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Abstract

The distributed integration of renewable energy sources plays a central role in the
decarbonization of economies. In this regard, energy communities arise as a promising
entity to coordinate groups of proactive consumers (prosumers) and incentivize the
investment on clean technologies. However, the uncertain nature of renewable energy
generation, residential loads, and trading tariffs pose important challenges, both at
the operational and economic levels. We study how this management can be directly
undertaken by an arbitrageur that, making use of an adequate price tariff system, serves
as an intermediary with the central electricity market to coordinate different types of
prosumers under risk aversion. In particular, we consider a sequential futures and spot
market where the aggregated shortage or excess of energy within the community can
be traded. We aim to study the impact of the integration of hydrogen production
and storage systems, together with a parallel hydrogen market, on the community
operation. These interactions are modeled as a game theoretical setting in the form of a
stochastic two-stage bilevel optimization problem, which is latter reformulated without
approximation as a single-level mixed-integer linear problem (MILP). An extensive
set of numerical experiments based on real data is performed to study the operation
of the energy community under different technical and economical conditions. Results
indicate that the optimal involvement in futures and spot markets is highly conditioned
by the community’s risk aversion and self-sufficiency levels. Moreover, the external
hydrogen market has a direct effect on the community’s internal price-tariff system, and
depending on the market conditions, may worsen the utility of individual prosumers.
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1. Introduction

1.1. Motivation and Aim

In recent decades, many countries have been exploring distributed forms of renew-
able energy sources (RES) such as solar, wind, hydro, biomass, geothermal, and marine
to address the unprecedented environmental climate problem and alleviate the energy
shortage from a potential fossil fuel crisis [1, 2]. Moreover, RES are also part of the green
recovery package that can tackle other disruptions (e.g., the COVID-19 pandemic) as
they are more sustainable, distributed and less dependent on human labor [3].

The end consumers are motivated to become proactive prosumers to manage their
energy consumption and production by implementing residential-scale photovoltaic
(PV) technologies, combined heat and power plants, storage systems or wind farms
into their energy system [4]. Meanwhile, the recent integration of advanced communi-
cations, metering, control and energy management systems, in the contest of a smart
grid, provide the technical support needed for the effective coordination of prosumers
[5]. In particular, both distributed RES and smart grid devices give prosumers more
autonomy and flexibility in their energy procurement and foster their direct participa-
tion in energy markets [6]. As a result, a new paradigm; the energy community, has
been envisioned as an entity to favor this participation, by regulating and coordinating
the trading of several small-scale prosumers with distributed RES. The formation of
energy communities is been promoted and implemented in E.U., U.S., Australia, or New
Zealand [7]. As an example, the European Commission in [8] has launched two types
of community project evaluation: the Energy Communities Repository in the urban
area and the Rural Energy Community Advisory Hub in the rural area. Both projects
implement “citizen energy communities”, which stimulate consumer participation, or
“renewable energy communities”, which emphasize the integration of renewable energy.

The energy community aims to manage energy resources to provide its members
environmental, social, and economical benefits [9]. However, the intermittent and un-
certain renewable energy generation, the hard-to-predict nature of disaggregated res-
idential energy loads, and the volatile price of the spot market (SM) pose important
challenges for their efficient operation [10]. In this regard, multiple approaches have
been proposed to model and hedge against uncertainty in the technical and economical
operation of energy communities and distributed RES; see, e.g.,[11, 12, 13, 14, 15, 16,
17, 18, 19].

In this contest, we seek to extend these approaches to shed light on how market de-
sign and the integration of new technologies (e.g. batteries, photovoltaics, and hydrogen
production and storage) can impact and facilitate the operation and risk management
of energy communities. We analyze the impact of community’s risk-averse behavior
when forward contracts and storage systems are available. For this purpose, we study
the interaction of two types of entities within the local energy community in a two-
stage setting. We consider an arbitrageur who acts as the community aggregator and



serves as an intermediary between the wholesale market and a group of prosumers with
distributed RES. The arbitrageur, in the first stage, decides the amount of energy that
has to be purchased in the futures market (FM) through a forward contract at a fixed
price. Then, in the second stage, it has to decide the amount of energy to trade (buy or
sell depending on the community net balance) at an hourly SM. Finally, in the second
stage, too, it has to settle an adequate price-tariff to resell all the energy purchased
in both FMs and SMs to the prosumers, which are price-responsive. Following the
current functioning of most electricity markets, we assume that the first-stage decision
has to be taken some weeks or months in advance to the energy delivery at the second-
stage, and hence the arbitrageur faces the uncertainty of RES availability, net load of
the community, and SM prices. Moreover, the energy community includes several het-
erogeneous prosumers with small-scale renewable generation and storage systems: PVs,
electrical batteries, and hydrogen. Hence, at the second-stage, each prosumer optimizes
the operation of its residential system to meet its individual demand and by trading the
surplus or deficit energy with the arbitrageur at the given price tariff. Indeed, we are
particularly interested in the impact of hydrogen production and storage technologies in
the community operation, and how prosumers may benefit from an external hydrogen
market.

As energy communities are conceived as non-profit organization, we assume that
possible net profits by the arbitrageour would need to be reinvest in the community,
either to reduce the prosumers operating costs or to incentive future renewable invest-
ments. Therefore, we will also analyze the total overall costs of all community members
as a measure of community performance.

We consider a Stackelberg game to model the interactions between the arbitrageur
(Leader) and several prosumers (Followers). This hierarchical scheme is very adequate
to model the timeline of the decision-making process, i.e., the arbitrageur seeks the
best first-stage decision (FM) by anticipating the optimal operation (reaction) of the
community in the second stage. This game is recast as a Mathematical Problem with
Equilibrium Constraints (MPEC) as the prosumers are in a competitive equilibrium.
In particular, we use a bilevel formulation, wherein the upper-level problem of the
arbitrageur solves a two-stage problem by anticipating the reaction of the prosumers in
the second stage (the lower-level problem). Furthermore, by making use of the lower-
level optimality conditions and some exact linearization techniques, the bilevel problem
is reformulated without approximation as a single-level mixed-integer linear problem
(MILP). The uncertainty and risk is incorporated via an stochastic approach based on
a discrete sample of scenarios.

1.2. Literature review

In the following, we revise the state-of-the-art on the main topics addressed in this
work to better position it and to highlight its main contributions.



1.2.1. The forward contract

Most electricity markets worldwide introduce sequential trading mechanisms to help
agents to hedge risk [11]. In general, the trading is firstly operated trough forward
contracts, (e.g., a FM), and then in a SM, (e.g. a day-ahead or real-time market) once
the uncertainty is realized.

A simple two-period model of an oligopoly is proposed by [20] to represent the
sequential process of operations in FM and SM. The results show that firms can hedge
their risk and improve their profit on the SM through forward contracts. The forward
contract acts as a financial derivative to control the price and energy fluctuation in
the SM [12]. The forward contract can also assist the energy market in social welfare
and efficiency. In [13], authors found that the retailer can offer forward contracts
to curb market power and maximize social welfare. [14] develops a contract portfolio
optimization method to formulate an electricity retailer’s objective to fulfill an uncertain
demand by hedging spot price exposure with forward contracts for the later delivery of
electricity. [15] extends the model in [20] to a FM for several producers with nonidentical
linear cost functions, and conclude the forward trading increases market efficiency.

In addition to forward trading at the transmission level in the wholesale electricity
market, forward trading at the local level has attracted great attention with the in-
tegration of smart grids that can actively manage distribution networks [21]. A novel
contract-based incentive scheme is proposed in [22] to obtain the optimal contract for
the short-term market with deterministic energy supply and the optimal contract for
the long-term market with a significant uncertain energy supply. [23], which is moti-
vated by markets with cyclical contractual relationships [24], proposes bilateral contract
networks as a new scalable market design for peer-to-peer energy trading. Then, FM
and real-time markets are introduced to incentivize coordination between the owners
of large-scale and small-scale energy resources at different levels of the power system.
A novel contract theoretical framework was developed in [25] to study the interactions
between an aggregator and different scales of electricity suppliers in the smart grid
under both base-load and peak-load scenarios.

1.2.2. Uncertainty quantification and risk-averse modeling

Uncertainty in the output power of the RES and demand loads has a great effect on
the decision-making process of the energy community. Several approaches have been
proposed to properly quantify these uncertainty levels. Probabilistic methodologies [26]
based on standard statistical or Machine Learning techniques [27] have been used to
forecast renewable energy generation and load consumption levels.

The simulation of scenarios with high or low probability of occurrence and the ex-
plicit modeling of risk aversion are considered in several energy trading applications.
Based on historical data, [28] uses a seasonal autoregressive integrated moving aver-
age model to generate 500 scenarios for electricity demand, day-ahead and real-time
market prices, and exported PV power. [29] conducts scenario modeling using Monte



Carlo simulations to analyze load demand, wind, and PV generation, including the risk
associated with low probability scenarios with a critical effect.

Moreover, compared to the risk-neutral strategies, risk-averse decision makers adjust
the probabilities of critical risk scenarios (e.g. high cost scenarios or low profit scenar-
ios) to ensure acceptable levels of profit or costs [30]. Among the different approaches to
modeling risk aversion, a coherent risk measure, the Conditional Value at Risk (CVaR),
is widely used, as it can be obtained from the solution of a linear optimization problem,
and can be easily incorporated into large-scale problems [31]. In [16], the strategic be-
havior of a distribution company in the day-ahead market is modeled using a stochastic
bilevel problem with CVaR. In [29], a two-stage optimization approach with a hybrid
demand response program is proposed. The economic demand response is used in the
first stage, while a risk-based demand response is used to minimize the risk index deter-
mined through CVaR. CVaR has also been implemented at the local energy community
level in [17], [18] and [30]. Moreover, [19] applies the CVaR to analyze the differences
between risk aversion in markets with perfect and imperfect locational prices. The au-
thors extend the electricity market in a multi-stage model, which includes transmission
investment, generation investment, backup capacity, market operation, and redispatch.

1.2.3. Energy storage systems

Distributed storage systems serving as backup can not only support the balance
between energy supply and demand loads, but also help end users for peak shaving,
valley filling, and smoothing the price variability [32]. The energy storage systems can
be classified into two categories: energy storage at the community (shared community
energy storage) and household (individual batteries) levels. Research on the use of
storage systems within energy communities mainly pays attention to the management
of the entire community, considering both energy sharing [33, 34] and profit sharing
[35, 36] in cooperative or non-cooperative game strategies. While the energy storage
at the household level aims to optimize operation to be self-sufficient [37] or minimize
costs [38]. Moreover, [38] considers a generalized problem for both the physical and
financial storage rights, where prosumers can actively decide on the share of storage
capacity to offer to other peers.

Several alternatives to store energy have been recently proposed, such as well-known
battery storage, hydrogen storage, and heat or ice storage. Batteries are one of the most
extended storage systems in small applications [39]. Various researchers studied the
combination of PV-battery energy systems in microgrids [40] and energy communities
[41]. Notably, renewable hydrogen produced from electrolysis fueled by renewable elec-
tricity acts as a prominent energy vector, especially in medium-term scenarios. [42] and
[43] incorporate hydrogen storage into a solar-related energy system and use fuel cells
(FCs) to convert the hydrogen into electricity. Furthermore, [44] states that renewable
hydrogen is mainly used in hydrogen FC vehicles, which can serve as daily cruise and
energy storage facilities to address the intermittence and instability of RES [45].



1.3. Findings and Contributions

Energy communities have been widely studied from the aspects of market frame-
work, risk trading, and renewable generation and storage assets. The main findings of
the studies mentioned above are summarized as follows.

» Most of the studies mainly focus on energy trading in wholesale markets (i.e., FMs
and SMs) or local energy community markets separately. Furthermore, under a
high penetration of renewable energy and uncertainty in the trading, it is vital to
account for sequential trading mechanisms (FMs) to hedge stochastic short-term
horizons (e.g., day-ahead) for both the wholesale and local daily markets (LDMs).

o Considering uncertainty in SMs and LDMs, risk aversion can be efficiently mod-
eled by incorporating the CVaR in large-scale optimization problem.

o The residential storage systems, including hydrogen technologies, have attracted
increasing attention but mostly focus on self-supply and load shifting strategies.
However, new possibilities are opened if, as expected in the energy community
paradigm, prosumers are allowed to resell their stored electricity to the grid or
their hydrogen to an external potential buyer or market.

On the basis of the above analysis, we aim to investigate the energy operation
and coordination under uncertainty within a local energy community considering risk
aversion and different energy storage technologies, in a game-theoretical setting. Our
main contributions can be recast as follows:

» Regarding the modeling of the comunity interactions, a Stackelberg game (Bilevel
optimization) is adopted to model the operation of the energy community which
extends standard competitive Nash-equilibrium frameworks. This is motivated by
the temporal sequence of the decision making process, as the arbitrageour (leader)
needs to decide beforehand the optimal forward contracting by anticipating the
subsequent optimal response of prosumers (followers).

e Regarding the risk assessment, both the arbitrageur with forward contracts and
prosumers with storage systems deal with uncertainty at each stage. The CVaR,
is applied to estimate the optimal risk-averse strategy for the energy community,
where forward contract is incorporated as a possible tool to hedge risk.

o Regarding the economical and technical analysis, we show how the arbitrageur can
efficiently manage the energy community, and coordinate the prosumers, through
an adequate real time price tariff system. Moreover, we focus on studying the
impact of integrating hydrogen production and storage systems, together with a
parallel hydrogen market. Hydrogen provides a novel alternative for prosumers
to balance their decisions between hydrogen-to-electricity and hydrogen-to-sell.



The rest of the paper is organized as follows. Section 2 presents the stochastic

two-stage bilevel optimization model and equivalent MILP formulas used to manage
the energy community. Section 3 describes and analyzes the case study and provide
insights form the numerical results. Section 4 summarizes the conclusions of this work

and proposes future lines of research.

2. Model Description

We consider an energy community consisting of an arbitrageur and several pro-
sumers n € N, as depicted in Figure 1. The interactions among the community mem-
bers are modeled with a two-stage stochastic decision-making process. In the first stage,
also named FM, the arbitrageur signs forward contracts with the upstream grid to agree
on the amount of hourly energy to be distributed within a medium-term horizon (e.g.,
several weeks or months in advance). Moreover, the upstream grid settles the price in
the contract while the arbitrageur accepts it without bargain rights. Hence, it behaves

as a price-taker in FMs.
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Figure 1: Structure of the energy community



In the second-stage, energy is traded with prosumers in a shorter-term horizon (e.g.,
One day in advance) in the LDM. In this stage, the arbitrageur anticipates possible
wholesale market realizations and energy community production and load conditions.
This is illustrated by generating a set of scenarios, w € 2, representing the potential
realizations of the SM prices, the generation of PV energy, and the net demand for each
prosumer. In this LDM, also at the second-stage, the arbitrageur acts as the Leader
and determines the best price tariff to interchange energy with prosumers. Prosumers
play the role of Followers, which means that they design their strategies after observing
the price tariff offered by the arbitrageur. Meanwhile, the arbitrageur receives the
energy traded in the forward contract and buys or sells extra energy for trading with
the upstream grid in the SM, at a wholesale spot price, to balance the possible net
energy shortage or surplus of the community for each hour of the considered day.

Each prosumer possesses roof-top PV and energy storage systems. The energy
flows within the prosumers are depicted as blue lines in Figure 1. The prosumer uses
its PV system to generate energy to cover its energy demand and sell the surplus to the
arbitrageur. Moreover, some of the prosumers can use the excess of electricity to charge
their battery storage systems or to convert electricity to hydrogen by the electrolyzer
(Ele). If the prosumer has a battery storage system, its energy can be used to cover
its demand at different hour or to sell it to the arbitrageur. For instance, the prosumer
can import and store electricity at low price hours and use it to cover its demand at
high price hours. Moreover, if the prosumer has a hydrogen storage system, on the one
hand, its hydrogen can be converted to electricity by FC for its own energy demand
or to be sold to arbitrageur; on the other hand, its hydrogen can directly be sold to a
potential buyer or market, or used for its own FC vehicle system, which is modeled as
a potential revenue to the prosumer.

Based on the characteristics of the battery and hydrogen storage system [46], we
select a daily circle (0 AM to 12 PM) as a short-term simulation. We also consider time
slots t € T to optimize the whole operation of the community at the second stage of
our stochastic model.

2.1. Nomenclature

The main notation used in the model formulation is introduced in the following for
quick reference.
Indices:

n Index for prosumers, where n € N
t Index for operating time units, where t € T’
w Index for possible local daily market scenarios, where w € €}

Parameters:



Pl The price of hydrogen at time ¢
D, Energy demand load of prosumer n at time ¢ under scenario w

Shwt Energy generation of prosumer n at time ¢ under scenario w

Q

. Dmnergy trading bounds of prosumer n at time ¢

EBAT The rated stationary energy storage capacity of prosumer n

EHT The rated hydrogen tank storage capacity of prosumer n
RBAT The rated stationary energy storage capacity for trading of prosumer n
The rated hydrogen tank storage capacity for trading of prosumer n
CF¥ The price of energy trading between grid and arbitrageur in futures market
Spot market price at time ¢ under scenario w
Bounds of energy trading between grid and arbitrageur in futures market

g; Bounds of energy trading in the spot market at time ¢

Bounds of the market clearing price in local daily market

3

ngar The efficiency of energy conversion from chemical energy to electrical
ntar The efficiency of energy conversion from electrical to chemical energy
N The efficiency of the electrolyzer
npe The efficiency of the fuel cell
M Large constant value (Big M)

Variables:

he't Hydrogen sold quantity of prosumer n at time ¢ under scenario w

S

o, Energy trading quantity of prosumer n in local daily market at time ¢ under

scenario w

enwt Stationary battery storage quantity of prosumer n at time ¢ under scenario w

+/-

Lt Stationary battery storage charging/discharging quantity of prosumer n at time

t under scenario w



hn.: Hydrogen storage quantity of prosumer n at time ¢ under scenario w

Wil

ot Hydrogen storage charging/discharging quantity of prosumer n at time ¢ under

scenario w

q" The quantity of energy traded between grid and arbitrageur in the futures market,
which is daily delivered

¢, Spot market energy trading amount at time ¢ under scenario w

p3, The price of energy trading in local daily market at time ¢ under scenario w

2.2. Bilevel model of arbitrageur and prosumers

The strategic operation of the energy community is modeled as a bilevel model
where the arbitrageur minimizes costs in the upper-level problem by anticipating the
reaction of prosumers in the lower-level problem. These two inter-related problems are
presented below.

2.2.1. Upper-level model: costs minimization by arbitrageur

At the upper-level, the arbitrageur minimizes the energy community total costs
(negative profit) by making optimal trading decisions ¢ and ¢3, in the wholesale (FM
and SM) market and by setting an optimal price tariff p>, for the prosumers in the LDM.
More specifically, at the first-stage, the arbitrageur decides the optimal involvement ¢*
in forward contracts (FM) at a given futures price. Then, at the second-stage, the
arbitrageur decides the optimal spot trading and LDM price-tariff under each possible
scenario w (scenario dependent). These two types of decisions, despite being separately
in time, belong both to the upper-level problem, as they are taken by anticipating the
prosumers possible operating response, for each scenario w, in the lower-level problem.
The upper-level problem formulation is as follows:

. rglins _ fA = CFqF + Z Tw [Z < wtqwt pwt Z ant)] (1&)

q" ,q5¢:Pot= weN teT neN

s.t.
Z ant |T| q + qwt7 vw t <1b)
neN
0<¢" <7 (1c)
- qt S qgt S Qta vwat <1d)
0<pS <P Vw,t (1e)
E € Lower-level model of prosumers (2) (1f)
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Precisely, the upper-level problem (1) represents the minimization of the arbitrageur’s
total negative profit (cost minus revenue) in the wholesale (FMs and SMs) and LDM,
subject to technical and economical constraints, and to the lower-level problem. The
first term of the objective function (la) corresponds to the cost in FM to purchase
an amount of energy ¢ at the fixed import price C¥. We assume that once ¢
purchased, ¢’ /|T| is the amount of energy to be delivered during each time period of
the target day in the second stage. The second term of the objective function shows
the expected cost / revenue in the SM to import / export the amount of electricity
@, from the upstream grid at time ¢ under scenario w. Note that 7, represents the
probability associated with scenario w. The third term of the objective function states
the expected revenue for the arbitrageur from selling the electricity to the prosumers
at the LDM price tariff p°,. For each scenario w at time ¢, the arbitrageur’s energy
trading balance is represented by (1b), where the total trading amount of prosumers in
LDM, > cn Q5 _,, equals the sum of the amount of daily distributed electricity ¢’
FM and the energy exchange ¢, in SM under scenario w at time t.

To avoid unbounded non-realistic solutions, we fix g¥ as an upper bound for ¢*
the forward contract. The boundary g in the constraint (1d) is set to be coherent
with boundaries of ¢ and ant Additionally, constraint (le) sets an upper bound,
p, for the LDM price tariff, p°,, decided by the arbitrageur. Finally, (1f) states that
some decisions (e.g. Q% ) are taken within the lower-level problem, being = the set
containing all of them.

2.2.2. Lower-level model: cost-minimization of prosumer

At the lower-level problem, each prosumer n € N decides the optimal amount
of energy to trade with the arbitrageur Q2 , at the price tariff p5,, the operation of
stationary battery storage, and the amount of hydrogen to produce, sell and store,
for each scenario w, to minimize their expected energy cost in the LDM. Note that
prosumers can postpone their operating decisions until the uncertainty is resolved.
Therefore, all the decision variables of the prosumers, recast as =, are second-stage
decisions and depend on scenario w.

min f = Zﬂw Z P @t — Phh%) (2a)
- weN teT
s.t.
R = NEarCs — Nech, + Q7  Anwt, Vn,w,t (2b)
Enwt nwt — TBATCnuwt 77FC’ nwt TLOJt nwt nwt nwty VI, W,
Cnwt — Cnw(t—1) = UEATG:zrwt — Gt NE£T7 Vn,w,t (2(3)
Pneot — hnw(t 1) = ngleh;:wt - h - h;)zztt : Mrljwta Vn,w,t <2d)
- Qnt < ant < @nt : UZZ?? Urrzri.()ltxv V?’L W t (28)
0 < epur < EBAT D eI €M\ w, t (2f)
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0<et e, <RBAT DE I PIRAT T AT )t (2g)

nwt?’ “nwt nwt 7 “nwt y tnwt ) Snwt
0< byt < EIT QR (09T, Vn,w, t (2h)
0 < Bl b < BT G Gl G G W w (20)
0< Ay S RIT LU G ™™ Yn,w. t (2))

where = = [Q,, €nur, €1F

nwtr “nwt’

oty Moot Pty Porss RCUL]. We assume that the initial state
of charge (SOC) of battery e, -0 and the initial SOC of hydrogen Ay, —o) are zero.
The dual variables of problem (2): © = [Apus, uBAT, k| pmin qmaz gmin cmaz -+ min
o it it Gty G Gt Gt Gt Gt Gt G, e indli
cated after the corresponding constraints separated by a colon.

The first term in the objective function (2a) states the expected trading cost or
revenue of the prosumer in the LDM. Positive values of Q3 _, represent energy imports
from the arbitrageur to meet an energy shortage. The negative values of Q7 , indicate
the surplus energy exports sold to the arbitrageur at a price p°,. The second term
refers to the expected revenue from selling hydrogen to a potential buyer at a price P}
Especially, the prosumer makes a trade-off to decide to export the electricity to the
arbitrageur or convert it into hydrogen. Similarly, 7, is the probability associated with
scenario w.

For each scenario w and time t, the prosumer n ensures its energy balance by
constraint (2b). The trading amount Q7 , is related to the PV generation S, the
energy demand D,,;, and the charging/discharging energy from the storage systems.
Constraint (2c) and (2d) set the energy flow balance in the battery and hydrogen storage
systems. Specifically, the energy losses during the process of charging and discharging
are represented by efficiency rates, 1} ,7,npar in the battery system, ny,. for the Ele,
and 1 for the FC in the hydrogen storage system. (2f) and (2h) restrict the rated
capacity of the storage system, while (2g), (2i) and (2j) bound the usable capacity of
the storage systems. As indicated, all decision variables for prosumers are scenario
dependent (second stage decision variables), and hence problem (2) can be decomposed
and solved independently per scenario.

2.3. MPEC formulation of arbitrageur and prosumer

Since the price tariff for energy trading in SM (p?,) is decided by the arbitrageur
(upper-level), it is considered as a parameter in the prosumer lower-level problem. This
makes the objective function of the prosumer and its constraints linear and thus convex.
Therefore, we can calculate the Karush-Kuhn-Tucker (KKT) optimality conditions for
each prosumer problem (2) as follows:

pft — At — UZZ? +ouptt =0, VYn,w,t (3a)
A A ;

MEth - lugw(?—l-l) - Enmoz? + E?u()ltx =0, V’I’L, w,t < T <3b)

fmst — eno + emst =0, Vn,w,t =T (3¢)

12



At = ot Mhar — Gt + ot ™" =0, Vn,w,t (3d
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p = (et =0, Vn,w,t=T (3g
Mot = Pt llite = Gt + Gt ™" =0, Vn,w, t (3h
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=

= Anatllpe + Hpr = Gt G T =0, Ynw,t
. Pth + NnHwt . Cout,min + <out,ma:v — 07 ‘v’n,w,t

&2

)

)

)

)

)

)

nwt nwt )

0<Q, —Q5, Lom™ >0, Vn,w,t (3k)
0<Q,, +Q5, Lu™ >0, Vn,w,t (31)
0< et LM >0, Vn,w,t (3m)
0< EBAT — e, L €™ >0, Vn,w,t (3n)
0<el,Le™ >0 Vn,wt (30)
0 < RBAT _ et 1 ¢/ >0, Vn,w,t (3p)
0<e,, Le >0, Vnwt (3q)
0 < RBAT — o 1 €7 >0, Vn,w,t (3r)
0 < hpt L™ >0, Yn,w,t (3s)
0 < EHT — By LCM >0, VYn,w,t (3t)
0<hl, L& >0, Vn,wt (3u)
0 < RIT —pf L ¢RI >0, Vn,w,t (3v)
0<hy,, L& >0, Vn,wt (3w)
0< RHT —p- L G0 >0, Vn,w,t (3x)
0 <hoth L¢uy™ >0, Vn,w,t (3y)
0 < RIT _ pout | ¢OU™m >0, Vn,w,t (3z)
Moty 28T B free,  Vn,w,t (3aa)
Contraints (2b) — (2d) (3ab)

Then, by replacing each lower-level problem by its optimality conditions in (1),
would obtain a single-leveled MPEC:

mi? - fA = C"¢" + Z Tw [Z (Oftqgt - pit Z QSM)] (4a)

F S =0
q ,45,4>Pe = weN teT neN
s.t

1
> Qb ==d" + S, Yw,t (4b)

nwt — |T|
neN

=
@
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0<q¢" <7 (4c

)
- qt S qgt S qta vwat <4d)
0<pl <P VYt (4e)
KKT optimality conditions (3), Vn € N (4f)

2.4. Linearised MPEC Formulation

To simplify and speed up the solving process, exact linearization techniques are
adopted to transform the nonlinear MPEC formulation into the MILP problem. For the
complementarity conditions (3k)-(3z) the disjunctive mixed-integer linear formulation
[47] is applied. Specifically, the complementarity conditions of the form 0 <y L x>0
(equivalent to p > 0, x > 0 and px = 0) are replaced by p > 0,2 > 0,u < aM,z <
(1 —a)M,a € {0,1}, where « is an auxiliary binary variable and M is a large positive
constant (“Big M”). The linearised complementarity conditions are formulated in the
Appendix A.2.

Besides, the nonlinear term pS, >, -y @n.; from the objective function (4a), can be
linearized by using the strong duality equality (9) derived in Appendix A.1.

S pSQh =gt Y P Wnw (5)

teT teT

By linearizing the complementarity conditions, as indicated above, and replacing (5)
into (4a), we obtain the final MILP formulation of MPEC (4).

2.5. Risk-based linearised MPEC Formulation

To reduce the negative effect of high-cost scenarios, a coherent risk measure, CVaR
[31], regarded as the mean loss or the average value at risk by calculating the expected
cost among (1 — ) x 100% worst scenarios, is included in the linearized single-level
version of the MPEC (4). The objective function (4a) is reformulated as

min (1-7) fA—l—ﬁ{n%—%wazw} (6)

ququyngmEy@v”],Zw uJEQ

and the following constraints are added to the problem: z, > f4 —1n,z, > 0,8 €
[0,1],a € (0,1), Vw. f4 denotes the objective function (4a) in the model (4), n stands
for the value-at-risk at the optimal solution, and z, is an auxiliary variable. Further-
more, « is the confidence level of CVaR, and [ is the trade-off parameter of the objective
function (4a) and the corresponding CVaR [31].

3. Numerical Study and Discussion

The case study focuses on investigating the influence of risk aversion, the storage
technologies adopted by prosumers, and the external hydrogen energy market on the
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operation of the energy community. In the first part of the case study, we set the price
of hydrogen as a fixed value and a range of risk-aversion levels are tested to analyze the
resulting market equilibrium. Then we focus on analyzing the arbitrageur’s cost, its
decisions, and each prosumer’s operation of the PV and storage systems. In the second
part, we study how prices of hydrogen may affect the energy community market out-
comes. Moreover, we analyze the cost and revenue components in the objective function
of each prosumer to shed light on the relationship between the storage technology and
the trading behavior.

3.1. Data description

We consider a local energy community with one arbitrageur and three prosumers.
Renewable energy and storage assets for each prosumer are listed in Table 1. The
parameters of the battery and hydrogen storage systems are calibrated based on [37].
The rated battery unit capacity is 7 kWh, while the usable battery unit capacity is 6.6
kWh. The efficiencies of charging n}; ,, and discharging 75 4, of the battery inverter are
90%. In the hydrogen storage system, the Ele’s power input and the FC’s electric power
are 7 kWh. So we set the rated and usable capacity of the hydrogen tank to 7 kWh.
The efficiency of the Ele inverter for producing hydrogen n},. is 75%, and the efficiency
of the FC inverter for consuming hydrogen 7., is 90%. Based on the minimum and
median price of hydrogen in Europe in 2020 [48], we consider the price of hydrogen to
vary within the interval [5.13, 8.4] €/kg. According to the technical setting of Ele in
[37], we consider an input electricity of 7 kW and an output of 0.15 kg of hydrogen
per hour. Hence, we can assume the hydrogen energy price to vary within [110, 180]
€/MWh (Table 2).

Table 1: Renewable assets of prosumers

Prosumers PVs Battery Storage Hydrogen Storage
n=1 v v X
n=2 v X v
n=3 v v v

Table 2: Samples of hydrogen price

p" Samples

€/kg 5.13 560 6.07 653 7.00 747 793 840
€/MWh 110 120 130 140 150 160 170 180

We use hourly price and demand values in the SM of the real-world data source:
the Spanish part of the Iberian market for 2020 [49]. Furthermore, we tailor each
standardized one-month data to the corresponding monthly household scale according
to energy production and consumption in [37]. Then, we calculate each hour’s mean
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value and covariance value based on one-month sample data. Lastly, 300 scenarios
are generated by a multivariate normal distribution to describe possible realizations of
the uncertainties. To study the respective seasonal dependencies more clearly, we im-
plement computational experiments on three representative days corresponding to the
Winter, Midseason, and Summer months. Table 3 reports the energy generation (PV)
and demand in these three representative days, which are sampled from the months
of February, March, and August [37]. Note that the Winter day is characterized by a
low level of PV generation and high demand, the Summer day with high levels of PV
generation and low demand, and the Midseason day by an approximately equal levels
of both.

Table 3: Energy production (PV) and consumption for each representative day

Day PV generation [kWh] Demand [kWh]
Winter 624.23 1017.12
Midseason 769.07 781.13
Summer 823.30 265.70

The considered SM price is equal to the Iberian market’s spot price [50], and a nor-
mal distribution with the same mean value and standard deviation is used to generate
the corresponding scenarios. Meanwhile, the mean value of the randomly generated
SM prices is used to fix the FM price (non-arbitrage assumption). All the boundary
values (e.g., the maximum storage amount, the maximum trading amount and the max-
imum price) are set according to the technical characteristics of the storage system or
the real-world trading price. In particular, to allow for a proper comparison, all the
parameter-setting is the same for all prosumers.

Due to the high computational burden of the resulting large-scale MILP problem,
we approximate the entire daily time horizon by 12 pairwise time intervals (two hours).
Fig 2 displays the final data sample. The violin plots show the scenario distribution
for energy generation and demand, as well as the SM price, for each representative day.
The red dashed horizontal line shows the FM price considered for each representative
day.

3.2. Computational Setup

We address the solution of the MILP formulation of the MPEC problem (presented
in Section 2.4) with Gurobi Optimizer version 9.5.0 under python 3.9.7 on a system
with an Intel i7 processor with 64GB RAM computer clocking at 2.90 GHz. When
addressing the problem for the midseason and summer days, the optimality gaps are
relaxed to 1%. For the winter case, the time limit for the solver is set to 10 hours,
which results in optimality gaps that do not exceed 1.7%.
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Figure 2: Sample data on three representative days

3.3. Impact of risk aversion on energy community

In this section, we analyze the operation of the entire energy community from neu-
tral, # = 0 to highly risk-averse § = 0.99, with a CVaR confidence level a = 0.9. At
the same time, we assume the price of hydrogen is fixed to the price considered in [48]
of 180 €/MWh.

Figure 3 depicts the cost distribution of the arbitrageur for increasing risk-aversing
degrees in the three representative days. The violin-shaped pattern covers the cost of
300 scenarios corresponding to each degree of risk aversion, 5. The black box inside
shows the 20th and 80th cost quantiles. The cost mean value is the white circle in the
middle of the black box and is linked by the black line. The blue line shows the CVaR
with the confidential level & = 0.9. The results show that as the arbitrageur becomes
more risk-averse, the cost volatility reduces as it tends to make more conservative
decisions. Moreover, increasing risk aversion leads to a lower CVaR, preventing the
arbitrageur from high-cost situations on all three representative days. We can observe
that both the CVaRs in Winter and Midseason days decrease dramatically from risk
neutral (5 = 0) to slight risk averse (5 = 0.01) and then remain stable. In comparison,
the CVaRs in Summer days reduce slowly from risk neutral (8 = 0) to a risk aversion
level of 8 = 0.5 and then it stabilizes. This indicates that the arbitrageur risk exposure
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is higher on Winter and on Midseason than in the Summer days. However, it should
be noted that the costs in all three representative days converge with high-risk aversion
levels.

—140
—160
—180
—200
—220 1
—240 F
—260

Cost (€), Winter

0.0 0.01 002 003 004 0.05 0.06 0.07 008 009 01 02 03 04 05 06 07 08 09 099

—135
—150 |
—165 |

180 |

195 |

—210

—225

Midseason

Cost (€),

0.0 0.01 002 003 004 0.05 0.06 0.07 008 009 01 02 03 04 05 06 07 08 09 099

= —100

i\

I
—
=)
&

—110
o115t
Y 10}
Z 125 f
© 130

Summ

0.0 001 0.02 0.03 004 005 006 0.07 008 009 01 02 03 04 05 06 07 08 09 099

B

Figure 3: The cost (€) of the arbitrageur under risk aversion in three typical seasonal days.

Table 4 provides the costs for all the energy community members in more detail.
As we can observe for the arbitrageur, there is not much difference in the mean values
of costs for different levels of risk aversion (f) and seasons. On the other hand, the
standard deviations of costs decrease significantly, which is displayed as the decreased
cost dispersion for a high-risk preference in Figure 3. However, the standard devia-
tion of the costs for the three prosumers remain quite stable with risk aversion, being
comparatively much higher than the arbitrageur ones. Based on the designed market
trading mechanism, the arbitrageur hedges risk in a two-stage setting (FM, SM and
LDM). In contrast, prosumers only trade in the second-stage (the scenario dependent
LDM) and are fully exposed to uncertainty.

By analyzing the costs between prosumers, we found that prosumer n = 1 with
the battery storage system has a higher cost than prosumer n = 2 and n = 3, with
hydrogen storage systems. In particular, the costs of prosumer n = 2 almost equal
the costs of prosumer n = 3. Despite the costly conversion of energy-to-hydrogen and
prices of electricity and hydrogen, prosumer n = 2 and n = 3 can reduce their costs by
participating in the external hydrogen market. A similar cost evolution can be found
for the Midseason and Summer days.
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Table 4: The mean value and standard deviation of cost (€). f4, f*=1, f7=2, f"=3 represents the
costs of arbitrageur, prosumer n = 1, prosumer n = 2, prosumer n = 3, respectively.

3 Cost (€) in Winter (Energy Generation <Energy Demand)
fA fn:l fn:2 fn:S Total
0 -200.82£18.14 17.64+4.72 16.18+4.7 16.18+4.7 -150.82+17.84
0.04 -200.50+£10.27 17.63£4.72 16.18+4.72 16.18+4.72 -150.51+£6.62
0.08 -200.39+9.83 17.61£4.71 16.19+£4.73 16.194£4.73 -150.39+4.88
0.1 -200.424+9.83 17.62+4.71 16.194+4.74 16.19+£4.74 -150.404+4.88
0.4 -200.384+9.87 17.61+£4.71 16.184+4.73 16.18+4.73 -150.4044.53
0.8 -200.1949.93  17.56+4.72 16.20+4.73 16.20£4.73  -150.2344.48
0.99 -200.02+9.87  17.504+4.72 16.38+4.82 16.38+4.82 -149.741+4.73
Cost (€) in Midseason (Energy Generation ~ Energy Demand)
[)) fA fn:l fn:2 fn:S Total
0 -178.81£11.65 0.92£3.21 -0.40£3.33  -0.40£3.33  -178.68+8.98
0.04 -178.67£7.91 0.843.23 -0.26£3.35  -0.26£3.35  -178.39%+2.53
0.08 -178.68+t7.85  0.8+3.18 -0.26+3.41  -0.26£3.41  -178.40+2.54
0.1 -178.64+£7.83 0.77£3.18 -0.24+£3.41  -0.24£3.41  -178.354+2.48
0.4 -178.58+7.82  0.73£3.17 -0.17+£3.43  -0.17£3.43  -178.1942.48
0.8 -178.51£7.86  0.70%3.21 -0.184+3.38  -0.18£3.38  -178.174+2.35
0.99 -178.34+7.88 0.57£3.21 0.03£3.42 0.03£3.42 -177.714£2.40
Cost (€) in Summer (Energy Generation >Energy Demand)
5 fA fn:l fn:2 fn:S Total
0 -112.51+4.49  -23.46%1.05 -24.744+1.27 -24.744+1.27 -185.45£3.98
0.04 -112.494+4.48 -23.56£1.03 -24.68+1.28 -24.68+1.28 -185.42+3.97
0.08 -112.43+4.19  -23.59+£1.04 -24.67+1.28 -24.67£1.28 -185.36+3.64
0.1 -112.3443.63 -23.61£1.05 -24.65£1.27 -24.65+1.27 -185.26+2.96
0.4 -112.104£2.55 -23.58+1.02 -24.68+1.28 -24.684+1.28 -185.03+1.42
0.8 -112.004£2.51  -23.73+1.02 -24.58+1.26 -24.584+1.26 -184.8941.35
0.99 -111.93+2.49 -23.87£1.04 -2451£1.24 -24.51+1.24 -184.83+1.36
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Interestingly, when we move from Winter to Midseason, and then to Summer, pro-
sumers produce more energy and consume less, according to Table 3. Meanwhile, the
costs of prosumers decrease from Winter to Midseason days, and they even earn signif-
icant profits (negative costs) for selling surplus energy on Summer days. Oppositely,
the arbitrageur makes less profit in Summer as prosumers need to purchase less energy
from the grid. The energy community (last column of Table 4) achieves a net expected
profit for all days and the risk aversion levels considered, decreasing slightly with the
risk aversion level, but also reducing their standard deviation. The higher total profits
are obtained in the Summer days, due to high levels of PV generation.
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400000 ——  Midseason

i
1
1
:
= . ] .
= 300000 - : Summer
=
& 200000 i - < . v ¥
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100000 F H ° & o o ° 1o}
1
O L L L L L L L L L L L : L L L L L L L L L L
0.0 0.01 0.02 003 004 005 006 007 008 009 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 0.99

B

Figure 4: Arbitrageur’s trading amount in forward contracts with risk aversion

Figures 4 and 5 show the arbitrageur’s optimal trading levels in the forward (¢%') and
SMs (¢°), as well as the price tariffs (p®) submitted to prosumers for each time period
in the LDM, for different levels of risk aversion. Notably, the trading amount in forward
contracts in Figure 4 displays an opposite behavior between the Winter days and the
other two seasonal days. For the Winter day, the risk-neutral (f = 0) arbitrageur
trades a large amount of energy through the forward contract. This indicates that the
arbitrageur would like to ensure the supply of sufficient energy to prosumers in Winter
days when there is less PV generation and a high demand load. Nevertheless, the
negative trading amount in Figure 5(a) shows that the risk-neutral arbitrageur returns
part of the energy surplus from the forward contract to the grid in the SM. Moreover,
from Figure 4 and Figure 5, we can observe that the risk-averse arbitrageur (8 > 0)
reduces the level of forward trading and increase the level of spot trading in Winter
days, which converge with high risk-aversion levels.

In contrast, the risk-neutral (5 = 0) arbitrageur on the Midseason and Summer days
does not purchase energy in the FM, ¢© = 0 (Figure 4). This is because the risk-neutral
arbitrageur is less motivated to sign forward contracts in advance when the prosumers
can supply their own demand loads, on expectation. Moreover, for the Midseason day;,
the arbitrageur starts to trade by forward contracts once the risk level increases above
B = 0.01. While for the Summer day, the arbitrageur behaves insensitive to the risk
aversion level up to f = 0.08 and then increases its forward trading slowly. In other
words, the higher self-sufficiency of the energy community on Summer days leads to a
slight increment of forward trading with the increase of risk aversion. Besides, the risk-
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neutral (8 = 0) arbitrageur on the Midseason and Summer days only imports energy
from the grid in the SM, which is displayed as the upper red line in Figure 5(b), (c).
With the increase of risk aversion, we can observe from Figure 4 and Figure 5 that
the arbitrageur reallocates its trading from the SM to the FM and converges with high
levels of risk aversion.

Analogously, on all three representative seasonal days, it can be seen that the LDM
price tariffs are increased by the arbitrageur and become more stable through the day
when risk aversion level rises. To sum up, a risk-neutral (8 = 0) arbitrageur with high
levels of self-sufficiency within the energy community, would prefer to trade mainly in
the SM; in contrast, a risk-neutral (§ = 0) arbitrageur with a self-insufficient energy
community, is motivated to increase the FMs trading. Moreover, with an increase in the
risk aversion level, the arbitrageur’s trading amounts in the forward contracts converge
to 62.5% of the total trading.

To study the respective seasonal dependencies more clearly, we present each pro-
sumer’s optimal power operation with a fixed risk level of 8 = 0.5 in the three represen-
tative seasonal days, as shown in Figure 6. The price tariffs in the LDM are displayed
in the upper part of Figure 6(a), (b), and (c). Figure 6 also illustrates the power flow
of each prosumer: The energy sources such as power bought from the arbitrageur, PV
generation, and SOC for battery or hydrogen system are shown above zero. The power
surpluses sold to the arbitrageur, its load demand, and hydrogen sales are plotted below
Zero.

Given the PV generation and demand loads for each representative day in Table 3,
and the LDM prices, each prosumer decides its trading amount with the arbitrageur, the
SOC for battery and hydrogen, and the amount of generated hydrogen to be sold. Here,
we found that the prosumer n = 1, who owns only the battery, buys energy from the
arbitrageur during several specific hours (e.g., 0:00-10:00, 15:00-16:00, and 20:00-24:00)
in Winter day, whereas this prosumer buys smaller amounts of energy during periods
with low PV generation (e.g., 0:00-10:00, 22:00-24:00) in Midseason and Summer days.
Moreover, prosumer n = 1 sells its energy surplus to the arbitrageur in those hours
with high PV generation.

Interestingly, it can be seen that prosumer n = 1 starts to charge its battery by im-
porting energy from the arbitrageur when the price tariff goes down (from hour 14:00)
in Winter and by storaging its PV generation surplus from hour 12:00, for both Mid-
season and Summer days. Then the prosumer n = 1 keeps the storage at full capacity
until the hour 20:00, when the price tariff rises to the maximum value. Prosumer n = 1
can shift its imported energy load by charging/discharging the battery system. The
prosumer n = 3 operates in a similar charging/discharging way its battery system.

On the other hand, two parts of the hydrogen system work in parallel, the Ele
converts the purchased energy into hydrogen, and the stored hydrogen in the tank is
sold out. Because of favorable hydrogen prices, prosumer n = 2 and n = 3 are driven to
convert electricity to hydrogen by buying a large amount of energy from the arbitrageur
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and using its surplus PV power to produce hydrogen. The main difference between the
prosumer n = 2 and n = 3 is that the prosumer n = 3 can use its battery system to
store energy when the tariff is cheaper at 16:00 and release the energy from the battery
at the time of 20:00-22:00 to reduce its cost. It is worth mentioning that prosumer
n =1 and n = 3 only charge their battery system once a day as there is only one valley
in the price tariff evolution in the LDM. This leads to the similar cost observed for
prosumer n = 2 and n = 3, which is shown in Table 4. In comparison, the prosumer
n = 2 and n = 3 make use of their hydrogen system in each hour of the day. That’s
why there is significant difference in the cost of prosumer n = 1 and n = 3 in Table 4.

3.4. Impact of an external hydrogen energy market

In this section, we analyze the impact of an external hydrogen market on the per-
formance of the entire energy community. The aim is to see how a variation of the
hydrogen price (expected to decrease with technological improvements in the coming
years) may affect the trading strategies and the LDM outcomes. For this study, we
focus on the risk neutral case (f = 0), and on the representative Midseason day, al-
though similar qualitative results can be obtained for the rest of the cases analyzed
in the previous section. Based on the hydrogen price ranges in [48], we select eight
possible values of the hydrogen price belonging to the interval [110, 180] €/MWh with
an increasing step of ten €/MWh, as reported in table 2.
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Figure 7: Impact of hydrogen price P on (a) cost (€) distribution of the arbitrageur and prosumers,
and (b) energy importing cost (white bar) and hydrogen sales (grey bar).

Figure 7 presents the cost evolution in a risk-neutral energy community considering
different hydrogen prices. The upper part of the figure 7(a) shows that the cost of the
arbitrageur decreases significantly when the price of hydrogen increases. From the lower
part in Figure 7(a) and figure 7(b), it can be seen that the expected cost of prosumer
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n = 1 increases slightly, while there exist few reductions in the costs of prosumers n = 2
and n = 3, which include hydrogen production and storage technologies. The figure
7(b) infers that, as the price of hydrogen increases, both the cost of energy importation
and the revenue of hydrogen sales increase for prosumers n = 2 and n = 3.

Table 5: The mean value and standard deviation of cost (€). f4, f*=1, f7=2, f"=3 represents the
cost of arbitrageur, prosumer n = 1, prosumer n = 2, prosumer n = 3.

Cost (€) in Midseason (Energy Generation ~ Energy Demand)

pH (€/MWh) fA fn:l fn:Q fn=3 Total
110 -90.7449.53 0.524£1.94 -0.184+2.06 -0.18£2.06 -90.5949.02
120 -103.324£9.77  0.5842.12 -0.23+2.25 -0.23£2.25 -103.2049.00
130 -115.904£10.04 0.64+2.31 -0.26+2.43 -0.26£2.43 -115.78%+8.99
140 -128.46£10.29 0.694+2.47 -0.30£2.60 -0.30£2.60 -128.36+8.99
150 -141.07£10.63 0.754+2.65 -0.31+£2.81 0.314+2.81 -140.934+8.99
160 -153.664+10.96 0.824+2.84 -0.35+2.97 -0.35£2.97 -153.5448.98
170 -166.204£11.29 0.8543.02 -0.35+3.16 -0.35£3.16 -166.0549.01
180 -178.81+£11.65 0.924+3.21 -0.4043.33 -0.404+3.33 -178.68+8.98

Table 5 details the costs for the arbitrageur, prosumers and the entire energy com-
munity. Overall, a high hydrogen price increases the profits (negative costs) of all
members of the community, except the prosumer n = 1 with no hydrogen technology.
But this also increases the cost variability. Note that the standard deviation of the ar-
bitrageur increases from 9.53 to 11.65. Moreover, prosumers have a 33.33% increment
(1.94 to 3.21 and 2.06 to 3.33) of their cost standard deviation. Especially compared
to prosumer n = 1, prosumer n = 2 and n = 3 have larger standard deviations, as they
integrate hydrogen technologies.

Figure 8 illustrates the trading amounts and price tariffs of the arbitrageur in the
LDM during the representative day. Similarly to the risk-neutral behavior reported
in Figure 4, for the Midseason day, the arbitrageur does not purchase energy in the
FM (¢F = 0) despite the increasing hydrogen price. Meanwhile, the upper Figure
8 shows that the arbitrageur trades in the SM are not significantly affected by the
hydrogen price. On the contrary, as can be appreciated in the lower part of Figure 8,
the arbitrageur raises substantially the LDM price tariff offered to prosumers as the
hydrogen price grows.

In summary, according to Figures 7, 8 and Table 5, the varying hydrogen price in the
external hydrogen trading market impact the price tariff inside the energy community
but has few effects on the trading amounts of the arbitrageur and prosumers. As a
price-maker in the local market, the arbitrageur tends to increase the price tariff once
the hydrogen price rises, which induces a higher revenue for the arbitrageur. On the
other hand, as price-takers, prosumers face higher purchasing electricity costs. However,
prosumer n = 2 and n = 3 can compensaty this cost increment by selling the produced
hydrogen, while the prosumer n = 1, who does not possess the hydrogen system, is
forced to purchase energy at a higher price.
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Figure 8: Average trading amounts of arbitrageur in the SM ¢° and average trading price between
arbitrageur and prosumers in LDM p* as a function of the hydrogen price.

4. Conclusion and Future Work

In this paper, we analyze the operation of an energy community under uncertainty
considering both medium- and short-term time horizons. We show how an arbitrageur
can effectively coordinate the operation of several prosumers and manage uncertainty
by participating in two-stage wholesale markets and by setting an adequate local price
tariff system.

The arbitrageur hedges its risk by allocating the trading amount in forward and
SMs, and prosumers incorporate storage technologies into their residential renewable
energy system. Moreover, we study the influence of prosumers with hydrogen systems
on the performance of the entire energy community because they can participate in
an external hydrogen market. Furthermore, we consider prosumers can trade their
net surpluses or shortage of energy at a LDM where the price tariff is decided by the
arbitrageur.

In order to appropriately model the interaction of the arbitrageur and prosumers,
we consider a Stackelberg game and apply bilevel modeling techniques. Moreover, a
stochastic two-stage decision framework is used to model the arbitrageur’s strategy in
forward and SMs. The uncertainty in the second-stage (SM and LDM) is represented
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with large number of scenarios.

Numerical studies carried out give insight into the effects of risk aversion, renewable
integration, storage technologies, and external hydrogen markets on the management of
the energy community. Regarding the risk trading part, we can observe that the higher
the self-sufficiency level of the energy community, the lower the impact of potential
unfavourable scenarios. For the arbitrageur, the optimal involvement in FMs and SMs
is highly conditioned by the community’s risk aversion and self-sufficiency levels. For
instance, we have observed how high risk aversion levels may decrease forward trading
in periods with low renewable generation. Moreover, the battery storage system can
effectively assists in load shifting for the prosumers, reducing their operation costs and
benefiting the entire community. Meanwhile, an external hydrogen market can help
prosumers to yield additional profits while managing their cost volatility.

Several studies anticipate that economies of scale and technological development
will reduce the costs of hydrogen-based technologies, so that the hydrogen price is
expected to decrease significantly between 2020 and 2050. Hence, we have also studied
the impact of lower hydrogen prices in the community supply chain. Results suggest
that the external hydrogen market has a direct effect on the community’s internal price-
tariff system, and depending on the market conditions and the systems installed by each
prosumer, may significantly worsen their utility.

Future lines of research work may include: i) To explore alternative types of con-
tracts between the grid and the arbitrageur. ii) To study the impact of investment costs
for battery and hydrogen storage systems for each prosumer, since hydrogen assets are
more costly than batteries. iii) From the computational perspective, decomposition
techniques can be adopted to speed up the solution of large scale equilibrium problems,
like the one introduced in this work.
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Appendix

A.1 The Primal-Dual formulation of prosumer

The objective function of prosumer n primal problem under scenario w can be
simplified as

mEin P Z [pthnwt - Pthh%tt] (7)

teT

The dual problem of prosumer is

P ) min BAT _max BAT +,max
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The strong duality equality imposes that, at the optimal solution
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A.2 Linearised MPEC Formulation

To simplify and speed up the solving process, the linearization techniques are

adopted to transform the MPEC formulation into the MILP problem.

For the complementarity conditions (3k)-(3z) in MPEC Formulation (4), the dis-
junctive mixed-integer linear formulation can be applied to linearise these components.

Linearization of constraints (3k)-(3l):

et >0, Vn,w,t
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Where a,(fzjt,i € {1,2,---16} is the binary variable of prosumer n in local daily

market at time ¢ under scenario w, and M") (big M) is the constant large enough, (.)
denotes the index, eg. EBAT.
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