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Abstract
The high temperature and rarefied ionised gas (plasma) that constitutes the
corona of the sun escapes the gravitational bound and flows out into interplan-
etary space. This plasma is called the solar wind. It is characterised by a long
collision mean-free-path (i.e., weakly collisional); it is not in thermodynamic
equilibrium. While the plasma is ultimately governed by a kinetic equation,
it does appear that the solar wind is described by fluid equations, where it is
assumed to be at equilibrium. This is in stark contradiction to the long collision
mean-free-path.

The suggestion is that collisionless relaxation processes are playing a strong
role in dictating the dynamics of the solar wind. These processes are wave-
particle interactions that cause the plasma to relax towards equilibrium, i.e.,
they are effective collision processes. This thesis takes a novel route to measure
the effective mean-free-path of the solar wind, by modelling compressive fluc-
tuations of arbitrary effective mean-free-path, and making a robust comparison
to solar wind observations. The effective mean-free-path is measured to be ap-
proximately 103 times shorter than the collisional mean-free-path. It is shown
to be consistent with and justify decades of past solar wind research that use
fluid equations.

The theory for the numerical model is derived from first principles and is
shown to coincide with previous results, and draw together many concepts about
compressive plasma waves. The solar wind dataset used in this thesis was
not previously used for scientific analysis, so verification of the data quality
is demonstrated.

In addition, data analysis tools are constructed to measure some of the po-
tential effective collision mechanisms. The analysis is tested on simulation data,
to verify the accuracy, by measuring key quantities in identifying the relevant
role of various effective collision mechanisms. The analysis of the numerical
simulation data is shown to be satisfactory and can be employed on spacecraft
data.

This measurement resolves a long-standing debate on the utility and accu-
racy of fluid equations in studying the solar wind. The direct measurement of
the effective mean-free-path is important for the field of plasma physics because
it dictates the transport and thermodynamics of weakly collisional plasmas.
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Chapter 1

Introduction

Plasma is the name given to high temperature ionized gas. Nearly all luminous
matter in the Universe is in the plasma state. The essential description is to
separate the short and long -range electromagnetic fields to determine the parti-
cle’s statistical properties. The long-range field determines collective properties
and therefore involves many particles interacting simultaneously. The short
range behaviour is then the classic collision, involving only a few particles, at a
very short range. Many plasmas do not experience enough collisions for their
statistical properties to be described by the equilibrium distribution function,
and therefore much of plasma physics requires consideration of non-equilibrium
situations.

1.1 The need for a kinetic theory of plasma

The need for a kinetic theory of plasmas was pointed out by Vlasov [1968],
motivated by earlier studies of waves and vibrations in charged gases. His insight
led him to develop the Vlasov equation, where a 1-particle distribution function
(a probability function in 3 spatial dimensions and 3 momentum dimensions
for a single particle) interacts with the collective electromagnetic fields, coupled
to Maxwell’s equations. These equations support longitudinal and transverse
waves, those discovered experimentally by Tonks and Langmuir [1929], and
so the kinetic theory of plasma was born. In particular, Anatoly Vlasov was
able to derive the dispersion relation for the Langmuir wave, which for length
scales larger than the Debye length (to be discussed shortly), an electron-proton
plasma vibrates naturally at the plasma frequency,

ωp,e =

√
4πnq2

e

me
, (1.1)
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where the electron density is n, the elementary charge is −qe, and the electron
mass is me.

The physical process separating short and long range forces was first de-
scribed in Debye and Hückel [1923]. The basic consideration is to recognise that
the electrostatic potential of a charged particle will be altered by the presence
of nearby particles, shielding its influence, so that the electrostatic potential is,

φ(r) =
qs
r

exp
{
− r/λD

}
(1.2)

where qs is the species “s” charge, r is the radial distance (in a spherical ge-
ometry) from the point where qs is located, and the exponential term is the
modification of the surrounding particles which is parameterised by the Debye
length,

λD =

√
kBT

4πnq2
e

(1.3)

where kB is Boltzmann’s constant. This is the Debye length for a proton-
electron plasma, equal in temperature and density, where the former equality is
not necessary and the final is the quasi-neutral assumption invoked throughout
this Thesis. It is related to the plasma frequency by the thermal speed ve =√

2λDωp,e. The length scale can be produced from considering an electrostatic
plasma at equilibrium. This length scale dictates the sphere of influence of a
particle, defining the short and long -range action of charged particles.

When the Debye sphere 4πλ3
D/3 contains many particles, they are governed

by the collective field, and when it does not contain many particles, the indi-
vidual particles will interact with each other i.e., they collide. This defines the
plasma parameter,

g =
1

nλ3
D

∝ n1/2

T 3/2
(1.4)

as the inverse number of particles in the Debye sphere. It is the appropriate
expansion parameter used to derive the kinetic equation for a plasma, shown in
Chapter 2. It essentially governs the influence of collisions, as it is proportional
to the collision frequency, as shown in Section 2.2. This point is not to be
confused; g governs how many particles need to be considered, is it a two, three
-body problem? The collision frequency can be large, only incorporating two-
body collisions.

Figure 1.1 contains a table reproduced from the textbook Krall and Triv-
elpiece [1973] displaying these characteristic quantities of well-studied plasmas.
The number of particles in the Debye sphere is in general large, validating the
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Figure 1.1: Page 306 of Krall and Trivelpiece [1973]. The timescales are in
seconds.

kinetic approach, and the collision frequency between ions and electrons νei is
smaller than the plasma frequency ωpe implying that collisions are not a domi-
nate process, or that the mean-free-path of electron-ion collisions λiemfp = ve/νei

is very long compared with other length scales.
The definition and difference of the kinetic and fluid descriptions will now

be made clear. When the collisions frequency is small relative to the other
plasma frequencies or the mean-free-path is long relative to other plasma length
scales, the plasma distribution function (e.g., the 1-particle distribution func-
tion) evolves via electromagnetic field. This is the kinetic regime when the
full distribution function needs to be described. Some examples, in the linear
and quasi-linear phases, are the wave-particle resonance where free energy is
swapped between the two populations, and particle trapping of ions (electrons)
in the wells (crests) of the electric potential. These processes and all kinetic
processes are marked by the departure of the distribution function from the
equilibrium. Throughout the thesis the kinetic regime will also be called the
collisionless regime.

The fluid picture evolves moments of the distribution function via the elec-
tromagnetic field and is valid when frequencies (e.g. wave frequency) are small
relative to the collision frequency and the length scales are large relative to the
mean-free-path. Examples include sound waves that propagate in an elastic
manner through undulations of magnetic and thermal pressure, or Alfvén waves
that propagate freely due to the tension of the magnetic field. The processes
are marked by no departure from the equilibrium distribution function because
collisions restore the system to equilibrium faster than these processes oper-
ate. There is no damping or growth through resonance nor velocity dependent
effects.

One of the immediate issues with fluid theory is how to close the equations,
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and for the purpose of this thesis, the fluid picture can be confined to when
the system is closed with an assumption about the pressure (e.g., adiabatic or
isothermal equation of states). Any extensions (e.g. heat flux) are considered
an attempt to incorporate kinetic effects into the fluid description. A classic
discussion of this appears at the end of Section 3.3.2 of Krall and Trivelpiece
[1973] and also see Section 8.18 of Krall and Trivelpiece [1973] for an extended
and consistent discussion.

A more modern interpretation can be found in Schekochihin et al. [2016]
where the moments are considered as a series, governed by dynamic equations,
which are dictated by collisionless and collisional processes. This thesis explore
the plausibility of collisionless processes truncating the moment chain i.e., colli-
sionless processes act to restore the plasma distribution function to equilibrium
so the fluid description is valid.

1.2 Motivation for thesis

The wide separation in scales, e.g., the ratio of time scales in Fig. 1.1, is why
plasmas are called multi-scale systems. Focussing on the solar wind, Fig. 1.2
demonstrates plasma time and length scales as a function of radial distance from
the Sun.

The additional length scales here are the inertial length ds = ωps/c where
the speed of light is c, the gyroradius ρs = vs/Ωs where the cyclotron frequency
is Ωs = qsB/msc. The electron inertial length is the characteristic length of
exponential decay of a light wave propagating at a frequency less than the
plasma frequency. The proton inertial length governs the scale at which protons
and electrons will decouple from each other. The gyroradius, is the radius at
which the particle gyrates around the static magnetic field. The bottom panel
plots timescales defined as Πα = 2π/α, where νc here is the proton-proton
collision frequency. The definition τ = 1AU/Upr is the expansion time.

The middle panel shows the proton-proton mean-free-path in blue (note that
the vertical axis is on the right hand side of the middle panel) where it can be
seen how much larger it is than the other scales. The bottom panel shows the
same idea, but represented as the time scales. This is the basic argument for a
collisionless description of the solar wind.

Focussing on the scale dependence of this argument, working in frequency
space, when ω � νcoll, where ω is a temporal frequency of a plasma fluctuations
(e.g., the density) and νcoll is the largest collision frequency of the system, the
plasma will be near to equilibrium. This regime of the plasma ω � νcoll is the
true fluid regime. The opposite case ω � νcoll is the collisionless regime.

Most plasmas display brilliant multi-scale dynamics, where the frequency
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Figure 1.2: Radial evolution of the solar wind, reproduced from Verscharen et al.
[2019]. The horizontal axes are radial distances from the Sun, in units of solar
radius (top) and Earth-Sun distance (bottom). The density np, ne and radial
magnetic field Br are empirical models, the proton velocity Upr, is obtained from
flux conservation, npUpr/Br = const. The electron and proton temperatures,
not shown, connect in situ and remote measurements. The quantities are defined
in the text here.

range of fluctuations in plasma properties (e.g., the magnetic field) overrun the
range between the collision frequency and electron gyroscale where there is a
transition scale where (ω ' νcoll) which separates the fluid and collisionless
regime regimes. This is the true separation in scale between the fluid and
collisionless regimes.

What are these timescales for the solar wind?. At 1 AU, the proton-proton
collision frequency is approximately 4× 10−7 Hz, measured in Section 5.3.3. To
convert this to the spacecraft frame frequency Taylor’s assumption is used, where
the temporal dynamics are neglected when the medium is being advected rela-
tively quicker (covered in Section 5.3.4). This leads to fνcoll = Upr νcoll/2πvp =

8× 10−7 Hz. This frequency is orders of magnitude smaller than all other time
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scales, including the inverse magnetic field correlation time [Bruno and Carbone,
2013], implying all the magnetic field fluctuations are governed by collisionless
plasma equations.

For decades, fluid equations, in particular the magnetohydrodynamic equa-
tions, have been successfully used to study solar wind behaviour [Bruno and
Carbone, 2013]. The power spectral density shape can be predicted from fluid
equations [Tu and Marsch, 1995, Matthaeus and Goldstein, 1982, Goldreich and
Sridhar, 1995], transport of magnetic fluctuations (e.g. radial transport) [Zank
et al., 1996], and heating by the energy cascade [Stawarz et al., 2009]. This is
due in part to the presence of Alfvén waves, or Alfvénic fluctuations, that do
not perturb the distribution function at scales larger than the proton gyroradius
[Schekochihin et al., 2009]. Linearly, the Alfvén wave is incompressible until the
frequency of the wave becomes comparable to the proton gyrofrequency when
the wave gains a compressive component, where it is identified to be the ki-
netic Alfvén wave. To not be ignorant to the complexity of the situation, when
the small-amplitude assumption is abandoned (the solar wind is turbulent),
the Alfvénic fluctuation gains a compressive component [Barnes and Hollweg,
1974]. Therefore, the total fluctuation would perturb the distribution function,
except for in the perpendicular limit of the wavenumber (often called reduced)
[Schekochihin et al., 2009]. Fortunately, this complication can be set aside since
there is a non-negligible fraction of compressive fluctuations in the solar wind,
which provide exemplary evidence of fluid behaviour.
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Figure 1.3: The joint histogram of proton pressure and density measured by the
electrostatic analyser on the Wind spacecraft at 1 AU. The dataset is described
in Section 5.3. The γ follows from assuming log|pp| = γlog|np|, and a linear
regression is performed. R2 is the Pearson correlation coefficient.
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Spacecrafts make in situ measurements of the proton (and other species)
pressure and density making it possible to study aspects of compressive plasma
waves. Figure 1.3 displays the joint histogram of the solar wind proton pressure
and density measured by the Wind spacecraft measured over 11 years spanning
2005 - 2015. While the Pearson correlation coefficient (see the legend) is not
excellent, the correlation between the density and pressure is clear. This corre-
lation indicates the equation of state invoked is a fluid closure of the moment
chain as described at the end of Section 1.1. Considering the relation of the
pressure and density to be given by the polytropic equation of state, where γ
is the ratio of specific heats, is nearly adiabatic. This is remarkable, given the
long mean-free-path and magnetised properties of the solar wind.

This Thesis studies the compressive fluctuations to better understand the
equation of state of the solar wind. In fact, this has a long history in fluids.
Before the development of thermodynamics, Isaac Newton pointed out that the
speed of sound in air should depend on the square root of the elastic force
directly and on the square root of the density inversely [Newton, 1687]. Isaac
Newton also measured the speed of sound and found a disagreement between
the experimental and theoretical values. Many developments occurred in the
years after, attracting attention from many scientists, including Leonhard Euler,
Daniel Bernoulli, Joseph-Louis Lagrange, and eventually Pierre-Simon Laplace
who pointed to the correct thermodynamic characterisation: adiabatic process
Finn [1964].

What could be maintaining the fluid behaviour of the solar wind? Collision-
less plasmas react to perturbations secularly in the linear phase, and then in
the non-linear phases, begin to resist and settle. These processes are generally
called collisionless relaxation processes. They include instabilities where the
electromagnetic wave interacts with particles altering their pitch-angle, effec-
tively diffusing particles in velocity space. Micro-scale instabilities are of the
most well studied and beautiful properties of plasmas. Another way this can
happen is the plasma wave echo, which is a non-linear process in plasmas that
inhibits free energy from moving to finer scales in velocity space [Meyrand et al.,
2019]. All of these processes inhibit fine-scale structure from forming in the ve-
locity distribution function. In a weakly collisional and turbulent plasma, these
processes happen at much faster rates than particle collisions.

Fundamentally, these processes cause the plasma to behave more fluid-like
since the higher-order moments are not activated (e.g., heat flux) so that a
closure can be made and then the fluid equations can be used. Physically, the
mean-free-path of the particles is shortened to what is called the effective mean-
free-path. The analogy from wave-particle interactions works quite well, that
the pitch-angle is scattered, interrupting the free streaming of the particles.
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This thesis describes the measurement of the effective mean-free-path of the
protons at 1 AU. The method is to model collisionless relaxation processes on
to kinetic equation then generate compressive fluctuations (e.g., the density and
pressure). These fluctuations are parameterised by the effective mean-free-path;
physically, for a short mean-free-path they respond like an adiabatic equation
of state, and for a long-mean-free path, the equation of state requires higher-
order moments. These predictions are compared with solar wind observations
to measure the effective mean-free-path. The measurement justifies the long
use of fluid theory to describe the solar wind and demonstrates that effective
collision processes can drastically alter the transport and thermodynamics of
weakly collisional plasmas.
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Chapter 2

Plasma physics

The Introduction (Chapter 1) presents examples of ionized gases in the Universe
and made the basic justifications of the mathematical theory of plasmas. Exam-
ples of the characteristic quantities of plasmas appear in Fig. 1.1 which provides
important time and length scales. The second column of the table in Fig. 1.1
displays the diverse range of number density, starting with less dense plasmas
which have been detected remotely (e.g., Gaseous nebula), and some that are
detected directly (e.g., the solar wind). Further down the column, increasing
number density, to human made plasmas such as thermonuclear plasmas. The
increase in number density is accompanied by an increase in the temperature
(third column of the table on Fig. 1.1) as the plasma parameter (see Eq. 1.4)
must be small, which is the inverse of the “particles in a Debye sphere” which
appears as column six of the table.

Further complexity is provided by the yet to be mentioned magnetic field,
as the strength, relative to the thermal pressure further dictates many plasma
properties. For example, in the solar wind the thermal and magnetic pressure
are nearly equal on average, and in the interstellar medium and galactic clusters
(higher temperature and smaller number density than the interstellar medium
[Schekochihin and Cowley, 2006]), have very weak magnetic fields relative to
the thermal pressure.

In this Chapter, the plasma description is formulated rigorously to present
the full N-particle description and follow the classic route to Boltzmann’s equa-
tion for a plasma which are coupled to Maxwell’s equations. These equations
are then considered in more detail: waves, instabilities, and closures of the
equations. Finally, a short section on fluid turbulence where the theory of com-
pressible turbulence is reviewed.
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2.1 Statistical theory of plasmas

The kinetic gas description is formally derived from the N-particle density func-
tion. The procedure relates the ensemble average of the N-particle density func-
tion to the reduced N-particle probability function. This procedure introduces
the statistical nature of the description and a closure problem that needs to
be truncated. The final set of equations are the Boltzmann-Maxwell equations.
Almost all plasma models are derived from these equations.

2.1.1 N-particle density function

These sections closely follow Section 7 of Krall and Trivelpiece [1973] and Dellar
[2015]. The N-particle system is fully described by the function,

N
(
t, xi, vi) =

N∑
α=1

δ
[
xi − xαi (t)

]
δ
[
vi − vαi (t)

]
, (2.1)

where α identifies the particle, giving the type (e.g., protons), t is the time co-
ordinate, xi is canonical spatial vector, and vi is the canonical velocity vector
(we are dealing with non-relativistic particles). Index notation is used where
they are kept in the lower position since the indices do not become overly com-
plicated. On the right hand side the sum is over each particle indicated with α
up to N particles. Equation 2.1 is the N-particle density, so that each particles
spatial location xαi and velocity vαi can be identified by the delta function, such
the number of particles as a function of time is given by,∫

d3x

∫
d3v N (t, xi, vi) = N(t). (2.2)

These coordinates evolve in time by the equations of motion,

d

dt
xαi = vαi ,

d

dt
vαi =

qα
mα

(
EN

′

i +
1

c
εijkv

α
j b

N ′

k

)
, (2.3)

where qα is the charge, mα is the mass, and c is the speed of light. The electric
and magnetic fields EN

′

i , bN
′

k , respectively, are given by all of the particles except
for itself, denoted by N ′. They are the self-consistent electric and magnetic
fields due to all the particles. To anticipate later assumptions, these fields
contain short and long range contributions. The fields are further described by
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Maxwell’s equations,

∂

∂xi
ENi = 4π

∫
d3v q′αN , (2.4)

εijk
∂

∂xj
bNk =

1

c

∂

∂t
ENi +

4π

c

∫
d3v q′α viN , (2.5)

εijk
∂

∂xj
ENi = −1

c

∂

∂t
bNi , (2.6)

∂

∂xi
bNi = 0. (2.7)

Each particle contributes to the fields, where ENi = ENi (t, xαi ), bNi = bNi (t, xαi ).
The use of q′α indicates the charge of the particles in N . This anticipates the
fact that eventually the particles are assumed to be indistinguishable, so the
charge and mass are chosen. This notation massively simplifies the mathemat-
ical details. Using chain rule and properties of the Dirac delta functions, the
conservation equation can be written,[

∂

∂t
+ vi

∂

∂xi
+ ai

∂

∂vi

]
N = 0, (2.8)

known as the Klimontovich-Dupree equation. Notably, the variables are of xi
not xαi . The acceleration is defined,

ai =
q′α
m′α

(
ENi +

1

c
εijkvj b

N
k

)
(2.9)

All of the particles with coordinates (x1
i , v

1
i ), ...., (xNi , v

N
i ) are in xi, vi space

where the motions are given by Eq. 2.3 which couples to Eqs. 2.4. This picture
is clarified with Fig. 2.1, where the left most panel represents N .

2.1.1.1 N-particle distribution function

The Klimontovich-Dupree equation (Eq. 2.8), while exact, is difficult to extract
information from because each particle depends on the others deterministically,
and not statistically. A more complicated function is introduced, but it is more
simple to reduce for a statistical theory. Start by introducing the phase-space
variable,

Vαi = (xαi , v
α
i ), d3Vα = d3xα d3vα. (2.10)

The N-particle probability distribution function is defined as,

F(t,V1
i , ...,VNi ) = ΠN

α g(Vαi − Vαi (t)), (2.11)
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Figure 2.1: Recreated from Dellar [2015]. The left panel represents three parti-
cles in N for one component of space x0 and velocity v0. Each space, denoted
by a closed square, is annotated in the top left corner. The dots with tails are
their location in phase space at time t. The right panel shows N spaces, where
each particle evolves in time in its own space. The left single panel is a cartoon
of Eq. 2.1 and the right panels represent Eq. 2.11.

where Πα is the product operator. Here, g(Vαi − Vαi (t)) is a probability distri-
bution in Vαi . This is clarified by Fig. 2.1, where it is seen that each particle
lives in its own space and is endowed with a probability function.

It should be understood that each particle α has a charge and mass identi-
fied by α. This function F(t′,V1

i , ...,VNi ) is interpreted as the probability that
the phase coordinates of the particles at t′ given by V1

i (t′), ...,VNi (t′) are in
dV1

i , ...,dVNi . Integration leads to the normalization,∫
ΠN
α d3Vα F(t,V1

i , ...,VNi ) = 1. (2.12)

The probability distribution function also satisfies,

∂

∂t
F +

∑
α

[
dxαi
dt

∂

∂xαi
+

dvαi
dt

∂

∂vαi

]
F = 0, (2.13)

which is the Liouville theorem: conservation of probability. Averages are then
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defined as,

〈G(t,V1
i , ...)〉N =

∫
ΠN
α d3Vα F(t,V1

i , ...,VNi )G(t,V1
i , ...) (2.14)

where G is often something simple, like the proton peculiar velocity vpi . The
subscript of the average “N” is to indicate the N-particle average. The n-particle
probability distribution functions follow from Eq. 2.11,

fn(t,V1
i , ...,Vni ) =

N !

(N − n)!

∫
d3Vn+1, ...,d3VN F(t,V1

i , ...,VNi ), (2.15)

where if n = 1 the dependence of f(...) is just on t,V1
i and the integral is just

dV2
i ...dVNi . The factor N !/(N − n)! out front stems from the fact that the

particles are indistinguishable. There are N ways F can be integrated that give
f1, and N (N − 1) ways that give f2, and so on.

The connection between the density function N , defined as Eq. 2.1, and the
n-particle probability distribution function (fn) is seen by taking the N-particle
average of the density function,

〈
N (t, xi, vi)

〉
N

=

∫
ΠN
α d3Vα F(t,V1

i , ...,VNi )N (t, xi, vi). (2.16)

It simplifies easily since the sum inN gives a factor of N out front if the particles
are indistinguishable,

〈
N (t, xi, vi)

〉
N

= N

∫
ΠN
α d3Vα F(t,V1

i , ...,VNi ) δ(Vi − V1
i (t)), (2.17)

so the integral d3V1 yields,

〈N (t, xi, vi)〉N = N

∫
d3V2, ...,d3VN F(t,Vi, ...,VNi ), (2.18)

where the right hand side is now the 1-particle probability distribution function
of Vi,

〈N (t, xi, vi)〉N = f1(t,Vi). (2.19)

This makes clear the statistical approach of f1(t,Vi) due to the 〈....〉N . Now a
time-evolution equation can be written by taking theN -average of the Klimontovich-
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Dupree equation, defined as Eq. 2.8〈[
∂

∂t
+ vi

∂

∂xi
+ ai

∂

∂vi

]
N
〉
N

(2.20)

=
∂

∂t
f1(t,Vi) + vi

∂

∂xi
f1(t,Vi) +

〈
ai

∂

∂vi
N
〉
N

.

The average is over x1
i , v

1
i not xi, vi, so the first two terms are simple. The final

term presents almost all of the difficulty of plasma physics because the equation
of motion, defined as Eq. 2.3, depends on all of the other particles,

ai =
q′α
m′α

(
ENi +

1

c
εijkvj b

N
k

)
, (2.21)

since ENi , b
N
i depend on all the particles, seen in Eq. 2.4. Now, average

Maxwell’s Equations from Eqs. 2.4,

∂

∂xi
Ei = 4π

∑
s

qs

∫
d3v fs(t,Vi), (2.22)

εijk
∂

∂xj
bk =

1

c

∂

∂t
Ei +

4π

c

∑
s

qs

∫
d3v vi fs(t,Vi), (2.23)

εijk
∂

∂xj
Ei = −1

c

∂

∂t
bi, (2.24)

∂

∂xi
bi = 0. (2.25)

where,

〈
ENi
〉
N

= Ei,
〈
bNi
〉
N

= bi. (2.26)

The exact fields ENi , bNi are determined by all the particles, and averaged fields
Ei, bi are determined by the 1-particle probability distribution function. The
new notation of subscript s

f1(t,Vi)→ fs(t,Vi) (2.27)

makes the notation consistent and massively simplified the notation of the
derivation. Averaging the acceleration,

〈
ai
〉
N

=
qs
ms

(
Ei +

1

c
εijkvj bk

)
. (2.28)
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Returning to Eq. 2.20 and manipulating the equation,

∂

∂t
fs(t,Vi)+vi

∂

∂xi
fs(t,Vi) +

qs
ms

(
Ei +

1

c
εijkvj bk

)
∂

∂vi
fs(t,Vi)

= −
〈
qα
mα

(
ENi +

1

c
εijkvj b

N
k

)
∂

∂vi
N
〉
N

+
qs
ms

(
Ei +

1

c
εijkvj bk

)
∂

∂vi
fs(t,Vi). (2.29)

The left hand side is the time-evolution of the 1-particle species s probability
distribution function via theN -particle average fields, which couple to Maxwell’s
equations. The right hand side contains all of the particle-particle physics with
the contribution of the 1-particle probability distribution function, evolved by
the N -particle average field, subtracted off.

2.1.2 Bogolyubov, Born and Green, Kirkwood, and Yvon
Hierarchy

The Bogolyubov, Born and Green, Kirkwood, and Yvon (BBGKY) hierarchy is
the closure to Eq. 2.29. The idea will only be sketched in this section. Solutions
for the fields due to each particle from Eqs. 2.4 will look like,

ENi ∝ 4π`

∫
d3v q′αN , (2.30)

bNi ∝ 4πcτ

∫
d3v q′αN , (2.31)

both proportional to N , where `, τ are arbitrary length and timescales to keep
the units correct. Returning to Eq. 2.29 the right hand side has two significant
terms, the first with the above arguments will be proportional to,

−
〈
qα
mα

(
ENi +

1

c
εijkvj b

N
k

)
∂

∂vi
N
〉
N

∝
〈
NN

〉
N

. (2.32)

The second term on the right hand side from Eq. 2.29,

qs
ms

(
Ei +

1

c
εijkvj bk

)
∂

∂vi
fs(t,Vi) ∝

〈
N
〉
N

〈
N
〉
N
. (2.33)

Both of these terms can be related to products of f1 and terms proportional
to f2, which are the 1-particle and 2-particle probability distribution functions
(see Eq. 2.15), respectively. Regarding collisions, f2 is the joint probability that
two particles are in respective phase-space locations at a given time.

A time evolution equation for the 2-particle probability distribution function
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(f2) must be introduced to close these equations. That leads to an equation for
the 3-particle probability distribution function, which persists as an infinite
chain, developing into a classic closure problem. The BBGKY hierarchy is this
infinite chain, and the closure procedure is to introduce a small parameter,

g =
1

nλ3
D

� 1, (2.34)

the plasma parameter which was introduced as Eq. 1.4. Recalling the Debye
length,

λD =

√
kBT

4πnq2
e

(2.35)

where the temperature T is the total temperature and n is the plasma density.
The expansion is then made as,

fn ∝ O{gn−1}. (2.36)

The typical closure is to order out n + 1 terms and close the equations for the
n terms.

The plasma parameter is the inverse number of particles in the Debye sphere.
When there are many particles in the Debye sphere, the 1-particle distribution
function (f1) interaction with the average fields (Ei, bi) is more significant than
the interaction of any two particles, communicated by f2. The intuition is a bit
easier to understand when considering the reverse situation. When there are
only a few particles in the Debye sphere, individual two-particle interactions will
dominate the dynamics. Figure 1.1 has been provided to give some examples of
observed plasmas, where the 5th column is the number of particles in the Debye
sphere. This leads naturally to the definition of collisions in plasma physics:
short-range interaction of two or more particles.

2.1.3 Boltzmann’s Equation and Maxwell’s Equations

With the BBGKY hierarchy established the Boltzmann Equation can be written
from Eq. 2.29 as,

∂

∂t
fs(t, xi, vi)+vi

∂

∂xi
fs(t, xi, vi) +

qs
ms

(
Ei +

1

c
εijkvj bk

)
∂

∂vi
fs(t, xi, vi)

= C
[
fs(t, xi, vi), fs′(t, xi, vi)

]
, (2.37)

The right hand side has been rewritten with C[...] representing the collision
operator truncated at order 1. The electric and magnetic fields are averaged
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over all the particles 〈...〉N and couple to Maxwell’s Eqs.,

∂

∂xi
Ei = 4π

∑
s

qs

∫
dvi fs(t, xi, vi), (2.38)

εijk
∂

∂xj
bk =

1

c

∂

∂t
Ei +

4π

c

∑
s

qs

∫
dvi vi fs(t, xi, vi), (2.39)

εijk
∂

∂xj
Ei = −1

c

∂

∂t
bi, (2.40)

∂

∂xi
bi = 0. (2.41)

Employing a closure technique for the collision operator, these equations are a
self-consistent description of a non-relativistic plasma.

2.2 Collisions and transport theory

A collision operator is derived in this section and some properties of collision
operators and timescales are shown. The classic Spitzer-Härm problem is de-
scribed and the solution is sketched followed by a discussion of Braginskii’s
contribution to collisional transport theory. Last, the Bhatnagar-Gross-Krook
operator is introduced.

2.2.1 Fokker-Planck

Instead of working with the right hand side of Eq. 2.29, the more common
Fokker-Planck collision operator is used, which can be derived from the Chapman-
Kolmogorov equation. Considering a probabilistic evolution of the distribution
function,

fs(t+ ∆t, xi, vi) =

∫
d3∆v P∆t(∆vi, vi −∆vi) f(t, xi, vi −∆vi), (2.42)

where P∆t gives the probability density at vi and t+ ∆t was previously ∆vi −
vi at t. This is the Kolmogorov-Chapman Equation for the case of spatial
homogeneity. Rewriting the time derivative,

fs(t, xi, vi) + ∆t
∂

∂t
f(t, xi, vi) =

∫
d3∆v P∆t(∆vi, vi −∆vi) f(t, xi, vi −∆vi),

(2.43)
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and now assuming that ∆vi is small (i.e., ∆vi � thermal velocity) expanding
to second order,

fs(t, xi, vi) + ∆t
∂

∂t
fs(t, xi, vi)

=

∫
d3∆v

[
P∆t(∆vi, vi) fs(t, xi, vi)

−∆vi
∂

∂vi
P∆t(∆vi, vi) fs(t, xi, vi)

+ ∆vi∆vj
∂

∂vi

∂

∂vj
P∆t(∆vi, vi) fs(t, xi, vi) + ....

]
, (2.44)

The first terms on the left and right hand sides cancel since the probability
integrates P∆t to unity, and now write this in the classic Fokker-Planck form,

∂

∂t

∣∣∣∣
coll

fs(t, xi, vi) =

[
− ∂

∂vi
Ai +

∂

∂vi

∂

∂vj
Dij

]
fs(t, xi, vi), (2.45)

Ai =

〈
∆vi
∆t

〉
P

, (2.46)

Dij =
1

2

〈
∆vi
∆t

∆vj
∆t

〉
P

. (2.47)

where 〈...〉P is the weighted integral over d3∆v. Rewriting the time derivative
requires the contribution from higher-order derivatives to be small, putting a
constraint on ∆t. The expansion in ∆vi is inherent in the use of the P∆t(∆vi, vi),
i.e., large jumps in ∆vi are less probable, so it is easy to justify.

The coefficients Ai, Dij are drag and diffusion, respectively. Both are in
velocity space, so drag effects the particle momentum and diffusion effects the
particle energy or macroscopic thermal temperature.

2.2.1.1 Coulomb Collisions

To determine the drag and diffusion tensors from Eq. 2.45 the ∆vi are found
from considering the deflection of one particle colliding with another via the
classic scattering cross section technique of Rutherford.

The technique is outlined as follows, replace the average 〈...〉P with an inte-
gral over the number of scatters, which can be rewritten by introducing the cross
section. It is the product of the density of particles (probability distribution
function integrated over the velocity), infinitesimal cross-section, and distance
the relative velocity travels in ∆t. Then ∆vi needs to be calculated from the
geometry of the scatter. The procedure follows until a divergent integral arises,
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where the Coulomb logarithm is introduced,

ln |Λ| = ln

(
3

2

T 3/2

√
πnZaZbq2

p

)
, (2.48)

where T is the total plasma temperature, n is the plasma density, and Zs is
the unit species charge number. The Coulomb logarithm assumes the potential
around a particle is the average field (from Eq. 2.4) i.e., the plasma approach.
It turns out, that the value of Λ is the number of particles in the Debye sphere,
so it is large. Figure 1.1 shows some values of the Coulomb logarithm.

The deflection in velocity calculated from the kinematic equations are aver-
aged over the particle distribution function to provide the coefficients Ai, Dij

of the Fokker-Planck Eq. 2.45. Various times scales can be calculated from
Eq. 2.45 by considering a beam of test particles e.g., a Dirac delta function,
interacting with a distribution of ions and electrons. For example,

τD =

(∫
d3v v2

i Ftest

)(
∂

∂t

∣∣∣∣
coll

∫
d3v v2

i Ftest

)−1

(2.49)

where Ftest is the test distribution function, and time derivative is that of the
equation 2.45. This is the time it takes for a beam of test particles to diffuse
towards isotropy by collisions. Clearly the choice of test particle species, energy,
and plasma constituents (e.g., bi-Maxwellian proton) deserve a full treatment,
but the last two columns of the table in Fig. 1.1 provide these timescales for
suprathermal particles scattering off a Maxwellian plasma. For low density
plasma, these times scales are very long.

The final form of the collision operator from Eq. 2.37, won’t be written
here since it is not used in the thesis, and is usually simplified. However, the
properties will be written here,

Conservation of Particles:
∫

d3v

∫
d3x C

[
fs(t, xi, vi)

]
= 0, (2.50)

Conservation of Momentum:
∫

d3v msvi C
[
fs(t, xi, vi)

]
= 0, (2.51)

Conservation of Energy:
∫

d3v
ms

2
v2
i C
[
fs(t, xi, vi)

]
= 0, (2.52)

H-Theorem: − d

dt

∣∣∣∣
coll

∫
d3v fs(t, xi, vi) ln|fs(t, xi, vi)| ≥ 0. (2.53)

The integrand in the final line here is the entropy. Collisions are the sole mech-
anism behind behind entropy production. The equal sign in this equation is the
result for Maxwell’s distribution function.

These conservation properties give some reassurance to the use of P∆t to de-
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scribe a collisional process, and is a necessary step to produce the final property
here. Two particles are uncorrelated before they interact, perfectly correlated
after the interaction, and then become uncorrelated after a few interactions with
other particles. This time asymmetry due to the stochastic nature of collisions
was pointed out by Ludwig Boltzmann and is called the “Stossahlansatz”. The
correlation function is asymmetric in time, therefore giving the system an ir-
reversible property. When passing from Klimontovich-Dupree equation to the
probabilistic description here, the irreversible nature is introduced.

2.2.1.2 Spitzer-Härm

The next task is to use the collision operator to compute transport coefficients.
In literature this is called the Spitzer-Härm problem, which is to compute the
conductivity σ and thermal conductivity α,

ji = σEi + α
∂

∂xi
Te (2.54)

where ji is the current, from the kinetic equation via the Chapman-Enskog
expansion [Spitzer and Härm, 1953]. In this relation many terms have been
dropped. Returning to the Boltzmann equation for electrons,

∂

∂t
fe+vi

∂

∂xi
fe +

qe
me

(
Ei +

1

c
εijkvj bk

)
∂

∂vi
fe = C

[
fe
]
, (2.55)

where the implicit dependence has been dropped. It is then reduced to

qe
me

Ei
∂

∂vi
fe = C

[
fe
]
, (2.56)

where the temporal term is ignored due to transport phenomena being longer
than collisional time scale, the spatial term is ignored due to previous spatial ho-
mogeneity of collisions, and finally consider the unmagnetised case. Continuing,
to compute the electric field from the above equation the electron distribution
function must be known. This is difficult so the Chapman-Enskog expansion is
considered,

fe = f (0)
e + χf (1)

e + χ2 f (2)
e + ... (2.57)

where χ = ωp,e/νe. The expansion comes from normalizing the electric field
|Ēi| = meveωp,e/qe and taking the right hand side of Eq. 2.56 to be proportional
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to ∝ νefe. Then matching order 0 and 1 gives,

C
[
f (0)
e

]
= 0 (2.58)

C
[
f (1)
e

]
=

qe
me

Ei
∂

∂vi
f (0)
e , (2.59)

The first equation is the result for a Maxwellian plasma. The second equation
is the problem at hand, and for demonstration purposes, the idea is to invert
the collision operator,

f (1)
e = C−1

[
qe
me

Ei
∂

∂vi
f (0)
e

]
. (2.60)

The calculation is in general very difficult due to complexity of the collision
operator. The important part of the procedure is to introduce an expansion
of the first order distribution function in the Legendre polynomials. With a
solution for f1

e and for protons, the current and temperature can be solved for,
and the conductivities from Eq. 2.54 are computed. Spitzer and Härm found,

σSH =
32

3π

q2
ene

meνei
, αSH =

16

π

qene
meνei

, (2.61)

where the ion-electron collision frequency νei is the dominant frequency in the
collision operator Spitzer and Härm [1953]. At this point, it is often pointed
out that the parametric dependence can be found from a fluid theory (i.e., the
momentum equation), and the transport theory provides the coefficients, which
are not trivial and can be significant. This limitation stems from necessity
of the Maxwellian as the 0th order distribution function and an expansion in
ωpe/νe � 1.

2.2.2 Braginskii’s work and classical transport theory

The general procedure of expanding the distribution function and relating higher-
orders back through the expansion to calculate transport coefficients became
known as classical transport theory. A massive contribution to the theory was
made by Braginskii [1957]. His theory incorporates ions and electrons, colli-
sions between them, and magnetization of the plasma. The final piece is done
by transforming into the gyro-center frame and ordering out the non-gyrotropic
terms with expansion in ρs/L� 1 where ρs is the gyroradius of species “s” and
L is the length scale of variation, say of the temperature Te/|∂Te/∂xi|. A sub-
sidiary expansion is done in ρs/λsmfp, so that particles gyrate quicker than the
collision frequency. This has strong implications on the dynamics, most notably
the constants in Eqs. 2.61, which become tensors oriented with respect to the
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magnetic field. Particles can stream along the magnetic field easier than across
the field, due to the Lorentz force, so that perpendicular coefficients are smaller.

For the purpose of this thesis, which explores the weakly collisional regime of
plasmas, the methods of classical transport are insufficient to bridge the entire
gap between the collisional and collisionless regimes. The low-order moment
nature is built directly into the expansion, so collisionless effects can not be
incorporated. This is shown with numerical methods in Section 4.5.1.

2.2.3 Bhatnagar-Gross-Krook operator

The Bhatnagar-Gross-Krook (BGK) operator was introduced as a mathemati-
cal simplification for the full Boltzmann collision operator (cf., Gross and Krook
[1956] and Bhatnagar et al. [1954]). The line of thinking for the BGK operator
is to construct an operator that maintains absorption and emission of “particles”
so as to also conserve total particle number, momentum and energy [Bhatna-
gar et al., 1954]. Following Gross and Krook [1956], the Boltzmann collision
operator is replaced with,(

∂fs
∂t

)
coll

=
∑
s′

νs,s′
(
Fs,s′(vi, ns, Ts)− fs

)
. (2.62)

The term containing the distribution function fs is the absorption term and
Fs,s′ is the emission term. Meaning, when there is a deficit in the difference
Fs,s′ − fs < 0 over some dv there is absorption at a rate of νs,s′ . The opposite
case for emission follows the same idea. The interpretation can also be phrased
as νs,s′ playing the role of a relaxation of fs to Fs,s′ .

This thesis uses the BGK operator to model any processes that restore equi-
librium (see Sec. 2.6). The final point is that due to dependence on the density
and temperature of the equilibrium distribution function Fs,s′(vi, ns, Ts), the
use of the BGK operator is similar to the local thermodynamic equilibrium
approach.

2.3 Kinetic magnetohydrodynamics

The kinetic magnetohydrodynamic (KMHD) equations were derived to incor-
porate micro-scale effects into the stability analysis of plasmas [Rosenbluth and
Rostoker, 1959, Kruskal and Oberman, 1958, Kulsrud, 1983]. The equations
are appropriate to a non-relativistic, gyrotropic, and collisionless plasma. The
equations permit a variety of closure schemes which have been explored in ex-
haustive detail in both Hunana et al. [2019b] and Snyder et al. [1997] so that
small amplitude perturbations can be calculated. The microscopic effects that
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are most necessary to incorporate are Landau damping [Landau, 1965] and
Barnes damping [Barnes, 1966] or transit-time damping.

There are two approaches to derive the linear kinetic equations. The first is
to transform into the guiding center frame of the Vlasov equation and take the
gyro-radius to be small [Kulsrud, 1983]. The second is to perturb the full system
of Vlasov-Maxwell equations and take the gyrotropic limit. The compatibility
of these two approaches was pointed out by Hunana et al. [2019b] where the
negligence of the gyrotropic terms is made more clear. The approach of Kulsrud
[1983] is used to derive the drift kinetic equation in Appendix B but with some
necessary detail to the assumptions imposed on the equations.

The important modification is to add the BGK collisional operator (see
Section 2.2.3). The equilibrium distribution function will be taken to be the
Maxwellian distribution Fs = Fs,M , defined as,

Fs,M = ns

(
ms

2πkBTs

)3/2

exp

{
− ms

2kBTs

(
v − us‖

)2}
, (2.63)

where ns is the number density, ms is the mass, kB is Boltzmann’s constant,
Ts is the temperature, v is the magnitude of the peculiar velocity and us‖ is the
parallel bulk velocity. It should be clear that C

[
fs;ns, u

s
‖, Ts

]
(the BGK opera-

tor) depends on the coordinates t, xi, vi through fs = fs(t, xi, vi) and Fs,M =

Fs,M (vi;ns, u
s
‖, Ts) where ns = ns(t, xi) etc. From here on the Maxwellian Fs,M

is the BGK equilibrium choice.
Writing the kinetic equation,

∂

∂t
fs + vi

∂

∂xi
fs +

qs
ms

(
Ei +

1

c
εijkvjbk

)
∂

∂vi
fs = −νs

(
fs − Fs

)
, (2.64)

where qs is the charge, ms is the mass, Ei is the electric field, bi is the magnetic
field. The ordering can be done in the ε = ms/qs ratio, where fs, Ei, bi all
follow the ordering,

χ = ε0χ0 + ε1χ1 + ... (2.65)

so to lowest order (ε0), (
E0
i +

1

c
εijkvjb

0
k

)
∂

∂vi
f0
s = 0. (2.66)

Regarding collisions, the assumption is that the effective collision frequency is
larger than the gyrofrequency which takes the from νs ∼ ε0 for the expansion.
In reality, it is not, and this is an open avenue for incorporating parallel electric
fields into the system. Transforming to the guiding center wi = vi − usi where
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the guiding center is usi (xi, t) = usi = (c/|bl|2)εijkEjbk gives,(
E0
i +

1

c
εijkvjb

0
k

)
∂

∂vi
f0
s

→
[
E0
i +

1

c
εijkwjb

0
k +

b0k
|bl|2

(
E0
kb

0
i − E0

i b
0
k)

]
∂

∂wi
f0
s , (2.67)

using εikjεklm = δimδjl−δilδjm and now notice that the magnetic field geometry,

E‖ = b̂iEi, (E⊥)i = Ei − E‖b̂i (2.68)

where b̂i = bi|bl|, shows that,

b0k
|bl|2

(
E0
kb

0
i − E0

i b
0
k) = −E0

i + E0
‖ b̂

0
i . (2.69)

This permits,[
E0
i +

1

c
εijkwjb

0
k +

b0k
|bl|2

(
E0
kb

0
i − E0

i b
0
k)

]
∂

∂wi
f0
s

=

(
E0
‖ b̂

0
i +

1

c
εijkwjb

0
k

)
∂

∂wi
f0
s = 0. (2.70)

Now putting both the remaining cross product and velocity gradient into cylin-
drical coordinates,

wi =

w⊥cos(wφ)

w⊥sin(wφ)

w‖

 ,
∂

∂wi
=


cos(wφ) ∂

∂w⊥
− sin(wφ)

w⊥
∂
∂wφ

sin(wφ) ∂
∂w⊥

+
cos(wφ)
w⊥

∂
∂wφ

∂
∂w‖

 (2.71)

where the perpendicular velocity component is w⊥ = |wi − w‖b̂i|, the parallel
component is w‖ = b̂iwi and the azimuthal component wφ = arctan(wy/wx).
The result, (

E0
‖
∂

∂w‖
+
|bl|
c

∂

∂wφ

)
f0
s = 0. (2.72)

Now, with the argument of Kulsrud [1983], the solution for f0
s is a helix extend-

ing from negative to positive infinity in velocity space, and therefore unphysical,
so that E0

‖ = 0 gives a gyrotropic (independent of wφ) solution to f0
s . The next
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order (ε1) of Eq. 2.64, before the transformations,

∂

∂t
f0
s + vi

∂

∂xi
f0
s +

qs
ms

(
E0
i +

1

c
εijkvjb

0
k

)
∂

∂vi
f1
s

+
qs
ms

(
E1
i +

1

c
εijkvjb

1
k

)
∂

∂vi
f0
s = −νs

(
f0
s − F 0

s

)
, (2.73)

now transform to cylindrical coordinates (see Eqs. 2.71) and the guiding center
(see Eq. 2.67),

∂

∂t
f0
s + vi

∂

∂xi
f0
s +

qs
ms

(
E0
i +

1

c
εijkvjb

0
k

)
∂

∂vi
f1
s

+
qs
ms

(
E1
i +

1

c
εijkvjb

1
k

)
∂

∂vi
f0
s = −νs

(
f0
s − F 0

s,M

)
, (2.74)

→
(
∂

∂t
f0
s + vi

∂

∂xi
f0
s

)
reg

+
qs
ms

|bl|
c

∂

∂wφ
f1
s

+
qs
ms

(
E1
‖
∂

∂w‖
+

1

c
εijkwjb

1
k

∂

∂wi

)
f0
s = −νs

(
f0
s − F 0

s

)
, (2.75)

where the E0
‖ = 0 was used and the subscript “reg” contains terms where the

transformation hasn’t been completed for brevity. This procedure is lengthy
and carried out in Appendix B.1. Rearranging for the order f1

s ,

qs
ms

|bl|
c

∂

∂vφ
f1
s = −νs

(
f0
s − F 0

s,M

)
−
(
∂

∂t
f0
s + vi

∂

∂xi
f0
s

)
cyl

+
qs
ms

(
E1
‖
∂

∂v‖
+

1

c
εijkvjb

1
k

∂

∂vi

)
f0
s . (2.76)

Integrating over vφ provides a solution for f1
s . Following Kulsrud [1983], he

suggests setting 2.76 to zero and solving the right hand side. This is equivalent
to ignoring all first order non-gyrotropic effects [Hunana et al., 2019b]. The
resulting equation is known as the drift kinetic equation, a point that be will
made clear soon. This equation is used by many authors (e.g., [Snyder et al.,
1997]) to derive the Landau fluid models. A few points need to be made about
the drift kinetic equation, but can be seen from Eq. 2.76:

1. The ordering inms/qs follows the same for ρs � 1 where ρs = msv⊥c/qs|bl|
is the gyroradius Rosenbluth and Rostoker [1959]. This normalization was
not chosen here but can be seen in Eq. 2.76 if vi is normalized.

2. The moment closure of the linear equation happens at 2nd order (for the
pressure) Rosenbluth and Rostoker [1959]. This does not mean there are
no perturbations of higher order moments (e.g., heat flux). This is the
primary reason the drift equation is studied.
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3. It has been shown by Kruskal and Oberman [1958] that collisions, while
denying the constants of motion, do not destroy stability, i.e., it is sensible
to consider an equilibrium problem.

4. Here, the collision operator has been reduced to the difference with a static
Maxwellian which is not desirable since it is likely a more formal operator.

5. Any perturbation following from Eq. 2.76 will be subsidiary.

The last two points motivated the approach that appears in Appendix B.1. The
approach follows,

1. Change to the gyro-center frame.

2. Integrate over the gyro-angle assuming the entire distribution function is
gyrotropic.

3. Perturb about a static background where the background parallel electric
field is zero with Kulsrud’s condition (Eq. 2.72).

This allows the use of the Maxwellian (Eq. 2.63) as the BGK equilibrium and
there will be no subsidiary issue in perturbing the kinetic equation. This gives
the same kinetic equation employed by Snyder et al. [1997], Kulsrud [1983]
with the BGK operator in its non-perturbed form, where the assumption that
νs � Ωs (= qs|bl|/msc) still holds.

Regarding the use of the BGK operator with a kinetic equation, Snyder et al.
[1997] perturbs the Maxwellian, defined in Eq. 2.63, to approximately recover
the Braginskii transport coefficients and Sharma et al. [2003] does as well to
recover adiabatic pressure equations in the collisional limit. Additionally, the
equations recover the collisionless (gyrotropic) regime which the Braginskii and
Landau Fluid equations do not.

Now return to equations of motion to demonstrate physical aspects of the
equations. Following Section 4.2 of Hunana et al. [2019b] the equations of motion
are,

µ =
msw

2
⊥

2|bi|
, ⇒ d

dt

(
w2
⊥
|bi|

)
= 0, ⇒ dw⊥

dt
=

w⊥
2|bi|

d|bi|
dt

, (2.77)

and the parallel equation of motion,

ms

dw‖
dt

= −ms
dusi
dt

+ qsE‖ − µb̂i
∂

∂xi
|bj |, (2.78)

where the definition,

d

dt
=

∂

∂t
+ (w‖b̂i + usi )

∂

∂xi
, (2.79)
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meaning the Lagrange derivative in the guiding-center frame. The perpendicular
equation of motion (Eq. 2.77) acts to conserve the magnetic moment µ in the
guiding-centre frame.

The parallel equation of motion (Eq. 2.78) contains the important kinetic
aspects which should be retained in the model. The first term on the right hand
side is the non-inertial forces due to transforming into the gyro-center frame.
The second term is the force responsible for Landau damping [Landau, 1967]
which is the interaction of the parallel electric field with particles streaming with
similar parallel phase velocity (cf., Jackson [1960] for a physical explanation).
The second term is the magnetic mirror force which is responsible for transit-
time damping. Stix [1992] introduces various aspects of transit-time damping
in Section 11-4, where the same mechanism described by Jackson [1960] applies,
which is made clear in Section 11-8, clarifying the fact that Landau damping
and transit-time damping are 0th order resonant interactions. These two effects
are why compressive waves are severely damped in collisionless proton-electron
plasmas [Barnes, 1966].

The work of Barnes [1966] is of direct interest to this thesis. The key insight
of this thesis was to add the BGK operator to equations similar to that of Barnes
[1966] to model equilibrium restoring effects. The role of the BGK operator is
to restore the perturbations back to equilibrium. The KMHD-BGK equation is
explored numerically in Chapter 4.

2.4 Closures

In this section a brief overview of closures is provided to give a comparison of
the various plasma models discussed in previous sections. In a general sense,
taking moments of Boltzmann’s Equation (seen in Section 2.1.3) produces a
chain, where the density is coupled to the velocity, velocity to the pressure etc.
In the collisionless case, the moment chain is infinite, as high-order deformations
(high-order moments) of the distribution function will be present. Truncating
this chain is the closure.

2.4.1 Fluid theory

Physically, collisions truncate this chain, since collisions push the distribution
function towards the Maxwellian distribution function, which has no high-order
moments (e.g., the heat flux is zero). At equilibrium, the closure is provided by
the equation of state. In the non-equilibrium or collisionless case, the equation
of state derives from truncation and closure of the moment equations. The fluid
description is built upon taking moments of the kinetic equations which will
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couple to higher and lower moments.
The density couples to Gauss’ Law (first of Eqs. 2.38) and the velocity

couples to Ampere’s Law (second of Eqs. 2.38). These two couplings also
couple different species together. This is treated in the next section (Section
2.4.2).

The chain of moments is effectively truncated by collisions. This formal ap-
proach is that of Spitzer-Härm, to allow higher-order moments to effect the lower
moments through transport coefficients, which was introduced in Section 2.2.
This introduces viscosity and thermal diffusion. More complicated closures can
be incorporated, going to higher moments in the chain, giving more transport
coefficients, provided that higher moments are smaller than previous moments.

2.4.2 Ohm’s Law

Ohm’s Law is introduced to simplify the coupling of the momentum equation to
the electric and magnetic field. The electric field is often thrown out with the
single-fluid assumption by adding the momentum equations for different species
and then using the quasi-neutral assumption. The magnetic term couples to
Maxwell’s equations and then back to the electric field, where Ohm’s law is
traditionally implemented to simplify the equations with valid approximations.

The entire derivation of Ohm’s law is provided in Appendix D. In Section
D.2.2 the momentum equations for the electrons and protons are combined to
write an equation for the current. This does require single-fluid approximations
which appear in Section D.2. In Section D.2.3 the time-evolution equation for
the current is written subject to the single-fluid approximations. Next, Ampere’s
law and Faraday’s law are combined to write a time evolution equation for
the current to simplify. Next, the equation is normalized according to Section
D.2.3.1 so that further simplifications can be made. Equation D.106 is rewritten
here,

− 1

µmp

[(
Ωp
ωp,p

)2
∂2

∂t2
Ej −

∂

∂xl

∂

∂xl
Ej

]
+

1

µmp

∂

∂xi

(
ujji + jjui − jjji

)
=

1

µmp

∂

∂xi

(
P eij − P pij

)
+ Ej + εjlmulBm −

1

µme
εjlmjlBm (2.80)

where µ = 1/mp + 1/me, the proton cyclotron frequency is Ωp, the plasma
frequency is ωp,p = 4πnq2

p/mp, the current is ji = qpnpu
p
i − qpnpupi and the rest

have been previously defined. Next, the mass ratio 1/µmp ≈ me/mp is taken
to be small, and the Hall term ∝ εjlmBm is neglected, to write the ideal Ohm’s
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Law,

Ej = −εjlmulBm (2.81)

This equation is used to rewrite the induction equation as a function of only the
magnetic field and velocity, closing the equations. The ideal Ohm’s law is valid
at scale much larger than the proton inertial length. One piece neglected here
is the effect of collisions on the Ohm’s Law, which can be typically neglected
when the resistivity is small.

2.4.3 Landau fluid

Before describing the Landau fluid equations, some clarity needs to be given to
the nomenclature of various plasma models. Since any fluid model is derived
from Boltzmann-Maxwell equation, the attempt to incorporate collisionless or
kinetic effects into fluid equations blurs the line between what is kinetic and what
is fluid. For example, high-order fluid moments begin to incorporate collisionless
effects. In general, the fluid equations are a low-order fluid model (no heat flux)
with a simple Ohm’s Law. Often non-ideal Ohm’s law terms are incorporated,
when the scales of the plasma become comparable to the ion inertial length,
and these are called kinetic effects. Non-Maxwellian features, simply just the
temperature anisotropy, is often called a kinetic effect. In general, any effect
from the collisionless equation that is incoporated into fluid equations is called
a kinetic effect.

The kinetic effects that are desirable for this thesis are the 0th order wave-
particle resonances, called Landau and Barnes damping. These effects can be
built into fluid equations, using a similar method to Braginskii [1957], which
lead to the Landau fluid equations [Hammett and Perkins, 1990]. They are
low-order moment and ideal Ohm’s Law closed equations, where the coefficients
for resistivity, thermal transport etc. are determined from an expansion, where
the small-amplitude fluctuations are provided by linearizing the drift kinetic
equation and taking moments. They approximate Landau and Barnes damping
very accurately, yet have the desirable properties of closed fluid equations, and
are therefore called the Landau fluid equations.

2.5 Plasma waves and instabilities

The various models for plasma can be studied with a normal mode analysis to
produce waves, incorporating a range of effects that hold some of the beautiful
properties of plasmas. The classic plasma wave has an electromagnetic part, e.g.,
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δb⊥ – fluctuation of the perpendicular magnetic field, and an acoustic response,
e.g., δne fluctuations of the electron density.

A key part of this thesis is to bridge the gap between collisionless and fluid
waves, a formidable task, so these sections are dedicated to detailing some lit-
erature on wave properties, so the context of the results can be made more
clear.

2.5.1 Kinetic theory

The kinetic theory of plasma waves is usually studied by assuming ωr � νs

where ωr is the real part of the frequency, i.e., setting the collision frequency
to zero in Boltmann’s Eqs. 2.37. Kinetic theory has a few notable features,
first that the waves can be damped by resonance phenomena, as pointed out by
Lev Landau [Landau, 1965], to ensure a causal relationship between the plasma
variables [Stix, 1992]. Next, the waves are highly susceptible to growth or insta-
bility, due to the non-equilibrium nature of the system. Together, these effects
lead to reversible energy exchange between the particles and electromagnetic
waves i.e., not just the wave action of an undamped acoustic wave.

2.5.1.1 Electromagnetic dielectric tensor

The spatially homogeneous electromagnetic dielectric tensor is derived in Ap-
pendix A. The dielectric tensor, Eq. A.51, is rewritten here,

c2

ω(ki)2

(
kikjÊj − k2

j Êi
)

+ Êi = − 4πi

ω(ki)

∑
s

qs

∫
d3v vif̂s (2.82)

The perturbed distribution function f̂s appears as Eq. A.73 and is rewritten
here,

f̂s = − qs
ms

∞∑
n,m=−∞

Jm(λs)exp{i(m− n)vφ}
i[k‖v‖ − ω(ki) + nΩs]

×
[
Êx

n

λs
Jn(λs)

∂

∂α+
+ iÊy

∂

∂λs
Jn(λs)

∂

∂α+
+ ÊzJn(λs)

(
∂

∂v‖
+

n

λs

∂

∂β+

)]
Fs.

(2.83)

where the Bessel function of the first kind are Jn(λs), the argument is λs =

k⊥v⊥/Ωs, and the Fourier transformed electric field is Êi. The right hand side
involves derivatives of the background distribution function Fs which must be
prescribed. The angular component of the velocity in cylindrical coordinates
is vφ, the complex frequency is ω(ki), and the species “s” gyrofrequency is Ωs.
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The derivatives are,

∂

∂α±
=

∂

∂v⊥
± ω(±k)−1k‖

(
v⊥

∂

∂v‖
− v‖

∂

∂v⊥

)
(2.84)

∂

∂β±
= ±ω(±k)−1k⊥

(
v‖

∂

∂v⊥
− v⊥

∂

∂v‖

)
. (2.85)

This version of the Fourier transform (see Section A.0.3) is appropriate to the
asymptotic solutions of the perturbed Vlasov Equation. This approach ignores
the ballistic response [Krall and Trivelpiece, 1973].

From this dielectric tensor, all collisionless and homogeneous waves are de-
rived. The basic ingredients are the background distribution function, the
species concentration, the propagation angle (relative to the background mag-
netic field), and finally the magnetic field, which can be considered static for
electrostatic case, or often the quasi-parallel or perpendicular case, for the
wavenumber relative to the magnetic field direction.

2.5.1.2 Kinetic waves

Various kinetic waves and instabilities will be discussed in this coming section.
Almost all of the figures will be reproduced from Gary [1993] and so a brief ex-
planation of the notation and figure line style is necessary. The real frequency
and imaginary part ωr, γ are R{ω}, I{ω}, respectively. The ion plasma fre-
quency is ωi and ki is the ion Debye wavenumber, which is (2π/λD,p) in this
notation, with λD,p =

√
kBTp/4πnpq2

p. The real frequency is plotted as a solid
line unless it is critically damped (γ < −|ωr|/2π), then the line is continued as
a dashed line. The damping rate is always plotted as a dotted line.

The polarization is defined in the standard Stix [1992] and Gary [1993] for-
malism where the right and left hand is defined by looking in the direction of the
background magnetic field at a fixed spatial location for positive real frequency.
Therefore handedness changes with the sign of the wavenumber (propagation
direction).

2.5.1.2.1 Ion acoustic wave The ion acoustic wave was found by the fa-
mous experiments of Tonks and Langmuir [1929]. It is of particular interest to
this thesis since it is the collisionless limit of the model constructed in Chapter
4. The ion acoustic wave propagates in an electrostatic proton-electron plasma.
Returning to Section 2.5.1.1, this is accomplished by taking k⊥ to be zero (no
background magnetic field) so that only n,m = 0 Bessel functions survive. This
provides the electrostatic dielectric function. The next step is to choose a back-
ground distribution function, which for this Section is a Maxwellian.
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The restoring force of the ion acoustic wave is the electron response to charge
separation caused by perturbed protons. This view is supported by Figure 2.2
where the damping rate is small for large electron temperature (right panel)
and small wavenumber.

Figure 2.2: Reproduced from Gary [1993]. The two panels have different electron
to proton temperature ratios denoted in the top left corners. The definitions
of the quantities and line style choice appears in Section 2.5.1.2. The proton
beta doesn’t appear in the textbook, but this is explored in later section of this
thesis.

Using asymptotic expansions on the plasma dispersion function and taking
the long wavelength limit, the phase speed reduces to,

cs =

√
Te + 3Tp
mp

, (2.86)

defined as the ion acoustic speed. The denominator is √mp proving the inertial
role of the protons. The wave action is along the propagation direction i.e.,
longitudinal waves.

The role of a static background magnetic field modifies the dispersion relation
in a simple way,

ωr = k‖cs, (2.87)

so that a cosine term appears. The wave does not propagate across the field,
since the electrons can not neutralize due to their gyro-motion about the mag-
netic field.

Moving on to the electromagnetic theory of the ion acoustic wave for a
Maxwellian proton-electron plasma. In the low frequency limit, the ion acous-
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tic wave, for the full electromagnetic description, gains only a small magnetic
field fluctuation, so the electrostatic dispersion relation remains a good descrip-
tion. This small magnetic fluctuation does however have a component along the
background magnetic field direction which leads to Barnes damping [Barnes,
1966]. This wave is explored in Chapter 4 since it is one of the waves studied
numerically in this thesis.

2.5.1.2.2 Proton cyclotron wave The most simple form of the proton
cyclotron wave is the electrostatic case of the dielectric tensor in Section 2.5.1.1
with a static background magnetic field for an electron-proton plasma. The
character of the wave is heavily affected by the background distribution function
and ion species present in the plasma. Therefore, the name of the waves and
their properties deserves some clarification. In the magnetospheric community
the wave is called the electromagnetic ion-cyclotron wave since the effects of
multiple ion species must be considered, in plasma textbooks it is often called
the proton or ion cyclotron wave, and in the solar wind turbulence community
it is called the Alfvén / ion cyclotron wave because it connects to the Alfvén
wave in the low frequency limit for parallel propagation.

In general, the wave has left circular polarization where the direction of
propagation (fluctuations are transverse) and is non-dispersive (proportional to
the Alfvén speed) until it nears a cyclotron resonance. The wave is cyclotron
resonant which occurs at ωr = k‖v‖ − mΩs, where v‖ is the parallel velocity,
m is the order of the resonance and Ωs is the species “s” cyclotron frequency.
When the phase velocity of the wave, or an integer harmonic Ωs/k‖, the wave
energy converts to particle free energy, and this is called wave damping.

The wave can be generated by proton temperature anisotropy. This phe-
nomena in plasma physics is treated as wave growth, where free energy in the
plasma distribution function is converted into wave energy. Formally, a portion
of the particle distribution function has a negative absorption coefficient (or
positive emission) Melrose [1986].

Returning to Section 2.5.1.1 and using a bi-Maxwellian distribution function
provides the kinetic description of the temperature anisotropic proton cyclotron
instability. Figure 2.3 displays the wave properties for three values of the tem-
perature anisotropy (see caption). As the perpendicular temperature becomes
larger relative to the parallel temperature, the imaginary part of the complex
frequency, defined as γ, transitions from negative to positive, indicating wave
growth.

The next important feature is in the phase velocity. At small wavenumbers,
the group velocity is the Alfvén speed, at larger wavenumber the phase velocity
levels off and becomes heavily damped, this is due to the cyclotron resonance
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Figure 2.3: Reproduced from Gary [1993]. In the panels the proton temper-
atures are reported T‖i, T⊥i where i is used for ion, but in this thesis it
corresponds to the proton temperature. The parameters of this system are
vA/c = 10−4, βp = 1.

at first order ωr/|Ωp| ≈ 1. This resonance is then affected by the abundance of
other ions in the plasma, as their masses give different resonances.

Finally, the proton cyclotron wave is connected to the Alfvén wave in the
quasi-parallel limit. This has implications in turbulence theory, to be addressed
in Section 2.7.

2.5.1.2.3 Kinetic Alfvén wave The kinetic Alfvén wave [KAW] is the
short wavelength extension of the Alfvén wave in the perpendicular limit. It
is a right-hand elliptically polarised electromagnetic wave. The interesting fea-
tures can be seen at the gyro-scale, where the wave is compressive, opposed to
the long wavelength limit.

Figure 2.4 shows the dispersion relation for the KAW in an equal temperature
proton-electron plasma. Near to the k⊥ρp ' 1 scale, the phase speed of the wave
increases dramatically from its short wavelength value, and becomes heavily
damped. Additionally, the wave gains a compressive component. The wave-
particle interaction is through the 0th order resonance of Landau damping,
where the plasma beta comes into play. For low beta plasma, the protons are
preferentially heated and at high beta, the electrons are preferentially heated.

2.5.2 Fluid theory

In this section fluid waves will be addressed. The key physics not described
by fluid theory is the wave-particle resonance. In the fluid theories, the macro
fluid variables (e.g., density, momentum) are coupled to the fields. At the most
basic level, this is accomplished through the induction equation and Ohm’s law.
The closure of the equations is provided by an equation of state. This gives
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Figure 2.4: Reproduced from Howes et al. [2006]. The left panel is the normal-
ized real frequency and the right panel is the normalized damping rate. The
horizontal axis is the perpendicular wavenumber times the proton gyroradius
(they have used ρi). The top left annotation is the proton to electron temper-
ature ratio and the ratio of proton thermal velocity to the speed of light. The
line are annotated by the proton plasma beta (here it is βi) and the line styles
can be ignored for this discussion.

quite a lot of variety in the equations and resulting waves that can be produced.
To keep this section brief, the four classic waves produced by MHD theory are
presented in the anisotropic limit k‖ � k⊥.

The first wave is the Alfvén wave which has a dispersion relation,

ω = ±k‖vA. (2.88)

The wave is transverse and carries no compressive fluctuation. The restoring
force of the wave is the tension of the magnetic field. The wave was theorized
by Hannes Alfvén along with magnetohydrodynamics [Alfvén, 1942]. Two com-
pressive waves result from the study of magnetohydrodynamic equations. The
first,

ω ' k‖vA√
1 + vA/cs

, (2.89)

(2.90)

is the slow-mode, where cs is the sound speed, but typically the electron pressure
is ignored in magnetohydrodynamics, so it simplifies to a numerical multiple of
the thermal velocity. This wave is compressional with the magnetic pressure
and thermal pressure anti-correlated, the unique identifier of this wave. The
cosine factor restricts propagation across the magnetic field. Next is the fast
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mode,

ω ' ±k⊥
√
c2s + v2

A. (2.91)

This compressive wave’s restoring force is the magnetic pressure and thermal
pressure in phase. The final mode discussed here is the entropy mode,

ω = 0. (2.92)

The mode is non-propagating and produced by linearising the equation of state.

2.5.3 Branch connections

The waves discussed in the kinetic theory Section 2.5.1.2 and the fluid (or low
frequency waves) discussed in Section 2.5.2 are extensions of each other in var-
ious limits.

Beginning with the Alfvén wave, there are two names given to its small scale
extension: the proton cyclotron wave in the parallel limit (k‖ � k⊥) and the
kinetic Alfvén wave in the perpendicular limit (k⊥ � k‖).

The MHD slow-mode is connected to ion-acoustic mode and another ki-
netic mode called the kinetic non-propagating mode [Foote and Kulsrud, 1979].
These modes and their plasma beta, collision frequency, and propagation angle
dependence are well-explored in Chapter 4.

The fast-mode is connected to the whistler mode, a mode that wasn’t ex-
plained in the Section 2.5.1.2. They are not the focus of this thesis, but do have
plenty of application in laboratory and magnetospheric/ionospheric plasmas.

This entropy mode is not connected to a kinetic wave, as it depends on the
definition of entropy. However, it is related to pressure balance of the magnetic
and thermal pressure, which also leads to a non-propagating mode in the kinetic
regime [Howes et al., 2006].

2.6 Quasi-linear theory

Quasi-linear theory provides a way to understand how waves interact with the
plasma distribution function. The derivation is outlined in Stix [1992], Yoon
[2017] in great detail. The idea can be sketched from Eq. A.13 in Appendix A,[

∂

∂t
+

qs
ms

(
c−1εijkvjBk

)
∂

∂vi

]
Fs = −

〈[
qs
ms

(
Ei + c−1εijkvjbk

)
∂

∂vi

]
fs

〉
.

(2.93)
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The background magnetic field is Bk and the fluctuation is bk, the electric field
fluctuation is Ei, the averaged distribution function is Fs, and the perturbed dis-
tribution function is fs. The magnetic term on the left hand side can be ignored
for a gyrotropic distribution function. The right hand side is second-order in the
perturbation. Linear perturbations are found for the right hand side (shown in
Appendix A) and inserted i.e., the quadratic nonlinearity is assumed to be the
product of the linear perturbations. This requires assuming the wave growth
/ damping is small compared to the real frequency, the averaged distribution
function evolves on a slow time scale, the wave spectrum is homogeneous and
there are no wave-wave interactions. This final assumption is often quoted as
to why quasi-linear theory is incompatible with turbulence.

The final set of equations describe the time evolution of an averaged distri-
bution function with a set of plasma waves. The time evolution equation for
the averaged distribution function,

∂

∂t
Fs =

∫ ∞
−∞

d3k

(2π)3
B̂(ki)

1

v⊥

∂

∂α
v⊥ν

scatt
s (ki; v‖, v⊥)

∂

∂α
Fs (2.94)

where the normalized magnetic field power spectrum is,

B̂(ki) =
8π

B2
0

(
k‖
|ki|

)2 |b̂i(ki)|2
1− |k̂iei|2

, (2.95)

where ei = δixex + δiyey + δizez is the polarization vector. The pitch-angle
gradient is,

∂

∂α
= v⊥

∂

∂v‖
+

(
ωr(ki)

k‖
− v‖

)
∂

∂v⊥
, (2.96)

where ωr is the real part of the wave frequency. The relaxation or scattering
rate,

νscatt
s (ki; v‖, v⊥) = π

Ω2
s

k‖

∞∑
n=−∞

δ
(
vres − v‖

)∣∣Ψn

∣∣2. (2.97)

The resonant velocity is defined,

vres =
ωr − nΩs

k‖
, (2.98)

where Ωs is the species cyclotron frequency. Additionally,

Ψn =
1√
2

[
erJn+1

(
λs
)

+ elJn−1

(
λs
)]

+
v‖
v⊥
ezJn

(
λs
)
, (2.99)
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is defined where λs = k⊥v⊥/Ωs is the argument of the Bessel functions Jn and
the right/left handed polarization vectors,

er =
ex − iey√

2
, el =

ex + iey√
2

. (2.100)

These equations describe the plasma in the quasi-linear phase.
When an electromagnetic wave’s phase speed matches a harmonic of the

resonant velocity, the energy transfer between the two will occur if the pitch-
angle gradient is non-zero. The evolution has two interesting view points: macro
and micro. Beginning with the micro-evolution, particles interacting with waves
will follow contours of, (

v‖ −
ωr
k‖

)2

+ v2
⊥ = const., (2.101)

in v⊥, v‖ - space. Figure 2.5 shows contours of the distribution function Fs

Figure 2.5: Reproduced form Verscharen et al. [2019]. Blue dotted lines are
contours of the background distribution function Fs , grey shaded region is the
resonant region, black lines are contours of Eq. 2.101, and the blue arrows are
the direction of diffusion of the particles.

in blue dotted lines, of which particles in the resonant region (in grey) evolve
on contours of the circle given by Eq. 2.101. The direction depends on the
slope of Fs at that point, as the particles will diffuse to lower Fs. The process
is properly called diffusion due to the form of the time evolution equation of
the distribution function (Eq. 2.94). In this case, the particles are diffusing
to a region of higher v2

⊥ + v2
‖ so they gain energy at the expense of the wave

energy. Qualitatively, Fig. 2.5 also shows that particles in the resonant region
with small v⊥ will gain more v⊥ than v‖ due to the shape of the contours from
Eq. 2.101. The anisotropy in energization v⊥, v‖ leads well in the macroscopic
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picture: anisotropic heating.

Figure 2.6: Reproduced form Yoon [2017]. In the top panels, the evolution of
the proton beta are shown for a simulation in solid lines and dashed lines the bi-
Maxwellian prediction. The bottom panel shows the magnetic energy with the
same line style scheme. The horizontal axis is the time in number of cyclotron
periods. Please ignore the “QL” as it is misleading.

The macroscopic variables can be produced by taking appropriate moments
of Eq. 2.94 for the evolutions of the momentum or temperature [Yoon, 2017].
The moment appropriate to the temperature ∂Ts/∂t is the definition of heating
in the quasilinear picture; it is reversible. Figure 2.6 compares a simulation of
a plasma to the bi-Maxwellian prediction. The simulation solves the Vlasov
equation for the protons kinetically with the Particle-In-Cell (PIC) approach
and the electrons are assumed to be fluid. The particular instability that is
considered is the parallel firehose instability.

The instability forms when there is a kink in the magnetic field that cannot
be stabilized by the particle motions. This happens because the parallel motion
(i.e., parallel temperature) contributes to a centrifugal force on the arc of the
kink. Therefore, the instability occurs when T‖/T⊥ > 1.

The bi-Maxwellian assumption for Fs in Eq. 2.94 simplifies the system
dramatically. After taking moments for the temperature in Eq. 2.94, the bi-
Maxwellian system is then just related to the wave energy, and a simple differen-
tial equation can be solved for the time evolution of the temperatures, assuming
they are bi-Maxwellian throughout the time evolution. While basic, it does pro-
vide some insight into the nature of the quasi-linear approach, and appears as
the solid lines in Fig. 2.6.

Starting with the right most panels of Fig. 2.6, the the bi-Maxwellian case
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and the simulation evolve similarly for the perpendicular and parallel β. The
magnetic energy in the bottom panel is significantly different after the initial
phase, but this can be described better for the middle panels. In the middle
panels, the evolution for small times are again similar but then depart drasti-
cally. There is a decaying oscillation in the quantities, which are indeed out of
phase, this is the nonlinear stage called particle trapping. Here it does appear
to affect the asymptotic state of the magnetic energy and temperatures.

Moving towards the left most panels of Fig. 2.6, it can be seen that the
simulation and bi-Maxwellian assumption do not match well. What is happening
here, is that the evolution departs from the bi-Maxwellian state quickly after
the instability begins. Returning to the microscopic picture from Fig. 2.5 and
looking at the width of the grey region, here it is slender. This will cause
a deformation of the particle distribution function that is not bi-Maxwellian.
Returning to Fig. 2.6, the resonant region at high beta (most right panels) have
a large resonant region, relative to the distribution function, and that decreases
moving left.

This ends the discussion of quasi-linear theory. The quasi-linear approach
has been outlined and some of the equations have been shown. While the quasi-
linear theory breaks the equations, it provides a description of how waves will
interact with the particle distribution function. The macroscopic picture was
also visited, to show the importance of the resonances and demonstrate how
measurable quantities (e.g., temperature) are affected by quasilinear mecha-
nisms.

Clearly for the quasi-linear evolution, the full particle distribution function
and wave character must be known to understand what is happening. This is
the endpoint of this Section and the beginning of Chapter 6.

2.7 Fluid plasma turbulence

To describe any physical process of the solar wind it is necessary to understand
how it fits in with its turbulent nature. This section has been written to cover
turbulence concepts with a focus on how to describe the density and pressure
fluctuations (compressive fluctuations). A key piece of this thesis is the mea-
surement of the scale dependent anisotropy of compressive fluctuations and the
scale at which kinetic processes will decay their power. This scale is extremely
important because it is relevant to plasma heating and its prediction and com-
parison to previous observations is a basic check of the equations. This section
shows aspects of fluid plasma turbulence so that the final measurements can be
put into a more complete picture of the solar wind.

Fluid plasma turbulence, and not the kinetic theory, which will not be cov-

63



ered here, is concerned with the classic problem of turbulence: how is energy
reshuffled in wavenumber space by non-linear mechanisms. Fluid plasma turbu-
lence is concerned primarily with two additional problems, the effect of magnetic
fields and since most plasmas are collisionless, how this energy is transported
to scales where kinetic effects become dominant.

To demonstrate the general problem more clearly some ideas will be pre-
sented by studying the resistive incompressible MHD equations. They can be
written in the Elsasser variable form,

∂

∂t
z±i ∓Aj

∂

∂xj
z±i + z∓j

∂

∂xj
z±i = − ∂

∂xi
ptot + η

∂2

∂x2
j

z±i , (2.102)

∂

∂xi
z±i = 0 (2.103)

where z±i = ui± bi/
√

4πmpnp. The sum of the magnetic and thermal pressures
is ptot. The magnetic field bi is normalized to be the Alfvén velocity, so the
equations can be written in the above form [Elsasser, 1950]. For demonstration,
the background Alfvén velocity is Ai which will be local, so it is a function
of xi, t. This breaks the Reynold’s decomposition and is formally treated with
a filter, but it helps to demonstrate important points about MHD turbulence.
The background velocity field is zero since that frame can be chosen. Equations
2.102 show that z∓j z

±
i are responsible for non-linear phenomena and the Ajz±i

is responsible for advection.
The spatial Fourier transform of the fields,

z±i (t, xi) =

∫
d3k ẑ±i (t, ki) exp

{
ikixi

}
, (2.104)

ẑ±i (t, ki) = (2π)−3

∫
d3x z±i (t, xi) exp

{
− ikixi

}
, (2.105)

where ki is a wavenumber. The bounds on these integrals are not important for
the demonstration. Taking the Fourier transform of the incompressible MHD
equations,

∂

∂t
ẑ±i + i

∫
d3x exp

{
− iqixi

}
kj
(
z∓j ∓A±j

)
z±i = −ikip̂tot − ηk2

j ẑ
±
i , (2.106)

kiẑ
±
i = 0, (2.107)

where the wavenumbers will be implicit when they are in the integral to keep
track of everything. Notice that the incompressibility condition does not apply
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to inner products such kiẑi(pi), therefore kiẑi(pi) 6= 0. The non-linear term,∫
d3x exp

{
− iqixi

}
kjz
±
i

(
z∓j ∓A±j

)
=

i

∫
d3x

∫
d3k

∫
d3p kj ẑ

∓
i (ki)

[
ẑ∓j (pi)∓ Â±j (pi)

]
exp
{
ixi(ki + pi − qi)

}
,

(2.108)

where the integral over xi gives the Dirac delta function δ3(ki + pi − qi) and
then the integral over pi gives,∫

d3 exp
{
− iqixi

}
kjz
±
i

(
z∓j ∓A±j

)
=

i

∫
d3k kj ẑ

±
i (ki)

[
ẑ∓j (pi − ki)∓ Â±j (pi − ki)

]
, (2.109)

and with the incompressibility condition kiz±i (ki) = 0, a term can be added to
recover, ∫

d3 exp
{
− iqixi

}
kjz
±
i

(
z∓j ∓A±j

)
=

ikj

∫
d3k ẑ±i (ki)

[
ẑ∓j (pi − ki)∓ Â±j (pi − ki)

]
. (2.110)

The pressure can be dealt with by taking the divergence of the incompressible
MHD equation, (

z∓j ∓
∂

∂xi
Aj

)(
∂

∂xj
z±i

)
= − ∂2

∂x2
i

ptot, (2.111)

the Fourier transform and a similar procedure to the non-linear term produces,

p̂tot(ki) = −kikj
k2
l

∫
d3p ẑ±i (pi)

[
ẑ∓j (ki − pi)∓ Âj(ki − pi)

]
(2.112)

Inserting Eqs. 2.110, 2.112 into Eq. 2.106,

∂

∂t
ẑ±i + ηk2

l ẑ
±
i

= ikl

(
δij −

kikj
k2
n

)(∫
d3p ẑ±j (pi)

[
ẑ∓l (ki − pi)∓Al(ki − pi)

])
. (2.113)

Now some important results from MHD turblence theory can be made. The
final equation here possesses an integral in the convolution form. This is the
defining character of non-linearity in turbulence, that each wavenumber of the
fields, interacts with all other wavenumber. Taking a look at Eq. 2.108, the
integral in d3x resulted in the Dirac delta function δ(ki + pi − qi) which shows
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that three wavenumbers mediate the interactions. Looking at Fig. 2.7, the
panels on the left show local interactions, where all the wavenumbers are the
same, and non-local, where ki is different in magnitude than the other two.
Thinking to the convolution integral present in the equation, it can be seen that
local interactions will dominate, since similar wavenumbers will have similar
energy and shape (e.g., a harmonic will have similar shape, but not energy, so
the interaction is not dominant). This interaction, of successive interactions in
wavenumber space, which inevitably carry energy from one scale to another is
the energy cascade. A cartoon of this can be seen in the top right panel of Fig.
2.113 where the outer scale and dissipation range are widely separated. The
inertial range is where the energy cascade is responsible for energy transfer in
scale, connecting the two ranges.

Figure 2.7: The panels on the left show a local and non-local triad interaction.
The right hand top panel shows a typical omni-directional magnetic field power
spectrum. The bottom right panel shows the k‖, k⊥ plane where the interactions
take place. One would expect enhanced power along lines in this plane. All
panels here are cartoons.

Returning to Eq. 2.113, notice that Al(ki − pi) is the local Alfvén velocity
direction. The wavenumber given by this interaction is always along the mag-
netic field direction k‖. This has a drastic effect on the energy cascade giving a
local anisotropy to the background magnetic field direction.

In a weakly collisional plasma, the fate of the energy is not that of resistive
heating, but damping by other mechanisms. One of the popular mechanisms is
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that of the wave-particle interaction. This is sketched in the bottom right panel
of Fig. 2.7, focussing on the anisotropy in wavenumber space. Energy at small
scales will follow the critical balance curve, distribution of power in parallel
and perpendicular wavenumber space, to the gyro-scale, where the Alfvén wave
is more properly called the kinetic Alfvén wave and can be damped. If the
energy were to be stronger in the parallel direction, then the proton cyclotron
mechanism would be responsible for damping of the wave energy.

2.7.0.1 Kolmogorov’s index

In 1941 Andrei Kolmogorov produced three papers on turbulence theory [Kol-
mogorov, 1941a,b,c] which culminate in the prediction of the shape of the power
spectrum of the velocity field for a set of conditions. The prediction is derived
from the incompressible Navier-Stokes equations. The conditions are statistical
homogeneity, infinite Reynold’s number, time-stationarity, isotropy, and scale
independence. The final point is the key insight of Kolmogorov. A sketch of the
key insight will follow for later discussions. Based on all the conditions except
for scale independence,

ε ≈ 〈δu
3〉
l

(2.114)

where ε is the mean energy dissipation rate from the energy budget equation,
δu = u(x + l) − u(x) is the velocity increment over l, and the angled brackets
are an ensemble average or over space by the ergodic theorem. Vectors have
been dropped due to the assumptions of statistical homogeneity and isotropy.
No viscosity is present, which led to Kolmogorov’s suggestion that the predicted
form would be universal. Clearly, the mean energy dissipation rate is constant,
so upon assuming,

S =
〈δu3〉
〈δu2〉3/2 = const. ⇒ 〈δu2〉 ≈ ε2/3l2/3. (2.115)

This is the assumption of scale independence, that S = const. The statistical
function 〈δu2〉 is the second-order structure function which is related to the
correlation function 〈u(x+l)u(x)〉, simply δu2 = u(x+l)2+u(x)2−2u(x+l)u(x)

and the correlation function is the Fourier pair of the energy spectrum E(k).
The connection between the energy spectrum and the second-order structure
function is,

〈δu2〉 ≈ rp ⇒ E(k) ≈ k−p−1. (2.116)
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This leads to the famous −5/3 scaling often observed in turbulent fluids. A
final point is that the constancy of skewness (S) is not observed. This led to a
1962 paper by Kolmogorov which used the underlying distribution of the mean
energy dissipation rate to write a set of scaling exponents for the orders of the
structure functions. This is called intermittency.

2.7.0.2 Kraichnan & Iroshnikov

[Kraichnan, 1965] and [Iroshnikov, 1964] independently theorized the spectrum
from the magnetohydrodynamics equations. The essential insight is that the
background Alfvén velocity present in Eq. 2.102 slows the rate of energy trans-
fer and modifies the energy spectrum. The mean energy dissipation rate is
proportional to the Alfvén time l/vA and depends only on the spectrum, so
that dimensionally,

ε ≈ l

vA

δu4

l2
, (2.117)

where the second term can be produced by dimensional analysis, using only the
quantities related to the spectrum. This leads to the -3/2 prediction for the
energy spectrum. The use of δu here is for normalized cross-helicity of 0, so
δu = δb/

√
4πnpmp. Additionally, the spectrum produced is isotropic.

2.7.0.3 Goldreich & Shridhar

One of the essential modifications from analyzing the incompressible MHD equa-
tions that the magnetic field provides is anisotropy in k-space. This was the es-
sential contribution of Goldreich and Sridhar [1995]. First, a simplifying point
can be made that is helpful in producing scaling laws, which is to assess the
nonlinear time,

ε =
δu2

τNL
. (2.118)

The nonlinear times for Kolmogorov’s prediction (τKol
NL ) and Iroshnikov-Kraichnan

prediction (τ IK
NL) are then,

τKol
NL =

l

δu
, (2.119)

τ IK
NL =

vAl

δu2
(2.120)

which are the rate at which energy is transferred from one scale to another.
They then consider the transverse nature of the Alfvén wave to connect the
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perpendicular length scale l⊥ to the parallel scale l‖ through critical balance,

l⊥
δu

=
l‖
vA
. (2.121)

Physically, it is a balance between the linear Alfvén time and nonlinear time.
This leads to a prediction of the scaling of the energy spectrum in the par-
allel and perpendicular directions. The prediction is that the perpendicular
wavenumber energy spectrum is E(k⊥) ∝ k

−5/3
⊥ and the parallel wavenumber

energy spectrum is E(k‖) ∝ k−2
⊥ . This modification only happens locally, as

pointed out in time evolution of the spectral energy equations derived earlier.

2.7.0.4 Compressive fluctuations

Since this thesis is focussed on compressible fluctuations, the focus will point
in that direction. For clarity, compressible means a density np or pressure
pp that has spatiotemporal dependence. The extension of the incompressible
MHD equations to that of the compressible, is largely complicated because a
relations like Eq. 2.114 includes many more terms on the right hand side, so a
simple scale independent assumption will not directly predict a scaling law with
l for the energy spectrum. Instead, expansion in a small parameter about the
incompressible MHD equations can be assumed to produce a spectrum of density
fluctuations. This was considered by Montgomery et al. [1987] by relating the
density fluctuations through the equation of state to the magnetic field energy
spectrum with a relation like Eq. 2.112. This gives an energy spectrum for the
density scaling like k−5/3.

In Goldreich and Sridhar [1995] the pressure perturbations to leading order
are parallel to the magnetic field, therefore Alfvénic fluctuations (transverse to
the background magnetic field direction) would not perturb the pressure, so
the compressive mode must be considered. This was considered by Lithwick
and Goldreich [2001] who suggested that compressible modes are passive to
the Alfvénic perturbation, so they will follow the same scaling as the magnetic
field, as produced by the Alfvénic perturbation. Additionally, they recognised
the severe damping of the compressive fluctuations, due to collisionless pro-
cesses [Barnes, 1966], depends directly on the parallel wavenumber. They also
recognise that the cutoff for dissipative range is probably not simply the mean-
free-path based on discussions in Foote and Kulsrud [1979].

The damping of the slow-mode is important to discuss a bit more. An addi-
tional point, is that due to the obliqueness of the Alfvénic perturbations, which
the slow-mode is assumed to follow passively, the parallel wavenumber will be
very small (i.e., Barnes and Landau damping can not occur) [Schekochihin et al.,
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2009]. Another idea, is that processes that restore the system to equilibrium,
such as collisionless relaxation, could inhibit the severe damping of the slow-
mode. This idea is supported by this thesis, and the scale that modulates the
wavenumber dependence on the damping, is the effective mean-free-path. The
physics behind the effective mean-free-path is complicated.
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Chapter 3

The solar wind

The solar wind is an ionized gas in the plasma state, that is accelerated in the
corona, streaming away from the Sun into interplanetary space. It carries the
magnetic field generated by the Sun, defining the heliosphere. The plasma is
detectable by spacecrafts, e.g., the particles and electromagnetic fields, therefore
it presents a grand opportunity to develop a better understanding of plasma
physics.

In this Chapter an overview of the solar wind is presented, beginning with
Eugene Parker’s prediction of its existence. Then some “big picture” sections fol-
low relying on famous spacecraft missions. Next, a more detailed look at plasma
heating, instabilities, and turbulence, with a focus on the compressive nature of
the plasma. Finally, there is a section describing spacecraft instruments.

3.1 Eugene Parker’s solar wind model

The solar wind, as it is known today, was first theorized by Eugene Parker in
his famous article Parker [1958]. Observations of comet tails seemed to require
a gas pressure, not just photon, to describe the dynamics and the double tail,
one of which is redirected due to ionized material coupling to the magnetic field.
These conclusions led him to consider the coronal temperature to be the source
of an out flowing gas which then couples to the magnetic field, both of which
constitute the interplanetary medium.

Parker used equations for a gas to show that if the corona is thermally
conducting, then a hydrostatic equilibrium is unphysical, as the pressure is non-
vanishing with increasing radial distance. The basic prescription for the solar
wind is to take the fluid equations for a gas in stationary spherical expansion.
This leads to a differential equation where boundary conditions of the corona
lead to the prediction of an escaping plasma, the solar wind. Briefly, a gas with
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spherical symmetry and at static equilibrium,

∂

∂r
p(r) = −GMSmp

2

p(r)

T (r)r2
, (3.1)

where r is the radial direction, p is the gas pressure, G is the gravitational con-
stant,MS is the solar mass, mp is the proton mass, and T is the gas temperature
(in units of energy). The solution is,

p(r) = p(a) + exp

{
− GMSmp

2

∫ r

a

dr
1

T (r)r2

}
, (3.2)

where a is the radius where the heat source ceases. It can be seen that as r
increases, T (r) must decrease faster than T ∝ r−2 for the pressure to vanish.
The steady-state heat flow equation for hydrogen, calculated from transport
theory, gives r−3/2, so the static equilibrium is denied. Allowing for stationary
expansion of the gas gives,

mpn(r)u(r)
∂

∂r
u(r) +

∂

∂r
p(r) = −GMSmp

2

p(r)

T (r)r2
, (3.3)

∂

∂r
mpn(r)u(r)r2 = 0 (3.4)

where the second equation is the stationary continuity equation in spherical
geometry. This gives,

1

u(r)

∂u(r)

∂r

(
u2(r)− 2T (r)

mp

)
=

4T (r)

mpr
− GMS

r2
. (3.5)

The right hand side is zero at r = rc,

rc =
GMSmp

4T (rc)
. (3.6)

Now, for r < rc, a coronal temperature of 3×106 K [Parker, 1958], the right hand
side is less than zero. Physically, u(r) is small <

√
2T (rc)/mp at the coronal

base (denying two of the solutions to the equations), and so that demands
∂u(r)/∂r > 0 when r < rc. Now consider what happens at the critical radius.
If ∂u(r)/∂r > 0 at the critical radius, then the term in the large parentheses
gives u(rc) =

√
2T (r)/mp. Slightly larger than the critical radius the term

in the parentheses is positive and so the the sign of ∂u(r)/∂r > 0 is positive
as well, since the right hand side becomes positive at the critical radius. The
other solution, where ∂u(r)/∂r = 0 at the critical radius, would then demand
u(r)→ 0 which is unphysical [Parker, 1958]. This is the basic arguments behind
an outflowing gas, that is faster than the sound speed

√
2T/mp.
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Figure 3.1: Reproduced from Parker [1958]. The vertical axis is velocity and the
horizontal axis is the radius normalized by “a” which is the radius at which the
corona no longer heats the plasma. The parameters of the model are a = 1011

cm and the solar mass. The solutions are shown for a range of temperatures at
“a” which are annotated near to the lines.

Figure 3.1 shows the solutions found by Eugene Parker for the solar wind
speed. The solar wind, during expansion, accelerates to speeds above the acous-
tic and Alfvén speed of the medium. Next, he supposed that the solar wind will
be tied to the magnetic field. Considering spherical expansion of the solar wind,
the saddle condition on the magnetic field, and solar rotation permits a descrip-
tion of the interplanetary magnetic field. It follows an Archimedes spiral.

In 1959 the Luna 1 spacecraft made in situ observation of the solar wind
plasma along with subsequent spacecraft observations, confirmed Parker’s model.
Since the solar wind’s detection, it has been continuously monitored by space-
crafts which have provided a wealth of knowledge into plasma physics [Bruno
and Carbone, 2013].
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3.2 Variable generation

Eugene Park’s model considered the solar acceleration to be secondary to the
heating of the corona. The heating and acceleration mechanisms are still not
well understood and they’re called the coronal heating problem, in particular the
faster wind [Marsch, 2006]. The Ulysses spacecraft unveiled classic features of
the solar wind and insight into the generation mechanism, that is highly variable
in speed McComas et al. [2003]. The solar wind has two nominal velocities: slow
which is near to 300 km/s and fast which is 600 km/s with overlapping spread
about the two modes.

Figure 3.2: Reproduced from McComas et al. [2003]. Both panels are polar
plots where the radius is the solar wind velocity colored by the direction of the
magnetic field (labelled on the left panel) measured by Ulysses spacecraft. The
background figures are detection of the extreme ultraviolet light, by the Solar
and Heliospheric Observatory, which are characteristic of the two different peri-
ods indicated in the lower panels. The lower panels show the sunspot number.

Figure 3.2 is a composite image that shows the variability of the solar wind.
The bottom panel on the left hand side shows the sunspot number over the
years 1992-1998, which when compared to the right hand side is smaller in
abundance. This is indicative of the solar minimum period. The top left panel
shows characteristics of that period. The coordinates of the polar plot are
as follows, the radial coordinate is the velocity of the solar wind measured
by spacecraft, and the angle is the latitudinal coordinate of the spacecraft at
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the time of the measurement. Additionally, the direction of the interplanetary
magnetic field (IMF) is outward for red and inward for blue. The solar wind
in the solar minimum period is then characterized by a uniform wind (and
relatively fast) outside of the ecliptic, where the magnetic field is very near to
a dipole. In the ecliptic plane there is structure accompanied by the streamer
belt.

Comparing these features to the right hand side, starting in the bottom
panel, where sunspot number is larger, indicates the solar maximum period. The
top panel shows a less structured solar wind outflow that has great variability in
the wind speed and magnetic field structure. The background white light image
also reveals more activity. These two period comprise a 11 year cycle which the
sun behaves in two different manners.

3.2.1 Composition of interplanetary particles

The primary particles that compose the solar wind are hydrogen (often just
called protons) and electrons with minor populations of heavier ions. These
heavier ions often have much larger energy/nucleon so are a seed population for
solar energetic particles Gloeckler [2010]. The Advanced Composition Explorer
(ACE) is a L1 sitting spacecraft designed to study composition, with a set of
instruments that can detect and discern charge state, energy and mass of most
interplanetary particles.

Figure 3.3 displays the differential intensity (see caption) versus the energy
per nucleon. Starting at low energy per nucleon, the bulk solar wind (solid thin
black line) is indicated in the upper left hand corner. As the energy per nucleon
increases, the differential intensity decreases by multiple orders of magnitude.
The suprathermal proton tail is indicated with an arrow and the pickup hy-
drogen bump by a dotted line. These are neutrals that have been ionized by
collisions or photoelectrically and then begin to interact with the solar wind,
being "picked up", relative to the solar wind they have a higher energy. Many
other heavier ions are observed in the solar wind, besides oxygen (considering
Fig. 3.3), but are not as continuously observed.

Going to higher energy per nucleon more non-solar born particles can be
seen, such as galactic cosmic rays (see caption for labelling). The remaining
particles at high energy per nucleon all interact with the solar wind and make
up the composition of the interplanetary medium. The solar energetic particles
of oxygen are solar born particles accelerated during solar flare sights or shock
fronts of coronal mass ejections.
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Figure 3.3: Reproduced from Fox et al. [2016] which is reproduced from Gloeck-
ler [2010]. The vertical axis is the differential intensity, which is the flux, then
divided by the angular coverage of the instrument in steradians and divided by
the energy per nucleon. The horizontal axis is the energy per nucleon. Various
instrument data products are combined to make this figure. CIR stands for co-
rotating interaction region. GCR stands for galactic cosmic ray. ANR stands
for anomalous cosmic ray. SEP stands for solar energetic particle. For informa-
tion on the grey shaded regions, black boxes and annotations at the bottom see
Gloeckler [2010].

3.3 Magnetic field structure

Eugene Parker described the interplanetary magnetic field structure [Parker,
1958], where a pressure driven solar wind through the scale heights of the corona
balances the pressure of the magnetic field, carrying it out into interplanetary
space. The structure is dynamic over a set of time scales, for example returning
to Fig. 3.2, the solar boundary conditions have drastic differences over the solar
cycle. Over the years since detection by the Mariner spacecraft in the early
1960s to now, when the Voyager spacecrafts have entered interstellar space, the
picture that Parker gave of the steady-state magnetic field continues to provide
an excellent description of the interplanetary magnetic field on the largest scales.

Figure 3.4 displays the steady-state solar magnetic field in the ecliptic plane.
In the region close to the sun the magnetic field dominates the dynamics and is
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Figure 3.4: Reproduced from Owens and Forsyth [2013]. Looking top down
at a slice through the ecliptic plane of the sun, magnetic field lines are drawn
where the color lines indicate opposite polarity. The black lines that do not
exceed the source surface are closed loops. The closed black circle is the source
surface where the solar wind expansion dominates the magnetic field forcing it
to be only radial, see the annotations. The green dashed spiralled line is the
heliospheric current sheet, separating large regions of opposing polarity.

very non-radial. At a few solar radii, the expansion of the solar wind begins to
dominate turning the magnetic field to be radial, which then acts as a boundary
condition for the Archimedian spiral into the heliosphere. The annotations on
the figure provide the necessary coordinate system to describe the field in the
different regions.

Taking the solar wind to have a constant speed in the heliosphere, magnetic
flux conservation leads to the radial magnetic field being proportional to the
inverse square of the radial distance (on the figure it is BR ∝ R−2). Then using
the geometry of the rotating system, the azimuthal component is found to be
proportional to the inverse radial distance (on the figure Bφ ∝ R−1), but the
field overall is more azimuthal with increasing radial distance.

3.3.1 The heliosphere

The interplanetary magnetic field extends out defining the heliosphere. At the
boundary, the heliosphere interacts with the local interstellar medium. Figure
3.5 displays the global structure. The solar wind and interplanetary magnetic
field expand out until the pressure, which is supported largely by pick-up ions,
balances the pressure of the local interstellar medium [Kallenrode, 2004]. As it
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passes from super- to sub- Alfvénic, a standing termination shock forms, and
the Parker spiral description is no longer applicable. The heliosheath is further
compressed and hotter plasma, interacting with interstellar plasma.

Figure 3.5: Reproduced from Owens and Forsyth [2013]. The global struc-
ture of the heliosphere and its boundary with the interstellar medium. The
arrows shows direction of plasma (loosely defined here) relative to the sun. In
that frame, the heliosphere moves relative to the interstellar medium creating a
boundary with multiple shock layers.

Further out, there is the heliopause, where the pressure of the heliosheath
and interstellar medium balance each other. Still further out, is potentially the
bow shock. This will form if the local interstellar medium is super-sonic and
becomes sub-sonic due to balancing the pressure of the heliosheath.

3.4 Heating

Parker’s model is based on transport of heat up into the corona sourced by the
heating that happens at the base of the corona. While considering the entire
problem is one of the big goals of space plasma physics, called the coronal heating
problem, the solar wind is heated in situ, as is expands into interplanetary space.

Figure 3.6 shows the temperature of protons as a function radial distance
measured by the Voyager spacecraft. The difference between adiabatic expan-
sion (dashed line) and the proton temperature (circles) can be described by
turbulence heating models up to radial distances of about 20 AU [Smith et al.,
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Figure 3.6: Reproduced from Smith et al. [2006]. The proton temperature
observed by the Voyager 2 spacecraft in circles. The dashed line is adiabatic
expansion. The red line is a model that incorporates heating by fluid turbulence
and energy injection by pick-up ions.

2006]. After distances of 20 AU, the effect of pick-up ions must be taken into
account to explain the radial temperature dependence.

The heating of the solar wind plasma is not well understood and is a major
goal of space plasma physics. The essential idea is that large-scale gradients in
the solar wind (e.g., magnetic field, velocity) are broken up and cascade by non-
linear mechanism, called the energy cascade (see Section 2.7), to small scales
where the energy can be converted to particle energy [Bruno and Carbone, 2013].

3.4.1 Collisional heating

Collisions are the sole mechanism that can increase entropy in a gas, therefore
will be responsible for irreversible processes. Section 2.2.1.1 discusses Coulomb
collisions in the plasmas and Fig. 1.1 displays some collision times. The de-
flection time for solar wind protons is 108 seconds and electrons is 106 seconds.
These time scales are much larger than all other time scales in the solar wind.

While the variation in density and temperature (the quantities that deter-
mine Coulomb collision frequency) in the solar wind is large, these numbers
suit the general conclusion, that the solar wind is collisionless after a few solar
radii from the Sun [Marsch, 2006]. A classic study of collisions in the solar
wind by Marsch and Goldstein [1983] show that for only low temperature and
high density (not a common state of the solar wind), when the classical col-
lision frequency is large, there is evidence for collisions dictating the observed
distribution functions.

It is pretty well accepted that the solar wind at 1 AU must have experienced
non-collisional heating to be in the state observed [Hartle and Sturrock, 1968,
Cranmer, 2014]. This is an important reason the primary study of this thesis
was necessary.
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3.4.2 Wave-particle interactions

Figure 3.7: Reproduced from He et al. [2011]. The top panel is the radial
magnetic field measured by the STEREO spacecraft. The middle panel with
color is the reduced fluctuating magnetic helicity which has period dependence
on the vertical axis and time dependence on the horizontal axis. The bottom
panel has been rotated into local magnetic field coordinates so the horizontal
axis is the angle between the solar wind velocity direction and magnetic field at
that period, centered on that time.

Observational support for heating by plasma waves is displayed in Fig. 3.7.
In Section 2.5.1.2 the proton cyclotron and kinetic Alfvén wave were discussed,
while the proton cyclotron was discussed in the context of growth, this wave
experiences Landau damping as well. The magnetic helicity signature (not
discussed here, see He et al. [2011]) is consistent with the dark blue area for
the parallel proton cyclotron wave and red for the oblique kinetic Alfvén wave.
This observation shows that the waves are present and probably participate
in the increase of temperature. This is not irreversible heating, but a plasma
process that can increase the temperature.
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3.4.3 More sources of heating

To not be ignorant about solar wind heating, here are some more ways that
plasma can be heated, applicable to the solar wind. At low plasma beta particles
will scatter stochastically off structures on the scale size of the gyro-radius, for
which turbulence can provide through the energy cascade, heating the plasma
[Chandran et al., 2010].

The structure of the magnetic field fluctuations, when turbulent, can create
the setting for reconnection in current sheets intermittently spaced through-
out some plasma volume, whereby reconnection is an efficient heating process
[Osman et al., 2011]

Additionally, instabilities (treated in a broader context in Section 3.5), are
wave-particle interactions that will heat and cool the plasma, in particular
anisotropic to the magnetic field. Their role in heating is not well established.

3.5 Instabilities

Instabilities play a significant role in plasma physics (see Section 2.5) due to the
abundance of free energy when the system is not at equilibrium. They lead to
conversion of energy between the particles and fields (see Section 2.6). They are
a central theme in understanding weakly collisional plasmas and the literature
on them is extensive [Melrose, 1986, Gary, 1993].

In the solar wind, the role of instabilities, for protons, is well summarized in
Hellinger et al. [2006]. The temperature anisotropic proton cyclotron instability
was considered in the text surrounding Fig. 2.3. The basic prescription for this
class of instabilities is to study the electromagnetic dielectric tensor with a bi-
Maxwellian distribution function and keep the electrons Maxwellian. Then the
instability growth rate is well-parameterised by the two parameters T p⊥/T

p
‖ , β

p
‖ .

In particular, well enough to fit contours of maximum γ/Ωpc, where γ is the
growth rate, and Ωpc is the proton cyclotron frequency.

Figure 3.8 displays measurements made by the Faraday cup on the Wind
spacecraft over the years 1995-2001 for solar wind speed < 600 km /s. The
contours of the growth rates constrain the observations. It can be understood in
this way, that once the thresholds are crossed, the plasma is unstable. The linear
stage growth stage is secular so it quickly becomes unphysical; the quasi-linear
stage takes over (described in Section 2.6) where the particle energy is converted
into waves causing heating/cooling and relaxation of the plasma (i.e., decrease
of temperature anisotropy). This stage of the instability has less evidence, and
has only been supposed by looking at the details of the distribution function
for hints of quasi-linear heating [Marsch, 2006]. This will be treated again in
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Figure 3.8: Reproduced from Hellinger et al. [2006]. The joint histogram of the
proton temperature anisotropy (vertical axis) and the parallel proton beta (hor-
izontal axis) is indicated with the color bar at the right. The contours drawn
here represent the proton cyclotron instability (solid), parallel firehose insta-
bility (dashed), mirror instability (dotted), and the oblique firehose instability
(dash-dot).

Chapter 6. A major effect of the instabilities, in the quasi-linear stage, is to
restore the system towards an equilibrium state (see Section 2.6).

To speak a bit more about instabilities in the solar wind, the discussion
will steer away from measurements at 1 AU. Matteini et al. [2007] repeated the
analysis of Hellinger et al. [2006] with observations by the Helios spacecrafts at
radial distances closer to the sun to show that the expansion of the solar wind
causes the instabilities to play a role. The solar wind, just after acceleration
near to the sun, is at low beta, and as it expands the magnetic field strength
decreases according to the Parker spiral, and the density drops due to expansion,
which decreases the proton temperature anisotropy and increases the parallel
proton beta. This effect has been explored for other species and other effects
like collisions have been included to explain features of the solar wind at 1
AU in great detail by Yoon [2017]. Other mechanisms have been proposed for
instigating instabilities, such as large-amplitude compressive waves [Verscharen
et al., 2016], and Alfvén waves [Squire et al., 2017a], and turbulence [Servidio
et al., 2015].
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3.6 Observations of compressive fluctuations

In Section 3.6 the anisotropic limit of the MHD dispersion relations were shown
where two compressive waves, the Alfvén wave and the entropy wave were briefly
introduced. The Alfvén wave is the dominant wave mode observed in the solar
wind dating back to the famous study by Belcher and Davis [1971]. These waves
are not compressive until the wave frequency matches the gyrofrequency, then
called the kinetic Alfvén wave, which was discussed in Fig. 2.4.

One of the first studies conducted on compressive fluctuations by Burlaga
and Ogilvie [1970] using Explorer 34 data found that at large scales ∼ 2 day
averages, the thermal (only protons) and the magnetic field were correlated,
which is indicative of stream structure interactions. The accelerated solar wind
is patchy at its source, so streams will interact creating compressions of the fields.
This picture is also confirmed by McComas et al. [1995] who used Ulysses data
to study helio-latitudinal effects, where the solar source region is different i.e.,
the size of the patches is different. The finding is a different scale separating
the correlated and anti-correlated pressures. Both studies found that at smaller
scales the thermal and magnetic pressure are anti-correlated. An example of
what a spacecraft detection of the smaller scale structure looks like appears as
Fig. 3.9.

Much of the literature on compressive waves in the solar wind has been
guided by the theoretical study of Barnes [1966] who found that all compressive
wave modes are severely damped in a collisionless plasma. This led Burlaga and
Ogilvie [1970] to consider these measurements as structure, not waves. This
then led many studies on compressive fluctuations, where the anti-correlated
magnetic and kinetic pressure, was thought to indicate the perpendicular limit
of the slow-mode since its propagation speed and damping factor go to zero, but
continue to call them pressure balance structures [Tu and Marsch, 1995, 1994].

Single-spacecraft measurements of plasma quantities give a reduced picture
of the solar wind. It is difficult to procure wave properties, e.g., propagation
direction and speed. First, the polarization and magnetic helicity need to be
well-measured, which is difficult since the polarization depends on two directions
of the electric field, a notoriously difficult measurement to make. Next, the
measurement is affected by the flow direction. Typically the propagation angle
is the angle between the magnetic field and the direction of propagation of the
wave. The flow direction of the solar wind then dictates the observed direction
relative to the magnetic field, therefore the wave must be propagating in this
direction.

This forces researchers to rely on a set of diagnostics that are simply cross-
correlations of variables (e.g., cross-correlation of the temperature and magnetic
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Figure 3.9: Reproduced from Verscharen et al. [2019]. The green colors are
the electron density and the red colors are the magnetic field strength both
measured by the Cluster spacecraft. Light grey vertical lines indicate the time
scale of the panel that follows below.

field pressure) generated from linear theory [Gary, 1993]. While it is readily
implemented, it is significantly less direct than measuring the polarization and
does not give any information about propagation direction. The characteristic
cross-correlation used to identify the slow-mode is between the thermal pressure
and magnetic pressure. Due to the typical closure of fluid equations, being the
polytropic equation of state, the pressure and density are coupled in a simple
manner, so the density is used as well.

The electron density and magnetic pressure were found to be anti-correlated
across a broadband of frequencies [Kellogg and Horbury, 2005]. The same di-
agnostic was then used to show the fraction of fast-mode to slow-mode has to
be nearly zero [Howes et al., 2011] to explain the solar wind compressive fluctu-
ations. This diagnostic was combined with cross-helicity and the flow angle to
show that the compressive fluctuations are consistent with oblique slow-modes
[Yao et al., 2013]. The general consensus of the community is that compressive
fluctuations in the solar wind are indeed slow-modes [Verscharen et al., 2017].
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At scales between the proton and electron plasma frequencies the ion acoustic
wave has been directly observed by Gurnett and Frank [1978] with some follow
up studies. It appears that the wave is generated by the local electron heat flux.
While this is an interesting body of research, the focus of the thesis is on larger
scale compressive fluctuations because they probe the equation of state of the
solar wind.

The general idea is that they are produced by stream interactions [Tu and
Marsch, 1995] or expansion and cascaded to smaller scales (to be discussed in
Section 3.7), and produced by the parametric decay instability [Derby, 1978,
Bowen et al., 2018], which is a non-linear process. More on compressible fluc-
tuations and their role in turbulence is discussed in Section 3.7.3.

3.7 Solar wind turbulence

The theory of fluid plasma turbulence was treated in Section 2.7 where predic-
tions for the magnetic field energy spectrum were presented. Section 3.4 dis-
cussed a heating scenario where turbulence transports energy in scale to where
it can be efficiently converted to thermal energy. In this brief section, a short
history of observations that pertain to predictions and some fundamental results
will be shown.

3.7.1 The natural turbulence laboratory

Coleman [1968] presented the power spectral density of the magnetic field mea-
sured by the Mariner 2 spacecraft near to 1 AU. He showed for a large span in
frequency that the power spectral density follows a power law consistent with
the prediction of Kraichnan -3/2 (see Section 2.7), the power in the fluctuations
is anisotropic and the inferred heating rate is sufficient to describe the measured
proton temperature near 1 AU. This birthed the field of solar wind turbulence.

It did take a while before the solar physics community was convinced that
the solar wind is indeed turbulent. It was not until the Voyager spacecrafts
measured magnetic field power, to around 10 AU, that it become clear that only
turbulent transport models could describe the radial scaling of the magnetic field
fluctuations Zank et al. [1996].

The reason it is called a natural laboratory, coined by Bruno and Carbone
[2013], is due foremost to the fact that the plasma and electromagnetic fields
are directly measurable and the solar wind is turbulent. In addition, the flow
speed is large enough to apply Taylor’s assumption and the whole steradian
of magnetic field geometries are measurable. Taylor’s assumption is that when
the flow speed VSW is much faster than the temporal frequency (e.g. wave
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frequency) the time cadence ∆t of the measurement can be used to convert to a
spatial wavenumber k ≈ 1/∆t VSW [Bruno and Carbone, 2013]. The magnetic
field geometry allows measurements with respect to the magnetic field, and
together with Taylor’s assumption, the wavenumber parallel and perpendicular
to the magnetic field can be measured. Finally, the solar wind plasma spans a
wide range in the plasma beta (protons and electrons) and presents a variety of
large-scale structure which drives the turbulence.

Figure 3.10: Reproduced from Verscharen et al. [2019]. Measurements of the
magnetic field power spectral density, see the figure annotations, span more than
7 decades in spacecraft frequency. The color labelled frequencies are the inverse
correlation time fτc , and the proton inertial length fdp , the proton gyro-radius
fρp , the electron inertial length fde , the electron gyro-radius fρe all converted
to spacecraft frequency with Taylor’s assumption. The black labels indicating
power law in frequency, are typical to the solar wind at 1 AU.

The modern picture of the magnetic field power spectrum at 1 AU can
be seen in Fig. 3.10. The ranges characterized by different power laws in
frequency are present. First, the f−1 range where it is thought that fluctuations
at this scale break-up and then the energy is cascaded through the inertial
range. The inertial range scales as f−5/3 for the majority of the solar wind
measurements until frequencies near 10−1 Hz, which roughly coincide with the
proton gyroradius and proton inertial length. It is not emphasized in this figure,
but near to 10−1 Hz there is the so called transition region, before the dissipation
range, which is characterized by the f−2.8 power law. In these ranges, it is
thought that the electromagnetic energy is then able to interact strongly with
particles and energize or heat the plasma.
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3.7.2 Power laws and anisotropy

The anisotropy of the magnetic field power spectrum was suggested by Cole-
man [1968] and for decades after various models were proposed to explain the
anisotropy [Bruno and Carbone, 2013], as it is relevant to the heating mech-
anisms (see Section 3.4.2). Horbury et al. [2008] demonstrated that using the
local magnetic field frame provided the scaling laws consistent with the critical
balance model by Goldreich and Sridhar [1995].

Figure 3.11: Reproduced from Chen [2016] using data from the Wind space-
craft. The top panel is the spectral index of the magnetic field power spectrum
conditioned on the local magnetic field direction. The bottom panel is the ratio
of the Alfvén time to non-linear time. See Section 2.7.0.3 for definitions.

Figure 3.11 shows the exemplary evidence for critical balance from solar
wind measurements. In the top panel, the spectral index is conditioned on the
angle between the flow and local magnetic field direction, hence the anisotropy
of the wavenumber. Parallel to the field, the spectral index is near to -2, and
perpendicular it follows a -5/3 spectrum. The bottom panel shows the ratio of
the Alfvén time to non-linear time is consistently ∼ 1 throughout the inertial
range. The horizontal axis of Fig. 3.11 is converted from spacecraft frequency
to wavenumber with Taylor’s assumption.
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3.7.3 Compressive turbulence

Almost all theories of turbulence stem from incompressible MHD and compres-
sive turbulence is considered in the aftermath. This in part is due to the fact
that %90 of the fluctuations measured in the solar wind are non-compressive
[Chen, 2016]. For a long time, this was considered consistent with Barnes [1966],
but as stressed in Section 3.6, there is a compressive component. Some theories
of compressive turbulence were reviewed in Section 2.7.0.4.

Turning towards observations, Fig. 3.12 displays measurements of the power
spectrum of the density and magnetic field strength alongside the magnetic
field. Seen here, both power laws are very similar to that of the magnetic
field providing evidence that they are passive to the magnetic field fluctuations
discussed in Section 2.7.0.4. Additionally, the power in these fluctuations is
much reduced.

Figure 3.12: Reproduced from Chen [2016] using data from the Wind spacecraft.
Power spectral density, normalized to be unitless, for the quantities annotated
on the plot. Black lines indicate the slope of the power law.

The anisotropy of the compressive fluctuations was addressed in Chen [2016]
as well, reproduced as Fig. 3.13. Here it seen that the compressive fluctuations
are more anisotropic than the Alfvénic fluctuations.

While it seems that there is evidence for a passive view of the compress-
ible fluctuation, seen in Fig. 3.12, there is also opposing evidence, seen in Fig.
3.13, but present studies and theory do not have the clarity necessary to make
a definitive statement about the role of compressive fluctuations in plasma tur-
bulence. For example, the lack of Alfvénic fluctuations is accompanied by more
compressible fluctuations [Bavassano and Bruno, 1989], and there is evidence
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for the interplay of compressible slow-modes and Alfvén modes located at tem-
perature enhancements in the solar wind [He et al., 2015a].

Figure 3.13: Reproduced from Chen [2016] using data from the Wind spacecraft.
The colors are annotated on the top panel. The bottom panel is the ratio.
The horizontal axis is the perpendicular wavenumber converted with Taylor’s
assumption.

3.8 Instruments

The instruments onboard spacecrafts will be briefly introduced for the purpose
of discussion. The instruments are the electrostatic analyzer and the fluxgate
magnetometer.

3.8.1 Top-hat electrostatic analyzer

The electrostatic analyzer is employed to study the fine structure of the distribu-
tion function due to the ability to resolve the particle energy to high precision.
Figure 3.14 shows a particle entering the collimator and hitting the detector. As
seen on the bottom part of the figure, a voltage difference of 2E across the two
shells. The resulting electric field will deflect the entering particle, if the kinetic
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energy to charge ratio of the particle is within the right range, the particle will
follow through the collimator into the detector. The voltage difference can be
swept through a set of values to resolve a range of energy.

Figure 3.14: Reproduced from Verscharen et al. [2019]. The top-hat design
becomes visible from the figure. This is a slice through the instrument, which
is symmetric about the ẑ direction, through the center of the instrument. The
particle of charge ±qj will follow the trajectory in blue through the collimator
to the detector if it suffices a condition imposed by voltage difference of 2E .

The detection is typically done by electron multipliers. This is done by
constructing a plate with an electrostatic potential, so that when a charged
particle strikes it, a cascade of electrons occurs. In a simple sense, the detection
is amplified and a current is produced which can be counted by a detector.
After the detection, there is a dead time, when the plate has not charged to its
detection state.

Returning to Fig. 3.14, looking at where the particle is entering the collima-
tor, there is a field of view that the particles must also suffice to be detected.
Typically, the spacecraft relies on the spin of the spacecraft to capture the full
view, say rotating around ŷ. Due to the top-hat design, the particle can enter
from all directions in the x̂, ŷ - plane. This provides the number of particles with
two angular coordinates and energy per charge. The number of particles col-
lected in a time interval is then the collection volume times the density. Then
it can be related to the particle distribution function used in plasma physics
theory.

This distribution function can then be rotated or transformed into a cartesian
coordinate system. Moments of this distribution function are often reported,
such as the density or pressure. This is done in a simple manner, considering the
energy and angle coordinate system and then making the appropriate moment.
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3.8.1.1 Wind electrostatic analyzer

The ESAs on Wind are described in Lin et al. [1995a] where details on energy
and angular resolution can be found. The name of the suite of instruments is
called 3DP which consists of two electron and two proton electrostatic analysers,
and then two additional solid state telescopes that detect electrons and protons
to very high energies. The PESA-L electrostatic analyser measures solar wind
protons, where “L” corresponds to the lower sensitivity which covers the energy
range of the protons 3 eV to 30 keV. Throughout out the thesis PESA-L and 3DP
refer to the electrostatic analyser. The data products are off loaded at different
time cadences and quality. A couple capabilities of Wind worth mentioning, is
that there are two positive ion ESAs, one for the lower energies and another for
the higher energies, making the accuracy on the core consistently good. Second,
the instruments have dedicated microprocessors that compute the moments of
the distribution function.

3.8.2 Magnetometer

Measurements of the magnetic field are typically made by a fluxgate magne-
tometer for low frequency < 10 Hz or a search coil magnetometer for > 10
Hz. In this section a brief description of the fluxgate magnetometer is given
since it is the instrument on the Wind spacecraft that provides the magnetic
field database used for this thesis. The instrument is called the magnetic field
instrument (MFI) [Lepping et al., 1995].

The description is based on Figure 3.15 from Verscharen et al. [2019]. The
basic idea is a ferromagnet wrapped by two coils, one that is the drive coil and
the other is the sense coil. Starting with the top left panel, the black line Hd(t)

is an applied triangle wave in time, to the drive coil. If there is an external field
∆Hz, which is to be measured, the resulting field is H(t) = ∆Hz +Hd(t). It is
off set. The ferromagnet is chosen so its property Hc, the saturated field (the
maximum internal field due to the applied field) is below the maximum of the
driven field. It is chosen so that it saturates for positive and negative values of
H. This can be seen in the center left panel, where the horizontal axis is H.
The internal field, which experiences the saturation, is B on the vertical axis.
On this panel, the time dependence cannot be seen; the blue shaded regions
are when the field is saturated, corresponding to measurable saturation in B(t)

shaded in pink (center right panel). Notice how the offset effects the signal. The
waveform of the internal magnetic field induces a voltage via the time dependent
magnetic flux, which can be measured by the sense coil seen in the bottom right
panel.

Clearly, the offset provides the differences between the skinny and wide pink
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Figure 3.15: Reproduced from Verscharen et al. [2019]. The quantities here
are the period of the applied field Π, the amplitude of the applied field H0, the
critical value of the ferromagnet Hc, the applied field Hd(t) (a current is applied
to give this field), ∆Hz is the component of the external field to be measured,
B(t) is the magnetic field inside the material, Bs is the critical value of B(t) due
to Hc, Es is the induced voltage in the fluxgate due to B(t), which has amplitude
E0. The blue shaded regions indicate when H(t) (defined in text) is saturated
at ±Hc and the pink shaded regions indicate when B(t) will be consequently
saturated at Bs.

shaded regions. A Fourier expansion of the signal then provides a measurement
of the offset and the external magnetic field. When there is no offset, the signal
is even, so the odd order of the expansion permit a measurement.

3.8.3 Faraday Cup

The Faraday cup makes measurements of ions by imposing a voltage barrier
and measuring the current that passes the barrier. They have long been used
on spacecrafts to detect ion velocity and temperature. For the purposes of this
thesis, comparison between the temperature measurement by the electrostatic
analyzer and Faraday cup are made, so the premise of the Faraday cup is briefly
explained.

Figure 3.16 displays the basic idea of the instrument, see the caption for
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Figure 3.16: Reproduced from Verscharen et al. [2019]. This diagram aids the
explanation of how the current is measured in plasma environments. The quan-
tities are E the voltage, E0 the offset voltage, ∆E the peak-to-peak amplitude, t
the time, vz the normal component of the ion velocity, and v(c)

j the cutoff speed
due to the voltage. Particle trajectories are shown in blue which enter the wide
aperture which are then subjected to a voltage that is applied to middle, shown
as vertical dashed lines. Some particles hit the detection plate, shown as a ver-
tical black line, which receives the current.

the definition of the quantities and the various lines that compose the cartoon.
Particles, shown as blue trajectories, will enter the aperture, and react to the
voltage (E) applied to the middle grid (middle vertical dashed line). The particle
will pass through if the normal component of the incoming particle’s velocity is
greater than the cutoff velocity, and be deflected if not. The voltage is varied
between two states E = E0 ± ∆E/2, which is represented with a graph in the
top left of the figure. The measured current is then differenced between these
two states. This primary measurement is then used to infer the particles energy
distribution. Additional reasons that the current is varied in time is to deflect
particles of opposite charge e.g., photoelectrons, as the difference has little to
no effect on these particles.

A set of voltages and voltage steps then define the resolution and range of
energy the Faraday cup will detect. The detection of differential current is then
related to the charge, aperture area, normal velocity and the particle distribution
function. To infer information about the particle distribution function, a few
methods exist, and for the Faraday cup, either the particle distribution function
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is inferred through the differential current to calculate moments (e.g., density,
velocity, etc.) or model distributions can be fit.

The Wind Faraday cup instrument is explained in Ogilvie et al. [1995]. The
two Faraday cups provide measurements of the density, velocity and temperature
of the solar wind ions. The temperature anisotropy to the background magnetic
field, is used in this thesis to better understand the data products that are
measured by the electrostatic analyzer. For further information on how the
temperature anisotropy is calculated, see [Kasper et al., 2006].
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Chapter 4

Collisional-kinetic
magnetohydrodynamics: dispersion
relation

In this thesis the kinetic magnetohydrodynamic equations (KMHD) are studied
numerically to form a basis for the understanding of compressive fluctuations in
the solar wind. The essential attributes retained in this description is the col-
lisionless damping of hydromagnetic waves. The essential insight of the thesis
is that effective collision processes act to lessen the role of collisonless damping
and alter the density, pressure and magnetic field fluctuations in a physically
identifiable manner. This leads to a measurement of the effective collision fre-
quency. This effective collision processes is modelled in the kinetic equation i.e.,
the KMHD equations. The final set of equations are linearised and a numerical
model is built to study the properties of the waves which are compared with
solar wind measurements in Chapter 5.

The history and utility of the KMHD have been explored in Section 2.3.
In Section 2.2.3, the Bhatnagar-Gross-Krook operator (BGK) was introduced,
which plays the role of the effective collision operator in this thesis. The com-
bined system of equations, now called the KMHD-BGK, includes the physical
effects of transit-time damping, Landau damping, and effective collisionality.
The effective collisionality modulates the kinetic effects permitting the explo-
ration of numerical solutions between the fluid and kinetic regime.

A flow chart of the KMHD-BGK or collisional-kinetic magnetohydrodynamic
equations has been provided as Fig. 4.1 to show the derivation of the final equa-
tions. To be clear about the approximations and regions of applicability of these
equations, they are appropriate to a non-relativistic plasma vA/c � 1, where
vA is the Alfvén speed and c is the speed of light, so rest masses can be used and
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no displacement currents arise. The system is assumed to be gyrotropic, the
so-called magnetized plasma approximation, where the gyroradii ρs are much
smaller the characteristic length scales (ρs � L), e.g., an acoustic wavelength.
Formally, this permits both the gyrotropic assumption and the ignorance of the
0th order (background) electric field (see Section 2.3). Last, the proton iner-
tial length dp is taken to be much smaller than the characteristic length scales
(dp � L) so that the ideal Ohm’s Law can be used. These assumptions can be
checked with measurements and can be ensured through a normalization when
constructing a numerical code.

The added assumption here, due to collision operator, is that the effective
collision frequency, νs, is much smaller than the gyrofrequency νs � Ωs. This is
necessary when working through the ordering of Kulsrud [1983] which provides
the formal arguments that set the background electric field to zero, enforcing a
gyrotropic distribution function.

Collisional-kinetic 
magnetohydrodynamic equations

Vlasov-Maxwell

+ Collision operator 
(Bhatnagar- Gross-

Krook)

Collisional-
kinetic MHD

Dispersion relations for 
classic slow, fast and 

Alfvén waves 

Assumptions: Expand in small 
gyroradius, electron-proton mass 
ratio, proton inertial length, and 
Alfvén to light speed.

Perturbations in plasma 
parameters e.g., δn, δB

Parameters: 
, , , , , k βp θb̂,k̂ λeffmfp Tp/Te

λeffmfp/λeffmfp,electrons

Drift-kinetic equation Continuity and 
single-fluid 
momentum 
equations

Induction equation

Figure 4.1: Starting at the top box labelled “Vlasov-Maxwell” three branches
pass to the “Collisional-kinetic MHD” box, identifying the constituents of the
set of equations. The two branches leaving the “Collisional-kinetic MHD” box
are the linear analysis that produce dispersion relations and perturbations of
the plasma parameters. The parameters of the model in order according to
the box labelled “Parameters” are the wavenumber, proton beta, propagation
angle relative to the background magnetic field, the effective mean-free-path, the
proton to electron temperature ratio, and the effective mean-free-path ratio.
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The system of equations, in particular the assumptions, are valid for low
frequency / large wavelength scales of the solar wind (Chapter 3). The normal
modes of this system contain the compressive slow-mode (Section 3.6) which is
the dominant mode observed in the solar wind. Compressive fluctuations per-
turb quantities like the pressure and density, which are sensitive to the equation
of state, and the effective mean-free-path. Therefore, a model of the slow-mode
wave is useful to measure the effective mean-free-path (Chapter 5).

This Chapter introduces the system of equations in Section 4.1 where most
of the derivations appear in the appendices. The normal modes of the system
of equations are computed in Section 4.2. Then they are normalized and the
eigenvalue problem is constructed in Section 4.3. The numerical methods used
to solve the system of equations appear in Section 4.4. In Section 4.5 the numer-
ical solutions are presented where the dispersion relation for various parameter
regimes is shown. Finally, the method of correlations and amplitude ratios of
the fluctuating plasma quantities is shown in Section 4.6.

4.1 Equations
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is derived in Appendix B.1. The quantities relevant to a particle species are
given a sub/superscript “s” denoting “e” for electrons and “p” for protons. The
quantities are the unit magnetic field vector b̂i = bi/|bj |, the parallel (perpen-
dicular) peculiar velocity w‖ (w⊥), the guiding-center velocity usi = usi (t, xi),
the parallel electric field E‖, fs = fs(t, xi, vi) is the single-particle distribution
function, and νs is the effective collision frequency. The equilibrium distribution
function Fs = Fs(vi;ns, Ts) has space and time dependence through the density
ns = ns(t, xi) and the temperature Ts = Ts(t, xi).

The derivation in Appendix B.1 transforms into the guiding center so that
the peculiar velocity vector is wi = vi − usi where vi is in the laboratory frame
and usi is the guiding center frame. This is the essential idea behind the drift
kinetic approach is to choose usi to be the E × B drift velocity because this
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frame, to 0th order is gyrotropic, so one of components of the peculiar velocity
can be neglected. Non-gyrotropic terms constitute an immense difficulty so this
simplification is powerful [Hunana et al., 2019b].

Moments of the kinetic equation are necessary for the density, velocity and
pressures. It is easier to take moments of the Vlasov equation, with the BGK
operator as the collision operator, and then apply the assumptions, rather than
taking moments of the drift kinetic equation (Eq. 4.1). The drift kinetic equa-
tion is useful for breaking the moment-chain linearly at 2nd order, a more com-
plex task. The 0th order moment gives the continuity equation,
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nsu

s
i = 0, (4.2)

where the right hand side is zero since the BGK operator conserves particle
number (see Section 2.2.3). The 1st order moment gives the momentum equa-
tion,
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where the total pressure tensor is psij , which due to the assumption of gyrotropy,
will be reduced. There is no collisional term because the BGK operator con-
serves momentum. The typical approach is to add the proton momentum equa-
tion to the electron momentum equation to eliminate the electric field with the
quasi-neutral assumption np = ne. Then use the mass ratio mp � me to ignore
the electron inertia, giving the single-fluid momentum equation,
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The final term here is the current ji =
(
upjqpnp + uejqene

)
. The current is

prescribed from Ampere’s Law (Eqs. 2.38) by using the non-relativistic approx-
imation vA/c� 1 to neglect the displacement current,
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The total momentum equation is then,
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Next, a time-evolution equation for the magnetic field is derived from Faraday’s
Law (Eqs. 2.38) by deriving an Ohm’s Law for electric field. The procedure is
to multiply the proton and electron momentum equations by their respective
charges qs and add them, then using Ampere’s and Faraday’s Laws to rewrite the
equation. Next, the equation is reduced by using the smallness of the mass ratio
me/mp, the proton inertial length dp and the non-relativistic approximation
vA/c� 1. Neglecting the Hall current gives,

Ei = −εijkupj bk. (4.7)

Inserting this into Faraday’s Law gives,
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The Eqs. D.26, 4.6, and 4.8 are closed by an equation for the pressure, which
comes from the drift-kinetic equation. In this Chapter we are interested with
normal modes in the linear analysis.

4.2 Normal modes

The system of equations has been assembled in Section 4.1 and now Eqs. 4.1,
D.26, 4.6, and 4.8 will be linearized. The perturbations are,

bi = b′i + b0b̂i,

E‖ = E′‖,

usi = us′i ,

fs = f ′s + F 0
s ,

F 0
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(
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exp
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− ms
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}
,

ns = n0,s + n′s → ns + n′s,

p⊥ = ps⊥,0 + ps′⊥ → ps⊥ + ps,′⊥ ,

p‖ = ps‖,0 + ps′‖ → ps‖ + ps,′‖ , (4.9)

99



where the primed variables are the fluctuations about the unprimed variables
(static background). First, since the guiding center frame is used, the back-
ground velocity field is zero. The background electric field is ignored, typically
this is argued to be zero [Kulsrud, 1983], but this requires a reduced descrip-
tion, which is inconsistent with the equilibrium distribution function used in the
BGK operator. Formally, both need to be assumed for a non-reduced descrip-
tion. This detail is discussed at length in Section 2.3. The distribution function
fs is perturbed about a static Maxwellian F 0

s and the equilibrium distribution
function used in the BGK operator Fs is the local Maxwellian, so ns, Ts are
perturbed as well.

The linearization of these equations with the above perturbations are kept to
the appendices. The linearization of the drift kinetic equation (Eq. 4.1) appears
in Appendix B.1.2, the continuity equation (Eq. D.26) in Appendix B.2, the
single-fluid momentum equation (Eq. 4.6) in Appendix B.3, and the induction
equation (Eq. 4.8) in Appendix B.4.

4.2.1 Small-amplitude Fourier analysis

The temporal Fourier transform of the system of equations, treats only the
asymptotic solutions since it ignores the ballistic response, see Section 8.5 of
Krall and Trivelpiece [1973]. The Fourier transform of the variables appears as,
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= n′s(x⊥, x‖, t) exp{i(−k⊥x⊥ − k‖x‖ + ωt)},

p̃s⊥(x⊥, x‖, t) =
ms

2

∫
d3w w2

⊥ f̃s(w‖, w, t)

= ps,′⊥ (x⊥, x‖, t) exp{i(−k⊥x⊥ − k‖x‖ + ωt)},

p̃s‖(x⊥, x‖, t) = ms

∫
d3w w2

‖ f̃s(w‖, w, t)

= ps,′‖ (x⊥, x‖, t) exp{i(−k⊥x⊥ − k‖x‖ + ωt)}. (4.10)

These can inserted directly into the linearized equations so that wave properties
can be studied. The Fourier analysis is kept to the Appendices. The Fourier
transform of the perturbed distribution function is shown in Appendix B.1.3,
and then moments are taken, beginning in Appendix B.1.4, for the macroscopic
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variables. Appendix B.1.4 introduces the plasma dispersion function and various
results on the plasma dispersion function.

The density moment, the perpendicular pressure, the parallel pressure are
Fourier analyzed and then they are simplified in Appendix B.1.4.4. Next, the
Fourier analysis of the continuity equation is in Appendix B.2.2, the single-fluid
momentum in Appendix B.3.2, and the induction equation in Apppendix B.4.2.

4.3 Normalization and eigen-problem

The following normalizations are introduced,

ν → ν ωp, ñs → ñs np, ũpα → ũαvs, ω → ω ωp,

b̃α → b̃αB, p̃sα → p̃sα pB , kα → kαv
−1
s ωp (4.11)

where α =⊥, ‖ and where the plasma frequency ωp = (4πnpq
2
s/mp)

1/2, the
Alfvén speed vA = B/(4πnpmp)

1/2, the thermal speed vs = (2kBTs/ms)
1/2 and

the magnetic pressure pB = B2/8π. The temperature is defined Ts = ps/nskB .
The proton plasma beta βp = v2

p/v
2
A = pp/pB = 8πnpkBTp/B

2 where, ps =

(2ps⊥ + ps‖)/3 is the background total pressure. The linear Fourier analyzed
equations after normalization,

ωñ−
(
k‖ũ‖ + k⊥ũ⊥

)
= 0, (4.12)

ωũ⊥ +
1

βp

(
− k⊥b̃‖ + k‖b̃⊥

)
− k⊥

2βp

(
p̃p⊥ + p̃e⊥) = 0, (4.13)

ωũ‖ −
k‖
2βp

p̃‖ = 0, (4.14)

ωb̃⊥ + k‖ũ⊥ = 0, (4.15)

ωb̃‖ − k⊥ũ⊥ = 0, (4.16)

appearing in order as continuity from Eq. B.95, perpendicular momentum Eq.
B.114, parallel momentum Eq. B.111, perpendicular induction Eq. B.122, and
parallel induction Eq. B.121. The argument of the plasma dispersion functions
Z(ζs) is redefined,

ζs = ζωs + ζνs , (4.17)

ζνp =
iνs
vs|k‖|

, ζωs =
ω

vs|k‖|
(4.18)
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and then for protons and electrons the normalization,

ζωp =
ω + iνp
vp|k‖|

→ ω + iνp
|k‖|

, (4.19)

ζωe =
ω + iνe
ve|k‖|

→ ω + iνe
|k‖|

√
Tpme

Temp
. (4.20)

The normalized Eq. B.90 and Eq. B.85 become,

ñs[1 + 2ζ2
sR(ζs)]−

p̃‖
βs
R(ζs) = ζωs b̃‖[2ζsR(ζs)− Z(ζs)]

+
3

2
ζνs ñs

[
2ζsR(ζs)− Z(ζs)

]
+
ζνs
2

(
2

3

p̃s⊥
βs

+
1

3

p̃s‖
βs

)[
Z(ζs)− 2ζsR(ζs)

]
,

(4.21)

ñs

(
1 + ζνsZ(ζs)

)
− p̃s⊥
βs

(
1 +

2

3
ζνsZ(ζs)

)
− ζωs b̃‖Z(ζs)−

1

3
ζνs
p̃s‖
βs
Z(ζs) = 0,

(4.22)

where R(ζs) = 1 + ζsZ(ζs) is used for brevity. The derivations for these are well
covered in Appendix B.1.4.4. These equations are the linearized KMHD-BGK
equation of state. Equations 4.21, 4.22 have been studied by Sharma et al. [2003]
who investigated subsidiary expansions ζωs /ζνs � 1 on these equations to show
the linearized adiabatic equation of state can be recovered. This is essential;
the adiabatic equation of state is included in the KMHD-BGK description.
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Now the linear system of equations can be written,

ω 0 k‖/βp −k⊥/βp 0 −k⊥/2βp
0 ω 0 0 0 0

k‖ 0 ω 0 0 0

−k⊥ 0 0 ω 0 0

−k⊥ −k‖ 0 0 ω 0

0 0 0 Ap64 Ap65 Ap66

0 0 0 Ap74 Ap75 Ap67

0 0 0 Ae64 Ae65 0

0 0 0 Ae74 Ae75 0

0 −k⊥/2βp 0

−k‖/2βp 0 −k‖/2βp
0 0 0

0 0 0

0 0 0

Ap67 0 0

Ap77 0 0

0 Ae66 Ae67

0 Ae76 Ae77





ũ⊥
ũ‖
b̃⊥
b̃‖
ñ

p̃p⊥
p̃p‖
p̃e⊥
p̃e‖


=



0

0

0

0

0

0

0

0

0


,

(4.23)

with the definitions,

As64 = −ζωZ(ζs), (4.24)

As65 = 1 + ζsνZ(ζs), (4.25)

As66 = − 1

βs

[
1 +

2

3
ζsνZ(ζs)

]
, (4.26)

As67 = −ζ
s
νZ(ζs)

3βs
, (4.27)

As74 = −1− 2(ζs)2R(ζs) +R(ζs)− ζsν
[
Z(ζs)− 2ζsR(ζs)

]
, (4.28)

As75 = 1 + 2(ζs)2R(ζs) +
3

2
ζsν
[
Z(ζs)− 2ζsR(ζs)

]
, (4.29)

As76 = − 1

3βs
ζsν
[
Z(ζs)− 2ζsR(ζs)

]
, (4.30)

As77 = − 1

βs

{
R(ζs) +

1

6
ζsν
[
Z(ζs)− 2ζsR(ζs)

]}
. (4.31)

This system of equations can be solved with a numerical recipe for the plasma
dispersion relation and a numerical root finder.
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4.4 Numerical Methods

The numerical methods include a numerical method for the integral form for the
plasma dispersion relation function, a root finding algorithm, and an eigenvalue
decomposition. A flow chart of the numerical method is presented as Fig. 4.2.

Numerical Method
Analytical estimate: 

ω
Parameters: 

, , , , , k βp θb̂,k̂ λeffmfp Tp/Te λeffmfp/λeffmfp,electrons

Plasma Dispersion function: 

Z(ζs), ζs = ω + iνs

k∥vs

 Matrix of linear coefficients: 
𝕂ij

Numerical value: 
ω

(a) Numerical 
solution

(b) Zeros of the 
determinant  Matrix of linear coefficients: 

𝕂ij

Eigenvalues/vector: 
 ũ⊥, ũ∥, b̃⊥, b̃∥, ñ, p̃p

⊥, p̃p
∥, p̃e⊥, p̃e∥

(c) SVD 
decomposition

Numerical solutions: 
The current numerical 

value for  becomes the 
“Analytical estimate” for 

new parameters.

ω

Figure 4.2: The numerical method takes parameters and an analytical estimate
of the complex frequency to output the numerical complex frequency and the
eigenvalues/vectors of the primary linear system (Eq. 4.23), which are the
primary numerical results of the thesis.

Starting at the top box, the parameters are set and the analytical estimate
are inserted into the matrix of linear coefficients defined in Eq. 4.38 and the
plasma dispersion function. The technique outlined in Sec. 4.4.1 is used to gen-
erate a numerical solution for the plasma dispersion function, which is inserted
into the matrix of linear coefficients, labelled (a). Using the numerical technique
outlined in Sec. 4.4.2 a zero of the determinant is found, this is labelled (b).
The numerical value of the complex frequency can then be used to produce the
eigenvalues and eigenvectors with the method discussed in Sec. 4.4.3, labelled
(c) in the flow chart. The numerical value for the complex frequency can then
be inserted back into the top box as the analytical estimate. This produces the
traditional dispersion relation, if k is altered, or trends with parameters such as
β, to compare with measurements.
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4.4.1 The plasma dispersion function

The plasma dispersion function is central to linear kinetic theory and is the
primary modification of the plasma equations when studying warm plasmas.
Some useful results appear in Appendix B.5. The function,

Z(ζs) =
1√
π

∫
CL

du
exp{−u2}
u− ζs

, (4.32)

where the argument ζs has been defined. It can be seen that ζs is the location
of poles in complex space, to which the integral path CL is modified to encircle
and use the residue theorem to give the complex frequencies of the wave modes.
More on the plasma dispersion function can be found in Appendix B.5. The
plasma dispersion function can be expanded in terms of it’s argument, often
used for analytical treatment,

Z(ζs) ≈ i
√
π exp

{
− ζ2

s

}
− 2ζs

(
1− 2

ζ2
s

3
+ 4

ζ4
s

15
+ ...

)
, |ζs| � 1,

Zkin(ζs) = i
√
π exp

{
− ζ2

s

}
− 2ζs

(
1− 2

ζ2
s

3
+ 4

ζ4
s

15

)
, (4.33)

Z(ζs) ≈ iσ
√
π exp

{
− ζ2

s

}
− 1

ζs

(
1 +

1

2ζ2
s

+
3

4ζ4
s

+ ...

)
, |ζs| � 1,

Zfluid(ζs) = iσ
√
π exp

{
− ζ2

s

}
− 1

ζs

(
1 +

1

2ζ2
s

+
3

4ζ4
s

)
, (4.34)

where,

σ = 0, I
{
ζs
}
> 0,

σ = 1, I
{
ζs
}

= 0,

σ = 2, I
{
ζs
}
< 0. (4.35)

The definitions “fluid” and “kinetic” are clear when recalling the argument,

ζs =
ω

vs|k‖|
+

iνs
vs|k‖|

, (4.36)

so that for small k‖ and large νs the fluid case |ζs| � 1 and for large k‖ and
νs = 0, the kinetic case |ζs| � 1 is consistent. To get a sense of the plasma
dispersion function Figure 4.3 is provided. The left column of panels plot the
real parts and the right column plots the imaginary parts. The top panels are
the fluid approximation (Eq. 4.34) of the numerical solutions of Eq. B.132
which are displayed as the middle panels. The bottom panels are the real
(left) and imaginary (right) kinetic approximation (Eq. 4.33). The presence of
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Figure 4.3: The imaginary (right column) and real (left column) parts of the
functions shown as the top panels Eq. 4.34, middle panels Eq. B.132, and
bottom panels Eq. 4.33. This labelling can be seen as text, directly in the
panel. The color bar is log-normal until ±10−1 and then is linear between
±10−1.

the collision frequency in the argument shown as Eq. 4.36 increases the total
imaginary part. The imaginary part of ω requires a complicated solution to Eq.
4.23, but in general the imaginary part of Eq. 4.36 will be positive, so it is
important to resolve the plasma dispersion function there.

To show the accuracy of the expansions, Figure 4.4 is provided. The norm
of the difference between the functions is shown, the upper right hand corner of
the panels is to be understood as,

∆X (ζs) = X (ζs)− Z(ζs), (4.37)

where Z(ζs) is Eq. B.132 and X is one of the expansions. The regions of ap-
plicability, where the color is white, are consistent with approximations written
in Eq. 4.34 and Eq. 4.33. Comparing the two regions where the approxima-
tions hold well, it is apparent that the actual function (Eq. B.132) will need
to be evaluated. The main point here is that for large imaginary part I{ζs}
neither approximation holds well, so the full numerical solution for the plasma
dispersion relation must always be considered.
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Figure 4.4: The difference between the expansions (see Eq. 4.37) and the nu-
merical calculation of the dispersion relation function (see Eq. 4.37) for the
kinetic expansion (Eq. 4.33) in the top panels and fluid expansion (Eq. 4.34)
in the bottom panels.

4.4.2 Root finding

The root finding algorithm is the ‘hybrid’ technique from More et al. [1980],
the infamous “MINIPACK”, which is the basis for all modern least-square tech-
niques. The general method was proposed by Powell [1964] to efficiently find
minimums of several variables without taking derivatives. The technique is
called the conjugate-gradient method which involves a series of steepest-descent
steps with intermediate orthonormalisation (or conjugacy) to decrease the num-
ber of steps necessary, therefore increasing the efficiency. The method does re-
quire the input of an initial guess that does need to be near the minimum of
the function, but that turns out to be an excellent property for the plasma dis-
persion functions since it contains an infinite number of zeros. The physically
relevant solution is the one that is least damped and this can be found easily,
rather than finding the infinite set of least damped solutions.

Fig. 4.5 has been provided to get a sense of what the functions, which will
be minimized, look like. It is convenient to redefine Eq. 4.23,

KijVj = δi′i, (4.38)

where Kij is the matrix containing all the coefficients from 4.23 (not rewritten
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Figure 4.5: The real (imaginary) part of the determinant of Eq. 4.23 on the
left (right) columns for a span of I{ζs} on the vertical axis and R{ζs} on
the horizontal axis. The changed parameters between the rows are the k‖λeff

mfp

product.

here) and then the two definitions,

Vj =



ũ⊥
ũ‖
b̃⊥
b̃‖
ñ

p̃p⊥
p̃p‖
p̃e⊥
p̃e‖


, δi′i =



0

0

0

0

0

0

0

0

0


, (4.39)

where δi′i is defined so that i′ 6= i. Comparing the left and right columns from
4.5 there are overlapping contours of zero (where the light blue turns to dark
green), where the location of the root will be. The rows plot the determinant for
different values of k‖λeff

mfp. This choice of parameters will be explained in 4.4.3,
but for now λeff

mfp = vp/νp. Looking at the top two panels, it can be seen that

108



there are many zeros, but with increasingly negative I{ζs}. The point here is
that when using the conjugate-gradient method on a function with infinite roots
a good initial guess (near to the least damped solution) must be performed to
obtain the least damped solution, in particular for the top panels of Fig. 4.5.

4.4.3 Eigen-problem solutions

The numerical method to solve Eq. 4.23 once a solution for ω has been found
is the eigen-decomposition method called singular value decomposition (SVD).
SVD is a highlight of linear algebra, but for the purposes of this thesis, this
section is simplified to the essential information. The modern numerical imple-
mentation of SVD appears in the “LAPACK” software library [Anderson et al.,
1999]. SVD is a numerically efficient way to find the nullspace of a matrix, such
as the problem in Eq. 4.23.

The essential idea is to find the eigenvector corresponding to the eigenvalue
equal to zero. This eigenvector is a solution to the problem AijXj = δi′i. In
practice, the smallest eigenvalue is found, and the corresponding eigenvector is
used as a solution for Vi defined in Eq. 4.53.

4.5 Numerical Solutions

In this section numerical solutions to the equations and a connection to their
physical interpretation will be made. The parameters of the model appear in
Table 4.1 with descriptions. The proton beta βp, temperature ratio Te,0/Tp,0,

Parameter Description

λeff
mfp Effective mean-free-path of protons
θb̂,k̂ Angle between wave vector and magnetic field
βp Proton beta
k Norm of wavenumber
Te,0/Tp,0 Electron to proton temperature ratio
λeff

mfp/λ
eff
mfp,electrons Proton to electron effective mean-free-path ratio

Table 4.1: List of input parameters to solve the system of Eq. 4.23.

and wavenumber k can be directly measured in the solar wind. The remain-
ing quantities do require a theory. Due to the observations presented by the
solar wind, both βp and k can be measured reliably enough to be dependent
parameters in an ensemble study. This leaves four parameters, two of which (
θb̂,k̂ and λeff

mfp) are to be measured. While Te,0/Tp,0 can be measured, fixing
the value along with fixing λeff

mfp/λ
eff
mfp,electrons, will simplify the final analysis
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conducted in Chapter 5. The next sections show how these parameters effect
the solutions, focussing on repeating past results, and justifying the fixing of
model parameters.

The method of solution of Eq. 4.23 is to use analytical forms of the wave of
choice for the initial guess of the root finding algorithm in Section 4.4.2. Then,
a single parameter (Table 4.1) is changed slightly, using the previous solution
as the initial guess. This allows dispersion relations ω(k) to be produced, and
as a function of β etc. At these steps, the solution for Vj of Eq. 4.53 from the
system of equations in Eq. 4.23 is computed numerically with the method of
Section 4.4.3. This method forms the basis of all the numerical solutions shown
throughout the Thesis.

The mode that is studied in this Chapter has the name ion-acoustic in the
collisionless regime and the slow-mode in the collisional regime. This will be
clarified in the next section. An introduction to the physics of these modes is
given in Section 2.5.

4.5.1 Dispersion relation

The method for solving Eq. 4.23 for ω, the complex wave frequency, is detailed
at the end of Section 4.5. The complex frequency will be decomposed,

R{ω} = ωr, I{ω} = γ, (4.40)

as is typical to look at the pseudo-normal mode frequency ωr and the damp-
ing/growth rate γ. The parameters from Table 4.1 will be examined in the
coming sections. The focus will be on how λeff

mfp, θb̂,k̂, βp, k effect the solutions.
The remaining two parameters will be set to values of,

Tp,0
Te,0

= 1,
λeff

mfp

λeff
mfp,electrons

= 1, (4.41)

for now and then discussed briefly at the end. These parameters are varied in
Sections 4.5.2 and 4.5.3.

4.5.1.1 As a function of wavenumber

The solutions as a function of wavenumber and the effective mean-free-path will
be displayed in this section. The reasoning behind this pair of parameters is in
the argument of the plasma dispersion function,

ζs =
ω

k‖vs
+

i

k‖ λeff
mfp

, (4.42)
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from Eq. 4.17, using νs = vs/λ
eff
mfp. The transition between the collisional

and collisionless regime can be understood through the product, by taking k =

2π/λwave,

1

k‖ λeff
mfp

=
2πλwave

cos(θb̂,k̂)λeff
mfp

, (4.43)

where λwave is the wavelength of the compressive wave-mode being considered.
For the parallel propagation case (θb̂,k̂ = 0), consider the wavelength to be much
larger than the mean-free-path. The spatial extent of the density or pressure
impulse from the wave, will be much larger than mean-free-path, so the vibration
of the wave will be supported by plasma that is at collisional equilibrium, or
crudely, it will be collisionally supported. The propagation angle plays a simple
but effective role as the cosine function. In the opposite case where the effective
mean-free-path is large, the fluctuation, e.g., δb‖ can interact with the individual
particle magnetic moment, damping the wave and energizing the particle. The
general picture of compressive waves and transit-time damping is discussed in
Section 2.5.

These arguments are clarified by the two cases,

k‖ λ
eff
mfp � 1, (collisionless regime), (4.44)

k‖ λ
eff
mfp � 1, (collision dominated regime).

At this point it is necessary to connect the various compressive wave-modes
shown in these sections to their textbook names. Analytical dispersion relations
will be taken from Section 6 of Schekochihin et al. [2009], where some differences
should be mentioned, a more complicated collision operator is employed, the
“reduced” approximation k⊥/k‖ � 1 is used, and the electrons are assumed
isothermal. Eqs. 4.23 encapsulate this system since the BGK operator recovers
the linear physics of the collision operator. The analytical limits are,

ω ' k‖vA − i
η‖,p k2

‖
2

, k‖ λ
eff
mfp � 1, β � 1, (4.45)

ω ' −i |k‖|vp√
πβp

, k‖ λ
eff
mfp � 1, β � 1, (4.46)

which are Eqs. 175 and 190 from Schekochihin et al. [2009], respectively. The
value of η‖, the parallel viscosity (see Section 2.2.2), has been taken from Eq.
73 of Hunana et al. [2022], which is η‖ = pp/νeff . Equation 4.46 is the non-
propagating mode as found by Howes et al. [2006], which is not severely damped
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Figure 4.6: Dispersion relation of the slow-mode at θb̂,k̂ = 80.0◦. The non-
magenta curves are produced from the numerical method described in the text.
The color corresponds to the proton plasma beta. The legend reports the as-
sumptions behind the analytical functions corresponding to Eqs. 4.45, 4.46,
and 4.47. The value of βp chosen for the analytical curves is the maximum or
minimum of the range corresponding to whether the approximation for βp is �
or � than 1.

at high βp. The collisionless low beta limit,

ω ' k‖cs − i|k‖|cs
√
π

c3s
(vp‖)

3

exp{−c3s/(vp‖)3}
1 + 3c2s/(v

p
‖)

2
, k‖ λ

eff
mfp � 1, β � 1, (4.47)

is taken from Verscharen et al. [2017] introducing the acoustic speed,

cs =

√
3kBTp,0 + kBTe,0

mp
, (4.48)

where the collisionless result is used. In the fluid case, the coefficients out front
of the temperatures are known as the specific heats, and are determined from
the equation of state [Gary, 1993]. To get a better grasp on the βp dependence
of the fluid regime the MHD slow-mode will be considered,

ω = kvA

√
1

2

(
1 +

κ

2
βp

)
− 1

2

[(
1 +

κ

2
βp

)2

− 2κβp
(
cos(θb̂,k̂)

)2]1/2

, (4.49)
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where κ = 5/3 is the adiabatic specific heat ratio. Due to the unestablished
nomenclature of all the intermediate regimes explored in these sections, they
will be referred to as slow-modes and the regimes of parameter space will be
indicated when comparing to analytical dispersion relations. If the physics,
e.g., the restoring force of the ion-acoustic wave, being the electron mobility, is
referred to, then the textbook names will be used.

The slow-mode dispersion relations as a function of the product k‖ λeff
mfp are

displayed in Figs. 4.6 and 4.7 where the line color corresponds to the colorbar; a
span of proton beta. The magenta curves are the analytical limits, indicated in
the captions of Figs. 4.6 and 4.7. In the top panel of Fig. 4.6 , the normalized
damping rate, all of the numerical solutions are increasing functions with the
k‖ λeff

mfp-product, splitting near k‖ λeff
mfp ∼ 1 depending on the plasma beta. In

the low beta regime, the normalized damping rate for λeff
mfp � 1, β � 1 for

Eq. 4.47, or the ion-acoustic damping rate, is a good approximation. As βp is
further increased, the dark-yellow curves, some of the modes continue to increase
becoming highly damped. At a value of βp = 19.2 the numerical solutions begin
to asymptote to the high-beta damping rate, given by Eq. 4.46, which is a
non-propagating mode. This can be seen in the middle and bottom panels,
where the real part of the complex frequency ωr is shown to go to zero in the
βp > 1 regime. It is clear that when all of the regimes βp, k‖ λeff

mfp, are taken
into consideration, the ion-acoustic, slow-mode and non-propagating mode are
all connected.

Figure 4.6 does deserve further attention. The high beta curve, that asymp-
totes to the solid magenta line was found by Barnes et al. [2009] (see Figure
6) using a sophisticated gyrokinetic simulation with a Fokker-Planck collision
operator. This is the dissipative scenario considered in Schekochihin et al. [2009]
(see Figure 6) for the fate of the slow-mode. This shows how viscosity and col-
lisionless damping (here it is Barnes damping) are both present and fit together
nicely when looking at the dependence with the collisionality parameter k‖ λeff

mfp.
The first thorough investigation of the transition between the collisional and

collisionless regimes is reported in an article by Stubbe [1994] (see Figures 6 and
7). In this article he compares laboratory measurements of the damping rate to a
Braginskii fluid model [Braginskii, 1957] and another that incorporates Landau
damping. The Braginskii fluid models have only viscosity, so the damping rate
drops dramatically in the collisionless regime, where collisionless damping takes
over. This is the most clear reason that Braginskii fluid model is insufficient for
this analysis. The numerical code constructed in this thesis can describe both
the high beta [Schekochihin et al., 2009] and low beta damping [Stubbe, 1994]
scenarios.

In Fig. 4.7 the same parameters are considered, only decreasing the prop-
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Figure 4.7: Dispersion relation of the slow-mode for θb̂,k̂ = 60.0◦. The non-
magenta curves are produced from the numerical method described in the text.
The color corresponds to the proton plasma beta. The legend reports the as-
sumptions behind the analytical functions corresponding to Eqs. 4.45, 4.46,
and 4.47. The value of βp chosen for the analytical curves is the maximum or
minimum of the range corresponding to whether the approximation for βp is �
or � than 1.

agation angle. In the bottom panel it can be seen that the damping factor is
much decreased for low beta.

4.5.1.2 As a function of propagation angle

The first notable investigation of compressive fluctuations for a collisionless
plasma was carried out by Barnes [1966] who showed that compressive fluctu-
ations are severely damped (also covered in Section 2.5). One of the primary
results of Barnes [1966] was to investigate the dispersion relations as a function
of the propagation angle θb̂,k̂ i.e., the angle between the background magnetic
field and propagation vector.

The numerical method to solve the dispersion relations as a function of θb̂,k̂
is discussed in a general manner in Section 4.5. The only notable difficulty is
that the step size when sweeping through a parameter needs to be very small
when nearing θb̂,k̂ = 90◦. This is because the argument of the dispersion relation
function is inversely proportional to k‖ so that near ' 90◦ the cosine function
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makes the argument go to infinity.
The dispersion relations as a function of propagation angle θb̂,k̂ for k λeff

mfp =

50.0 is shown in Fig. 4.8 for a range of βp. The bottom panel of the figure
corresponds well with Figure 3 of Barnes [1966]. There is an error in the labelling
of the lines from this article, which becomes clear in the text discussing it.
The results here also clarify the labelling error. From Fig. 4.8 it is clear that
damping of the slow-mode is severe except for angles near ≈ 60◦ and ' 90◦ at
βp ≥ 1. The collisionless low beta analytical dispersion relation from Eq. 4.47
(dotted magenta line) is a good approximation regardless of the propagation
angle. As stressed earlier, the product k‖ λeff

mfp determines the collisionless versus
fluid nature of the compressive mode, so for oblique angles of θb̂,k̂ ' 90◦, it is
inevitable that system transitions to the fluid regime. This can be seen in the
top panel of Fig. 4.8, where the dashed magenta line (Eq. 4.45) begins to be
a good approximation. This also coincides with the fact that there must be
a parallel component of the wave k‖ for the “resonance” to occur, leading to
Barnes or Landau Damping, so at oblique angles the damping rate goes to zero.

The opposing case to Fig. 4.8 is plotted in Fig. 4.9 for k λeff
mfp = 0.2.

Comparing the bottom panel to Figure 3 of Barnes [1966] shows that in the fluid
regime, the damping factor −γ/ωr is smaller, especially for parallel propagation.
This is the primary effect of the iνs in Eq. 4.42 on the linear physics, to lessen the
damping rate. The analytical curve shown as a dashed magenta line corresponds
to the fluid high beta regime (Eq. 4.45), and does well to capture the low beta
regime damping rate. While contradictory, the derivation for for the analytical
solutions assumes k⊥ � k‖, so it is not expected to be a good approximation
when varying the ratio of k⊥/k‖.

4.5.1.3 Plasma beta

The proton plasma beta (βp) is important to investigate since it parameterises
two very different regimes of plasma, where thermal pressures dominate for
βs � 1 and magnetic pressure dominates for βs � 1. A fairly drastic change in
dynamics is to be expected when considering βs ' 1. Since equal temperature,
quasi-neutral plasmas, are considered, only the parameter βp is discussed.

Figure 4.10 has been provided to show how the dispersion relations between
the collisonal and collisionless regimes behave as a function of the proton plasma
beta. The top panel demonstrates that the damping rate is small in collisional
regime (blue colors) and increases with beta. The collisionless regime is more
damped. The middle panel shows that at low beta the collisionality regime
has little effect on the phase speed, but at high beta the solution diverge. The
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Figure 4.8: The slow-mode dispersion relations as a function of propagation
angle. The non-magenta curves are produced from the numerical method de-
scribed in the text. The color corresponds to the proton plasma beta. The
legend reports the assumptions behind the analytical functions corresponding
to Eqs. 4.45, 4.46, and 4.47. The value of βp chosen for the analytical curves is
the maximum or minimum of the range corresponding to whether the approxi-
mation for βp is � or � than 1. In the bottom left corner of the bottom panel,
the parameters k λeff

mfp = 50.0 are reported, corresponding to the collisionless
regime.

solutions respect the limits, and in fact recover the MHD slow-mode (see caption
of Fig. 4.10), which is an essential limit to capture for our study. The connection
to the non-propagating mode for moderate collisonality k‖ λeff

mfp ≤ 1 becomes
clear for only high beta. The bottom panel shows that the damping factor
is very small in the collisional regime and severe in the collisionless regime,
respecting both of the limits (described in the caption of Fig. 4.10).

This result, the decrease in damping in the collisional regime, deserves to be
highlighted. The article Barnes [1966] is very influential in plasma physics since
it shows that compressive fluctuations are severely damped for moderate values
of plasma beta and any propagation angle. The essential addition to our study
is the effective mean-free-path which modifies the damping rate significantly.
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Figure 4.9: The slow-mode dispersion relations as a function of propagation
angle. The non-magenta curves are produced from the numerical method de-
scribed in the text. The color corresponds to the proton plasma beta. The
legend reports the assumptions behind the analytical functions corresponding
to Eqs. 4.45, 4.46, and 4.47. The value of βp chosen for the analytical curves is
the maximum or minimum of the range corresponding to whether the approxi-
mation for βp is � or � than 1. In the bottom left corner of the bottom panel,
the parameters k λeff

mfp = 0.2 are reported.

4.5.2 The ratio of electron to proton temperature

The restoring force of the ion-acoustic wave is the electron response to charge
separation caused by a disturbance of the more massive protons; the mobility of
the electrons is vital to the propagation of the wave [Gary, 1993]. The dispersion
relations from Fig. 4.10 has been repeated for two values of k‖ λeff

mfp by varying
the species temperature ratio.

Two cases will be considered, the first is in the kinetic regime, k‖ λeff
mfp =

15.0, appearing as Fig. 4.11. In the top panel the damping rate is relatively
smaller at low beta for large electron temperature (see the colorbar). The middle
panel shows that the phase speed is increased for large electron temperature,
resulting in the much decreased damping factor (bottom panel) for large electron
temperature. The primary result here is that in the collisionless regime, the
temperature ratio only affects the dynamics at small proton beta.

The fluid case is shown in Fig. 4.12 where k‖ λeff
mfp = 0.05. Varying the
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Figure 4.10: The slow-mode dispersion relations as a function of plasma beta.
The non-magenta curves are produced from the numerical method describe in
the text. The color corresponds to the proton plasma beta. The legend reports
the assumptions behind the analytical functions corresponding to Eqs. 4.45,
4.46, 4.47, and 4.49. The value of βp chosen for the analytical curves is the
maximum or minimum of the range corresponding to whether the approximation
for βp is � or � than 1. In the bottom left corner of the bottom panel, the
parameters k λeff

mfp = 0.5 are reported, corresponding to the fluid regime.

temperature ratio in the fluid regime is less familiar since the electrons are
usually ignored or modelled as an isothermal fluid. In the top panel it can
be seen that the damping rate follows differently than the collisionless case,
that for larger relative electron temperature the damping rate increases. In the
collisional regime propagation of this mode relies on the magnetic and thermal
pressure. The phase speeds are more sensible, the MHD slow-mode (see caption
of Fig. 4.12) ignores the electron pressure in the momentum equation. The blue
lines follow the MHD slow-mode almost exactly. The large electron temperature
solutions, in yellow lines, begin to follow the dashed magenta line. The damping
factors increase with proton beta, as expected. The primary result is that the
phase speeds, in the middle panel, are only largely effected at low and high
beta. The span in temperature ratio for 4 order of magnitude, so the changes
are exaggerated.
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Figure 4.11: The slow-mode dispersion relations as a function of temperature
ratio. The non-magenta curves are produced from the numerical method de-
scribe in the text. The color corresponds to the temperature ratio. The legend
reports the assumptions behind the analytical functions corresponding to Eqs.
4.45, 4.46, 4.47, and 4.49. In the upper left corner of the bottom panel, the pa-
rameters k‖ λeff

mfp = 15.0 are reported, corresponding to the collisionless regime.

4.5.3 The ratio of proton to electron mean-free-path

The ratio of mean-free-paths is a quantity that is almost entirely unexplored in
literature. The effects are only explored in terms of the stability of the code.
To better see the effects, the electron to proton temperature has been increased
to 4. Defining the ratio,

L =
λeff

mfp

λeff
mfp,electrons

, (4.50)

and recalling the collisionality argument,

k‖λ
eff
mfp = c, ⇒ k‖λ

eff
mfp,electrons =

c

L , (4.51)

therefore L determines the relative collisionality of the electrons. The three
figures in this section all have a propagation angle of θb̂,k̂ = 60◦ which is near
a minimum of the damping factor for the high beta solutions (e.g., see Fig.
4.8). Three different k‖ λeff

mfp are considered in this section. Figure 4.13 is the
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Figure 4.12: The slow-mode dispersion relations as a function of temperature
ratio. The non-magenta curves are produced from the numerical method de-
scribe in the text. The color corresponds to the temperature ratio. The legend
reports the assumptions behind the analytical functions corresponding to Eqs.
4.45, 4.46, 4.47, and 4.49. In the upper left corner of the bottom panel, the
parameters k‖ λeff

mfp = 0.05 are reported, corresponding to the fluid regime.

collisional regime, where the top panel shows that the low beta damping rate is
increased for more fluid-like electrons. The phase speed, in the second panel, is
not affected by the mean-free-path ratio.

Continuing, with same set of parameters, but increasing k to the intermedi-
ate regime, seen in Fig. 4.14 shows that the effects on the damping rate (top
panel) are not present, but in the middle panel, the phase speed is slightly
altered.

The final figure, Fig. 4.15, shows that in the collisionless regime, the mean-
free-path ratio has no effect. Other angles and temperatures were investigated,
but the same results were found.

The collisionless range, Fig. 4.14, shows that increasing the mean-free-path
ratio will increase the value of beta that connects the propagating to non-
propagating mode. This connection is difficult to handle numerically. At high
collisionality, the only effects on the complex frequency are for the damping rate
at low beta. For these two reasons, the value settled on for the mean-free-path
ratio is 1.
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Figure 4.13: The slow-mode dispersion relations as a function of the mean-free-
path ratio. The non-magenta curves are produced from the numerical method
describe in the text. The color corresponds to the mean-free-path ratio. The
legend reports the assumptions behind the analytical functions corresponding
to Eqs. 4.45, 4.46, 4.47, and 4.49. In the upper left corner of the bottom panel,
the parameters k‖ λeff

mfp = 0.05 are reported, corresponding to the fluid regime.

4.6 Method of correlations and amplitudes

In this section, this method for solving for the fluctuating variables (e.g., the
proton density δnp) which lead to polarisations will be presented. These fluctua-
tions, and consequently the polarisations, are readily measurable with spacecraft
data, so a comparison among the two can lead to a measurement. This tech-
nique has been long used in space physics to indicate waves and their properties
with single spacecraft measurements [Gary, 1993].

To obtain the fluctuating quantities, recall the system of equations Kij (Eq.
4.23), which is written in full in Section 4.3,

KijVj = δi′i (4.52)
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Figure 4.14: The slow-mode dispersion relations as a function of the mean-free-
path ratio. The non-magenta curves are produced from the numerical method
describe in the text. The color corresponds to the mean-free-path ratio. The
legend reports the assumptions behind the analytical functions corresponding
to Eqs. 4.45, 4.46, 4.47, and 4.49. In the upper left corner of the bottom panel,
the parameters k‖ λeff

mfp = 0.5 are reported, corresponding to the intermediate
regime.

where it is written like this in Section 4.4.2, with the definitions

Vj =



ũ⊥
ũ‖
b̃⊥
b̃‖
ñ

p̃p⊥
p̃p‖
p̃e⊥
p̃e‖


, δi′i =



0

0

0

0

0

0

0

0

0


. (4.53)

The vector Vj are the quantities of interest in this section. They can be numer-
ically solved for with the SVD method described in Section 4.4.3. The routine
is sketched like this, solve for the null space of the determinant to obtain ω, the
complex frequency, and then insert ω and solve for the null space of the matrix,
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Figure 4.15: The slow-mode dispersion relations as a function of the mean-free-
path ratio. The non-magenta curves are produced from the numerical method
describe in the text. The color corresponds to the mean-free-path ratio. The
legend reports the assumptions behind the analytical functions corresponding
to Eqs. 4.45, 4.46, 4.47, and 4.49. In the upper left corner of the bottom panel,
the parameters k‖ λeff

mfp = 2.5 are reported, corresponding to the collisionless
regime.

for the non-trivial Vj . This provides the vector Vj for the parameters imposed.
To generate cross-correlations and amplitude ratios, using the density as an

example, the fluctuations are constructed,

δn = ñ exp
{
iωrt

}
(4.54)

where ωr is the real part of the complex frequency and t = [0, 2πω−1
r ]. If ωr ≈ 0,

then the wavenumber is used. Figure 4.16 plots four quantities relevant to the
compressive wave for the fluid regime (see caption). Here, δB = δ|b⊥ + b‖| is
the fluctuation of the magnetic field strength. Defining the cross-correlation,

C(x, y) =

〈
δx (δy)∗

〈|δx|〉 〈|δy|〉

〉
, (4.55)

where the average is over time t. The asterisk denotes the complex conjugate
and |...| denotes the conjugate norm. Now, comparing δB and the other three
quantities, for the same β, it becomes clear that their cross-correlation is less
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Figure 4.16: The fluctuations, defined as Eq. 4.54, are plotted as a function
of time, displayed on the horizontal axis. The different curves are mapped to
the color bar, which is the proton beta. The parameters for these solutions are
θb̂,k̂ = 80◦ and k‖ λeff

mfp = 0.01, the fluid regime.

than zero, this is the unique polarization of the slow-mode wave. Comparing δp⊥
and δp‖ the curves are nearly identical, so the fluctuations are fairly isotropic.
This is indicative of the fluid regime.

Now turning to the kinetic regime, plotted as Fig. 4.17, the scenario changes
drastically. The density and magnetic field strength have similar properties to
the fluid regime, that they are anti-correlated, but the pressure is different. The
parallel pressure is out of phase with the other fluctuations so the magnitude of
the cross-correlation of the parallel pressure and the other quantities will be less
than one. The perpendicular pressure is positively correlated with the magnetic
field strength for beta less than one and negatively correlated for beta greater
than one. The fluctuations of the total pressure are no longer isotropic.

From the vertical axis limits of Fig. 4.17, the amplitudes of the fluctuations
quantities clearly becomes important. Here, the amplitude is introduced,

A(x, y) =
〈x〉 〈|δy|〉
〈y〉 〈|δx|〉 , (4.56)

which is normalized to the averages of the quantities.
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Figure 4.17: The fluctuations, defined as Eq. 4.54, are plotted as a function
of time, displayed on the horizontal axis. The different curves are mapped to
the color bar, which is the proton beta. The parameters for these solutions are
θb̂,k̂ = 80◦ and k‖ λeff

mfp = 10.

These correlations can be studied as a function of other variables, for exam-
ple, the proton beta. The correlations (Eq. 4.55) and amplitudes (Eq. 4.56)
are plotted as a function of the plasma beta for different angles in Fig. 4.18 for
k‖λeff

mfp = 10, the collisionless case. The pressures are not correlated with each
other indicating that the pressure anisotropy of the wave is a fluctuating quan-
tity. Due to the definition of the amplitude, the parallel pressure fluctuations
always dominates and becomes very large near β ≈ 0.8. There does not appear
to be an angular dependence on the location in β.

The correlations for the density and magnetic field strength have less angular
dependence. The correlation is definitively negative and the amplitude of the
density is always larger, increasingly so for low beta. This follows simply from
the beta dependence in the definition of the amplitude considered here.

The collisional regime has been considered in Fig. 4.19 where the k‖ λeff
mfp =

0.01. The system is nearly isotropic with a slight departure at high beta.
The same thing can be done for different values of k‖λeff

mfp as a function of
the beta, which appears as Fig. 4.20. The collisional limits are well respected
from before, in that the pressures are isotropic. The magnetic field strength
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Figure 4.18: The correlations (Eq. 4.55) and amplitudes (Eq. 4.56) are plotted
as a function of the plasma beta for different angles. The different curves are
mapped to the color bar, which is the propagation angle. The parameters for
these solutions are set to k‖ λeff

mfp = 10.

and density correlation is in general not influenced by the collisionality. This
varying behaviour can used as a probe for the collisionality.

The general point is that correlations, for example for a value of β, can be
predicted by the model, for a set of parameters k, θb̂,k̂, λ

eff
mfp. By measuring

these correlations, as a function of beta, a comparison can be made between the
observations and numerical predictions to measure remaining quantities, such
as the λeff

mfp.

4.7 Conclusion

In this chapter the KMHD-BGK equations were derived and the eigen-problem
was written. The numerical methods for treating this problem were explained
and some results on the plasma dispersion relation function were displayed. This
provides the numerical treatment of the compressive slow-mode wave.

The slow-mode wave was investigated for a range of k, λeff
mfp, θb̂,k̂, and β. In

Fig. 4.6 the damping scenario for a span of plasma beta was considered where
the analytical expectations do well to match the numerical solutions according

126



−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
C

(p
p ⊥
,p

p ‖)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

C
(B

,n
)

10−1 100 101

β

100

8 × 10−1

9 × 10−1A
(p

p ⊥
,p

p ‖)

10−1 100 101

β

10−2

10−1

100

101

102

A
(B

,n
)

60

65

70

75

80

85

θ
b̂

,k̂

Figure 4.19: The correlations (Eq. 4.55) and amplitudes (Eq. 4.56) are plotted
as a function of the plasma beta for different angles. The different curves are
mapped to the color bar, which is the propagation angle. The parameters for
these solutions are set to k‖ λeff

mfp = 0.01.

to the limits considered. In general, the waves are not severely damped in
the fluid regime. In the collisionless regime, the damping rate becomes more
significant showing strong beta dependence, as well as angular dependence as
seen in Fig. 4.6, where the low beta solutions are weakly damped. At low beta
phase speeds match the classic results for the slow-mode and ion-acoustic wave,
but at high beta, the mode ceases to propagate.

The angular dependence was investigated further with Fig. 4.9 where k λeff
mfp =

0.2 corresponding to the fluid regime. Figure 4.8 has a k λeff
mfp = 50.0 where the

damping factors match the classic results of Barnes [1966]. These two figures
stress the importance of the propagation angle, in how much the damping fac-
tors change, as well as a drastic difference in the behaviour between high and
low beta.

Due to this drastic change in behaviour of the slow-mode, the plasma beta
turns out to be a good indicator of the collisionality of the system. Figure
4.10 displays the the numerical solutions as a function the plasma beta and
collisionality. The damping rate increases with decreasing collisionality (and
beta), as expected. The phase speeds show a drastic difference in behavior
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Figure 4.20: The correlations (Eq. 4.55) and amplitudes (Eq. 4.56) are plotted
as a function of the plasma beta for different angles. The different curves are
mapped to the color bar, which is k‖ λeff

mfp. The parameters for these solutions
are set to θb̂,k̂ = 75◦.

based on the collisionality until they are entirely collisionless. This is important
for indicating the collisionality.

The temperature ratio and mean-free-path ratio were investigated to justify
fixing the parameters. The temperature ratio does not significantly affect the
dispersion relations at high beta in the fluid regime (Fig. 4.12) and less so in the
collisionless regime (Fig. 4.11), also considering the color scale spans 4 orders of
magnitude. For this reason the proton temperature is set equal to the electron
temperature. The effective mean-free-path ratio does not appear to have a large
effect on the system and is set to one, following the arguments from Sec. 4.5.3.

In Section 4.6 the method of correlations and amplitudes was presented. The
dispersion relations are not measurable, so they cannot be used to identify wave
properties of the observations. The classic test for the compressive wave mode
is the cross-correlation of the density and magnetic field strength (see Section
3.6 for a review of observations), which have been shown to not strongly depend
on the propagation angle and effective mean-free-path. In Chapter 5, different
correlations are sought out, that are sensitive to the effective mean-free-path.
These are then compared with observations.
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This concludes the Chapter. A tool for investigating the properties of com-
pressive slow-mode waves has been constructed. The full parameter regimes of
k, λeff

mfp, θb̂,k̂, and β can be investigated. The highlight of this tool, is the ability
to investigate the spectrum of solutions that exist in between the collisional and
collisionless limits. This provides a much better understanding of scale depen-
dence, in particular through k‖ λeff

mfp, of compressive fluctuations. This tool will
be used to model compressive fluctuations, compare with solar wind observa-
tions, and make a measurement of the effective mean-free-path of the solar wind
in Chapter 5.

129



Chapter 5

Measuring the effective
mean-free-path

In this Chapter, the methods for obtaining numerical predictions of cross-
correlations (developed in Chapter 4) is appropriated for directly testing the
equation of state. The effective collision frequency is the rate at which the
distribution function is restored to equilibrium so it controls the influence of
high order-moment such as the heat flux. Therefore, the equation of state de-
pends sensitively on the effective mean-free-path. These predictions are then
compared to solar wind observations to measure the effective mean-free-path
and the scale-dependent anisotropy of the compressive fluctuations. These are
the major results of the thesis. The essential finding is that the effective mean-
free-path is much smaller than the collisional mean-free-path. This is shown to
support the use of fluid theory to much smaller scales than the estimate from
the collisional mean-free-path.

The solar wind proton pressure observations made by the electrostatic an-
alyzer on the Wind spacecraft, have not been used for science previous to this
work, so the validation of the dataset is shown by making comparisons with
other datasets and repeating past results. The comparison between the dataset
and the numerical methods required a comprehensive statistical method to be
developed.

5.1 Chew-Goldberger-Low correlations

In Section 4.6 the method of producing quantities that are measurable by space-
crafts was presented. Correlations of various variables can indicate waves and
their properties [Gary, 1993]. Additionally, in Section 4.6, it was shown that
the cross-correlations between the density and magnetic field fluctuations are
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generally insensitive to the effective mean-free-path. Here it is shown that an ex-
cellent indicator can be produced by studying the Chew-Goldberger-Low (CGL)
equations [Chew et al., 1956].

5.1.1 Equations of state and the Chew-Goldberger-Low
equations

A quick sketch of the adiabatic equation of state follows from considering the
pressure tensor moment of the drift kinetic equation (derived in Appendix B),

∂

∂t
psij +

∂

∂xk

(
uskp

s
ij + qskij

)
+

(
pskj

∂

∂xk
usi + pski

∂

∂xk
usj

)
− qs
msc

bl
(
εiklp

s
kj + εjklp

s
ki

)
= νs

(
psδij − psij

)
, (5.1)

where the superscript “s” identifies the species for psij pressure tensor, usi the
bulk velocity, qsijk the heat flux tensor, qs the charge, ms the mass, c the speed
of light, bi the magnetic field and νs the effective collision frequency. If the heat
flux is zero, the trace (multiplying by δij) gives,

∂

∂t
psii +

∂

∂xk

(
uskp

s
ii

)
+ 2pski

∂

∂xk
usi

− qs
msc

bl
(
εiklp

s
ki + εiklp

s
ki

)
= 0, (5.2)

if the pressure is diagonal in some frame (psii′ = 0 if i′ 6= i),

∂

∂t
psii +

∂

∂xk

(
uskp

s
ii

)
+ 2pski

∂

∂xk
usi = 0, (5.3)

the magnetic field term goes to zero and now considering the pressure to be
isotropic ps = psii/3,

3
∂

∂t
ps + 3

∂

∂xk

(
uskp

s
)

+ 2ps
∂

∂xi
usi = 0, (5.4)

with psik = δikp
s. This is the adiabatic law,

1

ps
d

dt
ps = −5

3

∂

∂xi
usi =

5

3

1

ns

d

dt
ns. (5.5)

where the continuity equation was used.
Now, if instead the pressure is symmetric but is anisotropic to the magnetic

field, the situation is different. In Chew et al. [1956], the so-called Chew-Low-
Golberger (CGL) invariants were presented. The equations, which include heat
fluxes and collisional terms are derived in Appendix C from the drift-kinetic

131



equation. They are comprised of the density moment, perpendicular/parallel
pressure moments, and the ideal induction equation. The same result can be
derived from the Vlasov equation, taking the same moments, and then setting
the non-gyrotropic terms to zero [Hunana et al., 2019a].

The perpendicular equation,

np|bi|
d

dt

(
pp⊥
np|bi|

)
= − ∂

∂xi
qp⊥b̂i − q

p
⊥
∂b̂i
∂xi

+
νp
3

(
pp‖ − p

p
⊥). (5.6)

and the parallel equation,

n3
p

|bi|2
d

dt

(
pp‖|bi|2

n3
p

)
= − ∂

∂xi
b̂iq

p
‖ + 2qp⊥

∂b̂i
∂xi

+
2νp
3

(pp⊥ − p
p
‖), (5.7)

where the proton density is np, the magnetic field is bi, the perpendicular pres-
sure is pp⊥, the perpendicular heat flux qp⊥, the effective proton collision fre-
quency νp, the parallel pressure pp‖, and the parallel heat flux qp‖ . The d/dt is
the convective derivative with upi supplying the convection.

The CGL equations are the extension of the adiabatic equation to a gy-
rotropic pressure. Some clarifying points need to be made. Looking at Eq. 5.6
and Eq. 5.7, for the purely Maxwellian case (ps⊥ = ps‖), so that there is also
no heat flux, the CGL invariants would appear to not be broken; they would
not be broken in the fluid case. This is incorrect, and the point is subtle, but
important.

The mathematical point of view is that Eq. 5.3 and Eq. 5.4 are independent
of each other i.e., δijps = psij is a constraint, not an algebraic manipulation. The
resulting Eq. 5.6 and Eq. 5.7 have been derived considering the pressure-stress
to be finite, which does not arise if the pressure is a scalar; so taking (ps⊥ = ps‖) is
not equivalent. This leads to the physical view point. Returning to Eq. 5.3, the
final term is the pressure-stress, which is activated by anisotropic pressure, which
is dictated by the magnetic field direction [Squire et al., 2019]. In the absence
of these stresses, the magnetic field does not enter into the equations. This can
be seen in Eq. C.18, using (ps⊥ = ps‖) ⇒ δij = 3b̂ib̂j . Thus, the magnetic field
does not enter into the final invariants. So, with this context clearly laid, in the
isotropic case, the CGL invariants are broken by the magnetic field, because it
does not cause pressure-stresses.

In the absence of heat fluxes and collisions, the quantities in the big paren-
theses are conserved and are called the CGL invariants, which do appear in
Chew et al. [1956], or are called the double adiabatic invariants. The breaking
of the CGL invariants is considered in many applications of plasma physics since
they are also broken by non-gyrotropic effects, neglected here, and by heating
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of the plasma.

5.1.2 The CGL cross-correlations

The CGL equations (Eqs. 5.6, 5.7) are a sensitive test of the collision frequency
in both the collisional k‖ λeff

mfp � 1 and collisionless regime k‖ λeff
mfp � 1. In

the collisionless regime, the heat fluxes are finite, since the system is not at
equilibrium, and will break the CGL invariants. The terms proportional to the
effective collision frequency will break the invariants in the collisional regime.
In the purely isotropic case they are broken as well, see the end of Section 5.1.1.

To test the CGL invariants, with cross-correlations and amplitude ratios
from Section 4.6, the following are considered,

C‖ =
〈δpp
‖ δ(n

3
p/B

2)〉
〈|δpp

‖|2〉1/2〈|δ(n3
p/B

2)|2〉1/2 , (5.8a)

A‖ =
〈|δ(n3

p/B
2)|2〉1/2

〈n3
p/B

2〉
〈pp
‖〉

〈|δpp
‖|2〉1/2

, (5.8b)

C⊥ =
〈δpp
⊥ δ(npB)〉

〈|δpp
⊥|2〉1/2〈|δ(npB)|2〉1/2 , (5.8c)

A⊥ =
〈|δ(npB)|2〉1/2
〈npB〉

〈pp
⊥〉

〈|δpp
⊥|2〉1/2

, (5.8d)

where the δχ = χ − 〈χ〉. The numerical predictions of these quantities are
plotted, as a function of the proton beta, for a large range of the product
k‖ λeff

mfp in Fig. 5.1.
The trends in k‖ λeff

mfp are fairly straight forward except for C⊥, where some
explanation follows. Starting with the fluid case (the lighter blue curves), the
transition from low to high beta is sharp, and the sharpness decreases going
towards the collisionless case, until k‖ λeff

mfp ≈ 1 when the trends begin to become
more sharp, and eventually (the most black curve) mimics the fluid case. This
is because the slow-mode wave is recovered in the kinetic MHD limit from
perpendicular pressure balance.

The measurements, that will be presented in Section 5.4.2, are in the fluid
regime. Taking this to be a fact, the correlations C⊥, C‖, in the fluid regime,
are more sharp for smaller relative wavenumber. The C⊥ curves in the collision-
less regime, are more sharp for larger relative wavenumber. The wavenumber
dependence is an important indicator that the technique we have used here is
consistent. For example, if the measured sharpness of the C⊥ curves increased
by increasing the wavenumber, then it would indicate the measurements are
more near to the collisionless regime. The opposite is the measured case, that
the most sharp C⊥ curve is for the smallest wavenumber and so the measure-
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Figure 5.1: The correlations and amplitudes (Eqs. 5.8) are plotted as a function
of the plasma beta for k‖ λeff

mfp, seen in the color bar. The obliqueness of the
propagation angle θb̂,k̂ increases with k.

ments are in the fluid regime.
For example, looking at the C⊥ case in Fig. 5.1, and taking the propagation

angle and effective mean-free-path constant, increasing the wavenumber, in the
fluid regime (lighter blue), the correlation becomes less negative at high beta. In
the collisionless regime (darker blues), the correlations becomes more negative
by increasing the wavenumber. For this reason, two correlations, measured
at different wavenumbers, are needed to indicate consistency with increasing
wavenumber. Since there is another unknown parameter, the propagation angle,
which needs to be determined as well, this requires one more case, for a total of
three, to ensure the trends in wavenumber and propagation angle match between
the observations and numerical solutions.

The amplitudes are more simple, but impose a basic check of the fluid regime.
In the fluid regime, the amplitudes increase with beta, and in the collisionless
regime, they decrease.

Figure 5.2 shows the influence of the propagation angle on the correlation
and amplitudes. The importance here is on C‖ where the propagation angle does
have a significant influence on the curves. This part of the analysis indicates
that careful consideration of the propagation angle is necessary to recover the
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correct trend with wavenumber. The propagation angle must increase sharply
with increasing wavenumber to obtain the curves in Fig. 5.2, later in this
Chapter observations will be presented that match this trend, indicating an
increase in obliqueness with wavenumber is correct.
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Figure 5.2: The correlations and amplitudes (Eqs. 5.8) are plotted as a function
of the plasma beta for k‖ λeff

mfp = 0.06. a set of angles . The different curves are
mapped to the color bar, which is θb̂,k̂.

To explore their meaning without going into the details of expanding the
pressure, density and magnetic field fluctuations in Appendix B, instead some
basic considerations will be made here. As was clearly displayed, in Chapter
4, these correlations are all parameterised by the k, β, λeff

mfp, θb̂,k̂, so that the
numerical method was necessary, so here, a basic check of the expectations in
the fluid regime are verified.

Dynamically, the isotropic pressure and magnetic field strengths follow,

β � 1, δpB � δpp, (5.9)

β � 1, δpB � δpp, (5.10)

where pp is the proton pressure and pB = B2/8π is the magnetic pressure. This
says, that when the magnetic pressure is large, its perturbation is smaller, and
same for the proton pressure. Next, for the fluid slow-mode, the anti-correlation
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between the thermal and magnetic pressure, δpB ∼ −δpp, identifies the mode.
Last, adiabatically, δpp ∼ δnp the two quantities are correlated. It then follows
that linearly,

δ
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)
≈ n̄3

p

B̄2

(
3
δnp
n̄p
− 2
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)
, (5.11)

δ

(
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)
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where for simplicity the over bar is the average as well. The amplitude,〈∣∣∣∣δ( n3
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where in the second line, the third term will always be smaller than the other
two. For the next important amplitude,〈∣∣∣∣δ(npB)∣∣∣∣2〉1/2
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the cross correlation C‖ goes as,
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for small and large β based on Eq. 5.9,
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where the low beta case corresponds to an adiabatic equation of state and the
high beta case follows from the polarisation of the slow-mode wave. The C⊥,
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The argument of Eq. 5.9 gives,
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The argument of Eq. 5.9 gives,

β � 1, A‖ ≈ 3
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Where for high beta the amplitude will increase due to the average beta depen-
dence. Finally, A⊥,

A⊥ =
〈|δ(npB)|2〉1/2
〈npB〉

〈pp
⊥〉

〈|δpp
⊥|2〉1/2

≈

∣∣B̄n̄p∣∣〈∣∣∣∣ δnpn̄p
∣∣∣∣2 +

∣∣∣∣ δBB̄ ∣∣∣∣2〉1/2

〈npB〉
〈pp
⊥〉

〈|δpp
⊥|2〉1/2

,

≈
〈∣∣∣∣δnpn̄p

∣∣∣∣2 +

∣∣∣∣δBB̄
∣∣∣∣2〉1/2 〈pp

⊥〉
〈|δpp

⊥|2〉1/2
(5.24)

The argument of Eq. 5.9 gives,

β � 1, A⊥ ≈
〈∣∣∣∣δnpn̄p

∣∣∣∣2〉1/2 〈pp
⊥〉

〈|δpp
⊥|2〉1/2

, (5.25)

β � 1, A⊥ ≈
〈∣∣∣∣δBB̄

∣∣∣∣2〉1/2 〈pp
⊥〉

〈|δpp
⊥|2〉1/2

, (5.26)

where the amplitude follows similarly, in that it increases due to the beta de-
pendence, at high beta. Returning to Fig. 5.1, these basic considerations are
consistent for the correlations and amplitudes. To investigate them for moderate
collisionality, the numerical method is necessary.

5.2 Breaking the parameter degeneracy

The general idea is to make comparisons between numerical predictions and
observations of the cross-correlations and amplitude ratios. The set of param-
eters of the numerical predictions must be set or left free, to be determined,
when making the comparison. A difficulty arises when determining the parame-
ters due to the scale-dependent nature of the solutions in the collisional regime.
Recall from Eq. 4.42 that the argument of the plasma dispersion function,

ζs =
ω

k‖vs
+

i

k‖ λeff
mfp

, (5.27)

involves both the effective mean-free-path of protons λeff
mfp and the propaga-

tion angle θb̂,k̂. The collisional regime is defined by the dominance of the term
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inversely proportional to k‖ λeff
mfp. Therefore, the solutions, non-trivially deter-

mined by the full set of equations in Section 4.5, are degenerate in λeff
mfp, θb̂,k̂.

Recall that k‖ = k cos
(
θb̂,k̂

)
.

Figure 5.3 has been provided to illustrate the degeneracy. To illustrate the
issue further, consider the following values,

k‖ λ
eff
mfp = 10−3, ⇒ θb̂,k̂ = arccos

{
10−3

k λeff
mfp

}
, (5.28)

where in Fig. 5.3, λeff
mfp = [1, 2, 3] × 105 km are plotted as dashed lines; they

have the same k‖ λeff
mfp and will give the same solution. Notice that at a single

wavenumber, say kSW = 10−7 km−1 the dotted black lines are all crossed. So
that for the same k‖ λeff

mfp = 10−3 three pairs of λeff
mfp, θb̂,k̂ will give the same

solution.
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Figure 5.3: The dashed line is three different values of the λeff
mfp and the same

k‖ λeff
mfp. The function in Eq. 5.32 is plotted for a set of parameters, where α

is mapped to the color bar and the values for kiso are at 45 degrees where the
colored lines meet.

To break this degeneracy a relation between the wavenumber and angle
is established through a model so that λeff

mfp can be determined. The model
k‖ ∼ kα⊥, introduced here, is generalized from the critical balance model of
Alfvénic turbulence [Goldreich and Sridhar, 1995]. To ensure the isotropic scale
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is defined correctly,

k‖
kiso/

√
2

=

(
k⊥

kiso/
√

2

)α
, (5.29)

where α is the anisotropy exponent. Since, k‖ = k cos(θb̂,k̂), k⊥ = k sin(θb̂,k̂),
this gives,

k cos(θb̂,k̂)

kiso/
√

2
=

(
k sin(θb̂,k̂)

kiso/
√

2

)α
⇒ k1−α =

(
kiso√

2

)1−α
cos(θb̂,k̂)−1 sin(θb̂,k̂)α,

(5.30)

so that at θ∗
b̂,k̂

= 45◦, sin(θ∗
b̂,k̂

) = cos(θ∗
b̂,k̂

) = 1/
√

2,

k1−α =

(
kiso√

2

)1−α(√
2
)1−α

= (kiso)1−α, (5.31)

so the isotropic scale k = kiso has been recovered. Thus, the wavenumber model
appears as,

k =
kiso√

2

[
sin
(
θb̂,k̂

)]α/(1−α) [
cos
(
θb̂,k̂

)]1/(α−1)
. (5.32)

Some examples are plotted as colored lines in Fig. 5.3. Notice that for α, kiso

the wavenumber k determines θb̂,k̂ like θb̂,k̂ = f{k;α, kiso}. Now, the degen-
eracy is in α, kiso. Comparing solutions at multiple wavenumber can break the
degeneracy.

The easiest way to see this is to notice that the best solution at a wavenumber
has the value,

Sk = k cos
(
f−1{k;α, kiso}

)
λeff

mfp, (5.33)

where f−1 is the inverse. Here, λeff
mfp is determined at k for a set of α, kiso (a set

because the degeneracy is still an issue). Now, comparing at multiple wavenum-
bers k0, k1, k2 gives solutions Sk0 , Sk1 , Sk2 , each with their own set of α, kiso,
which when comparing the sets, will eliminate α, kiso that were reasonable for
one solution, but not another. This final idea of reasonability will be quantified
in Section 5.4.3.

In this way, the λeff
mfp, α, kiso can be determined by finding the best solution

at multiple wavenumbers. This is the method used to break the parameter
degeneracy and determine the scale dependence of k‖.

The wavenumber model has many freedoms, accounting for any scale de-
pendent anisotropy of the k‖ ∼ kα⊥ kind, which includes slab models α = 0
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[Oughton et al., 2015], αGS = 2/3 from Goldreich and Sridhar [1995], and cov-
ers the measurements of α for compressive fluctuations [Chen, 2016], shown in
Section 3.7.3. Some theoretical predictions based on turbulence were presented
in Section 2.7.0.4 which are also covered by the generalized model.

5.3 The Wind dataset

The Wind data set is formed by measurements of the magnetic field made by
the fluxgate magnetometer and proton measurements made by the electrostatic
analyzer, both of which are covered in Section 3.8. The electrostatic analyzer
takes onboard moments of the proton distribution function which provide the
density, velocity and pressure tensor at the spacecraft spin frequency≈ 3 seconds
[Lin et al., 1995b]. To the best of my knowledge, the onboard proton pressure
tensor data product has not been used for analysis in a published research article.
When it first became apparent that the data product existed, the coordinate
system and units were unknown. This section details the effort put into ensuring
good quality of the dataset, the coordinate system, and the units.

The dataset covers the years 2005 - 2015 for any of the ensemble studies, and
if it is not an ensemble study, the dates will be made clear. In these years Wind is
at the L1 point in space so it is not influenced by Earth’s magnetosphere. This
dataset has approximately 100 million data points per quantity (e.g., proton
density) where the nominal time cadence of 3 seconds is used to extrapolate
that % 96 of the time, the spacecraft successfully recorded something. The
single points are used in this section to make comparisons with other datasets.
In the science section of this Chapter (section 5.3.4) the 10 years of data is used
as streams of greater than 3 seconds, as a time series of the various quantities.
These time series are then analyzed to produce the final results.

5.3.1 Comparison with ground moments

The method devised to understand the dataset is to compare on-ground mo-
ments calculated from proton distribution functions to onboard moments calcu-
lated by the microprocessors onboard the instrument. All of the observations are
made by the 3DP instrument which is a set of electrostatic analyzers. The on-
ground dataset is known as the “Proton Omnidirectional Fluxes and Moments”
and is called PLSP, which is recorded at a 24 second cadence. The dataset
intended for verification is known as Proton Moment (PM) and recorded at a 3
second cadence. The raw data is processed by SPEDAS (Space Physics Environ-
ment Data Analysis Software) [Angelopoulos et al., 2019]. Its capabilities range
from plotting and analysis to performing post-calibration. Since the software

141



is capable of taking level zero data and outputting pristine data products like
PLSP, it will be used to track down the data manipulations of the PM data.

The method employed to understand the dataset relies on two pieces of
information: that SPEDAS takes level zero onboard data and outputs the data
products that are on the “https://cdaweb.gsfc.nasa.gov /pub/data/wind/3dp/”
website. Second, that on-ground 24 second moments are published. If the
comparison between the 24 second data and the 3 second data is good, then the
operations in SPEDAS contain the units and coordinate transforms. First, this
is done with the velocity vector to ensure the technique will work (on a vector).
If the comparison is good, then the same can be done for the pressure.
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Figure 5.4: Component 2, see global
caption.
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Figure 5.5: Component 1, see global
caption.
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Figure 5.6: The blue dots are a scatter plot of the 24 second PLSP x-component
of the velocity and 3 second PM x-component of the velocity from level 0, both
in the geocentric coordinate system (see text for a description of the coordinate
system). The time interval is one day: July 7th, 2007. The linear regression
produced the slope (dashed red line) and the Pearson correlation coefficient.
The mean can be ignored.
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Figure 5.6 displays the comparison for three components of the velocity. To
compare the 3 second data to the 24 second data, the closest data point, in
time, was chosen. It was thought that some averaging would need to be done,
but in the end, this was sufficient. While Fig. 5.6 is simple, it means that a
comparison between the 24 second pressure tensor and the 3 second pressure
tensor should reveal the units and coordinate system since the level zero data
was used.
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Figure 5.7: Component 00, see
global caption.
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Figure 5.8: Component 11, see
global caption.
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Figure 5.9: The blue dots are a scatter plot of the 24 second PLSP 22-component
of the pressure tensor and the level zero 3 second PM 22-component of the
velocity, both in the geocentric coordinate system. The time interval is one day:
July 7th, 2007. The linear regression produced the slope (solid red line) and the
Pearson correlation coefficient.

Figure 5.9 repeats the analysis of Fig. 5.6 on three components of the pres-
sure tensor. The Pearson correlation coefficients are near unity. The slope
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corresponds to the unit system used by the instrument. It corresponds to,

mp = 938.272 eV, c = 2.99× 105 km/s ⇒ mp

c2
= 0.0104

eV
(km/s)2

. (5.34)

This number was later found to be commented-out in the IDL files that make
up the SPEDAS software, along with the rotation matrix. This was the reason
to pass the level zero data through SPEDAS, to track down these operations.

Next, the coordinate system of the two data products is geocentric solar
ecliptic (GSE). The 0 component or “x” component points towards the sun, the
2 component or “z” component points perpendicular to the plane of the Earth’s
orbit around the sun so that positive is consistent with the northern hemisphere
of the Earth. The 1 component or “y” component, is then perpendicular to both
of the other components.

The units of the 3DP 3 second dataset have been confirmed, so that the data
product is a set of temperature tensors in T pij [eV] and converted into any unit
system. The pressure tensor is then easily obtained ppij = npkBT

p
ij , assuming the

ideal gas law [Landau and Lifshitz, 2013]. The gyrotropic pressures are obtained
by rotating into the local magnetic field coordinate system with the normalised
magnetic field vector b̂ = bi/|bl| where bi is obtained from the magnetic field
instrument. The decomposition appears like,

ppij = pp⊥(δij − b̂ib̂j) + pp‖b̂ib̂j + Πp
ij , (5.35)

pp⊥ =
1

2
ppij(δij − b̂ib̂j), pp‖ = ppij b̂ib̂j , (5.36)

Πp
ij = ppij −

(
pp⊥(δij − b̂ib̂j) + pp‖b̂ib̂j

)
, (5.37)

where the perpendicular pressure pp⊥, parallel pressure p
p
‖, and non-gyrotropic

pressure tensor Πp
ij are all defined.

Comparison with the PLSP data has revealed the coordinate system and
the units of the 3 second PM proton pressure tensor measurements. Next, the
quality of the data needed to be checked. The dataset that follows is formed from
the magnetic field instrument’s 3 second data product, linearly interpolated to
time stamps of the 3 second PM proton pressure tensor, which is the same time
stamp as the density and velocity.

5.3.2 Comparison with SWE

Numerous famous studies of the pressure have been completed with the Faraday
cup instrument (SWE) on the Wind spacecraft (see Fig. 3.8) [Ogilvie et al.,
1995, Kasper et al., 2002, 2006]. A comparison with the SWE dataset has been
made, starting with a repeat of Fig. 3.8, which appears here as Fig. 5.10. The
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basic operation of a Faraday Cup is explained in Section 3.8.3.
The dataset is available as perpendicular and parallel thermal speeds. The

definition used for the thermal speed by the SWE instrument is the 1 dimen-
sional thermal speed v1D =

√
kBT/mp opposed to the most probable thermal

speed in 3 dimensions v3D =
√

2kBT/mp, used for the 3DP instrument. There-
fore, the SWE temperature is divided by 2 to compare with the 3DP dataset.

Figure 5.10: A repeat of the analysis employed by Hellinger et al. [2006]. The
black lines are from the paper, corresponding to the mirror (dashed), proton
cyclotron (dash-dot), parallel firehose (sold), and oblique firehose (dotted) in-
stability thresholds. This is a join histogram with logarithmically spaced boxes.
The data is taken from years 2005 to 2008 as measured by the Wind 3DP elec-
trostatic analyzer and the Wind MFI.

The general result, that the data is constrained by the thresholds, as seen
in previous studies of these quantities. The data here tends to “spill over” the
thresholds slightly more than as seen with the Faraday cup data. This is likely
due to the time cadence of the measurement. These thresholds are calculated
with the following reasoning: given β‖ what value of T⊥/T‖ has γmax = 10−3

s−1. The maximum growth rate is roughly related to the rate at which the
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temperature anisotropy is restored to isotropy (see Section 6.6 for more details).
Therefore, as the plasma enters further into the unstable region, it spends less
time there, so that at higher measurement cadence, the measured plasma will
be observed deeper into the unstable region.
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Figure 5.11: For the year 2007, the horizontal axis reads
day:hour:minute:second. The top panel plots the temperature anisotropy
ratio for the two instruments. The interval is nearly 2 days. The second panel
from the top indicates when a beam is present by a green line, and the red
line can be ignored. The next two panels plot the instability thresholds from
Hellinger et al. [2006] where if −1 + T⊥/T‖ is larger in magnitude than the
instabilities (see label), the plasma is unstable to the assumed growth rate.

To begin getting a sense of the two datasets, a time series of various quantities
related to the instabilities is presented in Fig. 5.11. The period is chosen
because there are intervals with and without a beam (indicated in the SWE
data) and there are two times when 3DP measurements suggest the plasma is
unstable to the temperature anisotropy instability thresholds. The Faraday cup
measurements are available at 92 second cadence [Kasper et al., 2006] and the
3DP measurements is at a 3 second cadence. The top panel shows that the
Faraday cup measurements have a large root-mean-square value with respect to
the 3DP dataset.

The second panel has a green dot at 0.5 when the Faraday cup has detected
a beam, which it then removes and calculates the perpendicular and parallel
thermal speeds. Comparing panel 1 for times when there is a beam and no beam,
it is clear that the two instruments agree when there is no beam (detected by
the Faraday cup), and they do not agree when there is a beam present (which is
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removed from the Faraday cup measurement). Therefore, 3DP does not remove
the beam. When the beam is present, the temperature ratio, as defined, is
larger, since the beam is typically located parallel to the magnetic field.

Figure 5.12: The joint probability den-
sity of the ratio of perpendicular pres-
sures and 3DP density. See global cap-
tion for more details.

Figure 5.13: The joint probability den-
sity of the ratio of parallel pressures
and 3DP density. See global caption
for more details.

Figure 5.14: The joint probability density of the ratio of pressure anisotropy
ratio and 3DP density. The dataset spans all the available data for SWE in
2007 and the nearest time stamp for 3DP. The dashed magenta line is for when
the two data products are equal.

The bottom two panels hold a lot of information. The blue line corresponds
to the instability parameter, for which, when it is larger in magnitude than the
other lines (see label) the plasma is unstable, based on the assumed growth
rate. In general, the 3DP data is more stable. The Faraday cup measurements
suggests the plasma is consistently unstable to the proton cyclotron instability.
Taking a look at the gaps where there is no beam (at the beginning and end
of the interval), the Faraday cup measurements suggest that if there is a beam,
the plasma is more likely to be unstable to the proton cyclotron instability
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threshold, but that is not supported by the 3DP measurements.
Revisiting how these data products are made, the Faraday cup is a bi-

Maxwellian fit to the core and beam. The 3DP data takes a direct moment
of the proton distribution function. There will always be a discrepancy between
these two datasets. Recall, the linear theory is derived from a bi-Maxwellian
distribution function. Further differences between the dataset, while interesting,
are not necessary to explore since 3DP provides exactly what is necessary for
the science objectives: high cadence measurement of the proton pressure tensor.

It is interesting to note that, looking at the top panel, I would be convinced
that the two signals have nothing to do with each other, and a cross-correlation
does confirm that, so that I could be convinced, one of the signals is meaningless.
Looking further into the details, for example, comparing the parallel firehose
instability threshold, one can see that it is relevant at similar times in the time
series. The time series has pointed out that the 3DP does contain the proton
beam, now it is time to make direct comparisons. Now the SWE data, with the
beam included in the parallel temperature, will be used.

Figures 5.12 - 5.14 plots joint probability density of the ratio of 3DP to SWE
quantities versus the 3DP density. The top two panels show that there are two
populations of points here, some that cluster around equality in the quantity on
the vertical axis, and another that does not. The bottom panel makes it clear
that whatever data product is wrong, it occurs when the density is low, not a
complicated function of pressure and density.

Considering the instrument design, the electrostatic analyser relies on par-
ticle counts to build the distribution function, and the Faraday cup builds a
reduced distribution from inferring the particle energy from the current. If the
particle count is small, the distribution function will not be well approximated.
The 3DP data needs to be limited to density greater than 1 particle per cm3.

Now that the density issue has been resolved and it is clear that the 3DP
data does not remove the beam, a comparison between the SWE and 3DP data
is shown as Fig. 5.17. The Pearson correlation coefficients are encouraging and
the slope hints at a factor difference between the two data products. Looking
closer at the joint probability density, the data has two trend lines, of which the
linear regression slope, crosses in between. This issue was never resolved. It is
interesting to investigate these issues further, but for the scientific goals of this
thesis, satisfactory knowledge about the 3DP dataset has been gained, and it
can now be used for scientific studies.
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Figure 5.15: The joint probability den-
sity of the perpendicular pressures. See
global caption for more details.

Figure 5.16: The joint probability den-
sity of the parallel pressures. See global
caption for more details.

Figure 5.17: The joint probability density of the total pressure. The dataset
spans all the available data for SWE in 2007 and the nearest time stamp for
3DP. The dotted lines are linear regressions, where the Pearson coefficient and
slope are plotted annotated on the figures.

5.3.3 Measured length and time-scales

This dataset can be used to measure many of the proton plasma physics quan-
tities. The collision length and time-scales are of particular interest. So they
are measured here. Following the unit convention of the NRL Plasma formu-
lary [Huba, 1987]. The Spitzer-Härm proton-proton collision frequency [Spitzer,
2006] for a proton-electron plasma with Tp ≤ Te, where Tp (Te) is the proton
(electron) temperature, is written,

νSH
p,p = 4.8× 10−8 npT

−3/2
p λ

(
s−1
)
, (5.38)
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where np (cm−3) is the proton number density, Tp is in eV and the Coulomb
logarithm is λ. The Coulomb logarithm for proton-proton collisions,

λ = 23− ln

∣∣∣∣
√

2np

T
3/2
p

∣∣∣∣. (5.39)

The dataset (the entire 10 years) provides the following averages,

np = 5.33 (cm−3), (5.40)

Tp = 30.0 (eV), (5.41)

vp
th = 48.3 (km/s), (5.42)

where the proton thermal speed is vp
th. With these measurements collision scales

can be calculated,

νSH
p,p = 4.23× 10−7 (s−1), (5.43)

λSH
mfp = vp

th/ν
SH
p,p = 1.14× 108 (km), (5.44)

where λSH
mfp is the Spitzer-Härm proton-proton mean-free-path. These are all

consistent with other datasets that measure the scales at 1 AU [Verscharen
et al., 2019].

The solar wind speed from this dataset is calculated to be,

〈VSW〉 = 480± 130 (km/s) (5.45)

where the ± is the normal standard deviation.

5.3.4 The 3DP 3 second dataset

To make some concluding remarks about the dataset. The units and coordinate
system were verified and then tracked down in the SPEDAS software to be
verified. The dataset was then compared with the Faraday cup measurements
which helped to confirm that the 3DP includes the proton beam and is poor at
low density.

The pressure tensor at a 3 second cadence is a lifetime data product, so
that it is nearly always available. For the consideration of the solar wind, Wind
has been at L1 since 2005, so ensemble studies can be made. The onboard
density and velocity, popular data products, have nearly identical availability
to the pressure tensor. It has similar issues to the density and velocity, namely
that the resolution of the proton distribution function can be poor, when the
measured energy difference is comparable with the thermal energy, then the
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resolution of the distribution function becomes poor. This new dataset will
provide excellent science in the coming years due to its short time cadence and
large sample number.

5.4 Comparing the observations and numerical

methods

In this Section the primary data analysis is detailed. The numerical methods
have been demonstrated in Section 5.1 to predict the relative breaking of the
CGL invariants with cross-correlations. The key parameter of the numerical
model is the effective mean-free-path. The analysis constructed in this section
compares the solar wind observations (the database is described in Section 5.3)
to the numerical model in a robust manner to measure the effective mean-free-
path.

5.4.1 Conditioning the observations

The Wind dataset comprises the magnetic field data from the Magnetic Field
Instrument (MFI) and the onboard proton density, velocity and pressure tensor
from the electrostatic analyzer. The combined dataset covers years 2005-2015.
The pressure tensor validation was described in Section 5.3. The general pro-
cedure is to calculate the cross-correlations, amplitude ratios, proton beta, and
wind speed for a set of time intervals. The intervals are subjected to the follow-
ing criteria:

1. Greater than %95 of the data must be present. The remaining is linearly
interpolated.

2. The median of the density np must be greater than 1 particle - cm−3.

3. The norm of the non-gyrotropic tensor |Πp
ij | must be smaller than 0.3 |ppij |.

The final item here uses the definitions from Eqs. 5.35. Figure 5.18 plots the
following quantity,

FLR ratio =
|Πp
ij |
|ppij |

. (5.46)

The figure shows that %86 of the single points are below 0.3. At larger time
scales, considered here, the percentage of the data below 0.3 is even larger. This
is expected since 3 seconds is slightly larger or near to the average gyroperiod
of the solar wind at 1 AU.
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Figure 5.18: The FLR ratio (defined as Eq. 5.46) is plotted in blue as a his-
togram normalized to be the percent of the total data. This dataset here is for
year 2007. The open boxes are a cumulative sum. There is %86 of data below
0.3.

Now the data is conditioned on two quantities, first the wavenumber, and
then the proton beta, so that trends with β can be explored at different scales.
The wavenumber is computed with Taylor’s hypothesis [Taylor, 1938].The gen-
eral formula relating the spacecraft frame to the plasma frame for a wave is
given by,

ωSC = ωplasma + |ki|VSW cos(θV̂SW,k̂
), (5.47)

where ωSC is the spacecraft frame frequency that is measured, ωplasma is the
frequency of the plasma wave in the plasma frame, ki is the wavevector, VSW is
the magnitude of the solar wind velocity, and θV̂SW,k̂

is the angle between the
wavenumber and the direction of the solar wind velocity [Huang and Sahraoui,
2019]. Now consider an ion-acoustic wave where ωplasma = k cos(θb̂,k̂) cs where
the angle here is between the magnetic field direction and the wave propagation
direction, and cs is the sound speed. Taking τ = ω−1

SC , where τ is the time
cadence of the spacecraft instrument, yields,

|ki| =
[
τVSW

(
cos(θb̂,k̂)

cs
VSW

+ cos(θV̂SW,k̂
)

)]−1

. (5.48)

Now, Taylor’s assumption is often quoted as cs/VSW � 1, so the first term in
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Figure 5.19: The wavenumbers computed via Taylor’s hypothesis. The top
panel is the probability function for an arbitrary bin number. The bottom
panel is three near-to-equal conditioned probability density bins. The red lines
are cutoffs, where the probability becomes less than 10−3.

the parentheses can can be neglected. In the solar wind the sound speed to solar
wind speed ratio, along with the Alfvén speed to solar wind velocity vA/vSW,
are about 0.1 [Matthaeus and Goldstein, 1982]. Notice this term also contains
θb̂,k̂ which is difficult to measure. The next assumption is to take the fact that
sound waves are longitudinal so the maximum power of any fluctuation will be
measured when cos(θV̂SW,k̂

) ' 1. These two assumptions allow the wavenumber
to be computed as,

k ≈ 1

VSW τ
, (5.49)

where k = |ki|. This is the calculation of the wavenumber throughout this
thesis.

This has been done for a set of time intervals τ = [30s, 1min., 2mins., ..., 128mins.].
A probability function of the wavenumbers k are plotted in Fig. 5.19. The top
panel is the probability function where there are 9,035,008 total samples. This
is used to identify outliers, defined arbitrarily as probability less than 10−3.
The outliers are removed and then three near-to-equal probability density bins
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are constructed. This two-tiered histogram method is employed because a bin
number estimate is unreliable for the unknown distribution (top panel of Fig.
5.19) and provides bins of equal probability density that are formed from the
most probable bins of the original distribution.

These bins are now identified by their medians kSW = [0.288, 1.41, 6.34] ×
10−5 km−1. Now there are a set of measurements that correspond to a wavenum-
ber, so that statistics can be gathered at each median wavenumber. The number
of samples in each bin are [2.98, 16.6, 70.0]× 105, respectively.

Next, each wavenumber bin is conditioned on the proton beta. To ensure
there is no internal bias between the two quantities, Fig. 5.20 is provided. It is
the joint probability density function of the proton beta and the wavenumber.
The first point, is that there is no trend, so the dataset can be conditioned in
these two quantities without an internal bias. The next important condition that
should be satisfied, is homogenous sampling, but unfortunately this property is
not satisfied. To illlustrate this property without testing it, drawing a vertical
line, at k = 10−5 km−1, it crosses a few of the contours (in black), doing
the same, at k = 10−4 km−1, the contours are crossed at different values of
β. The same goes for flipping the line to be horizontal. For this study, the
important span is in β ∈ [0.5, 2], so the conditioning of the data is considered
justified for this analysis. Recall from 5.1.2 that the numerical solutions over
the interval β ∈ [0.5, 2] change rapidly and diverge at higher beta. This region
displays unique trends to aid the comparison between the numerical methods
and observations.

Now that the method for the conditioning of the data has been presented, the
statistics of the individual wavenumber bins (e.g., the average parallel magnetic
field) can be conditioned on beta, to recover trends in beta, at a wavenumber.
The technique does require a very large sample number.

5.4.2 Measurements of the CGL cross correlations

The cross-correlations and amplitude ratios defined in Section 5.1.2 are to be
measured to compare with numerical solutions. The method to condition the
data in wavenumber and proton beta is described in Section 5.4.1. Figure 5.21
shows the beta conditioned statistics for the median wavenumber bin kSW =

0.288 × 10−5 km−1. Notice that the trends are similar to that presented in
Section 5.1.2. The samples have a spread around the beta conditioned statistics
(see caption for magenta lines), but all follow a trend from β < 1 to β > 1.

This method has been repeated for the other two wavenumber bins appearing
as Figs. 5.22 & 5.23. The trends are similar, but there are differences in the
overall trends. For example, Fig. 5.21, the C⊥ descends sharper at the β ≈ 1
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Figure 5.20: The joint probability function of the wavenumber and proton beta.
The contours in black are constant values of the joint probability density. The
annotated numbers are from the linear regression, seen as the dashed line.

transition, than does Fig. 5.23. This is also a feature of the numerical model
developed in Section 5.1.2.

The three wavenumber bins here have provided a set of trends conditioned on
the proton beta which can be compared to theoretical predictions from Section
5.1.2.

5.4.3 Comparing numerical solutions and observations

Section 5.1.2 detailed the method of obtaining solutions and Section 5.2 de-
tailed the parameter degeneracy and how to resolve this issue. The method of
comparison is to take the parameters of the model displayed in Table 4.5, with
the caveat on θb̂,k̂, making valid assumptions and leaving others free, to be
determined by the analysis method. To recap, the wavenumber k is measured
with the method in Section 5.4.1, the proton beta is measured directly, and the
electron to proton temperature ratio is set to unity and the electron to proton
mean-free-path ratio is set to unity, based on Section 4.5.3. This leaves the
three parameters λeff

mfp, α, kiso where θb̂,k̂ being determined by the latter two
parameters through the wavenumber model (Eq. 5.32).

The method of comparison is shown as a flow chart in Fig. 5.24. The top left
box, labelled “Numerical model” classifies the parameters, leaving two free (Sec-
tion 5.2 explains why this must be three parameters), and the box just below
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Figure 5.21: The cross-correlations and amplitudes defined in Section 5.1.2
mapped to a common color bar, that is conditioned on the proton beta. The
wavenumber bin is kSW = 0.288×10−5 km−1. The thin black lines are the 10−2

contour. The magneta lines are the beta conditioned mean (dashed), median
(solid), and maximum (dotted).

that is the “Observations”. The observations produce cross-correlations called
the “Measured cross-correlations” and the numerical model produces the same
cross-correlations called the “Numerical cross-correlation sensitive to θb̂,k̂, λ

eff
mfp".

The numerical cross-correlations are sensitive to parameters that will be mea-
sured, so the larger blue parallelogram on the right is put into a “for” loop
sampling large parameter spaces in θb̂,k̂, λ

eff
mfp and recording the “goodness of

fit”. These are then used as weights to perform statistics.
The first piece of the analysis is to take the numerical solution, from Section

5.1.2, and normalise to the low beta value: the solid magenta curve from Fig.
5.21. This amounts to changing the numerical correlations by a factor so that it
matches the observed trend, which can be seen clearly in Fig. 5.25 at low beta.
Recalling the numerical correlations, say from Fig. 4.18, the correlations are
a set value at low beta, to adjust them to the observed trends, the numerical
correlations are then normalized so they match the observed trend.

This is argued to be physically reasonable since wave polarizations are ap-
proximately observed in turbulent plasmas. There is support for this using fluid
simulations [Dmitruk and Matthaeus, 2009], kinetic simulations [Grošelj et al.,
2019, Hunana et al., 2011], and in observations [Chen, 2016]. A long debate
could ensue on this topic, but essentially, this work assumes that the magnitude
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Figure 5.22: The cross-correlations and amplitudes defined in Section 5.1.2
mapped to a common color bar, that is conditioned on the proton beta. The
wavenumber bin is kSW = 1.41× 10−5 km−1. The thin black lines are the 10−2

contour. The magneta lines are the beta conditioned mean (dashed), median
(solid), and maximum (dotted).

of the correlation is reduced by the turbulent behaviour, as one would expect
from studying the correlation function, but the properties e.g, sign and change
with parameters, are given by linear theories.

Now to quantify the comparison of the numerical solution and the observa-
tion, the statistic,

R(k, λeff
mfp, α, kiso) =

√√√√N−1

N∑
i

[
ȳ(βi, k)− ŷ(βi, k, λeff

mfp, α, kiso)

]2

, (5.50)

is introduced, where the subscript i denote the ith value of β. It is a root-
mean-square where the mean is taken over beta. The measured trend is given
by ȳ(βi, k) and the numerical solution is ŷ(βi, k, λ

eff
mfp, α, kiso). The statistic is

written so that if ȳi, ŷi are identical, R → 0. The comparison is quantified by
this statistic.

Considerable effort was put into ensuring the correct statistic was used for
this comparison. Firstly, using the individual measurements that constitute the
beta conditioned probability function in Fig. 5.21 (instead of the average trend)
made a negligible difference. Next, R is just one of many possible statistics that
can be used, but in the end there are only very slight differences for two reasons.
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Figure 5.23: The cross-correlations and amplitudes defined in Section 5.1.2
mapped to a common color bar, that is conditioned on the proton beta. The
wavenumber bin is kSW = 6.34× 10−5 km−1. The thin black lines are the 10−2

contour. The magneta lines are the beta conditioned mean (dashed), median
(solid), and maximum (dotted).

First, is that R is used as an unormalized weight,

w(k, λeff
mfp, α, kiso) =

1

R(k, λeff
mfp, α, kiso)

, (5.51)

to calculate statistics so that only something along the lines of wmax/wmedian is
important in determining the final statistics.

Figure 5.25 displays nearly 1000 solutions for different parameters, the choice
of parameters will be made clear in Section 5.4.4. It can be seen that the darker
lines, with larger weight, are more similar to the observed trend. The second
reason the choice of R is best left simple, is that the distribution of weights
are considered to indicate the underlying distribution, which then indicate the
statistics to be used (e.g., Poisson, log-normal etc.) to calculate mean and
standard deviations.

For now, just consider the weights calculated for a set of solutions given
by ranges in the parameters λeff

mfp, α, kiso. Figure 5.26 displays the cumulative
distribution function of the normalized weights w/wmax for the C⊥ statistic. The
two distributions plotted that accompany the cumulative distribution function
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Combining the measurements and numerical solutions

Observations: 
, , , , , k βp pp

⊥ pp
∥ np B

Measurement: 
• Goodness of fit is used as a weight to measure means and confidence intervals of . 
• The  is a function of scale so it is parameterised by , the wavenumber where , 

and  which determines obliqueness with scale.

λeffmfp
θb̂,k̂ kiso θb̂,k̂ = 45∘

α

Numerical model: 
Measured: ,  
Free to be determined by a fit: , 

 
Set to a value: , 

k βp
θb̂,k̂

λeffmfp
Tp/Te λeffmfp/λeffmfp,electrons

Measured cross-correlations

Fit cross-correlation

Numerical cross-correlation 
sensitive to: , θb̂,k̂ λeffmfp

Figure 5.24: The “Numerical model” and the “Observations” are combined in the
blue parallelogram by spanning a large parameter space in θb̂,k̂, λ

eff
mfp and fitting

the numerical solution to the observations. This is the data analysis technique
implemented in the thesis to make the primary measurements of the thesis.

are defined respectively log-normal and normal,

CDFlog(x) =
1

2

[
1 + erf

(
ln(x)− µ
σ
√

2

)]
, (5.52)

CDFnorm(x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
, (5.53)

where µ, σ are the arithmetic mean and standard deviation, which are calcu-
lated directly from the data.

Notice that the log-normal distribution, from Fig. 5.26, better represents
the data. It does appear that the normal distribution function does fit the
largest weights better than the lognormal distribution function. To be brief, the
mixed distribution function was considered, using the mean integrated standard
error method [Marron and Wand, 1992], to show that the actual distribution
is ≈ %37 normal and ≈ %63 log-normal. When generating statistics from the
mixed distribution function the differences (again using the mean integrated
standard error method), say in the mean of the distribution, are small. This
can be seen from Fig. 5.26, that the distributions are similar.

This demonstrates that the best set of statistics to represent the data, are the
weighted geometric statistics. If the observations xi have unnormalised weights
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Figure 5.25: This figure is for C⊥, kSW = 1.41 × 10−5 km−1. The numerical
solutions colored by the normalized weight, mapped to the color bar. The black
line is the observed beta conditioned median.

wi, the definitions follow of the weighted geometric mean,

µx = exp

{ n∑
i

wi ln|xi|∑n
i wi

}
, (5.54)

weighted geometric covariance matrix,

(
σx,y

)2
= exp

{
1∑n
i wi

n∑
i

wi ln

∣∣∣∣ xiµx
∣∣∣∣ ln∣∣∣∣ yiµy

∣∣∣∣}, (5.55)

which defines,

ln|µx| ± 2 ln|(σx,x)| ⇒ CIx = [µx (σx,x)2, µx/(σx,x)2], (5.56)

where CIx is the weighted geometric two sigma confidence interval, following
Norris [1940], Kendall and Stuart [1977]. These statistics are used to calculate
means and covariances.

The method for comparing the numerical solutions to the measurements is
to use the R statistic from Eq. 5.50. R is a semi-linear regression method,
being that on the interval dβ, a linear regression is considered, and the size of
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Figure 5.26: The normalized weights, where the weight is calculated from Eq.
5.51. The labelled curves are from Eqs. 5.52. The bin number was chosen
arbitrarily.

dβ was chosen arbitrarily. Next, R is inverted to produce a weight, Eq. 5.51,
for which the underlying distribution can be inferred. A mixed distribution was
considered, but in the end was not used. With a method for determining dβ,
this method would serve as an excellent semi-linear model comparison method
where the underlying distribution of the unknown parameters is not known.

5.4.4 Measuring the parameters

With the method of comparing the numerical model and observations detailed
in Section 5.4.3 the results will be presented. Returning to Eq. 5.51, the weight
is to be calculated. Recalling the degeneracy issue from Section 5.2, the param-
eters must be summed over wavenumber, to break the degeneracy, so that the
important quantity to consider is,

W(λeff
mfp, α, kiso) =

∑
kSW

w(kSW, λ
eff
mfp, α, kiso), (5.57)

where kSW is the three wavenumber bins determined in Section 5.4.1. This
weighted space, where examples of the solutions and the corresponding weights
was shown in Fig. 5.25, will be shown. The weighted space is 3-dimensional
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(λeff
mfp, α, kiso), so to visualize the space, the axis are integrated,

Wχ =

∫ χn

χ0

dχ
W(α, kiso, λ

eff
mfp)

χn − χ0
, (5.58)

where χn, χ0 are the limits of the ranges. These 2-dimensional weight spaces
are plotted for each of the cross-correlations and amplitude ratios in Figs. 5.27,
5.28, 5.29, and 5.30.
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Figure 5.27: The integrated weights for C⊥. The quantity of the color bar is
defined as Eq. 5.58. The magenta diamonds are the weighted means from Eq.
5.54 and the magneta bars indicate the two sigma confidence interval from Eq.
5.56.

Besides the A⊥ amplitude ratio, the larger weights are clustered around
similar values in the parameters λeff

mfp, α, kiso and the magenta diamonds (the
weighted geometric means calculated from Eq. 5.54) are central to the larger
weights, with respect to the three panels, and the confidence intervals (the two
sigma confidence intervals are calculated from Eq. 5.56).

To explain a bit more about the A⊥ case, Fig. 5.31 has been provided. It
is a repeat of Fig. 5.25 for A⊥. A few things are apparent, there are many
solutions that do not match the observed trend. Next, there are many that
match the trend only for beta near to one, and not so for higher beta, which
then correspond to a small weight. This is not a feature of the other cross-
correlations and amplitude ratios. This leads to A⊥ revealing many solutions
that do not match the observed trend at high beta. It is probably this reason
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Figure 5.28: The integrated weights for C‖. The quantity of the color bar is
defined as Eq. 5.58. The magenta diamonds are the weighted means from Eq.
5.54 and the magneta bars indicate the two sigma confidence interval from Eq.
5.56.

that the other cross-correlations and amplitude ratios are good indicators and
not A⊥. One feature to notice is that A⊥ tends to larger values at larger beta,
which is only a feature of the numerical solutions in the fluid regime.

The weighted geometric statistics for all of the quantities are plotted in Fig.
5.32. The statistics are very similar which is encouraging. For this reason,
the statistics are combined, summing the four results and dividing by 4, and
reported in Table 5.1. These are the primary measurements of this piece of
work.

5.4.5 The wavenumber dependence

The parameters α, kiso replaced θb̂,k̂ to break the degeneracy with λeff
mfp. In

Section 5.2, it was shown that this requires us to make sure the parameters
α, kiso are providing the correct θb̂,k̂ at multiple wavenumbers.

Figure 5.33, displays the maximum weight (defined as Eq. 5.51) from the
wavenumber bins for each of the cross-correlations and amplitude ratios, ac-
companied by the observed trend for each of the wavenumbers. The parameters
of the maximum appear on the panel. Returning to Table 5.1, most of these
parameters are within the confidence intervals.

The point here, is that the trend in wavenumber is similar for the numerical
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Figure 5.29: The integrated weights for A⊥. The quantity of the color bar is
defined as Eq. 5.58. The magenta diamonds are the weighted means from Eq.
5.54 and the magneta bars indicate the two sigma confidence interval from Eq.
5.56.

solutions. For example, for the C⊥ panel, the largest scale (black line) indicates
the most sharp change from low beta to high beta, this feature becomes less
sharp, going to larger wavenumber. There are some differences in the trends for
A⊥, but as discussed before, this measure is less reliable than the others.

This demonstrates that the determination of α, kiso has resolved the de-
generacy issue. The measurement of α, kiso also provides the most probable
propagation angle θb̂,k̂ as a function of wavenumber k, in particular k‖.

5.4.6 Measuring the transition scale

In Section 4.5.1.1 the importance of the fluid and collisionless regimes was inves-
tigated numerically, where the transition between the two occurs in frequency
or wavenumber. The proper definition of the transition frequency is νeff ' ω,
where νeff is the effective collision frequency and ω is the temporal frequency of
a plasma fluctuation. The measured effective mean-free-path and mean proton
thermal speed (measured with this data set) gives an effective collision frequency
of νeff = vp

th/λ
eff
mfp = 1.11 ×10−4 s−1. The thermal speed is presented in Sec-

tion 5.3.3. The sound wave dispersion relation can be used for the temporal
frequency ω. Near to the transition scale, the dispersion relation is best de-
scribed by the ion-acoustic dispersion relation ωIA = k‖ cs. The transition scale
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Figure 5.30: The integrated weights for A‖. The quantity of the color bar is
defined as Eq. 5.58. The magenta diamonds are the weighted means from Eq.
5.54 and the magneta bars indicate the two sigma confidence interval from Eq.
5.56.

is then defined when the parallel wavenumber satisfies ktrans
‖ = vp

th/cs λ
eff
mfp. The

wavenumber model can be used to rewrite the transition scale for k, which can
then be compared directly to previous observations.

Rewriting the wavenumber model from Section 5.2,

k =
kiso√

2
cos(θb̂,k̂)1/(α−1) sin(θb̂,k̂)α/(1−α), (5.59)

which permits,

vp
th

cs λeff
mfp

= ktranscos(θtrans
b̂,k̂

) =
kiso√

2
tan(θtrans

b̂,k̂
)α/(1−α). (5.60)

Solving for θtrans
b̂,k̂

,

θtrans
b̂,k̂

= arctan

{[ √
2vp

th

cs kiso λeff
mfp

](1−α)/α}
. (5.61)

Now, ktrans can be written,

ktrans =
kiso√

2
cos(θtrans

b̂,k̂
)1/α−1 sin(θtrans

b̂,k̂
)α/1−α. (5.62)
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Figure 5.31: This figure is for A⊥, kSW = 1.41 × 10−5 km−1. The numerical
solutions colored by the normalized weight, mapped to the color bar. The black
line is the observed beta conditioned median.

Using the trigonometric identities,

cos(arctan(x)) =
1√

1 + x2
, sin(arctan(x)) =

x√
1 + x2

, (5.63)

yields,

ktrans =
kiso√

2

(
1√

1 + χ2

)1/α−1(
χ√

1 + χ2

)α/1−α
, (5.64)

where,

χ =

[ √
2vp

th

cs kiso λeff
mfp

](1−α)/α

(5.65)

which simplifies to,

ktrans =
kiso√

2
χα/(1−α)

√
1 + χ2. (5.66)
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Figure 5.32: The statistics: weighted geometric mean µx (Eq. 5.54), covariance
σ̂2
x,y = σ2

x,y/(σ̂x,xσ̂
2
y,y) (Eq. 5.55), and the two sigma confidence interval CIx

(Eq. 5.56) are calculated for the the amplitude ratios and cross-correlations.

Now inserting χ,

ktrans =
vp

th

cs λeff
mfp

√√√√1 +

[
2(vp

th)2

c2s k
2
iso (λeff

mfp)2

](1−α)/α

. (5.67)

The transition scale can be tested by inserting typical values for the solar wind.
The λeff

mfp and kiso have been measured by this analysis, appearing in Table
5.1. Using a typical value of vp

th/cs =
√

1/2 for the solar wind, and using
Taylor’s assumption, the transition wavenumber in spacecraft-frame frequency
at 1 AU is 〈VSW〉 ktrans = f trans = 0.19 Hz, and CIftrans = [0.046, 0.33] Hz.
The uncertainties are propagated from VSW and the four estimates of ktrans

from C‖, A‖, C⊥, A⊥. The values of the average solar wind speed and standard
deviation are reported in Section 5.3.3.

Equation 5.67 has some nice properties worth investigating. For α = 1,
the wavenumber anisotropy is isotropic k⊥ = k‖ for all wavenumbers, which
results in the transition wavenumber ktrans ∼ 1/λeff

mfp, this would result in a
prediction 480/4.4 × 105 = 1.1−3 Hz, a difference of two orders of magnitude.
The anisotropy is clearly an important factor in determining the transition scale.
Looking to Figs. 5.27, 5.28, 5.29, and 5.30, there is some evidence for α near to
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Statistic Value(s) Unit
µα 0.43 -
µkiso 5.4 ×10−8 km−1

µλeff
mfp

4.4 ×105 km
CIα [0.21, 0.86] -
CIkiso [0.064, 4.5] ×10−7 km−1

CIλeff
mfp

[1.0, 19] ×105 km
σ2
α,kiso

/(σα,α σkiso,kiso) 0.22 -
σ2
α,λeff

mfp

/(σα,α σλeff
mfp,λ

eff
mfp

) 0.34 -
σ2
kiso,λeff

mfp

/(σkiso,kisoσλeff
mfp,λ

eff
mfp

) 0.17 -

Table 5.1: The combined statistics: weighted geometric mean µx (Eq. 5.54),
covariance σ̂2

x,y (Eq. 5.55), and the two sigma confidence interval CIx (Eq.
5.56).

1, but the most probable value for α is smaller.
Considering a slab model, where α = 0, some interesting limits follow. Con-

sulting Mathematica, if the quantity inside the exponent is less than 1 then
ktrans ∼ 1/λeff

mfp, if the quantity inside the exponent is larger than 1 then
ktrans → ∞, which is not physical. Values of α /∈ [0, 1] are plausible, but
beyond the scope of the discussion. In general, for there to be a compressive
fluid inertial range, kisoλ

eff
mfp < 1 (the quantity in the exponent is greater than

1), so that the isotropic scale length is larger than the transition scale. This
immediately requires a scale dependent anisotropy α 6= 0. If there is no fluid
inertial range, where all the fluctuation energy is at scales below the effective
mean-free-path, there is no restriction.

5.5 Conclusion

This Chapter synthesises the largest pieces of work. The numerical method of
obtaining cross-correlations from Chapter 4 is extended to test the relative non-
conservation of the Chew-Goldberger-Low invariants in Section 5.1. It is shown
in Section 5.1.1 that these invariants are an excellent test of the equation of state
of the plasma, in particular, they are related to the effective mean-free-path. The
need to model the propagation angle leads to a parameter degeneracy, a difficult
issue to overcome, but is shown in its entirety in Section 5.2 and resolved.

Next, the database for the study is presented in Section 5.3. This section in-
cludes the verification method and makes comparisons with other data products
to understand the dataset and the quality. The quality of the pressure tensor is
excellent and will serve to be useful in the future. The conditioning and prepa-
ration of the dataset is presented. The comparison of the numerical predictions
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of the CGL correlations and amplitudes to the observations is then presented
in Section 5.4. The method of obtaining statistics is detailed and presented as
a general method for comparing non-linear models to observations.

Most importantly, this Chapter presents the primary results of the thesis:
the measurement of the effective mean-free-path, which appears in Table 5.1 in
Section 5.4.4. Finally, the transition scale is measured in Section 5.4.6.

The primary result of the thesis is the robust measurement of the effective
mean-free-path of solar wind protons at 1 AU, λeff

mfp ≈ 4 × 105 km, which is
approximately 103 times shorter than the Spitzer-Härm mean-free-path, which
appears in Section 5.3.3. The effective mean-free-path is centred about the
range of inverse wavenumbers (calculated by Taylor’s hypothesis) for this anal-
ysis. This is encouraging because these are length scales that the analysis can
resolve accurately (i.e., without extrapolation). Additionally, the inferred ef-
fective collision frequency νeff = 1.11 ×10−4 s−1 is not beyond the instrument
time cadence, therefore a frequency of this magnitude can be resolved. Finally,
due to the observed fluid behaviour, one would expect the mean-free-path to be
shorter and the effective collision frequency to be larger than the Spitzer-Härm
estimates, as found here. Physical limits on how short mean-free-path are diffi-
cult to impose due to the k‖ λeff

mfp dependence, but the resulting transition scale
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is probably limited by the gyroradius.
This measurement means that the range of scales of fluid behaviour extends

to much higher frequencies or smaller scales than would be expected by the
Spitzer-Härm estimate. In particular, the nature of compressive fluctuations, as
they should be severely damped. This is the key solar wind observation that is
inconsistent with the linear collisionless plasma theory. The caveat being that
nonlinearly plasmas support effective collision processes.

The scale at which this transition from fluid to collisionless behaviour occurs
is measured to be ≈ 0.2 Hz in the frame of the spacecraft. Returning to Fig.
3.10, the transition scale separates the inertial and kinetic ranges. This validates
the use of fluid theories to frequencies smaller than that of the transitions scale.
For decades fluid MHD theory has been successfully applied to the inertial range
without a clear understanding as to why it can model all aspects of the solar
wind behaviour. This serves as an explanation.

The measured effective mean-free-path and effective collision frequency are
consistent with the known kinetic processes that are present at frequencies larger
than 0.2 Hz. This point was explored numerically in Section 4.5.1.1, where it
was shown that at scales k‖λeff

mfp � 1 the collisional term is infinitesimally
small, and the kinetic solutions are recovered. All of the perturbations to the
distribution function that are responsible for kinetic effects are recovered at
these scales. In the context of the solar wind, the ratio of the effective mean-
free-path to the gyroradius for protons at 1AU is 103. Gyroscale motion is not
disrupted by the effective collisionality, it is only the Doppler shifted effective
collision frequency that is near to the gyrofrequency. Therefore, processes such
as cyclotron resonance and stochastic heating, which rely on the departure of the
distribution function from the equilibrium, are not inhibited. It is likely not a
coincidence that the gyroscale motion remains intact while the transitions scale
is near to the gyroscale, which is why quasi-linear processes such as resonant
heating and isotropization were studied in Section 6.6.

One of the primary difficulties of this piece of work was to model the prop-
agation angle θb̂,k̂ as a function of wavenumber. The parameterisation kiso, α

provided this description. This detail is necessary to produce numerical solu-
tions that coincide with observations, this detail is shown in Section 5.1.2, in
particular, due to the dependence of the solutions on k‖ λeff

mfp the angle and effec-
tive mean-free-path can alter the solutions in the same manner. To highlight the
importance of this measurement, one can use the effective mean-free-path and
Taylor’s hypothesis (see Section 5.4.6 for the details on the angle) to naively esti-
mate the transition scale ≈ VSW/λ

eff
mfp = 480 [km/s] /4.4×105 [km] = 1.1×10−3

[s−1], (using measurements from 5.3.3). This estimate is two orders of magni-
tude larger than the transition scale using the correct angle due to the inverse
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cosine dependence. The naive estimate is two orders of magnitude larger than
the observed magnetic field power spectral break.

The inapplicability of the Spitzer-Härm method to the solar wind has been
discussed in detail in reviews such as Marsch [2006]. The question that arises, is
could the effective mean-free-path be a correction to the Spitzer-Härm method?
Since the solar wind is not near to a Maxwellian distribution function, the
mean-free-path is likely different than the Spitzer-Härm estimate. It could be
a correction, but due to the 103 difference, it is likely not a collisional process,
but actually a collisionless process.

The collisionless processes that could be responsible for the enhanced ef-
fective collision frequency measured in the solar wind includes wave-particle
interactions [Kellogg, 2000, Graham et al., 2022], instabilities [Gary et al., 2000,
Yoon, 2017], and the plasma wave-echo [Schekochihin et al., 2016, Meyrand
et al., 2019]. These processes have long been studied theoretically and nu-
merically to explain a variety of processes such as galactic magnetic field am-
plification, reconnection, magnetorotational instability, magnetic dynamos and
inhibition of pressure anisotropy in collisionless plasmas [Coroniti and Eviatar,
1977, Schekochihin and Cowley, 2006, Kunz et al., 2014, Rincon et al., 2016, He-
lander et al., 2016, Kunz et al., 2016, Squire et al., 2017b]. It is an open question
as to how they are activated, but has been shown that compressive fluctuations
and Alfvénic fluctuations can generate pressure anisotropy, thereby activating
instabilities and regulating the departure from equilibrium [Verscharen et al.,
2016, Squire et al., 2017, Kunz et al., 2020].

There is some evidence for these processes in the solar wind. In Bale et al.
[2009], they showed that magnetic field fluctuations at the gyro-scale are en-
hanced near the instability thresholds, consistent with excitation of waves due
to the unstable plasma. Additionally, the velocity distribution functions appear
to follow the contours that would be stable to various wave-particle resonances
[Tu and Marsch, 2002, He et al., 2015b]. To progress our understanding of these
processes, better tools for analyzing the details of the velocity distribution func-
tions are needed. This is considered in Chapter 6.

The solar wind presents a case where the effective mean-free-path is much
shorter than the Spitzer-Härm mean-free-path. Given the potential effective
collision mechanism discussed above, it is clear that the fluctuation amplitude
(i.e., turbulence) plays a strong role in dictating the effective mean-free-path.
For example, large amplitude fluctuaitons cause the plasma to become unstable,
causing particle scattering and relaxation of the plasma. A collisionless plasma
that is laminar would not be drastically governed by the effective mean-free-
path, if it plays any role at all.
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Chapter 6

Quasi-linear relaxation rate:
numerical simulations

Quasi-linear theory was sketched in Section 2.6 and some evidence for quasi-
linear heating occurring in the solar wind was presented in Section 3.5. Quasi-
linear theory describes the relaxation of plasma towards equilibrium which is one
of the potential effective collision mechanisms. Therefore, the primary objective
of the Chapter is to develop a method to measure the quasi-linear relaxation
rate directly from particle distribution functions. A numerical approach is taken,
employing a simulation that evolves the particle distribution function, so that
data can be obtained in a controlled setting. Analysis techniques are developed
to obtain the gradient of the particle distribution function. This enables the
measurement of the so-called quasi-linear heating rates, which are a proxy for
the relaxation rate. These methods are developed to deal with noise in the
particle distribution function so that they have a direct application to spacecraft
measurements. While this analysis is widely applicable, the focus of the Chapter
is on how to measure relaxation rates.

6.1 The VPIC simulation

To create a proof of concept project a simulation will be employed to test the
analysis technique. The VPIC simulation, see Bowers et al. [2008], is a particle-
in-cell (PIC) method to solve the particle distribution function in Boltzmann’s
equation which couple to Maxwell’s equations, where the fields are solved with
a finite-difference scheme.

A simulation that evolves the particle distribution function is necessary for
this proof of concept project. For example, any fluid (e.g. MHD) or Landau
Fluid code assumes a form for the distribution function so it is not a good
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choice. Next, there are two classes, PIC codes and finite-difference or finite-
element codes that evolve the distribution function. Either would be a good
choice for this method, but there is a preference for the PIC code because a
better udnerstanding of the noise in a PIC code is useful for PIC simulation.
Finally, the hybrid-PIC code is chosen, where electrons play the role of a fluid
(i.e., the distribution function is not evolved) which is a good approximation
because electrons do not play a kinetic role in the physical scenario considered
here. Therefore, the hybrid-PIC simulation is perfectly suited for the task at
hand.

Briefly, the PIC approach defines super-particles to represent many ac-
tual particles, essentially allowable because the Lorentz force is proportional
to qs/ms, not the number of particles. The typical equations of motion for a
particle in an electromagnetic field are solved with a finite-difference scheme
where the electromagnetic fields are intermediate to the time step i.e., the leap-
frog method. Macroscopic quantities and the fields are then calculated on grid
points. When the time steps and grid sizes are smaller than the inverse electron
plasma frequency and the Debye length the simulation is stable [Okuda, 1972].

Noise in the particle distribution function arises from representing a con-
tinuous system with a finite number of super-particles. The noise is evolved
in the equations and is transferred “around” when calculating quantities on a
grid. This is often reduced by introducing a shape function, but noise persists
[Okuda, 1972]. The noise level is proportional to the inverse square root of the
number of particles per cell, so that a larger number of particles leads to a more
stable and less noisy simulation.

This approach is extremely efficient for problems where important geometry
(e.g., the magnetic field shape) is on scales much larger than kinetic scales (e.g.,
the gyro radius or inertial radius) yet kinetic physics (e.g., particle trapping)
is required to describe the system fully. An example of that is reconnection
where large-scale magnetic field geometry dictates inflow physics, but the site
of reconnection, where micro-scale physics of decoupled electrons and ions must
be described to resolve particle acceleration. See for example, Guo et al. [2014],
the VPIC simulation is able to resolve relativistic particles energized through
the first order Fermi process in the reconnection outflows.

6.2 The parallel proton cyclotron instability as a

case study

The anisotropic temperature parallel proton cyclotron instability was discussed
in Section 2.5.1.2.2 and the role of the proton cyclotron wave in heating the
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solar wind was shown in Section 3.4.2, and the role of the instability in the solar
wind was discussed in Section 3.5.

Another reason for the choice, is because parallel propagating waves intro-
duce considerable simplicity in the final form of the equations that govern the
wave properties and the evolution of the distribution function. The hybrid-VPIC
simulation is suitable for this instability since the electrons are nonresonant due
to their relatively large thermal speed when the species temperatures are equal
[Gary, 1993].
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Figure 6.1: The dispersion relation for the parallel proton cyclotron instability
for time 0 Ω−1

p . The top panel is the real part of the complex frequency and
bottom panel is the imaginary part. The parameters of the system are annotated
on the top panel, in simulation units.

This method has a long history, see Davidson [1972] and Hamasaki [1973],
and the review article by Yoon [2017], where the system is initialized to be
unstable, so that there is a growth of waves at the expense of particle energy.
This study, for proton cyclotron waves, was first considered by Davidson and
Ogden [1975]. The most recent and advanced study of this kind has been done
by Astfalk and Jenko [2018].

The simulation box is quasi-1D in space, 4 dp in the perpendicular direction
to the background magnetic field, and 512 dp in the parallel direction where dp
is the proton inertial length. In velocity space the span is 8 Alfvén speeds in the
three cartesian directions, which are then split into 100 grids in each direction.
The boundaries are periodic. There are 10,000 particles per cell and only one
run of the simulation is shown here.

The parameters for the simulation, shown in this section, are initialized
so that the proton temperature ratio is T p⊥/T

p
‖ = 4.27 and the parallel beta

β‖ = 0.5. These initial conditions are unstable to the parallel proton cyclotron
instability and not the mirror (see for example Fig. 3.8). This is also sufficient
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initial conditions so that the generated waves are nearly parallel [Gary, 1993].
The velocity space in the 3D cylindrical space has a span of v‖ = [−4 vA, 4 vA],
v⊥ = [0, 8 vA], and vφ = [0, 2π]. Defining v‖ = vz, based on the background

magnetic field direction, then v⊥ =
√
v2
x + v2

y and vφ = arctan{vy/vx}. This
requires some serious care, since the quasi-linear theory is derived in cylindrical
coordinates, but the typical distribution function plotted is a reduced cartesian
parameterized by the cylindrical coordinates. See the helpful demonstrative
article Moseev and Salewski [2019] for more information and how to transform
between various coordinate systems.

The dispersion relation for the proton cyclotron wave is shown at the initial
time of the simulation in Fig. 6.1. The method to obtain the dispersion relation
is described in Section 2.5.1. The top panel shows the normalized real part of
the complex frequency, which is near to the Alfvén speed for small wavenumbers
(normalized to the proton inertial length), then plateaus near the cyclotron
frequency, due to the strong resonance at the cyclotron frequency. The bottom
panel shows a positive imaginary part of the complex frequency, where there is
significant growth over a bandwidth in wavenumber. The propagation direction
of the new-born waves is symmetric, equal populations of parallel and anti-
parallel [Davidson and Ogden, 1975]

0.5

1.0

1.5

2.0

T
em

p
er

at
u
re

T p
‖

T p
⊥

0 10 20 30 40

time: Ω−1
p

0.98

1.00

1.02

1.04

1.06

R
at

io
to

in
it

ia
l
va

lu
e

T p

|δb|2
up

‖

Figure 6.2: The initial parallel proton beta is 0.5, the initial temperatures are
seen in the top panel, they are in simulation units. The bottom panel shows
three quantities labelled in the legend, that are all normalized to the value at
time = 0 Ω−1

p .

Figure 6.2 displays the time history of the temperatures, parallel velocity,
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and magnetic field energy. The top panel shows that the perpendicular tem-
perature decreases (cooling) and the parallel temperature increases (heats). In
the bottom panel, the three quantities labelled in the legend, are all normal-
ized to their initial value so that fractional changes can be seen. It can be
seen that the magnetic energy increases at the expense of the total temperature
Tp = (2T p⊥+T p‖ )/3. The parallel bulk velocity (e.g. parallel first-order moment)
stays constant, since the waves are generated symmetric in wavenumber [David-
son, 1972], until the very late stages, where it is likely that the magnetic field
amplitude is large enough to interact non-linearly with the plasma, in a stage
called magnetic trapping.

The analysis that will be employed is to measure the heating rate, according
to the quasi-linear theory prescription, and then integrate in time to recover
the temperature profile. The primary issue addressed in this Chapter is noise
in velocity space. PIC simulation noise results from representing a continuous
distribution function as a discrete system of particles. The simulation is self-
consistent with the noise. The system is physically accurate when the noise does
not corrupt the system, for example in a low moment system (e.g., fluid), if the
heat flux is noisy, the physics is still well captured. For this reason, removing
the noise is advantageous when the quantity is not affected by the noise. It is
assumed throughout the analysis that noise does corrupt the measurement, and
should be removed for a better measurement.

6.3 The general problem of measuring quasi-linear

heating rates

Section 2.6 introduced the quasi-linear equations and the derivation to dis-
cuss the microscopic picture of resonance between waves and particles, and
the macroscopic picture of heating. The equations are reintroduced here. The
time evolution equation for the background distribution function,

∂

∂t
Fs =

∫ ∞
−∞

d3k

(2π)3
B̂(ki)

1

v⊥

∂

∂α
v⊥ν

scatt
s (ki; v‖, v⊥)

∂

∂α
Fs (6.1)

where the normalized magnetic field power spectrum is,

B̂(ki) =
8π

B2
0

(
k‖
|ki|

)2 |b̂i(ki)|2
1− |k̂iei|2

, (6.2)
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where ei = δixex + δiyey + δizez is the polarization vector. The pitch-angle
gradient is,

∂

∂α
= v⊥

∂

∂v‖
+

(
ωr(ki)

k‖
− v‖

)
∂

∂v⊥
, (6.3)

where ωr is the real part of the wave frequency. The relaxation or scattering
rate,

νscatt
s (ki; v‖, v⊥) = π

Ω2
s

k‖

∞∑
n=−∞

δ
(
vres − v‖

)∣∣Ψn

∣∣2. (6.4)

The resonant velocity is defined,

vres =
ωr − nΩs

k‖
, (6.5)

where Ωs is the species cyclotron frequency. Additionally,

Ψn =
1√
2

[
erJn+1

(
λs
)

+ elJn−1

(
λs
)]

+
v‖
v⊥
ezJn

(
λs
)
, (6.6)

is defined where λs = k⊥v⊥/Ωs is the argument of the Bessel functions Jn and
the right/left handed polarization vectors,

er =
ex − iey√

2
, el =

ex + iey√
2

. (6.7)

Equation 6.1 is understood as the following, when an electromagnetic wave’s
phase speed matches a harmonic of the resonant velocity, the energy transfer
between the two will occur if the pitch-angle gradient is non-zero.

Taking moments of Eq. 6.1 leads to the time-evolution of the momentum and
temperatures, called acceleration and heating, in the quasi-linear framework.
Concisely, u̇

s
‖
Ṫ s‖
Ṫ s⊥

 = msns

∫
d3k

(2π)3

(
Ωs
k‖

)2

B̂(ki)

∞∑
n=−∞

R(ki, n)

 k‖
2k‖vres

nΩs

 , (6.8)

where the resonance function is defined,

R(ki, n) = −2π2 k‖
|k‖|

∫ ∞
0

dv⊥ v
2
⊥
∣∣Ψn

∣∣2 ∂

∂α
Fs

∣∣∣∣
v‖=vres

, (6.9)

Equation 6.8 is the focus of this Chapter. Dots represent the partial time
derivative, giving the change in the quantities. On the right hand side, there is
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the magnetic field power spectrum and the pitch-angle gradient of the distribu-
tion function evaluated at all of the resonances, due to the integral in ki.

According to the quasi-linear prescription, and assumptions, if the magnetic
field and distribution function can be measured with respect to the resonances
(i.e., resolving the bandwidth of interacting waves), and the wave properties can
be confirmed (e.g., polarization and propagation direction) then the analysis
is reduced to measuring the magnetic field power spectrum and pitch-angle
gradients.

6.4 Measuring the pitch-angle gradient

Equation 6.8 shows that the pitch-angle gradient (defined as Eq. 6.3) of the
distribution function must be measured. The distribution function has been as-
sumed to be gyrotropic during the quasi-linear derivation (which is not entirely
necessary Melrose [1986]) and therefore, the only coordinates of the velocity
distribution functions are the parallel and perpendicular coordinates. The dis-
tribution function will be expanded in Hermite-Laguerre coefficients. The co-
efficients are spectra, and just like the electromagnetic fields, have noise floors.
The order of the spectral coefficient corresponding to the noise floor is then used
to truncate the series of coefficients. The remaining coefficients are then used to
calculate the terms in the pitch-angle gradient via the recursion relations that
the Hermite and Laguerre polynomials permit.

6.4.1 Hermite-Laguerre functions

The Hermite functions,

ψm(x) =
1

(2mm!
√
π)1/2

e−x
2/2Hm(x), (6.10)

Hm(x) = (−1)mex
2 dm

dxm
e−x

2

, (6.11)∫ ∞
−∞

dx ψm(x)ψn(x) = δmn, (6.12)

are orthogonal over (−∞,∞). They follow the recursion relations,

∂

∂x
ψm(x) =

√
m

2
ψm−1(x)−

√
m+ 1

2
ψm+1(x) (6.13)

xψm(x) =

√
m

2
ψm−1(x) +

√
m+ 1

2
ψm+1(x). (6.14)
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The associated Laguerre functions,

Γkn(x) =

√
n!

(n+ k)!
e−x/2xk/2Lkn(x), (6.15)

Lkn(x) =
exx−k

n!

dn

dxn
(
e−xxn+k

)
, (6.16)∫ ∞

0

dx Γkn(x) Γkm(x) = δnm, (6.17)

are orthogonal over [0,∞). They follow the recursion relations,

∂

∂x1/2
Γkn(x) = Γkn(x)

(
1

x1/2
− x1/2 +

2n

x1/2

)
− 2Γkn−1(x)

n+ 1

x1/2(n+ k)
, (6.18)

√
xΓkn(x) = Γk+1

n (x)
√
n+ k + 1−√nΓk+1

n−1(x). (6.19)

The choice of these functions becomes clear when considering the following
product,

ψ0(x) Γ1
0(y) = π−1/4 e−x

2/2√y e−y/2, (6.20)

so that if x = v‖/v
‖
s , the parallel velocity normalized to the parallel thermal

speed and y = (v⊥/v⊥s )2 the perpendicular velocity normalized to the perpen-
dicular thermal speed - all squared,

ψ0

(
v‖/v

‖
s

)
Γ1

0

(
(v⊥/v

⊥
s )2
)

= π−1/4 v⊥
v⊥s

exp
{
− 1

2

(
v2
‖

(v
‖
s )2

+
v2
⊥

(v⊥s )2

)}
, (6.21)

the bi-Maxwellian in 3D-cylindrical coordinates multiplied by a simply constant
factor. The use of Laguerre function k = 1 puts the system in cylindrical
coordinates, this will be discussed as appropriate throughout these sections.

Figure 6.3 shows the functions for a few orders of the polynomials. Notice
the blue colors (m = 0) correspond to a 1D Maxwellian respective to the span
of the coordinates for the perpendicular and parallel velocity. The first three
orders show that features such as beams and skewness can be captured by the
functions. The red lines are for m = 10, which describe fine-scale structure of
the velocity distribution function.
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Figure 6.3: The top panel plots the Hermite functions from Eqs. 6.10 and the
bottom panel plots the Laguerre functions from Eqs. 6.15. The horizontal axis
x is the normalized velocity. The colors correspond to the legend, notice that
red is m = 10.

6.4.2 Hermite-Laguerre transform

The Hermite-Laguerre transform,

clm =

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ ψm(v̂‖)Γ
1
l (v̂⊥)F (v‖, v⊥) (6.22)

FML(v‖, v⊥) =

M∑
m=0

L∑
l=0

clm ψm(v̂‖)Γ
1
l (v̂⊥) (6.23)

providing the coefficients clm and the inverse transform for FML(v‖, v⊥), based
on maximum polynomial numbers M, L. The integral is in cylindrical coordi-
nates where the angular integral has been completed, giving 2π due to gyrotropy,
but it is ignored throughout the following sections. The Jacobian factor of v⊥ is
held within the k = 1 Laguerre function, discussed at the end of Section 6.4.1.

These points deserves some attention, notice the hat used for the argument
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of the functions, this is the normalised velocity e.g., v̂‖ = v‖/vs‖. There are a few
known methods for normalisation, such as the maximum root of the Hermite
polynomials considered [Tang, 1993]. If the normalisation is chosen poorly, it
can take many orders of the polynomials to well approximate the distribution
function. This can drastically affect the interpretation of the physics as well.
This issue needs to be treated with great care when implementing this technique.
The technique here is to use the first three moments of the distribution function
to form the correct argument of functions. For example, the argument of the
Hermite function

The technique will be demonstrated on a 1-dimensional slice of the distri-
bution function produced by the simulation (the setup is described in Section
6.2). A slice in the parallel velocity direction appears in the top panel of Fig.
6.4 as a dashed orange line. The Hermite transform of the simulation data has
been taken up to m = 5, then the inverse to produce a low pass filter of the
distribution function.

The bottom panel is the central difference of the simulation data in orange
and the blue line is produced by computing the derivative according to the
recursion relations of Eq. 6.13. The difference between the blue line and or-
ange line demonstrates the technique, that the orange line suffers from noise,
amplified by taking the derivative.

A method for assessing the maximum polynomial number, e.g., m, must
now be considered. The 1-dimensional case for v‖ is treated with the spectral
coefficients,

cm =

∫ ∞
−∞

dv‖ ψm(v̂‖)F (v‖, 0), (6.24)

which are plotted in Fig. 6.5 for 4 time stamps in the simulation (see the legend).
Near to m = 10 the power in the spectral coefficients levels off, indicating the
classic noise floor. For orders less than m = 10 it can be noticed that there
is amplification in the power from the initial time (blue line) of the spectral
coefficients, which is possibly a physical process, not simulation noise.

To conclude the method,

1. Take the Hermite-Laguerre transform of the simulation data to obtain the
spectral coefficients.

2. Assess the maximum polynomial order with the simulation noise floor.

3. Calculate the pitch-angle gradient via the recursion relations, with the
spectral coefficients up to the maximum polynomial order.

Additionally this method provides information on the spectral coefficients, which
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Figure 6.4: The top panel shows the distribution function produced by the
simulation in parallel velocity coordinates as a dashed orange line and the inverse
transform method in blue. The bottom panel is the central difference derivative
of the distribution function and the blue line is the derivative produced from
the recursion relations.

have a physical meaning, see Section 6.7.3.

6.4.3 Pitch-angle gradients

With the method for obtaining gradients for the 1-dimensional case demon-
strated, now it is time to show the result for the pitch-angle gradient. Recall
the pitch-angle gradient, from Eq. 6.3, contains both products and derivatives,
so the recursion relations for the Hermite function (Eqs. 6.13) and Laguerre
functions (Eqs. 6.18) are used. Additionally, the pitch-angle gradient involves
the wave frequency ωr. To further demonstrate the method, the full-pitch angle
gradient has been calculated with maximum Hermite and Laguerre polynomial
order of 10 and plotted as Fig. 6.6. The phase velocity of the wave is assumed
to be ωr/k‖ = 0.8 for this Figure.

The Hermite-Laguerre method in the top panel shows the ability of the
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Figure 6.5: The 1-dimensional spectral coefficients (Eq. 6.24) are computed for
simulation distribution function for multiple times, labelled in the legend. The
order of the Hermite polynomial is on the horizontal axis.

technique to avoid incorporating noise into the calculation of the pitch-angle
gradient. With a method to measure the pitch-angle gradient, one large piece
of the quasi-linear heating rate is now measured.

6.4.4 Combining the resonance function with the mag-
netic field power spectrum

Turning to Eq. 6.25 (rewritten here from Eq. 6.8), with the pitch-angle gra-
dient method described in Section 6.4.3, the resonance function (Eq. 6.9) is
measured. The final part is to obtain the resonant velocities which are provided
by solving for the dispersion relation from the dielectric tensor for the temper-
ature anisotropic parallel proton cyclotron instability (see Section 2.5.1). The
Bessel functions simplify since k⊥ = 0 so that only the harmonics of n = ±1

contribute. Then, the integral in v⊥ is computed numerically and the resonance
function R(ki, n) is measured.

For clarity, heating rates and acceleration are rewritten here, u̇
s
‖
Ṫ s‖
Ṫ s⊥

 = msns

∫
d3k

(2π)3

(
Ωs
k‖

)2

B̂(ki)

∞∑
n=−∞

R(ki, n)

 k‖
2k‖vres

nΩs

 . (6.25)

The normalised magnetic field power spectrum B̂(ki) is measured with a simple
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Figure 6.6: The pitch-angle gradient for time t = 20Ω−1
p for a resonants wave fre-

quency calculated with two methods. In the top panel is the Hermite-Laguerre
method described in the text. The bottom panel is 2D central differences
scheme. The color bars are the pitch-angle gradients. There is a slight dif-
ference in the range of the two color bars.

fast Fourier theorem package provided by Python. The magnetic field power
spectrum suffers from a few issues, which will be addressed in more detail, but
at this point, a few (±0.01Ω−1

p ) time stamps, near to the time that the velocity
distribution is computed, are averaged in spectral space to help with the non-
smoothness of the power spectrum.

It is advantageous to plot the entire integrands of Eq. 6.25, seen in Fig.
6.7 to better understand the physical process and measurement issues. In the
top panel the resonant velocity (Eq. 6.5) is displayed, which involves the phase
velocity of the wave and the order of the resonance, which can be seen in the
legend at the top of the figure. The top panel indicates where in velocity space
the wave-particle interaction can happen due to the wave, with the wavenumber
given on the horizontal axis. The interaction is weighted by the pitch-angle
gradient and the power spectral density of the magnetic field, indicating if the
interaction is happening.
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Ṫ
⊥

(k
‖)

−0.02

0.00

u̇
‖(
k
‖)

−101 −100 −10−1 0 10−1 100 101

k‖ dp

0.000

0.025

Ṫ
‖(
k
‖)

Figure 6.7: Various quantities plotted for t = 15 Ω−1
p , plotted as a function of

the parallel wavenumber times the proton inertial length. The horizontal axis is
symmetrical logarithm, so that at ±10−1 the scale becomes linear to pass from
< 0 to > 0. The colors of the lines correspond to the legend at the very top,
which is the order of the resonance, n, where only pink and blue lines contribute
to the bottom panels, denoting -1, 1, respectively.

The second panel down is the complex frequency γ from solving the disper-
sion relation, it can be seen that there is growth, (positive complex frequency)
for a span of wavenumbers. The third panel down is the magnetic field power
spectrum, computed from the simulation. The magnetic field appears to be
peaked in the same wavenumber range as the growth rate, suggesting the mag-
netic field power is the power of the proton cyclotron waves.

The fourth panel down is the resonance function which is made up of integrals
over the pitch-angle gradient, a function of the wavenumber. The function is
fairly smooth with small jumps, due to discreteness in velocity space. The
theory says that the resonance function is calculated for v‖ = vres, where in the
simulation, v‖ is discrete due to the finite resolution of the simulation. For a
span of k‖, the resonant velocity will change only slightly, and therefore the same
v‖ will be v‖ ≈ vres. This can be confirmed by recalling that the phase velocity,
seen in Fig. 6.1, for large wavenumber, flattens near to the cyclotron order 1
resonance, and therefore, changes very little. This explains why the stepped
nature of the function is more pronounced at larger absolute wavenumber.

Notice that the stepped feature, does not contribute to the bumpy nature of
the curves in the next three panels. For this reason, an analysis technique has
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not been implemented to deal with this issue, but should be considered in the
future. The following bumpy nature in the bottom three panels, is due to the
magnetic field power spectrum (see Eq. 6.25).

The bottom three panels are the entire integrand of Eq. 6.25. Writing
them as a function of k‖ is slightly misleading, but it serves its purpose, it
shows that the resonance is indeed working. Notice that there is perpendicular
cooling and parallel heating, seen from the sign of the functions. Next, there is
a small amount of parallel deceleration, but the actual value is very small when
compared to the total velocity. This is confirmed by Fig. 6.2.

As mentioned before the magnetic field power spectrum is averaged local
in time to the time stamp of the quantities measured here. However, the non-
smoothness of the power spectrum is clearly seen in the bottom three panels.
This issue will be further analyzed in Section 6.7.1. Finally, the bottom three
panels can be numerically integrated in k‖ to measure the heating rates and
acceleration.

6.5 Comparing the time history

The time history, shown in Fig. 6.8, displays the rates for the time history of the
simulation. The bottom two panels compare the VPIC temperature, the basic
moments of the distribution function, to the Hermite-Laguerre temperature,
which is computed by integrating the heating rate,

HL Temperatureα(t) = Tα(t0) +

∫ t

t0

dt′ Ṫα(t′), (6.26)

where α is ⊥ or ‖. The integrand Ṫα(t′) has been computed via quasi-linear
theory.

For the comparison to be exact, the physics (e.g., the time evolution) must be
valid in the quasi-linear assumptions, and the simulation must be capturing this
evolution appropriately. For this set of initial conditions, it has been reported
that quasi-linear theory is valid by Yoon [2017], and this will be visited later in
Section 6.7.2.

The parallel temperature profile appears to be correct at the maximum time
of the simulation, but there is a mismatch of the rates throughout the time his-
tory. The parallel temperature appears to get the asymptotic state correct, but
there is a mismatch of the rates throughout the time history. The perpendicular
case is a bit worse, where both the asymptotic state and the time history of the
rates do not match. The method is promising, but the discreteness of the mag-
netic field power spectrum makes it difficult to address if the Hermite-Laguerre
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Figure 6.8: The top panel are the heating rates which are labelled in the legend.
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Laguerre method (HL) (see Eq. 6.26) temperatures. The time unit is in inverse
proton cyclotron frequency.

method is providing sufficiently accurate pitch-angle gradients to measure the
heating rates. The causes of discrepancy are:

1. PIC noise corrupting the pitch-angle gradient (or the noise floor not being
a sufficient indicator of noise).

2. Inaccuracy in the Hermite-Laguerre method.

3. The evolution departing from quasi-linear theory.

4. Noise or discreteness of the magnetic field power spectrum causing the
measurement to be inaccurate.

In the final section a few of these issues are assessed directly.

6.6 Relaxation time

Quasi-linear relaxation is a possible explanation for the effective collisionality
of the solar wind, the primary topic of this thesis. A numerical model is built
in Chapter 4 and a measurement with solar wind observations is made in Chap-
ter 5. This analysis contained in this Chapter has been built to measure the
collisionless relaxation rate in the quasi-linear regime.
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Hamasaki [1973] studied the electron whistler instability in the same context
as shown here, initialising an unstable plasma, to study the collisionless relax-
ation. In their article, a relaxation time is derived from the inverse of the max-
imum growth rate, which is then related to the temperature, and well-explains
the simulations that they ran. It is then considered as a proxy for comparison to
the effective collision frequency in articles such as Davidson and Ogden [1975]
and extended to more initial conditions (e.g., β‖, T

p
⊥/T

p
‖ ) by Gary et al. [2000].

Equation 3 of Gary et al. [2000] gives an estimate for the collisionless relaxation,

νP.G.
p = Ωp 0.15 exp

{
− 5.5

(β‖)0.8(T p⊥/T
p
‖ − 1)2

}
, (6.27)

by studying the rate at which T p⊥/T
p
‖ − 1 decreases in the quasi-linear phase.

This rate is compared to a few others in Fig. 6.9. The red and blue lines are
the normalized rate of change. The magenta line is the actual rate of change of
the quantity considered by Gary et al. [2000], defined to be positive,

νanis
p =

−1

T‖

(
Ṫ⊥ −

T⊥
T‖
Ṫ‖

)
, (6.28)

which is calculated with the rates measured by the Hermite-Laguerre method.
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Figure 6.9: The rates calculated in a few different ways. The dotted line is
defined as Eq. 6.27 and the magenta line is defined as Eq. 6.28. The blue and
red lines are discussed in Section 6.5. The horizontal axis is the time in units of
inverse proton cyclotron frequency.
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The dotted line of Fig. 6.9 is Eq. 6.27, which is the rate, given the initial
parameters, which is clearly very restrictive, but it serves the purpose for large
ensemble studies. The magenta line from Fig. 6.9, is Eq. 6.28, which is essen-
tially the instantaneous version of Eq. 6.27, and clearly has the advantage of
indicating if the wave-particle interaction is occurring.

This does call to question: what rate should be considered for an effective
collision frequency? The decrease in the temperature anisotropy is just a proxy,
one that is ultimately linked to only the second-order moment. For now, Eq.
6.28, is a good proxy, but this should be reconsidered in the future.

Figure 6.9 represents the connection between this project and the main ob-
servation of the Thesis, presented in Chapter 5, to measure the effective collision
frequency. The measured effective collision frequency is likely due to collision-
less processes, of which there is evidence for instabilities being the cause of this.
The analysis technique here is the key to not only measuring the quasi-linear
relaxation rate, to answer if it is a sufficient mechanism to produce such an
enhanced collision frequency, but is also suited to measure any wave-particle
interaction.

6.7 Future work

This section demonstrates a few projects that are ongoing and will likely be a
part of the completed analysis in the future, and some projects that have been
inspired by this analysis.

6.7.1 Magnetic field power spectrum

The quasi-linear rates, shown as a function of wavenumber in Fig. 6.7, that
lead to the rates shown in Fig. 6.8, are not smooth. Clearly this is due to the
non-smoothness from the discrete nature of the power spectrum, seen also in
Fig. 6.7. There are methods to smooth the power spectrum, but they lead to a
loss of power and only capture particular kinds of noise, which is not the idea
to pursue here. A method with marginal success is to return to the growth rate
and compare it to the power spectrum. Figure 6.10, is a repeat of Fig. 6.7 at
time 40 Ω−1

p , a later time in the simulation, when the heating should calm down.
This is evidenced by the offset between the resonance function (the fourth panel
down) and the magnetic field power spectrum (the third panel down). To better
capture the expected magnetic field power spectrum, a window is used, where
it is 1 for when the growth rate is positive, and 103 smaller when it is not. The
windowed power spectrum can be seen in the third panel down of Fig. 6.10, see
the caption. The rates, in the bottom three panels, are then calculated with the
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Figure 6.10: This is a repeat of Fig. 6.7, plotted for t = 40 Ω−1
p . The third

panel down shows the magnetic field power spectrum, where the windowed
power spectrum is the dashed orange line.

windowed magnetic field power spectrum.
The comparison of temperatures and integrated heating rates, made in Fig.

6.8, has been done for the windowed power spectrum version, shown as Fig.
6.11. The results are slightly contradictory, where the asymptotic state of the
parallel temperature is now worse, and the perpendicular temperature is nearly
perfect. The very encouraging point is that the heating rates appear to react
better to changes in temperature, as they should. While this technique needs
to be refined, among other points, such as the power spectrum, it is promising.

6.7.2 Comparison with bi-Maxwellian

Section 2.6 discussed the macroscopic and microscopic picture of quasi-linear
theory, in particular, how finite resonance regions can cause the distribution
function to depart from the simple bi-Maxwellian distribution function (see
Fig. 2.6 for details on this discussion). The method derived here, is capable of
alleviating this issue. Since the results are not perfect (e.g., the time evolution
of the temperatures), it is difficult to make conclusive remarks, but some points
can be illustrated.

Figure 6.12 is a repeat of 6.11, note that this is the windowed power spec-
trum version, with the bi-Maxwellian case also plotted for comparison. The
bi-Maxwellian evolution was discussed in relation to Fig. 2.6, and here it can
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Figure 6.11: This is a repeat of Fig. 6.8 for the windowed power spectrum.

be given some more clarity. Returning to the heating and acceleration from Eq.
6.25, and using a bi-Maxwellian distribution function to describe the distribu-
tion function, notably, throughout the entire evolution, those equations become
simple differential equations that can be solved, along with an equation for the
magnetic field energy. This procedure is described in great detail in the review
article by Yoon [2017], leading to the dashed lines in Fig. 6.12.

The bi-Maxwellian evolution does well to capture asymptotic states, but
does not capture the time at which heating takes place, which can be seen in
the top panel of the figure; the dashed line, lags behind the solid line. The
dashed lines peak near to 20 Ω−1

p , but the maximum change in temperature
(seen in the bottom two panels) clearly happens near to 25 Ω−1

p . The solid line,
the Hermite-Laguerre method, does coincide better with the actual changes in
temperature (from the simulation) seen in the bottom panel.

Figure 6.13 has been provided to ensure that the maximum order of the
Hermite-Laguerre polynomials has not been analyzed incorrectly. For example,
the bi-Maxwellian case is maximum order 0 for both polynomials, it has been
argued that orders up to about 10, are physical, based on the noise floor (see
Section 6.4.2). Figure 6.13 repeats Fig. 6.8 for a set of maximum Hermite-
Laguerre polynomial orders, labelled in the legend. The axis limits have changed
so that the slight differences can be seen.

A few points can be made, first is that the maximum polynomial order does
not drastically affect the results, which is expected due to the large resonance
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Figure 6.12: This is a repeat of Fig. 6.11 compared with the bi-Maxwellian
(Bi-M) time evolution.

region, i.e., the fine details of the distribution function do not play a large
role in the evolution. In fact, recalling Fig. 6.5, most the power, in velocity
space, is stored in the the low-orders and stays there throughout the time of
the simulation. It is only for orders 4 and larger, disregarding the noise, that
show evolution, and they possess considerably less power than the lower orders.
Therefore, it is expected that a low order treatment of the Hermite-Laguerre
analysis should not differ greatly from a higher-order analysis.

This analysis suggests that the inaccuracy of the analysis presented here is
related to the magnetic field power spectral density. The bi-Maxwellian time
evolution, presented in Fig. 6.12, evolves the magnetic field coupled to the
evolution of the distribution function, and since this evolution is not recovered
for low order Hermite-Laguerre moments, it is probably the inability of the
method to capture necessary information about the magnetic field.

Once this method is perfected, it can be used to better understand quasi-
linear heating, beyond simple distribution functions. This idea is further ex-
plored in Section 6.7.3.

6.7.3 High-order quasi-linear theory

The Hermite-Laguerre analysis allows a higher-order (finer-details) theory of
quasi-linear theory to be constructed. The ideas will be sketched in this section.
Figure 6.14 shows the normalised power in the Hermite-Laguerre coefficients
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for four different times of the simulation (see the caption). Notice, that higher
order Hermite indices are excited in the first time step, and then up through
the Laguerre index. There is a preference in the even Hermite indices which is
not present in the Laguerre indices.

The extended power in Laguerre indices for initial time of the simulation,
suggest that there might be an issue with the analysis, which has been checked
many times, or it is possible there is an issue with how the simulation is initial-
ized. This is future work.

The evolution of the coefficients cml can be studied as well, where inserting
the Hermite-Laguerre decomposed distribution function into Eq. 6.1 allows for
an equation of the form,

∂

∂t
cml =

m+2∑
m′=m−2

l+2∑
l′=l−2

am′ l′(t) cm′ l′ , (6.29)

where am′ l′(t) are time dependent coefficients determined by the magnetic field
power spectrum, coefficients from the recursion relations, and the resonant ve-
locity. The sum is from −2,+2 due to the double pitch-angle gradient in the full
operator. This is a promising approach to better understanding the full details
of quasi-linear theory. For example, how is free energy distributed in Hermite-
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Figure 6.14: The Hermite-Laguerre coefficients, defined in Section 6.4.1 for times
0 Ω−1

p (top left), 15 Ω−1
p (top right), 30 Ω−1

p (bottom left), and 45 Ω−1
p (bottom

right). The vertical axes are the Laguerre indicies, where the tick label is below
the box. The horizontal axes are the Hermite indicies, where the tick label is to
the left of the box. The color bar is normalized to the c00 box, which is nearly
constant throughout the time evolution.

Laguerre space by various instabilities? Does it maintain free energy in the low
orders, or does it prefer to send free energy to higher orders where it will be
eventually thermalized by collisions. Can a non-linear theory by produced from
this analysis?

Last, this decomposition can also be done for the dielectric tensor, and a
Hermite-Laguerre dispersion relation solver can be constructed. Both of these
projects are well underway.

6.8 Conclusion

This chapter is dedicated to creating analyses techniques to measure quasi-linear
heating rates and acceleration. The methods were tested with a PIC simulation
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as a proof of concept for spacecraft data. The analysis of the pitch-angle gradient
of the distribution function permits a measurement of the quasi-linear relaxation
rate. This allows the direct measurement of various proxies for the quasi-linear
relaxation rate. While the method is not yet fully optimised, some important
results are to be emphasised here.

The focus was on removing noise from velocity space, essentially with a low-
pass filter, which was constructed from the Hermite-Laguerre functions. This
method can be employed immediately to spacecraft data. This technique was
also used to find the pitch-angle gradient via the recursion relations permitted by
the Hermite-Laguerre functions. To test the accuracy of the gradient method, it
was used to measure the quasi-linear heating rates. The method is convincing,
but the results thus far are not correct. A closer look at the method proved
that it is likely the analysis of magnetic field, or combining it, that leads to
the errors, and so the pitch-angle gradient method can probably be applied to
spacecraft data immediately.

At this point, since the method is not restricted to approximate velocity
distribution functions, it can be applied to any instability, and since all wave
particle interactions (non-linear) involve velocity space gradients, this method
will serve to also make measurements beyond quasi-linear theory.
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Chapter 7

Conclusions and future work

The problem of the fluid nature of weakly collisional plasmas has been addressed
by modelling relaxation processes in the kinetic equation and comparing to so-
lar wind observations to measure the effective mean-free-path of the solar wind
protons. The effective mean-free-path is measured to be approximately 4× 105

km. In addition, the scale-dependent anisotropy exponent of the compressive
fluctuations has been measured to be approximately 0.4. These measurements
are used to determine the scale separating the fluid and collisionless regimes,
called the transition scale, in the solar wind, which in spacecraft frame is approx-
imately 0.2 Hz. The measurements show that the fluid description of the solar
wind extends to much smaller scales than previously thought. The transition
scale is consistent with past measurements of fluid and collisionless behaviour
in the solar wind.

To conclude, a summary of the results of the Thesis is presented. Last,
the implications of the results, physical interpretation, and connection to future
work is presented.

7.1 Summary

In Chapter 4 the kinetic magnetohydrodynamic equations are supplemented
with a relaxation operator to model effective collision processes. The system is
linearized and compressive wave modes are produced. The model has freedom
in propagation angle, wavenumber, plasma beta and effective mean-free-path, as
well as electron to proton ratio of temperature and effective mean-free-path. The
former parameters are shown to reproduce a list of past results on compressive
waves, including the severe damping in the collisionless regime, and the lack of
damping in the fluid regime. The model shows a natural connection between
the MHD slow-mode, ion-acoustic mode, and the non-propagating mode. The
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model is then shown to produce cross-correlations of the plasma fluctuations
(e.g., density, magnetic field strength) which are non-trivial considering the
effective mean-free-path and propagation angle. These cross-correlations can be
compared with solar wind observations to determine if the plasma fluctuations
are consistent with a particular wave mode.

Chapter 5 extends the cross-correlations to sensitive tests of the equation of
state, which are based on the Chew-Goldberger-Low invariants or the double
adiabatic equations. The dataset used in this chapter was not previously used
for scientific publication so considerable attention is paid to the verification of
the quality and the correctness by making comparison with other datasets and
repeating previous studies. The observations were prepared for a data analysis
to make a comparison with the numerical model. The analysis is not simple
due to the fact that in the fluid regime, the predicted cross-correlations depend
on the wavenumber, propagation angle, and effective-mean-free path. A model
connecting the wavenumber and propagation angle is implemented and shown
to alleviate these issues, also permitting a straight forward measurement of the
scale-dependent anisotropy. The method of statistics is a new method that does
not assume underlying statistical distribution of the parameters, general to the
comparison of non-linear models and observations. Finally, the measurement
of the effective mean-free-path, scale-dependent anisotropy, and the transition
scale are presented.

Chapter 6 constructs data analysis techniques to measure the key ingredient
of collisionless relaxation processes: the pitch-angle gradient. The gradient is
not simple to measure from the standpoint of spacecraft measurements due to
noise. An analysis technique that uses the Hermite-Laguerre polynomials as a
basis for a transform is implemented to low pass filter the velocity distribution
function in spectral space. This technique is used to measure the pitch-angle gra-
dient of the distribution function, one of the essential pieces of the quasi-linear
heating and momentum transfer rates, and is shown to be marginally successful.
The collisionless relaxation rate is measured and compared with previous meth-
ods. The new method is a promising analysis technique to measure gradients of
the velocity distribution function.

7.2 Discussion and future work

In this Section the discussion of a few major topics is expanded upon to connect
to future work. The discussion relates to implications for the understanding of
the solar wind and of plasma physics.
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7.2.1 The fluid nature of plasmas

The fluid nature of the solar wind is not expected due to the long collisional
mean-free-path of the protons. In particular, compressive waves should be
severely damped in the collisionless case, as presented in the influential pa-
per by Barnes [1966]. Some years later, in the review article Council [1979],
the section titled, “Hydromagnetic waves and turbulence in the solar wind,” is
written by A. Barnes, where there appears to be some reluctance in review-
ing fluid MHD theory when presenting wave modes. The review focusses on
which parts of the MHD theory survive in the kinetic theory (e.g., purely trans-
verse small-amplitude Alfvén waves, non-propagating mode), of which guided
my ideas through Chapter 4.

The idea presented here, is that collisionless relaxation processes shorten
the mean-free-path so that collisionless damping is weak. While the mecha-
nism that shortens the mean-free-path is yet to be determined, this serves as
an explanation for why compressive waves are observed. The damping rate is
proportional to k‖vp, but if the relaxation rate νeff is faster, the damping is
interrupted. When the relaxation is slower, then damping occurs and the col-
lisionless regime is recovered. The wavenumber dependence, of these processes,
connects the collisionless and fluid regimes.

The fluid nature is consistent with decades of research that uses fluid models
to explore energetics of the solar wind. Consider how drastic of an effect the
effective collisionality is on the solar wind, with the shortening of the mean-
free-path and the wave number geometry, the frequency of the transition scale
is increased by six orders of magnitude. This piece of the thesis, while the
mechanism has not been identified, is the primary contribution of this work to
the field of space plasma physics. Future work must focus on the processes that
retain the fluid nature of the solar wind plasma. This is a difficult undertaking,
but without doubt, the gradient of the distribution function must be accurately
measured. This is the focus of Chapter 6.

7.2.2 The transport coefficients

The transport coefficients (e.g., heat, viscosity) are applicable in the collisional
regime. The neoclassical regime is essentially born from Braginskii’s finding
that transport is anisotropic. The turbulent transport regime incorporates mi-
croinstabilities, but presents a massive complication since microinstabilties in
a turbulent environment require detailed accuracy of the fields and particles
in space and time. This thesis emphasises two important concepts worth dis-
cussing.

The scale-dependence of these processes is clear from the discussion of the
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transition scale, the scale separating the fluid and collisionless scales; transport
processes are scale dependent. Looking back to Fig. 4.6, it is clear that the
damping rates connect smoothly between the estimate from viscosity and col-
lisionless damping, so the actual “viscosity” is a simple function of scale. The
other transport coefficients probably follow the same line of thinking.

The second point, is that above the transitions scale, the details of the
distribution function do not matter. This is a very important finding of this
Thesis. The actual effective collision frequency is determined by complicated
plasma physics, that do depend on the details of the distribution function, but
at large-scales, the system is fluid.

Future work should better understand the transition of the transport coeffi-
cients between these two regimes to better understand how transport occurs in
multi-scale plasmas.

7.2.3 Compressive turbulence

In Chapter 5 the scale-dependent anisotropy of the compressive fluctuations
and the transition scale are measured. With this, the picture of compressive
turbulence can be updated. Figure 7.1 updates our understanding of turbulence
in the solar wind. Previously, the critical balance curve could be drawn for the
Alfvénic fluctuations; the compressive curve is more anisotropic and connects
to the kinetic slow-mode and ion-acoustic mode. The damping of these modes
is how compressive fluctuations heat the plasma.

The non-severe damping of the compressive waves reopens the plausibility
that some of the particle energetics of the solar wind must be due to compressive
waves. This was considered in Narita and Marsch [2015] where some features
of these modes are presented (with gyroscale effects). The general conclusion is
that the kinetic slow-mode is efficient at heating particles through the 0th order
resonances. While most of the focus in the solar wind community has been on
how the kinetic Alfvén wave and proton cyclotron wave heat the solar wind, this
is not the whole story, the compressive mode will need to be considered for the
entire heating scenario to be understood. This would be an interesting avenue
for future work.
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Figure 7.1: A schematic of the anisotropy of compressive and Alfvénic fluctu-
ations in the inertial range, up to the kinetic ranges. The vertical axis is the
logarithm of the perpendicular wavenumber and the horizontal axis is the par-
allel wavenumber. The coloured lines are labelled, corresponding to contours
of maximum power in wavenumber space. The colour then corresponds to the
kinetic waves associated with the inertial range (fluid) waves. The black lines
are indicated where the wavenumber becomes comparable to important length
scales. Notice that the k‖ λeff

mfp ∼ k⊥ ρp for the compressive and Alfvénic fluctu-
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Appendix A

Derivation of electromagnetic
dielectric tensor

Beginning with the collisionless Vlasov equation, by setting the collision fre-
quency to zero in Eq. 2.37,[

∂

∂t
+ vj

∂

∂xj
+

qs
ms

(
E′i + c−1εijkvjB

′
k

)
∂

∂vi

]
f ′s = 0 (A.1)

the electric field E′i = E′i(t, xi), magnetic field B′i = B′i(t, xi) and species distri-
bution function f ′s = f ′s(t, xi, vi). Maxwell’s equations from Eqs. 2.38,

εijk
∂

∂xj
B′k − c−1 ∂

∂t
E′i =

4π

c

∑
s

qs

∫
d3v vif

′
s, (A.2)

∂

∂xi
B′i = 0, (A.3)

∂

∂xi
E′i = 4π

∑
s

qs

∫
d3v f ′s, (A.4)

εijk
∂

∂xj
E′k + c−1 ∂

∂t
B′i = 0. (A.5)

Decomposing,

f ′s(t, xi, vi) = Fs(t, vi) + fs(t, xi, vi), (A.6)

E′i(t, xi) = Ei(t, xi), (A.7)

B′i(t, xi) = Bi + bi(t, xi), (A.8)
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so that an ensemble average 〈...〉 leaves,

〈f ′s(t, xi, vi)〉 = Fs(t, vi) (A.9)

〈Ei(t, xi)〉 = 0 (A.10)

〈B′i(t, xi)〉 = Bi = B0δiz (A.11)

where these are all assumptions, and δiz is the direction parallel to the back-
ground magnetic field equation. Rewriting Equation A.1 with the decomposi-
tion, [

∂

∂t
+

qs
ms

(
Ei + c−1εijkvj(Bk + bk)

)
∂

∂vi

]
Fs

= −
[
∂

∂t
+ vj

∂

∂xj
+

qs
ms

(
Ei + c−1εijkvj(Bk + bk)

)
∂

∂vi

]
fs (A.12)

taking an ensemble average,[
∂

∂t
+

qs
ms

(
c−1εijkvjBk

)
∂

∂vi︸ ︷︷ ︸
A

]
Fs

= −
〈[

qs
ms

(
Ei + c−1εijkvjbk

)
∂

∂vi

]
fs

〉
(A.13)

writing the velocity in cylindrical coordinates,

vi = δixv⊥cos[vφ] + δiyv⊥sin[vφ] + δizv⊥, v‖ = vib̂i, v⊥ = |vi − v‖b̂i| (A.14)

where vφ is the gyrophase angle and the perpendicular and parallel definitions
stem from the unit magnetic field vector b̂i = bi/|bj |. Working with term “A”
×Fs,

qs
ms

(
c−1εijkvjBk

)
∂viFs =

qs
cms

(
δixvyB0 − δiyvxB0

)
∂

∂vi
Fs

=
qs
cms

(
δixv⊥sin[vφ]B0 − δiyv⊥cos[vφ]B0

)
∂

∂vi
Fs, (A.15)

noticing,

∂

∂vφ
vx = −v⊥sin[vφ],

∂

∂vφ
vy = v⊥cos[φ],

∂

∂vφ
vz = 0 (A.16)
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substituting,

qs
cms

(
δixv⊥sin[vφ]B0 − δiyv⊥cos[vφ]B0

)
∂

∂vi
Fs

= −qsB0

cms

(
δix

∂

∂vφ
vx + δiy

∂

∂vφ
vy + δiz

∂

∂vφ
vz

)
∂

∂vi
Fs (A.17)

and with chain rule,

qs
ms

(
c−1εijkvjBk

)
∂viFs −

qsB0

cms

∂

∂vφ
Fs. (A.18)

Now write rewrite Eq. A.13,[
∂t − Ωs

∂

∂vφ

]
Fs = −

〈[
qs
ms

(
Ei + c−1εijkvjbk

)
∂

∂vi

]
fs

〉
, (A.19)

where the definition of the species gyrofrequency is Ωs = qsB0/cms. Returning
to Equation A.12 and inserting Equation A.19[
∂t+vj

∂

∂xj
+

qs
ms

(
Ei + c−1εijkvj(Bk + bk)

)
∂

∂vi

]
fs

= − qs
ms

(
Ei + c−1εijkvjbk

)
∂

∂vi
Fs +

〈[
qs
ms

(
Ei + c−1εijkvjbk)

)
∂

∂vi

]
fs

〉
,

(A.20)

linearise,[
∂t+vj

∂

∂xj
+

qs
cms

εijkvjBk
∂

∂vi

]
fs = − qs

ms

(
Ei + c−1εijkvjbk

)
∂

∂vi
Fs. (A.21)

The terms in the brackets on the left hand side constitute the 0th order evolution
of a particle, so this is perfectly setup for the “Method of unperturbed orbits"
following Stix [1992] and Gary [1993].

A.0.1 The perturbation in the unperturbed orbit frame

The Lagrangian frame of unperturbed orbits (or the characteristics or the zero-
order trajectory),

d

dt′
xi(t

′) = vi(t
′),

d

dt′
vi(t
′) =

qs
ms c

εijkvj(t
′)Bk (A.22)
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where v′j = vj(t
′), x′j = xj(t

′), for the rate of change of the zero-order distribu-
tion function,(

d

dt′
F ′s

)
0

=

[
∂′t + v′j

∂

∂x′j
+ c−1εijkv

′
jBk

∂

∂v′i

]
F ′s = 0 (A.23)

the zero-order distribution does not evolve on the unperturbed orbits1. Consider
the first-order distribution function (using Equation A.21) along the zero-order
orbits,(

d

dt′
f ′s

)
0

=

[
∂′t + v′j

∂

∂x′j
+

qs
cms

εijkv
′
jBk

∂

∂v′i

]
f ′s

= − qs
ms

(
E′i + c−1εijkv

′
jb
′
k

)
∂

∂v′i
F ′s, (A.24)

giving the rate of change of the perturbation along the unperturbed orbits on
the left hand side. Integrating in time,

fs(t, xi, vi)− fs
(
t0, xi(t0), vi(t0)

)
= − qs

ms

∫ t

t0

dt′
(
E′i + c−1εijkv

′
jb
′
k

)
∂

∂v′i
F ′s.

(A.25)

For the evolution of the distribution function the initial perturbation is ignored2

and the lower limit on the integral is set to t0 = −∞,

fs(t, xi, vi) = − qs
ms

∫ t

−∞
dt′
(
E′i + c−1εijkv

′
jb
′
k

)
∂

∂v′i
F ′s. (A.26)

The perturbation of the distribution function is now a complicated integral
involving the perturbed field and the background distribution function.

A.0.2 The unperturbed orbits

The orbits can be solved for by integrating Eq. A.22, where the perpendicular
and parallel velocity are constant giving,

d

dt′
vi(t
′) = −δix v⊥sin[v′φ]

d

dt′
v′φ + δiyv⊥cos[v′φ]

d

dt′
v′φ

=
qs
ms c

εijkvj(t
′)Bk =

qsB0

cms

(
δixv⊥sin[v′φ]− δiyv⊥cos[v′φ]

)
⇒ d

dt′
v′φ = −Ωs (A.27)

1This is only true in the linear phase
2See page 248 - 249 of “Waves in Plasmas", Stix for a full treatment of this issue. This is

ignores the ballistic response the ballistic response.
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integrating,

vφ(t′) = −Ωs(t
′ − t) + vφ(t)

⇒ v′i = δixv⊥cos[−Ωs(t
′ − t) + vφ] + δiyv⊥sin[−Ωs(t

′ − t) + vφ] + δizv‖.

(A.28)

Integrating over time for the position,

x′i − xi =− δix
v⊥
Ωs

(
sin[−Ωs(t

′ − t) + vφ]− sin[vφ]

)
+ δiy

v⊥
Ωs

(
cos[−Ωs(t

′ − t) + vφ]− cos[vφ]

)
+ δizv‖(t

′ − t). (A.29)

These results lead to a change of coordinates,

v′x = v⊥cos[vΦ], v′y = v⊥sin[vΦ], v′z = v‖ (A.30)

using vΦ = −Ωs(t
′ − t) + vφ, which gives,

dv′x = dv⊥cos[vΦ]− v⊥sin[vΦ]dvΦ, (A.31)

dv′y = dv⊥sin[vΦ] + v⊥cos[vΦ]dvΦ, (A.32)

dv′z = dv‖ (A.33)

considering,

dg = dv′x
∂

∂v′x
g + dv′y

∂

∂v′y
g + dv′z

∂

∂v′z
g,

dg = dv⊥
∂

∂v⊥
g + dvΦ

∂

∂vΦ
g + dv‖

∂

∂v‖
g, (A.34)

for arbitrary function g, so that upon substitution,

dg =

(
dv⊥cos[vΦ]− v⊥sin[vΦ]dvΦ

)
∂

∂v′x
g

+

(
dv⊥sin[vΦ] + v⊥cos[vΦ]dvΦ

)
∂

∂v′y
g + dv‖

∂

∂v′z
g

=

(
cos[vΦ]

∂

∂v′x
g + sin[vΦ]

∂

∂v′y
g

)
dv⊥

+

(
v⊥cos[vΦ]

∂

∂v′y
g − v⊥sin[vΦ]

∂

∂v′x
g

)
dvΦ + dv‖

∂

∂v′z
g, (A.35)
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so that,

∂

∂v⊥
g = cos[vΦ]

∂

∂v′x
g + sin[vΦ]

∂

∂v′y
g

∂

∂vΦ
g = v⊥cos[vΦ]

∂

∂v′y
g − v⊥sin[vΦ]

∂

∂v′x
g

∂

∂v‖
g =

∂

∂v′z
g. (A.36)

If the function g′ does not depend on vΦ then,

cos[vΦ]
∂

∂v′y
g′ = sin[vΦ]

∂

∂v′x
g′, (A.37)

giving,

∂

∂v⊥
g′ = cos[vΦ]

∂

∂v′x
g′ + sin[vΦ]tan[vΦ]

∂

∂v′x
g′

= (cos[vΦ])−1 ∂

∂v′x
g′ = (sin[vΦ])−1 ∂

∂v′y
, (A.38)

collecting the results for later,

∂

∂v′x
= cos[vΦ]

∂

∂v⊥
,

∂

∂v′y
= sin[vΦ]

∂

∂v⊥
,

∂

∂v′z
=

∂

∂v‖
, (A.39)

which are valid for a function that doesn’t depend on vΦ.

A.0.3 Fourier Transform

For the late-time (weak damping/growth) dispersive properties it is sufficient
to assume all perturbations evolve in space and time as,

g(t, xi) =

∫
d3k ĝ(ki) exp{ikjxj − iω(ki)t} (A.40)

ĝ(ki) = (2π)−3

∫
d3x g(t, xi) exp{−ikjxj + iω(ki)t} (A.41)

where the complex frequency ω(ki) = ωr(ki)+iγ(ki) gives the time dependence.
This is the form of the Fourier transform used throughout this appendix. Since
all of the functions are real the general statement is valid,

g(t, xi) =

∫
d3k ĝ(ki) exp{ikjxj − iω(ki)t}

= g∗(t, xi) =

∫
d3k ĝ∗(ki) exp{−ikjxj + iω∗(ki)t}, (A.42)
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where ∗ denotes of the complex conjugate. Taking the Fourier transform,

(2π)−3

∫
d3x exp{−ipjxj + iω(pi)t} g(t, xi)

= (2π)−3

∫
d3x exp{−ipjxj + iω(pi)t}

∫
d3k ĝ(ki) exp{ikjxj − iω(ki)t}

= (2π)−3

∫
d3k ĝ(ki)exp{i(ω(pi)− ω(ki))t}

∫
d3x exp{i(kj − pj)xj}

= (2π)−3

∫
d3k ĝ(ki)exp{i(ω(pi)− ω(ki))t}δ(kj − pj)

= ĝ(ki), (A.43)

and the right hand side,

(2π)−3

∫
d3x exp{−ipjxj + iω(pi)t} g∗(t, xi)

=(2π)−3

∫
d3x exp{−ipjxj + iω(pi)t}

∫
d3k ĝ∗(ki) exp{−ikjxj + iω∗(ki)t}

=(2π)−3

∫
d3k ĝ∗(ki) exp{i(ω(pi) + ω∗(ki))t}

∫
d3x exp{−i(pj + kj)xj}

=

∫
d3k ĝ∗(ki) exp{i(ω(pi) + ω∗(ki))t}δ(pj + kj)

=ĝ∗(−pi) exp{i(ω(pi) + ω∗(−pi))t}, (A.44)

so that pi → ki gives,

ωr(ki) + iγ(ki) = −ωr(−ki) + iγ(−ki), (A.45)

giving the reality condition,

ωr(ki) = −ωr(−ki), γ(ki) = γ(−ki), ĝ(ki) = ĝ∗(−ki), (A.46)

the reality condition.
Applying the Fourier transform to Faraday’s law (introduced as Eq. D.97 in

this appendix),

εijk
∂

∂xj
Ek +

1

c

∂

∂t
bi = 0, (A.47)

gives,

b̂i =
c

ω(ki)
εijkkjÊk. (A.48)
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Applying the Fourier transform to Ampere’s Law gives,

iεijkkj b̂k +
iω(ki)

c
Êi =

4π

c

∑
s

qs

∫
d3v vif̂s (A.49)

inserting Fourier transformed Farady’s Law,

c2

ω(ki)2
εijkεklmkjklÊm + Êi = − 4πi

ω(ki)

∑
s

qs

∫
d3v vif̂s, (A.50)

with vector identities,

c2

ω(ki)2

(
kikjÊj − k2

j Êi
)

+ Êi = − 4πi

ω(ki)

∑
s

qs

∫
d3v vif̂s, (A.51)

which is the dielectric tensor, where a solution for the perturbed distribution
function is required.

Applying the Fourier transform to Equation A.26,

(2π)−3

∫
d3x fs exp{−ipjxj + iωpt} = f̂s

= − qs
ms

∫ t

−∞
dt′ (2π)−3

∫
d3x exp{−ipjxj + iω(pi)t}

×
(
E′i + c−1εijkv

′
jb
′
k

)
∂

∂v′i
F ′s, (A.52)

and writing out the perturbed quantities E′i, b′k gives,

f̂s = − qs
ms

∫ t

−∞
dt′ (2π)−3

∫
d3x

∫
d3k exp{−ipjxj + iωpt}

× exp{ikjx′j − iωkt
′}
(
Êi + c−1εijkv

′
j b̂k

)
∂

∂v′i
F ′s, (A.53)

so that here the quantities with hats are functions of ki. Introduce ∆xj = x′j−xj
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which depends on t′ − t (see Equation A.29 )to write,

f̂s = − qs
(2π)3ms

∫ t

−∞
dt′

∫
d3k exp{ikj∆xj − iω(ki)t

′ + iω(pi)t}

×
(
Êi + c−1εijkv

′
j b̂k

)
∂

∂v′i
F ′s

∫
d3x exp{ixj(kj − pj)}

= − qs
ms

∫ t

−∞
dt′

∫
d3k exp{ikj∆xj − iω(ki)t

′ + iω(pi)t}

×
(
Êi + c−1εijkv

′
j b̂k

)
δ(kj − pj)

∂

∂v′i
F ′s

= − qs
ms

∫ t

−∞
dt′ exp{ikj(x′j − xj)− iω(ki)(t

′ − t)}

×
(
Êi + c−1εijkv

′
j b̂k

)
∂

∂v′i
F ′s. (A.54)

The first step uses homogeneity in xi (i.e., to ignore the integral of ∆xi) and
the next steps use properties of the Dirac delta function. Now the result on
Faraday’s law can be used to re-write the magnetic field term,

c−1εijkv
′
j b̂k = ω(ki)

−1 εijkv
′
jεklmklÊm = ω(ki)

−1
(
v′jkiÊj − v′jkjÊi

)
, (A.55)

giving,

f̂s = − qs
ms

∫ t

−∞
dt′ exp{ikj(x′j − xj)− iω(ki)(t

′ − t)}

×
(
Êi + ω(ki)

−1
(
v′jkiÊj − v′jkjÊi

)) ∂

∂v′i
F ′s

= − qs
ms

∫ t

−∞
dt′ exp{ikj(x′j − xj)− iω(ki)(t

′ − t)}

× Êl
[
δil(1− ω(ki)

−1v′jkj) + ω(ki)
−1v′jkiδjl

] ∂
∂v′i

F ′s. (A.56)

Now some vector products and algebra needs to be done. It is best to write out
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the vector algebra in the integrand,

Êl

[
δil(1− ω(ki)

−1v′jkj) + ω(ki)
−1v′jkiδjl

]
∂

∂v′i
F ′s

= Êi

(
1− ω(ki)

−1v′jkj

)
∂

∂v′i
F ′s + Êjω(ki)

−1v′jki
∂

∂v′i
F ′s

=

[
1− ω(ki)

−1(v′xkx + v′yky + v′zkz)

](
Êx

∂

∂v′x
F ′s + Êy

∂

∂v′y
F ′s + Êz

∂

∂v′z
F ′s

)
+ ω(ki)

−1

(
Êxv

′
x + Êyv

′
y + Êzv

′
z

)(
kx

∂

∂v′x
+ ky

∂

∂v′y
+ kz

∂

∂v′z

)
F ′s

= Êx

[
∂

∂v′x
− ω(ki)

−1

(
v′yky + v′zkz

)
∂

∂v′x
+ ω(ki)

−1v′x

(
ky

∂

∂v′y
+ kz

∂

∂v′z

)]
F ′s

+ Êy

[
∂

∂v′y
− ω(ki)

−1

(
v′xkx + v′zkz

)
∂

∂v′y
+ ω(ki)

−1v′y

(
kx

∂

∂v′x
+ kz

∂

∂v′z

)]
F ′s

+ Êz

[
∂

∂v′z
− ω(ki)

−1

(
v′xkx + v′yky

)
∂

∂v′z
+ ω(ki)

−1v′z

(
kx

∂

∂v′x
+ ky

∂

∂v′y

)]
F ′s

(A.57)

now consider cylindrical coordinates, the same change of coordinates detailed at
the end of Section A.0.2, for the wavenumber. Now, introduce kx = k⊥cos[θ], ky =

k⊥sin[θ], kz = k‖ where θ is in the plane perpendicular to the magnetic field.
Additionally, reintroduce the cylindrical coordinates for the velocity (from Eqs.
A.39) so that,

∂

∂v′x
− ω(ki)

−1

(
v′yky + v′zkz

)
∂

∂v′x
+ ω(ki)

−1v′x

(
ky

∂

∂v′y
+ kz

∂

∂v′z

)
= cos[v′Φ]

∂

∂v′⊥
− ω(ki)

−1

(
kyv
′
⊥sin[v′Φ] + v′‖kz

)
cos[v′Φ]

∂

∂v′⊥

+ ω(ki)
−1v′⊥cos[v

′
Φ]

(
kysin[v′Φ]

∂

∂v′⊥
+ kz

∂

∂v′‖

)
= cos[v′Φ]

[
∂

∂v′⊥
+ ω(ki)

−1k‖

(
v′⊥

∂

∂v′‖
− v′‖

∂

∂v′⊥

)]
, (A.58)
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and,

∂

∂v′y
− ω(ki)

−1

(
v′xkx + v′zkz

)
∂

∂v′y
+ ω(ki)

−1v′y

(
kx

∂

∂v′x
+ kz∂v′z

)
= sin[v′Φ]

∂

∂v′⊥
− ω(ki)

−1

(
kxv
′
⊥cos[v

′
Φ] + v′‖kz

)
sin[v′Φ]

∂

∂v′⊥

+ ω(ki)
−1v′⊥sin[v′Φ]

(
kxcos[v′Φ]

∂

∂v′⊥
+ kz

∂

∂v′‖

)
= sin[v′Φ]

[
∂

∂v′⊥
+ ω(ki)

−1k‖

(
v′⊥

∂

∂v′‖
− v′‖

∂

∂v′⊥

)]
, (A.59)

last,

∂

∂v′z
− ω(ki)

−1

(
v′xkx + v′yky

)
∂

∂v′z
+ ω(ki)

−1v′z

(
kx

∂

∂v′x
+ ky

∂

∂v′y

)
=

∂

∂v′‖
− ω(ki)

−1

(
v′⊥kxcos[v

′
Φ] + v′⊥kysin[v′Φ]

)
∂

∂v′‖

+ ω(ki)
−1v′‖

(
kxcos[v′Φ]

∂

∂v⊥
+ kysin[v′Φ]

∂

∂v′⊥

)
=

∂

∂v′‖
+ ω(ki)

−1k⊥

(
cos[θ]cos[v′Φ] + sin[θ]sin[v′Φ]

)(
v′‖

∂

∂v′⊥
− v′⊥

∂

∂v′‖

)
=

∂

∂v′‖
+ ω(ki)

−1k⊥cos[θ − vΦ]

(
v′‖

∂

∂v′⊥
− v′⊥

∂

∂v′‖

)
(A.60)

so the perturbation can be written,

f̂s = − qs
ms

∫ t

−∞
dt′ exp

{
ikj(x

′
j − xj)− iω(ki)(t

′ − t)
}

×
[
Êxcos[v′Φ]

∂

∂α′+
+ Êysin[v′Φ]

∂

∂α′+
+ Êz

(
∂

∂α′+
v′‖ + cos[θ − v′Φ]

∂

∂β′+

)]
Fs.

(A.61)

where,

∂

∂α±
=

∂

∂v⊥
± ω(±k)−1k‖

(
v⊥

∂

∂v‖
− v‖

∂

∂v⊥

)
(A.62)

∂

∂β±
= ±ω(±k)−1k⊥

(
v‖

∂

∂v⊥
− v⊥

∂

∂v‖

)
. (A.63)

Here vΦ = −Ωs(t
′− t) + vφ involves t′. At this point, recall that v⊥, v‖ are con-

stants of motion for the unperturbed orbits, so only vφ, vΦ have t′ dependence.
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A.0.4 Introducing the Bessel functions

Now put the exponential function into a form that is better suited for intro-
ducing Bessel functions. The first thing to do is set the angle θ = 0 so that,
ki = δixk⊥ + δiy0 + δizk‖. Next, rewrite the exponential in Equation A.61 by
recalling the unperturbed orbits from section A.0.2,

ikj(x
′
j − xj)−iω(ki)(t

′ − t) = −ik⊥v⊥
Ωs

[
sin[v′Φ]− sin[vφ]

]
+ i[k‖v‖ − ω(ki)](t

′ − t).

(A.64)

The time dependence t′ has been considered now, that only vΦ depends on
time, which initial condition is vφ. Recognizing the Bessel function (first kind)
identities,

exp{iλssin[x]} =

∞∑
n=−∞

Jn(λs)exp{inx}, (A.65)

∞∑
n=−∞

Jn(λs)exp{inx}cos[x] =

∞∑
n=−∞

n

λs
Jn(λs)exp{inx}, (A.66)

∞∑
n=−∞

Jn(λs)exp{inx}sin[x] = −i
∞∑

n=−∞

∂

∂λs
Jn(λs)exp{inx}, (A.67)

where λs = k⊥v⊥/Ωs is the argument of the Bessel function Jn of the first
kind. The later two identities can be proven with recursion relations. Now the
exponential can be written,

exp
{
−ik⊥v⊥

Ωs

(
sin[vΦ]− sin[vφ]

)
+ i[k‖v‖ − ω(ki)](t

′ − t)
}

= exp
{
i[k‖v‖ − ω(ki)](t

′ − t)
} ∞∑
n,m=−∞

Jm(λs)Jn(λs)exp{−invΦ + imvφ},

(A.68)
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giving the two relations,

cos[v′Φ] exp
{
−ik⊥v⊥

Ωs

(
sin[vΦ]− sin[vφ]

)
+ i[k‖v‖ − ω(ki)](t

′ − t)
}

= cos[−v′Φ] exp
{
i[k‖v‖ − ω(ki)](t

′ − t)
}

×
∞∑

n,m=−∞
Jm(λs)Jn(λs)exp{−inv′Φ + imvφ}

= exp
{
i[k‖v‖ − ω(ki)](t

′ − t)
}

×
∞∑

n,m=−∞

n

λs
Jm(λs)Jn(λs)exp{−inv′Φ + imvφ}

=

∞∑
n,m=−∞

n

λs
Jm(λs)Jn(λs)exp{i(m− n)vφ}

× exp
{
i[k‖v‖ − ω(ki) + nΩs](t

′ − t)
}

(A.69)

sin[v′Φ] exp
{
−ik⊥v⊥

Ωs

(
sin[v′Φ]− sin[vφ]

)
+ i[k‖v‖ − ω(ki)](t

′ − t)
}

= −sin[−v′Φ] exp
{
i[k‖v‖ − ω(ki)](t

′ − t)
}

×
∞∑

n,m=−∞
Jm(λs)Jn(λs)exp{−inv′Φ + imvφ}

= i exp
{
i[k‖v‖ − ω(ki)](t

′ − t)
}

×
∞∑

n,m=−∞
Jm(λs)

∂

∂λs
Jn(λs)exp{−inv′Φ + imvφ}

= i

∞∑
n,m=−∞

Jm(λs)
∂

∂λs
Jn(λs)exp{i(m− n)vφ}

× exp
{
i[k‖v‖ − ω(ki) + nΩs](t

′ − t)
}

(A.70)

where v′Φ = −Ωs(t
′ − t) + vφ was used. Now Eq. A.61 can be rewritten with

relations,

f̂s = − qs
ms

∫ t

−∞
dt′

∞∑
n,m=−∞

Jm(λs)exp{i(m− n)vφ}exp
{
i[k‖v‖ − ω(ki) + nΩs](t

′ − t)
}

[
Êx

n

λs
Jn(λs)

∂

∂α+
+ iÊy

∂

∂λs
Jn(λs)

∂

∂α+
+ ÊzJn(λs)

(
∂

∂v‖
+

n

λs

∂

∂β+

)]
Fs.

(A.71)
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Now only the only t′ dependence is written explicitly! Consider the substitution
τ = t′ − t and use,

∂

∂τ
exp
{
i[k‖v‖ − ω(ki) + nΩs]τ

}
= i[k‖v‖ − ω(ki) + nΩs]exp

{
i[k‖v‖ − ω(ki) + nΩs]τ

}
, (A.72)

so that the integral in t′ can be performed. Rearranging with product rule, the
integral is simple. The initial condition is ignored t′ = −∞, as discussed earlier.
The result is,

f̂s = − qs
ms

∞∑
n,m=−∞

Jm(λs)exp{i(m− n)vφ}
i[k‖v‖ − ω(ki) + nΩs]

×
[
Êx

n

λs
Jn(λs)

∂

∂α+
+ iÊy

∂

∂λs
Jn(λs)

∂

∂α+
+ ÊzJn(λs)

(
∂

∂v‖
+

n

λs

∂

∂β+

)]
Fs.

(A.73)

This is the general result for a small amplitude spatially homogeneous pertur-
bation of the distribution function.
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Appendix B

Derivation of kinetic
magnetohydrodynamics and normal
modes

B.1 Drift Kinetic Equation

The Boltzmann equation,[
∂

∂t
+ vi

∂

∂xi
+ asi

(
vi;Ei(t, xi), bi(t, xi)

) ∂
∂vi

]
fs(t, xi, vi) = C

[
fs(t, xi, vi)

]
,

(B.1)

and the acceleration vector asi
(
vi;Ei(t, xi), bi(t, xi)

)
,

asi
(
vi;Ei(t, xi), bi(t, xi)

)
=

qs
ms

[
Ei(t, xi) + εijk

vjbk(t, xi)

c

]
, (B.2)

where Ei(t, xi) is the electric field, bi(t, xi) is the magnetic field, ∂/∂xi is the
partial derivative with respect to xi-space, ∂/∂vi is the partial derivative with
respect to vi-space, qs is the species “s” charge, ms is the species “s” mass
and c is the speed of light. The species “s” distribution function is fs(t, xi, vi).
The collisional operator is the single species (no interspecies drifts) Bhatnagar-
Gross-Krook (BGK) operator so it takes on the form,

C
[
fs(t, xi, vi)

]
= −νs

[
fs(t, xi, vi)− Fs(vi;ns(t, xi), usi (t, xi), Ts(t, xi)

]
, (B.3)

and Fs(vi;ns(t, xi), usi (t, xi), Ts(t, xi) is the BGK equilibrium distribution func-
tion which we take to be the Maxwellian distribution function (Eq. B.52). This
operator conserves particle number, momentum and energy.
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B.1.1 Derivation of drift kinetic equation

Now all implicit dependence will be dropped. Start by writing out an infinites-
imal change in the distribution function,

dfs =
∂fs
∂t

dt+
∂fs
∂xi

dxi +
∂fs
∂vi

dvi, (B.4)

where no terms appear ∂vi/∂t because they are zero. Just to be clear, if a
derivative’s argument appears in the fraction, that is the only argument, if it
is open, the derivative carries to the right in a normal fashion. Now change
variables vi → wi = vi − usi (t, xi) where usi (t, xi) can be any frame, yielding,

dfs =
∂fs
∂t

dt+
∂wi
∂t

∂fs
∂wi

dt

+
∂fs
∂xi

dxi +
∂wj
∂xi

∂fs
∂wj

dxi

+
∂wj
∂vi

∂fs
∂wj

dvi, (B.5)

where ∂wj/∂vi = δij and equivalence of the terms gives,

∂

∂t
→ ∂

∂t
− ∂usi

∂t

∂

∂wi
∂

∂xi
→ ∂

∂xi
−
∂usj
∂xi

∂

∂wj
∂

∂vi
→ ∂

∂wi
. (B.6)

The acceleration term,

asi
∂

∂wi
fs =

qs
ms

[
Ei + εijk

(wj + usj)bk

c

]
∂

∂wi
fs, (B.7)

so rewriting the equation gives,{
∂

∂t
−∂u

s
i

∂t

∂

∂wi
+ (wi + usi )

∂

∂xi
− (wi + usi )

∂usj
∂xi

∂

∂wj

+
qs
ms

[
Ei + εijk

(wj + usj)bk

c

]
∂

∂wi

}
fs = νs

[
fs − Fs], (B.8)

rearranging to separate terms,{
∂

∂t
−
[
∂usi
∂t

+ usj
∂usi
∂xj
− qs
cms

εijku
s
jbk

]
∂

∂wi
+ (wi + usi )

∂

∂xi

+

[
qs
ms

Ei +
qs
cms

εijkwjbk − wj
∂usi
∂xj

]
∂

∂wi

}
fs = νs

[
fs − Fs]. (B.9)
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The cylindrical coordinate system is introduced by defining b̂ = bi/|bj |, local
(t, xi) magnetic field direction. The norm is defined, |χi| =

√
χ2
i . Any vector

χi can be decomposed,

χ‖ = b̂iχi, (B.10)

χ⊥ = |χi − χ‖b̂i|. (B.11)

Now focus on the term,

qs
cms

εijkwjbk
∂

∂wi
fs, (B.12)

and write the peculiar velocity vector in cylindrical notation,

wi = δixw⊥cos
(
wφ
)

+ δiyw⊥sin
(
wφ
)

+ δizw‖, (B.13)

where δix is the unit vector in the x-direction of xi-space. This gives,

qs
cms

εijkwjbk
∂

∂wi
fs =

qs
cms

(
δixbzw⊥sin

(
wφ
)
− δiybzw⊥cos

(
wφ
)) ∂

∂wi
fs,

(B.14)

and notice that,

∂wx
∂wφ

= −w⊥sin
(
wφ
)
,
∂wy
∂wφ

= w⊥cos
(
wφ
)
,
∂wz
∂wφ

= 0 (B.15)

and with chain rule we find,

qs
cms

εijkwjbk
∂

∂wi
fs = − qsbz

cms

∂

∂wφ
fs (B.16)

we now have,{
∂

∂t
−
[
∂usi
∂t

+ usj
∂usi
∂xj
− qs
cms

εijku
s
jbk

]
∂

∂wi
+ (wi + usi )

∂

∂xi

+

[
qs
ms

Ei − wj
∂usi
∂xj

]
∂

∂wi
− qsbz
cms

∂

∂wφ

}
fs = −νs

[
fs − Fs]. (B.17)

The ∂/∂wφ term is zero since the distribution function is assumed to be gy-
rotropic. Now the variables of wi are changed to w,w‖ to simplify the gyro-angle
average. The definitions

w = (w2
i )

1/2, w‖ = wib̂i, b̂i =
bi

(b2j )
1/2

, w⊥,i = wj(δij − b̂ib̂j),

w⊥ = (w2 − w2
‖)

1/2, wi = b̂iw‖ + (δij − b̂ib̂j)wj , (B.18)
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are necessary. The change of variables looks like,

dfs =
∂fs
∂t

dt+
∂w‖
∂t

∂fs
∂w‖

dt,

+
∂fs
∂xi

dxi +
∂w‖
∂xi

∂fs
∂w‖

dxi,

+
∂w‖
∂wi

∂fs
∂w‖

dwi +
∂w

∂wi

∂fs
∂w

dwi, (B.19)

and so we have,

∂fs
∂t
→ ∂fs

∂t
+ wi

∂b̂i
∂t

∂fs
∂w‖

, (B.20)

∂fs
∂xi
→ ∂fs

∂xi
+ wj

∂b̂j
∂xi

∂fs
∂w‖

, (B.21)

∂fs
∂wi

→ b̂i
∂fs
∂w‖

+
wi
w

∂fs
∂w

, (B.22)

giving,{
∂

∂t
+ wi

∂b̂i
∂t

∂

∂w‖
−
[
∂usi
∂t

+ usj
∂usi
∂xj
− qs
cms

εijku
s
jbk

]

×
(
b̂i

∂

∂w‖
+
wi
w

∂

∂w

)
+ (wi + usi )

(
∂

∂xi
+ wj

∂b̂j
∂xi

∂

∂w‖

)
+

[
qs
ms

Ei − wj
∂usi
∂xj

](
b̂i

∂

∂w‖
+
wi
w

∂

∂w

)}
fs = −νs

[
fs − Fs]. (B.23)

Now we gyro-average the kinetic equation,

1

2π

∫
dwφ

{
∂

∂t
+ wi

∂b̂i
∂t

∂

∂w‖︸ ︷︷ ︸
a

−
[
∂usi
∂t

+ usj
∂usi
∂xj
− qs
cms

εijku
s
jbk

]

×
(
b̂i

∂

∂w‖
+
wi
w

∂

∂w

)
︸ ︷︷ ︸

b

+ (wi + usi )

(
∂

∂xi
+ wj

∂b̂j
∂xi

∂

∂w‖

)
︸ ︷︷ ︸

c

+

[
qs
ms

Ei︸ ︷︷ ︸
d

−wj
∂usi
∂xj︸ ︷︷ ︸

e

]

×
(
b̂i

∂

∂w‖
+
wi
w

∂

∂w

)
︸ ︷︷ ︸

b

}
fs = − νs

1

2π

∫
dwφ

[
fs − Fs]︸ ︷︷ ︸

f

. (B.24)
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Term “a” in completeness for later use,

1

2π

∫
dwφ wi

∂b̂i
∂t

∂

∂w‖
fs =

1

2π

∂b̂i
∂t

∂fs
∂w‖

∫
dwφ wi

=
1

2π

∂b̂i
∂t

∂fs
∂w‖

∫
dwφ

(
δixw⊥cos(wφ) + δiyw⊥sin(wφ) + δizw‖

)
=
∂b̂i
∂t

∂fs
∂w‖

δizw‖, (B.25)

where the trigonometric functions integrate to zero, and the z-component gives
2π, noting from the definition of wiδiz = w‖ = wib̂i identifies δiz = b̂i. Equation
B.25 will be referenced to show the gyro-average over wi. Rearranging,

1

2π

∫
dwφ wi

∂b̂i
∂t

∂

∂w‖
fs =

1

2

∂b̂2i
∂t

w‖
∂fs
∂w‖

= 0, (B.26)

since b̂2i = const. Term “b”,

1

2π

∫
dwφ

(
b̂i

∂

∂w‖
+
wi
w

∂

∂w

)
fs = b̂i

(
∂

∂w‖
+
w‖
w

∂

∂w

)
fs. (B.27)

Term “c”,

1

2π

∫
dwφ (wi + usi )

(
∂

∂xi
+ wj

∂b̂j
∂xi

∂

∂w‖

)
fs

=
1

2π

∫
dwφ

(
wi

∂

∂xi
+ wiwj

∂b̂j
∂xi

∂

∂w‖
+ usi

∂

∂xi
+ usiwj

∂b̂j
∂xi

∂

∂w‖

)
fs.

(B.28)

The integration in the first and fourth terms are just like Eq. B.25 and the third
term is ignorant to the integral giving,

1

2π

∫
dwφ (wi + usi )

(
∂

∂xi
+ wj

∂b̂j
∂xi

∂

∂w‖

)
fs

= b̂iw‖
∂

∂xi
fs +

1

2π

∂b̂j
∂xi

∂fs
∂w‖

∫
dwφ wiwj + usi

∂

∂xi
fs +

1

2
usiw‖

∂b̂2j
∂xi

∂

∂w‖
fs,

(B.29)
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The fourth term is zero since b̂2i = const. The second term with the tensor wiwj ,

1

2π

∫
dwφ wiwj =

1

2π

∫
dwφ

[
δixw⊥cos(wφ) + δiyw⊥sin(wφ) + δizw‖

]
×
[
δjxw⊥cos(wφ) + δjyw⊥sin(wφ) + δjzw‖

]
=

1

2π

∫
dwφ

{
δixw⊥cos(wφ)

[
δjxw⊥cos(wφ) + δjyw⊥sin(wφ) + δjzw‖

]
+ δiyw⊥sin(wφ)

[
δjxw⊥cos(wφ) + δjyw⊥sin(wφ) + δjzw‖

]
+ δizw‖

[
δjxw⊥cos(wφ) + δjyw⊥sin(wφ) + δjzw‖

]}
, (B.30)

any term that is left with a single trigonometric function or the product sin(wφ) cos(wφ)

will integrate to zero,

1

2π

∫
dwφ wiwj =

1

2π

∫
dwφ

(
δixδjxw

2
⊥cos2(wφ) + δiyδjyw

2
⊥sin2(wφ) + δizδjzw

2
‖
)
,

(B.31)

where the squared trigonometric functions both give π after the integral and
using δixδjx + δiyδjy = δij − δizδjz reveals,

1

2π

∫
dwφ wiwj =

1

2
w2
⊥
(
δij − b̂ib̂j

)
+ b̂ib̂jw

2
‖. (B.32)

Now returning to the term in Eq. B.29,

1

2π

∂b̂j
∂xi

∂fs
∂w‖

∫
dwφ wiwj =

∂b̂j
∂xi

∂fs
∂w‖

[
1

2
w2
⊥
(
δij − b̂ib̂j

)
+ b̂ib̂jw

2
‖

]
(B.33)

where any term that is b̂j∂b̂j/∂xi = 0, since b̂2j = const. Finally, Eq. B.29
simplifies,

1

2π

∫
dwφ (wi + usi )

(
∂

∂xi
+ wj

∂b̂j
∂xi

∂

∂w‖

)
fs

=

(
b̂iw‖

∂

∂xi
+ usi

∂

∂xi
+
w2
⊥
2

∂b̂i
∂xi

∂

∂w‖

)
fs. (B.34)

The term “d” × “b” gives,

qs
ms

Eib̂i

(
∂

∂w‖
+
w‖
w

∂

∂w

)
fs =

qs
ms

E‖

(
∂

∂w‖
+
w‖
w

∂

∂w

)
fs. (B.35)
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The term “e” × “b”,

− 1

2π

∫
dwφ wj

∂usi
∂xj

(
b̂i

∂

∂w‖
+
wi
w

∂

∂w

)
fs

= −w‖b̂ib̂j
∂usi
∂xj

∂fs
∂w‖

− ∂usi
∂xj

1

w

∂fs
∂w

1

2π

∫
dwφ wiwj

= −w‖b̂ib̂j
∂usi
∂xj

∂fs
∂w‖

− ∂usi
∂xj

1

w

∂fs
∂w

(
1

2
w2
⊥
(
δij − b̂ib̂j

)
+ b̂ib̂jw

2
‖

)
, (B.36)

where the first equal sign uses the result from Eq. B.29, and for the second
equal sign the result on the tensor wiwj from Eq. B.32 is used. The last term
“f”,

−νs
1

2π

∫
dwφ

[
fs − Fs] = −νs

[
fs − Fs], (B.37)

is ignorant to the gyro-average since both the perturbation and equilibrium Fs

are gyrotropic.
Collecting all of the terms,{

∂

∂t
−
[
∂usi
∂t

+ usj
∂usi
∂xj
− qs
cms

εijku
s
jbk︸ ︷︷ ︸

g

]
b̂i

(
∂

∂w‖
+
w‖
w

∂

∂w

)

+

(
b̂iw‖

∂

∂xi
+ usi

∂

∂xi
+
w2
⊥
2

∂b̂i
∂xi

∂

∂w‖

)
+

qs
ms

E‖

(
∂

∂w‖
+
w‖
w

∂

∂w

)
− w‖b̂ib̂j

∂usi
∂xj

∂

∂w‖
− ∂usi
∂xj

(
1

2
w2
⊥
(
δij − b̂ib̂j

)
+ b̂ib̂jw

2
‖

)
1

w

∂

∂w

}
fs

= −νs
[
fs − Fs]. (B.38)

Term “g” is zero because b̂i is orthogonal to εijkusjbk. The equation can then be
rearranged to produce,{

∂

∂t
+
(
b̂iw‖ + usi

) ∂

∂xi
+
w2
⊥
2

∂b̂i
∂xi

∂

∂w‖

+

[
qs
ms

E‖ − b̂i
(
∂usi
∂t

+ usj
∂usi
∂xj

)](
∂

∂w‖
+
w‖
w

∂

∂w

)
− w2

⊥
2w

∂usi
∂xi

∂

∂w
+ b̂ib̂j

∂usi
∂xj

[(
w2
⊥
2
− w2

‖

)
1

w

∂

∂w
− w‖

∂

∂w‖

]}
fs

= −νs
[
fs − Fs] (B.39)

This is the form of the drift kinetic equation studied in this thesis. This deriva-
tion emphasized the non-reduced version so Fs can be a gyrotropic equilibrium
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distribution function that is a function of space and time. Other versions of this
equation can be produced by transforming variables to w⊥, w‖ or w2

⊥/2|bi|, w‖.

B.1.2 Linearization

This section shows the linearization Eq. B.39. The perturbations are,

bi = b′i + b0b̂i,

E‖ = E′‖,

usi = us′i ,

fs = f ′s + F 0
s ,

F 0
s = ns,0

(
ms

2πkBTs,0

)3/2

exp
{
− ms

2kBTs,0
v2

}
,

ns = n0,s + n′s → ns + n′s,

p⊥ = ps⊥,0 + ps,′⊥ → ps⊥ + ps,′⊥ ,

p‖ = ps‖,0 + ps,′‖ → ps‖ + ps,′‖ , (B.40)

where the primed variables are the fluctuations about the unprimed variables
(static background). The distribution function fs is perturbed about a static
Maxwellian F 0

s and the equilibrium distribution function used in the BGK op-
erator Fs is the local Maxwellian, so ns, usi , Ts are perturbed.

Some useful calculations,

b̂i =
b′i + b0δ‖i√
(b′i + b0δ‖i)2

0th
=

2b0δ‖i√
(2b0δ‖i)2

=
δ‖i√
δ‖iδ‖i

= δ‖i, (B.41)

∂

∂xi
b̂i = − b̂ib̂l√

b2k

∂

∂xi
bl

1st
= − 1

|b0|
∂

∂x‖
b′‖, (B.42)

∂

∂xj
b̂i =

1

|bl|

[
∂

∂xj
bi − b̂ib̂l

∂

∂xj
bl

]
1st
=

1

|b0|

[
∂

∂xj
b′i − δ‖i

∂

∂xj
b′‖

]
, (B.43)

where δ‖i is unit vector pointing in the direction of the backgground magnetic
field, and the text “0th”, of above the equal signs means “to the zeroth order”
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and similarly for “1st”. Rewriting the kinetic equation with labels,

∂

∂t
fs +

(
usi + w‖b̂i

)
∂

∂xi
fs

A

+
w2
⊥
2

∂b̂i
∂xi

∂

∂w‖
fs

B

+

[
qs
ms

E‖

C

− b̂i
(
∂usi
∂t

+ usj
∂usi
∂xj

)
D

] [
w‖
w

∂

∂w
fs +

∂

∂w‖
fs

]
E

− ∂usi
∂xi

w2
⊥

2w

∂

∂w
fs

F

+ b̂ib̂j
∂usi
∂xj

G

[(
w2
⊥
2
− w2

‖

)
1

w

∂

∂w
fs

H

−w‖
∂

∂w‖
fs

I

]

= −νs
(
fs − Fs

)
J

. (B.44)

Now use the perturbations from Eqs. B.40 for the linearization. Part A,

∂

∂t
fs + (usi + w‖b̂i)

∂

∂xi
fs

1st
=

∂

∂t
f ′s + w‖

∂

∂x‖
f ′s. (B.45)

Part B,

w2
⊥
2

∂b̂i
∂xi

∂

∂w‖
fs

1st
= − w2

⊥
2|b0|

∂b′‖
∂x‖

∂

∂w‖
F 0
s . (B.46)

Part C × E,

qs
ms

E‖

[
w‖
w

∂

∂w
fs +

∂

∂w‖
fs

]
1st
=

qs
ms

E′‖

[
w‖
w

∂

∂w
F 0
s +

∂

∂w‖
F 0
s

]
. (B.47)

Part D × E,

b̂i

(
∂usi
∂t

+ usj
∂usi
∂xj

)[
w‖
w

∂

∂w
fs +

∂

∂w‖
fs

]
1st
=

∂us′‖
∂t

[
w‖
w

∂

∂w
F 0
s +

∂

∂w‖
F 0
s

]
.

(B.48)

Part F,

∂usi
∂xi

w2
⊥

2w

∂

∂w
fs

1st
=

∂us′i
∂xi

w2
⊥

2w

∂

∂w
F 0
s . (B.49)

Part G × H,

b̂ib̂j
∂usi
∂xj

(
w2
⊥
2
− w2

‖

)
1

w

∂

∂w
fs

1st
=

∂us′‖
∂x‖

(
w2
⊥
2
− w2

‖

)
1

w

∂

∂w
F 0
s . (B.50)
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Part G × I,

b̂ib̂j
∂usi
∂xj

w‖
∂

∂w‖
fs

1st
=

∂us′‖
∂x‖

w‖
∂

∂w‖
F 0
s (B.51)

Last, part J, requires linearization of the equilibrium distribution function, the
Maxwellian distribution function,

Fs = ns

(
ms

2πkBTs

)3/2

exp
{
− ms

2kBTs
w2

}
. (B.52)

Quantities ns, us‖, Ts need to be perturbed, but it is more simple to perturb
ns, u

s
‖, ps where ps = nskBTs so that,

p′s = kB
(
n′sTs + nsT

′
s). (B.53)

First rewrite the distribution function,

Fs = n5/2
s

(
ms

2πps

)3/2

exp
{
− msns

2ps
w2

}
, (B.54)

and to be clear at zeroth order u‖ = 0 since this is the parallel component of
the frame we are have changed to. Start by writing the partial derivatives,

∂

∂ns
Fs =

Fs
ns

[
5

2
− msns

2ps
w

]
, (B.55)

∂

∂ps
Fs =

Fs
ps

[
msns
2ps

w2 − 3

2

]
, (B.56)

so the perturbation appears,

Fs
1st
= F 0

s

{
n′s
ns

[
5

2
− msns

2ps
w2

]
+
p′s
ps

[
msns
2ps

w2 − 3

2

]}
, (B.57)

where F 0
s is now set to 0th order in the perturbation. Writing part J,

[
∂

∂t
fs

]
C

1st
= −νs f ′s + νsF

0
s

{
n′s
ns

[
5

2
− msns

2ps
w2

]
+
p′s
ps

[
msns
2ps

w2 − 3

2

]}
.

(B.58)
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Collecting all the terms we have,

∂

∂t
f ′s + w‖

∂

∂x‖
f ′s −

w2
⊥

2|b0|
∂b′‖
∂x‖

∂

∂w‖
F 0
s +

qs
ms

E′‖

[
w‖
w

∂

∂w
F 0
s +

∂

∂w‖
Fs

]
−
∂us′‖
∂t

[
w‖
w

∂

∂w
F 0
s +

∂

∂w‖
F 0
s

]
− ∂us′i
∂xi

w2
⊥

2w

∂

∂w
F 0
s

+
∂us′‖
∂x‖

(
w2
⊥
2
− w2

‖

)
1

w

∂

∂w
F 0
s −

∂us′‖
∂x‖

w‖
∂

∂w‖
F 0
s

= −νs f ′s + νsF
0
s

{
n′s
ns

[
5

2
− msns

2ps
w2

]
+
p′s
ps

[
msns
2ps

w2 − 3

2

]}
. (B.59)

This is the full linearised drift kinetic equation.

B.1.3 Fourier analysis

Using the Fourier ansatz,

f ′s(x⊥, x‖, v‖, v, t) = f̃s(v‖, v) exp{i(k⊥x⊥ + k‖x‖ − ωt)},
b′i(x⊥, x‖, t) = b̃i exp{i(k⊥x⊥ + k‖x‖ − ωt)},
u′i(x⊥, x‖, t) = ũi exp{i(k⊥x⊥ + k‖x‖ − ωt)},
E′‖(x⊥, x‖, t) = Ẽ‖ exp{i(k⊥x⊥ + k‖x‖ − ωt)},

ñs(x⊥, x‖, t) =

∫
d3w f̃s(w‖, w, t)

= n′s(x⊥, x‖, t) exp{i(−k⊥x⊥ − k‖x‖ + ωt)},

p̃s⊥(x⊥, x‖, t) =
ms

2

∫
d3w w2

⊥ f̃s(w‖, w, t)

= ps,′⊥ (x⊥, x‖, t) exp{i(−k⊥x⊥ − k‖x‖ + ωt)},

p̃s‖(x⊥, x‖, t) = ms

∫
d3w w2

‖ f̃s(w‖, w, t)

= ps,′‖ (x⊥, x‖, t) exp{i(−k⊥x⊥ − k‖x‖ + ωt)}, (B.60)

where k⊥, k‖ are the perpendicular, parallel wavenumbers and ω is the complex
frequency. Making the Fourier ansatz here is appropriate to asymptotic solutions
since it ignores the ballistic response, see Section 8.5 of Krall and Trivelpiece
[1973]. Applying this ansatz,

∂

∂t
→ −iω, ∂

∂x‖
→ ik‖,

∂

∂x⊥
→ ik⊥, (B.61)
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to the linearized kinetic equation (Eq. B.59) leads to,

−iωf̃s + ik‖w‖f̃s −
msns
ps

w‖Fs

(
qs
ms

Ẽ‖ + iωũs‖

)
+ i

msns
ps

Fs

(
w2
⊥
2
ω
b̃‖
b0

+ k‖w
2
‖ũ
s
‖

)
= −νs f̃s

+ νsFs

{
ñs
ns

[
5

2
− msns

2ps
w2

]
+
p̃s
ps

[
msns
2ps

w2 − 3

2

]}
, (B.62)

where Eq. B.122 is used to replace ũ⊥ with b̃‖. Reorganising the equation
slightly,

−iωf̃s + ik‖w‖f̃s −
nsqs
ps

Ẽ‖w‖Fs − iω
msns
ps

b̃‖
b0
Fs
w2
⊥
2

+
imsns
ps

w‖ũ
s
‖
(
k‖w‖ − ω

)
Fs = −νs f̃s

+ νsFs

{
ñs
ns

[
5

2
− msns

2ps
w2

]
+
p̃s
ps

[
msns
2ps

w2 − 3

2

]}
, (B.63)

now modify the ũ‖ term to ease the manipulations, solving for the Fourier
amplitude of the perturbed distribution function,

f̃s =
1

i
(
− ω + k‖w‖ − iνs

)(nsqs
ps

Ẽ‖w‖Fs − iω
msns
ps

b̃‖
b0
Fs
w2
⊥
2

)
− k‖w‖ − ω − iνs + iνs

i
(
− ω + k‖w‖ − iνs

) imsns
ps

w‖ũ
s
‖Fs

+
νs

i
(
− ω + k‖w‖ − iνs

)Fs{ ñs
ns

[
5

2
− msns

2ps
w2

]
+
p̃s
ps

[
msns
2ps

w2 − 3

2

]}
.

(B.64)

Now working the ũ‖ term for convenience,

f̃s =
1

i
(
− ω + k‖w‖ − iνs

)(nsqs
ps

Ẽ‖w‖Fs − iω
msns
ps

b̃‖
b0
Fs
w2
⊥
2

)
− iνs(
− ω + k‖w‖ − iνs

)msns
ps

w‖ũ
s
‖Fs −

msns
ps

w‖ũ
s
‖Fs

+
νs

i
(
− ω + k‖w‖ − iνs

)Fs{ ñs
ns

[
5

2
− msns

2ps
w2

]
+
p̃s
ps

[
msns
2ps

w2 − 3

2

]}
,

(B.65)

and now we can determine p̃s⊥, p̃
s
‖, ñ

s with the respective moments.
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B.1.4 Moments of the kinetic equation

At this point, changing variables from w,w‖ → w⊥, w‖ is fine since no derivatives
appear, and then moments can be taken for p̃s⊥. The velocity space integral is,∫

τ(w)

d3w = 2π

∫ ∞
0

dw w⊥

∫ ∞
−∞

dw‖, (B.66)

and to put the integrals in the form of the plasma dispersion function we will
make the substitution,

u =

√
msns
2ps

w‖ ⇒ dw‖ = du

√
2ps
msns

, (B.67)

and limits ±∞. The argument of the plasma dispersion function will be,

ζs =

√
msns
2ps

1

|k‖|
(
ω + iνs). (B.68)

more on this can be found in Appendix B.5. The important integrals have been
worked out in Appendix B.6.

B.1.4.1 Density moment

The density moment,

ñs =

∫
τ(w)

d3w f̃s =

∫
τ(w)

d3w

{
1

i
(
− ω + k‖w‖ − iνs

)
×
(
nsqs
ps

Ẽ‖w‖Fs − iω
msns
ps

b̃‖
b0
Fs
w2
⊥
2

)
− iνs(
− ω + k‖w‖ − iνs

)msns
ps

w‖ũ
s
‖Fs −

msns
ps

w‖ũ
s
‖Fs

+
νs

i
(
− ω + k‖w‖ − iνs

)Fs[ ñs
ns

(
5

2
− msns

2ps
w2

)
+
p̃s
ps

(
msns
2ps

w2 − 3

2

)]}
(B.69)

227



first, the term ũ‖ that doesn’t contain a pole is zero when integrating over w‖Fs.
The integrals of interest out are written in Appendix B.6,

ñs = −insqs
ps

Ẽ‖
ns
|k‖|

[
1 + ζsZ(ζs)

]
− ωmsns

2ps

b̃‖
b0

ns
|k‖|

(
2ps
msns

)1/2

Z(ζs)

− iνs
msns
ps

ũs‖
ns
|k‖|

[
1 + ζsZ(ζs)

]
− iνs

ñs
ns

(
msns
2ps

)1/2
ns
|k‖|

[
5

2
Z(ζs)−

(
Z(ζs) + ζs

[
1 + ζsZ(ζs)

])]
− iνs

p̃s
ps

(
msns
2ps

)1/2
ns
|k‖|

[(
Z(ζs) + ζs

[
1 + ζsZ(ζs)

])
− 3

2
Z(ζs)

]
,

(B.70)

and now introduce the thermal speed as w2
s = 2ps/msns and make more sim-

plifications,

ñs = −insqs
ps

Ẽ‖
ns
|k‖|

[
1 + ζsZ(ζs)

]
− ω b̃‖

b0

ns
|k‖|ws

Z(ζs)

− i2νs
w2
s

ũs‖
ns
|k‖|

[
1 + ζsZ(ζs)

]
− i νs

ws

ñs
ns

ns
|k‖|

[
3

2
Z(ζs)− ζs

[
1 + ζsZ(ζs)

]]
− i νs

ws

p̃s
ps

ns
|k‖|

[
ζs
[
1 + ζsZ(ζs)

]
− 1

2
Z(ζs)

]
, (B.71)

and now R(ζs) = 1 + ζsZ(ζs),

ñs = −insqs
ps

Ẽ‖
ns
|k‖|
R(ζs)− ω

b̃‖
b0

ns
|k‖|ws

Z(ζs)− i
2νs
w2
s

ũs‖
ns
|k‖|
R(ζs)

− i νs
ws

ñs
ns

ns
|k‖|

[
3

2
Z(ζs)− ζsR(ζs)

]
− i νs

ws

p̃s
ps

ns
|k‖|

[
ζsR(ζs)−

1

2
Z(ζs)

]
.

(B.72)

This result is left like this to be combined with the pressure moments for further
simplifications.

228



B.1.4.2 Perpendicular pressure moment

The moment,

ms

2

∫
τ(w)

d3ww2
⊥ f̃s =

ms

2

∫
τ(w)

d3ww2
⊥

{
1

i
(
− ω + k‖w‖ − iνs

)
×
(
nsqs
ps

Ẽ‖w‖Fs − iω
msns
ps

b̃‖
b0
Fs
w2
⊥
2

)
− iνs(
− ω + k‖w‖ − iνs

)msns
ps

w‖ũ
s
‖Fs

− msns
ps

w‖ũ
s
‖Fs +

νs

i
(
− ω + k‖w‖ − iνs

)
× Fs

[
ñs
ns

(
5

2
− msns

2ps
w2

)
+
p̃s
ps

(
msns
2ps

w2 − 3

2

)]}
(B.73)

will lead to the perpendicular pressure, recalling that vi = wi + usi . In the
Appendix B.6 we have worked out the integrals, so we can replace them imme-
diately,

p̃s⊥ = −insqs|k‖|
Ẽ‖
[
1 + ζsZ(ζs)

]
− ω b̃‖

b0

2msns
k‖

(
2ps
msns

)1/2

Z(ζs)

− iνs
msns
|k‖|

ũs‖
[
1 + ζsZ(ζs)

]
− iνs

nsms

2|k‖|

(
2ps
msns

)1/2
ñs
ns

[
1

2
Z(ζs)− ζs

[
1 + ζsZ(ζs)

]]

− iνs
nsms

2|k‖|

(
2ps
msns

)1/2
p̃s
ps

[
1

2
Z(ζs) + ζs

[
1 + ζsZ(ζs)

]]
, (B.74)

introduce w2
s = msns/2ps,

p̃s⊥ = −insqs|k‖|
Ẽ‖
[
1 + ζsZ(ζs)

]
− ω b̃‖

b0

msnsws
k‖

Z(ζs)

− iνs
msns
|k‖|

ũs‖
[
1 + ζsZ(ζs)

]
− iνs

nsms

2|k‖|
ws
ñs
ns

[
1

2
Z(ζs)− ζs

[
1 + ζsZ(ζs)

]]

− iνs
nsms

2|k‖|
ws
p̃s
ps

[
1

2
Z(ζs) + ζs

[
1 + ζsZ(ζs)

]]
, (B.75)
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and now introduce R(ζs) = 1 + ζsZ(ζs),

p̃s⊥ = −insqs|k‖|
Ẽ‖R(ζs)− ω

b̃‖
b0

msnsws
k‖

Z(ζs)− iνs
msns
|k‖|

ũs‖R(ζs)

− iνs
nsms

2|k‖|
ws
ñs
ns

[
1

2
Z(ζs)− ζsR(ζs)

]

− iνs
nsms

2|k‖|
ws
p̃s
ps

[
1

2
Z(ζs) + ζsR(ζs)

]
. (B.76)

This result will be simplified later when it is more simple to do so.

B.1.4.3 Parallel pressure moment

The parallel pressure moment,

ms

∫
τ(w)

d3ww2
‖ f̃s = ms

∫
τ(w)

d3ww2
‖

{
1

i
(
− ω + k‖w‖ − iνs

)
×
(
nsqs
ps

Ẽ‖w‖Fs − iω
msns
ps

b̃‖
b0
Fs
w2
⊥
2

)
− iνs(
− ω + k‖w‖ − iνs

)msns
ps

w‖ũ
s
‖Fs −

msns
ps

w‖ũ
s
‖Fs

+
νs

i
(
− ω + k‖w‖ − iνs

)Fs[ ñs
ns

(
5

2
− msns

2ps
w2

)
p̃s
ps

(
msns
2ps

w2 − 3

2

)]}
,

(B.77)

where the integrals in Appendix B.6 can be substituted,

p̃‖ =− insqs|k‖|
Ẽ‖
[
1 + 2ζ2

s (1 + ζsZ(ζs))
]
− ω

(
2ps
msns

)1/2 b̃‖
b0

msns
k‖

ζs
[
1 + ζsZ(ζs)

]
− iνs

msns
|k‖|

ũs‖
[
1 + 2ζ2

s (1 + ζsZ(ζs))
]

− iνs
(

2ps
msns

)1/2
msns
|k‖|

ñs
ns

[
3

2
ζs
[
1 + ζsZ(ζs)

]
− 1

2
ζs
[
1 + 2ζ2

s

(
1 + ζsZ(ζs)

)]]
− iνs

(
2ps
msns

)1/2
msns
2|k‖|

p̃s
ps

[
ζs
[
1 + 2ζ2

s

(
1 + ζsZ(ζs)

)]
− ζs

[
1 + ζsZ(ζs)

]]
,

(B.78)
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introducing v2
s = 2ps/msns

p̃‖ =− insqs|k‖|
Ẽ‖
[
1 + 2ζ2

s (1 + ζsZ(ζs))
]
− ω b̃‖

b0

msnsvs
k‖

ζs
[
1 + ζsZ(ζs)

]
− iνs

msns
|k‖|

ũs‖
[
1 + 2ζ2

s (1 + ζsZ(ζs))
]

− iνs
msnsvs
|k‖|

ñs
ns

[
3

2
ζs
[
1 + ζsZ(ζs)

]
− 1

2
ζs
[
1 + 2ζ2

s

(
1 + ζsZ(ζs)

)]]
− iνs

msnsvs
2|k‖|

p̃s
ps

[
ζs
[
1 + 2ζ2

s

(
1 + ζsZ(ζs)

)]
− ζs

[
1 + ζsZ(ζs)

]]
,

(B.79)

and now introduce R(ζs) = 1 + ζsZ(ζs),

p̃‖ =− insqs|k‖|
Ẽ‖
[
1 + 2ζ2

sR(ζs)
]
− ω b̃‖

b0

msnsws
k‖

ζsR(ζs)

− iνs
msns
|k‖|

ũs‖
[
1 + 2ζ2

sR(ζs)
]

− iνs
msnsvs
|k‖|

ñs
ns

[
3

2
ζsR(ζs)−

1

2
ζs
[
1 + 2ζ2

sR(ζs)
]]

− iνs
msnsvs

2|k‖|
p̃s
ps

[
ζs
[
1 + 2ζ2

sR(ζs)
]
− ζsR(ζs)

]
(B.80)

. This result is left until it can be simplified more simply.

B.1.4.4 Simplifying the moment equations

Rewriting the result on the density after dividing by ns and rearranging the
coefficient in front of the ũ‖ term,

ñs
ns

= −i nsqs|k‖|ps
Ẽ‖R(ζs)−

ω

|k‖|vs
b̃‖
b0
Z(ζs)− i

νsmsns
|k‖|ps

ũs‖R(ζs)

− i νs
vs|k‖|

ñs
ns

[
3

2
Z(ζs)− ζsR(ζs)

]
− i νs

vs|k‖|
p̃s
ps

[
ζsR(ζs)−

1

2
Z(ζs)

]
,

(B.81)
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and dividing the perpendicular pressure fluctuations by the total pressure and
using the relation between ps, vs,

p̃s⊥
ps

= −i nsqs|k‖|ps
Ẽ‖R(ζs)− ω

b̃‖
b0

2

|k‖|vs
Z(ζs)− iνs

msns
|k‖|ps

ũs‖R(ζs)

− i νs
|k‖|vs

ñs
ns

[
1

2
Z(ζs)− ζsR(ζs)

]
− i νs
|k‖|vs

p̃s
ps

[
1

2
Z(ζs) + ζsR(ζs)

]
.

(B.82)

Subtracting the new equations, the Ẽ‖, ũ‖ terms cancel,

ñs
ns
− p̃s⊥
ps

= − ω

|k‖|vs
b̃‖
b0
Z(ζs)− i

νs
vs|k‖|

ñs
ns

[
3

2
Z(ζs)− ζsR(ζs)

]
− i νs

vs|k‖|
p̃s
ps

[
ζsR(ζs)−

1

2
Z(ζs)

]
+ ω

b̃‖
b0

2

k‖vs
Z(ζs)

+ i
νs
|k‖|vs

ñs
ns

[
1

2
Z(ζs)− ζsR(ζs)

]
+ i

νs
|k‖|vs

p̃s
ps

[
1

2
Z(ζs) + ζsR(ζs)

]
,

(B.83)

and further simplifications occur,

ñs
ns
− p̃s⊥
ps

=
ω

|k‖|vs
b̃‖
b0
Z(ζs)− i

νs
vs|k‖|

ñs
ns
Z(ζs) + i

νs
vs|k‖|

p̃s
ps
Z(ζs). (B.84)

Write out the total pressure fluctuations as p̃s = 2p̃⊥/3ps + p̃s‖/3ps, and rear-
range,

ñs
ns
− p̃s⊥
ps

=
ω

|k‖|vs
b̃‖
b0
Z(ζs)− i

νs
vs|k‖|

ñs
ns
Z(ζs) + i

νs
vs|k‖|

(
2

3

p̃s⊥
ps

+
1

3

p̃s‖
ps

)
Z(ζs)

⇒ ñs
ns

(
1 + i

νs
vs|k‖|

Z(ζs)

)
− p̃s⊥
ps

(
1 + i

2

3

νs
vs|k‖|

Z(ζs)

)
− ω

|k‖|vs
b̃‖
b0
Z(ζs)−

1

3
i
νs

vs|k‖|
p̃s‖
ps
Z(ζs) = 0. (B.85)
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Now the same thing can be done by multiplying the original density equation
by [1 + 2ζ2

sR(ζs)]/ns,

[1 + 2ζ2
sR(ζs)]

ñs
ns

= [1 + 2ζ2
sR(ζs)]

{
− i nsqs|k‖|ps

Ẽ‖R(ζs)−
ω

|k‖|vs
b̃‖
b0
Z(ζs)

− iνsmsns
|k‖|ps

ũs‖R(ζs)− i
νs

vs|k‖|
ñs
ns

[
3

2
Z(ζs)− ζsR(ζs)

]
− i νs

vs|k‖|
p̃s
ps

[
ζsR(ζs)−

1

2
Z(ζs)

]}
. (B.86)

Then multiply the parallel pressure equation byR(ζs)/ps and use v2
s = 2ps/msns,

R(ζs)
p̃‖
ps

= R(ζs)

{
− i nsqs|k‖|ps

Ẽ‖
[
1 + 2ζ2

sR(ζs)
]
− ω b̃‖

b0

2

k‖vs
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− iνs
msns
|k‖|ps

ũs‖
[
1 + 2ζ2

sR(ζs)
]

− i2 νs
|k‖|vs

ñs
ns

[
3

2
ζsR(ζs)−

1

2
ζs
[
1 + 2ζ2

sR(ζs)
]]

− i νs
|k‖|vs

p̃s
ps

[
ζs
[
1 + 2ζ2

sR(ζs)
]
− ζsR(ζs)

]}
, (B.87)

and now taking the difference,

[1 + 2ζ2
sR(ζs)]

ñs
ns
−R(ζs)

p̃‖
ps

=

[1 + 2ζ2
sR(ζs)]

{
− ω

|k‖|vs
b̃‖
b0
Z(ζs)− i

νs
vs|k‖|

ñs
ns

[
3

2
Z(ζs)− ζsR(ζs)

]
− i νs

vs|k‖|
p̃s
ps

[
ζsR(ζs)−

1

2
Z(ζs)

]}
+ ω

b̃‖
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2

k‖vs
ζsR2(ζs)

+ i2
νs
|k‖|vs

ñs
ns
R(ζs)

[
3

2
ζsR(ζs)−

1

2
ζsR(ζs)

[
1 + 2ζ2

sR(ζs)
]]

+ i
νs
|k‖|vs

p̃s
ps
R(ζs)

[
ζs
[
1 + 2ζ2

sR(ζs)
]
− ζsR(ζs)

]
. (B.88)

The rearrangements are a bit tedious, but simplify to,

[1 + 2ζ2
sR(ζs)]

ñs
ns
−R(ζs)

p̃‖
ps

=
ω

|k‖|vs
b̃‖
b0

[2ζsR(ζs)− Z(ζs)]

+ i
3

2

νs
vs|k‖|

ñs
ns

[
2ζsR(ζs)− Z(ζs)

]
+ i

1

2

νs
|k‖|vs

p̃s
ps

[
Z(ζs)− 2ζsR(ζs)

]
(B.89)
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using p̃s = 2p̃⊥/3ps + p̃s‖/3ps and rearranging,

[1 + 2ζ2
sR(ζs)]

ñs
ns
−R(ζs)

p̃‖
ps

=
ω

|k‖|vs
b̃‖
b0

[2ζsR(ζs)− Z(ζs)]

+ i
3

2

νs
vs|k‖|

ñs
ns

[
2ζsR(ζs)− Z(ζs)

]
+ i

1

2

νs
|k‖|vs

(
2

3

p̃s⊥
ps

+
1

3

p̃s‖
ps

)[
Z(ζs)− 2ζsR(ζs)

]
. (B.90)

B.2 Continuity

The 0th order moment of the Boltzmann equation (Eq. B.1) for a collision
operator that conserves particle number (e.g., the BGK operator),

∂

∂t
ns +

∂

∂xi
usins = 0. (B.91)

B.2.1 Linearization

The necessary perturbations from Eq. 4.9 for this section are,

usi = us′i ,

ns = n0,s + n′s → ns + n′s, (B.92)

so that for protons (s = p) of Eq. B.91,

∂

∂t
np +

∂

∂xi
upinp

1st
=

∂

∂t
n′p + np

∂

∂xi
up′i = 0. (B.93)

Due to the ignorance of the electron momentum through the quasi-neutrality
equation, the single-fluid approximation, and smallness of the ion inertial length,
the momentum of the electrons do not enter into the description.

B.2.2 Fourier Analysis

The relevant Fourier amplitudes from Eq. 4.10 for this section are,

f ′s(x⊥, x‖, v‖, v, t) = f̃s(v‖, v) exp{i(k⊥x⊥ + k‖x‖ − ωt)},
u′i(x⊥, x‖, t) = ũi exp{i(k⊥x⊥ + k‖x‖ − ωt)},

ñs(x⊥, x‖, t) =

∫
d3w f̃s(w‖, w, t)

= n′s(x⊥, x‖, t) exp{i(−k⊥x⊥ − k‖x‖ + ωt)}, (B.94)
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so that Eq. B.93 becomes,

−iωñs + ins
(
k⊥ũ

p
⊥ + k‖ũ

p
‖
)

= 0. (B.95)

B.3 Single-fluid momentum

The 1st momentum of the Boltzmann equation (Eq. B.1) produces Eq. 4.3
and the single-fluid momentum (Eq. 4.6) is explained in the text of Section 4.1
giving,

mp

(
∂

∂t
npu

p
i+

∂

∂xj
npu

p
i u
p
j

)
= − ∂

∂xj

(
ppij + peij

)
+

1

4π
bk

(
∂

∂xk
bi −

∂

∂xi
bk

)
. (B.96)

B.3.1 Linearization

The relevant perturbations from Eq. 4.9 are,

bi = b′i + b0b̂i,

usi = us′i ,

ns = n0,s + n′s → ns + n′s,

p⊥ = ps⊥,0 + ps′⊥ → ps⊥ + ps′⊥,

p‖ = ps‖,0 + ps′‖ → ps‖ + ps′‖ , (B.97)

Labelling the single-fluid momentum equation from Eq. B.96,

mpn

(
∂

∂t
+ upj

∂

∂xj

)
upi

K

+
∂

∂xj

(
ppij + peij

)
L

+(4π)−1 bj

(
∂

∂xi
bj −

∂

∂xj
bi

)
M

= 0.

(B.98)

For part K,

mpn

(
∂

∂t
+ upj

∂

∂xj

)
upi

1st
= mpn

∂

∂t
up′i , (B.99)

Part L,

∂

∂xj

(
ppij + peij

)
1st
=

∂

∂xj

(
pp′ij + pe′ij

)
, (B.100)
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where if the pressure is gyrotropic psij ,

psij = ps⊥(δij − b̂ib̂j) + ps‖b̂ib̂j (B.101)

p⊥ =
1

2
psij(δij − b̂ib̂j), ps‖ = psij b̂ib̂j (B.102)

can be decomposed into the perpendicular ps⊥ and parallel ps‖ pressures, giving
to first order,

psij = δijp
s
⊥ + b̂ib̂j(p

s
‖ − ps⊥)

1st
= δijp

s′
⊥ + b̂′iδj‖(p̄
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‖ − p̄s⊥) + δi‖b̂

′
j(p̄

s
‖ − p̄s⊥) + δi‖δj‖(p

s′
‖ − ps′⊥).

(B.103)

The spatial derivative acts,
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∂

∂x‖
b′‖

]
− 1

|b0|
δi‖(p

s
‖ − ps⊥)∂‖b

′
‖ + δi‖

∂

∂x‖
(ps′‖ − ps′⊥)

=
∂

∂xi
ps′⊥ +

1

|b0|
(ps‖ − ps⊥)

[
∂

∂x‖
b′i − δ‖i

∂

∂x‖
b′‖

]
− 1

|b0|
δi‖(p

s
‖ − ps⊥)

∂

∂x‖
b′‖ + δi‖

∂

∂x‖
(ps′‖ − ps′⊥).

(B.104)

Part L,

∂

∂xj
(ppij + peij)

1st
=

∂

∂xi
pp′⊥ +

1

|b0|
(pp‖ − p

p
⊥)

[
∂

∂x‖
b′i − 2δi‖

∂

∂x‖
b′‖

]
+ δi‖

∂

∂x‖
(pp′‖ − p

p′
⊥) +

∂

∂xi
pe′⊥ +

1

|b0|
(pe‖ − pe⊥)

×
[
∂

∂x‖
b′i − 2δ‖i

∂

∂x‖
b′‖

]
+ δi‖

∂

∂x‖
(pe′‖ − pe′⊥) (B.105)
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and part M,

bj

(
∂

∂xi
bj −

∂

∂xj
bi

)
1st
= b0δj‖

(
∂

∂xi
b′j −

∂

∂xj
b′i

)
= b0

∂

∂xi
b′‖ − b0

∂

∂x‖
b′i.

(B.106)

Collecting all of the terms,

mpn0
∂

∂t
u′i +

∂

∂xi
pp′⊥ +

1

|b0|
(pp‖ − p

p
⊥)

[
∂

∂x‖
b′i − 2δ‖i

∂

∂x‖
b′‖

]
+ δi‖

∂

∂x‖
(pp′‖ − p

p′
⊥) +

∂

∂xi
pe′⊥ +

1

|b0|
(pe‖ − pe⊥)

[
∂

∂x‖
b′i − 2δ‖i

∂

∂x‖
b′‖

]
+ δi‖

∂

∂x‖
(pe′‖ − pe′⊥) + (4π)−1

(
b0

∂

∂xi
b′‖ − b0

∂

∂x‖
b′i

)
= 0. (B.107)

Setting the background distribution functions to isotropic, pp⊥ = pp‖, p
e
⊥ = pe‖,

simplifies considerably,

mpn
∂

∂t
u′i +

∂

∂xi
pp′⊥ + δi‖

∂

∂x‖
(pp′‖ − p

p′
⊥)

+
∂

∂xi
pe′⊥ + δi‖

∂

∂x‖
(pe′‖ − pe′⊥) + (4π)−1

(
b0

∂

∂xi
b′‖ − b0

∂

∂x‖
b′i

)
= 0. (B.108)

B.3.2 Fourier analysis

The Fourier amplitudes from Eq. 4.10 relevant to this section are,

b′i(x⊥, x‖, t) = b̃i exp{i(k⊥x⊥ + k‖x‖ − ωt)},
u′i(x⊥, x‖, t) = ũi exp{i(k⊥x⊥ + k‖x‖ − ωt)},

ñs(x⊥, x‖, t) =

∫
d3w f̃s(w‖, w, t)

= n′s(x⊥, x‖, t) exp{i(−k⊥x⊥ − k‖x‖ + ωt)},

p̃s⊥(x⊥, x‖, t) =
ms

2

∫
d3w w2

⊥ f̃s(w‖, w, t)

= ps,′⊥ (x⊥, x‖, t) exp{i(−k⊥x⊥ − k‖x‖ + ωt)},

p̃s‖(x⊥, x‖, t) = ms

∫
d3w w2

‖ f̃s(w‖, w, t)

= ps,′‖ (x⊥, x‖, t) exp{i(−k⊥x⊥ − k‖x‖ + ωt)}. (B.109)
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Fourier transforming Eq. B.108 gives,

−impnωũi + ikip̃
p
⊥ + iδi‖k‖(p̃

p
‖ − p̃

p
⊥)

+ ikip̃
e
⊥ + iδi‖k‖(p̃

e
‖ − p̃e⊥) +

ib0
4π

(
kib̃‖ − k‖b̃i

)
= 0. (B.110)

It is more useful to split this into parallel and perpendicular components. For
the parallel component, multiply by δi‖,

δi‖

{
− impnωũi + ikip̃

p
⊥ + iδi‖k‖(p̃

p
‖ − p̃

p
⊥)

+ ikip̃
e
⊥ + iδi‖k‖(p̃

e
‖ − p̃e⊥) +

ib0
4π

(
kib̃‖ − k‖b̃i

)}
= −impnωũ‖ + ik‖p̃

p
⊥ + ik‖(p̃

p
‖ − p̃

p
⊥)

+ ik‖p̃
e
⊥ + ik‖(p̃

e
‖ − p̃e⊥) +

ib0
4π

(
k‖b̃‖ − k‖b̃‖

)
= −impnωũ‖ + ik‖p̃

p
‖ + ik‖p̃

e
‖ = 0. (B.111)

Finally,

ωmpnũ‖ = k‖
(
p̃p‖ + p̃e‖

)
(B.112)

and now for the perpendicular equation, multiplying the Fourier transformed
momentum equation by δi⊥,

δi⊥

{
− impnωũi + ikip̃

p
⊥ + iδi‖k‖(p̃

p
‖ − p̃

p
⊥)

+ ikip̃
e
⊥ + iδi‖k‖(p̃

e
‖ − p̃e⊥) +

ib0
4π

(
kib̃‖ − k‖b̃i

)}
= −impnωũ⊥ + ik⊥p̃

p
⊥ + ik⊥p̃

e
⊥ +

ib0
4π

(
k⊥b̃‖ − k‖b̃⊥

)
. (B.113)

Finally,

mpnωũ⊥ = k⊥p̃
p
⊥ + k⊥p̃

e
⊥ +

b0
4π

(
k⊥b̃‖ − k‖b̃⊥

)
. (B.114)

B.4 Induction equation

The induction equation is derived by inserting a simplified electric field (Omh’s
Law) into Faraday’s law. The simplified electric field is derived by writing a
time evolution equation for the current from the momentum equations (Eq. 4.3)
and then using Ampere’s and Faraday’s Laws, the single-fluid approximation,
smallness of the ion inertial length, and the non-relativistic approximation to
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arrive at the ideal Ohm’s Law,

Ei = −εijkupj bk (B.115)

and inserting into Faraday’s law,

∂

∂t
bi = εijk∂jεklmu

p
l bm = bj

∂

∂xj
upi −

∂

∂xj
upj bi. (B.116)

B.4.1 Linearization

Now linearize with the perturbations from Eq. 4.9,

bi = b′i + b0b̂i,

usi = us′i , (B.117)

giving,

∂

∂t
b′i = δj‖b0

∂

∂xj
up′i − δi‖b0

∂

∂xj
up′j = b0

∂

∂x‖
up′i − δi‖b0

∂

∂xj
up′j . (B.118)

B.4.2 Fourier analysis

Using the definitions from Eq. 4.10 relevant to this section,

b′i(x⊥, x‖, t) = b̃i exp{i(k⊥x⊥ + k‖x‖ − ωt)},
u′i(x⊥, x‖, t) = ũi exp{i(k⊥x⊥ + k‖x‖ − ωt)}, (B.119)

yielding,

−iωb̃i = ib0k‖ũ
p
i − iδi‖b0kj ũpj (B.120)

and now taking the perpendicular and parallel parts,

i = ⊥ ⇒ −ωb̃⊥ = b0k‖ũ
p
⊥, (B.121)

i = ‖ ⇒ ωb̃‖ = b0k⊥ũ
p
⊥. (B.122)

B.5 Plasma dispersion function

Defining the plasma dispersion function,

√
πZ(ζs) =

∫
CL

du
exp{−u2}
u− ζs

, (B.123)
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The path CL is called the Landau contour in plasma physics, it is the analytical
continuation of the path between (−∞,∞), necessary when there is a pole at
ζs. This integral can be treated numerically or with expansions for large/small
|ζs|.

Replacing the integral path with the actual path [−∞,∞] taking the partial
derivative with respect to the argument of Eq. B.123,

∂

∂ζs
Z(ζs) =

1√
π

∫ ∞
−∞

du exp{−u2} ∂
∂ζs

1

u− ζs

=
−1√
π

∫ ∞
−∞

du exp{−u2} ∂
∂u

1

u− ζs
, (B.124)

integrate by parts,

−1√
π

∫ ∞
−∞

du exp{−u2} ∂
∂u

1

u− ζs

=
−1√
π

([
exp{−u2}
u− ζs

]∞
−∞

+ 2

∫ ∞
−∞

du
u exp{−u2}
u− ζs

)
, (B.125)

the first term inside the parentheses goes to zero and the second term is a
common integral that was solved later in this Appendix, to give,

∂

∂ζs
Z(ζs) = −2

[
1 + ζsZ(ζs)]. (B.126)

This is a ordinary differential equation,

d

dx
y(x) + b(x) y(x) = a, (B.127)

where the integral factor is, ∫
dζs 2ζs = ζ2

s , (B.128)

with undefined limits. This yields,

∂

∂ζs
Z(ζs) exp

{
ζ2
s

}
= −2exp

{
ζ2
s

}
. (B.129)

Integrating once more,

Z(ζs) exp
{
ζ2
s

}∣∣∣∣
B

= −2

∫
B

dζs exp
{
ζ2
s

}
, (B.130)

where the boundary conditions B must be determined. To do this, use the
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ζs = 0,

Z(0) =
1√
π

P.V.

∫ ∞
−∞

du
exp{−u2}

u
+ i
√
π (B.131)

by the Sokhotski–Plemelj theorem, where P.V. is the Cauchy principal value.
Rewriting Eq. B.130 with the bounds,

Z(ζs) = exp
{
− ζ2

s

}(
i
√
π − 2

∫ ζs

0

dx exp
{
x2
})

, (B.132)

where the integral is imaginary error function. Integrals of this kind can be
handled by modern computational mathematics programs. This is the method
employed to treat the plasma dispersion function numerically.

The plasma dispersion function can be expanded in terms of it’s argument,
often used for analytical treatment,

Z(ζs) ≈ i
√
π exp

{
− ζ2

s

}
− 2ζs

(
1− 2

ζ2
s

3
+ 4

ζ4
s

15
+ ...

)
, |ζs| � 1, (B.133)

Z(ζs) ≈ iσ
√
π exp

{
− ζ2

s

}
− 1

ζs

(
1 +

1

2ζ2
s

+
3

4ζ4
s

+ ...

)
, |ζs| � 1, (B.134)

where,

σ = 0, I
{
ζs
}
> 0,

σ = 1, I
{
ζs
}

= 0,

σ = 2, I
{
ζs
}
< 0. (B.135)

A set of related integrals arise that are products of un with the integrand,∫
CL

du
unexp{−u2}

u− ζs
= ... , (B.136)

which are simply related to the plasma dispersion function Z(ζs). For u1, take
u→ u+ ζs∫

CL

du
(u+ ζs) exp{−(u+ ζs)

2}
u

=

∫
CL

du

[
exp{−(u+ ζs)

2}+
ζs exp{−(u+ ζs)

2}
u

]
=
√
π + ζs

∫
CL

du
exp{−u2}
u− ζs

=
√
π
[
1 + ζsZ(ζs)

]
. (B.137)
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The same procedure follows for u2,∫
CL

du
(u+ ζs)

2 exp{−(u+ ζs)
2}

u

=

∫
CL

du exp{−(u+ ζs)
2}
[
u+ 2ζs +

ζ2
s

u

]
= −ζs

√
π + 2ζs

√
π +
√
πζ2
sZ(ζs)

=
√
πζs
[
1 + ζsZ(ζs)

]
, (B.138)

and for u3,∫
CL

du
(u+ ζs)

3 exp{−(u+ ζs)
2}

u

=

∫
CL

du exp{−(u+ ζs)
2}
[
u2 +

ζ3
s

u
+ 3ζ2

s + 3uζs

]
=

√
π

2
(2ζ2

s + 1) +
√
πζ3
sZ(ζs) + 3ζ2

s

√
π − 3

√
πζ2
s

=

√
π

2

[
1 + 2ζ2

s (1 + ζsZ(ζs))
]
, (B.139)

and for u4,∫
CL

du
(u+ ζs)

4 exp{−(u+ ζs)
2}

u

=

∫
CL

du exp{−(u+ ζs)
2}
[
u3 +

ζ4
s

u
+ 6uζ2

s + 4ζsu
2 + 4ζ3

s

]
= −
√
π

2
ζs(2ζ

2
s + 3) +

√
πζ4
sZ(ζs)− 6

√
πζ3
s +

4
√
πζs
2

(2ζ2
s + 1) + 4ζ3

s

√
π

=

√
π

2
ζs
[
1 + 2ζ2

s

(
1 + ζsZ(ζs)

)]
, (B.140)

and for u5,∫
CL

du
(u+ ζs)

5 exp{−(u+ ζs)
2}

u

=

∫
CL

du exp{−(u+ ζs)
2}
[
u4 +

ζ5
s

u
+ 10ζ3

su+ 10ζ2
su

2 + 5ζsu
3 + 5ζ4

s

]
=

√
π

4

(
4ζ2
s (ζ2

s + 3) + 3
)

+
√
πζ5
sZ(ζs)− 10

√
πζ4
s + 5

√
πζ2
s (2ζ2

s + 1)

− 5
√
π

2
ζ2
s (2ζ2

s + 3) + 5ζ4
s

√
π

=
√
π

[
ζ5
sZ(ζs) + ζ4

s −
1

2
ζ2
s +

3

4

]
. (B.141)

While this procedure is simple manipulation of the integral, this property of the
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plasma dispersion function is what permits closure in linear kinetic theory.

B.6 Useful results on the plasma dispersion rela-

tion

It is necessary to work out a set of integrals which involve multiples of v⊥, v‖,
the background distribution function and the inverse of i(k‖v‖ − ω′) bit where
ω′ = ω+ iνs. These integrals introduce the plasma distribution function, which
appears in the Appendix B.5. Throughout I have used the definition,

αs = n5/2
s

(
ms

2πps

)3/2

(B.142)

to conserve space. The integrals appear as,

2παs

∫ ∞
0

dv⊥ v⊥

∫ ∞
−∞

dv‖

vn⊥
⊥ v

n‖
‖ exp

{
− msns

2ps

(
v2
‖ + v2

⊥
)}

k‖v‖ − ω′
, (B.143)

for n⊥, n‖ specified.

B.6.1 Density integrals

For v0
⊥, v

0
‖,

2παs

∫ ∞
0

dv⊥ v⊥

∫ ∞
−∞

dv‖

exp
{
− msns

2ps

(
v2
‖ + v2

⊥
)}

k‖v‖ − ω′

= 2παs

∫ ∞
0

dv⊥ v⊥ exp
{
− msns

2ps
v2
⊥

}∫ ∞
−∞

dv‖

exp
{
− msns

2ps
v2
‖

}
k‖v‖ − ω′

= 2παs
kBT

s
⊥

ms

1

|k‖|

∫
C
du

exp
{
− u2

}
u− ζs

= 2παs
ps

msns

1

|k‖|
√
πZ(ζs)

=

(
msns
2ps

)1/2
ns
|k‖|

Z(ζs). (B.144)
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For v0
⊥, v

1
‖,

2παs

∫ ∞
0

dv⊥ v⊥

∫ ∞
−∞

dv‖

v‖ exp
{
− msns

2ps

(
v2
‖ + v2

⊥
)}

k‖v‖ − ω′

= 2παs

∫ ∞
0

dv⊥ v⊥ exp
{
− msns

2ps
v2
⊥

}∫ ∞
−∞

dv‖

v‖ exp
{
− msns

2ps
v2
‖

}
k‖v‖ − ω′

= 2παs
ps

msns

1

|k‖|

√
2ps
msns

∫
C
du

u exp
{
− u2

}
u− ζs

= 2παs
ps

msns

1

|k‖|

√
2ps
msns

√
π
[
1 + ζsZ(ζs)

]
=

ns
|k‖|

[
1 + ζsZ(ζs)

]
. (B.145)

For v2
⊥, v

0
‖,

2παs

∫ ∞
0

dv⊥ v
3
⊥

∫ ∞
−∞

dv‖

exp
{
− msns

2ps

(
v2
‖ + v2

⊥
)}

k‖v‖ − ω′

= 2παs

∫ ∞
0

dv⊥ v
3
⊥ exp

{
− msns

2ps
v2
⊥

}∫ ∞
−∞

dv‖

exp
{
− msns

2ps
v2
‖

}
k‖v‖ − ω′

= 2παs
2(ps)

2

(msns)2

1

|k‖|

∫
C
du

exp
{
− u2

}
u− ζs

= 2παs
2(ps)

2

(msns)2

1

|k‖|
√
πZ(ζs)

=
ns
|k‖|

(
2ps
msns

)1/2

Z(ζs). (B.146)
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For v0
⊥, v

2
‖,

2παs

∫ ∞
0

dv⊥ v⊥

∫ ∞
−∞

dv‖

v2
‖ exp

{
− msns

2ps

(
v2
‖ + v2

⊥
)}

k‖v‖ − ω′

= 2παs

∫ ∞
0

dv⊥ v⊥ exp
{
− msns

2ps
v2
⊥

}∫ ∞
−∞

dv‖

v2
‖ exp

{
− msns

2ps
v2
‖

}
k‖v‖ − ω′

= 2παs
ps

msns

1

|k‖|
2ps
msns

∫
C
du

u2exp
{
− u2

}
u− ζs

= παs
1

|k‖|

(
2ps
msns

)2√
πζs
[
1 + ζsZ(ζs)

]
=

ns
|k‖|

(
2ps
msns

)1/2

ζs
[
1 + ζsZ(ζs)

]
. (B.147)

For v0
⊥, v

0
‖,

2παs

∫ ∞
0

dv⊥ v⊥

∫ ∞
−∞

dv‖

exp
{
− msns

2ps

(
v2
‖ + v2

⊥

)}
k‖v‖ − ω′

= 2παs

∫ ∞
0

dv⊥ v⊥ exp
{
− msns

2ps
v2
⊥

}∫ ∞
−∞

dv‖

exp
{
− msns

2ps
v2
‖

}
k‖v‖ − ω′

= 2παs
ps

msns

1

|k‖|

∫
C
du

exp
{
− u2

}
u− ζs

= 2παs
ps

msns

1

|k‖|
√
πZ(ζs)

=

(
msns
2ps

)1/2
ns
|k‖|

Z(ζs). (B.148)
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B.6.2 Perpendicular pressure integrals

For v2
⊥, v

1
‖,

2παs

∫ ∞
0

dv⊥ v
3
⊥

∫ ∞
−∞

dv‖

v‖ exp
{
− msns

2ps

(
v2
‖ + v2

⊥
)}

k‖v‖ − ω′

= 2παs

∫ ∞
0

dv⊥ v
3
⊥ exp

{
− msns

2ps
v2
⊥

}∫ ∞
−∞

dv‖

v‖ exp
{
− msns

2ps
v2
‖

}
k‖v‖ − ω′

= παs

(
2ps
msns

)2
1

|k‖|

√
2ps
msns

∫
C
du

u exp
{
− u2

}
u− ζs

= παs

(
2ps
msns

)2
1

|k‖|

√
2ps
msns

√
π
[
1 + ζsZ(ζs)

]
=

2ps
|k‖|ms

[
1 + ζsZ(ζs)

]
. (B.149)

For v4
⊥, v

0
‖,

2παs

∫ ∞
0

dv⊥ v
5
⊥

∫ ∞
−∞

dv‖

exp
{
− msns

2ps

(
v2
‖ + v2

⊥
)}

k‖v‖ − ω′

= 2παs

∫ ∞
0

dv⊥ v
5
⊥ exp

{
− msns

2ps
v2
⊥

}∫ ∞
−∞

dv‖

exp
{
− msns

2ps
v2
‖

}
k‖v‖ − ω′

= 2παs

(
2ps
msns

)3
1

|k‖|

∫
C
du

exp
{
− u2

}
u− ζs

= 2παs

(
2ps
msns

)3
1

|k‖|
√
πZ(ζs)

=
2ns
k‖

(
2ps
msns

)3/2

Z(ζs). (B.150)
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For v2
⊥, v

2
‖,

2παs

∫ ∞
0

dv⊥ v
3
⊥

∫ ∞
−∞

dv‖

v2
‖ exp

{
− msns

2ps

(
v2
‖
T s‖

+
v2
⊥
T s⊥

)}
k‖v‖ − ω′

= 2παs

∫ ∞
0

dv⊥ v
3
⊥ exp

{
− msns

2ps

v2
⊥
T s⊥

}∫ ∞
−∞

dv‖

v2
‖ exp

{
− msns

2ps

v2
‖
T s‖

}
k‖v‖ − ω′

= 2παs

(
2ps
msns

)2
1

2|k‖|
2ps
msns

∫
C
du

u2exp
{
− u2

}
u− ζs

= 2παs

(
2ps
msns

)2
1

2|k‖|
2ps
msns

√
πζs
[
1 + ζsZ(ζs)

]
=
ns
k‖

(
2ps
msns

)3/2

ζs
[
1 + ζsZ(ζs)

]
. (B.151)

B.6.3 Parallel pressure integrals

For v0
⊥, v

3
‖,

2παs

∫ ∞
0

dv⊥ v⊥

∫ ∞
−∞

dv‖

v3
‖ exp

{
− msns

2ps

(
v2
‖ + v2

⊥
)}

k‖v‖ − ω′

= 2παs

∫ ∞
0

dv⊥ v⊥ exp
{
− msns

2ps
v2
⊥

}∫ ∞
−∞

dv‖

v3
‖ exp

{
− msns

2ps
v2
‖

}
k‖v‖ − ω′

= 2παs
ps

msns

1

|k‖|

(
2ps
msns

)3/2 ∫
C
du

u3 exp
{
− u2

}
u− ζs

= 2παs
ps

msns

1

|k‖|

(
2ps
msns

)3/2√
π

2

[
1 + 2ζ2

s (1 + ζsZ(ζs))
]

=
ps

ms|k‖|
[
1 + 2ζ2

s (1 + ζsZ(ζs))
]
. (B.152)
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The v2
⊥, v

2
‖ moment appears in the perpendicular pressure section and the v0

⊥, v
2
‖

appears in the density section. For v0
⊥, v

4
‖,

2παs

∫ ∞
0

dv⊥ v⊥

∫ ∞
−∞

dv‖

v4
‖ exp

{
− msns

2ps

(
v2
‖ + v2

⊥
)}

k‖v‖ − ω′

= 2παs

∫ ∞
0

dv⊥ v⊥ exp
{
− msns

2ps
v2
⊥

}∫ ∞
−∞

dv‖

v4
‖ exp

{
− msns

2ps
v2
‖

}
k‖v‖ − ω′

= 2παs
ps

msns

1

|k‖|

(
2ps
msns

)2 ∫
C
du

u4exp
{
− u2

}
u− ζs

= 2παs
ps

msns

1

|k‖|

(
2ps
msns

)2√
π

2

[
ζ4
sZ(ζs) + ζs

]
=

ns
2|k‖|

(
2ps
msns

)3/2

ζs
[
1 + 2ζ2

s

(
1 + ζsZ(ζs)

)]
. (B.153)
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Appendix C

The Chew-Goldberger-Low
Equations

The Chew-Goldberger-Low equations are derived in this Appendix. They are
first reported in Chew et al. [1956].

C.1 Derivation

Recalling the kinetic equation from Eq. B.39,{
∂

∂t
+
(
b̂iw‖ + usi

) ∂

∂xi
+
w2
⊥
2

∂b̂i
∂xi

∂

∂w‖

+

[
qs
ms

E‖ − b̂i
(
∂usi
∂t

+ usj
∂usi
∂xj

)](
∂

∂w‖
+
w‖
w

∂

∂w

)
− w2

⊥
2w

∂usi
∂xi

∂

∂w
+ b̂ib̂j

∂usi
∂xj

[(
w2
⊥
2
− w2

‖

)
1

w

∂

∂w
− w‖

∂

∂w‖

]}
fs = −νs

[
fs − Fs]

(C.1)

to derive the CGL equations we will take the moments w2
⊥/2, w

2
‖. Let’s define

the perpendicular and parallel heat fluxes,

qs⊥ = ms

∫
d3w

w2
⊥
2
w‖fs,

qs‖ = ms

∫
d3w w3

‖fs. (C.2)
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C.1.1 Perpendicular pressure equation

Beginning with the perpendicular equation first,

ms

∫
d3w

w2
⊥
2

{
∂

∂t︸︷︷︸
a

+
(
b̂iw‖ + usi

) ∂

∂xi︸ ︷︷ ︸
b

+
w2
⊥
2

∂b̂i
∂xi

∂

∂w‖︸ ︷︷ ︸
c

+

[
qs
ms

E‖ − b̂i
(
∂usi
∂t

+ usj
∂usi
∂xj

)](
∂

∂w‖
+
w‖
w

∂

∂w

)
︸ ︷︷ ︸

d

−w
2
⊥

2w

∂usi
∂xi

∂

∂w︸ ︷︷ ︸
e

+b̂ib̂j
∂usi
∂xj

[(
w2
⊥
2
− w2

‖

)
1

w

∂

∂w︸ ︷︷ ︸
f

−w‖
∂

∂w‖︸ ︷︷ ︸
g

]}
fs

= νsms

∫
d3w

w2
⊥
2

[
Fs − fs]︸ ︷︷ ︸

h

(C.3)

working these term-by-term, starting with “a",

ms

∫
d3w

w2
⊥
2

∂

∂t
fs =

∂

∂t
ps⊥ (C.4)

Since, wi is the peculiar velocity. For term “b" we have,

ms

∫
dw3 w

2
⊥
2

(
b̂iw‖ + usi

) ∂

∂xi
fs = b̂i

∂

∂xi
qs⊥ + ui

∂

∂xi
ps⊥. (C.5)

For “c",

ms

∫
d3w

(
w2
⊥
2

)2
∂b̂i
∂xi

∂

∂w‖
fs = −ms

∂b̂i
∂xi

∫
d3w fs

∂

∂w‖

(
w2
⊥
2

)2

= 2qs⊥
∂b̂i
∂xi

(C.6)

where we used integration by parts, using constraints of the distribution function
lim|wi|→∞ |wi|4fs = 0 which we will use throughout. Additionally, w2

⊥ = w2−w2
‖

where we use w2
i = w2 interchangably. Term “d",

ms

∫
d3w

w2
⊥
2

(
∂

∂w‖
+
w‖
w

∂

∂w

)
fs = ms

∫
d3w

(
∂

∂w‖

w2
⊥
2
fs − fs

∂

∂w‖

w2
⊥
2

+
w2
⊥
2

w‖
w

∂

∂w
fs

)
= ms

∫
d3w

(
2w‖fs + w2

⊥w‖
∂

∂w2
fs

)
= ms

∫
d3w

(
2w‖fs +

∂

∂w2
w2
⊥w‖fs − fs

∂

∂w2
w2
⊥w‖

)
= ms

∫
d3w

(
2w‖fs − 2w‖fs

)
= 0, (C.7)
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using dw2 = 2wdw. Term “e"

−ms

∫
d3w

w4
⊥

2w

∂usi
∂xi

∂

∂w
fs = −ms

∫
d3w w4

⊥
∂usi
∂xi

∂

∂w2
fs

= −ms
∂usi
∂xi

∫
d3w

(
∂

∂w2
w4
⊥fs − fs

∂

∂w2
w4
⊥

)
= 2ms

∂usi
∂xi

∫
d3w fsw

2
⊥ = 2

∂usi
∂xi

ps⊥. (C.8)

Term “f",

ms

∫
d3w

w2
⊥
2

(
w2
⊥
2
− w2

‖

)
1

w

∂

∂w
fs = ms

∫
d3w w2

⊥

(
w2
⊥
2
− w2

‖

)
∂

∂w2
fs

= −ms

∫
d3w fs

∂

∂w2
w2
⊥

(
w2
⊥
2
− w2

‖

)
= −ms

∫
d3w fs

∂

∂w2
(w2 − w2

‖)

(
(w2 − w2

‖)

2
− w2

‖

)
= −ms

∫
d3w fs

((
(w2 − w2

‖)

2
− w2

‖

)
+ (w2 − w2

‖)
1

2

)
= −ms

∫
d3w fs

(
w2 − 2w2

‖

)
.

(C.9)

Term “g",

ms

∫
d3w

w2
⊥
2
w‖

∂

∂w‖
fs = −ms

∫
d3w fs

∂

∂w‖

w2 − w2
‖

2
w‖ = −ms

∫
d3w fs

(
w2 − w2

‖
2

− w2
‖

)
.

(C.10)

Combining terms “f" and “g",

−ms

∫
d3w fs

(
w2 − 2w2

‖

)
+ms

∫
d3w fs

(
w2 − w2

‖
2

− w2
‖

)
= −ms

∫
d3w fs

w2
⊥
2

= −ps⊥.

(C.11)

Term “h"

νsms

∫
d3w

w2
⊥
2

[
Fs − fs] =

νs
3

(
ps‖ − ps⊥), (C.12)

where the over bar denotes the equilibrium. Collecting all of the terms,

ds

dt
ps⊥ + b̂i

∂

∂xi
qs⊥ + 2qs⊥

∂b̂i
∂xi

+ 2
∂usi
∂xi

ps⊥ − b̂ib̂j
∂usi
∂xj

ps⊥ =
νs
3

(
ps‖ − ps⊥), (C.13)

where we have used the definition of the convective derivative,

ds

dt
=

∂

∂t
+ usi

∂

∂xi
(C.14)
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Now rewrite the continuity equation (Equation D.26),

∂

∂t
ns +

∂

∂xi
usin

s =
∂

∂t
ns + ns

∂

∂xi
usi + usi

∂

∂xi
ns = 0

⇒ 1

ns

ds

dt
ns = −∂iusi . (C.15)

Now we can recall our induction equation (Equation 4.8) with the convective
derivative,

dp

dt
bi = bj

∂

∂xj
upi − bi

∂

∂xj
upj (C.16)

Recall that,

dp

dt
|bi| = b̂i

dp

dt
bi (C.17)

from the definition of b̂i = bi/|bi| so that we can write,

1

|bi|
dp

dt
|bi| = b̂ib̂j

∂

∂xj
upi −

∂

∂xj
upj , (C.18)

where we used b̂ib̂i = 1. Let’s return to our equation for the perpendicular
pressure and rearrange,

dp

dt
ps⊥ + b̂i

∂

∂xi
qs⊥ + 2qs⊥

∂b̂i
∂xi

+
∂usi
∂xi

ps⊥ +

(
∂usi
∂xi
− b̂ib̂j

∂usi
∂xj

)
ps⊥ =

νs
3

(
ps‖ − ps⊥),

(C.19)

and if we set s = p our equations for the magnetic field strength and density
can be inserted,

dp

dt
pp⊥ + b̂i

∂

∂xi
qp⊥ + 2qp⊥

∂b̂i
∂xi
− pp⊥
np

dp

dt
np −

pp⊥
|bi|

dp

dt
|bi| =

νs
3

(
ps‖ − ps⊥), (C.20)

now if we divide the equation by np|bi| and combine the heat flux terms, the
perpendicular CGL equation can be seen after using product rule,

np|bi|
dp

dt

pp⊥
np|bi|

= − ∂

∂xi
qp⊥b̂i − q

p
⊥
∂b̂i
∂xi

+
νs
3

(
ps‖ − ps⊥). (C.21)
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C.1.2 Parallel pressure equation

For the parallel pressure equation we consider the moment,

ms

∫
d3w w2

‖

{
∂

∂t︸︷︷︸
a

+
(
b̂iw‖ + usi

) ∂

∂xi︸ ︷︷ ︸
b

+
w2
⊥
2

∂b̂i
∂xi

∂

∂w‖︸ ︷︷ ︸
c

+

[
qs
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E‖ − b̂i
(
∂usi
∂t

+ usj
∂usi
∂xj

)](
∂

∂w‖
+
w‖
w

∂

∂w

)
︸ ︷︷ ︸

d

−w
2
⊥

2w

∂usi
∂xi

∂

∂w︸ ︷︷ ︸
e

+b̂ib̂j
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∂xj
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w2
⊥
2
− w2

‖

)
1

w

∂

∂w︸ ︷︷ ︸
f

−w‖
∂

∂w‖︸ ︷︷ ︸
g

]}
fs

= νsms

∫
d3w w2

‖
[
Fs − fs]︸ ︷︷ ︸

h

. (C.22)

Starting with term “a”,

ms

∫
d3w w2

‖
∂

∂t
fs =

∂

∂t
ps‖. (C.23)

Term “b”

ms

∫
d3w w2

‖
(
b̂iw‖ + usi

) ∂

∂xi
fs = b̂i

∂

∂xi
qs‖ + usi

∂

∂xi
ps‖, (C.24)

where the definition of the parallel heat flux was introduced at the beginning of
this section. Term “c”,

ms

∫
d3w w2

‖
w2
⊥
2

∂b̂i
∂xi

∂

∂w‖
fs = −ms

∂b̂i
∂xi

∫
d3w fs

∂

∂w‖
w2
‖
w2
⊥
2

= −ms
∂b̂i
∂xi

∫
d3w fs(w‖w

2
⊥ − w3

‖) = (q‖ − 2qs⊥)
∂b̂i
∂xi

. (C.25)

where integration by parts and typical constraints on the distribution functions
were used. Term “d",

ms

∫
d3w w2

‖

(
∂

∂w‖
+
w‖
w

∂

∂w2

)
fs = −ms

∫
d3w fs

(
∂

∂w‖
w2
‖ + 2

∂

∂w2
w3
‖

)
= −ms

∫
d3w fs

(
2w‖ + 2

∂

∂w2

)
= −2ms

∫
d3w fs

∂w‖
∂w2

∂

∂w‖
w3
‖

= −2ms

∫
d3w fsw‖ = 0 (C.26)
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where we used the fact that
∫
d3ww‖ = 0 due to the choice of frame. Term “e",

−ms
∂usi
∂xi

∫
d3w w2

‖
(w2 − w2

‖)

2w

∂

∂w
fs = ms

∂usi
∂xi

∫
d3w fs

∂

∂w2
(w2 − w2

‖)w
2
‖

= ms
∂usi
∂xi

∫
d3w fs

∂

∂w2
(w2 − w2

‖)w
2
‖ = ms

∂usi
∂xi

∫
d3w fs

∂

∂w2
(w2 − w2

‖)w
2
‖

= ms
∂usi
∂xi

∫
d3w fsw

2
‖ =

∂usi
∂xi

ps‖. (C.27)

Term “f",

ms

∫
d3w w2

‖

(
w2
⊥
2
− w2

‖

)
1

w

∂

∂w
fs = 2ms

∫
d3w w2

‖

(
w2
⊥
2
− w2

‖

)
∂

∂w2
fs

= −2ms

∫
d3w fsw

2
‖
∂

∂w2

(
w2 − w2

‖
2

− w2
‖

)
= −ms

∫
d3w fsw

2
‖ = −ps‖
(C.28)

Term “g",

ms

∫
d3w w3

‖
∂

∂w‖
fs = −ms

∫
d3w fs

∂

∂w‖
w3
‖ = −3ps‖. (C.29)

Term “h",

νsms

∫
d3w w2

‖
[
Fs − fs] = ps − ps‖ =

2νs
3

(ps⊥ − ps‖). (C.30)

Collecting all of the terms and combining some of them,

∂

∂t
ps‖ +

∂

∂xi
b̂iq

s
‖ + usi

∂

∂xi
ps‖ − 2qs⊥

∂b̂i
∂xi

+
∂usi
∂xi

ps‖ + 2ps‖b̂ib̂j
∂usi
∂xj

=
2νs
3

(ps⊥ − ps‖).

(C.31)

Now we want to rearrange so we can write the parallel CGL equation. Recalling
the induction equation,

1

|bi|
dp

dt
|bi| = b̂ib̂j

∂

∂xj
upi −

∂

∂xj
upj , (C.32)

and rearranging the pressure equation,

∂

∂t
ps‖ +

∂

∂xi
b̂iq

s
‖ + usi

∂

∂xi
ps‖ − 2qs⊥

∂b̂i
∂xi

+ 3
∂usi
∂xi

ps‖

+ 2ps‖

(
b̂ib̂j

∂usi
∂xj
− ∂usi
∂xi

)
=

2νs
3

(ps⊥ − ps‖), (C.33)
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inserting the induction equation,

dp

dt
pp‖ +

∂

∂xi
b̂iq

p
‖ − 2qp⊥

∂b̂i
∂xi

+ 3
∂upi
∂xi

pp‖ + 2
pp‖
|bi|

dp

dt
|bi| =

2νp
3

(pp⊥ − p
p
‖). (C.34)

Recalling the continuity equation,

1

ns

ds

dt
ns = − ∂

∂xi
usi , (C.35)

so we can write,

dp

dt
pp‖ +

∂

∂xi
b̂iq

p
‖ − 2qp⊥

∂b̂i
∂xi
− 3

pp‖
np

dp

dt
ns + 2

pp‖
|bi|

dp

dt
|bi| =

2νp
3

(pp⊥ − p
p
‖). (C.36)

Multiplying by |bi|2/n3
p allows the convective derivatives to be combined, and

then multiplying by the inverse,

n3
p

|bi|2
dp

dt

(
pp‖|bi|2

n3
p

)
= − ∂

∂xi
b̂iq

p
‖ + 2qp⊥

∂b̂i
∂xi

+
2νp
3

(pp⊥ − p
p
‖). (C.37)
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Appendix D

Deriving Ohm’s Law

We begin by writing the Vlasov equation,[
∂

∂t
+ vi

∂

∂xi
+ Fi,α

∂

∂vi

]
fα(x,v, t) = 0 (D.1)

for charged particles subject to an electromagnetic field, we write the Lorentz
force per unit mass and Maxwell’s equations

Fi,α =
qα
mα

[
Ei + εijk

vjBk
c

]
(D.2)

∂

∂xi
Ei = 4π

∑
α

qαnα (D.3)

∂

∂xi
Bi = 0 (D.4)

εijk
∂

∂xj
Ek = −1

c

∂

∂t
Bi (D.5)

εijk
∂

∂xj
Bk =

1

c

∂

∂t
Ei +

4π

c

∑
α

ji,α (D.6)

nα =

∫
τv

d3v fα (D.7)

nαji,α = qα

∫
τv

d3v vifα (D.8)

together we have the Vlasov-Maxwell [V-M] system of equations in [cgs] units.
The equations are written in modified Einstein notation typical to fluid mechan-
ics, so that the summation of the current density ji,α is vector with latin index i
(implied summation) and the explicit sum over species appears with greek index
α. The velocity vi is a phase space variable and independent of space and time,
it is the occupation of the state, to be averaged giving the configuration space
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velocity ui,α. The Lorentz force Fi,α depends on the electric Ei and magnetic
fields Bi which are functions of space x and time t. The distribution function
fα = fα(x,v, t) is understood as the probability of particles of species α hav-
ing phase space coordinates (x,v) in the range (d3x, d3v) at time t, giving the
particle number:

Nα =

∫
τx

d3x

∫
τv

d3v fα(x,v, t) (D.9)

by integrating over the whole volumes in physical τx and velocity τv space. The
equations here are 0th order and the particles describe the electric and magnetic
fields via average in a self-consistent manner. Currently our interest is to derive
the fluid equations so we introduce these definitions:

nαui,α =

∫
τv

d3v vifα (D.10)

Eαii =
mα

2

∫
τv

d3v vivifα (D.11)

Pαij = mα

∫
τv

d3v (vi − ui,α)(vj − uj,α)fα (D.12)

Tαijj = mα

∫
τv

d3v (vi − ui,α)(vj − uj,α)(vj − uj,α)fα (D.13)

In order, the species α density nα, the species α configuration space velocity
ui,α, the species α kinetic energy Eαii, the species α pressure tensor Pαij and the
species α kinetic energy flux Tαijj . For completeness these quantities here are
integrated over the velocity space τv passing to configuration space variables,
functions of x and t.

D.1 Fluid Equations

This section will derive the continuity and momentum which constitute the 0th
and 1st orders of the fluid equations. This will be completed from the V-M in
an academic manner for clarity and future reference.

D.1.1 Continuity

Taking the 0th moment
∫
d3v of the collisionless Boltzmann equation (Eq. D.1)

produces the continuity equation:

∫
τv

d3v

[
∂

∂t
+ vi

∂

∂xi
+
Fi,α
mα

∂

∂vi

]
fα = 0 (D.14)
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Now term-by-term the first term can be integrated with the commutation of the
derivative and anti-derivative:∫

τv

d3v
∂

∂t
fα =

∂

∂t

∫
τv

d3vfα (D.15)

=
∂

∂t
nα (D.16)

The second term we use the fact that vi is a phase space variable so it is
independent of xi and then the commutation of the derivative/anti-derivative
to write: ∫

τv

d3v vi
∂

∂xi
fα =

∂

∂xi

∫
τv

d3v vifα (D.17)

=
∂

∂xi
nαui,α (D.18)

The integral here is the first moment of the velocity field giving the average ve-
locity ui,α = ui,α(x, t) of the species α product with the density nα. Continuing
with the third term, substituting in the Lorentz force per unit mass (Eq. D.2)
for Fi,α/mα, passing to the Vlasov equation:

∫
τv

d3v
qα
mα

[
Ei + εijk

vjBk
c

]
∂

∂vi
fα (D.19)

=
qα
mα

∫
τv

d3v
∂

∂vi
Eifα +

qα
mα

∫
τv

d3v εijk
vjBk
c

∂

∂vi
fα (D.20)

The first term can be handled with Gauss’ Law, noting that the electric field
Ei does not depend on velocity,:

qα
mα

∫
τv

d3v
∂

∂vi
Eifα =

qα
mα

Ei

∫
σv

d2v v̂ifα (D.21)

We have not commented much about the geometry, but here we have passed
from a volume integral d3v over the volume τv to a surface integral d2v over the
surface σv, both in velocity phase space. The bounds of the integral are infinite,
and so if we consider a physically realizable distribution function, there will be
no particles with ±∞ velocity, hence, the distribution function will go to zero,
and the surface integral will be zero as well. So, the above term is zero, with
the restriction that the distribution function fα will go to zero. To make this
clear, consider the integral, using Gauss’ law to simplify:∫

τv

d3v
∂

∂vi
|vj |pfα =

∫
σv

d2v v̂i|vj |pfα =
[
|vj |pfα

]+∞
−∞ = 0 (D.22)
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Where |vj | =
√
vjvj is of order p. Here we assume the distribution function

goes to zero quicker than O(|vj |−p). This is not true in general so we make
restrictions of order p so that the above equality is true. Last, we note that
this is will reappear frequently throughout the derivation so we will reference
equation D.22 and the surrounding text often. Returning from the digression
we demonstrate on the second term involving the magnetic field Bi. It can be
shown to be zero, using product rule on the derivative:

qα
mα

∫
τv

d3v εijk
vjBk
c

∂

∂vi
fα =

qα
mα

∫
τv

d3v

[
εijk

∂

∂vi

vjBk
c

fα − fαεijk
∂

∂vi

vjBk
c

]
(D.23)

The first term is zero due again when we use Gauss’ Law, here we restriction
on the distribution function that it goes to zero at a rate faster than O(|vi|−1).
Now let’s work the second term form above:

qα
mα

∫
τv

d3v εijk
vjBk
c

∂

∂vi
fα = − qα

mα

∫
τv

d3v fαεijk
∂

∂vi

vjBk
c

(D.24)

= − qα
mα

∫
τv

d3v fαεijk

[
vj
c

∂

∂vi
Bk +

Bk
c

∂

∂vi
vj

]
(D.25)

The first term is zero since the magnetic field only depends on space and time,
and the second term is zero since the derivative produces ∂

∂vi
vj = δij a kronecker

delta δij . The kronecker delta δij only has a value for i = j and the levi-civita
symbol is zero when any of i, j, k are equal, the identity is written: δijεijk =

δikεijk = δjkεijk = 0. We have recovered the continuity equation:

∂

∂t
nα +

∂

∂xi
nαui,α = 0 (D.26)

for species α.

D.1.2 Momentum Equation

To derive the fluid momentum equation we must take the first velocity moment∫
τv
d3v vj of the collisionless Boltzmann equation:

∫
τv

d3v vj

[
∂

∂t
+ vi

∂

∂xi
+ Fi,α

∂

∂vi

]
fα = 0 (D.27)

The first term can be dealt with the time-independence of the phase veloc-
ity, commutation of the derivative/anti-derivative and then the first moment of
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velocity field. In that order:∫
τv

d3v vj
∂

∂t
fα =

∫
τv

d3v
∂

∂t
vjfα (D.28)

=
∂

∂t

∫
τv

d3v vjfα (D.29)

=
∂

∂t
nαuj,α (D.30)

The second term from Eq.D.27 can be considered by first noting the phase
velocity vi does not depend on space and the commutation of the derivative/anti-
derivative: ∫

τv

d3v vjvi
∂

∂xi
fα =

∂

∂xi

∫
τv

d3v vjvifα (D.31)

Now consider the pressure Pαij , expanding the terms:

Pαij =

∫
τv

d3vmα

(
vi − ui,α

)(
vj − uj,α

)
fα (D.32)

=

∫
τv

d3vmα

(
vivj − viuj,α − ui,αvj + ui,αuj,α

)
fα (D.33)

and recognizing that the spatial derivative of the first term here, after dividing
by the mass mα, is the second term in the momentum equation (Eq. D.27), we
rewrite the term:

∂

∂xi

∫
τv

d3v vjvifα =
1

mα

∂

∂xi
Pαij +

∂

∂xi

∫
τv

d3v
(
viuj,α + ui,αvj − ui,αuj,α

)
fα(D.34)

The integrals, noting that the configuration space velocity ui,α does not depend
on the phase space velocity vi, are simple:

∂

∂xi

∫
τv

d3v viuj,αfα =
∂

∂xi
uj,α

∫
τv

d3v vifα =
∂

∂xi
nαuj,αui,α (D.35)

∂

∂xi

∫
τv

d3v vjui,αfα =
∂

∂xi
ui,α

∫
τv

d3v vjfα =
∂

∂xi
nαuj,αui,α (D.36)

∂

∂xi

∫
τv

d3v ui,αuj,αfα =
∂

∂xi
ui,αuj,α

∫
τv

d3v fα =
∂

∂xi
nαuj,αui,α(D.37)

After some cancellation yields,

∂

∂xi

∫
τv

d3v vjvifα =
1

mα

∂

∂xi
Pαij +

∂

∂xi
nαuj,αui,α (D.38)

We will reuse this method of introducing the pressure to account for the
∫
τv
d3v vjvifα

term. Now for the last term in Eq. D.27, substituting the Lorentz force per
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unit mass in for Fi,α appears:

qα
mα

∫
τv

d3v vj

[
Ei + εilm

vlBm
c

]
∂

∂vi
fα (D.39)

Starting with the electric field Ei, which is independent of the phase space
velocity vi, term and use product rule to rearrange the terms:

qα
mα

∫
τv

d3v vjEi
∂

∂vi
fα = Ei

qα
mα

∫
τv

d3v

[
∂

∂vi
fαvj − fα

∂

∂vi
vj

]
(D.40)

The first term here is simplified with Gauss’ Law and the second term produces
a kronecker delta:

Ei
qα
mα

∫
τv

d3v

[
∂

∂vi
fαvj − fα

∂

∂vi
vj

]
= Ei

qα
mα

[∫
σv

d2v v̂ifαvj − δij
∫
τv

d3v fα

]
(D.41)

The first term is zero for distribution functions we are considering (following
Eq. D.22). The remaining integral is simple, concluding:

qα
mα

∫
τv

d3v vjEi
∂

∂vi
fα = −Ei

qα
mα

δij

∫
τv

d3v fα = − qα
mα

Ejnα (D.42)

Now for the magnetic field Bi term from Eq. D.27 with the Lorentz force per
unit mass. First rearrange the derivative with product rule:

qα
mα

∫
τv

d3v vjεilm
vlBm
c

∂

∂vi
fα = (D.43)

qα
mα

∫
τv

d3v

[
∂

∂vi
vjεilm

vlBm
c

fα − εilm
Bmvj
c

fα
∂

∂vi
vl − εilmfα

vlBm
c

∂

∂vi
vj

]
(D.44)

The first term is zero for the distribution function we are considering, but now
we have advance the restriction to fα decaying faster than O(|vi|−2) (see Eq.
D.22). The second and third term produce kronecker deltas:

qα
mα

∫
τv

d3v

[
��

���
���

�:0
∂

∂vi
vjεilm

vlBm
c

fα − εilm
Bmvj
c

fα
∂

∂vi
vl − εilmfα

vlBm
c

∂

∂vi
vj

]
(D.45)

=
qα
mα

∫
τv

d3v

[
− vjεilmfα

Bm
c
δil − εilmfα

vlBm
c

δij

]
(D.46)
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Now the first term is zero due to the identity εijkδij = 0, but the second term
is not, since the index j does not appear in the levi-civita symbol, continuing:

qα
mα

∫
τv

d3v

[
−
���

���
��:0

vjεilmfα
Bm
c
δil − εilmfα

vlBm
c

δij

]
= − qα

mα

∫
τv

d3v εjlmfα
vlBm
c

(D.47)

The integral is just the first velocity moment:

− qα
mα

∫
τv

d3v εjlm
vlBm
c

fα = − qα
mαc

εjlmBm

∫
τv

d3v vlfα = − qα
mα

nαεjlm
ul,αBm

c

(D.48)

Now to write the full momentum equation:

∫
τv

d3v vj

[
∂

∂t
+ vi

∂

∂xi
+ Fi,α

∂

∂vi

]
fα (D.49)

=
∂

∂t
nαuj,α +

∂

∂xi
Pαij +

∂

∂xi
nαuj,αui,α −

qαnα
mα

[
Ej + εjlm

ul,αBm
c

]
(D.50)

Re-writing for clarity:

∂

∂t
nαuj,α +

∂

∂xi
nαuj,αui,α = − 1

mα

∂

∂xi
Pαij +

qαnα
mα

[
Ej + εjlm

ul,αBm
c

]
(D.51)

D.2 1-Fluid Equations

We have been rigorous thus far, now we will begin employing approximations
to simplify the equations. The terms we will introduce are:

1. Mass density: ρm = mene +mpnp

2. Charge density: ρ = neqe + npqp ; qp = −qe

3. Current density: ji = ui,eneqe + ui,pnpqp

4. Fluid velocity:

ui =
meneui,e +mpnpui,p

ρm

5. Fluid pressure: Pαij = P pij + P eij

The approximations consist of:
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1. Quasi-neutrality: ne ≈ np ⇒ ne = np = n

2. Mass ratio: 1 >> me/mp ≈ 0.00108 ⇒ ρm = n(me +mp) = mpn

3. 1-fluid velocity (using the previous two relations):

ui =
meneui,e +mpnpui,p

ρm
=
mpn

(
ui,e(me/mp) + ui,p

)
ρm

≈ ui,e
me

mp
+ ui,p ≈ ui,p

4. Negligible displacement current:
(
Ωpc/ωp,p

)2
<< 1

These approximations are supported by considering length and time scales. First
we define characteristic quantities of a plasma:

1. Debye length:

λD,α =

(
kBTα

4πnαq2
α

)1/2

(D.52)

2. Plasma Frequency:

ωp,α =

(
4πnαq

2
α

mα

)1/2

(D.53)

3. Thermal Speed:

vth,α =

(
kBTα
mα

)1/2

= λD,α ωp,α (D.54)

4. Cyclotron Frequency:

Ωαc =
qα|Bi|
mαc

(D.55)

5. Alfvén Velocity:

uAi =
Bi√
4πρm

(D.56)

6. Species Inertial Length:

dα =
c

ωp,α
=
|uAi |
ωp,α

(D.57)

The Boltzmann constant kB , speed of light c and the species temperature Tα
have been introduced. The definition of the Alfvén velocity here, is defined with
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fluid mass density, but we can write it for protons, or electrons, it is not useful to
us to make that definition here. The first assumption of quasi-neutrality is the
plasma approximation which introduces factors of 1/λpD,α increasing in exponent
p, therefore if the length scales we consider are much larger, the approximation
is valid. The third assumption of 1-fluid velocity is valid if the frequency range
we consider is much larger than the typical speed of the species, say the thermal
velocity. Writing these assumptions explicitly:

1. quasi-neutrality: l >> λD,e

3. 1-fluid velocity: ω << ωp,e

The characteristic length scale l and frequency ω are the scales of our system.
This is the essence of the magnetohydrodynamic approach: large length-scale
and low frequency.

D.2.1 Continuity

Write the continuity equation for the electrons and protons:

∂

∂t
ne +

∂

∂xi
neui,e = 0 (D.58)

∂

∂t
np +

∂

∂xi
npui,p = 0 (D.59)

First, mass continuity, simply multiply by the respective masses and add the
two equations:

∂

∂t

(
mpnp +mene) +

∂

∂xi

(
mpnpui,p +meneui,e

)
= 0 (D.60)

Recognize that we have introduced two variables from the introduction to this
section (sec. D.2) to write:

∂

∂t

(
mpnp +mene) +

∂

∂xi

(
mpnpui,p +meneui,e

)
=

∂

∂t
ρm +

∂

∂xi
ρmui = 0

(D.61)

Now multiply both equations (eqns. D.58) by respective qα, substitute in e (as
seen in the introduction to section D.2) and add the two equations:

∂

∂t

(
qpnp − qpne

)
+

∂

∂xi

(
qpneui,e − qpneui,e

)
= 0 (D.62)
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Recognize we have introduced two quantities from the introduction of section
D.2 to write the one-fluid continuity equation:

∂

∂t
ρ+

∂

∂xi
ji = 0 (D.63)

D.2.2 Combining the momentum equations

Writing the momentum equations (derived in section D.1.2) for protons (α = p)
and electrons (α = e) and multiplying by their respective masses (mp, me):

∂

∂t
mpnpuj,p +

∂

∂xi
mpnpuj,pui,p = − ∂

∂xi
P pij + qpnp

[
Ej + εjlm

ul,pBm
c

]
(D.64)

∂

∂t
meneuj,e +

∂

∂xi
meneuj,eui,e = − ∂

∂xi
P eij + qene

[
Ej + εjlm

ul,eBm
c

]
(D.65)

Summing the two equations will produce the 1-fluid momentum equation; we
will take this term-by-term. Starting with the partial time derivative: multiple
by the respective masses, add them, and recognize introduced quantities:

∂

∂t
mpnpuj,p +

∂

∂t
meneuj,e =

∂

∂t

(
mpnpuj,p +meneuj,e

)
=

∂

∂t
ρmuj (D.66)

The non-linear terms: use quasi-neutrality and reciprocate the proton mass:

∂

∂xi

(
mpnpuj,pui,p +meneuj,eui,e

)
=

∂

∂xi
mpn

(
uj,pui,p +

me

mp
uj,eui,e

)
(D.67)

In our approximation, the term me
mp
uj,e is approximately zero and the flow ve-

locity uj,p ≈ ui so we write:

∂

∂xi

(
mpnpuj,pui,p +meneuj,eui,e

)
=

∂

∂xi
ρmujui (D.68)

The pressure term can just be summed after we have multiplied by the mass:

− ∂

∂xi
P eij −

∂

∂xi
P pij = − ∂

∂xi
Pij (D.69)
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Last we can add the Lorentz force terms, summing:

qene

[
Ej + εjlm

ul,eBm
c

]
+ qpnp

[
Ej + εjlm

ul,pBm
c

]
(D.70)

= Ej

[
qene + qpnp

]
+ εjlm

Bm
c

[
qeneul,e + qpnpul,p

]
(D.71)

Recognize, that the first term cancels due to quasi-neutrality and the fact that
(qp = −qe) and second term introduces the current density:

Ej

[
qene + qpnp

]
+ εjlm

Bm
c

[
qeneul,e + qpnpul,p

]
=
��

���
���:

0
Ej

[
n(qp − qp)

]
+ εjlm

jlBm
c

(D.72)

Collect all the terms to write the 1-fluid momentum equation:

∂

∂t
ρmuj +

∂

∂xi
ρmujui = − ∂

∂xi
Pij + εjlm

jlBm
c

(D.73)

D.2.3 Ohm’s Law

First we can work the definition of the current density, by making the quasi-
neutrality assumption and writing the charges (qp = −qe) explicitly:

ji = npqpui,p + neqeui,e = n
(
qpui,p + qeui,e

)
= nqp

(
ui,p − ui,e

)
(D.74)

Now, rearrange the expression for the electron average velocity, and use the
1-fluid velocity approximation:

ui,e = ui,p −
ji
nqp

= ui −
ji
nqp

(D.75)

Obviously these are approximations, but I have used equal signs. We can now
write the equations as the average fluid velocity ui and the current density ji.

Multiplying by the respective charge (qp = −qe) and adding the two fluid
equations (protons, electrons),

∂

∂t
qpnpuj,p +

∂

∂xi
qpnpuj,pui,p = − ∂

∂xi

qpP
p
ij

mp
+
q2
pnp

mp

[
Ej + εjlm

ul,pBm
c

]
(D.76)

− ∂

∂t
qpneuj,e −

∂

∂xi
qpneuj,eui,e =

∂

∂xi

qpP
e
ij

me
+
q2
pne

me

[
Ej + εjlm

ul,eBm
c

]
(D.77)
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allows us to combine them with the Maxwell equations to re-write a simple
relation between the magnetic and electric fields. Let’s go term-by-term, starting
with the the partial time derivative:

∂

∂t

(
qpnpuj,p − qpneuj,e

)
=

∂

∂t
jj (D.78)

Next, the non-linear terms: make the quasi-neutrality assumption and the 1-
fluid approximation, then substitute the approximation for the electron velocity
(Eq. D.75):

∂

∂xi

(
qpnpuj,pui,p − qpneuj,eui,e

)
=

∂

∂xi
qpn

(
ujui − uj,eui,e

)
(D.79)

=
∂

∂xi
qpn

[
ujui −

(
uj −

jj
nqp

)(
ui −

ji
nqp

)]
(D.80)

=
∂

∂xi
qpn

[
ujui −

(
ujui −

ujji
nqp
− jjui
nqp

+
jjji
n2q2

p

)]
(D.81)

=
∂

∂xi
qpn

(
ujji
nqp

+
jjui
nqp
− jjji
n2q2

p

)
(D.82)

=
∂

∂xi

(
ujji + jjui −

jjji
nqp

)
(D.83)

On to the pressure terms:

− ∂

∂xi

qpP
p
ij

mp
+

∂

∂xi

qpP
e
ij

me
= qp

∂

∂xi

(
P eij
me
−
P pij
mp

)
(D.84)

Last, work the by Lorentz force terms with quasi-neutrality and then the ap-
proximation for the electron velocity (Eq. D.75) and 1-fluid velocity:

q2
pnp

mp

[
Ej + εjlm

ul,pBm
c

]
+
q2
pne

me

[
Ej + εjlm

ul,eBm
c

]
(D.85)

= q2
pn

[
Ej
mp

+ εjlm
ul,pBm
mpc

+
Ej
me

+ εjlm
ul,eBm
mec

]
(D.86)

= q2
pn

[
Ej
mp

+ εjlm
ulBm
mpc

+
Ej
me

+ εjlm
Bm
mec

(
ul −

jl
nqp

)]
(D.87)
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Introduce the reduced mass µ = (mp +me)/mpme and combine terms:

q2
pn

[
Ej
mp

+ εjlm
ulBm
mpc

+
Ej
me

+ εjlm
Bm
mec

(
ul −

jl
nqp

)]
(D.88)

= q2
pn

[
µEj + µεjlm

ulBm
c
− εjlm

Bmjl
mecnqp

]
(D.89)

= q2
pnµEj +

q2
pnµ

c
εjlmulBm −

qp
mec

εjlmjlBm (D.90)

Collect all the terms:

∂

∂t
jj+

∂

∂xi

(
ujji + jjui −

jjji
nqp

)
(D.91)

= qp
∂

∂xi

(
P eij
me
−
P pij
mp

)
+ q2

pnµEj +
2q2
pnµ

c
εjlmulBm −

qp
mec

εjlmjlBm

(D.92)

This is the generalized Ohm’s law with out the collisional term.

D.2.3.1 Asymptotic Ordering

To compare the relevance of the terms as the scales of interest, we write the
Ohm’s law in dimensionless quantities, with these characteristic quantities:

ūi = uAi ; ω̄ = Ωpc; l̄ = uAi /Ω
pc = c/ωp,p = dp; n̄ = n

j̄i = n̄uAi qp; Ēi = mpu
A
i Ωpc/qp; B̄ = mpcΩ

pc/qp; P̄αij = n̄mα|uAi |2

We have introduced the Alfvèn velocity uAi = Bi/
√
ρm, the proton cyclotron

frequency Ωpc = qp|Bi|/cmp, the proton inertial length dp and finally n̄ is the
characteristic number density. The algebra is messy, so it will not appear here.
The dimensionless equations that we obtain are:

1

µmp

∂

∂t
jj+

1

µmp

∂

∂xi

(
ujji + jjui − jjji

)
(D.93)

=
1

µmp

∂

∂xi

(
P eij − P pij

)
+ Ej + 2εjlmulBm −

1

µme
εjlmjlBm

(D.94)
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Now we can use Maxwell’s system of equations to re-write the time derivative
of the current, re-writing them:

∂

∂xi
Ei = 0 (D.95)

∂

∂xi
Bi = 0 (D.96)

εijk
∂

∂xj
Ek = −1

c

∂

∂t
Bi (D.97)

εijk
∂

∂xj
Bk =

1

c

∂

∂t
Ei +

4π

c
ji (D.98)

Notice, quasi-neutrality is used in the Gauss’ law for the electric field (eqn,
D.95) and we have used the fluid current density in Ampere’s equation (Eq.
D.98). Start by rearranging Ampere’s equation (Eq. D.98) for the current
density and taking the partial time derivative, also using the linearity of the
derivative/anti-derivative:

4π

c

∂

∂t
ji = −1

c

∂2

∂t2
Ei + εijk

∂

∂xj

∂

∂t
Bk (D.99)

The second term on the RHS can be re-written with Faraday’s equation (Eq.
D.97), also reciprocate term out front of the partial time derivative of the current
density:

∂

∂t
ji = − 1

4π

∂2

∂t2
Ei −

c2

4π
εijk

∂

∂xj
εklm

∂

∂xl
Em (D.100)

Utilizing the same normalization, as for the Ohm’s law we find:

∂

∂t
ji = −

(
Ωpc

ωp,p

)2
[
∂2

∂t2
Ei +

c2

|uAi |2
εijk

∂
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εklm

∂

∂xl
Em

]
(D.101)

Distributing the characteristic quantities out front of the square bracket:

∂

∂t
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ωp,p

)2
∂2

∂t2
Ei + εijk

∂
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∂xl
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]
(D.102)

Working with the normalization used for Ohm’s law, we write:
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Noting the definition of the ion inertial length gives one in the second term in
the square bracket. Now, combine the equations (re-writing Eq. D.93):

− 1

µmp

[(
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)2
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Ej + εjlm

∂

∂xl
εmno

∂

∂xn
Eo

]
+

1

µmp

∂

∂xi

(
ujji + jjui − jjji

)
(D.104)

=
1

µmp

∂
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P eij − P pij

)
+ Ej + εjlmulBm −

1

µme
εjlmjlBm (D.105)

First we can work the double curl of the electric field term, noting the leva-
civita is a constant tensor, using the identity εijkεklm = δilδjm − δimδjl and
using Gauss’ law for the electric field (Eq. D.95) to recover:
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So that we can write:

− 1
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1
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In our notation, the frequency ratio out front of the partial time derivative:(
Ωpc

ωp,p

)2

=
|Bi|2

4πnpc2
(D.109)

So, this term is much smaller than 1/µmp ≈ 0.00108 due to the c2 np in the
denominator. Continue by taking

(
Ωpc/ωp,p

)2 → 0 to write:
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=
1
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1
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Next we will use the mass ratio (mp >> me) to make the assumption that,

µ =
1

mp
+

1

me
≈ 1

me
(D.112)
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to write:

me

mp

∂

∂xl

∂

∂xl
Ej +

me

mp

∂

∂xi

(
ujji + jjui − jjji

)
(D.113)

=
me

mp

∂

∂xi

(
P eij − P pij

)
+ Ej + εjlmulBm − εjlmjlBm (D.114)

At this point we recognize that we have a Helmoltz-like equation for the electric
field. At this point, to write the magnetohydrodynamic equations, we must also
take the ratio me/mp ≈ 0. Rearranging a bit and re-writing:

Ej = −εjlmulBm + εjlmjlBm (D.115)

We have written the generalized Ohm’s law for Hall Magnetohydrodynamics.
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