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Abstract— The appearance of nanometer technologies has 
produced a significant increase of integrated circuit sensitivity to 
radiation, making the occurrence of soft errors much more 
frequent, not only in applications working in harsh 
environments, like aerospace circuits, but also for applications 
working at the earth surface. Therefore, hardened circuits are 
currently demanded in many applications where fault tolerance 
was not a concern in the very near past.  To this purpose, 
efficient hardness evaluation solutions are required to deal with 
the increasing size and complexity of modern VLSI circuits. In 
this paper, a very fast and cost effective solution for SEU 
sensitivity evaluation is presented. The proposed approach uses 
FPGA emulation in an autonomous manner to fully exploit the 
FPGA emulation speed. Three different techniques to implement 
it are proposed and analyzed. Experimental results show that the 
proposed Autonomous Emulation approach can reach execution 
rates higher than 106 faults per second, providing a performance 
improvement of two orders of magnitude with respect to previous 
approaches. These rates give way to consider very large fault 
injection campaigns that were not possible in the past. 

Index Terms—SEU, on-line testing, fault tolerance, fault 
injection, fault emulation, FPGA.  

I. INTRODUCTION

Safety-critical VLSI circuits working in radiation 
environments require designs hardened against 
SEU effects. As technology evolves towards 
smaller transistor sizes and reduced power supply, 
this requirement becomes a concern in many 
application areas, even at sea level [1]. New 
technologies also enable more complex circuits and 
higher operation frequencies that pose new 
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challenges in the efficient design of hardened 
circuits.  

A crucial task in the design of a safety critical 
circuit is the estimation of sensitivity to SEU 
effects, which in turn allows predicting the 
circuit error rate [2]. Estimation of SEU 
sensitivity is required, first of all, to identify 
weak areas that must be hardened and then to 
validate the correctness and effectiveness of the 
safety critical design. To this purpose, it is 
essential to have techniques and tools that can 
provide accurate estimations of SEU sensitivity 
in a fast way. Such tools may allow a deeper 
exploration of the design space in order to 
satisfy reliability requirements with reduced 
design effort and cost. 

Fault injection has been widely accepted to 
carry out SEU sensitivity analysis of ICs. This 
can be performed in several ways. Among them, 
a typical one is the injection of faults by 
exposing the circuit to radiation [3][4]. This 
approach produces very realistic results, but 
requires expensive equipment and a 
manufactured circuit in order to perform a test. 
Therefore, it is mainly targeted to the 
certification of the final hardened circuit and 
cannot be used in early design stages. Other 
approaches, such as laser fault injection [5] or 
electromagnetic interference [6] suffer the same 
problem. 

For an estimation of SEU sensitivity before 
the circuit is manufactured, simulation-based 
fault injection has been traditionally used 
[7][8][9][10]. Simulation-based fault injection 
can support many fault models and provides 
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high flexibility in order to configure fault injection 
campaigns. Most techniques are built on top of 
commercial HDL simulators. Fault injection is 
achieved with the use of HDL simulator commands 
or modifying the HDL model to include the fault 
injection capability. The major drawback of this 
technique is the huge computational effort required 
to perform circuit simulation under a large number 
of faulty conditions. As new generations of circuits 
can include millions of gates in a single circuit, the 
capability of analyzing a significant number of 
faults and obtaining a comprehensive estimation of 
SEU sensitivity using simulation-based fault 
injection is reduced [11]. 

In the last years, emulation-based fault injection 
has emerged as a means to accelerate fault injection 
experiments. Emulation-based fault injection uses 
FPGA devices in order to emulate the behaviour of 
the circuit under test. Modern FPGAs include 
millions of equivalent gates and allow the 
emulation of large circuits at high speed.  It must be 
remarked that the purpose of emulation-based fault 
injection is evaluating the SEU sensitivity of an 
ASIC design, not an FPGA design. SEU effects 
appear in the memory elements of circuits, which 
are the same in the ASIC and in the FPGA 
prototype. In the context of emulation-based fault 
injection, FPGAs are used as a means to perform 
SEU sensitivity evaluation of any digital design, 
whatever the target technology, by taking 
advantage of FPGA emulation speed. 

Fault injection in FPGAs is performed either by 
reconfiguring the device to introduce the faulty 
behaviour [12] or by modifying the original circuit 
adding extra hardware to alter the state of the 
circuit [13]. In any case, a very intensive interaction 
is required between the emulator and the host 
computer. The host controls the injection and 
evaluation for every fault. This introduces a 
performance bottleneck due to the communication 
between the emulator and the host computer, which 
prevents taking full advantage of the FPGA 
capabilities for fast hardware emulation. In [11], 
fault tolerance evaluation of microprocessors is 
performed, including fault injection and fault 
classification in the FPGA, but no further speedup 
of the fault injection process has been reported. 

This paper proposes efficient mechanisms to 
overcome this performance bottleneck and achieve 
an extremely efficient fault injection system. To 

this purpose, an Autonomous Emulation system 
and several techniques for its practical 
implementation are proposed. The key of the 
proposed Autonomous Emulation is to minimise 
the communication between emulator and host 
during the fault injection execution and to 
optimise fault injection and fault classification 
tasks executed within the hardware. This is 
accomplished by including fault injection 
control functions inside the FPGA, generating 
or storing the stimuli and the fault list within the 
emulation hardware and storing also the fault 
classification in the emulation hardware. Thus, 
communication is only needed at the beginning 
of the process, to download the fault injection 
campaign configuration to the emulation board, 
and at the end, to retrieve the results.  

Once the interaction between the host and the 
FPGA is minimised, the fault injection 
mechanisms can be optimised to reduce the time 
required to evaluate each fault, taking full 
advantage of FPGA emulation speed. In many 
cases, a fault effect can be categorized just a 
few clock cycles after the fault is injected. Then, 
if testbench application is stopped as soon as the 
fault can be classified, and if circuit state is 
reloaded just before the injection time, a 
dramatic reduction in the total number of clock 
cycles used for a fault injection campaign is 
obtained. Therefore, there is no need to run the 
complete testbench for each fault, allowing 
huge savings in computational effort.  Using 
this approach, the efficiency of emulation can 
be increased typically by about two orders of 
magnitude with respect to existing approaches, 
reaching rates in the order of 1 μs/fault. These 
rates give way to consider very large fault 
injection campaigns that were not possible in 
the past. 
The paper is organized as follows. Section II 
reviews the fundamentals of emulation-based 
fault injection. Then, the proposed Autonomous 
Emulation system is described in section III. 
Section IV presents the experimental results. 
Finally, section V states the conclusions of this 
work. 
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II. TRANSIENT FAULT EMULATION

The fault tolerance evaluation process consists in 
checking the response of a circuit in the presence of 
faults, by comparing the behaviour of both the fault 
free and the faulty circuit. To this purpose, faults 
are injected into a model of the circuit while it is 
executing a workload, to check their effects. This 
paper is focused on the behavioural effects 
produced by Single Event Upsets (SEU). The most 
commonly used fault model for SEU effects is the 
bit-flip, which affect circuit memory elements [16].  

According to the circuit response after the 
injection of a fault, faults can be classified into 
several categories. At least, three basic categories 
are generally considered: 
• A fault that induces wrong circuit behaviour

is classified as a failure. A wrong behaviour
usually means wrong or delayed values at the
circuit outputs.

• A fault that does not produce a faulty
behaviour during the whole testbench, but
leaves the circuit in a different state than the
fault free circuit, is classified as a latent fault.
Although it has not produced an observable
error at the checking time, it could produce it
in the future.

• A fault whose effects disappear completely is
considered a silent fault.

Injecting a fault according to the bit-flip model 
involves changing the value of a memory element. 
The fault may produce different effects if applied to 
a different memory element or if injected in a 
different clock cycle. If just single faults are 
considered, the fault tolerance evaluation problem 
is two-dimensional. Being F the number of flip-
flops in a circuit, and C the number of cycles of the 
testbench, the complete set of single faults is thus 
composed of FxC faults: a fault can be injected in 
any of the flip-flops, and for every flip-flop, it can 
be injected at any clock cycle. For each fault, the 
following basic steps are typically performed in 
order to classify the fault effect. These steps are 
graphically represented in Figure 1. 

1. Fault-free emulation in the hardware: run
the testbench until the fault injection time

2. Fault injection: inject the fault, by flipping
the value of the faulty flip-flop

3. Fault emulation in the hardware:
continue testbench execution until the
end of the testbench is reached

4. Fault classification: check the circuit
state in order to classify the fault effect.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Fault Classification

150

Fault emulation

Fault Injection

16 17 18 19 20 21
Cycle (TB)

FPGA

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Fault Classification

150

Fault emulation

Fault Injection

16 17 18 19 20 21
Cycle (TB)

FPGA

Figure 1.Emulation of a fault in an FPGA 

If the testbench is completely applied to check 
every possible fault, the total number of clock 
cycles needed to perform the whole fault 
emulation process is C multiplied by the 
number of faults (FxC) that makes FxC2. For 
large circuits as well as for long testbenches, the 
evaluation process can become extremely time-
consuming. The usual approach to handle this 
complexity, regardless of the method used to 
perform the evaluation, is to sample the fault set 
in order to obtain statistical results. The main 
objective of this work is to reduce the time 
required for each fault evaluation, allowing 
much larger fault sets. 

FPGA emulation has proven to be an effective 
method to reduce fault evaluation time 
[12][13][14][15][17][18]. In this case, an FPGA 
is used to emulate circuit behaviour under the 
control of a host that implements the fault 
injection campaign. FPGA-based emulation 
techniques have already been proposed to solve 
the fault tolerance evaluation problem, as an 
alternative to simulation solutions. These 
solutions profit from hardware speed, but 
maintain software flexibility.  

Fault injection in an FPGA-based emulation 
system can be achieved by taking advantage of 
FPGA reconfiguration capabilities [12]. In this 
case, partial reconfiguration is used to modify 
flip-flop values. Applying emulation scheme 
shown in Figure 1, testbench execution is 
stopped when injection point is reached and the 
host reconfigures the FPGA in order to inject 
the fault. Finally, in the FPGA, execution is 
resumed up to the end of the testbench or until a 
failure is detected. Configuration readback can 
be used to retrieve the circuit state and to 
classify latent and silent faults in the host. In 
[12], readback is used to retrieve the circuit 
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state at the injection time, and the fault is injected 
through the manipulation of the GSR signal 
(General Set Reset) of a Xilinx Virtex device. 
Every design flip-flop needs to be manipulated to 
preserve its value, except the injected flip-flop, 
whose value is flipped. Injection time with these 
techniques is usually high, as reconfiguration is 
quite a slow process. In [12], injection time is 
estimated to be about 100 ms for the worst case 
applied to a small Virtex device (XCV50). On the 
other hand, this approach depends heavily on the 
specific reconfiguration capabilities provided by a 
particular FPGA technology. 

A different approach consists in using FPGA 
general purpose logic to support fault injection. In 
the instrumented circuit technique [13][14], faults 
are injected by means of specific hardware located 
in the flip-flops of the circuit, named instruments, 
and connected in a scan-path chain, named fault 
mask. The fault mask determines the set of flip-
flops to be affected by fault injection and is 
downloaded via scan path. At the required time, 
fault injection is activated from the host and 
executed by means of the instruments located at 
every flip-flop. A modification of this approach is 
presented in [15], where some optimisation is 
proposed with respect to output comparison and 
fault injection. Instruments introduce an area 
overhead of one flip-flop and some additional logic 
per original flip-flop. Instrumented circuit 
technique has given rates ranging from 100μs/fault 
and 830μs/fault for short testbenches (less than 
1,000 cycles) and long fault lists (100,000 faults) 
[13] [14]. On the other hand, in [15] fault rates are
around 1s/fault for long testbenches (10,000 cycles)
and short fault lists (1,000 faults). However, these
solutions require an intensive communication
between the host computer and the FPGA for every
fault emulated. Communication is needed to
download the fault mask, to activate fault injection,
to apply the stimulus and to retrieve output values.
In [13] [14], fault classification is performed in the
host, comparing correct outputs (generated by
simulation) with faulty circuit outputs uploaded
from the emulator. In [11], fault injection and fault
classification is executed in the FPGA; however, no
further optimisation is done, giving rates of
5ms/fault. Thus, the resulting emulation speed is
dominated by the communication speed.

III. AUTONOMOUS EMULATION SYSTEM

Emulation-based techniques exploit the 
capability of an FPGA to emulate circuit 
behaviour at hardware speed. Since fault 
injection requires analyzing circuit behaviour 
for each injected fault, a large speedup can be 
initially expected. However, with existing 
emulation-based solutions, the emulation 
process is interrupted every time the emulator 
needs to wait for the host to apply the stimuli, to 
inject a fault or to check the output values.  

Autonomous emulation speeds up fault 
injection by minimising the communication 
between the FPGA and the host during the fault 
evaluation process execution. To this purpose, 
the critical control tasks of the fault injection 
process are implemented within the FPGA. 

 shows the general structure of the 
Autonomous Emulation system. The system 
uses an emulation board, which contains an 
FPGA, onboard RAM and an interface to the 
host. In addition to the circuit under test, the 
FPGA includes a testbench application module, 
a fault injection module, a fault classification 
module and an emulation controller. The 
emulation controller manages the whole 
process, initializing the circuit, applying input 
test vectors, injecting faults and enabling the 
comparison between expected outputs and 
faulty circuit outputs.  
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Fault
Dictionary

(Board
Memory)
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Fault 
classification

Interface

Fault 
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Figure 2. Autonomous fault emulation system 

Available local RAM is used to store 
testbench inputs and fault classification results. 
Testbench inputs are stored in embedded RAM 
so that they can be applied to the circuit under 
test with no restrictions of bus widths and 
without off-chip delays. External RAM could be 
used if available embedded RAM is not enough. 
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This will not imply a reduction in performance, 
given the current working frequencies of these 
memories. Fault classification is stored in external 
RAM (onboard RAM), accessible by the host 
computer after the fault injection campaign is 
finished.  

With the Autonomous Emulation system, a 
typical fault injection campaign is executed as 
follows. First, the FPGA is configured. This step 
defines the circuit under test, the testbench and the 
fault list. Then, the FPGA emulation controller 
repeats, for each fault, the following steps (Figure 
3): 

1. Set the circuit to the state previous to
fault injection

2. Fault injection
3. Fault emulation until the fault is

classified or until the testbench ends
When the fault emulation campaign is finished, 

the host can upload the fault classification. Note 
that communication with the host takes place only 
at the beginning of the process, to download the 
fault injection campaign information, and at the 
end, to retrieve the results. All tasks related to fault 
injection and classification are executed at 
hardware speed, and the FPGA is never idle 
waiting for the host to set up the next step in the 
process. 

FPGA

FPGA Fault Classification

Fault Injection

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

150

Fault emulation

16 17 18 19 20 21
Cycle (TB)

FPGA

FPGA

FPGA Fault Classification

Fault Injection

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

150

Fault emulation

16 17 18 19 20 21
Cycle (TB)

FPGA

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

150

Fault emulation

16 17 18 19 20 21
Cycle (TB)

FPGA

Figure 3. Emulation of a fault in the Autonomous system 

A. Optimisation of fault emulation
Once the host-FPGA communication is

minimised, the time dedicated to the emulation of 
every fault can also be optimised. As described 
above, the emulation of a fault consists of three 
steps. The first step, fault free emulation in the 
Figure 3, is performed in order to set the circuit to 
the required state before fault injection. This state 
can also be set without the need of emulation if it is 
stored elsewhere. In this case, the circuit can be set 
to the required state by loading circuit flip-flops 
with already saved values. Therefore, if state 
restoring takes fewer clock cycles than fault free 
emulation, the evaluation time is reduced. 

On the other hand, fault emulation is executed 
after fault injection and it stops when a failure is 
detected (outputs are different in golden and 
faulty circuit) or when the testbench finishes. In 
the case of a silent fault, fault emulation could 
be stopped as soon as the fault effect disappears. 
However, this condition is difficult to apply for 
solutions based on host-FPGA communication. 
Faulty circuit state (in the FPGA) should be 
compared with golden circuit state (in the host) 
at any testbench cycle. Since this checking 
implies long periods of time for every testbench 
cycle, silent faults are usually classified at the 
end of the testbench, although its effect could 
have disappeared soon after fault injection. If 
emulation is managed in the system hardware, 
state comparison can be done for every 
testbench cycle and fault emulation can be 
stopped immediately after a fault becomes 
silent. This optimisation allows a large 
reduction in the time required to emulate a fault 
which is finally classified as failure or silent.  

With these optimisations, the evaluation of 
each fault can be performed by applying the 
testbench just from the fault injection cycle to 
the cycle where the fault is classified (Figure 4). 
The testbench will be applied up to the end only 
if the fault is latent. Therefore, the emulation 
time can be reduced notably.   

Cycle (TB)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Fault Classification

150

Fault emulation

Fault Injection

16 17 18 19 20 21
Cycle (TB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Fault Classification

150

Fault emulation

Fault Injection

16 17 18 19 20 21

Figure 4. Hardware cycles employed for the emulation of 
a fault in the Autonomous Emulation system 

In this work, the autonomous emulation 
paradigm allows a range of possibilities. Three 
techniques are proposed with different levels of 
optimisation. They are named Time-
Multiplexed, State-Scan and Mask-Scan. The 
three techniques are based on modifying the 
circuit under evaluation to support Autonomous 
Emulation. The main modification of the circuit 
under study is the substitution of all the internal 
flip-flops by instrumented versions with fault 
injection capabilities. All techniques are based 
on the principle of Autonomous Emulation but 
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every one may be useful for different applications. 

B. Time-Multiplexed technique 
In Time-Multiplexed technique, every circuit 

flip-flop is replaced by the logic structure shown in 
Figure 5. The idea underlying this structure is 
having two circuits working simultaneously, one to 
run the golden circuit and another one to run the 
faulty circuit. In order to save resources, these two 
circuits share their combinational logic by running 
in alternate clock cycles, performing time 
multiplexing. Full duplication is also possible, 
avoiding time multiplexing, at the expense of more 
combinational logic.  

D          Q
Data OutData In

D          Q
Data OutData In

D          Q
Data OutData In

 
Figure 5.a. Original flip-flop 
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Figure 5.b.  Flip-flop replacement for the Time-Multiplexed 
emulation technique 

The flip-flop replacement contains a golden flip-
flop and a faulty flip-flop, which are used to store 
the golden state and the faulty state, respectively. 
This way, the circuit states can be compared at 
every test cycle (Latent output in Figure 5.b), 
allowing the immediate detection of silent faults. 
Additional flip-flops are added to allow fault 
injection in the faulty circuit (mask) and to store the 
required circuit state (state) for next fault. 

The mask flip-flop sets whether the value of the 
faulty flip-flop will be changed or not by the next 
fault injection. The different mask flip-flops of the 
circuit form a scan chain (mask in input and mask 
out output), named fault mask, so that the 
emulation controller can select where to inject 
faults (Inject input).  

The state flip-flop is used to store the golden 
circuit state needed for the next fault injection. 
To this purpose, the SaveState signal is 
activated at the appropriate testbench cycle. 
When the current fault has been classified, the 
faulty and golden flip-flops reload their values 
from the state flip-flop in order to start the next 
fault. 

In this technique, all optimisations described 
above are implemented. Emulation can be 
restored from a previous state, so it is not 
necessary to restart it every time from the 
beginning. Also, emulation can be stopped 
immediately after a fault is classified as failure 
or silent, without waiting until the end of the 
testbench. 

This technique implies extra logic resource 
usage, as shown in Figure 5.b. The main 
overhead is in the number of flip-flops. 
However, current FPGA devices include a large 
amount of flip-flops, so that this is not crucial in 
many cases. 

C. State-Scan technique 
State-Scan technique is a simplification of 

Time-Multiplexed technique devised to reduce 
area overhead. In State Scan technique, all 
original flip-flops in the circuit are now 
connected through a scan-path chain, so that the 
whole circuit state can be loaded into the circuit. 
Therefore, no fault mask is included. Fault 
injection is carried out by directly downloading 
a faulty circuit state. To this purpose, the fault 
list is processed in the host in order to generate 
the circuit state for every fault to be evaluated. 
Consequently, no state flip-flop is included 
either. The emulator stores the different faulty 
states in onboard RAM. These states are then 
inserted into the circuit by the emulation 
controller via scan-path. Although more RAM 
is required, two flip-flops are removed with 
respect to Time Multiplexed technique. 
Therefore, the expected area overhead, in terms 
of flip-flops, is now 100% instead 300% (Time-
Multiplexed technique).  

Figure 6 shows the flip-flop replacement to 
implement this technique. A single flip-flop 
substitutes the faulty, state and mask flip-flops. 
This flip-flop stores the faulty state of the 
circuit. In order to detect silent faults, a golden 
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flip-flop is added. The golden flip-flop stores the 
final state of the circuit after a golden run. To this 
purpose, a golden run is first executed by the 
emulator at the beginning of the process and the 
final circuit state is stored in the golden flip-flops. 
Then, the circuit state is compared with the golden 
run state at the end of every fault emulation to 
determine whether the fault is latent or silent.  

Scan Out/
Data Out

D         Q

FaultyData In

Scan In

D         Q

GOLDEN

Latent

Scan Out/
Data Out

D         Q

FaultyData In

Scan In

D         Q

GOLDEN

Latent

Scan Out/
Data Out

D         Q

FaultyData In

Scan In

D         Q

GOLDEN

Latent

Figure 6. Flip-flop replacement for the State-Scan emulation 
technique 

State Scan technique loads the state of the circuit 
at the injection time through a scan chain. Fault free 
emulation is substituted by faulty state scan in 
(Figure 7) which is faster when the circuit has few 
flip-flops in relation with the number of testbench 
cycles. The number of cycles required to load the 
state is determined by the number of flip-flops. On 
the other hand, emulation is only stopped when a 
failure is detected. Silent faults can not be detected 
until the end of the testbench execution. 

Faulty State Scan In

Cycle (TB)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Failure detection

150

Fault emulation
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Cycle (TB)
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Fault free emulation

Failure detection
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Fault emulation

16 17 18 19 20 21

(latent-silent emulation)

Figure 7. Hardware cycles employed for the emulation of a 
fault in the State Scan technique 

With this technique, the flip-flop number in the 
circuit under evaluation is only doubled with 
respect to the original circuit. On the other hand, a 
larger amount of RAM is usually required to store 
faulty circuit states for the fault injection campaign. 

D. Mask-Scan technique
Mask-Scan technique is another simplification of

Time-Multiplexed technique, but it does not need 
so much RAM as the State-Scan technique. In 
Mask-Scan technique, only a mask flip-flop is 
added to every original flip-flop (Figure 8). The 
mask flip-flops form a scan chain, with a 
mechanism similar to the instrumented circuit 
technique [13]. Neither golden nor state flip-flops 

are included in this technique. Circuit state is 
not stored for time optimisation. Therefore, no 
RAM blocks are required.  Mask Scan 
introduces less area overhead at the expense of 
increasing emulation time. 
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Figure 8. Flip-flop replacement for the Mask-Scan 
emulation technique 

In this case, testbench application is always 
performed from the beginning, because there is 
no specific mechanism to load a particular state. 
Emulation is only stopped when a failure is 
detected or at the end of the testbench.  

With the flip-flop replacement shown in 
Figure 8, faults can only be classified into 
failure and non-failure categories. Silent and 
latent faults can not be distinguished unless the 
final circuit state is sent to the host for 
comparison, as the golden circuit state is not 
stored locally. A third flip-flop would be needed 
to be able to make the distinction.  

E. Comparison of techniques
In order to compare the time savings that can

be obtained with the three proposed techniques, 
Figure 9 to Figure 12 show graphically the 
clock cycles needed for the emulation of faults 
injected in a single flip-flop FF1 of a generic 
circuit. In the figures, horizontal axis represents 
emulation clock cycles and vertical axis stands 
for number of faults.  
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Figure 9. Emulation of faults for FF1 

Figure 9 shows the general case of fault 
emulation with no optimisation. Fault free 
emulation (black area) is executed until the 
injection time (white border box) and then, fault 
emulation (grey area) is run until the end of the 
testbench. Classification is performed at the end of 
the testbench execution. The total emulation time is 
proportional to the shaded area of the figure. 
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Figure 10. Emulation of faults for FF1 with Time Multiplexed 

Technique 

With Time Multiplexed technique (Figure 10), 
fault free emulation is not required. Also, fault 
emulation is stopped as soon as the fault can be 
classified. Thus, the testbench is completely 
executed only for latent faults. The total emulation 
time is proportional to the shaded area in the figure, 
while the white area shows the time savings. 
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Figure 11 Emulation of faults for FF1 with State Scan 

Technique 

In State Scan technique, less area overhead is 
obtained but more time is required for fault 
emulation. Fault injection and state restoring is 
done via scan path from onboard memory at 
hardware speed (Figure 11). Fault emulation is 
executed until the fault is classified as a failure or 
until the end of the testbench. Silent and latent 
faults are emulated until the end of the testbench. 
The time savings depend on the balance between 

fault free emulation and faulty state scan in 
(black area). 

Finally, in Mask Scan technique (Figure 12) 
circuit state cannot be restored, so the full 
testbench must be executed. Fault injection 
takes one clock cycle for the application of fault 
mask and fault emulation is performed in the 
same terms as in State Scan technique. 
Although this technique implies the smallest 
amount of area overhead, the execution of the 
emulation campaign is slower. 
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Figure 12. Emulation of faults for FF1 with Mask Scan 

Technique 

IV. EXPERIMENTAL RESULTS 

The proposed techniques for Autonomous 
Emulation have been tested with several 
benchmark circuits, in order to analyse the 
effectiveness of every technique. In addition, a 
real circuit from aerospace industry has also 
been evaluated. The experiments have been 
performed on a Celoxica RC1000 board [19], 
which includes a Xilinx Virtex-2000E [20] and 
8MBytes of onboard RAM. Both FPGA and 
RAM are accessible through the PCI bus. The 
circuit examples were described in VHDL at RT 
level. Leonardo Spectrum and Xilinx ISE were 
used as synthesis and back-end tools, 
respectively. 

Table 1 shows the main characteristics of the 
circuits used in the experiments. For each 
circuit, the number of inputs, outputs and flip-
flops are reported. B12, b14 and b15 circuits are 
from the ITC’99 benchmark suite [21]. In 
particular, circuit b12 is a one-player game 
(guess a sequence), circuit b14 is a subset of the 
Viper processor and circuit b15 is a subset of 
the 80386 processor. CIRCUIT_A is a real 
application from aerospace industry, where 
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hardness is a crucial aspect. These circuits have 
been chosen to test the performance and 
applicability of the Autonomous Emulation system 
and the advantages and disadvantages of the three 
proposed techniques. Besides, partially hardened 
versions of b14 and CIRCUIT_A have been 
included in order to check the system performance 
with fault tolerant circuits. Circuit b14_TMR has 
been obtained from circuit b14 by applying Triple 
Modular Redundancy on the primary outputs. 
CIRCUIT_A _TMR has been obtained from 
CIRCUIT_A by applying Triple Modular 
Redundancy on some selected critical outputs and 
internal signals. It must be noted that CIRCUIT_A 
was designed with a robust architecture, typical of 
aerospace applications. 

Table 1. Characteristics of circuits under test  
#Inputs #Outputs #Flip-flops

B12 5 6 119
B14 32 54 215
B14_TMR 32 54 323
B15 36 70 418 
CIRCUIT_A 32 68 484
CIRCUIT_A_TMR 32 68 582

A Celoxica RC1000 board used in the 
experiments includes a small sized FPGA device. 
Every circuit tested fit within this device. More 
complex circuits could be analyzed with bigger 
FPGAs, already available in the market. Also, 
additional on-board RAM can be used if needed for 
larger stimuli set and larger sets of faults. 

The design flow for the experiments has been 
automated with tools developed by the authors, 
which interact with commercial simulation and 
synthesis tools. First, a netlist of the circuit under 
test (CUT) is obtained with a commercial synthesis 
tool. Then, the netlist is instrumented and linked to 
the emulator using automatic tools. The resulting 
circuit is re-synthesised and downloaded into the 
FPGA using the vendor back-end tool. A software 
application, developed by the authors, is used to 
start the fault injection campaign. In this moment, 
FPGA takes the control of fault injection campaign 
and executes all the fault emulation autonomously. 
Finally the mentioned software application uploads 
the classification results form the FPGA. 

Input test vectors applied to ITC benchmarks 
have randomly generated through the simulation of 
an LFSR. Testbench stimuli are stored in the FPGA 

within embedded RAM. Although random test 
vectors provide higher number of latent faults 
than functional testbenches, these ones are 
difficult to obtain for those benchmarks. The 
influence of the testbench length in emulation 
time and area overhead has been analyzed by 
applying to the ITC benchmarks two sets of 160 
and 600 stimulus vectors, respectively. For 
CIRCUIT_A, a functional testbench of 1500 
cycles is used. In all the experiments the 
complete list of single faults is injected, i.e., all 
bit-flips in any flip-flop and at any clock cycle. 
Multiple bit-flips could be applied directly, just 
generating fault masks with multiple bits set. 
Table 2. Fault classification for b12, b14 and b14_TMR, 

b15, CIRCUIT_A and CIRCUIT_A_TMR circuits 
Fault Classification Circuits  # 

cycles # faults 
%F %L %S 

160 19,040 29.8 55.6 14.6 B12 
600 71,400 33.3 53.4 13.3 
160 34,400 49.2 4.4 46.4 

B14 
600 129,000 59.6 1.9 38.5 
160 51,680 16.0 3.2 80.7 

B14_TMR 
600 193,800 23.0 1.3 75.7 
160 66,880 19.9 52.7 27.4 

B15 
600 250,800 18.6 54.6 26.8 

CIRCUIT_A 1,500 726,000 21.4 47.7 31.0 
CIRCUIT_A_TMR 1,500 873,000 14.1 38.7 47.2 

A. Fault Classification
The fault classification results obtained with

the Autonomous Emulation system are 
summarized in Table 2. For each circuit, the 
total number of injected faults and the 
percentage of failure, latent and silent faults are 
presented. It must be noted that the Autonomous 
Emulation system provides a complete list of 
the classification result for each fault, so that a 
more detailed analysis can be obtained by 
postprocessing the results.  

Circuit b14 presents a large number of silent 
and failure faults while in circuits b12 and b15 
most faults are latent. As it was expected, for 
the partially hardened circuits (B14_TMR and 
CIRCUIT_A_TMR), failure faults decrease 
considerably in favour of silent faults, with 
respect to non-hardened versions. Note that 
hardened versions of b14 and CIRCUIT_A 
apply TMR on circuit outputs and some selected 
signals. 
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B. Emulation Performance 
Emulation times are shown in Table 3. For each 

circuit, the emulation time using the Mask Scan, 
State Scan and Time Multiplexed techniques are 
reported. In all cases, the clock frequency was set 
to a moderate frequency of 25 MHz for the sake of 
comparison. However, the clock frequency can be 
tuned to the maximum allowable frequency for 
each example, as reported by the FPGA synthesis 
tool. In the case of the ITC benchmarks, results for 
160 and 600 testbench clock cycles are given. The 
average emulation time per fault is also listed. 

Table 3.a. Time results for b12 circuit 
Execution time (ms) 

Time average 
(μs/fault) B12 

160 600 160 600 
Mask Scan 108.70 1,450 5.7  20.3  
State Scan 142.00 771 7.5  10.8  
Time Mux 80.80 971 4.2  13.6 

Table 3.b. Time results for b14 circuit 
Execution time (ms) 

Time average 
(μs/fault) B14 

160 600 160 600 
Mask Scan 141.11 2,200.0 4.1  17  
State Scan 386.40 2,100.0 11.2  16  
Time Mux 19.90 83.2 0.57  0.64  

Table 3.c. Time results for b14 hardened circuit 
Execution time (ms) 

Time average 
(μs/fault) B14_TMR 

160 600 160 600 
Mask Scan 310.70 4,200 6.04  21.6  
State Scan 838.90 4,400  16.3  23.06  
Time Mux 24.00 99 0.47  0.51  

Table 3.d. Time results for b15 circuit 
Execution time (ms) Time average (μs/fault) B15 

160 600 160 600 
Mask Scan 386.5 5,600 5.8  21.8  
State Scan 1,300.0  6,800 19.9  27.1  
Time Mux 226.8 3,300 3.4  13.1  

Table 3.e. Time results for CIRCUIT_A and 
CIRCUIT_A_TMR 

Execution time (ms) Time average (μs/fault) 
CIRCUIT A Non-

hardened TMR Non-
hardened TMR 

Mask Scan 38,500 - 53  - 
State Scan 31,900 - 44  - 
Time Mux 23,800 23,300 33  27  

 
Circuit b14 has already been evaluated with the 

Instrumented Circuit technique [13], obtaining a 
time average of 100μs/fault, with a testbench of 
similar length. Comparing this result with the time 

average shown here (Table 3.b) it can be 
concluded that the proposed techniques provide 
a performance improvement up to two orders of 
magnitude. 

According to the results, the Time 
Multiplexed technique is the fastest. It may 
become slightly slower when there is a large 
amount of latent faults and the testbench is 
large. The reason is that Time Multiplexed 
technique uses two clock cycles for each 
testbench cycle (to execute the golden and 
faulty circuit). With latent faults, the testbench 
must be run until the end, taking twice the 
number of cycles and making the process 
slower. This is the case of circuit b12 for the 
600 cycle testbench, which shows 53.4% of 
latent faults. On the other hand, this example is 
well suited for the State Scan technique, as it 
has few flip-flops. 

The performance benefits of Time 
Multiplexed technique are outstanding when 
there is majority of faults classified as failure or 
silent. Therefore, hardened circuits are expected 
to produce a better performance in Time 
Multiplexed technique, as failure and latent 
faults become silent due to the hardening 
structures. For instance, fault emulation for 
circuit b14_TMR runs about 40 times faster 
with Time Multiplexed technique. For Mask 
Scan and State Scan, the effect is the opposite. 
Transforming failures into silent faults makes 
the evaluation slower, as for silent faults the 
testbench must be run until the end in these 
techniques. This aspect is shown in the results 
for circuits b14 and CIRCUIT_A, compared to 
their hardened versions. 

Comparing Mask Scan and State Scan 
techniques, they differ in the time employed to 
reach the injection state. State Scan uses a fixed 
number of cycles to load the circuit state, equal 
to the number of circuit flip-flops. Mask Scan 
needs to run the testbench from the beginning to 
the injection cycle. Since faults are injected in 
every clock cycle, the mean time for this 
technique to reach the injection point is half the 
testbench length. Therefore, State Scan will be 
faster if the number of flip-flops is smaller than 
half the testbench length. This is demonstrated 
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in the results of the experiments, comparing the 
rates for the two techniques and the two testbenches 
used. For circuits b12 and b14, State Scan is faster 
with the long testbench and slower with the short 
testbench. For b14_TMR and b15, where the 
number of flip-flops is higher, Mask Scan 
technique is better for the two testbenches. 

Fault classification has influence in the 
performance of every technique. It cannot be 
decided a priori which technique is going to be 
better for a given circuit. However, a decision can 
be taken according to the expected fault 
classification. Time Multiplexed will be usually 
better, especially when most faults are expected to 
be silent, like in hardened design. When a large 
amount of faults are expected to be latent, State-
Scan or Time Multiplexed technique may be the 
faster depending on the existing relationship 
between the number of flip-flops and the testbench 
length [17]. This may be the case, for instance, 
when the testbench does not fully exercise the 
circuit functionality. 

C. Area Overhead
In this section, the area overhead results are

presented in order to complete the evaluation of the 
proposed techniques. As expected, each technique 
produces different overheads in terms of LUTs, 
FFs, Block RAM and onboard RAM. Thus, each 
technique has a different area-speed tradeoff. This 
trade-off can be exploited by selecting the fastest 
technique that fits in the available device and 
offering the possibility of emulating larger circuits 
within the same device by using other techniques. 

The synthesis results for the three techniques 
implemented in the autonomous system developed 
are shown in tables 4 to 9. The number of LUTs 
and FFs and the relative area overhead (reported by 
the synthesis tools) are shown for the various 
circuits. Testbench lengths have negligible 
influence in FPGA area overhead. Therefore, area 
results are reported for b12, b14, b15 and 
b14_TMR with a testbench of 160 cycles. For each 
example, the area of the circuit under test after flip-
flop replacement (Modified CUT) is shown along 
with the area for the complete emulation system 
including the emulation controller (Emulator) and 
the CUT. The required onboard and embedded 
RAM blocks (in Kbits) are presented for the 
complete emulation circuit. 

The overhead due to the modification of the 
circuit under evaluation is proportional to the 
number of flip-flops in the original circuit. Time 
Multiplexed technique implies the highest area 
overhead for the circuit and for the complete 
emulation system. The area overhead due to the 
emulation controller depends on the number of 
flip-flops, the testbench length and number of 
circuit inputs and outputs, but it is small 
compared to the circuit size. With respect to 
RAM requirements, they are very important in 
the State-Scan technique for the board RAM 
blocks. In some cases, it has been necessary to 
split the fault injection experiments because 
RAM required was larger than available.  

Although the implementation of the 
Autonomous Emulation system represents a 
significant resource overhead, the size of 
current FPGA devices allows the successful 
implementation of the emulator for a wide range 
of circuits and applications within a single 
FPGA. For very large circuits, Autonomous 
Emulation can be implemented on multiple 
FPGAs.  

D. Considerations on Scalability
The techniques proposed may be used for a

wide range of circuits and applications, The 
benchmarks used to demonstrate the techniques 
may be considered small or medium size 
circuits, In order to use the proposed techniques 
with larger circuits and longer testbenches, the 
two main factors affecting the emulator 
implementation are the size of the circuit to test 
and the length of the testbench. A possibility 
that can be always considered to support larger 
circuits is the use of a hardware platform with a 
larger FPGA device or several of them, and a 
larger board memory. 

Regarding testbench length, several 
possibilities may be considered when the 
testbench vectors exceed the available storage 
memory. Input stimuli are usually very 
repetitive, so it is fairly easy to use compression 
algorithms to increase the storage capability. It 
is also possible to generate input stimuli with a 
circuit, like a LFSR, instead of explicitly storing 
vector values. Finally, it is always possible to 
split the test in several parts and perform the 
injection campaign in several steps. 
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Two examples of larger size have been 
implemented using Time-Multiplexed technique. 
The first one is the CIRCUIT_A, but with a 
testbench of 100,000 cycles. A simple compression 
technique has been implemented to allow the 
storage of the complete vector set. The second 
example is a CORDIC core [22]. A 150,000 vector 
set has been tested, using an LFSR for vector 
generation. In both examples, the fault set has been 
split in several sections due to the limitations of the 
result storage memory; different sections imply 
different ranges of flip-flops and clock cycles in 
which faults are injected. These results, shown in 
Table 4, are provided to demonstrate the capability 
of implementing large fault injection campaigns, 
even with a small size hardware platform. 

Table 4. Emulator resource usage 
# flip-
flops 

# 
LUT4 

# FPGA 
RAM 

#board 
RAM 

CIRCUIT_A 1,893 4,361 617,4 Kbits 92.3 Mbits 
CORDIC 4,050 5,178 0 247.5 Mbits

 shows that large fault injection campaigns have 
been carried out with a very high emulation speed. 
Both circuits have been emulated at 25MHz. 
Several million faults have been emulated in a few 
minutes, while experiments shown in the literature 
usually test just a few thousand faults. 

Regarding the fault classification of CIRCUIT_A 
experiment, a large increment in silent faults can be 
observed in relation with previous experiments of 
this circuit. This increment is caused by the 
application of a much longer testbench. 
CIRCUIT_A was designed using robust 
communication protocols, but they require some 
time to be effective and to be able to cancel faults. 

Table 4 shows that the resources used by the 
emulators are not unaffordable, specially taking 
into account that the hardware platform used could 
be considered small, CIRCUIT_A takes a higher 
amount of memory because test vectors are stored 
in RAM, while in the CORDIC emulator, test 
vectors are generated with an LFSR. 

V. CONCLUSIONS

This paper presents a new solution for improving 
the performance of SEU emulation in FPGAs, An 
Autonomous Fault Emulation system is proposed, 
which executes in the FPGA most of the tasks 
involved in a fault injection campaign. This 

approach allows taking full advantage of FPGA 
emulation speed and saving execution time by 
optimising the fault injection process. Execution 
rates higher than 106 faults per second can be 
reached, providing a performance improvement 
of two orders of magnitude with respect to 
existing approaches. These rates give way to 
consider very large fault injection campaigns 
that were not possible in the past and to tackle 
the estimation of SEU sensitivity for large 
circuits. Moreover, flexibility is maintained 
because the fault injection campaign can still be 
configured from software running in a host, 
while fault emulation process is autonomously 
performed within the FPGA once the fault list is 
generated. Detailed analysis of the results could 
be done because the emulation process stores all 
the required information (fault classification, 
fault latencies, etc,) in onboard RAM, which is 
finally uploaded to the host. 

Autonomous Emulation defines a frame in 
which several techniques are possible with 
different tradeoffs in terms of performance and 
area overhead. In this work, three fault 
emulation techniques have been presented and 
compared experimentally. The best solution 
depends on the circuit under test and the 
testbench, but in most cases Time Multiplexed 
technique is one order of magnitude faster than 
the two other techniques, State Scan technique 
is better for circuits with small number of flip-
flops and long testbenches, and Mask Scan 
technique is better in the opposite case. 
Regarding resource usage, Time Multiplexed 
uses the highest amount for FPGA resources, 
but with less RAM blocks, while State Scan has 
the smallest area overhead. 

The results demonstrate that Autonomous 
Emulation is a time and cost effective solution 
for transient fault emulation, due to the 
popularization of low cost FPGAs, with a large 
amount of available resources. It can be easily 
scaled to multi-FPGAs to support the efficient 
evaluation of very large circuits. The proposed 
approach is technology independent, since it 
does not rely on any particular FPGA 
configuration mechanism.  
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Table 5. Area results for FFs in the modified CUT 
Mask_Scan State_Scan Time_Mux FFs Original #FFs % #FFs % #FFs % 

b14 215 430 100% 430 100% 860 300% 
b14_TMR 323 646 100% 646 100% 1,192 300% 
b12 119 238 100% 238 100% 475 300% 
b15 418 836 100% 836 100% 1,672 300% 
Circuit_A 484 968 100% 968 100% 1,941 300% 
Circuit_A_TMR 582 1,164 100% 1,164 100% 2,538 300% 

Table 6. Area results for LUTs in the modified CUT 
Mask_Scan State_Scan Time_Mux LUTs Original #LUTs % #LUTs % #LUTs % 

b14 1,172 1,648 40.6% 1,555 32.7% 3,945 236.6% 
b14_TMR 2,126 2,191 3.1% 1,982 -6.8% 4,448 109.2% 
b12 362 673 85.9% 622 71.8% 1,233 240.6% 
b15 2,322 3,795 63.4% 3,037 30.8% 7,368 217.3% 
Circuit_A 932 2,167 132.5% 1,422 52.6% 4,385 370.5% 
Circuit_A_TMR 955 1,632 70.9% 1,590 66.5% 4,767 399.2% 

Table 7. RAM requirements for on-board RAM in the complete emulation system 
Mask_Scan Time Mux State_Scan Board RAM Available

(kbits) # kbits % # kbits % # kbits % 
160 33.0 0.1% 67 0.1% 7,289 11.1% b14 
600 

65,536 
126.0 0.2% 252 0.4% 26,573 40.5% 

160 50.5 0.1% 101 0.2% 19,380 29.6% b14_TMR
600 

65,536 
189.3 0.3% 378 0.6% 72,675 110.9% 

160 18.6 0.0% 37 0.1% 2,200 3.4% b12 600 
65,536 

69.7 0.1% 139 0.2% 8,200 12.5% 
160 65.0 0.1% 130 0.2% 27,431 41.9% b15 
600 

65,536 
244.5 0.4% 489 0.7% 102,867 157.0% 

Circuit_A 65,536 708.9 1.1% 1,418 2.2% 385,687 588.5% 
Circuit_A_TMR 65,536 851.5 1.3% 1,703 2.6% 513,281 783.2% 

Table 8. RAM requirements for FPGA RAM in the complete emulation system 
Mask_Scan Time Mux State_Scan FPGA RAM Available

(kbits) # kbits % # kbits % # kbits % 
160 13.40 2.1% 5.30 0.8% 13.40 2,1% b14 
600 

640 
50.40 7.9% 18.75 2.9% 50.40 7,9% 

160 13.40 2.1% 5.30 0.8% 13.40 2,1% b14_TMR
600 

640 
50.40 7.9% 18.80 2.9% 50.40 7,9% 

160 2.00 0.3% 0.78 0.1% 2.00 0,3% b12 600 
640 

7.60 1.2% 2.90 0.5% 7.60 1,2% 
160 16.56 2.6% 5.60 0.9% 16.51 2,6% b15 
600 

640 
62.20 9.7% 21.10 3.3% 62.20 9,7% 

Circuit_A 640 146.48 22.9% 46.9 7.3% 146.48 22.9% 
Circuit_A_TMR 640 146.48 22.9% 46.9 7.3% 146.48 22.9% 

Table 9. Results for large fault injection campaigns 
Fault Classification Circuit # inputs # flip-

flops # cycles # faults 
%F %L %S 

Speed 
(μs/fault) 

Emulation
time 

CIRCUIT_A 32 484 100,000 48,400,000 8,46 0,02 91,52 1,55 75.2 
CORDIC 51 865 150,000 129,750,000 83,92 0,01 16,07 1,07 140 




