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Abstract

The concept of geometric-arithmetic index was introduced in the chemical graph
theory recently, but it has shown to be useful. The aim of this paper is to obtain new
upper bounds of the geometric-arithmetic index and characterize graphs extremal
with respect to them.

1 Introduction

A single number, representing a chemical structure in graph-theoretical terms via the
molecular graph, is called a topological descriptor and if it in addition correlates with a
molecular property it is called topological index, which is used to understand physico-
chemical properties of chemical compounds. Topological indices are interesting since they
capture some of the properties of a molecule in a single number. Hundreds of topological
indices have been introduced and studied, starting with the seminal work by Wiener in
which he used the sum of all shortest-path distances of a (molecular) graph for modeling
physical properties of alkanes (see [41]).

Topological indices based on end-vertex degrees of edges have been used over 40 years.

Among them, several indices are recognized to be useful tools in chemical researches.
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Probably, the best know such descriptors are the Randié¢ connectivity index (R) and the
Zagreb indices.
The first and second Zagreb indices, denoted by M; and My, respectively, were intro-
duced by Gutman and Trinajsti¢ in 1972 (see [15]) as
M{(G)= > d2,  MyG)= > dud,
uev (@) weB(G)
where uv denotes the edge of the graph G connecting the vertices u and v, and d,, is the
degree of the vertex u.

There is a vast amount of research on the Zagreb indices. For details of their chemical
applications and mathematical theory see [11], [12], [13], and the references therein.

In [19], [18], [22], the first and second variable Zagreb indices are defined as

MG = Y di, ME(G)= D (dudy)?,
wev (@) weE(G)
with o € R.

The concept of variable molecular descriptors was proposed as a new way of character-
izing heteroatoms in molecules (see [27], [28]), but also to assess the structural differences
(e.g., the relative role of carbon atoms of acyclic and cyclic parts in alkylcycloalkanes [29]).
The idea behind the variable molecular descriptors is that the variables are determined
during the regression so that the standard error of estimate for a particular studied prop-
erty is as small as possible (see, e.g., [22]).

In the paper of Gutman and Tosovié [14], the correlation abilities of 20 vertex-degree-
based topological indices occurring in the chemical literature were tested for the case of

standard heats of formation and normal boiling points of octane isomers. It is remarkable

to realize that the second variable Zagreb index Mg with exponent o = —1 (and to a
lesser extent with exponent ov = —2) performs significantly better than the Randi¢ index
(R = M;%).

The second variable Zagreb index is used in the structure-boiling point modeling of
benzenoid hydrocarbons [25]. Also, variable Zagreb indices exhibit a potential applica-
bility for deriving multi-linear regression models [7]. Various properties and relations of
these indices are discussed in several papers (see, e.g., [3], [18], [20], [36], [42], [43]).

Note that M7 is the first Zagreb index M;, M; ' is the inverse index ID, M3 is the
forgotten index F', etc.; also, M{l/z is the usual Randié index, Mj is the second Zagreb

index Mo, ]Wz’l is the modified Zagreb index, etc.
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The general sum-connectivity inder was defined by Zhou and Trinajstié in [47] as

Xa(G) = D (du+d.)™.
uvE E(G)
Note that x, is the first Zagreb index M;, 2x , is the harmonic index H, x 2 is the

sum-connectivity index y, etc.
The (first) geometric-arithmetic index G A is defined in [38] as

Vd,d,
GA=GA(G) = _—
@ uvezE%G)%(dwdu)

Although G A was introduced in 2009, there are many papers dealing with this index (see,
e.g., [4], [5], [6], [16], [21], [24], [26], [31], [35], [38] and the references therein). There
are other geometric-arithmetic indices, like Z,, (Zo,1 = G A), but the results in [5, p.598]
show that the G A index gathers the same information on observed molecule as other Z, 4
indices.

Although only about 1000 benzenoid hydrocarbons are known, the number of pos-
sible benzenoid hydrocarbons is huge. For instance, the number of possible benzenoid
hydrocarbons with 35 benzene rings is 5.85 - 102! [37]. Therefore, modeling their physico-
chemical properties is important in order to predict properties of currently unknown
species. The predicting ability of the GA index compared with Randié¢ index is reason-
ably better (see [5, Table 1]). The graphic in [5, Fig.7] (from [5, Table 2], [33]) shows that
there exists a good linear correlation between G A and the heat of formation of benzenoid
hydrocarbons (the correlation coefficient is equal to 0.972).

Furthermore, the improvement in prediction with GA index comparing to Randié
index in the case of standard enthalpy of vaporization is more than 9%. That is why one
can think that GA index should be considered in the QSPR/QSAR researches.

Throughout this work, G = (V(G), E(G)) denotes a (non-oriented) finite simple (with-
out multiple edges and loops) such that each connected connected component of G has
at least an edge. We denote by A, 4, n, m the maximum degree, the minimum degree and
the cardinality of the set of vertices and edges of G, respectively.

A main topic in the study of topological indices is to find bounds of the indices
involving several parameters. [23] proves that many upper bounds of GA are not useful,
and shows the importance of obtaining upper bounds of GA less than m. With this aim,
we obtain in this paper several new upper bounds of GA, which are less than m, and we

characterize graphs extremal with respect to them.
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2 Upper bounds involving other indices

Theorem 2.1. If G is a graph with m edges and maximum degree A, then

y _ y 1/2
GA@) < m - MO -2G)

and the equality is attained if and only if G is reqular.

Proof. We have
2 V dudv (m - \/%)2

=1,
dy +d, dy, + d, '
(V& — V)*

weE(G)

Since

S WEVE) L LS (T Vay

weE(G) du +dy uUEE(C)
My (G) — 2M*(G)
du d'n -2 dudv ) ’
il T lrd) 23y ia—
weE(G) weE(G)

we conclude

M;(G) —2My*(G)

A(G) <m —
GA(G) <m 5A
If G is regular, then
/ M (G) — 2]\/[21/2(0) - 2Am —2Am
m — A =m— N =m = GA(G).

If the equality is attained, then d, 4+ d, = 2A for every uv € E(G); thus, d, = A for
every u € V(G), and G is a regular graph. ]

Remark 2.2. Since Cauchy-Schwarz inequality gives

My(G) = 2My%(G) = > (Ve — Vdy)*

weE(G)

= > (V- w2

quE((,) quE(C
LS - \ﬁ,)

m weE(G)

we have My (G) — 2ML*(G) > 0.
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As usual, let us define

A, = max (d,+d,), de = max (d, +d,).
weE(G) wveE(G)

Thus, the argument in the proof of Theorem 2.1 has the following consequence.

Theorem 2.3. If G is a graph with m edges and mazimum degree A, then

y _ 1/2
GA(G) < m - MO =24°G)

and the equality is attained if and only if the line graph of G is regular.

The misbalance rodeg indez is defined as

MR(G)= > |Vd,—/d,

weE(G)

This is a significant predictor of enthalpy of vaporization and of standard enthalpy of
vaporization for octane isomers (see [39]).

Since Remark 2.2 gives
1/2 1 2
M (G) — 2M,""(G) > o MR (G)?,
Theorems 2.1 and 2.3 have the following consequences, respectively.
Corollary 2.4. If G is a graph with m edges and maximum degree A, then
1
GA(G) <m — —— MR (G)?
(G) £ m— 53— MR(G),

and the equality is attained if and only if G is reqular.

Corollary 2.5. If G is a graph with m edges and mazximum degree A, then

1

GA(G) <m— x MR (G)?,

e

and the equality is attained if and only if the line graph of G is regular.

In the same paper, where Zagreb indices were introduced, the forgotten topological

index (or F-indez) is defined as

FG)= > d.

ueV(G)
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Both the forgotten topological index and the first Zagreb index were employed in the
formulas for total m-electron energy in [15], as a measure of branching extent of the
carbon-atom skeleton of the underlying molecule. However, this index never got attention
except recently, when Furtula and Gutman in [10] established some basic properties of
the F-index and showed that its predictive ability is almost similar to that of first Zagreb
index and for the entropy and acetic factor, both of them yield correlation coefficients
greater than 0.95. Besides, [10] pointed out the importance of the F-index: it can be used
to obtain a high accuracy of the prediction of logarithm of the octanol-water partition
coefficient (see also [1]).
The Albertson indez is defined in [2] as
AD(G) = D |dy —dy|.
weE(G)

This index is much used as a measure of non-regularity of a graph. The Albertson index
is also known as misbalance deg index (see [39] and [40]). This is a significant predictor

of standard enthalpy of vaporization for octane isomers (see [39]).

Theorem 2.6. If G is a graph with mazimum degree A and minimum degree §, then

F(G)  A(G)
S A S VAT

and the equality is attained if and only if G is reqular.
Proof. Since

B dd B 2dd, | (= d) | 20Vddy | (dy = d)
20 T dy+dy, dutd,  dutd, — dutdy  dutd,

for every uv € E(G), and

FG)= > di= > (d+d),

ueV(G) weE(G)

we have

£(G) >0GAG) + Y

20
weE(G)

(du - dv)2
dy, +dy

Cauchy-Schwarz inequality gives

2 _ |du — d| 2\?
Alb(G)* = ( Z ot )2 (dy +dy)" >
weE(G)

(X G wea)-wmo ¥ G

weE(G) weE(G) weE(G)
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and we conclude

If the graph is regular, then

F(G) ABG? F(G) 2*m
257 sML(G) 207~ apr - M~ GG

The previous argument gives that if the bound is attained, then d, +d, = 2§ for every

wv € E(G). Thus, d, = § for every u € V(G) and G is regular. |

The argument in the proof of Theorem has the following consequence.

Theorem 2.7. If G is a graph with mazimum degree A and minimum degree §, then

F(G)  Alb(G)?

< _
CAG) =55 TGy

and the equality is attained if and only if the line graph of G is regular.
The following Kober’s inequalities appear in [17] (see also [46, Lemma 1]).

Lemma 2.8. Ifa; >0 for 1 <j <k, then

k k 1/k k 2 k k 1/k
S a4k - 1)(Haj> < (Z@) <k-1Yq +k<Haj> .
=1 j=1 =1 =1 =1
Another remarkable topological descriptor is the harmonic indez, defined in [9] as
web(G) d + d
This index has attracted a great interest in the lasts years (see, e.g., [44], [45] and [32]).
Multiplicative versions of the first and the second Zagreb indices, II; and Ily, were
first considered in [34], defined as
I 2 me= ][ dd.
ueV(G) weE(G)
Also, the multiplicative sum-Zagreb index IT; was introduced in [8] as
@ = [[ (+d).
weF(G)
Theorem 2.9. If G is a graph with m edges, then

GA(G) < MYX(G) H(G) — 2m(m — )nggg)l/@m)

i (G)/m

and the equality is attained for every reqular graph.
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Proof. The first inequality in Lemma 2.8 and Cauchy-Schwarz inequality give

Vd.d, \/m>1/m§ 3 ((dudv)l)/f/2>2

+m(m —1) (

weE(G )du + dv weE(G) du + dv weE(G) du + dv
1
< 1/2 1/2 -
> (dudy) Z(Hd My (G) 5 H(G),
wel(G) weE(G)
HQ(G)I/(ZT”) 12

If G is a regular graph, then

MY2(G) H(G) — 2m(m — )H (G

(G)l/m
(AQm)l/(?m
(

(QA)m)l/m =m= GA(G)

= Am% —2m(m —1)—>———

3 Other upper bounds

We obtain in this section additional upper bounds of GA which do not involve other

topological indices.

Theorem 3.1. Let G be a graph with m edges, minimum degree §, mazimum degree §+1,
and « the cardinality of the set of edges uwv € E(G) with d,, + d, = 26 + 1. Then « is an
even integer and

_ 24/0(6+1)
GAG)=m—a+ Y

Proof. Since the minimum degree of G is § and its maximum degree is § + 1, we have
dy, +d, € {20,26 + 1,26 + 2} for every wv € E(G). If d, + d, = 25 or d,, + d, = 20 + 2,
then d, =d, =6 or d, = d, = § + 1, respectively, and

2v/d,d,

=1
dy + d,

Since there are exactly « edges uwv € F(G) with d, + d, = 26 + 1 and m — « edges with
dy +d, € {26,26 + 2}, we have

2,600 +1)

GAG)=m-a+a %5 11

Seeking for a contradiction assume that « is an odd integer.
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Let G; be the subgraph of G induced by the n; vertices with degree J in V(G),
and denote by m; the cardinality of the set of edges of G;. Handshaking Lemma gives
n1d — a = 2my. Since « is an odd integer, 0 is also an odd integer.

Let G be the subgraph of G induced by the ny vertices with degree 6 + 1 in V(G),
and denote by ms the cardinality of the set of edges of Go. Handshaking Lemma gives
n2(d+1)—a = 2my. Since « is an odd integer, §+1 is also an even integer, a contradiction.

Thus, we conclude that « is an even integer. |
Theorem 3.2. Let G be a connected graph with m edges, minimum degree 6 and maximum
degree § + 1. Then

4./6(6 + 1)
< — 7
GAG) <m -2+ W1

and the equality is attained for each §.
Proof. Denote by « the cardinality of the set of edges uv € E(G) with d,, + d, = 20 + 1.
Theorem 3.1 gives that « is an even integer. Since G is a connected graph, we have a # 0

and so, a > 2. Since
24/6(0 +1)
20+ 1
and a > 2, Theorem 3.1 gives

2,/0(6 +1) 4,/0(0 + 1)
= — — - K — — 7.
GAG)=m—-a+a Sl =™ 2+ %+ 1

Given a fixed 9§, let us consider the complete graphs Ksyq and Ksyo with 6 + 1 and
0 + 2 vertices, respectively. Fix uj,us € V(Ks41) and vy,v9 € V(Ksy2), and denote
by Kj,, and Kj,, the graphs obtained from K., and Kj.5 by deleting the edges ujus
and vyvs, respectively. Let T's be the graph with V(I's) = V(Kj,,) U V(Kj,,) and
E(Ts) = BE(K},,)UE(K},,) U{uv1 } U{ugvs}. Thus, s has 6% + 26 + 1 edges, minimum
degree 9, maximum degree § + 1, and Theorem 3.1 gives

44/6(6 +1)
ATs) =82 +20 -1+ Y —~—— 2
GA(Ts) =0"+26 + %1

Hence, the equality is attained for each ¢. |
We have the following consequence for chemical graphs.
Corollary 3.3. Let G be a connected chemical graph with m edges, minimum degree §

and mazimum degree § + 1. Then

GA(G)gm—2+¥,
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and the inequality is sharp.

Proof. Since G is a chemical graph, we have 1 < ¢ < 3. Since

max{% 46 Nﬁ}:m
375 7 7

Theorem 3.2 gives the desired inequality.

The graph I's in the proof of Theorem 3.2 gives that the equality is attained. |
The following technical results appear in [30, Lemma 2.2 and Corollary 2.3].

Lemma 3.4. Let f be the function f(t) = 1%2 on the interval [0,00). Then f strictly
increases in [0, 1], strictly decreases in [1,00), f(t) = 1 if and only ift = 1 and f(t) = f(to)

if and only if either t = to ort = t5".

Corollary 3.5. Let g be the function g(z,y) = 2V with 0 < a < y <b. Then

x+y
2V ab
< Jy) < 1.
PRARS 9(z,y) <

The equality in the lower bound is attained if and only if either x = a andy =b, orx = b
and y = a, and the equality in the upper bound is attained if and only if x = y. Besides,
g(z,y) = g(@,y') if and only if x/y is equal to either &' [y’ or y'/a’.

Theorem 3.6. Let G be a graph with m edges, minimum degree 0 and maximum degree
A > §+1. Denote by ag, aq, aa, the cardinality of the subsets of edges Ay = {uv € E(G) :
d, =6,d, = A}, Ay ={w € E(G): d, =94,0 <d, < A}, Ay = {ww € E(G) : d, =
A § < d, < A}, respectively. Then

2VAS N 2,/6(0+1) N 2/A(A-1)
A+s Tt 20+1 *ToA—1

GAG) <m—ap— a1 —as + o

Proof. Lemma 3.4 gives that the function

\/7” D\ 1/2
?5+6ju:f<<d)/)

is decreasing in d, € [, A] and so,

2V0d, _ 2./0(6 +1)
d+d, = 26+1 °

for every uv € A;.
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In a similar way, Lemma 3.4 gives that the function
WL (%))
A+d, A

is increasing in d, € [0, A] and so,

2VAd, _2/AA-T)

A+d, = 2A-1 7
for every uv € As.
Since
2 dudv
<1
dy+d, ~

for every uv € E(G), we have

2/d,d, 2/d,d, 2V/d,d, 2V/d,d,
Vdud, 3 Vdud, Vdud, Vdud,

GA(G) =
uwv€E(G)\AgUA1UA> du +dy uv€Ag du +dy uv€ Ay du +dy uv€ Az du+dy
2y dyd, 2V A 24/0d,, 2¢/Ad,
- D d,+d, 2« A+ Srd T X Atd
wweE(G)\AgUA1UA, Y wweAy wweA; Vo weAy v

IWAS 2,606 + 1) 2 /AA 1)
Ato "M T o5y T oA

<m-—ay—a; —ay+ q
]

Theorem 3.7. Let G be a connected graph with m edges, minimum degree 6 and mazimum

degree A > § + 1. Then

,_ 20+ _2/AR-T) | 2N
25+ 1 2A—1 ' A+d [

GA(G) <m —min {

Proof. As in Theorem 3.6, let us denote by ag, ay, as, the cardinality of the subsets of
edges Ag = {ww € E(G) : dy, =6,d, = A}, Ay = {w € E(G) : d, = 6,0 < d, < A},
Ay ={uw € E(G): d, =A,0 <d, < A}.

Since G is a connected graph, we have two possibilities: Ay # 0, or A; # () and A, # 0.

In the first case, ap > 1 and, since

Theorem 3.6 gives

2/AS 2,006+ 1) 2y/A(A-1)
e
GAG) Sm—ag—ar—az+ap F—s F a1 —or —— fa = g —.

2V A
A+§°

<m-1+
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In the second case, a1, as > 1 and Theorem 3.6 gives

2vAS 20/6(6 + 1) . 2/A(A =

GA(G)gm—ao—al—ag-i-aoAJr(S o 26+1 ay =
24/8
24 v/ ~(5 +1 2\/A
2041 2A —1
|
We need the following technical result.
Lemma 3.8. Ifu(t) = 1+t’ then
(1) u(t) <1— £t —1)* for every t € [0,1],
(2) u(t) > 1— Lt —1)* for every t € [0.6, 1].
Proof. We have for every s € [0,1] and t =1 —s € [0, 1],
—s3(s% — 4s* — 125 + 64) < 0,
256 — 2565 — (5% — 4s +4)(s* — 165> + 64) < 0,
4(175)7(275)2(17%2)2 <0
8" -
2 1 2)
a—(1+1) (17§(t71) ) <0,
2V/t 1
_ < P —
u(t) = T t_l 8(t 1)%

Let so = 0.40568698... be the unique real solution of —s3 4+ 75> — 155 +5 = 0 in the
interval [0, 1]. We have for every s € [0,0.4] C [0,s0] and t =1 — s € [0.6,1] C [1 — s0, 1],
s*(s+3)(—s* +7s* — 155+ 5) > 0,
100 — 100s — (s* — 4s +4)(s* — 10s* 4 25) > 0,
41— s)— (2 5)2(1 - %32)2 >0,
at—(1 +t)2(1 - %(tf 1)2)2 >0,

2V

ut) =——>1-

1
Z(t—1)2
1+t~ 5( )

|
Theorem 3.9. Let G be a connected graph with m edges, minimum degree 6 and mazimum

degree A > § + 1.

(1) If 6 is an even integer, then

_ 2VAS 2y/0(6+1) , 4/60+1) 2/AA-1)
< - - - .
GAG) =m mm{Q Ato  20+1 25 + 1 2A — 1 }




-387-

(2) If A is an even integer, then

2VAS  2y/A(A-T) 5 2\/6(0+1) 4/A(A-1) }
A+ 2A -1 7 20+1 2A —1 '

GA(G) <m — min {2 —

(3) If 6 and A are even integers, then

4/500+1)  4/A(A-1)
2%+1 | 2A-1

GA(G) <m—4+

Proof. Assume first that § is an even integer. As in Theorem 3.6, let us denote by
g, o, g, the cardinality of the subsets of edges Ay = {uv € E(G) : d, = 0,d, = A},
A ={w e E(G): d, =6,0 <d, <A}, As={w € E(Q) : d, = A,d <d, < A}.

Let G7 be the subgraph of G induced by the n; vertices with degree ¢ in V(G),
and denote by m; the cardinality of the set of edges of ;. Handshaking Lemma gives
n1d — oy — ap = 2my. Since ¢ is an even integer, g + a4 is also an even integer; since G
is a connected graph, we have ag + a3 > 1 and so, o + a3 > 2.

If ap > 2, then Corollary 3.5 gives

2v/d,d, <1,
dy+d, —
and we have, by Theorem 3.6,

WA 256 FD) 2/AB-T)
7%} + o
A+06 20 +1 2A —1

GAG)<m—ay— a1 —as +ap

2V AS 2V A
§m7a0+a0m§m72+2m.

If g = 1, then a; > 1 and Theorem 3.6 gives

WAS 26611 2J/AB 1)
Avo M1 THOA T
WAS 200+  2/AB-1)
<m-2—

sm=2-ad s wr1 T T oA

0AS 2,861 1)

A+0 20+1

If g = 0, then o > 2 and ay > 1, and Theorem 3.6 gives

GAG)<m—ay— a1 —as + ap

<m-—2+

2V AS 2\/6(0+1) 2/A(A-1)
Ato M4 2TOA
2,/0(5 +1) N 2/A(A-1)

20 + 1 2A -1

GAG)<m—ay— a1 —as+ g

<m-—3+2

Since Corollary 3.5 gives

2VAS 206+ 1)

A+6~ 2041 7
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we have
2WAS  2/00 + 1) 4/0(0+1)  2y/A(A-T)
GA(G) < mo+max{ ~2+ T + =g <3+ g A Yo |

Assume now that A is an even integer. Let Gy be the subgraph of G induced by the
ny vertices with degree A in V(G), and denote by my the cardinality of the set of edges
of G5. Handshaking Lemma gives no A — o — ap = 2my. Since A is an even integer,
ap + g is also an even integer; since G is a connected graph, we have ag + ap > 1 and
S0, ap + ag > 2.

If ap > 2, then Theorem 3.6 gives

WAS 2,/600 + 1) 2/AB 1)
Ato "M T oA

GAG)<m—ap—a; —as+ap

2V AS
A+6°

<m-—242

If ag = 1, then ay > 1 and Theorem 3.6 gives

2V/AS 2,/6(0 +1) 2/A(A-1)

(€51

GAG) <m—ap—a; —ay+ag

A+§ 20+1 2A -1
vV 2y/AA -1
§m72+2 A5+ ( )
A+0 2A -1

If ap = 0, then ay > 2 and a7 > 1, and Theorem 3.6 gives

2V/AS 2,/5(6 + 1) 2y/A(A-1)

aq

GAG)<m—ap—a; —as+ag

A+o 211 T oA
2,/500+1)  _2y/AA-1)
< — .
e B 7 e
Since
2VAS _2y/A(A-T)
A+6~ 2A-1
we have

20/AS 2/AB=T) 2/56 1) 4JAR-T)
< - - ‘
GA(G)*m“naX{ SN Y N R A T | 9A — 1 }

Finally, assume that 6 and A are even integers. The previous arguments give ag+ay >
2 and ag + ag > 2.

If ap > 2, then Theorem 3.6 gives
2V AS 2,/0(0 +1) 2/AA 1)

<m— o — oy —
GAG) <m—ap—ay ag+a0A+5 i %5+ 1 ay =
§m72+227M

A+6°
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If ag = 1, then a3, a5 > 1 and Theorem 3.6 gives

2V/AS 2,/6(0+1) 2/A(A 1)
Avo M os+1 M oA
3+2m 2\/5(§+1)+2\/A(A—1)

A+§ 20+ 1 2A -1

GAG)<m—ap—a; —as+ap

<m-—

If ap =0, then ay, s > 2, and Theorem 3.6 gives

2V/AS 2,/6(0+1) 2/A(A - 1)

GAG)<m—ap—a; —as+ap ay

A+§ 20+ 1 2A —1
2/0(6+1)  _2/AA=T1)
< — .
T 28— 1
We claim now
- 2VAS _ 20/06(6+1)  2y/AA-1)
A+d§~  20+1 2A -1
Assuming that this inequality holds, we have
2VAS 2WVAS  2/5(6+1)  2/AA-T1)
—242 <m-— )
T A N ” i B N R
2V/AS  24/6(6+1)  2/A(A-1) 2,/60+1)  _2y/AA-1)
) — <m-— .
N Y s RV N R L e 7 IR I R Y )

and we conclude

4/5(6+1)  4/AA-T1)
GA(G) <m—4+ wrl "t oACT

Therefore, in order to finish the proof, it suffices to show

2VAS _ 2,/6(6 +1) N 2/A(A 1)
A+6 = 20+1 2A -1

(i) +o(P57) 21+ u(3)

where u(t) = ?‘Tﬁ is the function in Lemma 3.8. Since u is an increasing function in [0, 1]

and A > 0 + 2, we have

o(35) 2 i) (5ie) 2e(z)

Hence, it suffices to show

1+

u<5j—1)+u<§i;)21+u<5j_2)’ (1)

for every § > 1.
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One can check that (1) holds for § = 1,2, 3. Let us prove that it holds for 6 > 4. Since

0 > 4, we have
30+ 1) >2(6+2)%,

3/10 _ 1/5
(G+22~ (0+1)2°
1/5 1/5 1/2
S+ (0+22°° (6422

Since (0 +1)/(0 +2) > /(6 +1) > 4/5 > 0.6, Lemma 3.8 gives

4%)%&%)21—%(%—1)2“—%(%—1)2

g M5 s, Y2
(0+1)2 (0+2)2~ (0 +2)?
1 1) 2 )
=14+1—-(———1) >1 ).
-5 2 (i)
These inequalities give (1) for § > 4, and the proof is finished. |

We can deduce from Theorem 3.9 the following result with a nicer statement.

Corollary 3.10. Let G be a connected graph with m edges, minimum degree 6 and maz-

imum degree A > § + 1.

(1) If § is an even integer, then

2,/0(6 +1)
<m-— ZVZV© T
GAG) <m -1+ %+ 1
(2) If A is an even integer, then
2 /AG 1)
< m—_ v=\'m o o
GAG)<m-—-1+ SA 1

(3) If § and A are even integers, then

GAG) <m— 4y WOOHD AVALA-T)

20 + 1 2A — 1
Proof. Since
2V A0 <1,
A+~
we have
2VAS  24/0(6+1) 24/6(0+1)
2— — >1—- —"——=.
A+6 204+ 1 20 + 1
Since

2/00+D _,  2/AB-1 _,
20+ 1 - 2A — 1 -7
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we have

374\/6(6+1)72\/A(A—1) o200+

20+1 2A -1 - 20+1
Thus, Theorem 3.9 gives (1).

Similarly,
2VAS 2y /A(A—1) 2/ A(A -1)
2 - >1-
A+§ 2A -1 2A —1
and
3 2\/0(0+1) 4 A(A—1)>1 2¢/A(A=1)
20+1 2A —1 - 2A -1
Thus, Theorem 3.9 gives (2). |
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