiction assume that α is an odd integer.
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Let G1 be the subgraph of G induced by the n1 vertices with degree δ in V (G),

and denote by m1 the cardinality of the set of edges of G1. Handshaking Lemma gives

n1δ − α = 2m1. Since α is an odd integer, δ is also an odd integer.

Let G2 be the subgraph of G induced by the n2 vertices with degree δ + 1 in V (G),

and denote by m2 the cardinality of the set of edges of G2. Handshaking Lemma gives

n2(δ+1)−α = 2m2. Since α is an odd integer, δ+1 is also an even integer, a contradiction.

Thus, we conclude that α is an even integer.

Theorem 3.2. Let G be a connected graph with m edges, minimum degree δ and maximum

degree δ + 1. Then

GA(G) ≤ m− 2 +
4
√
δ(δ + 1)

2δ + 1
,

and the equality is attained for each δ.

Proof. Denote by α the cardinality of the set of edges uv ∈ E(G) with du + dv = 2δ + 1.

Theorem 3.1 gives that α is an even integer. Since G is a connected graph, we have α 6= 0

and so, α ≥ 2. Since
2
√
δ(δ + 1)

2δ + 1
< 1

and α ≥ 2, Theorem 3.1 gives

GA(G) = m− α + α
2
√
δ(δ + 1)

2δ + 1
≤ m− 2 +

4
√
δ(δ + 1)

2δ + 1
.

Given a fixed δ, let us consider the complete graphs Kδ+1 and Kδ+2 with δ + 1 and

δ + 2 vertices, respectively. Fix u1, u2 ∈ V (Kδ+1) and v1, v2 ∈ V (Kδ+2), and denote

by K ′δ+1 and K ′δ+2 the graphs obtained from Kδ+1 and Kδ+2 by deleting the edges u1u2

and v1v2, respectively. Let Γδ be the graph with V (Γδ) = V (K ′δ+1) ∪ V (K ′δ+2) and

E(Γδ) = E(K ′δ+1)∪E(K ′δ+2)∪{u1v1}∪ {u2v2}. Thus, Γδ has δ2 + 2δ+ 1 edges, minimum

degree δ, maximum degree δ + 1, and Theorem 3.1 gives

GA(Γδ) = δ2 + 2δ − 1 +
4
√
δ(δ + 1)

2δ + 1
.

Hence, the equality is attained for each δ.

We have the following consequence for chemical graphs.

Corollary 3.3. Let G be a connected chemical graph with m edges, minimum degree δ

and maximum degree δ + 1. Then

GA(G) ≤ m− 2 +
8
√

3

7
,
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and the inequality is sharp.

Proof. Since G is a chemical graph, we have 1 ≤ δ ≤ 3. Since

max
{4
√

2

3
,

4
√

6

5
,

4
√

12

7

}
=

8
√

3

7
,

Theorem 3.2 gives the desired inequality.

The graph Γ3 in the proof of Theorem 3.2 gives that the equality is attained.

The following technical results appear in [30, Lemma 2.2 and Corollary 2.3].

Lemma 3.4. Let f be the function f(t) = 2t
1+t2

on the interval [0,∞). Then f strictly

increases in [0, 1], strictly decreases in [1,∞), f(t) = 1 if and only if t = 1 and f(t) = f(t0)

if and only if either t = t0 or t = t−10 .

Corollary 3.5. Let g be the function g(x, y) =
2
√
xy

x+y
with 0 < a ≤ x, y ≤ b. Then

2
√
ab

a+ b
≤ g(x, y) ≤ 1.

The equality in the lower bound is attained if and only if either x = a and y = b, or x = b

and y = a, and the equality in the upper bound is attained if and only if x = y. Besides,

g(x, y) = g(x′, y′) if and only if x/y is equal to either x′/y′ or y′/x′.

Theorem 3.6. Let G be a graph with m edges, minimum degree δ and maximum degree

∆ > δ+1. Denote by α0, α1, α2, the cardinality of the subsets of edges A0 = {uv ∈ E(G) :

du = δ, dv = ∆}, A1 = {uv ∈ E(G) : du = δ, δ < dv < ∆}, A2 = {uv ∈ E(G) : du =

∆, δ < dv < ∆}, respectively. Then

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1
.

Proof. Lemma 3.4 gives that the function

2
√
δdv

δ + dv
= f

((dv
δ

)1/2)
is decreasing in dv ∈ [δ,∆] and so,

2
√
δdv

δ + dv
≤

2
√
δ(δ + 1)

2δ + 1
,

for every uv ∈ A1.
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In a similar way, Lemma 3.4 gives that the function

2
√

∆dv
∆ + dv

= f
((dv

∆

)1/2)
is increasing in dv ∈ [δ,∆] and so,

2
√

∆dv
∆ + dv

≤
2
√

∆(∆− 1)

2∆− 1
,

for every uv ∈ A2.

Since
2
√
dudv

du + dv
≤ 1

for every uv ∈ E(G), we have

GA(G) =
∑

uv∈E(G)\A0∪A1∪A2

2
√
dudv

du + dv
+
∑
uv∈A0

2
√
dudv

du + dv
+
∑
uv∈A1

2
√
dudv

du + dv
+
∑
uv∈A2

2
√
dudv

du + dv

=
∑

uv∈E(G)\A0∪A1∪A2

2
√
dudv

du + dv
+
∑
uv∈A0

2
√

∆δ

∆ + δ
+
∑
uv∈A1

2
√
δdv

δ + dv
+
∑
uv∈A2

2
√

∆dv
∆ + dv

≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1
.

Theorem 3.7. Let G be a connected graph with m edges, minimum degree δ and maximum

degree ∆ > δ + 1. Then

GA(G) ≤ m−min
{

2−
2
√
δ(δ + 1)

2δ + 1
−

2
√

∆(∆− 1)

2∆− 1
, 1− 2

√
∆δ

∆ + δ

}
.

Proof. As in Theorem 3.6, let us denote by α0, α1, α2, the cardinality of the subsets of

edges A0 = {uv ∈ E(G) : du = δ, dv = ∆}, A1 = {uv ∈ E(G) : du = δ, δ < dv < ∆},

A2 = {uv ∈ E(G) : du = ∆, δ < dv < ∆}.

Since G is a connected graph, we have two possibilities: A0 6= ∅, or A1 6= ∅ and A2 6= ∅.

In the first case, α0 ≥ 1 and, since

2
√
dudv

du + dv
≤ 1,

Theorem 3.6 gives

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1
.

≤ m− 1 +
2
√

∆δ

∆ + δ
.
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In the second case, α1, α2 ≥ 1 and Theorem 3.6 gives

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1
.

≤ m− 2 +
2
√
δ(δ + 1)

2δ + 1
+

2
√

∆(∆− 1)

2∆− 1
.

We need the following technical result.

Lemma 3.8. If u(t) = 2
√
t

1+t
, then

(1) u(t) ≤ 1− 1
8
(t− 1)2 for every t ∈ [0, 1],

(2) u(t) ≥ 1− 1
5
(t− 1)2 for every t ∈ [0.6, 1].

Proof. We have for every s ∈ [0, 1] and t = 1− s ∈ [0, 1],

−s3(s3 − 4s2 − 12s+ 64) ≤ 0,

256− 256s− (s2 − 4s+ 4)(s4 − 16s2 + 64) ≤ 0,

4(1− s)− (2− s)2
(

1− 1

8
s2
)2
≤ 0,

4t− (1 + t)2
(

1− 1

8
(t− 1)2

)2
≤ 0,

u(t) =
2
√
t

1 + t
≤ 1− 1

8
(t− 1)2.

Let s0 = 0.40568698... be the unique real solution of −s3 + 7s2 − 15s + 5 = 0 in the

interval [0, 1]. We have for every s ∈ [0, 0.4] ⊂ [0, s0] and t = 1− s ∈ [0.6, 1] ⊂ [1− s0, 1],

s2(s+ 3)(−s3 + 7s2 − 15s+ 5) ≥ 0,

100− 100s− (s2 − 4s+ 4)(s4 − 10s2 + 25) ≥ 0,

4(1− s)− (2− s)2
(

1− 1

5
s2
)2
≥ 0,

4t− (1 + t)2
(

1− 1

5
(t− 1)2

)2
≥ 0,

u(t) =
2
√
t

1 + t
≥ 1− 1

5
(t− 1)2.

Theorem 3.9. Let G be a connected graph with m edges, minimum degree δ and maximum

degree ∆ > δ + 1.

(1) If δ is an even integer, then

GA(G) ≤ m−min
{

2− 2
√

∆δ

∆ + δ
−

2
√
δ(δ + 1)

2δ + 1
, 3−

4
√
δ(δ + 1)

2δ + 1
−

2
√

∆(∆− 1)

2∆− 1

}
.
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(2) If ∆ is an even integer, then

GA(G) ≤ m−min
{

2− 2
√

∆δ

∆ + δ
−

2
√

∆(∆− 1)

2∆− 1
, 3−

2
√
δ(δ + 1)

2δ + 1
−

4
√

∆(∆− 1)

2∆− 1

}
.

(3) If δ and ∆ are even integers, then

GA(G) ≤ m− 4 +
4
√
δ(δ + 1)

2δ + 1
+

4
√

∆(∆− 1)

2∆− 1
.

Proof. Assume first that δ is an even integer. As in Theorem 3.6, let us denote by

α0, α1, α2, the cardinality of the subsets of edges A0 = {uv ∈ E(G) : du = δ, dv = ∆},

A1 = {uv ∈ E(G) : du = δ, δ < dv < ∆}, A2 = {uv ∈ E(G) : du = ∆, δ < dv < ∆}.

Let G1 be the subgraph of G induced by the n1 vertices with degree δ in V (G),

and denote by m1 the cardinality of the set of edges of G1. Handshaking Lemma gives

n1δ − α0 − α1 = 2m1. Since δ is an even integer, α0 + α1 is also an even integer; since G

is a connected graph, we have α0 + α1 ≥ 1 and so, α0 + α1 ≥ 2.

If α0 ≥ 2, then Corollary 3.5 gives

2
√
dudv

du + dv
≤ 1,

and we have, by Theorem 3.6,

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1

≤ m− α0 + α0
2
√

∆δ

∆ + δ
≤ m− 2 + 2

2
√

∆δ

∆ + δ
.

If α0 = 1, then α1 ≥ 1 and Theorem 3.6 gives

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1

≤ m− 2− α2 +
2
√

∆δ

∆ + δ
+

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1

≤ m− 2 +
2
√

∆δ

∆ + δ
+

2
√
δ(δ + 1)

2δ + 1
.

If α0 = 0, then α1 ≥ 2 and α2 ≥ 1, and Theorem 3.6 gives

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1

≤ m− 3 + 2
2
√
δ(δ + 1)

2δ + 1
+

2
√

∆(∆− 1)

2∆− 1
.

Since Corollary 3.5 gives
2
√

∆δ

∆ + δ
≤

2
√
δ(δ + 1)

2δ + 1
,
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we have

GA(G) ≤ m+ max
{
− 2 +

2
√

∆δ

∆ + δ
+

2
√
δ(δ + 1)

2δ + 1
, −3 +

4
√
δ(δ + 1)

2δ + 1
+

2
√

∆(∆− 1)

2∆− 1

}
.

Assume now that ∆ is an even integer. Let G2 be the subgraph of G induced by the

n2 vertices with degree ∆ in V (G), and denote by m2 the cardinality of the set of edges

of G2. Handshaking Lemma gives n2∆ − α0 − α2 = 2m2. Since ∆ is an even integer,

α0 + α2 is also an even integer; since G is a connected graph, we have α0 + α2 ≥ 1 and

so, α0 + α2 ≥ 2.

If α0 ≥ 2, then Theorem 3.6 gives

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1

≤ m− 2 + 2
2
√

∆δ

∆ + δ
.

If α0 = 1, then α2 ≥ 1 and Theorem 3.6 gives

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1

≤ m− 2 +
2
√

∆δ

∆ + δ
+

2
√

∆(∆− 1)

2∆− 1
.

If α0 = 0, then α2 ≥ 2 and α1 ≥ 1, and Theorem 3.6 gives

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1

≤ m− 3 +
2
√
δ(δ + 1)

2δ + 1
+ 2

2
√

∆(∆− 1)

2∆− 1
.

Since
2
√

∆δ

∆ + δ
≤

2
√

∆(∆− 1)

2∆− 1
,

we have

GA(G) ≤ m+ max
{
− 2 +

2
√

∆δ

∆ + δ
+

2
√

∆(∆− 1)

2∆− 1
, −3 +

2
√
δ(δ + 1)

2δ + 1
+

4
√

∆(∆− 1)

2∆− 1

}
.

Finally, assume that δ and ∆ are even integers. The previous arguments give α0+α1 ≥

2 and α0 + α2 ≥ 2.

If α0 ≥ 2, then Theorem 3.6 gives

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1

≤ m− 2 + 2
2
√

∆δ

∆ + δ
.
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If α0 = 1, then α1, α2 ≥ 1 and Theorem 3.6 gives

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1

≤ m− 3 +
2
√

∆δ

∆ + δ
+

2
√
δ(δ + 1)

2δ + 1
+

2
√

∆(∆− 1)

2∆− 1
.

If α0 = 0, then α1, α2 ≥ 2, and Theorem 3.6 gives

GA(G) ≤ m− α0 − α1 − α2 + α0
2
√

∆δ

∆ + δ
+ α1

2
√
δ(δ + 1)

2δ + 1
+ α2

2
√

∆(∆− 1)

2∆− 1

≤ m− 4 + 2
2
√
δ(δ + 1)

2δ + 1
+ 2

2
√

∆(∆− 1)

2∆− 1
.

We claim now

1 +
2
√

∆δ

∆ + δ
≤

2
√
δ(δ + 1)

2δ + 1
+

2
√

∆(∆− 1)

2∆− 1
.

Assuming that this inequality holds, we have

m− 2 + 2
2
√

∆δ

∆ + δ
≤ m− 3 +

2
√

∆δ

∆ + δ
+

2
√
δ(δ + 1)

2δ + 1
+

2
√

∆(∆− 1)

2∆− 1
,

m− 3 +
2
√

∆δ

∆ + δ
+

2
√
δ(δ + 1)

2δ + 1
+

2
√

∆(∆− 1)

2∆− 1
≤ m− 4 + 2

2
√
δ(δ + 1)

2δ + 1
+ 2

2
√

∆(∆− 1)

2∆− 1
,

and we conclude

GA(G) ≤ m− 4 +
4
√
δ(δ + 1)

2δ + 1
+

4
√

∆(∆− 1)

2∆− 1
.

Therefore, in order to finish the proof, it suffices to show

1 +
2
√

∆δ

∆ + δ
≤

2
√
δ(δ + 1)

2δ + 1
+

2
√

∆(∆− 1)

2∆− 1
,

u
( δ

δ + 1

)
+ u
(∆− 1

∆

)
≥ 1 + u

( δ
∆

)
,

where u(t) = 2
√
t

1+t
is the function in Lemma 3.8. Since u is an increasing function in [0, 1]

and ∆ ≥ δ + 2, we have

u
(∆− 1

∆

)
≥ u

(δ + 1

δ + 2

)
, u

( δ

δ + 2

)
≥ u

( δ
∆

)
.

Hence, it suffices to show

u
( δ

δ + 1

)
+ u
(δ + 1

δ + 2

)
≥ 1 + u

( δ

δ + 2

)
, (1)

for every δ ≥ 1.
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One can check that (1) holds for δ = 1, 2, 3. Let us prove that it holds for δ ≥ 4. Since

δ ≥ 4, we have
3(δ + 1)2 ≥ 2(δ + 2)2,

3/10

(δ + 2)2
≥ 1/5

(δ + 1)2
,

2− 1/5

(δ + 1)2
− 1/5

(δ + 2)2
≥ 2− 1/2

(δ + 2)2
.

Since (δ + 1)/(δ + 2) ≥ δ/(δ + 1) ≥ 4/5 > 0.6, Lemma 3.8 gives

u
( δ

δ + 1

)
+ u
(δ + 1

δ + 2

)
≥ 1− 1

5

( δ

δ + 1
− 1
)2

+ 1− 1

5

(δ + 1

δ + 2
− 1
)2

= 2− 1/5

(δ + 1)2
− 1/5

(δ + 2)2
≥ 2− 1/2

(δ + 2)2

= 1 + 1− 1

8

( δ

δ + 2
− 1
)2
≥ 1 + u

( δ

δ + 2

)
.

These inequalities give (1) for δ ≥ 4, and the proof is finished.

We can deduce from Theorem 3.9 the following result with a nicer statement.

Corollary 3.10. Let G be a connected graph with m edges, minimum degree δ and max-

imum degree ∆ > δ + 1.

(1) If δ is an even integer, then

GA(G) ≤ m− 1 +
2
√
δ(δ + 1)

2δ + 1
.

(2) If ∆ is an even integer, then

GA(G) ≤ m− 1 +
2
√

∆(∆− 1)

2∆− 1
.

(3) If δ and ∆ are even integers, then

GA(G) ≤ m− 4 +
4
√
δ(δ + 1)

2δ + 1
+

4
√

∆(∆− 1)

2∆− 1
.

Proof. Since
2
√

∆δ

∆ + δ
≤ 1,

we have

2− 2
√

∆δ

∆ + δ
−

2
√
δ(δ + 1)

2δ + 1
≥ 1−

2
√
δ(δ + 1)

2δ + 1
.

Since
2
√
δ(δ + 1)

2δ + 1
≤ 1,

2
√

∆(∆− 1)

2∆− 1
≤ 1,
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we have

3−
4
√
δ(δ + 1)

2δ + 1
−

2
√

∆(∆− 1)

2∆− 1
≥ 1−

2
√
δ(δ + 1)

2δ + 1
.

Thus, Theorem 3.9 gives (1).

Similarly,

2− 2
√

∆δ

∆ + δ
−

2
√

∆(∆− 1)

2∆− 1
≥ 1−

2
√

∆(∆− 1)

2∆− 1

and

3−
2
√
δ(δ + 1)

2δ + 1
−

4
√

∆(∆− 1)

2∆− 1
≥ 1−

2
√

∆(∆− 1)

2∆− 1
.

Thus, Theorem 3.9 gives (2).
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