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Shape Estimation of Concentric Tube Robots Using Single Point
Position Measurement

Emile Mackute1,2, Balint Thamo1,2, Kevin Dhaliwal2, Mohsen Khadem1,2

Abstract— Accurate shape estimation of concentric tube
robots (CTRs) using mathematical models remains a challenge,
reinforcing the need to develop techniques for accurate and
real-time shape sensing of CTRs. In this paper, we develop a
fusion algorithm that predicts the robot’s shape by combining
a mathematical model of the CTR with a measurement of
the Cartesian coordinates of the robot’s tip using an electro-
magnetic sensor. We experimentally validated our method in
static and dynamic scenarios with and without external loading.
Results demonstrated that the fusion algorithm improves the
error of model-based shape prediction by an average of 44.3%,
corresponding to 2.43% of the robot’s arc length. Furthermore,
we demonstrate that our method can be used in real-time to
simultaneously track the robot’s tip position and predict its
shape.

I. INTRODUCTION

Concentric tube robot (CTR) is a type of continuum
robot comprised of several concentrically nested pre-curved
Nitinol tubes. Tubes can make translational and rotational
movements that change the robot’s shape and tip pose [1].
As opposed to discrete joint robots, CTRs have continuously
bending curvature that allows them to generate smooth
curvilinear motions and follow tightly curved trajectories in
small confined spaces. Accurate manipulation and control
of CTRs require the knowledge of their tip position and
shape, specifically when the robot operates near susceptible
tissues and organs or when the desired target is obscured by
anatomical obstacles [2]. Here, we propose an accurate and
robust sensing algorithm which can estimate CTRs’ shape
on the fly, under large deflections, and in the presence of
unknown external forces using only the measurement of the
Cartesian coordinates of the robot’s endpoint.

A. Related Work

The shape of CTRs can be described by kine-
matic/dynamic models relating the shape of the robot’s
backbone to the robot’s joint inputs. The most common
approach for modeling CTRs is using the Cosserat rod theory
[3], [4]. However, model-based shape sensing often has large
errors. It requires accurate knowledge of external forces,
which is not always available. Moreover, highly non-linear
kinematics, torsion, and friction limit the models’ accuracy.

Electromagnetic (EM) trackers are commonly used to
measure the position of continuum robots [2]. EM tracking
uses mutual induction between a magnetic field generator
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Fig. 1. A comparison of the proposed shape estimation algorithm with the
shape of the robot estimated using the kinematic model of CTR [4].

and a magnetic field tracker placed on the robot to measure
the tracker’s position and orientation. However, estimating
the overall shape of the robot requires numerous trackers,
which limits EM tracking application in shape sensing.

Some researchers have investigated intraoperative imag-
ing modalities such as fluoroscopy to track the shape of
continuum robots. In [5], a monoplane C-arm was used to
obtain a set of images which were combined with a kinematic
model to improve the shape estimate of a continuum robot.
In [6], monoplane X-ray fluoroscopy images were fused
with model-based shape estimations. The method was later
improved by employing Markov Random Fields to unify
shape estimation and tracking tasks [7]. The downside of
using imaging to estimate the robot’s shape is the exposure of
patients to a large amount of radiation. Additionally, image-
based methods suffer from line of sight occlusions.

Fibre-Bragg gratings (FBGs) sensors are another popular
shape sensing modality. FBG fibres allow shape estimation
by measuring strain on various points along the robot’s
backbone. Some authors have been able to determine the
shape of flexible needles and continuum robots by combining
3 FBG fibres into a curvature sensor [8]–[12]. Multi-core
fibres have produced even greater accuracy by removing the
need to manually position the fibres [13].

Several researchers have fused the previous methods to
provide more accurate and reliable shape sensing. In [14], an
extended Kalman filter is proposed to fully track the shape
of a highly articulated snake robot. The filter combined the
kinematic model of the snake to predict the position and
orientation of each link, and an EM sensor at the tip of the
snake to update the estimation. While EM can only track the
position of a single point, it was sufficient to fully observe the
snake’s state due to its follow-the-leader steering mechanism.
Similarly, [15] used a Kalman filter to combine the needle
deflection model with an EM sensor to improve the needle’s
tip position measurement.

In another work [16], two algorithms, namely, Luenberger
observer and Kalman filter, are used to track the tip of a mag-
netically actuated catheter. Both estimators combine FBG
shape sensing and ultrasound tracking. The shape from FBG



sensors was used to recover the tip position of the catheter,
while it was also tracked in the ultrasound image using
either template-matching or convolutional neural network-
based tracking. A similar approach was implemented in [17]
to track the tip of a continuum manipulator in a 2D plane
with a Kalman filter, combining FBG sensors and simulated
low radiation fluoroscopy imaging.

B. Motivation and Contributions

Safe deployment and control of CTRs for surgical in-
terventions require accurate measurement of robots’ shape.
Model-based shape sensing has relatively large errors. FBG-
based shape sensing still faces challenges that hinder its
mainstream use. FBGs have been tested on needles [8]–[12]
or robots with a small arc length [17], [18] as they offer
low accuracy in high deflection structures [2]. Moreover, the
relatively high cost of fibre assembly and data acquisition
systems limit their widespread application.

In this paper, we present a fusion algorithm that employs
a kinematic model of the CTR and an EM-based position
measurement of the robot’s tip to provide an accurate and
reliable estimation of a concentric tube robot’s shape (Fig. 1).
The proposed method only relies on the position measure-
ment of a single point on the robot’s tip using a commer-
cially available EM tracker and does not suffer from the
aforementioned drawbacks of model-based and FBG-based
shape estimation approaches. Experiments are performed to
validate the proposed approach in both static and dynamic
settings. The results demonstrate that the proposed algorithm
is capable of predicting the robot’s shape with a mean error
corresponding to 2.38% of the robot’s arc length when the
robot is in free space and a mean error of 2.45% when the
robot is under external forces. Our algorithm is available
online 1.

II. METHODOLOGY

We present a fusion algorithm for the shape estimation
of CTRs. The algorithm employs a nonlinear observer that
combines the information from the kinematic model of
the robot and the EM-based position measurement. The
kinematic model is based on the Cosserat rod theory and
was developed in [3], [4].

Fig. 2(a) shows a schematic of a CTR. Shape of the robot
can be described by a continuous curve parameterized by
its arc length s. Additionally, a sliding Bishop frame is
assigned continuously at each point on the curve, with its
d3 axis always tangent to the curve. The configuration of
the rod at a time t can be defined using a unique set of 3D
centroids, r(s, t) : [0, ℓ]× [0,∞] → R3× [0,∞], and a family
of orthogonal transformations, R(s, t) : [0, ℓ] × [0,∞] →
SO(3)×[0,∞]. Finally, u(s, t) : [0, l]×[0,∞] −→ R3×[0,∞]
defines the curvature of the rod.

As mentioned before, due to the modeling inaccuracies
such as unknown external forces, friction, or nonlinear phe-
nomena such as twist in the body of the rod, the model-
based shape prediction is inaccurate. We hypothesize that by

1https://github.com/SIRGLab/CTR-Shape-Estimation
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Fig. 2. (a) A schematic of a CTR with two tubes under external force,
F . CTR is modelled as a deformable curve with a frame attached to every
point along its arc length s, with the d3 axis of the frame remaining tangent
to the curve. r(s), R(s), and u(s) denote the position, rotation, and the
instantaneous curvature of the rod at arc length s, respectively. The actuation
variables α and β denote the rotation, and translation of the tube’s base,
respectively. (b) Block diagram of the fusion algorithm.

accurately measuring the correct initial curvature of the rod at
its base u(0, t), we can estimate the effects of the modelling
inaccuracies on the deflection of the robot. Following this
hypothesis, we design a nonlinear state observer that accepts
the robot tip position r(ℓ, t) as an input and predicts the
correct initial curvature of the rod u(0, t) as an output. This
estimation is passed on to the kinematic model to predict the
shape of the rod r(s, t) while compensating for modelling
inaccuracies. The block diagram of the proposed algorithm
is shown in Fig. 2(b). In the remainder of this section, we
present a description of the CTR model and detail the design
of the fusion algorithm composed of a nonlinear observer
and the kinematic model of CTR. In the equations we use
prime and dot symbols to denote a first order derivative with
respect to space variable s and time variable t, respectively.

A. CTR Model Overview
Following the terminology shown in Fig. 2(a), each con-

centric tube is described by ri(s, t), Ri(s, t), and ui(s, t),
where i = 1, · · · , N corresponds to the number of the tube,
starting from the innermost tube. Furthermore, with tube 1
being the longest, we consider r1(s, t) to be equal to the
curve of the robot. Its kinematic model is given by (1):

r1
′
(s, t) = R1(s, t)e3, (1a)

R1′(s, t) = R1(s, t)[u1(s, t)]× , (1b)

u1
n
′
(s, t) = −

( N∑
i=1

Ki

)−1 N∑
i=1

Rθi

[
Ki

(
θi

′ dRθi
T (s, t)

dθi
u1(s, t)− U i′)

+ [ui′(s, t)]×K
i
(
ui(s, t)− U i

)]
−
( N∑

i=1

Ki

)−1[
[e3]×R

1T (s, t)F (t)

]∣∣∣∣∣
n=1,2

,

(1c)



ui
3

′
(s, t) =

EiIi

GiJ i

(
ui
1(s, t)U

i
2 − ui

2(s, t)U
i
1

)
, (1d)

ui
n

′
(s, t) = Rθi

T (s, t)u1(s, t) + θi
′
(s, t)e3

∣∣∣∣∣
n=1,2

, (1e)

θi
′
(s, t) = ui

3(s, t)− u1
3(s, t), (1f)

where e3 = [0 0 1]T is a unit vector and the [.]×
operator is the isomorphism between a vector in R3

and its skew-symmetric cross product matrix. Ki =
diag(EiIi, EiIi, GiJ i) is the stiffness matrix of the ith tube
where Ei corresponds to the tube’s Young’s modulus, Ii is
its second moment of inertia, Gi is its shear modulus, and J i

is the tube’s polar moment of inertia. U i is the known pre-
curvature of ith tube and F (t) is the external force vector.
Finally, θi is the twist angle of the ith tube about the z-axis
with respect to the global frame.

The ODE system in (1) has the following boundary
conditions:

r1(0, t) = [0 0 0]T , (2a)

R1(0, t) = Rz(θ
1(t)) =

cos(θ1(t)) − sin(θ1(t)) 0
sin(θ1(t)) cos(θ1(t)) 0

0 0 1

,
(2b)

θi(0, t) = αi(t)− βi(t)ui
3(0, t), (2c)

ui(ℓi + βi(t), t) = U i. (2d)

Here, α(t) and β(t) are the actuation values at a time step t,
rotation and translation respectively. ℓi is the length of tube
i.

The model given in (1) is quasi-static. It is assumed that
at a given time, time-dependent variables are constant and
the equations are solved with respect to s. To solve the
boundary value problem, shooting methods can be used. A
shooting method consists of using a nonlinear root-finding
algorithm to iteratively converge on values for u(0, t), in
order to satisfy (2). Next, the time-dependent variables are
updated (i.e. αi(t), βi(t)), and the equations are solved again
in the spatial domain.

B. Curvature Observer
Here, we design a nonlinear observer to estimate the

robot shape, assuming that the robot tip position is known.
The mathematical model of the robot given in Sec. II-A
is inaccurate due to the existence of disturbances such as
friction and unknown loads. Our main hypothesis is that the
disturbances cause the robot shape and initial curvature to
deviate from model prediction. Thus, we can estimate the
effects of the modelling inaccuracies on the deflection of the
robot by updating the initial curvature of the robot at its base
u(0, t) via sensor measurements. To this end, we propose a
nonlinear observer that accepts the robot’s tip position r(ℓ)
at the time t as an input and predicts the curvature of the
robot at its base u(0, t). The observer aims to estimate u(0, t)
over time while minimizing the error between the robot’s tip
position and an EM-based measurement defined as

ϵ(t) = r1(ℓ, t)− rs, (3)

where rs denotes sensor’s measurements.
To design the observer, let us first define an auxiliary

variable C:

C :=
∂r1(s, t)

∂u(0, t)
, (4)

where u(0, t) is a N + 2 dimensional vector consisting the
first tube’s initial curvature and the initial twist curvatures of
all other tubes:

u(0, t) = [u1
1(0, t), u

1
2(0, t), u

1
3(0, t), u

2
3(0, t), ... u

N
3 (0, t)]T

(5)
and N is the total number of tubes.

Now, we can take the time derivative of the observer
prediction error given in (3) and obtain:

ϵ̇(t) = C(ℓ+ β(t), t)u̇(0, t)− ṙs(t). (6)

Equation (6) is a first-order linear system of equations and
can be optimised using the Riccati equations [19] to estimate
the initial curvature u(0, t) that minimises the prediction
error of the observer ϵ(t) over time. The optimal solution
is given as

u(0, t) = −
∫ t

0

PCT (ℓ+ β(t), t)V ϵ(t)dt, (7)

where P (t) is the solution of the differential Riccati equation

−Ṗ (t) = −P (t)CT (ℓ+ β(t), t)V C(ℓ+ β(t), t)P (t) +Q,

P (tf ) = P0,
(8)

Q, V , and P0 are all symmetric positive definite matrices.
At each time step, ϵ(t) and C(ℓ+ β(t), t) are updated, then
u(0, t) is determined by solving (7) and (8).

So far, we have shown that given the value of C, one can
design an observer to estimate initial curvature of the robot
and update the robot shape accordingly. To find C, we trans-
form the kinematics model given in (1) into an observable
form. We define some additional partial derivatives, namely,
D, Γ, and Z:

D :=
∂R1(s, t)

∂u(0, t)
, Γi :=

∂ui(s, t)

∂u(0, t)
, Zi :=

∂θi(s, t)

∂u(0, t)
. (9)

We then take a partial derivative of the robot’s model in
(1a) with respect to u(0, t):

∂r1
′
(s, t)

∂u(0, t)
=

∂R1(s, t)e3
∂u(0, t)

= e3
T ∂R1(s, t)

∂u(0, t)
= e3

TD(s, t)

(10)
Given that s and u(0, t) are mutually independent, we can

switch the order or differentiation and show that (10) is equal
to C ′(s, t):

C ′(s, t) =

(
∂r1(s, t)

∂u(0, t)

)′

=
∂r1

′
(s, t)

∂u(0, t)
= e3

TD(s, t) (11)

Continuing the same pattern for D, Γ, and Z, and taking
partial derivative of (1), we obtain a new system of ODEs:



C ′ = e3
TD, (12a)

D′ = [u1]T
×
D +

(
R1(T 1

3 )
T
)T

, (12b)

Γ1
n
′
= −

( N∑
i=1

Ki

)−1
[

N∑
i=1

[(
Ki

(
θi

′ dRθi
T

dθi
u1 − U i′)

+ [ui]×K
i
(
ui − U i

))T

T i
1

]
+

N∑
i=1

Rθi

[
KiT i

2 +
(
Ki(ui − U i)

)T
T i
3 + [ui]×K

iΓi

]]

−
( N∑

i=1

Ki

)−1[
[e3]×F (t)DT

]∣∣∣∣∣
n=1,2

,

(12c)

Γi
3

′
=

EiIi

GiJ i

(
Γi
1U

i
2 − Γi

2U
i
1

)
, (12d)

Γi
n

′
= u1

TT1
T +Rθi

TΓ1

∣∣∣∣
n=1,2

, (12e)

Zi′ = Γi
3 − Γ1

3. (12f)

In (12), we removed the (s, t) notation for simplicity. Fur-
thermore, the terms T1, T2, T3, and T4 are partial derivatives
of the terms in (1c), defined as

T i
1 :=

∂Rθi(s, t)

∂u(0, t)
, T i

2 :=
∂
(
θi

′ ∂Rθi
T (s,t)

∂θi u1(s, t)
)

∂u(0, t)
,

T i
3 :=

∂[ui(s, t)]×
∂u(0, t)

, T i
4 :=

∂
dRθi

T

dθi

∂u(0, t)
.

(13)

These variables can be expressed in terms of Γ and Z:

T i
1 =

dRθi

dθi
Zi, (14a)

T i
2 =

dRθi
T

dθi
u1Zi′ + θi

′
u1TT i

4 + θi
′ dRθi

T

dθi
Γi, (14b)

T i
3 =

∂[ui(s, t)]×
∂ui(s, t)

Γi, (14c)

T i
4 =

d2Rθi
T

dθi
2 Zi. (14d)

In the process of deriving (12) and (14), we used the model
given in (1), chain rule, and the following definitions.

Definition 1. Given a vector x : Rl and a differentiable
matrix M(x) : Rl −→ Rm×n, let J(x) ∈ Rm×n×l be a partial
derivative of M(x) w.r.t x. Then

Jijk(x) =
∂Mij(x)

∂xk
. (15)

Definition 2. Let F (x) : Rl −→ Rm×n and G(x) : Rl −→
Rn×o be differentiable matrices. Then

∂(F (x)G(x))

∂x
= GT (x)@

∂F (x)

∂x
+

(
F (x)@

(
∂G(x)

∂x

)T)T

,

(16)

where the transpose operation T in 3-D case is defined by
FT
ijk = Fjik. Operator @ indicates a product of two arrays

such that if F, G and H are all 3-D matrices, then H = F@G
is defined as

Hijl =

n∑
k=1

Fijk ·Gikl, (17)

If any of the two arguments is a 2-D matrix, the first index
is broadcast:

Hijl =

n∑
k=1

Fjk ·Gikl. (18)

The initial conditions for the system in (12) are:

C(0, t) = 03×(N+2), (19a)
D(0, t) = 03×3×(N+2), (19b)

Γ1(0, t)mn = δmn, (19c)

Γi(0, t)mn =

{
1, if m = 3 and n = i+ 2,

0, otherwise.

∣∣∣∣∣
i=2,3,...,N

,

(19d)

Zi(0, t) = 01×(N+2). (19e)

The observable CTR model now consists of the differential
equations in (1) and (12) which can be solved simultane-
ously using initial values (2) and (19). The model can be
summarised as:

r1
′
(s, t) = f(R, u), (20a)

C ′(s, t) = h(D,Γi, Zi, T i, R, u). (20b)

By solving (20), we can estimate r(ℓ+β(t), t) and C(ℓ+
β(t), t).

To find the shape of the CTR, first the equations in (1)
and (12) are solved with respect to s given the initial values
in (2a-2c) and (19). Then, u(0, t) is updated through (7) and
(8). The process is iterated over time until the error ϵ(t)
converges. At the first time step, the initial curvature u(0, t)
of the robot is assumed to be zero.

III. EXPERIMENTS

Here, several experiments are performed to evaluate the
accuracy of the shape estimation strategy. The observer
was tested on a Dell Latitude 5580 laptop with Intel(R)
Core(TM) i7-7600U CPU processor and 16.0 GB RAM.
The experimental setup consists of a concentric tube robot
with two tubes and a 5-DOF EM sensor (Aurora, NDI)
attached to its tip (Fig. 3). Independent shape measurements
are acquired using a calibrated stereo rig comprising two
cameras, taking pictures at 640x480 pixel resolution. The
cameras were calibrated using a checkerboard. The mean
error of calibration was 0.33 pixels, corresponding to a
maximum of 1.18 mm. Registration was performed using
Matlab procrustes algorithm to estimate the homogeneous
transformation matrices that transform the camera and EM-
based measurements to a global coordinate system fixed at
the base of the robot (shown in Fig. 3). The resulting root



Fig. 3. a) Experimental setup. b) A checkerboard pattern was used to
calibrate the stereo camera pair. c) A close-up image of the CTR. d) A
CTR with weight attached to the tip.

mean squared errors of registration were 1.7mm and 5.5mm
for the EM sensor and camera measurements, respectively.

During the experiments, coloured markers were attached
to the robot backbone. Marker edges, as well as the start
and end points of the robot were manually selected in both
images and triangulated to reconstruct the 3D shape of the
robot. The reconstructed shapes were used as ground truth
throughout the experiments to verify the accuracy of the
shape estimation algorithm.

The extracted 3D backbones were used to calibrate for the
CTR model parameters, namely, Young’s and shear moduli
of the tubes. The parameters were identified by fitting the
kinematic model given in (1) to the shape of the robot
estimated via the cameras at 10 different configurations. The
parameters of the model are given in Table I. The maximum
error of the model in predicting the robot’s tip position
was smaller than 8% of the robot’s arc length, achieving
a similar performance to [4]. Moreover, a dataset of 10
shapes was used for tuning the observer parameters, namely
Q and V . Q and V values were tuned to 3 × 104 × I and
1.48 × 103 × I, respectively. These values were found to
achieve the minimum shape estimation error.

TABLE I
CTR MODEL’S PARAMETERS.

Parameters Tube 1 Tube 2

Length [mm] 505 251
E [GPa] 37.26 63.57
G [GPa] 34.39 53.68
I [m4] 6.01× 10−14 3.267× 10−13

U1 [m−1] 14 2.8
U2 [m−1] 0 0

We performed three sets of experiments:
1) Static experiments, where the robot is moved to 17

different positions across its workspace. The observer
was used to estimate the shape of the robot, giving
enough time to converge in each static case.

(a) (b)

Fig. 4. Representative experimental results for shape estimation in (a)
static experiments without force, and b) the equivalent test cases with added
11g weight. The results show a comparison between observer-based shape
estimation, the baseline model-based shape estimation, and the ground truth.

2) Static experiments were repeated with attached 7 g
and 11 g weights on the tip of the robot to simulate
the effects of tissue interaction. Force magnitudes
are similar to the tissue interaction forces preceding
tissue puncture in needle-based interventions [20]. The
dataset consisted of the same 17 configurations that
were used in the previous experiment.

3) Dynamic experiments were performed on a moving
CTR. The tubes were rotated 360◦ at 10.2◦/sec and
translated 40 and 20 mm at 1.1 and 0.6 mm/sec
velocity. The estimated initial curvature of the robot
u(0, tk) at each a time tk was used as the guess in the
next sample time tk+1.

In all the experimental scenarios, we measured the perfor-
mance of the observer and the baseline model given in (1)
with two errors: Er, measuring the prediction of the robot’s
tip, and Eshape, which is the error of the robot’s full shape.
Both errors are calculated by comparing the observer and the
model-based predictions with the 3D reconstructed camera
shape:

Er = ||rN − rgtN ||, (21a)

Eshape =

√√√√ 1

N

N∑
n=1

∣∣∣∣rn − rgtn
∣∣∣∣2, (21b)

where rn and rgtn are the positions of the nth point on
the robot’s backbone with n = 0 starting from the robot’s
base, describing the observed and ground truth shapes,
respectively. In the cases where the observed and ground
truth shapes are described by different numbers of points,
we sample a subset of points from a denser shape which
are the closest in distance to the corresponding points on a
sparser shape. This is a preferred method over interpolation
because it does not modify ground truth.

Fig. 4 shows representative experimental results in static
experiments with and without force. The observer-based
shape estimation is compared with the ground truth data



TABLE II
MEAN, STANDARD DEVIATION, MAX, AND NORMALISED MEAN OF ERRORS Er AND Eshape .

Er Eshape

Weight Method Mean [mm] Std [mm] Max [mm] Norm [%] Mean [mm] Std [mm] Max [mm] Norm [%]

0g Observer 6.46 3.42 12.45 2.87 5.37 1.13 7.92 2.39
Baseline 16.96 9.21 35.72 7.54 9.36 4.14 17.87 4.16

7g Observer 6.89 3.40 11.37 3.06 5.40 1.62 7.94 2.40
Baseline 21.96 9.70 41.11 9.76 10.85 4.46 19.51 4.82

11g Observer 7.36 3.57 12.99 3.27 5.61 1.59 8.59 2.49
Baseline 17.05 9.13 32.40 7.58 9.19 4.03 17.05 4.08

No weight 7g weight 11g weight
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Fig. 5. Error bars comparing the observer to the baseline method. Starting
from the middle of the box, the line inside the box corresponds to the median
error, box ends indicate the 25th and 75th percentiles, and the ends of the
dashed lines are the maximum and minimum errors.

measured using the stereo camera pair. To demonstrate the
performance of the observer in reducing CTR model’s errors,
we presented the model-based prediction as well, simulated
using (1).

Experimental results for the static scenarios are sum-
marised in Fig. 5 and Table II for 17 trials with and without
external force. Errors for the tip and shape predictions for
both the baseline model and the observer are reported.
Table II also shows normalised mean errors as percentages
of the robot’s arc length, which is 225mm at default tube
translation parameters. The observer can estimate the shape
of the CTR without external force with a 5.37mm error,
which corresponds to 2.39% of the robot’s arc length. It
improves model-based prediction error of shape by 42.6%.
Similarly, in experiments with external force, the observer
outperforms the baseline model prediction that benefits from
the exact knowledge of the force’s magnitude and orientation
by an average of 45.1% without any a-priori knowledge of
the external force. Moreover, as opposed to the model-based
baseline prediction, the observer offers a consistent error in
all cases as evident by the standard deviation of error. Thus,
the observer offers a reliable estimation across the robot’s
workspace.

To demonstrate the real-time performance of the observer,
we used it to predict the robot’s shape while it was moving.
The average tip velocity was approximately 5mm/s. The
observer sampling time was set to 0.15 sec. Fig. 6 shows
the evolution of tip error Er and shape error Eshape for
the baseline model and the observer. Observer errors rapidly
converge to a value below 6mm, while the model-based
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Fig. 6. Er and Eshape progression through time while the robot is moving.
Moving velocity is 5.9mm/s.

predictions remain consistently large.
Moreover, we evaluated the observer’s performance while

the CTR was moving at different velocities. The same
movement sequence was tested at 10 different velocities
ranging from 5.9 to 54.8 mm/s. Tip position error Er and
shape error Eshape of the observer with respect to the tip
velocity and time normalised by maximum travelling time
are shown in Fig. 7.

As it can be seen the observer’s error rapidly converges
to a small value as time passes and linearly increases with
respect to the robot velocity. This shows that the observer
requires enough time to adapt to the changes in the feedback
signal and is most suitable for control of the CTR at lower
velocities below 10 mm/sec, which is appropriate for medical
interventions. It should be noted that the current implementa-
tion of the algorithm has not been optimized for high-speed
computation. However, many components of the algorithm
including tensor multiplications can be parallelized. Thus,
the computational time of the algorithm would benefit from
using multicentral-processing-unit-based implementations.

The results demonstrate that the performance of the pro-
posed shape estimation algorithm is comparable to other
shape estimation approaches that employ medical image
modalities or FBG sensors without suffering from the pre-
viously discussed drawback of those methods. For instance,
Vandini et. al reported 7.28mm tip position error for a vision-
based based method [6], while Khan et. al reported mean
tip position error of 4.69 mm for multicore FBG-based
shape estimation [13]. We note that the proposed method
relies on the Cosserat rod model and can be generalised
to many types of continuum robots which are modelled by
Cosserat-rod theory. Finally, the observer unifies the robot’s
tracking, shape estimation, and solving the kinematic model
in real-time offering a real-time shape sensing platform for



(a)

(b)

Fig. 7. a) Er and b) Eshape progression trough time at different velocities.

control of CTRs using model-based approaches such as
model predictive control.

IV. CONCLUDING REMARKS

We presented a fusion algorithm to estimate the shape of
concentric tube robots. The approach combines a kinematic
model of the robot with a single point measurement of the
robot’s tip given by an electromagnetic tracker. Compared to
other shape sensing modalities, the presented methodology is
easy to integrate and offers a low-cost and reliable solution
for shape sensing of concentric tube robots. The performance
of the shape sensing algorithm was experimentally validated
with a series of experiments with and without external force.
The mean error of the observer in predicting the robot’s
shape was 2.43% of the robot’s arc length. The observer
was capable of improving model-based shape predictions
by 44.3%. The presented framework proved to be more
robust and accurate than the kinematic model even without
the knowledge of external contact forces. Furthermore, it
was shown that the algorithm maintains similar performance
in real-time while the robot is moving at velocities below
10mm/s.
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