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Abstract

Holistic methods using CNNs and margin-based losses have dominated research on
face recognition. In this work, we depart from this setting in two ways: (a) we employ the
Vision Transformer as an architecture for training a very strong baseline for face recog-
nition, simply called fViT, which already surpasses most state-of-the-art face recognition
methods. (b) Secondly, we capitalize on the Transformer’s inherent property to process
information (visual tokens) extracted from irregular grids to devise a pipeline for face
recognition which is reminiscent of part-based face recognition methods. Our pipeline,
called part fViT, simply comprises a lightweight network to predict the coordinates of fa-
cial landmarks followed by the Vision Transformer operating on patches extracted from
the predicted landmarks, and it is trained end-to-end with no landmark supervision. By
learning to extract discriminative patches, our part-based Transformer further boosts the
accuracy of our Vision Transformer baseline achieving state-of-the-art accuracy on sev-
eral face recognition benchmarks.

Xiv:2212.00057v1 [cs.CV]

@ Introduction

Face recognition(FR) is an important problem in computer vision with many applications
such as border control and surveillance. With the advent of Deep Learning, the de-facto
pipeline for FR over the last years comprises (a) a CNN( Convolutional Neural Network)
backbone, which processes the face image holistically to compute a facial feature embed-
ding which is used to calculate a similarity score, and (b) an appropriate loss function for
discriminative embedding learning. While the bulk of recent work on FR has focused on
(b), i.e., designing more effective loss functions [8, 13, 33, 37, 48, 58, 61], this work mostly
focuses on (a) i.e. devising new architectures for facial feature extraction.

The first motivation of our work is the recently introduced Vision Transformer [16],
which is gaining increasing popularity in Computer Vision with recent results reported be-
ing very competitive to the ones produced by CNN backbones [38, 65]. Hence, our first
contribution is to explore how far one can go with a vanilla ViT for face recognition using
the vanilla loss of [58]. We show that such a backbone with appropriate hyper-parameter op-
timization already achieves state-of-the-art results for face recognition. The second motiva-
tion for our work is that the ViT, contrary to CNNs, can actually operate on patches extracted
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ViT

Figure 1: Illustration of our part-based ViT for face recognition. A facial image is processed
by a lightweight landmark CNN which produces a set of facial landmarks. The landmarks
are used to sample facial parts from the input image which are then used as input to a ViT for
feature extraction and recognition. The whole system is trained end-to-end without landmark
supervision. Examples of landmarks detected by the landmark CNN are shown.

from irregular grids and does not require the uniformly spaced sampling grid used for con-
volutions. As the human face is a structured object composed of parts (e.g., eyes, nose, lips),
and inspired by seminal work on part-based face recognition before deep learning [5], in this
paper, we propose to apply ViT on patches representing facial parts. Specifically, our second
contribution is a newly proposed parts-based pipeline for deep face recognition where dis-
criminatively learned landmarks are firstly predicted through a lightweight landmark CNN,
patches are extracted around them and then fed to a ViT. Notably, the whole system, called
part fViT, can be trained end-to-end without landmark supervision. Fig. 1 shows an overview
of the proposed pipeline.

In summary, our contributions are:

* We appropriately train a vanilla ViT for face recognition using a vanilla loss, which
we coin fViT, and show that fViT produces state-of-the-art results on several popular
face recognition benchmarks.

* We capitalize on the Transformer architecture to propose a new pipeline for face recog-
nition, coined part fViT, where discriminatively learned patches are firstly extracted
and then fed to the ViT for recognition, essentially building a part-based ViT for face
recognition. Notably, the landmark CNN used for predicting the landmarks is trained
end-to-end with the ViT without landmark supervision.

* We show that our part fViT surpasses our strong baseline fViT setting a new state-of-
the-art on several face recognition datasets. Moreover we ablate several components
of our pipeline illustrating their impact on face recognition accuracy.

* We show that the landmark CNN which is part of our pipeline, is effective for the side
task of unsupervised landmark discovery.
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2 Related Work

A detailed review of face recognition papers is out of scope, herein we focus on losses,
Region-aware methods and Vision Transformers which are more related to our work.

Loss functions: Several papers [8, 13, 33, 37, 48, 58, 61] have focused on learning fea-
tures which are both separable and discriminative through using an appropriate loss function.
While separability can be achieved with the softmax loss, learning discriminative features
is more difficult as, within the mini-batch, training cannot see the global feature distribu-
tion [61]. To this end, FaceNet [48] uses triplets to directly learn a mapping to a compact
Euclidean space such that facial features from the same identity are as close as possible while
features from different identities are as far as possible.

To avoid the problem of triple selection, Center loss [61] minimizes the distance between
the learned deep features for each face and their corresponding class centres in order to
achieve intra-class concentration. Observing that the inter-class boundaries are not well
separated in Softmax Loss, L-softmax [36] considers the joint formulation of softmax cross-
entropy loss and linear layer, penalizing the distance of the class boundary, resulting in more
discriminative features. Following that, CosFace[58] applied normalization not only on the
weights, but also on the feature embedding, and proposed to add the margin on cos(6) where
0 is the angle between linear weight and embedding. ArcFace[9] further defined the margin
on the angle 6 rather than cos(0). VPL[13] pays attention to learning the prototype of each
class by regarding the distribution of classes on the feature space, and proposed to change the
static prototype by injecting memorized features for approximating the prototype variation.
Recently, Sphereface2 [62] proposes to conduct binary classification for recognition, and a
number of general principles are also summarized in the work on how to design a good loss.
Region-aware methods: Although CNNs provide standard backbones for face recognition
relying on global information, they ignore the fact that the face is a structured object with
parts which can be used for more effective learning of facial features. For example, the sem-
inal work of [5], which was the state-of-the-art before the advent of deep learning, shows
that extracting a very large number of multi-scale features around 5 pre-defined landmarks
(e.g. eye, nose, mouth) can be very effective for face recognition. To address local features
via deep learning-based solutions, TUA[35] proposed to integrate local and global face fea-
tures from different disjoint CNN via different GPUs, to aggregate the feature concatenation
operation is used. FAN-Face [67] explored how features from a pre-trained facial landmark
localization network can be used to enhance face recognition accuracy, however the land-
mark localization and recognition networks were not jointly trained. Moreover, [15, 25, 26]
have all come up with methods to extract landmark-related features during CNN training,
however, they still require pre-defined landmarks. To avoid explicit landmark supervision,
Comparator Networks [66] propose a pipeline that performs attention to multiple discrimi-
native local regions (landmarks), and uses them to compare local descriptors between pairs
of faces. Finally, HPD [59] takes full use of the attention mechanism to predict attention
masks for local features.

Our part fViT is inspired by [5, 66] but works in a completely different manner. Firstly,
landmarks are learned by directly predicting their x,y coordinates using a very lightweight
network (i.e. mobilenetV3 [20]). Then patches centred at the predicted landmarks are sam-
pled and fed to a Transformer [16, 57] for face recognition. Notably we take advantage of
the Transformer architecture to provide as input a set of patches sampled at irregular spatial
locations which departs from standard face recognition methods based on CNNs which use
a regular image grid (necessary to define convolutions) but also from ViT [16] which also
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uses a regular grid for processing an input image. Moreover, our system is trained in an
end-to-end manner without landmark supervision.

Vision Transformer: The Transformer was firstly introduced in Natural Language Pro-
cessing for machine translation and other NLP tasks [57]. It comprises Self-attention and
Feed-Forward layers. Vision Transformer (ViT) was introduced in [16], and since then it
has been shown to provide competitive accuracy to CNNs [65]. Training ViT is more diffi-
cult compared to CNNs [55, 56]. A number of approaches have been proposed to facilitate
ViT’s training [6, 17, 38, 52, 56, 60, 64, 65, 69, 70, 70]. In this work, we discard the pre-
vious approach using ViT for face recognition [77] where regular overlapped patches are
extracted from faces, instead we adopted the standard ViT backbone [16] with the training
improvements of [52]. This already gives us a very strong baseline which surpasses most
existing state-of-the-art methods for face recognition on MS1M [18] dataset. Next, we go
beyond [16] and follow-up works [6, 17, 38, 52, 56, 60, 64, 65, 69, 70, 70] by applying the
transformer, for the first time to the best of our knowledge on a set of patches extracted from
non-regular grids provided by a lightweight network which is trained end-to-end to provide
discriminative landmarks without explicit supervision.

Landmark CNN

ViT

[ Transformer ]

Lightweight CNN

C|56 (1) O [) — Position

Encoding
Linear Projection

Grid Sampling

Figure 2: The overall structure of our proposed part fViT: A lightweight CNN is used to
predict a set of facial landmarks. Then, differentiable grid sampling is applied to extract the
discriminative facial parts which are then used as input to a ViT for feature extraction and
recognition. Yellow nodes represent the regressed facial landmark coordinates extracted

3 Methodology

In Section 3.1, we firstly describe our strong baseline, called fViT, obtained by training ViT
with CosFace loss. Then in Section 3.2, we introduce our proposed part-based ViT for face
recognition, called part fViT.

3.1 (fViT: ViT for Face Recognition

We are given a facial image X € R*W*C (C = 3). Following ViT [16], the image is divided
into R = P x P non-overlapping patches which are then mapped into visual tokens using a

linear embedding layer E € R Pxd T preserve spatial information a positional embedding
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eRP *xd is also learned which is added to the initial visual tokens. Then, the token
sequence is processed by L Transformer layers.

The visual token at layer / and spatial location s is z. € RY, [=0,....L—1, s =
0,...,P?— 1. In addition to the R visual tokens, a classification token z.,, € R is prepended
to the token sequence [14]. The /—th Transformer layer processes the visual tokens Z! €
R(PP+1)xd of the previous layer using a series of Multi-head Self-Attention (MSA), Layer
Normalization (LN), and MLP (R¢ — R* — R9) layers as follows:

Y = MSALNEZ ) +z", (1)
Z' = MLPLN(Y"))+Y' 2)

A single Self-Attention (SA) head is given by:

P2

yl = Z {(q}- k /@}VS,,S— PP, 3)

where o(.) = Softmax(.), ¢},k., vl € R% are the query, key, and value vectors com-
puted from z! using embedding matrices Wq, Wi, Wy € R4*, d}, is the scale factor in self-
attention. Finally, the outputs of the & heads are concatenated and projected using embedding
matrix Wy, € Rdnxd

The classification token zi‘ls is trained for face recognition using the CosFace loss [58]:
b(cos(Gyi ;)—m)

4
+Z/ yi bcos(ejl) )

Loss = — Z 1g B(oos( ¢

where N is the number of samples in a batch, z = z; is the i—th sample and y; the

[l2E;1 L,;H ’
corresponding ground-truth, W = H%:H is the weight matrix of the last linear layer, W; is
the normalized j—th column (class) of the weight matrix, cos(6y, ;) = WyTizi, m is the margin
and b is fixed to be ||z, ||.

We found that fViT, similarly to ViT is prone to overfitting. Hence, to obtain high accu-
racy, we used a combination of approaches for training including stochastic depth regular-
ization [30], random resize & crop, RandAugment [7], Cutout, and finally Mixup [71]. The
details of the choice of these are given in supplementary material 2.1.

3.2 PartfViT

The ViT as described by Eqs. 1 & 2 operates on a sequence of visual token which do not
need to be computed on uniform grid. Inspired by work on part-based FR [5], in this section
we describe how to apply ViT on patches representing facial parts.

Specifically, we use a lightweight weight CNN to predict a set of R = P x P landmarks:

r=CNN(X), ri = [x,y]7,i=1,...,P% (5)

where for our CNN we used a MobilenetV3 [20].

Then, we sample a patch centered at each landmark coordinate r;. To accommodate
for fractional coordinates, we used the differentiable grid sampling method of STN [23]
for extracting each patch. Following this, each patch is tokenized by the embedding layer
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E, giving rise to R part tokens which together with the class token are processed by the
Transformer of Eqs. 1 & 2. We explore a number of options for the positional encodings
added to the part tokens in an ablation study in Section 4.2.

The whole pipeline, called part fViT is very simple, and is shown in Fig. 2. It is trained
end-to-end with no landmark supervision using simply the CosFace loss of Eq. 4. Notably,
the landmark regression network forms an information bottleneck which was previously
found useful in methods for unsupervised landmark discovery [24]. We also confirm this
finding in an ablation study in Section 4.2. Finally, although heatmap regression methods
with softmax could be used, we opted for direct coordinate regression which is simpler.

4 Experiments

In this section, we evaluate accuracy of the proposed face transformers on several well-
known datasets and compare them with that of recently proposed state-of-the-art methods.

4.1 Implementation details

For training, and for a fair comparison with other methods, we used the refined version [10]
of MSIM [18] (MSIMV3) containing 93,431 identities unless specificed. We also pro-
vide result training on VGGFace2 [3] with 3.1M images and 8.6K identities. Face im-
ages are of resolution 112 x 112 and aligned (provided by [9]) We tested our models on
LFW [21], CFP-FP [50], AgeDB-30 [43], IJB-B[63], IJB-C[41] and MegaFace[27] for con-
ducting recognition performance evaluation. For LFW, CFP-FP and AgeDB-30, we use
1:1 verification accuracy(%). We report TAR@FAR=1e-4 results on IJB-B and IJB-C. For
Megaface, Megaface/id refers to the rank-1 identification accuracy (%) on 1M distractors,
and Megaface/ver refers to TAR@FAR=1e-6 verification accuracy. For training the Trans-
former, we opted to use a large amount of data augmentation compared to the original FR
setting used in ResNets, please refers to supplementary material Section 2.1.1 and 2.1.2
for more details regarding hyper-parameters, augmentations, model structure and training
details.

4.2 Ablation Studies

We conducted a number of studies to highlight the impact of different design choices for our
face Transformers. Our ablation studies are mainly carried out on the patch number R = 49
for its efficient training speed. We also attached the improvement of data augmentation,
degree of overlap and Effect of different landmark CNNs in the supplementary material
Section 2.2.

Effect of patch number and different fViT models: Our first experiment focuses on how
the number of patches (or equivalently the number of landmarks R for the part fViT) impacts
the accuracy of the proposed face Transformers. The number of patches chosen are 16, 49
and 196 with the FLOPs 1.17G, 3.3G and 12.64G respectively, and both fViT-B and fViT-S
models are tested, as illustrated in Table 1. Note that when the number of patches increases,
the patch size K is reduced; specifically for 196 landmarks the corresponding patch size is
8 and for 16 landmarks, the patch size is 28, ensuring that for the case of small number
of landmarks the whole facial image is still analyzed. fViT-B has feature dim with 768 and
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MLP dim with 2048 while fViT-S has 512 and MLP dim with 2560. In both cases the number
of heads is 11. The results are shown in Table 1.

A number of interesting conclusions can be drawn by this experiment: (1) More patches
(landmarks) result in more accurate prediction, as expected. (2) When the number of patches
(landmarks) is very large (i.e. 196) then the part fViT outperforms fViT by small margin.
(3) As the number of patches/landmarks decreases this gap increases specifically for CFP-
FP and AgeDB. This is important as models processing fewer tokens are significantly more
lightweight. For example the 49 landmark model is 4 x faster than the 196 landmark model.

Backbone | Patch No. Model LFW | CFP-FP | AgeDB | 1IB-C
196 part fViT | 99.83 99.21 98.29 97.29

196 fViT 99.85 99.01 98.13 97.21

FVITB 49 part fViT 99.80 98.78 97.85 96.37
49 fViT 99.78 98.00 97.56 96.30

16 part fViT | 99.80 97.30 97.22 94.90

16 fViT 99.78 96.87 96.46 94.85

196 part fViT | 99.83 99.09 98.18 96.58

196 fViT 99.83 98.90 97.90 96.50

FVIT-S 49 part fViT | 99.80 98.7 97.81 96.33
49 fViT 99.80 98.0 97.31 96.05

16 part fViT | 99.71 97.25 97.06 94.21

16 fViT 99.71 96.95 96.25 94.19

Table 1: Impact of number of patches and different fViT models on FR accuracy.

Effect of different positional encodings Herein, we explore the function of positional
encoding in our part fViT-B R = 49 landmarks. We test 3 types of positional encodings:
(a) trainable ones as in the original fViT [16], (b) cosine [57] and (c) coordinate-based. For
coordinate-based, we used a linear layer to embed each landmark r; into R4 and then added
this vector to the corresponding visual token. Results are shown in Table 2 (top section). As
it can be observed the trainable one and the coordinate-based achieve the best accuracy.

Experiment Content LFW | CFP-FP | AgeDB | IIB-C

Trainable 99.80 98.78 97.85 96.37

Positional encoding Cosine 99.80 98.65 98.03 96.08

Coordinate 99.80 98.71 97.66 96.29

. w/ 1B 99.80 98.78 97.85 96.37
[nformation bottleneck } Wl 1B } 99.76 } 97.73 } 9731 } 96.05 }

Vanilla fViT 99.78 98.00 97.56 96.30

Unsupervised landmark part fViT (MobilenetV3) 99.80 98.78 97.85 96.37

part fViT (FAN (Frozen)) 99.36 95.31 96.11 93.96

part fViT (MobilenetV3 (Frozen)) | 99.81 98.72 97.66 96.35
Table 2: Results of various ablation studies: (a) Top section: impact of different positional
encodings. (b) Middle section: impact of information bottleneck. (c) Last section: impact of
unsupervised landmark discovery. All experiments are with part fViT-B with R = 49.

Effect of information bottleneck: We experimented with providing to the part fViT as
input the penultimate layer’s feature from the landmark CNN, essentially injecting features
from the CNN to the fViT and violating the information bottleneck of our pipeline in Sec-
tion 3.2. Specifically, the CNN penultimate layer’s feature was concatenated with the (train-
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able) positional encoding and then projected to R?. Results are shown in Table 2 (middle
section). As observed, violating the information bottleneck leads to decreased accuracy.

Effect of unsupervised landmark discovery: Since supervised facial landmark localiza-
tion methods are widely used in literature, we compare our part fViT with a model that uses
the landmarks provided by a state-of-the-art facial landmark localization, namely FAN [2].
We freeze the landmark CNN part from the well-trained part fViT to train a new ViT, coined
as part fViT(mobilenet (Frozen)). Results are shown in Table 2 (bottom section). As it can
be observed, using FAN (Pretrained and frozen parameters) to provide the input landmarks
to fViT reduces to suboptimal performance. This way of directly using patches of landmarks
provided by an accurate supervised landmark network leads to worse results than training a
vanilla fViT. With a pretrained R=49 landmark network and only training the fViT part, we
achieved a significant improvement than FAN network. We can conclude that for directly
using patches of landmarks on the FR task, FAN is unable to provide the proper landmarks.

Method LFW | CFP-FP | AgeDB | 1JB-B | IJB-C | MegaFace/id | MegaFace/ver
CosFace[58] 99.81 98.12 98.11 94.80 | 96.37 97.91 97.91
ArcFace[9] 99.83 92.27 92.28 94.25 | 96.03 98.35 98.48
GroupFace[28] 98.85 98.63 96.20 94.93 | 96.26 98.74 98.79
CircleLoss[53] 99.73 96.02 - - 93.95 98.50 98.73
DUL[4] 99.83 98.78 - - 94.61 98.60 -
CurricularFace[22] 99.80 98.37 98.32 94.8 96.1 98.71 98.64
Sub-center ArcFace[11] | 99.80 98.80 98.31 9494 | 96.28 98.16 98.36
FAN-Face[67] 99.85 98.63 98.38 94.97 | 96.38 98.70 98.95
BroadFace[29] 99.85 98.63 98.38 9497 | 96.38 98.70 98.95
ArcFace-challenge[12] 99.85 99.06 98.48 - 96.81 - -
VPL[13] 99.83 99.11 98.60 95.56 | 96.76 98.80 98.97
ALN[73] - 96.53 97.25 93.13 | 95.27 - -
VirFace[32] 99.56 97.15 - 88.90 | 90.54 - -
MagFace[42] 99.83 98.46 96.15 94.51 | 95.97 - -
SCL[33] 99.80 98.59 98.26 94.74 | 96.09 81.40 97.15
Face Transformer [77] 99.83 96.19 97.82 - 95.96 - -
fViT-B, ours 99.85 99.01 98.13 95.97 | 97.21 98.69 98.91
Part fViT-B, ours 99.83 99.21 98.29 96.11 | 97.29 98.96 98.78

Table 3: Comparison with the state-of-the-art on multiple datasets. Our baseline fViT and
part fViT achieve state-of-the-art results on most datasets.

4.3 Comparison with the State-of-the-Art

We chose our part fViT-B and fViT with patch size 8 and R=196 to compare with recently
proposed state-of-the-art FR methods. The landmark CNN used was MobilenetV3.

Quantitative results: We report the results of the models trained on MS1MV3, and tested
on various benchmarks. The results are shown in Table 3. As observed, on LFW which is
saturated, our proposed methods achieved top accuracy along with a few other methods. On
the pose-sensitive dataset CFP-FP, our part-fViT has obtained the accuracy of 99.21%, sur-
passing the other state-of-the-art methods of VPL [13] and Arcface-challenge[12]. Similar
results are observed for IJB-B and IJB-C benchmarks: not only does our part fViT outper-
form the other state-of-the-art methods by significant margin (97.29 TAR on IJB-C, 96.11
TAR on IJB-B), but even our baseline fViT is the second best method (97.21 TAR on IJB-C
and 95.97 TAR on 1JB-B). Similar results are obtained on MegaFace evaluation, where our
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part fViT is the top performing along with a few other methods. The only exception is on
AgeDB-30, where our part fViT obtains 98.29%. We need to mention that the loss func-
tion used is CosFace [58] which was chosen for its simplicity and stability. It is possible
that using more advanced loss functions for training, including VPL [13], ArcFace [9] and
Sphereface2 [62]. We also conducted experiments on the VGGFace2 dataset using similar

LFW | AgeDB-30 | IJB-B | IJB-C | MegaFace/Ild | MegaFace/Ver
Comparator Networks [66] - - 85.0 88.5

FAN-Face [67] - - 91.1 93.5 - -
SphereFace [37] 99.55 92.88 89.41 | 91.96 71.53 85.02
CosFace [58] 99.51 92.98 88.61 | 90.98 71.65 85.45
ArcFace [9] 99.47 91.97 89.11 | 91.60 73.65 87.77
Circle Loss [53] 99.48 92.90 88.56 | 90.83 71.32 84.34
SphereFace2 [62] 99.50 93.68 91.31 | 93.25 74.38 89.19
fViT, Ours 99.44 93.52 88.13 | 90.26 71.11 85.04
part fViT, Ours 99.56 93.92 88.98 | 91.03 71.63 85.91

Table 4: Comparison with the state-of-the-art results on VGGFace?2.

parameters with Resnet64 in SphereFace [37] to show the results of our part fViT in Table 4.
Despite adding a large amount of data augmentation, our baseline fViT perform worse than
the results provided by Resnet64 which is similar to the Face Transformer when training
on a small scale dataset such as CASIA-webface [68]. Our part fViT also achieves a better
result than the baseline fViT when training on MS1M, while it is still a little worse than the
Resnet64 with advanced losses(e.g. ArcFace [9]). Our future work will investigate how our
method works on other large scale benchmarks like Glink360 [1].

Figure 3: Visualization of attention maps. The first and second rows show the 11 attention
maps produced by the 11 heads of the baseline fViT-B; The third and fourth rows show the
11 attention maps produced by the 11 heads of the part fViT-B with R = 196 landmarks.

Qualitative results: We first compare the attention maps produced by the 11 heads of the
baseline fViT and the part fViT in Fig. 3. We observe that for both methods, the heads achieve
good correspondence across pose as each head fires at corresponding areas in both the frontal
and the profile images. Then, a closer look reveals that the 6-th and 7-th attention heads (6-th
and 7-th columns of Fig. 3) of the baseline fViT (1-st and 2-nd rows) do not focus on specific
facial parts. Moreover, for the baseline fViT there’s only one head that focuses on the eyes.
This is in stark contrast with the part fViT where there are multiple heads focusing on the
eyes region which are well-known to be the most discriminative facial parts for FR [31,
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Figure 4: Visualization of the learned landmarks from our part fViT-B with R = 49. land-
marks of same colour in different images across pose was learned to some good degree.

45, 49, 59, 66, 72]. Fig. 4 shows the 49 landmarks learned by our part fViT. As shown
landmark correspondence across pose was learned to some good degree. Besides FR results,
our landmark CNN can be useful for providing facial landmarks learned without landmark

supervision. The detailed explanation can be observed in the supplementary material Section
2.3

5 Conclusions

We proposed face Transformers as architectures for highly accurate face recognition. We
described two models: (a) fViT, our strong baseline trained appropriately on MS1IM. (b) part
fViT, we capitalized on the Transformer’s property to process visual tokens extracted from
irregular grids to propose a part-based face Transformer which is trained end-to-end to per-
form landmark localization and face recognition without explicit landmark supervision. Our
pipeline is extremely simple comprising a lightweight CNN for direct coordinate regression
followed by a ViT operating on the patches extracted from the predicted landmarks. Both
models, and especially our part fViT, achieve state-of-the-art or near state-of-the-art accuracy
on several face recognition benchmarks.
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A Introduction

This is the supplementary material for the paper Part-based Face Recognition with Vision
Transformers. We first exhibit the detailed choice of data augmentation we used to enhance
fViT in Section B.1.1. Then we list the model details adopted for our fViT in Section B.1.2.
Effect of data augmentation, the overlapping rate of landmarks and the comparison of choice
of landmark CNN are also included as the additional ablation study in Section B.2. Fi-
nally, we describe learned landmark network is effective for the side task of Application to
unsupervised landmark discovery in Section B.3.

B Additions to section 4: Experiments

B.1 Implementation details
B.1.1 Training details

For training the Transformer, we opted to use a large amount of data augmentation compared
to the original face recognition setting used in ResNets. Specifically, we used stochastic
depth regularization with probability 0.1 [30], resize & crop in the range [0.9, 1.0], RandAug-
ment [7] with magnitude of 2, and without the solarize and invert operations, Mixup [71] with
alpha=0.5 and probability of 0.2, Cutout with value 0.1, and weight decay le-1 for the ViT
backbone and 5e-2 for the Landmark CNN. We adopted AdamW [39] and the cosine learn-
ing rate decay followed by warm-up of 5 epochs, while we trained in total for 34 epochs. All
networks are trained from scratch.

Model Hidden size | Parameters | FLOPS
part fViT-B 768 66M 12.64G
fViT-B 768 63M 12.58G
Resnet-100 - 65M 12.10G
part fViT-S 512 46M 8.96G
fViT-S 512 43M 8.90G
Resnet-50 43.59M 6.33G

Table 5: Network sizes and FLOPS for our fViT and Part fViT and Resnet

B.1.2 Model details

To fairly compare with Resnet [9] which is used as the backbone in most recent methods, we
constructed our fViT in order to have a similar model size and FLOPS with Resnet-100. Our
base configuration for fViT, called fViT-B, has 12 layers, 11 attention heads and d = 768.
We also built a fViT-S. Our models and Resnet-100 are compared in Table 5. As can be
observed, our fViT-B has similar model size and FLOPS with Resnet-100. Our landmark
network is a MobilenetV3 [20] unless otherwise specified. All models are implemented in
PyTorch [44].


Citation
Citation
{Larsson, Maire, and Shakhnarovich} 2016

Citation
Citation
{Cubuk, Zoph, Shlens, and Le} 2020

Citation
Citation
{Zhang, Cisse, Dauphin, and Lopez-Paz} 2017

Citation
Citation
{Loshchilov and Hutter} 2017

Citation
Citation
{Deng, Guo, Xue, and Zafeiriou} 2019{}

Citation
Citation
{Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, etprotect unhbox voidb@x protect penalty @M  {}al.} 2019

Citation
Citation
{Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, and Lerer} 2017


18 Z.SUN AND G.TZIMIROPOULOS: PART-BASED FACE RECOGNITION WITH FVIT

B.2 Additional Ablation Study
B.2.1 Effect of different data augmentations

Here we present effectiveness of the choice of different augmentations suggested in [52]
starting from random filp. Results can be found in 6, we can observe that with more data
augmentation are added, more accurate results will be gained.

Exp | Flip | Randaug | Res&Crop | Stostich | Mixup | Cutout | Warm-up | LFW | CFP-FP | AgeDB-30 | 1JB-C
1 N 99.63 95.72 97.1 95.29
2 N N 99.68 96.84 97.55 95.87
3 N Vv V 99.70 97.23 97.26 95.98
4 N N vV N 99.73 97.40 97.30 96.05
5 N vV vV N N 99.76 98.19 97.60 96.13
6 vV Vv vV N N Vv 99.78 98.37 97.67 96.23
7 N Vv Vv N Vv v/ 99.80 98.78 97.85 96.37

Table 6: Impact of data augmentation

B.2.2 Degree of overlapping

We also examiate the degree of overlapping patches trained by our network, we calculate the
mean and variance overlap rate of the closest patches, listed in Table 7.The overlap rate for
the large pose datasets CFP-FP& 1JB-C is higher than that for other datasets.

LFW CFP-FP AgeDB-30 1IB-C
R=16 | 0.5007+0.0002 | 0.5250+0.0016 | 0.4980+0.0002 | 0.5099+0.0007
R=49 | 0.3993+0.0002 | 0.4665+0.0064 | 0.3997+0.0001 | 0.4279+0.0003
R=196 | 0.2681+0.0001 | 0.2950+0.0010 | 0.2684+0.00008 | 0.2789+0.0005

Table 7: The overlap rate of the neighboring patches obtained by our part fVIT-B with R=16,
49 and 196

B.2.3 Effect of different landmark CNNs

We conducted an experiment to evaluate the impact of using different CNNs for landmark
network. Specifically, we also chose Resnet-50[19]. The model used is the part fViT-B, with
R = 196 landmarks. Table 8 shows the obtained results. We conclude that a larger landmark
CNN does not further boost the final accuracy.

Landmark Network LFW | CFP-FP | AgeDB | IJIB-C
fViT 99.85 | 99.01 98.13 | 97.21

part fViT (MobilenetV3) | 99.83 | 99.21 98.29 | 97.29
part fViT (ResNet50) 99.81 99.14 98.35 | 97.11

Table 8: Impact of landmark CNNs on face recognition accuracy.

B.3 Application to unsupervised landmark discovery

We opted for a quantitative evaluation of the facial landmarks discovered by our landmark
CNN using the evaluation protocol and codebase of [47]. Specifically, we follow [47] and
report the so-called forward error on the whole MAFL & AFLW datasets in Table 9. The
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forward error is a measure of landmark stability, its pipeline is to train a regressor with
predicted landmarks as the training data and 5 manually labelled landmarks on the MAFL &
AFLW datasets as the test set. The more stable the predicted landmarks are, the better they
map to the ground truth (for details and forward error definition, please see[47]). As it can
be observed our method offers competitive results with recently proposed methods which
are exclusively designed for unsupervised landmark localization.

Method MAFL | AFLW
Supervised TCDCN [76] 7.95 7.65
MTCNN [75] 539 6.90
Thewlis [54] 7.15 -
Jakab [24] 3.19 6.86
Zhang [74] 3.46 7.01
. Shu [51] 5.45 -
Unsupervised Sahasrabudhe [46] 6.07 -
Sanchez [47] 3.99 6.69
Mallis [40] 4.12 7.37
Li [34] 3.08 6.20
Ours Landmark CNN 4.87 10.22
Landmark CNN (R = 49) 3.37 7.16
Landmark CNN (R = 16) 3.88 7.69

Table 9: Comparison on unsupervised landmark discovery. Forward error results [47] are
reported on the whole MAFL & AFLW datasets.
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