
This is a postprint version of the following published document:

Lopez-Ongil, C., Garcia-Valderas, M., Portela-Garcia, M.
& Entrena, L. (2007). Autonomous Fault Emulation: A
New FPGA-Based Acceleration System for Hardness
Evaluation. IEEE Transactions on Nuclear Science, 54(1),
252-261.

DOI: 10.1109/tns.2006.889115

 © 2007, IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/tns.2006.889115

1

Abstract— The appearance of nanometer technologies has
produced a significant increase of integrated circuit sensitivity to
radiation, making the occurrence of soft errors much more
frequent, not only in applications working in harsh
environments, like aerospace circuits, but also for applications
working at the earth surface. Therefore, hardened circuits are
currently demanded in many applications where fault tolerance
was not a concern in the very near past. To this purpose,
efficient hardness evaluation solutions are required to deal with
the increasing size and complexity of modern VLSI circuits. In
this paper, a very fast and cost effective solution for SEU
sensitivity evaluation is presented. The proposed approach uses
FPGA emulation in an autonomous manner to fully exploit the
FPGA emulation speed. Three different techniques to implement
it are proposed and analyzed. Experimental results show that the
proposed Autonomous Emulation approach can reach execution
rates higher than 106 faults per second, providing a performance
improvement of two orders of magnitude with respect to previous
approaches. These rates give way to consider very large fault
injection campaigns that were not possible in the past.

Index Terms—SEU, on-line testing, fault tolerance, fault
injection, fault emulation, FPGA.

I. INTRODUCTION

Safety-critical VLSI circuits working in radiation
environments require designs hardened against
SEU effects. As technology evolves towards
smaller transistor sizes and reduced power supply,
this requirement becomes a concern in many
application areas, even at sea level [1]. New
technologies also enable more complex circuits and
higher operation frequencies that pose new

Manuscript received 10 april 2006.
This work was supported in part by the Directorate of Research of Madrid

Community Government, Spain, code 07T/0052/2003 2).
Celia López-Ongil, Mario García-Valderas, Marta Portela-García, Luis

Entrena-Arrontes are with Universidad Carlos III de Madrid, Dpto.
Tecnología Electrónica, c/Butarque 15. Leganés, 28911. Madrid, Spain (e-
mail: celia@ing.uc3m.es; mgvalder@ing.uc3m.es; mportela@ing.uc3m.es;
entrena@ing.uc3m.es)

challenges in the efficient design of hardened
circuits.

A crucial task in the design of a safety critical
circuit is the estimation of sensitivity to SEU
effects, which in turn allows predicting the
circuit error rate [2]. Estimation of SEU
sensitivity is required, first of all, to identify
weak areas that must be hardened and then to
validate the correctness and effectiveness of the
safety critical design. To this purpose, it is
essential to have techniques and tools that can
provide accurate estimations of SEU sensitivity
in a fast way. Such tools may allow a deeper
exploration of the design space in order to
satisfy reliability requirements with reduced
design effort and cost.

Fault injection has been widely accepted to
carry out SEU sensitivity analysis of ICs. This
can be performed in several ways. Among them,
a typical one is the injection of faults by
exposing the circuit to radiation [3][4]. This
approach produces very realistic results, but
requires expensive equipment and a
manufactured circuit in order to perform a test.
Therefore, it is mainly targeted to the
certification of the final hardened circuit and
cannot be used in early design stages. Other
approaches, such as laser fault injection [5] or
electromagnetic interference [6] suffer the same
problem.

For an estimation of SEU sensitivity before
the circuit is manufactured, simulation-based
fault injection has been traditionally used
[7][8][9][10]. Simulation-based fault injection
can support many fault models and provides

Autonomous Fault Emulation:
A New FPGA-based Acceleration System for

Hardness Evaluation

Celia López-Ongil, Mario García-Valderas, Marta Portela-García, Luis Entrena-Arrontes

2

high flexibility in order to configure fault injection
campaigns. Most techniques are built on top of
commercial HDL simulators. Fault injection is
achieved with the use of HDL simulator commands
or modifying the HDL model to include the fault
injection capability. The major drawback of this
technique is the huge computational effort required
to perform circuit simulation under a large number
of faulty conditions. As new generations of circuits
can include millions of gates in a single circuit, the
capability of analyzing a significant number of
faults and obtaining a comprehensive estimation of
SEU sensitivity using simulation-based fault
injection is reduced [11].

In the last years, emulation-based fault injection
has emerged as a means to accelerate fault injection
experiments. Emulation-based fault injection uses
FPGA devices in order to emulate the behaviour of
the circuit under test. Modern FPGAs include
millions of equivalent gates and allow the
emulation of large circuits at high speed. It must be
remarked that the purpose of emulation-based fault
injection is evaluating the SEU sensitivity of an
ASIC design, not an FPGA design. SEU effects
appear in the memory elements of circuits, which
are the same in the ASIC and in the FPGA
prototype. In the context of emulation-based fault
injection, FPGAs are used as a means to perform
SEU sensitivity evaluation of any digital design,
whatever the target technology, by taking
advantage of FPGA emulation speed.

Fault injection in FPGAs is performed either by
reconfiguring the device to introduce the faulty
behaviour [12] or by modifying the original circuit
adding extra hardware to alter the state of the
circuit [13]. In any case, a very intensive interaction
is required between the emulator and the host
computer. The host controls the injection and
evaluation for every fault. This introduces a
performance bottleneck due to the communication
between the emulator and the host computer, which
prevents taking full advantage of the FPGA
capabilities for fast hardware emulation. In [11],
fault tolerance evaluation of microprocessors is
performed, including fault injection and fault
classification in the FPGA, but no further speedup
of the fault injection process has been reported.

This paper proposes efficient mechanisms to
overcome this performance bottleneck and achieve
an extremely efficient fault injection system. To

this purpose, an Autonomous Emulation system
and several techniques for its practical
implementation are proposed. The key of the
proposed Autonomous Emulation is to minimise
the communication between emulator and host
during the fault injection execution and to
optimise fault injection and fault classification
tasks executed within the hardware. This is
accomplished by including fault injection
control functions inside the FPGA, generating
or storing the stimuli and the fault list within the
emulation hardware and storing also the fault
classification in the emulation hardware. Thus,
communication is only needed at the beginning
of the process, to download the fault injection
campaign configuration to the emulation board,
and at the end, to retrieve the results.

Once the interaction between the host and the
FPGA is minimised, the fault injection
mechanisms can be optimised to reduce the time
required to evaluate each fault, taking full
advantage of FPGA emulation speed. In many
cases, a fault effect can be categorized just a
few clock cycles after the fault is injected. Then,
if testbench application is stopped as soon as the
fault can be classified, and if circuit state is
reloaded just before the injection time, a
dramatic reduction in the total number of clock
cycles used for a fault injection campaign is
obtained. Therefore, there is no need to run the
complete testbench for each fault, allowing
huge savings in computational effort. Using
this approach, the efficiency of emulation can
be increased typically by about two orders of
magnitude with respect to existing approaches,
reaching rates in the order of 1 μs/fault. These
rates give way to consider very large fault
injection campaigns that were not possible in
the past.
The paper is organized as follows. Section II
reviews the fundamentals of emulation-based
fault injection. Then, the proposed Autonomous
Emulation system is described in section III.
Section IV presents the experimental results.
Finally, section V states the conclusions of this
work.

3

II. TRANSIENT FAULT EMULATION

The fault tolerance evaluation process consists in
checking the response of a circuit in the presence of
faults, by comparing the behaviour of both the fault
free and the faulty circuit. To this purpose, faults
are injected into a model of the circuit while it is
executing a workload, to check their effects. This
paper is focused on the behavioural effects
produced by Single Event Upsets (SEU). The most
commonly used fault model for SEU effects is the
bit-flip, which affect circuit memory elements [16].

According to the circuit response after the
injection of a fault, faults can be classified into
several categories. At least, three basic categories
are generally considered:
• A fault that induces wrong circuit behaviour

is classified as a failure. A wrong behaviour
usually means wrong or delayed values at the
circuit outputs.

• A fault that does not produce a faulty
behaviour during the whole testbench, but
leaves the circuit in a different state than the
fault free circuit, is classified as a latent fault.
Although it has not produced an observable
error at the checking time, it could produce it
in the future.

• A fault whose effects disappear completely is
considered a silent fault.

Injecting a fault according to the bit-flip model
involves changing the value of a memory element.
The fault may produce different effects if applied to
a different memory element or if injected in a
different clock cycle. If just single faults are
considered, the fault tolerance evaluation problem
is two-dimensional. Being F the number of flip-
flops in a circuit, and C the number of cycles of the
testbench, the complete set of single faults is thus
composed of FxC faults: a fault can be injected in
any of the flip-flops, and for every flip-flop, it can
be injected at any clock cycle. For each fault, the
following basic steps are typically performed in
order to classify the fault effect. These steps are
graphically represented in Figure 1.

1. Fault-free emulation in the hardware: run
the testbench until the fault injection time

2. Fault injection: inject the fault, by flipping
the value of the faulty flip-flop

3. Fault emulation in the hardware:
continue testbench execution until the
end of the testbench is reached

4. Fault classification: check the circuit
state in order to classify the fault effect.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Fault Classification

150

Fault emulation

Fault Injection

16 17 18 19 20 21
Cycle (TB)

FPGA

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Fault Classification

150

Fault emulation

Fault Injection

16 17 18 19 20 21
Cycle (TB)

FPGA

Figure 1.Emulation of a fault in an FPGA

If the testbench is completely applied to check
every possible fault, the total number of clock
cycles needed to perform the whole fault
emulation process is C multiplied by the
number of faults (FxC) that makes FxC2. For
large circuits as well as for long testbenches, the
evaluation process can become extremely time-
consuming. The usual approach to handle this
complexity, regardless of the method used to
perform the evaluation, is to sample the fault set
in order to obtain statistical results. The main
objective of this work is to reduce the time
required for each fault evaluation, allowing
much larger fault sets.

FPGA emulation has proven to be an effective
method to reduce fault evaluation time
[12][13][14][15][17][18]. In this case, an FPGA
is used to emulate circuit behaviour under the
control of a host that implements the fault
injection campaign. FPGA-based emulation
techniques have already been proposed to solve
the fault tolerance evaluation problem, as an
alternative to simulation solutions. These
solutions profit from hardware speed, but
maintain software flexibility.

Fault injection in an FPGA-based emulation
system can be achieved by taking advantage of
FPGA reconfiguration capabilities [12]. In this
case, partial reconfiguration is used to modify
flip-flop values. Applying emulation scheme
shown in Figure 1, testbench execution is
stopped when injection point is reached and the
host reconfigures the FPGA in order to inject
the fault. Finally, in the FPGA, execution is
resumed up to the end of the testbench or until a
failure is detected. Configuration readback can
be used to retrieve the circuit state and to
classify latent and silent faults in the host. In
[12], readback is used to retrieve the circuit

4

state at the injection time, and the fault is injected
through the manipulation of the GSR signal
(General Set Reset) of a Xilinx Virtex device.
Every design flip-flop needs to be manipulated to
preserve its value, except the injected flip-flop,
whose value is flipped. Injection time with these
techniques is usually high, as reconfiguration is
quite a slow process. In [12], injection time is
estimated to be about 100 ms for the worst case
applied to a small Virtex device (XCV50). On the
other hand, this approach depends heavily on the
specific reconfiguration capabilities provided by a
particular FPGA technology.

A different approach consists in using FPGA
general purpose logic to support fault injection. In
the instrumented circuit technique [13][14], faults
are injected by means of specific hardware located
in the flip-flops of the circuit, named instruments,
and connected in a scan-path chain, named fault
mask. The fault mask determines the set of flip-
flops to be affected by fault injection and is
downloaded via scan path. At the required time,
fault injection is activated from the host and
executed by means of the instruments located at
every flip-flop. A modification of this approach is
presented in [15], where some optimisation is
proposed with respect to output comparison and
fault injection. Instruments introduce an area
overhead of one flip-flop and some additional logic
per original flip-flop. Instrumented circuit
technique has given rates ranging from 100μs/fault
and 830μs/fault for short testbenches (less than
1,000 cycles) and long fault lists (100,000 faults)
[13] [14]. On the other hand, in [15] fault rates are
around 1s/fault for long testbenches (10,000 cycles)
and short fault lists (1,000 faults). However, these
solutions require an intensive communication
between the host computer and the FPGA for every
fault emulated. Communication is needed to
download the fault mask, to activate fault injection,
to apply the stimulus and to retrieve output values.
In [13] [14], fault classification is performed in the
host, comparing correct outputs (generated by
simulation) with faulty circuit outputs uploaded
from the emulator. In [11], fault injection and fault
classification is executed in the FPGA; however, no
further optimisation is done, giving rates of
5ms/fault. Thus, the resulting emulation speed is
dominated by the communication speed.

III. AUTONOMOUS EMULATION SYSTEM

Emulation-based techniques exploit the
capability of an FPGA to emulate circuit
behaviour at hardware speed. Since fault
injection requires analyzing circuit behaviour
for each injected fault, a large speedup can be
initially expected. However, with existing
emulation-based solutions, the emulation
process is interrupted every time the emulator
needs to wait for the host to apply the stimuli, to
inject a fault or to check the output values.

Autonomous emulation speeds up fault
injection by minimising the communication
between the FPGA and the host during the fault
evaluation process execution. To this purpose,
the critical control tasks of the fault injection
process are implemented within the FPGA.

 shows the general structure of the
Autonomous Emulation system. The system
uses an emulation board, which contains an
FPGA, onboard RAM and an interface to the
host. In addition to the circuit under test, the
FPGA includes a testbench application module,
a fault injection module, a fault classification
module and an emulation controller. The
emulation controller manages the whole
process, initializing the circuit, applying input
test vectors, injecting faults and enabling the
comparison between expected outputs and
faulty circuit outputs.

Host
Computer

Emulation Board

Fault
Dictionary

(Board
Memory)

FPGAFPGA

Input
Test vectors

Circuit
Under
Test

Emulation
Controller

Fault
classification

Interface

Fault
Injection

Host
Computer

Emulation Board

Fault
Dictionary

(Board
Memory)

FPGAFPGA

Input
Test vectors

Circuit
Under
Test

Emulation
Controller

Fault
classification

Interface

Fault
Injection

Figure 2. Autonomous fault emulation system

Available local RAM is used to store
testbench inputs and fault classification results.
Testbench inputs are stored in embedded RAM
so that they can be applied to the circuit under
test with no restrictions of bus widths and
without off-chip delays. External RAM could be
used if available embedded RAM is not enough.

5

This will not imply a reduction in performance,
given the current working frequencies of these
memories. Fault classification is stored in external
RAM (onboard RAM), accessible by the host
computer after the fault injection campaign is
finished.

With the Autonomous Emulation system, a
typical fault injection campaign is executed as
follows. First, the FPGA is configured. This step
defines the circuit under test, the testbench and the
fault list. Then, the FPGA emulation controller
repeats, for each fault, the following steps (Figure
3):

1. Set the circuit to the state previous to
fault injection

2. Fault injection
3. Fault emulation until the fault is

classified or until the testbench ends
When the fault emulation campaign is finished,

the host can upload the fault classification. Note
that communication with the host takes place only
at the beginning of the process, to download the
fault injection campaign information, and at the
end, to retrieve the results. All tasks related to fault
injection and classification are executed at
hardware speed, and the FPGA is never idle
waiting for the host to set up the next step in the
process.

FPGA

FPGA Fault Classification

Fault Injection

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

150

Fault emulation

16 17 18 19 20 21
Cycle (TB)

FPGA

FPGA

FPGA Fault Classification

Fault Injection

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

150

Fault emulation

16 17 18 19 20 21
Cycle (TB)

FPGA

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

150

Fault emulation

16 17 18 19 20 21
Cycle (TB)

FPGA

Figure 3. Emulation of a fault in the Autonomous system

A. Optimisation of fault emulation
Once the host-FPGA communication is

minimised, the time dedicated to the emulation of
every fault can also be optimised. As described
above, the emulation of a fault consists of three
steps. The first step, fault free emulation in the
Figure 3, is performed in order to set the circuit to
the required state before fault injection. This state
can also be set without the need of emulation if it is
stored elsewhere. In this case, the circuit can be set
to the required state by loading circuit flip-flops
with already saved values. Therefore, if state
restoring takes fewer clock cycles than fault free
emulation, the evaluation time is reduced.

On the other hand, fault emulation is executed
after fault injection and it stops when a failure is
detected (outputs are different in golden and
faulty circuit) or when the testbench finishes. In
the case of a silent fault, fault emulation could
be stopped as soon as the fault effect disappears.
However, this condition is difficult to apply for
solutions based on host-FPGA communication.
Faulty circuit state (in the FPGA) should be
compared with golden circuit state (in the host)
at any testbench cycle. Since this checking
implies long periods of time for every testbench
cycle, silent faults are usually classified at the
end of the testbench, although its effect could
have disappeared soon after fault injection. If
emulation is managed in the system hardware,
state comparison can be done for every
testbench cycle and fault emulation can be
stopped immediately after a fault becomes
silent. This optimisation allows a large
reduction in the time required to emulate a fault
which is finally classified as failure or silent.

With these optimisations, the evaluation of
each fault can be performed by applying the
testbench just from the fault injection cycle to
the cycle where the fault is classified (Figure 4).
The testbench will be applied up to the end only
if the fault is latent. Therefore, the emulation
time can be reduced notably.

Cycle (TB)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Fault Classification

150

Fault emulation

Fault Injection

16 17 18 19 20 21
Cycle (TB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Fault Classification

150

Fault emulation

Fault Injection

16 17 18 19 20 21

Figure 4. Hardware cycles employed for the emulation of
a fault in the Autonomous Emulation system

In this work, the autonomous emulation
paradigm allows a range of possibilities. Three
techniques are proposed with different levels of
optimisation. They are named Time-
Multiplexed, State-Scan and Mask-Scan. The
three techniques are based on modifying the
circuit under evaluation to support Autonomous
Emulation. The main modification of the circuit
under study is the substitution of all the internal
flip-flops by instrumented versions with fault
injection capabilities. All techniques are based
on the principle of Autonomous Emulation but

 6

every one may be useful for different applications.

B. Time-Multiplexed technique
In Time-Multiplexed technique, every circuit

flip-flop is replaced by the logic structure shown in
Figure 5. The idea underlying this structure is
having two circuits working simultaneously, one to
run the golden circuit and another one to run the
faulty circuit. In order to save resources, these two
circuits share their combinational logic by running
in alternate clock cycles, performing time
multiplexing. Full duplication is also possible,
avoiding time multiplexing, at the expense of more
combinational logic.

D Q
Data OutData In

D Q
Data OutData In

D Q
Data OutData In

Figure 5.a. Original flip-flop

Q
D
GOLDEN

Q
D

STATE

Data Out

Latent

D Q

MASK

Data In

Mask In

Mask Out

Inject

EnaFaulty

EnaGolden

Load State

Save State

Q
D
FAULTY

Q
D
GOLDEN

Q
D

STATE

Data Out

Latent

D Q

MASK

Data In

Mask In

Mask Out

Inject

EnaFaulty

EnaGolden

Load State

Save State

Q
D
FAULTY

Figure 5.b. Flip-flop replacement for the Time-Multiplexed
emulation technique

The flip-flop replacement contains a golden flip-
flop and a faulty flip-flop, which are used to store
the golden state and the faulty state, respectively.
This way, the circuit states can be compared at
every test cycle (Latent output in Figure 5.b),
allowing the immediate detection of silent faults.
Additional flip-flops are added to allow fault
injection in the faulty circuit (mask) and to store the
required circuit state (state) for next fault.

The mask flip-flop sets whether the value of the
faulty flip-flop will be changed or not by the next
fault injection. The different mask flip-flops of the
circuit form a scan chain (mask in input and mask
out output), named fault mask, so that the
emulation controller can select where to inject
faults (Inject input).

The state flip-flop is used to store the golden
circuit state needed for the next fault injection.
To this purpose, the SaveState signal is
activated at the appropriate testbench cycle.
When the current fault has been classified, the
faulty and golden flip-flops reload their values
from the state flip-flop in order to start the next
fault.

In this technique, all optimisations described
above are implemented. Emulation can be
restored from a previous state, so it is not
necessary to restart it every time from the
beginning. Also, emulation can be stopped
immediately after a fault is classified as failure
or silent, without waiting until the end of the
testbench.

This technique implies extra logic resource
usage, as shown in Figure 5.b. The main
overhead is in the number of flip-flops.
However, current FPGA devices include a large
amount of flip-flops, so that this is not crucial in
many cases.

C. State-Scan technique
State-Scan technique is a simplification of

Time-Multiplexed technique devised to reduce
area overhead. In State Scan technique, all
original flip-flops in the circuit are now
connected through a scan-path chain, so that the
whole circuit state can be loaded into the circuit.
Therefore, no fault mask is included. Fault
injection is carried out by directly downloading
a faulty circuit state. To this purpose, the fault
list is processed in the host in order to generate
the circuit state for every fault to be evaluated.
Consequently, no state flip-flop is included
either. The emulator stores the different faulty
states in onboard RAM. These states are then
inserted into the circuit by the emulation
controller via scan-path. Although more RAM
is required, two flip-flops are removed with
respect to Time Multiplexed technique.
Therefore, the expected area overhead, in terms
of flip-flops, is now 100% instead 300% (Time-
Multiplexed technique).

Figure 6 shows the flip-flop replacement to
implement this technique. A single flip-flop
substitutes the faulty, state and mask flip-flops.
This flip-flop stores the faulty state of the
circuit. In order to detect silent faults, a golden

7

flip-flop is added. The golden flip-flop stores the
final state of the circuit after a golden run. To this
purpose, a golden run is first executed by the
emulator at the beginning of the process and the
final circuit state is stored in the golden flip-flops.
Then, the circuit state is compared with the golden
run state at the end of every fault emulation to
determine whether the fault is latent or silent.

Scan Out/
Data Out

D Q

FaultyData In

Scan In

D Q

GOLDEN

Latent

Scan Out/
Data Out

D Q

FaultyData In

Scan In

D Q

GOLDEN

Latent

Scan Out/
Data Out

D Q

FaultyData In

Scan In

D Q

GOLDEN

Latent

Figure 6. Flip-flop replacement for the State-Scan emulation
technique

State Scan technique loads the state of the circuit
at the injection time through a scan chain. Fault free
emulation is substituted by faulty state scan in
(Figure 7) which is faster when the circuit has few
flip-flops in relation with the number of testbench
cycles. The number of cycles required to load the
state is determined by the number of flip-flops. On
the other hand, emulation is only stopped when a
failure is detected. Silent faults can not be detected
until the end of the testbench execution.

Faulty State Scan In

Cycle (TB)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Failure detection

150

Fault emulation

16 17 18 19 20 21

(latent-silent emulation)

Faulty State Scan InFaulty State Scan In

Cycle (TB)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault free emulation

Failure detection

150

Fault emulation

16 17 18 19 20 21

(latent-silent emulation)

Figure 7. Hardware cycles employed for the emulation of a
fault in the State Scan technique

With this technique, the flip-flop number in the
circuit under evaluation is only doubled with
respect to the original circuit. On the other hand, a
larger amount of RAM is usually required to store
faulty circuit states for the fault injection campaign.

D. Mask-Scan technique
Mask-Scan technique is another simplification of

Time-Multiplexed technique, but it does not need
so much RAM as the State-Scan technique. In
Mask-Scan technique, only a mask flip-flop is
added to every original flip-flop (Figure 8). The
mask flip-flops form a scan chain, with a
mechanism similar to the instrumented circuit
technique [13]. Neither golden nor state flip-flops

are included in this technique. Circuit state is
not stored for time optimisation. Therefore, no
RAM blocks are required. Mask Scan
introduces less area overhead at the expense of
increasing emulation time.

Data Out
D Q

D Q

MASK

Data In

Mask In

Mask Out

Inject

Data Out
D Q

Faulty

D Q

MASK

Data In

Mask In

Mask Out

Inject

Data Out
D Q

D Q

MASK

Data In

Mask In

Mask Out

Inject

Data Out
D Q

Faulty

D Q

MASK

Data In

Mask In

Mask Out

Inject

Data Out
D Q

D Q

MASK

Data In

Mask In

Mask Out

Inject

Data Out
D Q

D Q

MASK

Data In

Mask In

Mask Out

Inject

Data Out
D Q

Faulty

D Q

MASK

Data In

Mask In

Mask Out

Inject

Figure 8. Flip-flop replacement for the Mask-Scan
emulation technique

In this case, testbench application is always
performed from the beginning, because there is
no specific mechanism to load a particular state.
Emulation is only stopped when a failure is
detected or at the end of the testbench.

With the flip-flop replacement shown in
Figure 8, faults can only be classified into
failure and non-failure categories. Silent and
latent faults can not be distinguished unless the
final circuit state is sent to the host for
comparison, as the golden circuit state is not
stored locally. A third flip-flop would be needed
to be able to make the distinction.

E. Comparison of techniques
In order to compare the time savings that can

be obtained with the three proposed techniques,
Figure 9 to Figure 12 show graphically the
clock cycles needed for the emulation of faults
injected in a single flip-flop FF1 of a generic
circuit. In the figures, horizontal axis represents
emulation clock cycles and vertical axis stands
for number of faults.

1
2
3
4
5
6
7
8
9

11
12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

13
14

10

Fault-free emulation

Fault emulation
Fault injection

15

Fa
ul

ts
fo

rF
F

#1

Cycles (TB)

1
2
3
4
5
6
7
8
9

11
12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

13
14

10

Fault-free emulation

Fault emulation
Fault injection

15

Fa
ul

ts
fo

rF
F

#1

Cycles (TB)

 8

Figure 9. Emulation of faults for FF1

Figure 9 shows the general case of fault
emulation with no optimisation. Fault free
emulation (black area) is executed until the
injection time (white border box) and then, fault
emulation (grey area) is run until the end of the
testbench. Classification is performed at the end of
the testbench execution. The total emulation time is
proportional to the shaded area of the figure.

Failure

Silent

Latent

Latent

Silent

Latent

Latent

Latent

Silent

Silent

Failure

Failure

Silent

Silent

Fault-free state loading

Fault emulation
No emulation

Fa
ul

ts
fo

rF
F

#1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cycles (TB)

1
2
3
4
5
6
7
8
9

11
12
13
14

10

Failure

Silent

Latent

Latent

Silent

Latent

Latent

Latent

Silent

Silent

Failure

Failure

Silent

Silent

Fault-free state loading

Fault emulation
No emulation

Fa
ul

ts
fo

rF
F

#1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cycles (TB)

1
2
3
4
5
6
7
8
9

11
12
13
14

10

Figure 10. Emulation of faults for FF1 with Time Multiplexed

Technique

With Time Multiplexed technique (Figure 10),
fault free emulation is not required. Also, fault
emulation is stopped as soon as the fault can be
classified. Thus, the testbench is completely
executed only for latent faults. The total emulation
time is proportional to the shaded area in the figure,
while the white area shows the time savings.

Fa
ul

ts
fo

rF
F

#1

Failure

Silent

Latent

Latent

Silent

Latent

Latent

Latent

Silent

Silent

Failure

Failure

Silent

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2

3

Silent

15

Faulty state scan in
Fault emulation
No emulation

Cycles (TB)

4
5
6
7
8
9

11
12
13
14

10Fa
ul

ts
fo

rF
F

#1

Failure

Silent

Latent

Latent

Silent

Latent

Latent

Latent

Silent

Silent

Failure

Failure

Silent

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2

3

Silent

15

Faulty state scan in
Fault emulation
No emulation

Cycles (TB)

4
5
6
7
8
9

11
12
13
14

10

Figure 11 Emulation of faults for FF1 with State Scan

Technique

In State Scan technique, less area overhead is
obtained but more time is required for fault
emulation. Fault injection and state restoring is
done via scan path from onboard memory at
hardware speed (Figure 11). Fault emulation is
executed until the fault is classified as a failure or
until the end of the testbench. Silent and latent
faults are emulated until the end of the testbench.
The time savings depend on the balance between

fault free emulation and faulty state scan in
(black area).

Finally, in Mask Scan technique (Figure 12)
circuit state cannot be restored, so the full
testbench must be executed. Fault injection
takes one clock cycle for the application of fault
mask and fault emulation is performed in the
same terms as in State Scan technique.
Although this technique implies the smallest
amount of area overhead, the execution of the
emulation campaign is slower.

Fa
ul

ts
fo

rF
F

#1

Cycles (TB)

Failure

Silent

Latent

Silent

Latent

Silent

Latent

Latent

Latent

Silent

Silent

Failure

Failure

Silent

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fault-free emulation
Fault emulation
No emulation

1
2
3
4
5
6
7
8
9

11
12
13
14

10

Fa
ul

ts
fo

rF
F

#1

Cycles (TB)

Failure

Silent

Latent

Silent

Latent

Silent

Latent

Latent

Latent

Silent

Silent

Failure

Failure

Silent

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fault-free emulation
Fault emulation
No emulation

Fault-free emulation
Fault emulation
No emulationNo emulation

1
2
3
4
5
6
7
8
9

11
12
13
14

10

Figure 12. Emulation of faults for FF1 with Mask Scan

Technique

IV. EXPERIMENTAL RESULTS

The proposed techniques for Autonomous
Emulation have been tested with several
benchmark circuits, in order to analyse the
effectiveness of every technique. In addition, a
real circuit from aerospace industry has also
been evaluated. The experiments have been
performed on a Celoxica RC1000 board [19],
which includes a Xilinx Virtex-2000E [20] and
8MBytes of onboard RAM. Both FPGA and
RAM are accessible through the PCI bus. The
circuit examples were described in VHDL at RT
level. Leonardo Spectrum and Xilinx ISE were
used as synthesis and back-end tools,
respectively.

Table 1 shows the main characteristics of the
circuits used in the experiments. For each
circuit, the number of inputs, outputs and flip-
flops are reported. B12, b14 and b15 circuits are
from the ITC’99 benchmark suite [21]. In
particular, circuit b12 is a one-player game
(guess a sequence), circuit b14 is a subset of the
Viper processor and circuit b15 is a subset of
the 80386 processor. CIRCUIT_A is a real
application from aerospace industry, where

9

hardness is a crucial aspect. These circuits have
been chosen to test the performance and
applicability of the Autonomous Emulation system
and the advantages and disadvantages of the three
proposed techniques. Besides, partially hardened
versions of b14 and CIRCUIT_A have been
included in order to check the system performance
with fault tolerant circuits. Circuit b14_TMR has
been obtained from circuit b14 by applying Triple
Modular Redundancy on the primary outputs.
CIRCUIT_A _TMR has been obtained from
CIRCUIT_A by applying Triple Modular
Redundancy on some selected critical outputs and
internal signals. It must be noted that CIRCUIT_A
was designed with a robust architecture, typical of
aerospace applications.

Table 1. Characteristics of circuits under test
#Inputs #Outputs #Flip-flops

B12 5 6 119
B14 32 54 215
B14_TMR 32 54 323
B15 36 70 418
CIRCUIT_A 32 68 484
CIRCUIT_A_TMR 32 68 582

A Celoxica RC1000 board used in the
experiments includes a small sized FPGA device.
Every circuit tested fit within this device. More
complex circuits could be analyzed with bigger
FPGAs, already available in the market. Also,
additional on-board RAM can be used if needed for
larger stimuli set and larger sets of faults.

The design flow for the experiments has been
automated with tools developed by the authors,
which interact with commercial simulation and
synthesis tools. First, a netlist of the circuit under
test (CUT) is obtained with a commercial synthesis
tool. Then, the netlist is instrumented and linked to
the emulator using automatic tools. The resulting
circuit is re-synthesised and downloaded into the
FPGA using the vendor back-end tool. A software
application, developed by the authors, is used to
start the fault injection campaign. In this moment,
FPGA takes the control of fault injection campaign
and executes all the fault emulation autonomously.
Finally the mentioned software application uploads
the classification results form the FPGA.

Input test vectors applied to ITC benchmarks
have randomly generated through the simulation of
an LFSR. Testbench stimuli are stored in the FPGA

within embedded RAM. Although random test
vectors provide higher number of latent faults
than functional testbenches, these ones are
difficult to obtain for those benchmarks. The
influence of the testbench length in emulation
time and area overhead has been analyzed by
applying to the ITC benchmarks two sets of 160
and 600 stimulus vectors, respectively. For
CIRCUIT_A, a functional testbench of 1500
cycles is used. In all the experiments the
complete list of single faults is injected, i.e., all
bit-flips in any flip-flop and at any clock cycle.
Multiple bit-flips could be applied directly, just
generating fault masks with multiple bits set.
Table 2. Fault classification for b12, b14 and b14_TMR,

b15, CIRCUIT_A and CIRCUIT_A_TMR circuits
Fault Classification Circuits #

cycles # faults
%F %L %S

160 19,040 29.8 55.6 14.6 B12
600 71,400 33.3 53.4 13.3
160 34,400 49.2 4.4 46.4

B14
600 129,000 59.6 1.9 38.5
160 51,680 16.0 3.2 80.7

B14_TMR
600 193,800 23.0 1.3 75.7
160 66,880 19.9 52.7 27.4

B15
600 250,800 18.6 54.6 26.8

CIRCUIT_A 1,500 726,000 21.4 47.7 31.0
CIRCUIT_A_TMR 1,500 873,000 14.1 38.7 47.2

A. Fault Classification
The fault classification results obtained with

the Autonomous Emulation system are
summarized in Table 2. For each circuit, the
total number of injected faults and the
percentage of failure, latent and silent faults are
presented. It must be noted that the Autonomous
Emulation system provides a complete list of
the classification result for each fault, so that a
more detailed analysis can be obtained by
postprocessing the results.

Circuit b14 presents a large number of silent
and failure faults while in circuits b12 and b15
most faults are latent. As it was expected, for
the partially hardened circuits (B14_TMR and
CIRCUIT_A_TMR), failure faults decrease
considerably in favour of silent faults, with
respect to non-hardened versions. Note that
hardened versions of b14 and CIRCUIT_A
apply TMR on circuit outputs and some selected
signals.

 10

B. Emulation Performance
Emulation times are shown in Table 3. For each

circuit, the emulation time using the Mask Scan,
State Scan and Time Multiplexed techniques are
reported. In all cases, the clock frequency was set
to a moderate frequency of 25 MHz for the sake of
comparison. However, the clock frequency can be
tuned to the maximum allowable frequency for
each example, as reported by the FPGA synthesis
tool. In the case of the ITC benchmarks, results for
160 and 600 testbench clock cycles are given. The
average emulation time per fault is also listed.

Table 3.a. Time results for b12 circuit
Execution time (ms)

Time average
(μs/fault) B12

160 600 160 600
Mask Scan 108.70 1,450 5.7 20.3
State Scan 142.00 771 7.5 10.8
Time Mux 80.80 971 4.2 13.6

Table 3.b. Time results for b14 circuit
Execution time (ms)

Time average
(μs/fault) B14

160 600 160 600
Mask Scan 141.11 2,200.0 4.1 17
State Scan 386.40 2,100.0 11.2 16
Time Mux 19.90 83.2 0.57 0.64

Table 3.c. Time results for b14 hardened circuit
Execution time (ms)

Time average
(μs/fault) B14_TMR

160 600 160 600
Mask Scan 310.70 4,200 6.04 21.6
State Scan 838.90 4,400 16.3 23.06
Time Mux 24.00 99 0.47 0.51

Table 3.d. Time results for b15 circuit
Execution time (ms) Time average (μs/fault) B15

160 600 160 600
Mask Scan 386.5 5,600 5.8 21.8
State Scan 1,300.0 6,800 19.9 27.1
Time Mux 226.8 3,300 3.4 13.1

Table 3.e. Time results for CIRCUIT_A and
CIRCUIT_A_TMR

Execution time (ms) Time average (μs/fault)
CIRCUIT A Non-

hardened TMR Non-
hardened TMR

Mask Scan 38,500 - 53 -
State Scan 31,900 - 44 -
Time Mux 23,800 23,300 33 27

Circuit b14 has already been evaluated with the

Instrumented Circuit technique [13], obtaining a
time average of 100μs/fault, with a testbench of
similar length. Comparing this result with the time

average shown here (Table 3.b) it can be
concluded that the proposed techniques provide
a performance improvement up to two orders of
magnitude.

According to the results, the Time
Multiplexed technique is the fastest. It may
become slightly slower when there is a large
amount of latent faults and the testbench is
large. The reason is that Time Multiplexed
technique uses two clock cycles for each
testbench cycle (to execute the golden and
faulty circuit). With latent faults, the testbench
must be run until the end, taking twice the
number of cycles and making the process
slower. This is the case of circuit b12 for the
600 cycle testbench, which shows 53.4% of
latent faults. On the other hand, this example is
well suited for the State Scan technique, as it
has few flip-flops.

The performance benefits of Time
Multiplexed technique are outstanding when
there is majority of faults classified as failure or
silent. Therefore, hardened circuits are expected
to produce a better performance in Time
Multiplexed technique, as failure and latent
faults become silent due to the hardening
structures. For instance, fault emulation for
circuit b14_TMR runs about 40 times faster
with Time Multiplexed technique. For Mask
Scan and State Scan, the effect is the opposite.
Transforming failures into silent faults makes
the evaluation slower, as for silent faults the
testbench must be run until the end in these
techniques. This aspect is shown in the results
for circuits b14 and CIRCUIT_A, compared to
their hardened versions.

Comparing Mask Scan and State Scan
techniques, they differ in the time employed to
reach the injection state. State Scan uses a fixed
number of cycles to load the circuit state, equal
to the number of circuit flip-flops. Mask Scan
needs to run the testbench from the beginning to
the injection cycle. Since faults are injected in
every clock cycle, the mean time for this
technique to reach the injection point is half the
testbench length. Therefore, State Scan will be
faster if the number of flip-flops is smaller than
half the testbench length. This is demonstrated

11

in the results of the experiments, comparing the
rates for the two techniques and the two testbenches
used. For circuits b12 and b14, State Scan is faster
with the long testbench and slower with the short
testbench. For b14_TMR and b15, where the
number of flip-flops is higher, Mask Scan
technique is better for the two testbenches.

Fault classification has influence in the
performance of every technique. It cannot be
decided a priori which technique is going to be
better for a given circuit. However, a decision can
be taken according to the expected fault
classification. Time Multiplexed will be usually
better, especially when most faults are expected to
be silent, like in hardened design. When a large
amount of faults are expected to be latent, State-
Scan or Time Multiplexed technique may be the
faster depending on the existing relationship
between the number of flip-flops and the testbench
length [17]. This may be the case, for instance,
when the testbench does not fully exercise the
circuit functionality.

C. Area Overhead
In this section, the area overhead results are

presented in order to complete the evaluation of the
proposed techniques. As expected, each technique
produces different overheads in terms of LUTs,
FFs, Block RAM and onboard RAM. Thus, each
technique has a different area-speed tradeoff. This
trade-off can be exploited by selecting the fastest
technique that fits in the available device and
offering the possibility of emulating larger circuits
within the same device by using other techniques.

The synthesis results for the three techniques
implemented in the autonomous system developed
are shown in tables 4 to 9. The number of LUTs
and FFs and the relative area overhead (reported by
the synthesis tools) are shown for the various
circuits. Testbench lengths have negligible
influence in FPGA area overhead. Therefore, area
results are reported for b12, b14, b15 and
b14_TMR with a testbench of 160 cycles. For each
example, the area of the circuit under test after flip-
flop replacement (Modified CUT) is shown along
with the area for the complete emulation system
including the emulation controller (Emulator) and
the CUT. The required onboard and embedded
RAM blocks (in Kbits) are presented for the
complete emulation circuit.

The overhead due to the modification of the
circuit under evaluation is proportional to the
number of flip-flops in the original circuit. Time
Multiplexed technique implies the highest area
overhead for the circuit and for the complete
emulation system. The area overhead due to the
emulation controller depends on the number of
flip-flops, the testbench length and number of
circuit inputs and outputs, but it is small
compared to the circuit size. With respect to
RAM requirements, they are very important in
the State-Scan technique for the board RAM
blocks. In some cases, it has been necessary to
split the fault injection experiments because
RAM required was larger than available.

Although the implementation of the
Autonomous Emulation system represents a
significant resource overhead, the size of
current FPGA devices allows the successful
implementation of the emulator for a wide range
of circuits and applications within a single
FPGA. For very large circuits, Autonomous
Emulation can be implemented on multiple
FPGAs.

D. Considerations on Scalability
The techniques proposed may be used for a

wide range of circuits and applications, The
benchmarks used to demonstrate the techniques
may be considered small or medium size
circuits, In order to use the proposed techniques
with larger circuits and longer testbenches, the
two main factors affecting the emulator
implementation are the size of the circuit to test
and the length of the testbench. A possibility
that can be always considered to support larger
circuits is the use of a hardware platform with a
larger FPGA device or several of them, and a
larger board memory.

Regarding testbench length, several
possibilities may be considered when the
testbench vectors exceed the available storage
memory. Input stimuli are usually very
repetitive, so it is fairly easy to use compression
algorithms to increase the storage capability. It
is also possible to generate input stimuli with a
circuit, like a LFSR, instead of explicitly storing
vector values. Finally, it is always possible to
split the test in several parts and perform the
injection campaign in several steps.

12

Two examples of larger size have been
implemented using Time-Multiplexed technique.
The first one is the CIRCUIT_A, but with a
testbench of 100,000 cycles. A simple compression
technique has been implemented to allow the
storage of the complete vector set. The second
example is a CORDIC core [22]. A 150,000 vector
set has been tested, using an LFSR for vector
generation. In both examples, the fault set has been
split in several sections due to the limitations of the
result storage memory; different sections imply
different ranges of flip-flops and clock cycles in
which faults are injected. These results, shown in
Table 4, are provided to demonstrate the capability
of implementing large fault injection campaigns,
even with a small size hardware platform.

Table 4. Emulator resource usage
flip-
flops

LUT4

FPGA
RAM

#board
RAM

CIRCUIT_A 1,893 4,361 617,4 Kbits 92.3 Mbits
CORDIC 4,050 5,178 0 247.5 Mbits

 shows that large fault injection campaigns have
been carried out with a very high emulation speed.
Both circuits have been emulated at 25MHz.
Several million faults have been emulated in a few
minutes, while experiments shown in the literature
usually test just a few thousand faults.

Regarding the fault classification of CIRCUIT_A
experiment, a large increment in silent faults can be
observed in relation with previous experiments of
this circuit. This increment is caused by the
application of a much longer testbench.
CIRCUIT_A was designed using robust
communication protocols, but they require some
time to be effective and to be able to cancel faults.

Table 4 shows that the resources used by the
emulators are not unaffordable, specially taking
into account that the hardware platform used could
be considered small, CIRCUIT_A takes a higher
amount of memory because test vectors are stored
in RAM, while in the CORDIC emulator, test
vectors are generated with an LFSR.

V. CONCLUSIONS

This paper presents a new solution for improving
the performance of SEU emulation in FPGAs, An
Autonomous Fault Emulation system is proposed,
which executes in the FPGA most of the tasks
involved in a fault injection campaign. This

approach allows taking full advantage of FPGA
emulation speed and saving execution time by
optimising the fault injection process. Execution
rates higher than 106 faults per second can be
reached, providing a performance improvement
of two orders of magnitude with respect to
existing approaches. These rates give way to
consider very large fault injection campaigns
that were not possible in the past and to tackle
the estimation of SEU sensitivity for large
circuits. Moreover, flexibility is maintained
because the fault injection campaign can still be
configured from software running in a host,
while fault emulation process is autonomously
performed within the FPGA once the fault list is
generated. Detailed analysis of the results could
be done because the emulation process stores all
the required information (fault classification,
fault latencies, etc,) in onboard RAM, which is
finally uploaded to the host.

Autonomous Emulation defines a frame in
which several techniques are possible with
different tradeoffs in terms of performance and
area overhead. In this work, three fault
emulation techniques have been presented and
compared experimentally. The best solution
depends on the circuit under test and the
testbench, but in most cases Time Multiplexed
technique is one order of magnitude faster than
the two other techniques, State Scan technique
is better for circuits with small number of flip-
flops and long testbenches, and Mask Scan
technique is better in the opposite case.
Regarding resource usage, Time Multiplexed
uses the highest amount for FPGA resources,
but with less RAM blocks, while State Scan has
the smallest area overhead.

The results demonstrate that Autonomous
Emulation is a time and cost effective solution
for transient fault emulation, due to the
popularization of low cost FPGAs, with a large
amount of available resources. It can be easily
scaled to multi-FPGAs to support the efficient
evaluation of very large circuits. The proposed
approach is technology independent, since it
does not rely on any particular FPGA
configuration mechanism.

 13

VI. ACKNOWLEDGEMENTS

This work has been partially funded by the
Directorate of Research of Madrid Community
Government, Spain, code 07T/0052/2003 2.

REFERENCES

[1] International Technology Roadmap for Semiconductors,
2001 Edition

[2] R. Velazco, S. Rezgui, and R. Ecoffet, “Predicting error
rate for microprocessor-based digital architectures
through C.E.U. (code emulating upsets) injection,” IEEE
Transactions on Nuclear Science, vol, 47, no. 6, pp.
2405–2411, 2000

[3] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber,
J. Reisinger, “Application of Three Physical Fault
Injection Techniques to the Experimental Assessment of
the MARS Architecture” International Working Conf. on
Dependable Computing for Critical Applications Illinois-
USA Sept-1995 pp150-161

[4] R. Velazco, S. Karoui, T. Chapuis, D. Benezech; L.H.
Rosier; "Heavy ion test results for the 68020
microprocessor and the 68882 coprocessor" IEEE
Transactions on Nuclear Science, Volume 39, Issue 3,
Part 1-2, June 1992 Page(s): 436 - 440 Digital Object
Identifier 10.1109/23.277533

[5] R. Velazco, T. Calin, M. Nicolaidis, S.C. Moss, S.D.
LaLumondiere, V.T. Tran, R. Koga, “SEU-hardened
storage cell validation using a pulsed laser” IEEE
Transactions on Nuclear Science, Volume 43, Issue 6,
Part 1, Dec. 1996 Page(s):2843 - 2848 Digital Object
Identifier 10.1109/23.556875

[6] F. Vargas, D.L. Cavalcante, E. Gatti, D. Prestes, D. Lupi,
“On the Proposition of an EMI-Based Fault Injection
Approach”, 11th IEEE International On-Line Testing
Symposium, pp. 207-208, July 2005

[7] E.Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson,
“Fault Injection into VHDL Models: the MEFISTO
Tool”, FTCS-24, International Symp. on Fault Tolerant
Computing, 1994, pp.66-75

[8] T.A. Delong, B.W. Johnson, J.A. Profeta III, “A Fault
Injection Technique for VHDL Behavioral-Level
Models”, IEEE Design & Test of Computers, Winter
1996, pp. 24-33

[9] V. Sieh, O. Tschäche, F. Balbach, “VERIFY: Evaluation
of Reliability Using VHDL-Models with Embedded Fault
Descriptions”, 27th International Symposium Fault
Tolerant Computing, 1997

[10] L. Berrojo, F. Corno, L. Entrena, I. González, C. López,
M. Sonza, G. Squillero, “An Industrial Environment for
High-Level Fault-Tolerant Structures Insertion and

Validation”, IEEE VLSI Test Symposium,
Monterrey, California (USA), May 2002

[11] Fernanda Lima, Sana Rezgui, Luigi Carro, Raoul
Velazco, Ricardo Reis, “On the use of VHDL
Simulation and Emulation to derive error rates”,
Proc. of 6th Conference on Radiation and its Effects
on Components and Systems (RADECS' 01),
Grenoble, September 2001

[12] L. Antoni, R. Leveugle, B. Feher, “Using Run-Time
Reconfiguration for Fault Injection in HW
Prototypes”, IEEE International Symp. on Defect and
Fault Tolerance in VLSI Systems, 2002, pp. 245-253

[13] P. Civera, L. Macchiarulo, M. Rebaudengo, M.
Sonza Reorda, M. Violante, “FPGA-based Fault
Injection Techniques for Fast Evaluation of Fault
Tolerante in VLSI Circuits”, Forum on
Programmable Logic (FPL2001), Belfast, Northern
Ireland, United Kingdom, August 2001

[14] P. Civera, L. Macchiarulo, M. Rebaudengo, M.
Sonza Reorda, and M. Violante “Exploiting Circuit
Emulation for Fast Hardness Evaluation”, IEEE T. on
Nuclear Science, Vol. 48, No. 6, December 2001, pp.
2210-2216

[15] A. Ejlali, B. M, Al-Hashimi. S, Ghassem Miremadi.
“Fast Observation Architecture for FPGA-based SEU
Analysis" 10th European Test Symposium (ETS’05),
Talinn, Estonia, May 2005

[16] I. González and L, Berrojo. “Supporting fault
tolerance in an industrial environment: The
AMATISTA approach,” in Proc. IEEE International
On-Line Test Workshop, 2001, pp. 178–183

[17] C. López-Ongil, M. García-Valderas, M. Portela-
García, L. Entrena-Arrontes, “Autonomous Transient
Fault Emulation on FPGAs for Accelerating Fault
Grading”, Int. On-Line Testing Symposium, Saint-
Raphael (France) (Italia), July 2005, pp. 43-48

[18] M. Aguirre, J.N. Tombs, F. Muñoz, V. Baena, A.
Torralba, A. Fernández-León, F. Tortosa and D.
González-Gutiérrez, "A FPGA based hardware
emulator for the insertion and analysis of Single
Event Upsets in VLSI Designs" Radiation Effects on
Components and Systems Conference (RADECS
2004), Madrid (SPAIN), September 2004

[19] Celoxica RC1000 Hardware Reference Manual,
Version 2.3, 2004

[20] www.xilinx.com
[21] F.Corno, M. Sonza Reorda, G. Squillero, “RT-Level

ITC’99 benchmarks and first ATPG results” IEEE T.
on Design and Test of Computers, pp. 44-53, July-
August, 2000

[22] www.opencores.org

14

Table 5. Area results for FFs in the modified CUT
Mask_Scan State_Scan Time_Mux FFs Original #FFs % #FFs % #FFs %

b14 215 430 100% 430 100% 860 300%
b14_TMR 323 646 100% 646 100% 1,192 300%
b12 119 238 100% 238 100% 475 300%
b15 418 836 100% 836 100% 1,672 300%
Circuit_A 484 968 100% 968 100% 1,941 300%
Circuit_A_TMR 582 1,164 100% 1,164 100% 2,538 300%

Table 6. Area results for LUTs in the modified CUT
Mask_Scan State_Scan Time_Mux LUTs Original #LUTs % #LUTs % #LUTs %

b14 1,172 1,648 40.6% 1,555 32.7% 3,945 236.6%
b14_TMR 2,126 2,191 3.1% 1,982 -6.8% 4,448 109.2%
b12 362 673 85.9% 622 71.8% 1,233 240.6%
b15 2,322 3,795 63.4% 3,037 30.8% 7,368 217.3%
Circuit_A 932 2,167 132.5% 1,422 52.6% 4,385 370.5%
Circuit_A_TMR 955 1,632 70.9% 1,590 66.5% 4,767 399.2%

Table 7. RAM requirements for on-board RAM in the complete emulation system
Mask_Scan Time Mux State_Scan Board RAM Available

(kbits) # kbits % # kbits % # kbits %
160 33.0 0.1% 67 0.1% 7,289 11.1% b14
600

65,536
126.0 0.2% 252 0.4% 26,573 40.5%

160 50.5 0.1% 101 0.2% 19,380 29.6% b14_TMR
600

65,536
189.3 0.3% 378 0.6% 72,675 110.9%

160 18.6 0.0% 37 0.1% 2,200 3.4% b12 600
65,536

69.7 0.1% 139 0.2% 8,200 12.5%
160 65.0 0.1% 130 0.2% 27,431 41.9% b15
600

65,536
244.5 0.4% 489 0.7% 102,867 157.0%

Circuit_A 65,536 708.9 1.1% 1,418 2.2% 385,687 588.5%
Circuit_A_TMR 65,536 851.5 1.3% 1,703 2.6% 513,281 783.2%

Table 8. RAM requirements for FPGA RAM in the complete emulation system
Mask_Scan Time Mux State_Scan FPGA RAM Available

(kbits) # kbits % # kbits % # kbits %
160 13.40 2.1% 5.30 0.8% 13.40 2,1% b14
600

640
50.40 7.9% 18.75 2.9% 50.40 7,9%

160 13.40 2.1% 5.30 0.8% 13.40 2,1% b14_TMR
600

640
50.40 7.9% 18.80 2.9% 50.40 7,9%

160 2.00 0.3% 0.78 0.1% 2.00 0,3% b12 600
640

7.60 1.2% 2.90 0.5% 7.60 1,2%
160 16.56 2.6% 5.60 0.9% 16.51 2,6% b15
600

640
62.20 9.7% 21.10 3.3% 62.20 9,7%

Circuit_A 640 146.48 22.9% 46.9 7.3% 146.48 22.9%
Circuit_A_TMR 640 146.48 22.9% 46.9 7.3% 146.48 22.9%

Table 9. Results for large fault injection campaigns
Fault Classification Circuit # inputs # flip-

flops # cycles # faults
%F %L %S

Speed
(μs/fault)

Emulation
time

CIRCUIT_A 32 484 100,000 48,400,000 8,46 0,02 91,52 1,55 75.2
CORDIC 51 865 150,000 129,750,000 83,92 0,01 16,07 1,07 140

