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Yefeng0920/advanced_animal_MA_tutorial: A turorial of advanced methods for the 

meta-analyses of animal models (v1.5.0). Zenodo. 

https://doi.org/10.5281/zenodo.7314683. 

Abstract 

Meta-analytic techniques have been widely used to synthesize data from animal 

models of human diseases and conditions, but these analyses often face two statistical 

challenges due to complex nature of animal data (e.g., multiple effect sizes and 

multiple species): statistical dependency and confounding heterogeneity. These 

challenges can lead to unreliable and less informative evidence, which hinders the 

translation of findings from animal to human studies. we present a literature survey of 

meta-analysis using animal models (animal meta-analysis), showing that these issues 

are not adequately addressed in current practice. To address these challenges, we 

propose a meta-analytic framework based on multilevel (linear mixed-effects) models. 

Through conceptualisation, formulations, and worked examples, we illustrate how this 

framework can appropriately address these issues while allowing for testing new 

questions. Additionally, we introduce other advanced techniques such as multivariate 

models, robust variance estimation, and meta-analysis of emergent effect sizes, which 

can deliver robust inferences and novel biological insights. We also provide a tutorial 

with annotated R code to demonstrate the implementation of these techniques. 
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1. Introduction 

Meta-analysis has made a significant contribution to many disciplines including 

behavioural and neurobiological sciences, playing a crucial role in quantitatively 

summarizing existing findings and informing evidence-based decision-making 

(Bannach-Brown et al., 2021; Gurevitch et al., 2018; Nakagawa et al., 2020; Sena et 

al., 2014; Vesterinen et al., 2014). Traditionally, meta-analyses have been used to 

synthesize data from human randomised controlled trials (RCT), describing the 

efficacy of treatments and interventions (Chalmers and Haynes, 1994; Schmid et al., 

2020). More recently, there has been a surge in meta-analyses using data from animal 

studies modelling human diseases, physiology, and behaviour (hereafter, ―animal 

meta-analyses‖; see Greek and Menache, 2013; Hooijmans et al., 2014; Hunniford et 

al., 2021).  

 

The aims of animal meta-analyses are diverse with examples including predicting the 

effectiveness of therapeutic strategies for a neurological disorder (Baldez et al., 2021), 

identifying study characteristics mediating the effectiveness of a therapy (Figueiredo 

et al., 2020), and explaining replication failures of preclinical studies (Usui et al., 
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2021). Perhaps most importantly, high-quality animal meta-analyses can generate 

reliable and useful appraisals of preclinical experimental evidence, which can be used 

to direct human trials and inform decisions to progress to clinical applications 

(Bahadoran et al., 2020; de Vries et al., 2014; Soliman et al., 2020). Therefore, animal 

meta-analyses can serve as a useful complement to traditional medical meta-analyses 

(e.g., clinical meta-analysis on RCT data). Although animal meta-analyses are 

important and performed with increasing frequency, we know very little about their 

methodological rigor (Hunniford et al., 2021; Mueller et al., 2014). Indeed, as far as 

we know there is no systematic profiling of methodological and reporting practice of 

animal meta-analyses (but see Hooijmans et al., 2022). 

 

We have predicted that two major statistical issues had not been adequately addressed 

in the current practice of animal meta-analyses because the meta-analytic methods 

(i.e., fixed- and random-effects models) inherited from human medical meta-analyses, 

are technically incapable of handling the two problems. The first issue is the violation 

of the assumption of statistical independence between effect sizes (e.g., multiple 

effect sizes per study/paper). Indeed, the true effects and sampling errors are 

inevitably correlated in animal studies that involve multiple measurements, multiple 

animal cohorts, multiple species, and multiple treatments (Figure 1; Aarts et al., 2014; 

Pound and Bracken, 2014; Vesterinen et al., 2014). Therefore, an animal meta-

analysis often has a hierarchical/multilevel/nested data structure (sometimes a 
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multivariate structure) which might lead to the dependency among the true effect sizes 

(i.e., the correlation/covariance of the true effects within the same study). Importantly, 

the traditional statistical models used in animal meta-analyses often fail to deal with 

this statistical non-independence (but see Bonapersona et al., 2018; Lagisz et al., 

2020), inflating type I error, and thus distorting statistical inference, leading to 

spurious conclusions (Cheung, 2019; Nakagawa et al., 2017; Thomas et al., 2003). 

The second issue relates to the first point. The hierarchical nature of the animal 

datasets means that animal meta-analyses could be improved, in terms of explanatory 

power, from decomposing variance in effect sizes across different levels, e.g., within- 

and between-study level heterogeneity (a more complex level: species-specific 

heterogeneity; Konstantopoulos, 2011; Senior et al., 2016). However, the traditional 

meta-analytic models treat between-experiment variability as the only source of 

heterogeneity, confounding between-study heterogeneity with other sources of 

heterogeneity (e.g., within-study between-experiment heterogeneity), and 

subsequently leading to less informative quantification.  

 

Methodological innovations and advances in meta-analysis offer us pragmatic and 

effective strategies to deal with these two issues. The use of multilevel meta-analytic 

models has been developed explicitly to account for non-independent and 

heterogeneous effect sizes and has successfully been deployed, for example, in 

ecology, evolution, psychology, and education (Cheung, 2014, 2019; Nakagawa et al., 
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2017; Nakagawa and Santos, 2012). The multivariate models and robust variance 

estimation (RVE) are also effective approaches to handling dependent effect sizes in 

the context of meta-analysis (Cheung, 2013; Fisher and Tipton, 2015; Hedges et al., 

2010; Jackson et al., 2011; Pustejovsky and Tipton, 2022; Welz et al., 2023). 

Furthermore, some underappreciated effect size statistics can inform methodological 

choices and provide new neurobiological insights for animal meta-analyses. For 

example, meta-analysing variability-based effect sizes which compare differences in 

variance (rather than its mean) between two groups (i.e., meta-analysis of variance; 

Figure 2) enables us to scale out research questions, such as investigating the 

individual variability in treatment response to drugs in neurological and behavioural 

disorders (Maslej et al., 2021; Nakagawa et al., 2015; Senior et al., 2020).  

 

Here, we first conduct a systematic literature survey to characterize the current 

practice of animal meta-analyses by mapping their issues and statistical approaches. 

While presenting our survey results, we also summarize the traditional and emerging 

meta-analytic statistical procedures. Second, we illustrate the concepts and rational of 

the multilevel models (only a small number of researchers have already applied these 

models to animal meta-analyses; see Bonapersona et al., 2018; Lagisz et al., 2020); 

how they can deal with non-independence among effect sizes and how multilevel 

meta-regression can account for multiple levels of heterogeneity. Finally, we touch 

upon advanced techniques, including the multivariate model and RVE robust variance 
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estimation. Additionally, we provide recommended practices and a hands-on 

workflow (with annotated R code) that can serve as a template to deal with the 

statistical issues commonly encountered in animal meta-analyses. Future meta-

analysts can adapt our example code to undertake their own animal meta-analyses to 

draw more robust model inferences, generate new neurobiological insights, and better 

facilitate animal-to-human translation (Bahadoran et al., 2020). 

 

 

2. Survey of current practice in animal meta-analyses 

2.1. Survey procedures 

The main aim of the literature survey was to capture the state of current practice in 

conducting meta-analyses on non-human animal data. As such, we performed a 

systematic literature search of neurobiology and behavioural journals to identify meta-

analytic papers published in the last 10 years (2011–2021). The details of 

methodological procedures of the search strategy are detailed in Supplementary 

Materials (file 1), reported according to PRISMA guidelines (Moher et al., 2009). 

Briefly, we used the ISI InCites Journal Citation Reports to collect the ISSN of 

journals classified under ‗Neurology‘ and/or ‗Behaviour‘ (including 115 journals; see 

details in Supplementary Materials file 1). We then searched within these included 

journals using the online database PubMed (last updated in October 2021) for meta-

analytic papers published within the last 10 years. We restricted our searches to 
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studies labelled as non-human studies and as ‗meta-analysis‘ in the database. This 

search yielded a total of 188 bibliographic references. Two authors (YY and ML) then 

performed two-stage screening to identify animal meta-analyses using the following 

inclusion criteria: (1) the paper addressed a question in the fields of neurology or 

behavioural sciences; (2) claimed to conduct a meta-analysis; and (3) used data from 

the animal models (i.e., in vivo animal studies for preclinical research) rather than 

exclusively human studies. There were 2% conflicting decisions, which were resolved 

via discussions. Finally, we included 78 papers claiming to be meta-analyses, of 

which 62 papers were eligible for data extraction of methodological approach. 

 

2.2. Data coding 

Two authors (YY and ML) independently assessed the full text of the eligible papers 

to retrieve the following information: (1) whether the authors conducted a formal 

meta-analysis of animal data (e.g., fixed-effects or random-effects statistical models, 

or related model, to aggregate effect sizes that were collected from animal studies), 

(2) the type of effect size used, (3) the type of statistical models employed, (4) 

whether and how the study accounted for heterogeneity, (5) the type of heterogeneity 

indices reported, (6) whether the authors reported the number of primary studies (N) 

and effect sizes (k), (7) whether the data used was potentially at risk of issues of 

statistical non-independence (e.g., if the ratio of N to k is larger than 1, or if one 

primary study contributes more than one effect size), (8) whether the authors of meta-
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 9 

analysis acknowledged the presence of statistical non-independence, (9) whether the 

authors used any procedure to deal with non-independence among effect sizes (i.e., 

correlated effect sizes), (10) whether the authors addressed the issue of sampling 

errors non-independence (i.e., correlated sampling errors), (11) whether the authors 

used any approaches to test for publication bias, and (12) whether the authors reported 

the software used to perform the animal meta-analyses. In addition, we extracted the 

bibliometric information of each included animal meta-analysis (e.g., title, authors, 

the journal published, publish year). We describe the survey questions and associated 

options in Supplementary Materials (file 1). 

 

2.2. Methodological and reporting practice in animal meta-analyses 

For the included 78 self-proclaimed animal meta-analyses, 21% (16) did not conduct 

formal meta-analyses of animal data (Supplementary Materials file 1). These ‗non-

formal‘ meta-analyses used other than formal ‗effect-size-based‘ meta-analysis 

modelling approaches, which included three categories: (1) meta-analyses of genetics, 

genomics or bioinformatics (e.g., transcriptional, genome-wide association studies), 

(2) meta-analyses of brain imaging (e.g., fMRI), and (3) other self-proclaiming as 

containing meta-analyses but not fitting into any traditional (―formal‖) meta-analysis 

framework. For the 62 ―formal‖ meta-analyses, we coded their methodological and 

reporting practice. We reported the main results in Figure 3 (for the full survey 

results, see Supplementary Materials file 1). In the later section, we will discuss the 
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 10 

details of each methodological and reporting characteristic of the surveyed animal 

meta-analyses, in combination with the explanations of the advanced meta-analytic 

methods.  

 

3. Effect sizes in meta-analysis of animal data 

3.1. Common effect sizes in the meta-analysis of animal data 

Effect size is a statistic that can measure the size and direction of an effect (e.g., the 

effectiveness of an antidepressant or the prevalence of depression occurring; referred 

to as ‗effect statistic‘; see Nakagawa and Cuthill, 2007). It also can refer to the 

estimate (value) of a given effect statistic (e.g., ‗effect estimate‘; see Hentschke and 

Stüttgen, 2011). In this paper, we use the two definitions interchangeably. Our survey 

indicates that the effect sizes used in animal meta-analyses can be categorized roughly 

into four types: (1) standardized mean difference between two (experimentally created 

or intrinsically occurring) arms, SMD (68%, see Figure 3; e.g., ‗d‘ family – common 

estimators of SMD are Cohen's d and Hedges' g; Hedges, 1982), (2) the incidence of 

two events (10%; e.g., 2-by-2 contingency table: odds ratio, relative risk, and risk 

difference), (3) strength of the association/correlation between two variables (1%; 

correlation coefficient, r, or its Fisher‘s z transformation, Zr), (4) others (18%; e.g., 

unstandardized raw mean difference, and determination coefficient, R
2
). Our survey 

clearly shows that the most popular effect size is the standardized mean difference, 

SMD (the ‗d‘ family – Cohen's d or Hedges' g). The formulas used to calculate point 
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estimates of these effect sizes and their sampling variances can be found elsewhere 

(Hentschke and Stüttgen, 2011; Nakagawa and Cuthill, 2007; Noble et al., 2017). 

 

3.2. Emerging effect sizes in the meta-analysis of animal data 

Our literature survey revealed the use of three important but underappreciated effect 

sizes in animal meta-analyses. The first is the normalised mean difference, NMD (9%; 

Figure 3), which divides the raw mean difference between two arms (the experimental 

group vs. control/reference group, e.g., placebo, sham, or wild-type group) by the 

mean of the control group (Vesterinen et al., 2014). The second is the log-transformed 

response ratio, lnRR (1%; Figure 3), which uses the natural logarithm of the ratio of 

means between two arms to measure mean difference (Figure 2; estimating the 

average treatment effect; Hedges et al., 1999; Lajeunesse, 2011). The third is the log-

transformed variability ratio, lnVR (1%; Figure 3), which can quantify the difference 

in variance (standard deviation) around the mean between two arms (Figure 2; i.e., 

estimating inter-individual variability between two arms or heterogeneity of treatment 

effect; Nakagawa et al., 2015; Senior et al., 2020). The log-transformed coefficient of 

variation ratio (lnCVR) is a mean-adjusted version of lnVR, where the indirect impact 

of mean on its variability is controlled for (i.e., accounting for the mean-variance 

relationship; Nakagawa et al., 2015; Volkmann et al., 2020).  
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The use of lnVR and lnCVR provides the opportunity to reveal new or neglected 

neurobiological insights to the field. For example, meta-analysis of traditional effect 

sizes (e.g., SMD) mainly focuses on how therapy can mitigate neurobiological- and 

behavioural- disorders (i.e., detecting average treatment effect; Mills et al., 2021). In 

contrast, meta-analysis of variation (e.g., lnVR and lnCVR) can examine inter-

individual variability in response to treatment in mental symptoms (i.e., detecting 

heterogeneous treatment effect; Hieronymus et al., 2020). This means meta-analysis 

of variation can be used to examine whether a treatment shows a consistent (in all 

animals: low inter-subject variability) or selective (in some animals: high inter-subject 

variability) efficacy (Usui et al., 2021). Examining such inter-subjective variability 

brings important implications to precision and personalized medicine and behavioural 

therapies (Lorenzo-Luaces et al., 2021; Luedtke and Kessler, 2021). For example, if a 

treatment response manifests high inter-subjective variability, it indicates the 

treatment effect may be subjective-specific and warrants further research on the 

sources of variability and personalized prescriptions in the clinic practice (Haggarty et 

al., 2021; Schork, 2015).  

 

3.3. The choice of effect sizes in the meta-analysis of animal data 

In general, the choice of effect sizes is straightforward because the types of effect 

sizes should be aligned with the scientific question or hypothesis of a meta-analysis 

(Nakagawa et al., 2017). To put it another way, the goal of a given animal meta-
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analysis will generally determine which types of effect sizes should be used. For 

example, if interested in the effectiveness of a given intervention, researchers might 

consider effect sizes such as SMD (e.g., mean differences between antidepressants 

and placebo group expressed in the units of standard deviation) or lnRR (e.g., % 

increase in mean in antidepressants compared with placebo). If the goal is to examine 

the external validity of animal behavioural assays (e.g., forced swimming or Morris 

water maze), lnVR or lnCVR (when a mean-variance relationship exists) is preferable 

because an optimal animal assay should have less inter-individual variability so that it 

is more reproducible and generalizable.  

 

Recent empirical and simulation work from ecology and animal sciences indicated 

lnRR and NMD are in general more statistically powerful than SMD and less 

vulnerable to overestimation (Wang et al., 2018; Yang et al., 2022a; Yang et al., 

2022b). In conjunction with other merits (e.g., better interpretability, 

heteroscedasticity-robustness, scale-independence), lnRR and NMD provide ‗animal‘ 

meta-analysts with a complement to SMD when mean difference is the focal interest 

(Sánchez‐Tójar et al., 2020; Spake et al., 2021). But note that NMD and lnRR are 

only applicable for ratio-scale data (i.e., bounded at zero, for example, brain size; 

Houle et al., 2011; Nakagawa et al., 2015). Also, SMD represents additive effects 

while NMD and lnRR indicate multiplicative effects. Therefore, the dual use of these 

two types of effect statistics may be advisable whenever possible (e.g., SMD as the 
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main effect size; lnRR for sensitivity analysis; see Supplementary Materials file 2 for 

a real example).  

4. The prevalence of statistical non-independence in the meta-analysis of animal 

data 

As mentioned, multiple effect size estimates from the same study can lead to non-

independence, which violates the assumption of statistical independence of data in 

traditional meta-analytic models (also see section 6.1). Non-independent effect sizes 

mean that they contribute similar information to the fitted model, which requires each 

effect size should contribute unique information. Our survey has shown that the issue 

of non-independence was near ubiquitous in animal meta-analyses: 89% (55/62) of 

animal meta-analyses used more than one effect size from the same study (Figure 3). 

Multiple effect sizes originating from the same study might be statistically dependent 

(i.e., correlated) because they share the same subjects, methodologies, instruments, 

measurement procedures or other contexts that might induce correlations. Multiple 

effect size estimates from the same study introduce two types of non-independencies: 

correlation in the true underlying effects and the observed effect size estimates (i.e., 

sampling errors). We summarize the common scenarios of non-independence in 

animal meta-analyses in Figure 4. The general causes are: (1) shared study identity – 

multiple effect sizes are derived from a single study (e.g., traits measured repeatedly 

at follow-up times or separately for males and females; Abbott et al., 2019; Bird et al., 

2016), (2) shared animal identity – multiple traits, outcomes, or endpoints measured 
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on a common set of animals (e.g., measuring depression using forced swim test and 

tail suspension test for the same cohort; Barha et al., 2017; Burgueno et al., 2020), (3) 

shared control – multiple treatments compared to a common control group (e.g., 

multiple trial arms; England et al., 2015; Neville et al., 2020), and (4) shared species 

(or strains) or evolutionary history – species similarities due to shared evolutionary 

history (e.g., genetic similarities and phylogenetic relatedness; Khorshidi et al., 2021; 

Lagisz et al., 2020; Zoerle et al., 2012). Scenarios 1 – 4 can result in correlations of 

the true underlying effects. At the same time, scenarios 2 and 3 also lead to 

correlations of the correlated sampling errors because of the ‗overlapping‘ animals or 

repeated use of the same animals when computing effect size estimates (see Figure 4 

and section 9.2). 

5. Approaches to handle statistical non-independence in the meta-analysis of 

animal data 

We have found that three broad strategies were used when non-independence was 

encountered in animal meta-analyses (Figure 5): (1) ignoring non-independence 

(Lages et al., 2021; Mancini et al., 2020), (2) eliminating non-independence (e.g., 

averaging or sampling; Currie et al., 2019; Frantzias et al., 2011), and (3) modelling 

dependence explicitly (Bonapersona et al., 2018; Creutzberg et al., 2021). The first 

approach was the most used method employed in animal meta-analyses (48%; Figure 

3), which is concerning as it ignores the dependency among effect sizes and treats 

them as if they were statistically independent (i.e., via the use of simple fixed- and 
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random-effects models for analysing non-independent effect sizes). For example, 

Lages et al., 2021 included 17 effect sizes from six papers but the review authors used 

a random-effects model in their analyses without accounting for any non-

independence. 

 

The second common strategy in the current practice of animal meta-analyses (29%; 

Figure 3) also uses a standard meta-analytic model but after aggregating effect sizes 

or sampling a single effect size from each study to eliminate statistical non-

independence of data (Figure 5). For example, Egan et al. (2014) used a fixed-effect 

meta-analysis for studies having multiple effect sizes to obtain a ‗synthetic‘ effect size 

per study (also see Frantzias et al., 2011). The third method, the least common (11%, 

seven animal meta-analyses), was to explicitly account for dependence among effect 

sizes or sampling variances using a multilevel model with a suitable random-effects 

structure. We elaborate on this technique in Section 6.  

 

Using the first and second approaches to account for non-independence in data is not 

necessarily incorrect, but they have obvious pitfalls (Cheung, 2014; Nakagawa et al., 

2021c; Song et al., 2020). In brief, ignoring non-independence (the first approach) 

does not necessarily overestimate the model coefficients (e.g., pooled effect size or 

overall/mean effect or grand mean) but could bias the estimate of model coefficients 

and underestimated standard errors and, distort the subsequent hypothesis tests with 
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the non-nominal level of Type I error rates and coverage rates of confidence intervals 

(Cinar et al., 2021a; Table 1). Eliminating non-independence (the second approach) 

could reduce the statistical power and precision of the model coefficients due to the 

loss of ―sample size‖ (in this case, the number of effect sizes), and limit the capacity 

to ask new questions, for example, investigating the drivers of effect size 

heterogeneity because of the loss of information (explanatory variables, predictors or 

moderators; Cheung, 2014; Nakagawa et al., 2021c; Song et al., 2020; see Figure 5). 

Importantly, neither ignoring nor eliminating non-independence can deal with a more 

complex non-independence issue such as phylogenetic relatedness (or phylogenetic 

correlation), which arises when incorporating data from multiple species (Nakagawa 

and Santos, 2012; Noble et al., 2017). Because species with a shared evolutionary 

history appear to be more similar to each other, leading to the effect sizes derived 

within the same species are not independent (Figure 4D; Hadfield and Nakagawa, 

2010). We suppose that the widespread use of ‗ignoring‘ and ‗eliminating‘ strategies 

is caused in part by the low uptake of the suitable easy-to-implement methods that can 

directly model non-independence and practitioners might prefer simple methods (e.g., 

random-effects model) or software (e.g., Review Manager) they are familiar with, 

although the lack of awareness of the importance of accounting for non-independence 

may make a major contribution. For example, Stukalin et al., 2020 treated one 

experiment with different antidepressant doses as two or more independent 

experiments in their meta-analytic models. 

Jo
ur

na
l P

re
-p

ro
of



 18 

 

6. Modelling non-independence using multilevel models 

6.1. Fixed- and random-effects meta-analytic model 

In animal meta-analytic practice, the random-effects model was the most commonly 

employed (50%; Figure 3). As noted above, however, the random-effects model is not 

capable of accounting for non-independent data. In this section, we re-formulate the 

traditional meta-analytic model as a multilevel model to better capture the hierarchical 

data structures in animal studies (Figure 6), such that we can explicitly model the non-

independence. Following the conventions in animal meta-analytic practice, the 

random-effects model can be written as (Vesterinen et al., 2014): 

                 

                      

where     = an estimated/observed effect size for study j (j = 1,…,N; N is the number 

of animal studies included in a meta-analysis; per animal study contributes one    ); 

    can be any effect size type commonly used in animal meta-analyses (e.g., SMD; 

see section 3);    = an intercept denoting average true effect/pooled effect size (also 

known as the global estimate, overall mean or meta-analytic mean);    = a random 

effect corresponding to the between-study effect for study j, whose mean E[    = 0 

and variance Var[  ] =    ((i.e., assumed to be normally distributed with mean 0 and 

variance   );    = an error term corresponding to the sampling error effect for study j, 

where Var[  ] =    is the sampling variance, which is assumed to be known and 
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estimated, usually, from formulas (e.g., 1/(n -3) for Zr with n = the number of 

subjects; see Nakagawa and Cuthill, 2007; Noble et al., 2017, for formulas to estimate 

   for the common effect sizes). The fixed-effects (common-effects or equal-effects) 

model (10% of the surveyed studies; Figure 3) can be considered to be a special case 

of the random-effects model; that is, the random-effects model assumes 

heterogeneous between-study effects (   > 0) and the fixed-effects model assumes 

homogeneous between-study effects (   = 0;             ). Notably, 

although the fixed-effects model is appropriate on some occasions, most meta-

analyses assume non-zero heterogeneity in the underlying effects (across animal 

cohorts, species, and settings; IntHout et al., 2016; Senior et al., 2016). 

 

6.2. Multilevel meta-analytic models 

Importantly, both fixed- and random-effects models assume N = k (the number of 

studies is the same as the number of effect sizes included in a meta-analysis). In 

animal meta-analytic practice, k is usually larger than N. In our survey results, the 

medium N was 25 (range = 2 – 414, mean = 50; Supplementary Materials file 1), 

while the medium k was 56 (range = 5 – 3288, mean = 203). The medium k to N ratio 

was 2 (range = 1 – 28, mean = 3), indicating that most surveyed meta-analyses 

extracted multiple effect sizes per study and thus have the issue of statistical non-

independence.  
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A traditional meta-analytic model can be reformulated as a multilevel model to handle 

the issue of statistical non-independence (Cheung, 2014; Nakagawa and Santos, 2012; 

Van den Noortgate et al., 2013). In our survey, only seven animal meta-analyses 

employed the multilevel meta-analytic model. Such a model can be formulated as 

(i.e., three-level meta-analysis):  

                              

            
                

                  

where     = an effect size estimate; note that for a given animal study j (j = 1,…,N), it 

often contains multiple effect sizes i (i = 1,…,k; k > N);    = E[     ], an intercept, 

representing the overall / pooled mean, (i.e., average true effect – the true effect sizes 

across N studies follow a distribution with mean   );       = a random-effects term 

corresponding to between-study effect for study j applied to effect size i (the subscript 

‗b‘ denotes ‗between-study‘), which captures study-specific heterogeneity Var[     ] 

=   
  (whose magnitude is determined by the degree of inconsistency between true 

effect sizes in study 1,…,N);       = a random-effects term corresponding to within-

study effect for effect size i in study j (the subscript ‗w‘ denotes ‗within-study‘), 

which captures effect-size-specific heterogeneity Var[     ] =   
  (whose value is 

defined by the degree of inconsistency between multiple effect sizes in study j; also 

referred to as residual heterogeneity);      = sampling error in effect size i in study j, 

which captures sampling variance Var[  ] =    (if sampling errors are correlated 

(where the same cohort animal is repeatedly used for effect size computation; 
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scenarios 2 and 3 in Figure 4),    will become a variance and covariance matrix; 

details see Section 9.3). Because the only model coefficient in Equation 2 is the 

intercept,    (the estimate of the overall effect/pooled effect size/grand mean), we 

usually call it an intercept-only multilevel meta-analytic model. As shown in Figure 6, 

when estimating   , Equation 2 can exactly capture the multilevel/hierarchical data 

structure (e.g., multiple effect sizes are clustered/correlated within a study) that arises 

the statistical non-independence among effect sizes.  

 

6.3. The degrees of dependency 

Compared to the random-effects model (Equation 1), Equation 2 explicitly models the 

non-independence due to multiple effect sizes within one study (i.e., the random-

effect term       assumes heterogeneous effect sizes within studies). In the random-

effects model, sampling variance (Var[  ] =   ) is treated as the only source of within-

study variance, whereas it is not the case for the multilevel model (      lead to effect-

size specific variance, which belongs to within-study variance). Therefore, the 

multilevel model can distinguish between sampling variance and within-study 

variance (see section 6.3 for details). Moreover, the degrees of dependency among 

effect sizes can be quantified via the estimated correlation between the true 

underlying effects: intra-class correlation ICC =    
    

    
  ⁄ . In case of no 

dependency or effect sizes not correlated within clusters/studies (ICC = 0), all effect 

sizes derived from the same study are independent, meaning that they contribute fully 
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unique information to the fitted model, which is an implicit assumption of fitting 

dependent effect sizes to traditional meta-analytic models. If ICC = 1, all effect sizes 

derived from the same study are non-independent, meaning that they contribute the 

very same information to the fitted model, which is an implicit assumption of the 

‗averaging‘ method dealing with dependent effect sizes (see Section 5). 

 

6.4. Parameter estimation and statistical inference 

The parameters of the two random-effects terms (i.e.,   
  and   

 ) can be estimated 

from the data along with E[     ] =    (note that       and      can be directly 

computed from the data). There are various estimators to approximate   
  and   

 , 

such as maximum likelihood (ML), restricted maximum likelihood (REML), 

DerSimonian‐Laird (DL), and Empirical Bayes (EB). Although DL is a common 

method in many meta-analyses (a default estimator in Review Manager, RevMan), 

simulation studies indicate REML and Empirical Bayes outperform over DL in 

different simulated data (McCann et al., 2016; Tanriver-Ayder et al., 2021; see 

Langan et al., 2019; Viechtbauer et al., 2015). Note that only ML and REML 

estimators are implementable in multilevel models in the current main R packages for 

conducting meta-analyses, for example, metafor package (Viechtbauer, 2010). 

Together with the estimated variance components (e.g.,   
  and   

 ) and sampling 

variance (i.e.,   ), the variance (and covariance if involving correlated   ) matrix can 

be constructed and model coefficients can be estimated under the inverse-variance 
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weighting scheme (Marin-Martinez and Sánchez-Meca, 2010). Finally, statistical 

inferences (e.g., statistical tests of model intercept    and CIs construction) can be 

made based on null-hypothesis tests (e.g., Wald-type tests with standard normal 

distribution or t-distribution), likelihood ratio tests, resampling methods (e.g., a 

permutation test and bootstrapping) or cluster-robust inference (sandwich-type 

estimator; see section 9.3). The use of methods based on t-distribution (with adjusted 

degrees of freedom), permutation test and cluster-robust inference are preferable in 

the case of a meta-analysis with a small number of studies (Joshi et al., 2022; 

Nakagawa et al., 2021c; Sánchez-Meca and Marín-Martínez, 2008; Viechtbauer et al., 

2015). We illustrate how to implement multilevel models with recommended 

estimators (REML) and improved inference methods (t-distribution with adjusted 

degrees of freedoms) and interpret corresponding model results using rma.mv() 

function in metafor package in section 11 (Supplementary Materials file 2; 

Viechtbauer, 2010).  

6.5. Flexible random-effects structures 

One of the multilevel model‘s advantages is the capacity to incorporate a flexible 

random-effects structure, and therefore, to account for various types of non-

independence and heterogeneity due to different levels of clustering variables (see 

section 7). For example, animal meta-analyses often encounter stratified data 

structure, by multiple strains or species (e.g., more than 10 antidepressants included in 

Kara et al., 2018; 13 strains of rodents included in Bird et al., 2016; 8 species in 
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Lagisz et al., 2020). In this regard, we can add a corresponding random-effects term, 

for example, strain-specific effect, to Equation 2 to account for this: 

                                    

            
   

where       = a random-effects term corresponding to strain-specific effect for strain k 

(it also can be species-, drug-, dose-specific effects – depending on which clustering 

variable is incorporated into the model), wherein Var[     ] =   
  denotes the strain-

specific variance. As a rule of thumb, a proper random-effects term needs at least five 

levels to make the estimation of the respective variance components feasible and 

stable (Bolker et al., 2009; Gomes, 2021). Therefore, the strain-specific effect is 

preferable to the species-specific effect in practice (if there are fewer than 5 species 

included – in the case of biomedical studies usually only rats and mice). In a more 

complicated spectrum, we can further extend Equation 3 to account for additional 

sources of non-independence by adding random-effects terms – for example, 

authorship dependence (labs, research groups), non-phylogenetic species similarities, 

phylogeny relatedness, and temporal and spatial correlations (Hadfield and 

Nakagawa, 2010; Moulin and Amaral, 2020; Nakagawa et al., 2019; Maire et al., 

2019). We only found one paper that accounted for these complex sources of non-

independence, for example, Lagisz et al., 2020 employed a phylogenetic multilevel 

meta-analytic model to address the phylogeny relatedness among 22 non-human 

species. Given the complexities, we do not elaborate on the methodological details of 
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these complicated models (for interested researchers, see Chamberlain et al., 2012; 

Cinar et al., 2021a; Nakagawa and Santos, 2012). 

 

Theoretically, any cluster or grouping variable can serve as a random-effects 

candidate (e.g., study identities, drug types, or species). However, the levels of one 

cluster variable might be strongly overlapping with another (e.g., study vs. animal 

cohort). Therefore, a practical problem to consider is to select the best random-effects 

structure when conducting a meta-analysis. The rationale of testing the random-

effects structure is to investigate whether the examined random-effects terms are (1) 

of neurobiologically interest, and (2) true sources of heterogeneity. For a random-

effects term, we often use information-theoretic approaches alongside likelihood 

methods to examine whether it is a suitable random-effects term that should be 

included in the meta-analytic model, such as Akaike Information Criterion (AIC) and 

likelihood ratio tests. It is worth noting that when comparing models with different 

candidate random-effects structures, the ML method should be used rather than 

REML, because the log-likelihoods ratio (the index of information criteria) is not 

estimable for models incorporated with different fixed-effects (Gurka, 2006). The 

methodological details of calculating AIC and log-likelihood ratio are not the focal 

interest in this paper (but see Cinar et al., 2021b for details). We provide an example 

showing how to use information-theoretic approaches to decide the best random-

effects structure in Supplementary Materials file 2. 
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7. Quantifying heterogeneity in the multilevel model 

7.1. Multilevel version of I
2 
statistic and variance components 

It is common for an animal meta-analysis to combine studies with experimental 

designs with multiple species/strains, multiple outcomes, and multiple trials, each 

with multiple arms (Sandercock and Roberts, 2002; Hunniford et al., 2021). All these 

neurobiological and methodological differences are likely to lead to inconsistency 

among effect sizes. In the meta-analytic context, this ‗inconsistency‘ is typically 

referred to as ―heterogeneity‖ of the true underlying effects, and animal studies have a 

high amount of heterogeneity indeed (Kafkafi et al., 2018; Richter et al., 2009; Voelkl 

et al., 2020). As with the traditional meta-analyses (fixed- and random-effects meta-

analyses), the multilevel model also can measure the amount of heterogeneity in the 

true underlying effects. In animal meta-analytic practice, as revealed by our survey, 

there are three widely used statistics for determining the amount of heterogeneity: I
2
 

(43%; Figure 3), Cochran‘ Q (20%), and between-study variance    (19%). In 

general, Cochran‘ Q could be useful because it facilitates dichotomous decisions 

regarding whether the effect sizes are homogeneous (Cochran‘ Q is a test statistic for 

testing the null hypothesis of homogeneous effect sizes). It also can be used to assess 

the uncertainty of between-study variance on some occasions (but see Van Aert et al., 

2019a). But it is not as informative as I
2
 and   . Specifically, I

2
 and    can measure 

the amount of heterogeneity among effect sizes (the former is the relative 

heterogeneity, and the latter is the absolute heterogeneity; Borenstein et al., 2017). 
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Importantly, the multilevel meta-analytic can partition the two statistics across 

different levels corresponding to different random-effects terms. The random-effects 

terms in Equation 2 indicate that total variance components can be decomposed into 

between- and within-study-specific variances in the multilevel model (  
 , and   

 , 

respectively; Figure 7). The strain-specific variance   
  also can be separated from the 

total variance if fitting Equation 3 (not shown in Figure 7). 

 

Applying a random-effects model to non-independent data leads to model 

misspecification because a random-effects model treats the between-study variance as 

the total variance in (   =       
 ; Equation 1), while a multilevel model treats 

between-study variance as one of the components of the total variance (       
    

  in 

Equation 2; Figure 7). Therefore, the true total variance (      
  =   

    
 ) is 

incorrectly attributed to the between-study variance    in a random-effects model 

(where    should be equal to   
  rather than       

 ; see Supplementary Materials file 2 

for a real example). I
2
 statistic is defined as the relative amount of variance between 

effect sizes after taking out sampling error effects (Higgins and Thompson, 2002). We 

formulate I
2
 statistics in the context of a multilevel meta-analytic model as follows 

(Cheung, 2014; Nakagawa and Santos, 2012): 

within-study specific I
2
  

  
   

  
 

        
 

  
 

      
          

      

between-study specific I
2
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total level I
2
  

      
  

      
 

        
  

      
 

      
          

      

where                
           

  signifies the total variance of the 

observed/estimated effect size (i.e.,    );       
  denotes the total variance in the true 

effects (true heterogeneity;       
  =   

    
  in Equation 2), which is caused by 

neurobiological-, and methodological relevant variability (and can be explained by 

corresponding moderator variables; see Figure 7 and section 8);          
  = a 

―typical‖ sampling error variance, which is driven by the finite ‗sampling‘ of the 

population;          
  can be estimated using (independent) sampling variance      

(Higgins and Thompson, 2002; but see section 10.2 for non-independent     ): 

         
   

     ∑      ⁄ 
   

 ∑      ⁄ 
      ∑      

 ⁄ 
   

     

where          
  is also called a ―typical‖ within-study variance  ̅, since sampling 

variance is the only source of within-study variance in the framework of the random-

effects model (Equation 1: N = k).          
  or  ̅ can be conceptually treated as a 

surrogate of the average value of sampling variances     . 

 

The multilevel versions of I
2
 statistic have three merits: (1) intuitive (range from 0 to 

100% enabling us to have a clear sense of the amount of heterogeneity in a given 

meta-analysis), (2) with commonly used guidelines (I
2
 = 25, 50, 75% can be 
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interpreted as low, moderate and high levels of heterogeneity; Higgins et al., 2003), 

and (3) interpretable (  
 , and   

  are the proportions of the effect size variation 

attributed to within- and between-study inconsistencies, respectively). We show the 

calculations of the multilevel version of I
2
 index using i2_ml function in orchard 

package in section 11 (Nakagawa et al., 2021b). 

 

7.2. Prediction intervals 

Our survey also found one useful heterogeneity index used in animal meta-analyses –

prediction interval (PI; Figure 3; Mancini et al., 2020). 95% PI is defined as the 

estimate of an interval (a plausible value range) where 95% of the future 

measurements (i.e., true effect sizes of new studies) would fall when no sampling 

errors exist (Riley et al., 2011; van Aert et al., 2021). For example, assume an 

antidepressant with a mean SMD = -0.4 and 95% PI = -0.1 to -0.7 – this means 95% 

of new trials using this antidepressant will decrease the manifestation of depressive 

behaviours by between 0.1 to 0.7 standard deviations over different experimental 

contexts. We note that PI is distinct from confidence interval (CI). A CI quantifies the 

precision of the mean effect size (i.e.,   ), which is dependent on the standard error 

(i.e.,       ):                   √      
 , where           = 97.5th percentile 

of a Student‘s t-distribution with df degrees of freedom. In contrast, PI captures the 

dispersion of the mean effect size, which accommodates heterogeneity in the true 
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underlying effects, namely, neurobiologically and methodologically relevant 

uncertainties (i.e., variance in the true effects –       
 ; section 7.1): 

               √      
        

      

where the exact value of df of the Student‘s t-distribution is controversial; Some 

common approximations include df = k – 1, k – 2, or k – 4, where k is the number of 

effect size estimates (a detailed discussion see Knapp and Hartung, 2003; Riley et al., 

2011; van Aert et al., 2021; Viechtbauer, 2010). The metafor package uses k – 1 as the 

default. 

 

With the same scale as its mean effect size, the neurobiological interpretation of PI is 

straightforward. This merit makes it a good complementary statistic to the I
2
 index 

since I
2
 index provides no information on the absolute amount of heterogeneity 

among effect sizes (although it directly measures the percentage of heterogeneity due 

to ‗true‘ neurobiological-relevant variation as opposed to chance (i.e., sampling 

variance) – Equation 7; Borenstein et al., 2017). Specifically, for a given animal meta-

analysis with small          
 , even a tiny true effect heterogeneity       

  can lead to a 

high value of       
  (see Equation 6). However, this large I

2
 does not necessarily mean 

a high amount of true heterogeneity of neurobiological-relevant variation in the effect 

sizes. In contrast,       
  can directly reflect the genuine differences underlying the 

true effects because the square root of       
  can be interpreted as the standard 

deviation of the true effect sizes. Moreover, in the framework of the multilevel model, 
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  also can be partitioned at different levels (e.g., within- and between-study 

levels:   
  and   

 ; see Figure 7). Therefore, both PI and       
  should be reported as a 

complement to the commonly used I
2
 index. The calculation of PI and partition of 

      
  are readily available in existing packages (see examples in Supplementary 

Materials file 2). 

 

8. Multilevel meta-regression 

8.1. Multilevel meta-regression to explain heterogeneity in effect sizes 

When heterogeneity is detected (which is indicated by a large       
  and significantly 

meaningful       
 ; see Supplementary Materials file 2), it is necessary to find the 

drivers of such variability and try to explain (at least part of) this heterogeneity using 

variables extracted from primary studies as explanatory variables or predictors 

(known as moderator variables in the meta-analytic context because they moderate the 

strength of the effect on effect size      ). There are three common drivers of 

heterogeneity: neurobiological, methodological and sociological (or meta-scientific) 

moderators (Nakagawa and Santos, 2012). The neurobiological and methodological 

moderators can be used to account for heterogeneity due to neurobiological processes 

(e.g., different doses of drug, or sex tested) and methodological differences (e.g., 

different drugs or dosages), respectively. The sociological moderators are the drivers 

of publication bias (see section 8.2 for details). In other words, including moderator 

variable (s) in a multilevel model (Equation 5) allows us to test moderator effects – 
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examining whether the effect size estimates systematically change in response to 

different levels of moderator variables (e.g., whether the overall efficacy of an 

antidepressant drug depends on sex). We found 89% (55/62) of animal meta-analyses 

accounted for heterogeneity using either meta-regression or subgroup analysis 

(Supplementary Materials file 1), among which 33 employed meta-regression. 

 

The above multilevel meta-analytic model involving a moderator, in essence, is a 

meta-analytic regression model via multilevel (linear) mixed-effects models with both 

fixed effects and random effects, also well-known as (mixed-effects) meta-regression 

models. It can be expressed as the following mathematical notations: 

        
                                

where   
  = an intercept (which is different from the overall mean,   , in Equation 2, 

and this has an important implication in certain circumstances; see section 9.1.2);    

= a slope representing effect size changes for (one-unit increase in)      , a moderator 

corresponding to between-study characteristics (e.g.,       = antidepressant types: 

fluoxetine vs. sertraline) or strain-specific characteristics (e.g.,      = animal 

taxonomy: rats vs. mice). Equation 9 is known as a three-level mixed-effects model. 

Importantly, Equation 9 also enables us to examine the relationship between effect 

size changes and a moderator variable that varies within studies (e.g., within-study 

level moderator variable       = a series of doses; Figures 5 and 7). Categorical 

moderator variables also can be incorporated into Equation 9 using a dummy-coding 
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strategy (Schielzeth, 2010). For example, animal sex can be dummy coded as Dsex: 0 

(male) and 1 (female). This is equivalent to subgroup analysis. In the framework of 

meta-regression, subgroup analysis is achieved by incorporating Dsex into Equation 9:  

                                          

where       = an intercept indicates the estimate of the mean effect size of the 

subgroup male;    = a slope equals to              . Equation 11 is intuitive: 

when      = 0 (subgroup = male), we can obtain the estimate of      ; when      = 1 

(subgroup = female), we obtain the estimate of         =         . Importantly, 

  . enables us to examine the difference of a categorical moderator variable at 

different levels (e.g., the differences between females and males in responses to a 

given antidepressant; see Supplementary Materials file 2). 

 

Equation 9 explicitly indicates that the strategies of aggregating or selecting effect 

sizes will prevent the meta-regression from providing information about effect-size 

level moderator variables (see Figure 5 and section 5). Importantly, Equation 9 can 

further partition the total variance (i.e.,       
 ) into two parts: (1) the variance of 

fixed-effects,   
  = Var[       ], which denotes the heterogeneity explained by the 

included moderator variable             (Figure 7); and (2) the variance of random-

effects terms (  
 , and   

 ), which now becomes ―residual‖ heterogeneity that is not 

explained by the associated moderator variable. The goodness-of-fit index R
2
 is also 

applicable to quantify the percentage of variance explained by the included moderator 
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variable (Aloe et al., 2010). A general and widespread measure of R
2
 is the marginal 

R
2
 (Nakagawa and Schielzeth, 2013), which can be calculated by:  

         
  

  
 

      
  

  
 

  
    

    
 
     

In contrast to       
  (Equation 6),          

  does not contain the sampling error 

variance (         
 ; Equation 7) in the denominator because this variance component 

is assumed to be known before including moderator variables to explain the 

heterogeneity. The calculation of          
  is readily available, for example, using 

orchaRd packages (see Section 11).  

 

Two points are worth noting here. First, various methods can be used to deal with 

covariates with missingness under the assumption of a random missing mechanism 

(e.g., data are missing completely at random and unrelated to any other variable), 

including simple deletion (filtering the incomplete cases prior to model fitting; 

embedded in metafor; Viechtbauer, 2010) and advanced imputation methods (i.e., full 

information maximum likelihood embedded in metaSEM; Cheung, 2015; Jak and 

Cheung, 2020). Second, a random meta-regression requires each of its moderators to 

have at least five studies (Hedges and Pigott, 2004). The minimal number of studies 

or effect sizes required by a multilevel meta-regression remains unknown, albeit some 

simulation studies suggest that the estimates of model coefficients of a multilevel 

meta-regression are generally stable under various simulated situations (Jamshidi et 

al., 2020; López‐López et al., 2017). 
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8.2. Extended Egger’s regression to test publication bias 

Identifying publication bias is a crucial and mandatory procedure of a meta-analysis 

because the validity of meta-analytic evidence would be undermined if publication 

bias occurs (Augusteijn et al., 2019; Nakagawa et al., 2017; Van Aert et al., 2019b). 

The most common testable form of publication bias is the small-study effect where 

small studies (i.e., small sample size) often tend to report large effect sizes (Sterne et 

al., 2000). In our survey, we found that 86% of animal meta-analyses dealt with 

publication bias in their analyses in some way (Figure 3). The most common method 

used to examine publication bias was: funnel plots (35%), (simple) regression-based 

methods (e.g., Egger‘s regression; 30%), and trim-and-fill tests (14%). However, all 

these procedures are not appropriate if effect sizes are statistically dependent or 

heterogeneous or both (Rodgers and Pustejovsky, 2021; Sterne et al., 2001a).  

 

Recently, a multilevel version of Egger‘s regression has been proposed to tackle these 

limitations (Fernández-Castilla et al., 2021; Nakagawa et al., 2021a). Briefly, we need 

to add sampling error (      = √    ) as a moderator variable into a multilevel model 

(equivalent to set            as       in Equation 9; a potentially better approach is to 

use ‗effective sample size‘ to replace      ; see Nakagawa et al., 2021a). Then, a 

statistically significant    (i.e., the slope of      ) means that studies with large       

(i.e., small sample size) have large effect size. This indicates that a small study effect 
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exists in the meta-analytic dataset. Likewise, if including publication year as a 

moderator variable, Equation 9 can detect another form of publication bias, the 

decline effect (i.e., time-lag bias, which is defined as the temporal instability of the 

magnitude of effect sizes), the implication of which is underappreciated (Grainger et 

al., 2020; Koricheva and Kulinskaya, 2019; Nakagawa et al., 2021a; see 

Supplementary Materials file 2) 

 

9. Extensions to the multilevel models 

9.1. Multi-moderator multilevel meta-regression 

In practice, it is common to test one moderator variable at a time to explain the 

heterogeneity among effect sizes (i.e., Equation 9; known as the single-moderator 

meta-regression model or univariable meta-regression). Theoretically, multiple 

moderators (      and      ) can be examined simultaneously. This leads to a multi-

moderator multilevel meta-regression (i.e., multivariable meta-regression). In contrast 

to the univariable meta-regression (i.e., Equation 9), a multi-moderator multilevel 

meta-regression can provide more neurobiological and meta-scientific insights. For 

example, it enables us to ask (1) whether there exists an interactive effect between 

two moderator variables, and (2) what is the adjusted effect size of an animal meta-

analysis after correcting for publication bias (Kvarven et al., 2020). Yet, the 

complexity of parameterization of such a meta-regression requires a large dataset to 

make optimization algorithms free of convergence issues (Bates et al., 2015; Cinar et 
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al., 2021a). Given that (at least some) datasets in our surveyed animal meta-analyses 

are not small (k: medium = 56, range = = 5 – 3288, mean = 203; Supplementary 

Materials file 1), it is feasible to introduce this more complex model to the field.  

 

9.1.1. Investigating the effects of multiple moderators and interactions 

For the sake of illustration, we use the simplest form of the multi-moderator 

multilevel meta-regression model as an illustration:  

        
                                         

Equation 12 builds upon Equation 9 and contains two moderator variables, whose 

slopes    and    can be used to quantify the (average) effects of       (e.g., dose) and 

      (e.g., sex) on effect size changes, separately. In practice, the effect of       (e.g., 

dose) might be confounded by       (e.g., sex). For example, high doses of 

antidepressants are more likely to mitigate the depression symptoms of females, while 

antidepressants are less effective on males (Figure 8; Mauvais-Jarvis et al., 2020; 

Tannenbaum et al., 2019). This example requires us to control for the impact of       

(e.g., sex) when quantifying the effect of       (e.g., dose) on effect sizes. To do so, an 

interaction term needs to be added to Equation 12:  

        
                                                      

where            = interaction between       and      ;    = slope of the interaction 

term, which captures the magnitude of the interactive effect. If the significance test of 
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the model coefficients shows a statistically significant   , we conclude that the two 

moderator variables can interact with each other. 

 

Equations 12 and 13 can be extended to a more general form: 

        
   ∑                             

where the variable    can be any moderator variable denoting within- and between-

study level characteristics;      = the moderator variable   ‘s slope, which is 

interpreted as the magnitude of the moderator effect for    (e.g., the effect of 

antidepressants on depression symptoms); ∑       = the sum of all moderator 

effects. Though Equation 14 is not commonly used in the discipline (but see Vendl et 

al., 2021), it has versatile functionality. It can be used to predict the combined effects 

of two moderator variables, for example, examining how the effects of an 

antidepressant drug on females at a series of doses even if these doses have not been 

tested by empirical studies (e.g., conditional [marginal] estimates). Given a large 

enough number of effect sizes, Equation 14 also can be used to construct a linear and 

non-linear relationship (e.g., quadratic, cubic polynomial, and spline) between a 

continuous moderator variable and effect size estimates       (Gasparrini et al., 2012; 

Orsini et al., 2012). It is worth noting that multi-moderator multilevel meta-regression 

models share limitations with other types of linear models: for example, they are 

susceptible to overfitting and multi-collinearity. For a detailed illustration of these 

complex applications, see Supplementary Materials file 2. 
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9.1.2. Correcting meta-analysis for publication bias 

When replacing       and       by sampling error (     ) and publication year of a 

paper (       ), Equation 13 enables us to test for small-study effect and time-lag bias 

simultaneously. More importantly, such a model can correct for publication bias in 

animal studies:  

        
                                            

where   
  is an intercept, which could serve as the bias-corrected overall effect. 

Imagine that if the meta-analytic data does not have publication bias (e.g., no small-

study effect and time-lag bias exist), we are more likely to obtain the bias-corrected 

effect. Theoretically,       = 0 and         = 0 indicates that no small-study effect and 

time-lag bias occur.   
  is the estimate which is explicitly conditional on       = 0 and 

        = 0. There are two notable issues if our interest is to estimate a bias-corrected 

overall effect. First, we need to centre       (i.e.,          ) at its mean value (set 

mean           as 0), such that   
  is meaningful to be interpreted as a bias-corrected 

overall effect: 

        
                                               

Second, if   
   in Equation 16 is significantly different from zero (i.e., a true effect), 

some researchers recommend replacing sampling error       by its sampling variance 

     
 or      (Nakagawa et al., 2021a; Stanley et al., 2017):  

        
          

      (       )                        
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Equation 17 assumes a quadratic association between sampling error (     ) and effect 

sizes (     ) to avoid a downwardly biased estimate of the bias-corrected overall 

effect (  
 ). The combination of Equations 16 and 17 is a so-called two-step procedure 

(Stanley et al., 2017), which provides us with an unprecedented opportunity for 

testing and correcting for publication bias (see Supplementary Materials file 2 for 

implementation). 

 

Given that high heterogeneity may invalidate publication bias test (Macaskill et al., 

2001; Moreno et al., 2009; Sterne et al., 2001b), it is best to account for the potential 

heterogeneity when testing publication bias:  

        
                         ∑                             

The significance tests of    and    can be used to indicate the presence of small-study 

effect and time-lag bias, separately (see section 8.2); ∑       in Equation 18 is 

used to accommodate the potential heterogeneity in the animal dataset. Moreover, we 

can use Equation 18 to correct for publication bias for the moderator effects, for 

example, to estimate the efficiency of different antidepressant drugs on depression 

symptoms after adjusting for publication bias. Following the similar rationale of 

estimating the bias-corrected overall effect (see above), we can estimate the bias-

corrected effect for any moderator variable    by estimating      conditional upon 

      = 0 (no small-study effect) and         = 0 (no time-lag bias). Several existing 
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packages are readily available to implement Equation 18, such as emmeans, lsmeans, 

and orchaRd (Lenth, 2016; Nakagawa et al., 2021b; Russell, 2021).  

 

9.2. Multivariate models for modelling multiple outcomes simultaneously 

Some behavioural and neurobiological studies measure more than a single outcome 

(e.g., two different endpoints: anxiety and depression within the same studies), 

therefore, resulting in more than one type of effect size or multivariate effect sizes. 

When computing multivariate effect sizes, at least two types of non-independence 

arise due to repeated use of the sample cohort of animals: correlations/covariances 

between different outcomes and sampling errors (scenarios 2 and 3 in Figure 4). 

Multivariate meta-analytic models have been proposed to account for these dependent 

effect sizes by modelling the multiple types of outcomes simultaneously (also referred 

to as multi-response and multi-outcome meta-analytic models). Extending univariate 

meta-analytic models (Equation 1) to multivariate versions is similar to extending 

ANOVA to MANOVA. In contrast to a (univariate) random-effects meta-analytic 

model (Equation 1), a multivariate meta-analytic model allows both between-study 

random effects (  ) and sampling errors (  ; see next section) to follow a multivariate 

normal distribution (i.e.,            and          ).  

 

The principle is that two types of dependence can be directly captured by (co)variance 

structures of the multivariate models. Specifically, correlations (    ) between 
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different outcomes are defined in the variance-covariance matrix of the between-study 

variances Cov[  ] =    (which are distinct from the one-dimension between-study 

variances    in the univariate random-effects model, Equation 1). Likewise, the 

correlations (    ) between different sampling errors are defined in the variance-

covariance matrix of the sampling errors Cov[  ] =   (which are distinct from the 

one-dimension sampling variances in the random-effects model; details see next 

section). Assume a simple example of    involving three outcomes: 

   [

  
                     

            
           

                      
 

]       

where   
  = between-study variance for outcomes i;               = population level 

correlation (also known as between-study correlation; Gasparrini et al., 2012; Jackson 

et al., 2011), which is the correlation between the first and second population 

outcomes; covariance of the first and second outcomes Cov[  
    

 ] =            = 

          . The univariate I
2
 statistic based on the proportion of between-study 

variance (  ) in the total variance (   +  ̅) can be easily extended to multivariate I
2
 

statistics (Higgins and Thompson, 2002). An alternative definition of I
2
 is based on 

the variance-covariance matrix of the model coefficients under the multivariate 

random- and fixed-effects models (Jackson et al., 2012).  

 

The matrix   , which carries information about the extent to which two pairwise 

outcomes are correlated, can be used to account for dependent effect sizes while also 
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improving the accuracy of model estimates and enabling the investigation of new 

questions, such as whether there is a strong correlation between two outcomes at the 

population level. Multivariate models can also leverage the ―borrowing of strength‖ 

among correlated outcomes, allowing the estimation of missing effect sizes feasible 

even when some outcomes are only partially reported in some studies. Nonetheless, 

three points should be noted here. First, there might be only a few studies reporting 

complete paired outcomes. As such, no information (from the paired effect sizes from 

the same study) will be borrowed to increase the precision of model estimates 

(Jackson et al., 2011). Second, when the included studies have a large number of 

outcomes, the multivariate models are highly parameterized and likely to be 

overparameterized. In this regard, the advantages of multivariate models might be 

compromised by the increasing the number of parameters that need to be estimated 

(Boca et al., 2017). For example, 15 neural-behavioural traits in Yang et al. (2021) 

need to estimate 105 correlations     . To mitigate the estimation and computational 

challenges posed by high dimensional parameters, some researchers proposed to 

enforce a simplified structure on the between-study covariance matrix   , such as a 

compound-symmetry or a diagonal structure (Gasparrini and Armstrong, 2011; 

Gasparrini et al., 2012; Ritz et al., 2008). Third, it is challenging to construct a 

sampling variance-covariance matrix   due to the lack of sampling covariances (but 

see next section for solutions). 
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9.3. Within-study variance-covariance matrix for accounting for correlated sampling 

errors 

Typically, sampling errors are assumed to be independent in the framework of the 

multilevel model outlined early. However, as mentioned above, repeated use of the 

same cohort animal or ―overlapping‖ animals (when calculating effect sizes) leads to 

dependency among sampling errors (see correlated sampling errors due to shared 

animal and control in Figure 4). Indeed, the nested random-effects structure in a 

multilevel model fails to capture this type of non-independence (i.e., mis-specified 

variance structure). As with the multivariate models, constructing a variance-

covariance matrix for sampling errors (within-study VCV matrix) is the most 

straightforward way to account for correlated sampling errors. Theoretically, a 

multilevel model with a within-study VCV matrix can capture all types of dependence 

structure of effect sizes, wherein an appropriate specification of random-effects 

structure (       and      ) can account for correlations/covariances in the true effects 

and a within-study VCV matrix can account for the correlations/covariances in the 

sampling errors. The sampling error effect (  ) follows a multivariate normal 

distribution with mean zero and variances of   (         ). A simple example   

having two studies with three effect sizes (where the first study contributes two effect 

sizes) can be expressed as: 

  [

   
              

               
  

     
 

]       
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where     = the sampling error (i.e., standard error) of effect size i (square root of 

sampling variance   );                = sampling level correlation (also known as 

within-study correlation or sampling correlation), which is the correlation between the 

first two observed effect size estimates, or more precisely     and    ; the sampling 

covariance Cov[     ] =              =             . 

 

Yet, 63% of surveyed animal meta-analyses ignored correlated sampling errors in 

their analyses (but see Lagisz et al., 2020; Supplementary Materials file 1), where a 

within-study VCV matrix is incorrectly treated as a diagonal matrix with the sampling 

variance    
  (or   ) along the diagonal and zero along the off-diagonal (i.e., 

Cov[     ] = 0,    ; model misspecification). The challenge of constructing a 

within-study VCV matrix is that      or individual data used to compute      are rarely 

reported in the primary studies. We propose three approaches to construct a within-

study VCV matrix to account for correlated sampling errors: (1) ―empirical sampling 

correlation‖, (2) ―general sampling correlation‖, and (3) ―partially empirical sampling 

correlation‖ solutions. First, for studies reporting      or sampling covariances, we can 

directly extract them (contacting authors if missing). For studies involving multiple-

treatment and multiple-outcome (Figure 4), we can use specific formula based on 

summary statistics to compute (asymptotic) sampling covariances for common effect 

size statistics (―empirical sampling correlation‖ solution; see Gleser and Olkin, 2009; 

Lajeunesse, 2011 for formula). Second, for studies involving other types of correlated 
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sampling errors (e.g., repeated measurements of the same outcome), we can use a 

―general‖ formula to compute sampling covariances, that is, ―guesstimate‖ a constant 

sampling correlation      to calculate sampling covariances (e.g.,      = 0.5 or 0.8; 

―general sampling correlation‖ solution; Fisher and Tipton, 2015; Noble et al., 2017; 

Pustejovsky and Tipton, 2022). The constant      can be rough, arbitrary, or educated 

guess. The validity of the guessed      can be ensured by robust variance estimation 

(see next section) or a sensitivity analysis, through which the robustness of the model 

parameter estimates (e.g.,   ) to the choice of      values would be tested. Third, use 

the ―empirical sampling correlation‖ solution where possible, and supplement the 

―general sampling correlation‖ solution to take care of the remaining covariances 

(―partially empirical sampling correlation‖ solutions; Pustejovsky and Tipton, 2022). 

 

9.4. Robust variance estimation for counteracting model misspecification 

Our survey found that two papers used the robust variance estimation, RVE, methods 

to deal with statistical non-independence (Supplementary Materials file 1; Shields et 

al., 2015; Zajitschek et al., 2020). The superiority of RVE methods is that they can 

handle statistical non-independence even without knowing the exact dependence 

structure of effect sizes (Hedges et al., 2010; Tipton, 2013). RVE methods estimate 

sampling covariances from the data if the meta-analysis includes a larger number of 

studies (Hedges et al., 2010). Subsequently, standard errors of model coefficients are 

adjusted (robust errors) to avoid inflated Type I error rates and incorrect hypothesis 

Jo
ur

na
l P

re
-p

ro
of



 47 

tests (e.g., p-value). Existing R packages can easily implement RVE methods (Fisher 

and Tipton, 2015; Pustejovsky and Tipton, 2018). If our primary interest is in 

parameter estimations and hypothesis tests of model coefficients, then RVE method is 

an appealing way to deal with non-independence among effect sizes.  

 

While the RVE method has its benefits, it may not be as effective when employed as a 

standalone rather than a complementary approach to multilevel or multivariate 

models. For example, RVE cannot decompose variance components into between- 

and within-study variances as the multilevel models do. Nor can RVE allow variance 

components to vary for different outcomes within studies as the multivariate models 

do. Therefore, it is promising to combine the multilevel or multivariate models with 

RVE (Nakagawa et al., 2021c; Pustejovsky and Tipton, 2022) where the multilevel or 

multivariate models can provide new insight regarding heterogeneity- or variance-

related parameters while RVE can properly deal with all types of non-independence 

(especially mis-specified VCV matrix with a guesstimate within-study correlation). 

Fortunately, this hybrid strategy can be implemented by the combination of metafor 

and clubSandwich packages (see Supplementary Materials file 2). It should be noted 

that when the number of studies is small and the moderators are imbalanced, RVE 

cannot perform nominally (Tanner-Smith et al., 2016; Tipton, 2015). As such, 

applying RVE to a small-sample size meta-analyses might provide a biased estimate 

of the sampling variance and covariances matrix, leading to inaccurate robust errors 
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and inflated Type I error rates. Several small sample-size adjustment methods can be 

used to address these issues (Pustejovsky and Tipton, 2018; Tipton and Pustejovsky, 

2015; Welz et al., 2023). Recently, the robust-wild-bootstrapping method has been 

introduced to control Type I error rates while improving the statistical power of 

hypothesis tests in RVE (Joshi et al., 2022). 

 

10. Recommended practices for animal multilevel meta-analysis 

Given the data-generating processes and mechanisms in the field (e.g., a single 

construct of interest and nested effect sizes), we outline our practice recommendations 

for conducting meta-analysis using animal data. We strongly recommend using the 

multilevel model as the framework for conducting animal meta-analyses. Fitting 

multilevel models is feasible and conceptually simple (see Supplementary file 2). As 

such, it provides a good starting point for researchers in this field to properly account 

for non-independence, while producing reliable parameter estimates and hypothesis 

tests (as demonstrated in an example in Section 11).  

 

More specifically, we recommend:  

(I) Using the (three-level) multilevel models (e.g., Equation 2) by default, rather than 

fixed- and random-effects models (conventional practices; Equation 1), with the 

option to add additional levels for random-effects when necessary (e.g., when 

analysing data from multiple species, as described in Section 6). 
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(II) Performing all necessary meta-analytic procedures within the context of the 

multilevel model, such as using meta-regression to explain heterogeneity or 

conducting subgroup analyses and testing publication bias (Section 7).  

(III) Transparently reporting all the relevant parameter estimates and hypothesis 

testing concerning fixed effects (e.g.,   , 95CI%, and 95%PI) and random effects 

(e.g., I
2
) (Section 8).  

 

While more technically challenging, we still recommend researchers to account for 

additional non-independence arising from correlated sampling errors if the dataset 

includes ―shared control‖ and ―shared animals‖ (i.e., the same animal cohort is used 

repeatedly to compute effect sizes): This can be achieved through the following steps: 

(I) Using a multilevel model with a within-study VCV matrix that reflects the extent 

to which the sampling errors derived from the same animal are correlated (Section 

9.3). Such a multilevel model with a within-study VCV matrix is technically a special 

case of a multivariate meta-analysis model without moderators for different outcomes, 

but the inclusion of random effects at multiple levels can provide additional insights 

into heterogeneity among effect sizes (Section 11). 

(II) Using RVE methods to defend against the (potential) model misspecification if 

the sampling correlation      is not based on empirical data but assumed to construct 

the within-study VCV matrix (Section 9.4).  
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In the case where the dataset involves a multivariate structure (e.g., more than one 

type of outcome reported in many studies in a meta-analytic dataset) and multiple 

outcomes are of primary interest, we suggest the following procedures: 

(I) Employing the multivariate meta-analysis models, which allow for the explicit 

consideration of non-independence due to both effect sizes and sampling errors 

through the use of between- and within-study variance-covariance matrices (Section 

9.2).  

(II) Using RVE methods as necessary to guard against the (potential) model 

misspecification. 

 

The dataset with more complexity, including nested and correlated structures, may 

necessitate the use of more sophisticated approaches. A potential solution is to 

combine the multilevel and multivariate models, referred to as 'multivariate multilevel 

meta-analytic models', along with RVE methods. A simpler version of this combined 

approach is the multilevel model with a within-study VCV matrix, as outlined above. 

Further investigation, through simulation studies, is necessary to determine the 

empirical performance of this proposed methodology. 

 

11. Worked example 

In this section, we briefly compare the results of our re-analyses of a real dataset, 

following our recommended practices with the results based on conventional 
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practices. Our re-analyses explicitly illustrate how failure to account for non-

independence using traditional meta-analytic techniques might lead to the incorrect 

inference, underestimated standard errors and distorted hypothesis testing, and 

ultimately result in spurious conclusions. This worked example comes from one of 

our surveyed papers – Ramsteijn et al., 2020, on the relationship between the use of 

selective serotonin re-uptake inhibitor (SSRI) in animals during pregnancy and their 

offspring‘s neurobehavioural phenotype. Effect sizes in Ramsteijn et al., 2020‘s, 

dataset were statistically dependent. For example, within a given study included in 

Ramsteijn et al., 2020, male and female animals were compared separately. Likewise, 

animals were exposed to different types of SSRI antidepressants, the authors analysed 

these comparisons (within the same study) as if they were independent studies. Using 

the random-effects model to fit these non-independent effect sizes runs the risk of 

getting spurious results. We randomly selected a subset from Ramsteijn et al., 2020 

and we dealt with the non-independence (as shown above) using the advanced 

methods with the practices outlined in Section 10 and the traditional methods outlined 

in Section 5. It should be noted that these re-analyses are only for illustrative 

purposes. Readers interested in the biological questions should refer to the original 

paper. 

 

For the selected subset, Ramsteijn et al., 2020 used a random-effects model 

(implicitly ignoring non-independence) and found that the use of SSRI in animals 
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during pregnancy significantly decreased offspring‘s sensory processing function 

(pooled SMD = -0.37, 95CI% = [-0.69 to -0.06], p-value < 0.05). Respective to our 

re-analysis procedures, first we conducted a random-effects analysis via rma() 

function in metafor package to reproduce their original analysis (―RE‖ in Table 1). 

Second, we (inappropriately) assumed effects within studies are homogeneous and 

computed an ―averaged‖ effect size and sampling variance for each study (assuming 

sampling correlation    = 0.5) and used them for subsequent random-effects models 

(―Average‖). Third, we randomly selected one effect size from each study and used it 

for the subsequent random-effects model (―Sample‖). Fourth, we used a multilevel 

meta-analytic model specifying between-study and within-study random effects to 

directly model the dependency among effect sizes (―ML‖). Sixth, building upon 

―ML‖ method, we accounted for the (potential) correlated sampling errors by 

approximating a VCV matrix with a constant    = 0.5 (―ML-VCV‖). Seventh, we 

used the RVE to defend the model misspecification (e.g., the arbitrarily assumed    = 

0.5) and make robust model inferences (―ML-VCV-RVE‖). It should be noted that 

because we did not find any dataset suitable for multivariate models in our survey 

(e.g., meta-analyses with multiple outcomes within studies), Table 1 does not report 

results corresponding to multivariate models (but see Supplementary Material 3 for an 

illustration with a fictitious dataset).  
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Re-analyses based on the multilevel model (―ML‖) found that the overall effect of 

SSRIs exposure has a similar magnitude compared to that obtained from the random-

effects model (―RE‖), but the overall effect was not statistically significant (SMD = -

0.39, 95CI% = [-0.80 to 0.03], p-value = 0.06). This clearly demonstrates that the 

standard error has been underestimated and the subsequent hypothesis tests (p-value) 

were incorrect. Likewise, the between-study variances (  
 ) derived from RE model 

(conventional practice) also have been overestimated. For example, the value of   
  in 

the multilevel model was almost half of that in the random-effects model. Using the 

random-effects model to fit this dataset might lead to a wrong conclusion that the 

study level has a high amount of heterogeneity (  
  = 69%). However, the study level 

only explains 27% of the total heterogeneity. The remaining 49% of the total 

heterogeneity is due to the within-study level variability. The results of the multilevel 

model with a VCV matrix are very similar to those of the multilevel model without a 

VCV matrix (―ML‖ vs. ―ML-VCV‖). The results of the multilevel model are also 

robust after defending against model misspecification (―ML-VCV‖ vs. ―ML-VCV-

RVE‖). The multilevel model can quantify the degrees of dependency, that is, ICC 

(correlation of effect sizes within the same study) suggests that the true underlying 

effects are weakly correlated with each (0.136).  

 

12. A hands-on tutorial of the advanced meta-analytic techniques  
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We provide an easy-to-implement tutorial to help researchers apply these 

sophisticated techniques outlined above. Broadly, our tutorial contains two parts. In 

Part I, we use the dataset of the above worked example to illustrate meta-analysis in 

the framework of the multilevel model (standard practices; sections 6 to 8; see also 

Assink and Wibbelink, 2016). We recommend every researcher employ these 

procedures in an animal meta-analysis, such that potentially misleading conclusions 

can be avoided. In Part II, we use a more complex dataset to show the implementation 

of the extended methods (recommended practices) outlined in section 9. This dataset 

comes from our published neuroscience meta-analysis (Lagisz et al., 2020), which 

examined cognition bias across 22 animal species using 71 studies with 459 effect 

sizes.  Given that R language and environment are the most widely used software in 

animal meta-analyses (Supplementary Materials file 1), we use R code to demonstrate 

the implementations of these advanced methods. The dataset and R code are freely 

accessible at an archived repository (See Open Science section). We use R markdown 

to annotate R code, which allows researchers to easily understand and reproduce our 

examples, and also easily modify the sample R code to suit their own analyses. The 

sample R code is based on existing R packages, for example, metafor, orchaRd and 

clubSandwich. We provide guidance to show the R syntax of these packages 

implementing the advanced methods outlined in sections 6 – 9. The complete R 

coding-based tutorial can be found at Supplementary Materials file 2.  

13. Conclusions and future perspectives 

Jo
ur

na
l P

re
-p

ro
of

https://zenodo.org/record/6622434#.YqBUG3ZBw2w


 55 

We have profiled the meta-analytic practice in the field of neurobiology and 

behavioural research on animal models. Researchers in this field mainly rely on 

traditional meta-analytic techniques (i.e., fixed-effect and random-effects models) for 

quantitative evidence synthesis. However, the traditional meta-analytic techniques are 

very limited in handling complex animal datasets (e.g., hierarchical/correlated data 

structure), which are more prone to statistical issues (e.g., non-independent effect 

sizes and errors). Researchers should go beyond traditional meta-analytic techniques, 

embracing the multilevel model and other advanced methods (e.g., multivariate 

models and robust variance estimation). Currently, these advanced methods are rarely 

used in animal meta-analyses. We have illustrated the concepts, rationale, examples, 

and implementations of these advanced methods. We expect their applications to 

continue to increase in future quantitative evidence synthesis in animal studies, 

delivering more robust/reliable model estimates and new neurobiological insights.  

 

Furthermore, these advanced methods can be further extended to more sophisticated 

meta-analytic techniques. For example, A network meta-analysis can rank the 

effectiveness of multiple treatments by incorporating indirect evidence across separate 

animal studies (for example, using evidence of TA vs. TC and TB vs. TC to infer TA vs. 

TB; Riley et al., 2017). We can employ a meta-analytic mediation (causal) model, path 

analysis or structural equation modelling to identify how a focal variable mediates the 

response variable of interest (Cheung, 2022; Shadish and Sweeney, 1991). We can 
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also take advantage of an individual participant data (IPD) meta-analysis to 

circumvent Simpson‘s paradox (i.e., ―aggregation‖ bias or ecological fallacy) and test 

hypotheses at the individual animal level rather than the study level (Kaufmann et al., 

2016; Riley et al., 2010; van Aert, 2022). Besides meta-analysing data across studies, 

we can also conduct a meta-analysis within a single study to enhance statistical power 

(i.e., internal meta-analysis; Goh et al., 2016; Nakagawa and Santos, 2012) and across 

different meta-analyses to ask high-order questions (i.e., second-order-meta-analysis; 

Fanelli et al., 2017; Nakagawa et al., 2019). Importantly, researchers in animal meta-

analyses should review methodological developments and applications of meta-

analytic techniques in other fields. In this regard, researchers can harness more 

appropriate and powerful meta-analytic techniques to gain not only new 

neurobiological insights, but methodological and meta-scientific insights. Ultimately, 

the use of these advancing meta-analyses can lead to better animal-to-human 

translation of this new knowledge. 
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Tables  

Table 1 Comparison of different methods dealing with non-independence of effect 

sizes in terms of model coefficient estimates, confidence intervals (CIs), 

corresponding hypothesis tests and variance component estimates. ICC = intra-class 

correlation denoting the degree of dependence/correlation within clustering groups 
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(i.e., study).    = correlation of sampling errors (sampling level). RE = fit a random-

effects meta-analytic model ignoring the dependency among effect sizes and treating 

them as if they were statistically independent (assuming ICC = 0). Average-FE = fit a 

random-effects model but after aggregating effect sizes and sampling variance 

(assuming sampling correlation    = 0.5 in this example) for each study (assuming 

ICC = 1, namely, homogeneous effect sizes within studies). Sample-FE = fit a 

random-effects model but after randomly sampling a single effect size from each 

study. ML = fit a multilevel meta-analytic model directly modelling the dependency 

among effect sizes. ML-VCV = fit a multilevel meta-analytic model with a VCV 

matrix accounting for correlation    (assumed to be 0.5) of sampling errors or 

observed effect size estimates (sampling level). ML-VCV-RVE = use robust variance 

estimation (RVE) to guide against model misspecification of ML-VCV. SE = 

standard error of the pooled SMD or cluster-robust standard error if applying RVE. 

LCI = 95% lower confidence interval (CI) or lower CI based on cluster-robust 

standard error if applying RVE. UCI = 95% upper CI or upper CI based on cluster-

robust standard error if applying RVE.   
  = Between-study variance.   

  = Within-

study variance.   
  = Between-study heterogeneity.   

  = Within-study heterogeneity. 

Parameter 

estimates 

Conventional practices Default practices Optional practices 

RE Average-FE Sample-FE ML ML-VCV ML-VCV-RVE 

Pooled 

SMD 
-0.38 -0.37 -0.52 -0.39 -0.39 -0.39 

SE 0.163 0.211 0.243 0.20 0.195 0.193 

p-value 0.03 0.11 0.06 0.06 0.06 0.07 

LCI -0.72 -0.84 -1.05 -0.80 -0.80 -0.82 
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UCI -0.03 0.09 0.02 0.03 0.03 0.04 

  
  0.287 0.397 0.543 0.146 0.055 0.055 

  
     0.264 0.352 0.352 

  
  69% 79% 82% 27% 10% 10% 

  
     49% 66% 66% 

ICC    0.356 0.136 0.136 

 

Figure legends 

Figure 1. Schematic of nested experimental designs and clustered data structures in 

animal studies. Neurobiology and behavioural sciences often involve nested 

experimental designs, in which multiple traits are measured from a single 

experimental unit. For example, in an animal experiment where independent mice are 

randomly allocated to drug-treatment groups with different drug doses and a control 

group (placebo), multiple traits can be measured from one mouse for each group. 

Further, measurements can be taken repeatedly over time (longitudinal measures) or 

from the same body parts. All these can lead to multiple effect sizes per study/paper 

(effect sizes are correlated with each other within the same studies), which violates 

the critical assumption of statistical independence between effect sizes. 

Figure 2. A diagram showing the computation and interpretation of three important 

but underappreciated effect sizes in the meta-analysis on animal data. Imagine we aim 

to screen potential anti-dementia drugs using a fear-conditioning test. To do so, we 

need to answer two questions. The first is ―what is the average treatment effect of a 

drug?‖ The log-transformed response ratio (lnRR) can quantify the average treatment 

effect by comparing the ratio of means between the drug group and the placebo group. 
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The second is ―do all animals respond in a similar way to the drug?‖ Here, the log-

transformed variability ratio (lnVR) can be used to detect heterogeneous treatment 

effects. The log-transformed coefficient of variation ratio (lnCVR) is a mean-adjusted 

version of lnVR, in which the indirect effect from the mean is controlled for. lnVR > 

0 or lnCVR > 0 indicate that the tested drug shows a selective efficacy (i.e., high 

inter-individual variability). 

Figure 3. The summary of the main results of a survey of 62 ―formal‖ meta-analyses 

using animal models mimicking human diseases, physiology, and behaviour (2011 – 

2021). Summarised methodological and reporting practice regarding (A) effect size 

used, (B) statistical models employed, (C) heterogeneity indices, (D) sign of statistical 

non-independence (multiple effect sizes per animal study; the medium number of 

effect size per animal study k = 56, the medium number of animal studies per meta-

analysis N = 25, k/N ratio = 2.2), (E) addressing non-independent effect sizes, and (F) 

publication bias test methods. Barplots indicate numbers of papers with a given 

methodological and reporting characteristic. Plural answers were allowed (i.e. one 

paper could fit into more than one category/option, for example, both the random-

effects model and meta-regression were used in Leffa et al., 2019, such papers were 

used more than once when tallying counts). We also surveyed other questions, such as 

whether and how the study accounted for heterogeneity and whether the authors of the 

meta-analysis acknowledged the presence of statistical non-independence. For the 
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detailed survey methods, questions, and complete results, see Supplementary 

Materials file 1. 

Figure 4. Four common drivers of statistical non-dependence in meta-analyses on 

animal data (A) – (D). Statistical non-independence means that effect sizes have a 

multilevel/nested structure and are correlated within a ‗cluster‘ variable, where effect 

sizes may be more similar than those across ‗cluster‘ variables. Ignoring non-

independence might lead to a biased estimate of model coefficients, and 

underestimated standard errors and, consequently, hypothesis testing with incorrect 

Type I error rates and confidence intervals with incorrect coverage levels. ES = effect 

size (e.g., lnRR; Figure 2). Double-headed arrows = correlations in effect sizes. (A) 

Shared study identity where a single construct of interest (i.e., single outcome, 

response variable) is measured using different assays, instruments, or scales within 

the same study. For example, when three assays are simultaneously performed on 

animals from an antidementia – placebo comparison to quantify the magnitude of 

dementia, correlations occur among ES 1 to ES 3. It should be noted that multiple 

constructs within the same study (e.g., dementia and anxiety) are also possible. In 

such a case, (multivariate) effect sizes are better modelled by a multivariate than a 

multilevel model (see Section 9.2). (B) Shared animal identity where multiple effect 

sizes can be derived from a single animal cohort. For example, brain morphology can 

be measured for different parts of the same brain. Another example, fear condition 

test can be conducted on an animal at follow-up times (1, 3, and 5 days). Note that 
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shared animal identity also leads to correlated sampling errors because the same 

cohort animal will be used multiple times when computing effect sizes. (C) Shared 

control where multiple treatment groups are compared to the same control group. For 

example, when comparing a single placebo (control) to two doses of the antidementia 

drug, correlations in effect sizes occur because data from the placebo group is 

repeatedly used to calculate effect sizes. Note that shared control also contributes to 

correlated sampling errors. (D) Shared species or evolutionary history – effect sizes 

taken from the same species may be more similar. For example, if three effect sizes 

were calculated from rabbits, they would be correlated with one another because of 

the similarity of individuals within the species. Moreover, ES 1 to ES 3 shown in 

panel D are not independent because of the phylogenetic relatedness (where mice and 

rabbits are more similar to each other than to dogs). See the main text for real 

examples for each scenario. 

Figure 5. Common approaches used to handle statistical non-independence among 

effect sizes in meta-analyses on animal data. ES = effect size (SMD or lnRR;       

means ith effect size in jth study).   = sampling variance (     means sampling 

variance of ith effect size in jth study). (A) Following the hypothetical data set with 

six non-independent effect sizes from three studies (panel (C) in Figure 2), effect sizes 

are not independent in Studies 1 and 3 due to shared control (i.e., multiple doses). (B) 

Researchers completely ignore non-independence by using a fixed- and random-effect 

model to fit these non-independent effect sizes, treating them as if they were 
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statistically independent. (C) Researchers first compute the simple average (weighted 

average) of multiple effect sizes for Studies 1 and 3 and subsequently use it in a fixed- 

or random-effects model. (D) Researchers first select one random effect size from 

Studies 1 and 3 and subsequently use it in a fixed- or random-effects model. As 

clearly shown in panels C and D, eliminating non-independence could lead to the loss 

of information (in this case, within-study moderator: doses of the antidepressant). See 

the main text for real examples for each approach. 

Figure 6. Schematic illustrations of the fixed-effect model (A), random-effects model 

(B), and hierarchical structure of a multilevel model (C). Imagine we aim to assess the 

efficacy of a new antidementia drug. To properly estimate the generalizability of the 

efficacy, we employ a multilevel meta-analytic model to aggregate effect sizes 

derived from different animal models. In the sampling level, we derived mean, 

standard deviations, and sample size to calculate effect sizes      . In this level, the 

only deviation between the estimate of       and true effect is the sampling error 

effect     . In the within-study/effect size level, effect sizes are not independent (see 

Figure 1). The multilevel model uses a random-effects term – effect-size specific 

effect       to account for within-study variability.       allows     varies within 

studies and follows a normal distribution with mean E[       = 0 and variance 

Var[     ] =   
 . In the between-study level, the true effect of each study is 

aggregated to generate the overall efficacy of the antidementia drug (overall mean 

effect/pooled SMD: E[     ] =   ). In this level, the multilevel model uses another 
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random-effects term – study-specific effect       to account for between-study 

variability.       allows     varies between studies and follows a normal distribution 

with mean E[       = 0 and variance Var[     ] =   
 . 

Figure 7. A comparison of variance components of a random-effects model and a 

multilevel model. In a random-effects model, the total variance (      
 ) can be 

partitioned into two components: ―typical‖ sampling variance (         
 ; see 

Equation 7 for formula) and between-study variance (  ). In the multilevel model, the 

      
  can be decomposed into three components:          

 , within-study variance 

(  
 ) and between-study variance (  

 ). Using a random-effects model to fit non-

independent data could misassign   
  to   

  (see Supplementary Materials file 2 for a 

real example). Importantly, a random-effects model can only use between-study 

moderator variables to explain the heterogeneity in true effect, while a multilevel 

model can use both within- and between-study moderator variable to explain the 

heterogeneity in true effect. 

Figure 8. A diagram showing a typical example of an interactive effect between two 

moderator variables in meta-analyses on animal data. (A) No interactive effect 

between the dose of an antidementia drug and animal sex. (B) Interactive effect 

between the dose of an antidementia drug and animal sex. When an interactive effect 

exists, the dose-response to an antidementia drug is dependent on animal sex (i.e., the 

effect of the dose is confounded by animal sex). The steep slope of the regression line 
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for females indicates a strong dose-response relationship of the antidementia drug. 

The near-flat slope for males indicates that there is no dose-response relationship. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Highlights 

 Animal meta-analyses often involve non-independent and heterogeneous 

effect sizes 

 Ignoring these issues leads to unreliable and less-informative evidence 

 These issues have not been properly addressed in current animal meta-

analyses 

 Multilevel meta-analysis is introduced to solve the issues and is recommended 

 A tutorial is provided to facilitate the application of advanced meta-analyses 
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