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Abstract

In recent years Internet of Things (IoT) and Smart Cities have become a popular paradigm of computing
that is based on network-enabled devices connected providing different functionalities, from sensor
measures to domotic actions. With this paradigm, it is possible to provide to the stakeholders near-
realtime information of the field, e.g. the current pollution of the city. Along with the mentioned
paradigms, Fog Computing enables computation near the sensors where the data is produced, i.e. Edge
nodes. This paradigm provides low latency and fault tolerance given the possible independence of the
sensor devices. Moreover, pushing this computation enables derived results in a near-realtime fashion.

This ability to push the computation to where the data is produced can be beneficial in many
situations, however it also requires to include in the Edge the data preparation processes that ensure
the fitness for use of the data as the incoming data can be erroneous. Given this situation, Machine
Learning (ML) can be useful to correct data and also to produce predictions of the future values. Even
though there have been studies regarding on the uses of data at the Edge, to our knowledge there is no
evaluation of the different modeling situations and the viability of the approach. Therefore, this thesis
aims to evaluate the possibility of building a distributed system that ensures the fitness for use of the
incoming data through ML-enabled Data Preparation, estimates the emissions and predicts the future
status of the city in a near-realtime fashion. We evaluate the viability through three contributions.

The first contribution focuses on forecasting in a distributed scenario with road traffic dataset for
evaluation. It provides a robust solution to build a central model. This approach is based on Federated
Learning (FL), which allows training models at the Edge nodes and then merging them centrally. This
way the models in the Edge can be independent but also can be synchronized. The results show the
trade-off between accuracy versions training time and a comparison between low-powered devices
versus server-class machines. These analyses show that it is viable to use Machine Learning (ML) with
this paradigm.

The second contribution focuses on a particular use case of ship emission estimation. To estimate
exhaust emissions data must be correct, which is not always the case. This contribution explores the
different techniques available to correct ship registry data and proposes the usage of simple Machine
Learning (ML) techniques to do imputation of missing or erroneous values. This contribution analyzes
the different variables and their relationship to provide the practitioners with guidelines for correction
and data treatment. The results show that with classicalMachine Learning (ML) it is possible to improve
the state-of-the-art results. Moreover, as these algorithms are simple enough, they can be used in an
Edge device if required.

The third contribution focuses on generating new variables from the ones available with a ship
trace dataset obtained from Automatic Identification System (AIS). We use a pipeline of two different
methods, a Neural Network (NN) and a clustering algorithm, to group movements into movement
patterns or behaviors. We test the predicting power of these behaviors to predict ship type, main engine
power, and navigational status. The prediction of the main engine power is compared against the
standard technique used in ship emission estimation when the ship registry is missing. Our approach
was able to detect 45% of the otherwise undetected emissions if the baseline method was to be used. As
ship navigational status is prone to error, the behaviors found are proposed as an alternative variable
based in robust data.

These contributions build a framework that can distribute the learning processes and that resists
network failures in low-powered devices. We propose different alternatives for the learning process
depending on the requirements. The last two contributions focus on correcting the data of a particular
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use case. Nevertheless, the techniques applied are general enough to be used in other domains of
application. With these corrections, the data post-process done in the Edge nodes, i.e. emission
estimation, provides more accurate results as the fitness for use of the data is improved.
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CHAPTER 1

Thesis Introduction

1.1 THESIS CONTEXT

In recent years Internet of Things (IoT) has become a popular term in both the academic and enterprise
worlds. This term can be described in a simplified way as a new paradigm of computing that is based
on network-enabled devices connected providing different functionalities, from sensor measures to
domotic actions.

The Smart Citymovement makes use of the IoT paradigm as an enabler for better management of
the cities, obtaining knowledge from the gathered data, and also using the connected actionable things.
In this context, new architectures named Edge/Fog Computing have emerged. These architectures
act as a standardized way to implement IoT and Smart Cities, e.g. VanLingen et al. [5]. These kinds of
new Data-centric architectures are focused on where the data comes from, where it commutes, and
where it is stored, providing data lineage and data quality assurance inside the given pipeline. Edge
Computing refers to the architectures that enable the computation where the data is produced, i.e.
in the edge devices which can be low-powered computers and sensor boards. Fog Computing is a
term that covers both Cloud and Edge computing, as it makes use of the computation in the Edge
devices and centralized Cloud resources. Moreover, it adds an intermediate layer of low-powered or
mid-end computers that can act as aggregators or data processors in which intermediate operations
can be executed, e.g. Machine Learning (ML). Figure 1.1 shows an example of an IoT network with
intermediate edge devices infrastructure for data processing and aggregation.

FIGURE 1.1. Example of different devices spread in a city that may be interconnected in the city of Barcelona. Intermediate
edge devices may be set up to further process and aggregate the data produced in the devices. Image courtesy
of David Carrera.

A research field that can directly benefit from IoT and Fog Computing is Air Quality monitoring.
Air Quality is an important factor for the citizens’ well-being, hence it is an important aspect to have in
a Smart City. Regarding the societal impact of the Air Quality, in a recent study by Mueller et al. [6]
performed in the city of Barcelona, it is shown that Air Quality is a cause, amongst other factors, of
premature death. Moreover, another recent study by Bañeras et al. [7] shows that there is a correlation

3
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between air pollution and ST Elevation Myocardial Infarction (STEMI), which is a particular type of
heart attack. In particular, this study shows that Particulate Matter (PM) and 𝑁𝑂2 pollutants increase
the risk of having this kind of attack. This information has reached the citizens through the newspapers
and television, making them more aware of the direct effects of pollution on their life.

FIGURE 1.2. Pollution cloud over Barcelona. Photography was taken by the Fabra Observatory’s meteorologist, Alfons
Puertas.

Given the impact of Air Quality on our well-being and also on the environment itself, knowing
how the pollution propagates has a key role in helping the governments to know their cities’ status and
make policies for future improvement. To evaluate, preserve and improve the state of the atmosphere,
air quality modeling is a necessary tool that provides a complete description of the problem (i.e.
meteorology, emissions, and atmospheric chemistry), which complements the information obtained
from air quality monitoring networks.

In particular, the CALIdad del aire Operacional Para España (CALIOPE) air quality forecasting
system1 is a state-of-the-art modeling framework that integrates a meteorological model, an emission
model, a dust model, and a chemical transport model to simulate air quality concentration with a high
spatial (up to 1km2) and temporal (1 hour) resolution for Europe and Spain. The air quality results
are continuously evaluated with a system based on measurements from the European Environment
Information and Observation NETwork (EIONET), and the performance of the system has been
previously tested in the different evaluation and air quality management studies [8].

From the four different models that this system has, this work focuses on the emission models.
The High-Elective Resolution Modelling Emission System (HERMES) model is the emission core of
the CALIOPE system and has been fully developed by the Earth Science department of the Barcelona
Supercomputing Center (BSC) [9], which gathers information about different areas that generate
pollution (e.g. agriculture, road traffic) and estimates the pollution for each of them, as the first step of
the Air Quality System.

As recorded in the Barcelona Air Quality Improvement Plan (2015-2018) [10], in 2013 in Barcelona
the 46% of theNOx (NitrogenOxides) are produced in the port and 33% in road traffic. Similar numbers
are seen for PM10 (Particulate Matter of less than 10 `m in diameter), as 52% is originated in the port
and 37% in road traffic. Notice that this is the total amount of generated pollution which, depending
on the wind, might not affect the city fully, especially for the port emissions. As observed in these
numbers, transportation takes a key role in the emissions produced in the city. However, only ships
provide Global Positioning System (GPS) traces and other attributes to compute directly the emissions.
1http://www.bsc.es/caliope/es
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In particular, according to the European Community Shipowners Associations (ECSA) in 2015,
maritime traffic has become a key component of the European economy [11]. According to a recent
report by the International Maritime Organization (IMO), it is expected that this form of transport will
continue increasing in the future due to globalization and the increase of global-scale trade [12]. The
main reason for this is that sea transportation is more fuel-efficient than other modes of transport (e.g.
trucks and trains). At the same time, it is considered an important contributor to primary atmospheric
emissions in coastal areas [13] and subsequently to European coastal air quality degradation [14],
especially in the North Sea and the Mediterranean basin. Maritime traffic is also responsible for about
2.5% of global greenhouse gas (GHG) emissions and it is expected to grow in the future for economic
reasons. For instance,𝐶𝑂2 emissions are expected to increase between 50% and 250% by 2050 [12].
Given the impact of the emissions in coastal areas and the expectations of growth of shipping emissions,
it is very relevant to have as many details as possible of this type of emission origin.

Inside HERMES, there is a module that calculates the emissions generated by both road, ship traffic,
and other sources by distributing the total pollution measured provided by the government using
emission measures, usage profiles, routes, and other information. However, it can benefit from GPS
based systems that can improve its spatio-temporal granularity, as is the case of road traffic in the
work of Rodriguez-Rey et al. [15]. This kind of approach is based on having data points distributed
over the map and aggregating them to the resolutions required. Using this methodology, not only we
can estimate correctly the emissions but also we can know with greater detail where are they located,
improving the precision of the whole Air Quality system.

It is important to know the current status of a city in a fine-grain detail and in a near-realtime fashion
to make short-term policies and be able to raise alarms to the citizens. Moreover, it is also important to
be able to evaluate possible policies for port management. The STEAM [1, 16] methodology enables
having a system that has both features. This methodology uses data from ship registries containing
static ship data, e.g. ship size or installed engine power, along with GPS enabled data, Automatic
Identification System (AIS) data, to estimate the emissions in the precise place they are produced.
Automatic Identification System (AIS) is a GPS-based tracking system used for collision avoidance
in maritime transport, as a supplement to marine radars. AIS provides information such as a unique
identifier for each transport (IMO identifier), the position as latitude and longitude (GPS positioning),
the course and speed. Such information is used by maritime authorities to track and monitor vessel
movements, from AIS base stations located along the coast, and transmitted through standardized VHF
transceivers. According to the IMO’s Convention for Safety of Life at Sea, AIS equipment is required
to be installed in all international voyaging ships with more than 300 Gross Tonnage (GT) units, and all
passenger ships [17], leading to the high availability of data.

Given that the information can be gathered by antennas distributed along the coast and other similar
devices, Fog Computing provides a well-fitted framework for this problem. Figure 1.3 represents the
conceptual infrastructure. First, in each node, the data is received and then the fitness of the data for the
application is assured. Then, emissions can be computed and forecasting can be performed. After that,
the derived data is obtained. This way the emission estimation is produced where the data is gathered
and therefore the estimations can be provided with the minimum latency possible. This low latency
provision is what enables the near-realtime emission estimation framework that provides precise
geolocation. Moreover, if only statistics about pollution are required, they may be also computed in the
nodes and only the required information would be sent. This approach provides storage and network
efficiency as fewer data have to be stored and sent.

1.1.1 Thesis statement

Even though this system is used as a vital component in ship maneuvering and cruising, it is not free
of machine and human errors [18, 19]. For example, ships can report unrealistic speeds when they
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FIGURE 1.3. Representation of how the transportation means interact with the system. The lower part represents the
specific transportation research use case, which contains the data preprocessing process to improve the
fitness of data (Data Quality), prediction, and emission estimation pipeline. The upper part represents the Fog
Computing system which enables distributed Machine Learning. The Fog Node falls in between as the use
case is elaborated using both parts.

are in the port premises [20]. Moreover, ship registries might be incorrectly filled, and incomplete
and some ship data may be unavailable [3]. Given that there are many shortcomings of using this data,
a methodology for cleaning it should be established to be able to use it for purposes like emission
estimation, which requires accurate data to be able to correctly estimate emissions.

This work aims to demonstrate the feasibility of the following thesis: It is possible to build a
distributed system in a Fog Computing environment to apply complex data processes (i.e.
ensure data quality, estimate emissions and predict future values) in a smart city setting with
results in a near-realtime fashion.

1.2 THESIS CONTRIBUTIONS

To cover the objective of this thesis, we need to provide computation with low latency to make the
system near-realtime that is able to manage data. In particular, there is a need to adapt the Data Science
pipeline to the IoT environment. This pipeline must be able to receive, curate and make use of data at
the Edge level, where the data is produced, or intermediate levels. Moreover, the processes required for
traffic prediction and emission estimation can be complex and also require of data preparation steps,
i.e. correct data so that the errors in it do not propagate to derived results. Finally, as there is a need to
provide a near-realtime system, the proposed architecture must be able to provide derived results as
the data comes into the system.

Therefore, a Fog Computing framework is needed to provide minimal network transmission of the
data and computation where the data is produced. Moreover, we need to have a system that can clean
data and predict the next status of the city using Machine Learning (ML) techniques. In some cases the
data will not be trivially cleaned, therefore we need mechanisms to extract new features from available
data to restore the required data for the emission modeling process.

The requirements of such a system can be summarized in three questions:

• Can we distributeMachine Learning used for transportation use cases in a Fog/Edge Computing
framework?

• Can we improve emission estimation by correcting the input data with data preparation pro-
cesses?



1.2 THESIS CONTRIBUTIONS ◀ 7

• Can we extract new features that can be used when the required data is not available?

To answer these three questions, this thesis includes three parts:

• First contribution: Proof that it is viable to use Machine Learning on the Edge enabling
near-realtime processing. In particular, we apply Federated Learning (FL) which is a kind of
distributedMachine Learning framework. With this, we show the possibility of building a central
model by merging local models trained at the Edge. Moreover, the structure of the Data Science
pipelines in the IoT environment is provided to show how to translate from a classical Data
Science pipeline to the IoT world.

• Second contribution: Improve the fitness of the data for the application (Data Quality) with
a real ship dataset with simple Machine Learning techniques, so that non Machine Learning
experts can take profit from the work and that low-powered devices can make use of them. This
contribution is focused on the data preparation step of the Data Science pipeline and provides a
guideline on how to correct ship static registry data to be used later for derived results.

• Third contribution: Reconstruct missing ship data and generate of new features based on the
methodology used in the other contributions. Again, this is related to the data preparation step
of the Data Science pipeline, however, the focus here is to reconstruct the ship registry data that
is required and is not available. This is done using another dataset that will be introduced later
in this work. Moreover, the same process can be used to derive new features that can help with
future problems.

Domain application 

Contribution 1 
Distributed  

Machine Learning

Contribution 2 
Data Quality
Improvement

Contribution 3 
Feature Generation 
and Reconstruction

Enables Correct Distributed
Data Processing at

the Edge

Enables

Data Analytics on the Edge-Cloud
Continuum 

Architecture

FIGURE 1.4. Thesis contribution diagram. The first contribution is centered around the exploration of distributed Machine
Learning architectures. The second and third contributions explore data processing techniques to improve
the fitness of data for the application. The three contributions together propose a framework to improve and
process data that can be distributed in a Fog computing scenarios.

Figure 1.4 represents the thesis contributions and their relationships. The first contribution acts as
an enabler of distributed processing. The other two contributions build processes to improve the fitness
of data for the application (Data Quality), in particular, focused on the data preparation step using
Machine Learning techniques for data imputation/correction. Both contributions can be distributed
by using the first contribution results, especially the third contribution, which depends completely on
streaming data. With these contributions, an initial framework for using Machine Learning in a Fog
Computing setting is established for transportation research, with a special focus on ship emission
estimation as the main driving use case. This framework will be used to build a system that is able to
receive streams of ship data at the edge, curate them and then estimate the emissions for those ships. All
of this is performed at the Edge without requiring the raw data to leave the Edge devices and providing
derived results, e.g. emission estimations, with low latency.
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1.2.1 First contribution: Machine learning distribution for traffic prediction

This contribution explores how to adapt the Data Science pipeline to IoT and how to create central
models for prediction and data preparation in a distributed way, i.e. models trained with all the data
available from a city. This is done using Federated Learning (FL) framework, which is a way to distribute
Machine Learning (ML) model training. Models are trained at the Edge with the data they have and
then the models are sent back to the Cloud for merging. This merging process only requires the models,
so no data is sent back. Finally, the merged model is sent back to the Edge so it can be used or retrained.
In this work, we show how this is done and the impact of part of the hyper-parameters when training a
model for traffic prediction.

This contribution works towards enabling the computation at the edge nodes so that there is no
necessity to upload all the data from the Edge nodes to theCloud, providing network fault resistance and
consuming less power because of the cut on network usage. In this sense, it also enables near-realtime,
as the data is computed in the edge nodes and then it can be directly consumed, instead of having to
wait for the data to be transferred and computed in the Cloud.

This work is performed with a Gated Recurrent Unit (GRU)-based Neural Network model and
extends the work done byGutierrez-Torre et al. [21] including Federated Learning (FL) synchronization
rounds and other relevant details to build a successful distributed model. We test the training of the
algorithm in different conditions and simulate training at the central node vs. training in a distributed
environment. Three different hardware are compared: two low-powered devices, Raspberry Pi 3B and
NVIDIA Jetson Nano, and a Xeon server-class machine. The batch size, i.e. the number of processed
samples at the same time, is studied to check if the Graphics Processing Unit (GPU) inside the NVIDIA
Jetson Nano can take profit from packing samples.

Overall, the performance of the distributed training is close to the centralized training and, in some
cases, the model produced is better. For this problem, both low-powered devices show acceptable
training times compared to the server-class machine. In this case, the GPU is not an advantage to have
due to the format and amount of the data, being the Raspberry Pi more suitable for this problem.

1.2.2 Second contribution: Estimating missing data for emission modeling

The second contribution revolves around the process of emission estimation for ships. The STEAM [1,
16] model makes use of AIS data and ship registry data to compute the pollutants with high spatio-
temporal precision. This can be done by leveraging the GPS coordinates and timestamps that are
provided by ships equipped with AIS. Moreover, the ship registries provide ship engine details, e.g.
installed engine power, that enable to compute the power used by a ship during their cruising and
maneuvering.

However, as in every process with real-world data, the data may be missing or incorrectly recorded.
In the case of AIS data, there are works like Jeon et al. [2] that propose complete pipelines to perform
data preparation, i.e. cleaning, for the ship traces with clear results. Yet, the same does not happen for
the ship registry data, where the proposed solutions are vague and a clear comparison of methods is
not provided.

In this contribution, we propose to use simple ML techniques as the data preparation step of the
Data Science pipeline proposed in the previous contribution. The objective is to clean this kind of
data and provide a comparison of methods from the state of the art to do so. The methods used are
standard and simple to implement so that researchers and practitioners that are not experts in ML can
test and implement them. On the other hand, simple methods can be used in commodity hardware or
low-powered devices, e.g. Raspberry Pi or MicroController Unit (MCU).

A review of the state of the art methods is given for AIS and ship registry data cleaning. Experiments
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to correct each variable required for the emission estimation process is done iteratively: first, all the
other available variables are used, and then the importance of every variable for predicting each variable
is computed. With this, a subset of two variables is selected to predict each of the variables and it is
compared with the results of using the same subset plus the ship type. Finally, a subset with the most
important variable for each variable is tested. In this way, we offer a comparison of the algorithms in
the described setting and a comparison between them.

The methods that performed generally best were Random Forest and Gradient Boosting Trees. K
Nearest Neighbours offered the easiest way to implement a cleaning method, as it can effortlessly predict
multiple variables at once and offers a good baseline result. Moreover, a list of important variables to
predict the others is established, providing a guide on which variables to use for each case. With this
work, a common comparison of methods is established and guideline to treat the ship registry data is
offered, so that practitioners can apply these methods.

1.2.3 Third contribution: Feature extraction and missing data estimation from alternative data
sources

As seen in the previous contribution, there is an important part of the data that is incorrect and needs
to be estimated. AIS particularly provides the ship type so that the ship can be minimally identified,
navigational status so that we can know what is the ship doing at each moment, e.g. cruising or fishing,
and also provides the position, rotation, and speed, among others. This last set of variables is crucial
for identifying the movement of the ship. However, sometimes ship type is missing, and navigational
status has human errors as it is manually managed. Moreover, if the required ship static data for
emission estimation is completely missing it is not possible to perform the corrections done in the
second contribution. Therefore, there is a need for a method to extract them from the GPS traces, as it
is the most reliable source of information in AIS.

In this work, a method to group similar movements in a ship trace is presented. The movements are
represented by the speed and the rotation of the ship and the position in terms of bathymetry, i.e. how
deep is the sea in the current ship position. These groups ofmovements are named behaviors, as they are
linked with what the ship is doing at each moment. These newly found behaviors are then used as input
variables to estimate the ship type, the main engine power of a ship, and linked with the navigational
status variable. This is done using the Conditional Restricted BoltzmannMachines (CRBMs) which
encodes a time window of attributes previously mentioned in a numeric array. This codification is then
used for prediction and also to find the behaviors by clustering similar codifications. The behaviors are
then correlated with the navigational status to relate what is observed. Then, profiling of each ship
type is done using the amount samples from each behavior found.

The methodology proved to be useful for enhancing AIS datasets by correcting and expanding their
features, toward producing better estimations when using AIS-based emission models. Experiments
show that ship type and navigational status can be corrected on missing data scenarios. Moreover, they
show that navigational status can be expanded with new uncovered behaviors. Finally, experiments
have proved that our method can estimate the power consumption of the ship better than the standard
methods when there is no ship registry data available. The methodology is able to detect around 45%
of the undetected emissions when the main engine power specification is not available. Therefore,
this contribution not only provides a mechanism to extract new features that can be used for future
research on the topic but also provide a methodology for the data preparation step of the Data Science
pipeline that is able to reconstruct ship registry data that is not available from a stream of incoming
AIS data.
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1.3 DOCUMENT ORGANIZATION

This thesis is organized as follows. Chapter 2 introduces the required knowledge in EmissionEstimation
and Machine Learning (ML) to understand the contributions and the datasets used. Chapter 3 reviews
the related work in IoT with centralized and distributed ML, and transportation research. Chapter 4
studies how to transfer the Data Science pipeline to the IoT environment and shows how to build
models in the Edge devices and synchronizes them in the central node using Federated Learning (FL).
Chapter 5 provides an end-to-end process to correct ship registry data required by the emission model
and studies the relationship between variables to help these corrections. Chapter 6 proposes a method
to extract patterns from AIS traces and shows how to apply them for data correction and feature
generation. Finally, Chapter 7 presents conclusions extracted from the contribution and possible future
lines of research.



CHAPTER 2

Background

2.1 INTRODUCTION

This chapter introduces all the background required for understanding this thesis, aside from basic
knowledge ofMachine Learning (ML). The section is divided into three parts: the first part describes the
datasets used in the following chapters. The second part covers the non-basic Machine Learning (ML)
algorithms and methodology used. Finally, the third part contains all the information required about
ship emission estimation. Nevertheless, the key concepts will be repeated in each section to make the
content as clear as possible.

2.2 MACHINE LEARNING

In this subsection we present the most relevant non-classical ML methods to understand the contribu-
tions presented in this thesis. It mainly covers two neural networks models: Conditional Restricted
BoltzmannMachine (CRBM) [22] and Gated Recurrent Unit (GRU) [23] networks. The objective of
the first one is to build codification of the data including time dependencies and predict time series,
whereas the objective of the second is just for the latter functionality. CRBM is used as key building
block in Chapters 4 and 6. GRU networks are used as learning algorithm in Chapter 4.

2.2.1 Conditional Restricted Boltzmann Machines

As mentioned before, one of the objectives of the Conditional Restricted Boltzmann Machine (CRBM)
network, aside from predicting, is to codify the input data. In this work it is used codify the input data
considering the time dependencies of the samples. This enables non time aware methods to use the time
series method seamlessly. Before explaining the CRBM, first Restricted Boltzmann Machine (RBM) is
introduced as a building block.

Restricted BoltzmannMachines

An Restricted Boltzmann Machine (RBM), or more concretely Gaussian Bernoulli RBM (GB-RBM)
is a key building block of the Conditional Restricted BoltzmannMachine (CRBM). A GB-RBM is an
undirected graphical model with binary hidden units and visible Gaussian units that models the joint
log probability of a pair of visible and hidden units (𝒗,𝒉). This means that it models the relationship
between the input and the resulting numbers of the hidden neurons, i.e. hidden neurons activations.
These activations act as a code that allows us to reconstruct the original data. It is modeled as:

log 𝑃 (𝒗,𝒉) =
𝑛𝑣∑︁
𝑖=1

(𝑣𝑖 − 𝑐𝑖)2

2𝜎2
𝑖

−
𝑛ℎ∑︁
𝑗=1

𝑏 𝑗ℎ 𝑗 −
𝑛𝑣∑︁
𝑖=1
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𝑗=1

𝑣𝑖

𝜎𝑖
ℎ 𝑗𝑤𝑖 𝑗 +𝐶 (2.1)

where 𝜎𝑖 is the standard deviation of the Gaussian for visible unit 𝑖 , 𝑐 is the bias of the visible units, 𝑏
is the bias of the hidden units,𝑤𝑖 𝑗 is the weight connecting visible unit 𝑖 to hidden unit 𝑗 and C is a
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constant. Notice that𝑛𝑣 and𝑛ℎ refer to the dimension of 𝒗 and𝒉 respectively. In practice, we normalize
the data to have zero mean and unit variance. Moreover, 𝜎𝑖 is fixed to 1 because it empirically works
well as shown in the work of Taylor et al. [24].

This kind of undirected graphical model is trainedwith a process called Contrastive Divergence [24]
which enforces that the activations act as a code to recover the original data, as mentioned before.

Conditional Restricted BoltzmannMachines

The Conditional Restricted Boltzmann Machine (CRBM) is a GB-RBM that models static frames
of a time series modified with some extra connections used to model temporal dependencies. The
CRBM keeps track of the previous 𝑛 visible vectors in a 𝑛 × 𝑛𝑣 matrix which we call the history of the
CRBM, where 𝑛𝑣 is the number of different variables. The learned parameters of the CRBM are three
matricesW,A,D, as well as a two vectors of biases c and b for the visible and hidden units respectively.
W ∈ R𝑛𝑣×𝑛ℎ models the connections between visible and hidden units, as in the previous section.
A ∈ R(𝑛𝑣 ·𝑛)×𝑛𝑣 is the mapping from the history to the visible units. D ∈ R(𝑛𝑣 ·𝑛)×𝑛ℎ is the mapping
from the history to the hidden units. Training and inference in the CRBM are performed using the
contrastive divergence method, as with RBMs. Figure 2.1 shows how the input data and the CRBM
interact in terms of reconstruction.

FIGURE 2.1. Schema of CRBM training and prediction

Figure 2.2 shows a graphical representation of a CRBM referencing the previously mentioned
variables. In the case of this thesis, we have an interest in using the activations produced by the hidden
units when fed with a sample of traffic trace plus the 𝑛 steps window. Then we use this vector of
activations as a time-aware code that represents a sample with a time window for algorithms that
are not thought to handle time-series, enabling them to manage temporal dependencies. Notice that
even though CRBMs suffer when doing long-term predictions, therefore an alternative method is also
studied for prediction.
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FIGURE 2.2. CRBM with window size 𝑛 and 𝑛ℎ hidden units

2.2.2 Gated Recurrent Unit (GRU) Network

Another technique that we use for traffic modeling are Recurrent Neural Networks (RNNs), specifically
a configuration known as Gated Recurrent Unit (GRU) network. This network is formed by one or more
layers of GRU and other neural network layers, e.g. densely connected layers for prediction. With this
kind of network we can predict a long period of time series.

This kind of layer can deal with time dependencies using a gating mechanism. This gating mecha-
nism is composed of two different gates for each GRU layer: the reset gate and the update gate. These
two gates affect the value that the next hidden status 𝑆𝑡 will have. This 𝑆𝑡 is used for internal calculations
as the state of memory and it is also used as the output of the layer. Figure 2.3 provides a graphical
representation of this kind of layer. The data flow represented in this figure is a simplified version of
the following equations. Biases and weights are omitted for the sake of clarity. The box containing 𝑟𝑡 is
the reset gate, the box containing𝑢𝑡 is the update gate and the one containing 𝑆𝑡 is the proposed new
state. In the following equations, 𝑥𝑡 represents the input at time 𝑡 .
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FIGURE 2.3. Schema of a unit of a GRU layer

First, the reset gate controls the access to the previous hidden state 𝑆𝑡−1 and is used to compute
the new proposed state 𝑆𝑡 as can be seen in Equation 2.4. The reset gate is computed as shown in
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Equation 2.2.
Second, the update gate is in charge of how much the state is updated, i.e. which interpolation

between 𝑆𝑡−1 and 𝑆𝑡 is desired, between the extremes of maintaining the previous state or updating
it completely. This interaction is shown in Equation 2.5 The update gate is computed as shown in
Equation 2.3.

Finally, the proposed state 𝑆𝑡 is the new hidden state calculated regarding the previous state and the
current input. This status is calculated in Equation 2.5. Notice that ⊙ is the Hadamard or element-wise
product and 𝜎 the activation function. After the gates and the proposed state is computed, we do an
interpolation between the current state 𝑆𝑡−1 and the proposed next state 𝑆𝑡 , which represents how
much do we change our memory given the current input 𝑥𝑡 .

𝑟𝑡 = 𝜎 (𝑥𝑡𝑊 𝑥𝑟 + 𝑆𝑡−1𝑊
𝑠𝑟 + 𝑏𝑟 ) (2.2)

𝑢𝑡 = 𝜎 (𝑥𝑡𝑊 𝑥𝑢 + 𝑆𝑡−1𝑊
𝑠𝑢 + 𝑏𝑢) (2.3)

𝑆𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡𝑊 𝑥𝑠 + (𝑟𝑡 ⊙ 𝑆𝑡−1)𝑊 𝑠𝑠 + 𝑏𝑠) (2.4)

𝑆𝑡 = (1 − 𝑢𝑡 ) ⊙ 𝑆𝑡−1 + 𝑢𝑡 ⊙ 𝑆𝑡 (2.5)

Each layer has a given number of units as the one represented in Figure 2.3 that have memory,
i.e.feedback loop. The more units we add, the more elements the layer will be able to remember.

2.3 EMISSION ESTIMATION

Air Quality Modelling Systems (AQMS) are systems built to estimate and analyze the quality of the
air. These systems describe what pollutants there are in the air, where they are located, and when they
are emitted. These systems are built of several models that take into account where, when, and how
much of each pollutant is produced, how is it transported in the air, and how the pollutants react with
other chemicals that are in the air. In this work, we are particularly interested in the origins of the
emissions. Inside the AQMS the module that performs this task is the emission estimation module.
This module makes use of an activity factor, e.g. the movements of ships in the sea, and the emission
factor, i.e. for a given amount of energy produced how much pollutant is produced. With these two
factors, the emissions can be computed. Specific details on this computation for a specific model are
given in Section 2.3.2.

In case that the emission origin can be tracked and continuous activity measurements are extracted,
the emission estimation model we will be able to estimate the emissions produced continuously in a
near-realtime fashion. This model is a key component to build a system that provides the status of the
emissions in the air constantly so that policymakers can know the status of an area. In particular, this
part of the background is required to understand the contributions of Chapters 5 and 6 as it is the main
driving use case.

2.3.1 Top-down vs Bottom-up emission estimation

In general, there are different types of emission estimation approaches: Top-down and Bottom-up.
Even though there may be mixed methodologies. The top-down estimation approach estimates the
emission using a global measurement for an area and then disaggregates it using activity factors, e.g.
known traffic in a given set of roads. With this process, a grid of emissions is built, which represents the
status of the area as a raster, i.e. a map of cells of a given size (1𝑘𝑚2 for example) in which each contains
the amount of pollutant for that particular region. On the other hand, bottom-up approaches like
HERMESv3 [25], which is an estimation methodology included in the CALIOPE Air Quality System
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built in the Barcelona Supercomputing Center, make use of punctual estimationsmeasured or estimated
in the area of interest and then use them along their positions to build the emission grid. With this kind
of approach, the emissions can be located and tracked. Compared to Top-down approaches, Bottom-up
require access to detailed information which may be harder to obtain. However, these methodologies
provide finer spatio-temporal granularity. For this work, Bottom-up methodologies are selected, as
they enable the creation of a framework that can estimate emissions in a near-realtime fashion and
provide better spatio-temporal resolution.

2.3.2 STEAM

The Ship Traffic Emission Assesment Model (STEAM) model is a bottom-up ship exhaust emission
model developed in the FinnishMeteorological Institute by Jalkanen et al. [1, 16, 26]. This model makes
use of ship traces to estimate and geographically locate the pollution. STEAM2 [16] is an upgraded
version of the STEAMmodel with improved engine characterization and the possibility of estimating
different pollutants not covered in STEAM. However, in presence of missing data STEAM act as a
fallback of STEAM2. Therefore this work only covers STEAM [1] and a small part of STEAM2 [16].

Ship traces can be obtained from the Automatic Identification System (AIS), theGPS-based tracking
system used for collision avoidance in maritime transport as a supplement to marine radars. This
system is used to track and monitor vessel movements from base stations located along the coast used
in all the ships to prevent collisions. It is transmitted through standardized Very High Frecuency (VHF)
transceivers. AIS provides, for each vessel, its unique IMO identifier and Maritime Mobile Service
Identity (MMSI) number, GPS positioning, course, and speed among other information. This system
is mandatory, according to IMO’s Convention for Safety of Life at Sea, for all ships with gross tonnage
greater than 300 tons, and all passenger ships [17]. This data provides basic details like position and
speed which can be used, along with a ship registry, to estimate emissions as Figure 2.4 depicts.

FIGURE 2.4. Estimation of Emissions from Ship Traces

Our approach is amethodology based on the STEAMmodel, proposed by Jalkanen et al. [1]. STEAM
is an AIS-based emission estimation model that uses the traces of the ships and their characteristics
to provide information about the pollution with GPS positioning precision. Emissions are calculated
using the current power consumption of the ship at a given time and the emission factor for that ship
regarding a pollutant. Conceptually, the formula is the following (units in brackets):

𝐸𝑠,𝑝,𝑥,𝑡 [𝑔/ℎ] = 𝑃𝑠,𝑥,𝑡 [𝑘𝑊 ] · 𝐸𝐹𝑠,𝑝 [
𝑔

𝑘𝑊ℎ
]

Being𝑃 the current power consumption of the ship and𝐸𝐹 the emission factor, 𝑠 ship characteristics
(mainly engine), 𝑝 the pollutant to estimate, 𝑥 position of the ship, and 𝑡 the current time. Therefore,
the emission of a given pollutant 𝑝 for a ship 𝑠 that is in the position 𝑥 and time 𝑡 is conditioned by the
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ship characteristics for calculating the actual power that this engine is using and the ship characteristics
plus the pollutant constants for the installed engine.

Power estimation

To estimate the emissions, first, we have to know how to calculate the power consumption of a ship. We
have to take into account that generally there are two kinds of engines installed in ships: main engine
and auxiliary engine. The first is mainly in charge of the movement of the vessel and the latter is in
charge of the onboard electrical power devices but may be used for other tasks, e.g. maneuvering.

Main engine The power used by the main engine at a given time 𝑡 is estimated using the current
vessel speed, the design speed and the installed power. In particular, the formula to calculate the
transient power is the following:

𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 =
𝑉 3
𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡

(𝑉𝑑𝑒𝑠𝑖𝑔𝑛 +𝑉𝑠𝑎𝑓 𝑒𝑡𝑦)3
∗ Y𝑝 ∗ 𝑃𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑

Being𝑉𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 the current speed provided by AIS,𝑉𝑑𝑒𝑠𝑖𝑔𝑛 the maximum speed that the ship can
reach by design, 𝑉𝑠𝑎𝑓 𝑒𝑡𝑦 a safety offset as ships may report speeds slightly greater than 𝑉𝑑𝑒𝑠𝑖𝑔𝑛 , Y𝑝
engine load at Maximum Continuous Rating and 𝑃𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 the actual power installed in kilowatts. This
formula acts as a ratio between the current speed and the maximum speed to find the actual power,
along with an efficiency multiplier. Following the instructions from STEAMmethodology,𝑉𝑠𝑎𝑓 𝑒𝑡𝑦 is
fixed to 0.5 knots (2,57 m/s) and Y𝑝 is set to 0.8.

Auxiliary engine The auxiliary engine is in charge of tasks like providing electrical power to the
ship, e.g. to the sockets in the passenger rooms, or providing power for maneuvering in ports. As
the usage of the auxiliary engine is not entirely reflected in any data available, we have to make some
assumptions. The proposed assumptions in the work of Jalkanen et al. [1] are the following:

• If the ship is a passenger ship, RoPax (ferry) or a cruiser: constant 4000kW assumed

• For other ship types it depends on the current status:

– Cruising (speed > 5): 750kW

– Maneuvering (5 >= speed > 1): 1250kW

– Hoteling (1 >= speed) : 1000kW

Notice that if the assumed output power is greater than the actual installed power, the output power
is lowered to match the installed power. The current status of the ship is extracted from the speed that
the ship has, as reflected in the list above (in knots). There is a strong seasonal usage of the auxiliary
engines for air conditioning. This is considered to be compensated as boilers are used in winter and air
conditioning in summer. Finally, we must take into account that there is data that can be used for a
more precise auxiliary engine estimation. However, this is covered only in STEAM2 [16].

Engine Load and Relative Specific Fuel-Oil Consumption (SFOC) As STEAM does not cover
Particulate Matter (PM) emissions, we need to include some characteristics from STEAM2 [16] re-
garding engine characterization. In particular, we need to add two concepts from STEAM2: Engine
load (𝐸𝐿) and SFOC relative to the load (𝑆𝐹𝑂𝐶𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ). With these two components, we can track the
engine load at each moment and its particular fuel consumption, which is linked directly with the PM.
To calculate the load of the engines we need to know howmany engines there are and their rated power.
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𝐸𝐿 =
𝑃𝑇𝑜𝑡𝑎𝑙

𝑃𝐸 ∗ 𝑛𝑂𝐸

𝑛𝑂𝐸 =
𝑃𝑇𝑜𝑡𝑎𝑙

𝑃𝐸
+ 1

Being:

• 𝑃𝑇𝑜𝑡𝑎𝑙 = Actual power being used

• 𝑛𝑂𝐸 = Number of operative engines

• 𝑃𝐸 = Power of one engine

In STEAM2 [16] the SFOC is composed of an SFOC base value which is set according to the ship
specifications and another part that acts as a multiplier of this base value. 𝑆𝐹𝑂𝐶𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 was extracted
from a regression analysis using real engines and it is computed from the engine load as follows:

𝑆𝐹𝑂𝐶𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 0.445 ∗ 𝐸𝐿2 − 0.71 ∗ 𝐸𝐿 + 1.28

Emission Factor

As shown in the equation, to calculate the exhaust pollution emitted we also need to have a value that
explains how much of a given component is emitted per unit of fuel used or, as in this case, per kW
produced. In this case, we will use 𝑔

𝑘𝑊ℎ
as a reference unit for the emission factor. All the factors are

extracted from the supplemental materials of STEAM [1] and STEAM2 [16].

NOx The amount of NOx is obtained from a regression study made by IMO as seen in the work of
Jalkanen et al. [1]. The NOx has a direct link with the Revolutions Per Minute (RPM) of the engine, as
can be observed in the curve of Figure 2.5. The formula is the following:

𝐸𝐹 (𝑁𝑂𝑥 ) =


17, 𝑅𝑃𝑀 < 130,
45 ∗ 𝑅𝑃𝑀−0.2, 130 <= 𝑅𝑃𝑀 < 2000,
9.8, 𝑅𝑃𝑀 <= 2000

SOx The amount of SOx, i.e. amount of every sulfur oxide, can be estimated by calculating the
amount of SO2 as other sulfur oxides are found in much lower concentrations. We start from the idea
that the number of mols of sulfur is the same as the number of mols in SO2, as it only has one atom of
sulfur. First, we calculate how many mols of sulfur there are and then we relate them to SO2 to obtain
the actual mass, as defined by the following equations:

𝑛(𝑆) = 𝑚(𝑆)
𝑀 (𝑆) =

𝑆𝐹𝑂𝐶 ∗ 𝑆𝐶
𝑀 (𝑆) =

𝑆𝐹𝑂𝐶 ∗ 0.001
32.0655

= 𝑆𝐹𝑂𝐶 ∗ 0.001
32.0655

𝑛(𝑆) = 𝑛(𝑆𝑂2)

𝐸𝐹𝑆𝑂2 =𝑚(𝑆𝑂2) = 𝑀 (𝑆𝑂2) ∗ 𝑛(𝑆𝑂2) = 64.06436 ∗ 𝑆𝐹𝑂𝐶 ∗ 0.001
32.0655

= 𝑆𝐹𝑂𝐶 ∗ 0.001998

Being:
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FIGURE 2.5. NOx curve as established in IMO 1997 [1]

• 𝑆𝐹𝑂𝐶 = Specific Fuel Oil Consumption (g/kWh)

• 𝑆𝐶 = Sulphur content of fuel (mass %)

• 𝑀 (𝑆) =Molar mass of sulphur (g/mol)

• 𝑛(𝑆) = number of mols of sulphur (mol)

• 𝑚(𝑆) = mass of sulphur (g)

• 𝑀 (𝑆𝑂2) = molar mass of sulphur dioxide (g/mol)

• 𝑛(𝑆𝑂2) = number of mols of sulphur dioxide (mol)

• 𝑚(𝑆𝑂2) = mass of sulphur dioxide (g)

• 𝐸𝐹𝑆𝑂2 = emission factor for 𝑆𝑂2 (g/kWh)

Notice that we assume that 𝑆𝐶 is 1% as it is the current regulation with the Sulphur Emission
Controlled Area (SECA).

CO2 To calculate the mass of CO2, we follow a similar approach to what we have seen in the previous
pollutant. In this particular case, the𝐶𝐶 is 85% as shown in STEAM [1].

𝑛(𝐶) = 𝑚(𝐶)
𝑀 (𝐶) =

𝑆𝐹𝑂𝐶 ∗𝐶𝐶
𝑀 (𝐶) =

𝑆𝐹𝑂𝐶 ∗ 0.85
12.01

= 𝑆𝐹𝑂𝐶 ∗ 0.85
12.01

𝑛(𝐶) = 𝑛(𝐶𝑂2)

𝐸𝐹𝐶𝑂2 =𝑚(𝐶𝑂2) = 𝑀 (𝐶𝑂2) ∗ 𝑛(𝐶𝑂2) = 44.00886 ∗ 𝑆𝐹𝑂𝐶 ∗ 0.85
12.01

= 𝑆𝐹𝑂𝐶 ∗ 3.114699

Being:

• 𝑆𝐹𝑂𝐶 = Specific Fuel Oil Consumption (g/kWh)
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• 𝐶𝐶 = Carbon content of fuel (mass %)

• 𝑀 (𝐶) =Molar mass of carbon (g/mol)

• 𝑛(𝐶) = number of mols of carbon (mol)

• 𝑚(𝐶) = mass of carbon (g)

• 𝑀 (𝐶𝑂2) = molar mass of carbon dioxide (g/mol)

• 𝑛(𝐶𝑂2) = number of mols of carbon dioxide (mol)

• 𝑚(𝐶𝑂2) = mass of carbon dioxide (g)

• 𝐸𝐹𝐶𝑂2 = emission factor for𝐶𝑂2 (g/kWh)

PM Particulate Matter is in fact an emission that is composed of 𝑆𝑂4,𝐻2𝑂 ,𝑂𝐶 (Organic Carbon),
𝐸𝐶 (Elementary Carbon) and ashes. The following formulas compute the emission factor and were
extracted from Jalkanen et al. [16]:

𝐸𝐹 (𝑃𝑀) = 𝑆𝐹𝑂𝐶𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ∗ (𝐸𝐹𝑆𝑂4 + 𝐸𝐹𝐻2𝑂 + 𝐸𝐹𝑂𝐶 ∗𝑂𝐶𝐸𝐿 + 𝐸𝐹𝐸𝐶 + 𝐸𝐹𝐴𝑠ℎ)
Where:

𝐸𝐹𝑆𝑂4 = 0.312 ∗ 𝑆𝐶
𝐸𝐹𝐻2𝑂 = 0.244 ∗ 𝑆𝐶

𝑂𝐶𝐸𝐿 =

{
3.333, 𝐸𝐿 < 0.15

𝑎

1+𝑏∗𝑒−𝑐∗𝐸𝐿

𝑎 = 1.024, 𝑏 = −47.66, 𝑐 = 32.547

𝐸𝐹𝐸𝐶 = 0.08

𝐸𝐹𝑂𝐶 = 0.2

𝐸𝐹𝐴𝑠ℎ = 0.06

Being:

• 𝑆𝐹𝑂𝐶𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = Specific Fuel Oil Consumption multiplier relative to engine load

• 𝐸𝐿 = Engine Load (load %)

• 𝐸𝐹𝑆𝑂4 = Emission Factor for 𝑆𝑂4 (g/kWh)

• 𝐸𝐹𝐻 2𝑂 = Emission Factor for𝐻 2𝑂 (g/kWh)

• 𝐸𝐹𝑂𝐶 = Emission Factor for𝑂𝐶 (Organic Carbon) (g/kWh)

• 𝑂𝐶𝐸𝐿 = OCmultiplier in terms of Engine Load (combustion efficiency)

• 𝐸𝐹𝐸𝐶 = Emission Factor for 𝐸𝐶 (Elementary Carbon) (g/kWh)

• 𝐸𝐹𝐴𝑠ℎ = Emission Factor for ashes (g/kWh)

• 𝑆𝐶 = Sulphur content of fuel (mass %)

• 𝑎, 𝑏, 𝑐 = regression coefficients as defined in STEAM2 [16]
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Limitations

Notice that the ships may have installed devices that provide abatement techniques, i.e. techniques
that reduce pollution, however, this information is not provided in the data we have available. The
contribution of the sea waves is also not included for the sake of simplicity, but can be included using
the work of Jalkanen et al. [1].

2.4 DATA

In this section the required datasets for the work of this thesis are introduced. Three datasets are
covered for this thesis: Floating car dataset and two ship related datasets. The first dataset is used in
the first contribution, in which we apply forecasting techniques to predict the amount of cars and the
average speed. The other two datasets are used to estimate ship emissions, but require techniques to
ensure the fitness for use of the data.

2.4.1 Floating Car Data

Floating Car Data (FCD) is a real traffic log from one week in the city of Barcelona, provided by one of
the largest road-assistance companies in Spain, comprising thousands of vehicles from their fleet only
in the city. The dataset comprises data collected over one week between 10/27/2014 and 11/01/2014
across the Barcelona metropolitan area. Figure 2.6 shows a heat-map of the vehicle tracking data,
comprising over 890,000 data samples and a fleet of more than 100 cars moving simultaneously around
the city at some times.

FIGURE 2.6. Barcelonametropolitan areamap, combinedwith a heat-mapoverlay of the FCDdataset used for the simulations
presented in this work. The dataset contains more than 890,000 data samples of road-assistance cars moving
around the city.
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FIGURE 2.7. AIS Transponder showing AIS data in the range of the antenna. Image obtained from Wikipedia.

FCD represents geo-localized timestamped data of moving vehicles, collected and analyzed for
various applications, including smart cities, traffic engineering, and traffic management. Typically,
FCD is received through antennas deployed in the town representing a large urban zone, a localized
neighborhood, a street, or a street segment, depending on which granularity is required for the specific
application. That data is provided to the Edge analytics indicating the received timestamp for each
vehicle transmission and its speed. Data like vehicle position, e.g. GPS, is not provided for privacy and
security reasons; only the Edge node position is provided.

The FCD arrives asynchronously to our Edge nodes and is aggregated periodically into summaries
of traffic information, i.e., the average speed of vehicles surrounding the node (in Km/hour) and vehicles’
count, considering that vehicles will be reported once for each aggregation window time. An example
of this aggregated dataset can be seen in Table 2.1. With 1-minute aggregation interval as lower bound,
we aggregate the incoming data into data entries containing latitude, longitude, number of cars, speed
average, and timestamp. Before performing the analytics, the Edge nodes independently collect and
aggregate the FCD into a specific time interval.

latitude longitude n.cars `.speed timestamp
41.362 2.095 4 17 1414365180

TABLE 2.1. Example of 1-minute aggregated FCD record. Notice that position is from the receiving antenna/Edge node,
not the vehicle.

2.4.2 Ship datasets

AIS dataset

Automatic Identification System (AIS) is a system used by ships to prevent collisions among them and
to help locate and manage all the ships by the port authorities. This system provides GPS data along
with other information, making it possible to position ships and know other relevant variables like
speed in near-realtime. This fact makes this data very useful for emission estimation, as we will see in
Section 2.3. An example of an on-board AIS display can be seen in Figure 2.7.

The current dataset has been provided by the Spanish Ports Authority (Puertos del Estado), from
their vessel monitoring database collecting the AIS signals from all registered ships navigating national



22 ▶ CHAP. 2 BACKGROUND

FIGURE 2.8. A week of AIS data from the year 2014, showing the cells that have more than 10 samples during the week.
These can be understood as common routes. Cluster variable can be understood as the most common ship
behavior found in that particular cell/pixel. More details regarding this figure can be found in Chapter 6.

waters. Such database collects the information periodically sent from all registered vessels and can be
used by local port authorities. The dataset used for our experiments is a slice of data concerning the
coastal area of Barcelona. The relevant variables of the dataset for this study will be introduced later
on. In particular, the used dataset for Chapter 6 is a week worth of data from 2014 containing a total
number of 1579393 samples with 19 variables.

Puertos del Estado has deployed a network of AIS base stations through the whole Spanish coast, with
the dual objective of obtainingmaritime traffic information (especially at the port area) and applying the
AIS capabilities to navigation aid1. Each AIS base station is responsible for receiving the AIS data within
its coverage area and sending it to the central hub for processing, storage, and subsequent distribution
to other AIS networks or interested users. An example of the coverage of the coast of Catalonia can be
seen in Figure 2.8.

Each vessel is identified by 1) name of the ship, 2) the IMO number, given by the IMO, 3) and
the MMSI number. There are two AIS device classes (A and B) differing in transmission power and
capabilities, being Class B smaller and short-ranged compared to Class A. As ships transmitting with
a Class B device are not required to have an IMO number, it might be missing and marked as Not
Available values (NAs) in the data. MMSI is used as an identifier if IMO is missing. Moreover, AIS
devices are periodically transmitting static attributes, properties of the ship that do not change on time,
e.g. length, beam, or draught, so authorities and other ships can know the size of the vessel. These last
attributes are not considered for this study as they are unreliable for the current task.

From the dynamic data provided by AIS, the following subset is used in this study:

• Time-stamp of the transmission

• GPS Coordinates in latitude-longitude

• Speed over Ground (SoG): Speed of the boat, measured as effective over the ground, by taking
into account the tidal drifting or speeding up/down the ship, measured in knots.

1http://redais2.puertos.es
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• Navigation Status (navstatus): A standardized identification of the current status of the ship.
This feature is manually set by the crew. This denotes the susceptibility of such features to errors
and missing values.

• Type of ship and Cargo (typeofshipandcargo): A combination of two integer values, encoding
the type of ship and materials that it is currently transporting.

Additionally, the AIS provides information like the ship rotation (Course over Ground (CoG)), the
rotation speed, and compass heading. These features have proved to be unstable to perform accurate
predictions. The information from every single vessel is collected in their navigation trace along time.
Table 2.2 shows a sample from our dataset.

ID size_{a, b, c, d} length beam draught sog cog rot heading navstatus type lat lon timestamp
1 62 , 126 , 13 , 15 188 28 7 5.50 317 127 326 0 70 40.91 2.47 2014-04-13 23:59:32
2 17 , 19 , 7 , 1 36 8 3 0.00 170 0 47 8 37 41.53 2.44 2014-04-13 23:59:31
3 4 , 16 , 4 , 2 20 6 4 10.00 220 -128 511 7 30 41.30 2.19 2014-04-13 23:59:33

TABLE 2.2. Sampled data from the dataset. Identifiers are surrogates from the real identifiers.

Cleaning and Normalizing AIS Data

Working with time series implies having data regularized in time, as many techniques interpret samples
as steady and regular, more than sparse, occasional, or even redundant. When using CRBMs with time
as a conditioner, each position in the delay (the window of data history) is supposed to be given a set of
weights towards the hidden layer, then data values slide through the window facing new weights based
uniquely on their position in history. This way, each position in the history window discretizes time in
equal segments, so sparse data needs to be densified, andmissing data must be interpolated or predicted.
To do this, linear interpolation is applied to adjust data points to a regular time scale, as performed in
the previously mentioned studies by Jalkanen. Even though more advanced interpolation algorithms
can be used, we have chosen to follow the linear interpolation procedure described by Jalkanen so that
the results are standard.

Static characteristics dataset

The second dataset contains the static properties of the vessel, e.g. main engine power, length of the ship.
This dataset was obtained from the company IHS Fairplay but can be obtained from others like Lloyd’s
registry. This dataset shares variables in common with the previous dataset, e.g. length. However, as
the data comes from a curated register it is more reliable. The original dataset contains 3819 samples,
each representing a ship with over 50 variables.

This work focuses on the variables shown in Table 2.3 as those are the basic characteristics required
for the basic emission estimation. In case that other methods of emission estimation are used, e.g.
STEAM2 [16], the number of variables required is higher and, therefore, the amount of uncertainty
increases. Further details of this data will be given in the Chapters 5 and 6.

2.5 DATA SCIENCE PIPELINES

Data Science in general implies having processes from both Data Management and Data Analytics. In a
simplistic view, Data Management processes import, merge and ensure that the data is good and ready
to be used. On the other side, Data Analytics objective is to extract knowledge out of the data, whether
it be with classical SQL queries, OLAP, statistics or ML. Depending on the required procedures, both
parts can become quite complex. Therefore, there is a need to establish a way to order and map the
transformations of the data. This is where the concept of data pipeline appears. With the pipelines it is
possible to easily observe where the data is coming from and which transformations are being done on
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Attribute Description Origin
Type Ship type AIS/IHS

Main Engine (ME) power Installed main engine power IHS
Auxiliary Engine (AE) power Installed auxiliary engine power IHS

ME RPM Main engine RPM IHS
AE RPM Auxiliary engine RPM IHS
Eng. type Type of engine installed (Main engine) IHS

L Ship length AIS/IHS
B Ship beam AIS/IHS
T Ship draught AIS/IHS

TABLE 2.3. Variables available in the registry. Only shown the variables relevant for the contributions of this thesis.

it to fulfill the requirements of our applications. Even though data pipelines can be quite complex, in
our case it can be summarized in 6 stages, as depicted in Figure 2.9.

FIGURE 2.9. A general data pipeline for IoT environments with analytics on the edge.

Each stage is defined as follows:

• Incoming Data: Represents the physical parts that are required to capture data up to the point
where it reaches the edge device.

• Data Ingestion: Transform the input data into a data structure that can be used by the following
stages. This stage includes the integration of different data sources.

• Data Preparation: Ensures the fitness of the data to the application by cleaning, transforming,
aggregating and interpolating the data and generating new features. Notice that this stage may
use the models from the next stage in order to perform operations like cleaning.

• Modeling: Trains a model from the available data for a defined purpose. This model can be a
multivariate statistical model or a ML model, to list some examples.

• Forecasting: Transform the incoming data using the previously trained model to obtain derived
data from the original curated data, e.g. the prediction of the number of cars in 5 minutes using
the current number of cars or a derived alarm if the number of cars will pass a given threshold.

• Broadcast: Propagates the aggregated data, models and predictions/alarms to the next tier in the
Fog Architecture, i.e. the next aggregating level or the cloud.
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As it can be seen, this pipeline is an actual simplification or subset of the complete data pipelines
that we may have in traditional Cloud-based services. Notice that the data may not be completely
stored in databases like data lakes as storage in edge devices is limited. The data that is processed in
this pipeline is mostly dynamic. We may, however, store or maintain in memory a given time window
of data for the purposes of the analytics. The uncovered parts in the IoT part of the pipeline can be
covered in the Cloud level treating the incoming data as the input of the ingestion phase. In fact, this
way the resource usage for processing is effectively being distributed over the Fog Architecture, therefor
off-loading the Cloud and making scalability more viable, as the data producers can also be the data
processors.

Regarding the contributions of this thesis, each part of them fit in different stages of this pipeline.
First contribution covers the whole pipeline from end to end, providing an architectural framework
to work with. Moreover, it specifically focuses on the possibility of distributing the modeling phase
over different devices to build a common model. The second contribution may be understood as a data
preparation process as the focus is on processing data to improve the fitness for use for the applications.
The modeling phase of this process can be both trained in the Edge or in the Cloud, as the particular
pieces of information required are static and usually available. Finally, the third contribution focuses on
both data preparation and modeling stages, but may also be used in the Cloud level for further analysis.
As this contribution is built over dynamic data, the models can be trained at the Edge level to then be
used in the data preparation stage. This mechanism allows to have models that are resilient to Concept
Drift if trained on-line. This means that the models would be able to handle changes in the underlying
distribution of the data generator.

2.5.1 Data Preparation and Data Quality

Aside from enabling the processes to be run, this thesis has a focus on the data preparation aspect. As
seen before, data preparation is the phase of the pipeline that is in charge of ensuring the fitness for use
of data, i.e. the data quality. From the definitions found in the work of Zaveri et al. [27], it is possible to
extract that data quality is a wide concept that is in fact a multidimensional construct. Each dimension
is measured with both qualitative and quantitative metrics which are used to measure each potential
issue on data and, in the end, provide a global score of how fit is the data for an application. Notice
that there is no static or golden standard for metrics, as each application has its requirements, e.g. one
application may be tolerant to missing values or even use them whether other application may lead to
wrong results.

In particular in this work the process described by Saha et al. [28] data quality management process
is followed:

• Discover rules: Find logical rules or statistical rules with which it is possible to find inconsisten-
cies in the data and that might be used to repair them. In this case, we might apply data filters to
find potential outliers or complete statistical or ML models.

• Check for inconsistencies: Applying the previously found rules or models, find elements that do
not comply to later evaluate them. For some cases, this may require manual checking.

• Repair: With the modeling techniques used, repair the data that was inconsistent.

This thesis has a focus on the following data quality dimensions, as defined by Zaveri et al. [27]:

• Semantic accuracy: How accurate is the usage of the variables and fields, the precision of the
values and annotations and the presence of outliers. In particular, the focus is set on outliers
as they represent a potential set of incorrect values. Notice that the outlier detection process
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can be completely automated, however the process of testing whether they are erroneous or not
might not be automatic if rules are not defined. This may require a human expert.

• Completeness: How much missing values, columns or even classes we have in our date. Specifi-
cally, the focus of this work is on column completeness, which refers to the amount of missing
values there are per variable/column.

In summary, by improving the metrics from the relevant dimensions the data quality is improved.
From now on when we refer to ensure data quality, we will speak about improving the fitness for use
of the data for the applications defined.



CHAPTER 3

Related Work

3.1 CENTRALIZED AND DISTRIBUTED MACHINE LEARNING ON IOT INFRASTRUCTURES

The Cloud has been widely used to address the emerging challenges of big data analysis in many smart
city ecosystems such as smart houses, smart lighting, and video surveillance [29–31]. However, IoT
scenarios usually require low latency between sensors/actuators and usually there are scarce computing
resources. With these restrictions, avoiding unnecessary north-south bound communication of data is
desirable. In this framework, the data can be processed on the Edge or intermediate nodes, reducing
the amount of information to be processed. Location awareness is also a must in several Smart Cities
IoT architectures providing immediate in-place services. As IoT services in Smart Cities are being
increasingly used, Cloud services alone can hardly satisfy thementioned requirements of this ecosystem.

Several cities around the world are involved in projects towards smart-city management. Platforms
designed for management of smart cities exist in cities like Nice, France, where the Connected Boule-
vard [32] platform has been developed to optimize all aspects of city management, including parking,
traffic, street lighting, waste disposal, and environmental quality. Also in Santander, Spain, the project
SmartSantander [33], focuses on a European facility for research and experimentation of architectures,
technologies and applications for smart cities, but without focusing yet on Fog computing. Further,
other cities like Songdo (South Korea), Masdar City (Abu Dhabi, UAE), Paredes (Portugal), Manchester
(UK), Boston (US), Tianjin (China) and Singapore, announced smart-city related projects [34]. Although
approaches differ on each city, resilient and secure analytics between the Edge and data centers are a
hard requirement, revolving around a coherent and affordable way of management [35].

Fog computing, the paradigm combining the Edge and Cloud capabilities, can handle the signifi-
cant data treatment, including acquisition, aggregation, analytics and pre-processing, while reducing
transportation and storage, and even balancing computation power among intermediate nodes [36].
In previous a work [37], there was a focus on how Fog computing architectures can improve the
deployment of distributed commercial solutions on smart cities where cloud models fall short. This
scenario was explored through a Barcelona Supercomputing Center and Cisco Systems joint initiative
towards a Fog computing deployment in the city of Barcelona. In addition, transforming this data
into actionable knowledge and adapting to changing dynamics of modern cities, requires intelligent
modeling techniques not only accurate but adaptive. ML techniques enable smartness in Smart Cities
by modeling, predicting and extracting useful information from collected data, through advanced
statistics and artificial intelligence algorithms. Deep Learning, an ML subfield based on multi-layer
neuronal networks, is becoming an important tool to city-modeling challenges across many areas such
as forecasting [38], self-driving research [39], image processing [40, 41], or object recognition [42], useful
to manage public services, detect hazardous scenarios or to guide emergency services among others.
This kind of techniques for management on cities has been already implemented in Cloud systems and
could easily benefit from Edge computing: from management of power grids using machine learning
in big cities from grid monitored data [43], to reduction of data transmission in health-care monitoring
wearables by performing pattern mining on the Edge [44], to illustrate some examples.

A significant amount of effort and research has been devoted to tackling the challenge of training
huge data sets through building large models with more parameters and parallelization or distribution
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methods based on the Cloud computing infrastructure. For example, Google implemented a distributed
framework for training neural networks over Central Processing Unit (CPU) based on the DistBelief
framework [45, 46] which makes use of both model parallelism, and data parallelism. This model has
also proved useful for computer vision problems, achieving state-of-the-art performance on a computer
vision benchmark with 14 millions of images. To scale up the training phase of learning, researchers
utilize accelerators such as a single or cluster of GPUs [47, 48]. Recently, Facebook [49] announced
achieving 90% scaling efficiency in training visual recognition model, using data parallelism combined
with the use of GPUs. This is not limited to Cloud solutions. K. Hong et al. [50] proposed a fog-based
opportunistic spatio-temporal event processing system to meet the latency requirement. Their system
predicts future query regions for moving consumers, and starts the event processing early to make
timely information available when consumers reaches the future locations. Yu et al. [51] proposed
a Deep Reinforcement Learning based system that is able to share execution of tasks in Edge nodes
taking into account the battery, quality of service and other details.

However, the increasing amount of data to be processed, along with the computational demands of
sufficiently-accurate neural network algorithms, have led to bigger computational andmemory resource
requirements. Accelerating neural networks training to competitive accuracy within a sufficiently
short time is a major challenge that may lead to increase computational demands. Seeking solutions
that assure scalable and efficient learning has given rise to the notion of “distributed ML”. Federated
Learning (FL) [52] is a promising solution when both data and resources are scattered along in the
architecture, with the added challenge of the near impossibility of having all data in the same place, and
the cost of constantly offloading computation to the Cloud. FL aims at keeping the data near where it is
produced [52, 53]. This solution can be understood as allowing the Edge devices, the clients, to produce
a predictive model with their own local data, and then coordinate with a central node, the server, for
model merging. In particular this is interesting in the contexts where data privacy is an issue as in the
work of McMahan et al. [52], as the only data exchanged between the data producers and the central
server are the weights, i.e. the configuration, of the neural network. On the other hand, there have been
efforts like in the work of Hu et al. [54] that focus on having a model that works properly on both sides,
client and server. Moreover, it has been proved Stochastic Gradient Descent (SGD) converges in this
scenario [55], proving the suitability of Neural Networks for this particular task. This approach brings
properties that are desirable for Edge Computing architectures, like the ability to keep on working
without network connectivity when the system fails.

Given that at the Edge nodes computing power is scarce, works such as Marchisio et al. [56]
study how to perform ML inference in ultra-low powered devices, and review the usage of Neural
Networks (NNs) with this kind of device. This approach minimizes both power usage and hardware
costs. Sudharsan et al. [57] proposed a methodology to train a kind of Convolutional Neural Network
(CNN) and then adapt it to run in different MCUs to do prediction. Their approach reduces the
size of the trained network to the 10% of the original. In the same direction, TinyML [58] enables
training a NNwith TensorFlow and then convert it to it can be run using TensorFlow Lite on ultra-low
power MCUs. Neither of these approaches handle training on the device, but other approaches like
Neuro.ZERO [59] enable training on the device by means of hardware acceleration. However, FL has
yet to be covered on this kind of setup with MCUs, so that it enables to train different models and
average the model configuration among nodes.

Even though the methodology per se has already been described, there still is a knowledge gap
regarding the actual applicability of FL on a Fog Computing architecture using low-powered devices
and the effectiveness distributed models versus a centralized one. This work aims to fill this gap
applying the methodologies described in Chapter 4.
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3.2 FLOATING CAR DATA

The appearance of Floating Car Data (FCD) as data source is expected to provide support to many
practical use cases in the near future, leveraging Intelligent Transportation Systems telemetry. To
complement the current lack of sensorization in cars and communications infrastructure, works like
Briante et al. [60] propose the use of smartphones and Wi-Fi hotspots, also Ali et al. [61] proposes
crowdsourcing architectures to collect data from smart devices on vehicles for these same purposes, or
Ancona et al. [62] studies vehicle-to-vehicle networks to handle the expected escalation of FCD data
volume. In the field of treating Floating Car Data, we find works like Yu et al. [63] where the framework
RTIC-C presents a high level architecture to deploy traffic analytics, using Map-Reduce approaches
for distributing modeling and processing algorithms. The RTIC-C authors defend the use of big data
analytics on traffic data due to its increasing volume and complexity, then they focus on distributing
received data for processing on anomaly detection and traffic trend prediction. Works like Moretti et
al. [64] and Xia et al. [65] present different traffic modeling approaches, ensembles using bagging and
Feed-Forward MLP Neural Networks the prior and Spatial-Temporal Weighted k-Nearest Neighbor
the later, producing general models from the aggregated datasets and distributing computation on the
Cloud. Also, works like Lv et al. [66] present a methodology where a Stack of AutoEncoders is applied
for traffic flow prediction at different granularities with good results for t+1 forecasting. As presented
in our work, localized models on the Edge can create in-situ specialized predictors adapted to their
coverage area, using re-trainable machine learning models.

Chapter 4 focuses on the data transmission architecture towards receiving traffic data streams
properly for being ingested by analytics methods, i.e. localized re-trainable CRBM prediction mech-
anisms, and could complement high level frameworks like those named here on generalist model
scenarios. All the analytic process done is mainly done in the Edge, using dedicated High Performance
Computing (HPC) only to process results. To the best of our knowledge, there currently is no evaluation
of this kind of problem with FL using RNNs with server-class hardware and low-powered devices.
Moreover, mechanisms are needed to stop training as soon as a reliable-enough model is obtained. We
believe that FL distributed learning can be highly beneficial for data analytics over scenarios like smart
cities.

3.3 SHIP CHARACTERISTICS AND EMISSION ESTIMATION

Both AIS and ship characteristics data are a source for potential applications in industry and academic
research as shown in the work of Svanberg et al.[67] and Miliuše et al.[68]. There is also an interest on
standardizing the data access for interoperability. Lensu and Goerlandt[69] established a framework
to build an AIS database for research, and apply it in particular to a use case related to navigation in
ice. AIS-assisted emission estimations can be effectively used to assist policy design and corrective
measures of a specific shipping sector (e.g. cruises and ferries) [70] and to improve the efficiency of
ships [71]. Jalkanen et al. [1, 72] show that AIS data can been used for the estimation of high spatial and
temporal resolution maritime emissions. Compared to traditional emission estimation methodologies,
the use of AIS data provides information of instantaneous speed, position and navigation status of
vessels and subsequently allows for more accurate estimations of vessels’ activities and the improved
reliability of emissions and fuel consumption estimations [73]. Navigational status is included on AIS
data and with this attribute the current engine usage can be estimated along with other attributes like
speed, however in some cases it is incorrectly set as this attribute is manually set.

Both sources of datamay havemissing or inconsistent data, which canmake the derived applications
unreliable. Harati et al.[18] identify that attributes reported by AIS like draught are prone to error
due to human errors. In their study, they conclude that 1 out of 14 messages is wrong. Moreover,
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Goldsworthy and Goldsworthy[19] highlight that there may also be errors on the onboard equipment,
e.g. unrealistic high speed reported. This fact is also shown in the work of Miola and Ciuffo[74] where
they find speeds higher than 20 m/s inside the port of Rotterdam, which is not reasonable. On the other
hand, ship registers may not have the full information about a ship. Peng et al.[3] claim that missing
data is one of the main problems when estimating exhaust emissions as some information may not be
recorded. Huang et al.[4] report that in their case out of 90,000 ships only 50,000 had correct values
for rated power and design speed. Both of these attributes are essential to estimate exhaust emissions
using this kind of methodology as they are used to estimate the current ship power.

3.3.1 Other approaches to emission estimation using Machine Learning and Statistics

In this case scenario where the data might be incorrect, statistics and ML provide a good solution.
Some approaches try to directly estimate the emissions using ML without any physical model, e.g.
STEAM [1], behind it. Fletcher et al.[75] propose an ML method to predict the exhaust emissions of 2
ships using as input data the Shaft Speed (RPM) and the Engine Power (kW) in time. However, this
solution requires sensors in the engine. Finally, they propose to mix this methodology with STEAM
[1] to improve emission location as future work. Si et al.[76] also predict the emissions produced by
one cogeneration unit using several engine-specific variables, which are not commonly found in ship
registers.

A different approach to this problem was described in the study by Peng et al.[3]. The method,
based on STEAM [1], deals with missing data by sampling and extrapolating. The ships that have
complete data are selected and then from those a stratified sampling methodology is followed. In the
paper, they show that with 10% of the ships they have enough data to estimate the total emissions with
statistical extrapolation. It is also shown that using high temporal granularity produces a more accurate
estimation of the pollution as the model can catch the speed variation at each time step. However, this
approach loses spatial granularity as the emissions are estimated by areas and not all the AIS traces are
used.

Other approaches try to estimate engine-specific characteristics intended to help with the design
of the engines and that may be used to estimate the emissions. Chan and Chin [77] predict the engine
power performance using the shaft power, shaft rpm, and shaft torque. Noor et al.[78]models predicting
engine performance, i.e. output torque, brake power, brake specific fuel, and exhaust gas, using engine
speed, engine load, fuel flow rate, and air mass flow rate. Fuel consumption in container ships is a
well-studied topic. Le et al.[79] predicted the fuel consumption of this attribute using variables like
sailing time and average trip speed using neural networks. Also, Uyanık et al.[80] did a similar study
using noon reports, logbooks, and sensors in the vessels. This fuel consumption can be used later
to estimate the exhaust emissions but this approach lacks GPS precision. Liang et al.[81] studied the
prediction of propulsion power with neural networks using transient speed, weather, and other ship
attributes and later on added AIS data to improve the prediction positioning. This approach provided
better results overall compared to a physical model for container ships.

3.3.2 Data Quality and Pattern Mining for AIS Data

AIS traces are GPS-based, therefore there are many techniques that can be applied to study the move-
ment of ships. For example, pattern mining for GPS traces is a common practice in very different
fields, looking for specific patterns in movement and behavior. Works like Qiu et al. [82] describe a
methodology for mining patterns through Hidden Markov Models, producing semantic information
to feed frequent pattern mining methods. Such work is also based on discovery of frequent episodes in
time series [83], with the goal of discovering patterns series of events. Use cases for such techniques
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are social mining and recommendation [84], animal movement patterns [85], or elder care [86]. In
Chapter 6 we propose to find common patterns using CRBMs as a base for time windows, feeding
them from GPS and other input sources, for discovering discriminating behaviors on a geographical
space. The CRBMs, as probabilistic models derived from RBMs [87, 88], are used in a wide range of
problems like classification, collaborative filtering or modeling of motion capture, developed by the
team of professor Geoffrey E. Hinton at the University of Toronto [24, 89–91]. Such models are usually
applied for problems where time becomes a condition on data, i.e. time-series. Other works like X.Li
et al. [92] and Lee et al. [93] use the models for multi-label learning and classification. Based on their
experiences and techniques, we are taking advantage on CRBMs time-series learning capabilities.

These analysis require that AIS data has good quality, however this is not always the case. There
are mainly two problems with this data: time gaps and outliers. Usually, time gaps are filled using
interpolation techniques [1, 19]. In the case of outliers, Goldsworthy and Goldsworthy[19] propose
to mark as outliers those values that have values bigger than the 50% of the average of the trace.
In the case of finding an outlier, it is removed and then the point is linearly interpolated. Velasco
and Lazikis[94] performed an extensive literature review on missing data imputation of sensor time-
series data in vessels. In the study, they compared classic univariate autoregressive methods with
multivariate methods for different output variables, e.g. current engine power. They found out that
the Auto-Regressive Integrated Moving Average (ARIMA) outperformed the rest, showing lowMean
Squared Error (MSE). However, this study has its limitations, as there is no time window provided
for the multivariate methods, hence missing the time correlation of the data. Jeon et al.[2] proposed a
preprocessing pipeline for AIS and onboard equipment data to find and correct anomalies and denoise
the data. After that process, a dimension reduction is performed so that the regression algorithms are
used over variables without any colinearity problem. To predict the engine performance, three different
models (Generalized Additive Model (GAM), Gradient Boosting Regressor (GBR), and Multivariate
Adaptive Regression Splines (MARS)) are trained with the best hyperparameters found using Bayesian
optimization and used in an ensemble weighting the predictions with learned coefficients from a
trained linear regression. They show that this pipeline works well for AIS data and particularly that the
classic technique Kalman Filter works well for denoising this data.

3.3.3 Data Quality in ship register data

In the report of the emission estimation used by National Atmospheric Emissions Inventory (NAEI)
from the United Kingdom [95] is shown that some static data attributes, i.e. ship register data, provided
by registers are not reliable, e.g. the auxiliary engine is missing in half of the ships in their study. When
the data is missing a linear regression of the attributes is done, analogously to what the IMO shows in
their studies [96, 97].

Johansson et al.[26] propose in the STEAM3 model to use the Most Similar Vessel (MSV) search
method, which is a𝑘 Nearest Neighbors (KNN) with k=1with a custom distance function. This method
requires knowing at least the length, the design speed and the ship type to be used. In case they are
not available they use a crawler to get this information. Design speed can be estimated as the 95th
percentile of AIS Speed to avoid outliers. Finally, if the required information is not found, a small boat
of 300 GT units is assumed. Instead of doing this assumption, Chapter 6 shows that it is possible to use
a neural network plus a clustering method to extract patterns from the AIS traces and use them along
the ship type to predict the main engine power. This technique may be also applied to other attributes
and it will be shown in the next chapter of this thesis. Liu et al.[98] propose to use statistical and ML
methods to regress the missing data using the other data available. Gradient Boosted Regression Trees
are finally selected because of their performance, however, there is no detail on how the process is
taking place nor results. Huang et al.[4] regress the main engine power for container and tanker ships
using polynomial regression using as predictive variable the length times the breadth of the ship. To
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regress the design speed they use the method described by Cepowski [99]. This method is based on
extensive work with regressions for the same type of ship.

As shown, there are several approaches to improve the fitness for use of this kind of data, but there
is no comparison nor any work that studies the relationship of the variables at a level that can be used
to correct the data.
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CHAPTER 4

Distributed Machine Learning on Fog Computing systems

4.1 INTRODUCTION

In IoT and smart cities environments, data is produced by sensors scattered in the environment. Cloud
provides extremely scalable resources from a remote data center. In contrast, in IoT scenarios, e.g.,
smart cities, domotics, or e-healthcare, proximity, and quick reaction are required while generating
big amounts of data. As the number of sensors grows, the requirements for Cloud computing power
and network bandwidth increase drastically. Cloud architectures scalability of resources that can be
dynamically managed, however, there is a limit on responsiveness. The more sensors are installed in a
city or environment, the more network bandwidth will be required. If a continuous analysis of the
sensors is required, a constant stream of data would reach the Cloud for each sensor, overflowing the
network of the system and reducing its responsiveness. Given these issues, FogComputing architectures
have emerged as an alternative for this type of environment.

Fog Computing architectures, also called the Edge-Cloud continuum, make use of all the computing
devices that are available in a network, instead of off-loading every process to the Cloud. This kind
of architecture is the natural evolution from the classical IoT paradigm, which includes net-enabled
sensors into a network so that they can communicate their readings and expose actuators. This layer,
from now on called Edge is the place where the data is regularly produced. As mentioned before, the
data has to be sent to the Cloud for further processing if a classical Cloud approach is used. However,
using Fog Computing, this data can be processed and consumed in any intermediate point between the
Edge and the Cloud, without requiring to send raw data directly to a Cloud.

This architecture is represented by Figure 4.1, where the 3 levels of FogComputing can be observed.
The first level is the Edge where only low-powered devices are generally found, then the intermediate
levels where mid-end computing nodes can be found, and finally the Cloud, where the resources are
highly scalable.

With this paradigm, critical components that require to be active at any time can remain indepen-
dent of network and infrastructure failures [100] if the required analytics are pushed to the device.
Specifically, Oil & Gas [101], power grid systems [102], smart cities, smart industries, and IoT applica-
tions [103]. In these environments, local analytics are required as they need a low latency QoS [104].
Given the importance of exploiting the data at the Edge level, considerable research effort was devoted to
establishing a common framework to cope systematically and effectively with the restrictions proposed
by this kind of environment [105]. Furthermore, some applications do not require to have fine-grain
metrics from the sensors if alarms are programmed. An analytic process that constantly checks and
aggregates the data could be deployed at the Edge level. This process can raise alarms while analyzing
the fine grain data and only send to the Cloud those alarms and aggregations, saving network and
storage usage in the Cloud.

Machine Learning (ML) is a field that provides a big part of the analytical functions that are being
currently implemented for data analysis, e.g. time series prediction, object recognition, or hardware
failure time estimation. Given the compute-intensive nature of training ML models, so far this process
has been pushed to the Cloud. This strategy has the advantage of using powerful computing machines,
however, it has several drawbacks: it adds a cost of additional network dependency, increases latency,
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FIGURE 4.1. Schema of a Fog Architecture. The Edge-Cloud continuum, from Edge to Cloud.

and moves the processing away from the data producers, as defined before in the general IoT case. In
contrast, using limited computing power available at Fog nodes is interesting for training ML models
efficiently. Recent work shows the importance of training an ML model on Edge infrastructure. For
example, Plastiras et al. [104] show the importance of doing the computation for training Deep Learning
models on Fog nodes for Computer Vision tasks like object detection. The authors remark on the
importance of privacy, performance, latency, and power efficiency in this kind of application, which
can be a perfect fit for Edge and Fog Computing. In particular, this work focuses on using models for
inference, i.e., applying the model to the input data. However, training on the Edge is also possible
and desirable to enable mechanisms that protect the model from degrading, e.g. Concept Drift [106].
Considering the computing power available, models must be light enough to be able to be trained in a
sensible time.

In the particular case of this thesis, we require a system that is able to gather data from transportation
means sensors and use it for analysis and prediction. This would provide a mechanism for city councils
and policymakers to study the traffic and gather information about what is happening at that precise
moment in the city. One of the requirements of such a system is that it is a near-realtime system. With
Fog computing, we are able to receive the data and process it at the same time, reducing the latency
between receiving and having a result ready. In this way, we avoid sending raw data, and instead, we
can send the already processed data aggregated, lowering bandwidth usage and off-loading all the
processes to small and power-efficient devices. Furthermore, adding more devices to the network does
not saturate Cloud Resources as installing a new device generally implies installing a computing node
in the Edge, as it is required to send the gathered metrics.

In our previous works (Perez et al. [100], Gutierrez-Torre et al. [21]) we explored the idea of training
light enough models in Edge devices and the difference between using local models and centralized
models. These centralized models were trained using all the data in the central node [100] and using
Federated Learning (FL) [21]. This last approach is based on the idea that models can be trained in each
Edge node and then merged in a central node without transferring the data. In this chapter, we extend
those works using FL in a distributed Fog Computing environment. The previous approach [21] was
limited to only one FL round, i.e., training at the Edge and then merging but not retraining the merged
model again. Moreover, it did not provide a common initialization for all the models. This limits
the accuracy when increasing the number of machines or data splits. This idea is tested in a similar
setup exploring further the hyper-parameter space. It also includes a comparison of Xeon-based server
and two low-powered devices, i.e., Raspberry Pi 3 and Jetson Nano, to simulate real Edge devices for
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training. These two low-powered devices are used to simulate a real Edge node where computational
resources available are scarce. The experiments related to this are also contained in Gutierrez-Torre et
al. [21], but are included in this chapter for the sake of completeness.

We present an extension of the system proposed in Gutierrez-Torre et al. [21] to automatically
distribute the time-consuming task of training deep learning models on a Fog computing network
consisting of low-powered and resource-constrained computing devices. The proposed approach is
based on FL, which leverages the work of McMahan et al. [52] and Bonawitz et al. [53].

The framework enables trainingmodels in any level of the Fog computing architecture. In particular,
we focus on making use of the Edge devices for training. We extensively evaluate the proposed system
using the FCD dataset, designed for city-wide traffic modeling and prediction running on the Fog
computing paradigm. Themethodology canmake use of any kind of NN by distributing the training on
Edge devices. In particular, GRUs are selected as the model of choice to produce short/medium-term
traffic predictions using the FL approach. Our evaluation investigates the effect of the FL rounds on
accuracy and time requirements. The evaluation is based on real traffic logs from one week of Floating
Car Data (FCD) in Barcelona. The data was provided by one of the largest road-assistance companies
in Spain and comprises thousands of vehicles. The approach was tested in a Smart City environment,
but it can be applied to any other field that requires distributing ML. This is especially interesting
for the healthcare industry, as the collected patient data does not have to leave the Edge device or the
healthcare center premises to be used in an anonymous and secure way.

The experimental results show that the models produced using a FL approach are similar to the
models using a classical central training approach. Also, they show the relationship of the hyper-
parameters and the error measure with a FL approach. Moreover, using this kind of light model
architecture is fitting to be used with low-powered computers.

In summary, this contribution expands a previous contribution [21] that showed the viability of
using GRU with one round of FL. The list of contributions is the following:

1. A system for distributed modeling for city-wide applications using the Fog computing paradigm
for predictive analytics using low-powered and resource-constrained devices with Federated
Learning (FL).

2. Adaptation of the Data Science pipeline to a use case with a Fog Computing architecture.

3. An exploratory analysis of FL over a real Floating Car Data (FCD) and guidelines on how to
select relevant parameters, e.g. number of FL rounds.
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4. Evaluation and comparison of time required to model the deep neural network using the pro-
posed solution on Fog (low-power and resource-constrained) vs. Cloud (high-performance)
environments.

5. A comparative analysis of resource usage vs. accuracy on training models for real Floating Car
Data (FCD) compared with existing baseline methods.

The document is organized as follows: Section 4.2 introduces the Fog Computing architecture and
how the Data Science pipeline fits in this kind of approach. Section 4.3 introduces the methodology,
covering the model used Gated Recurrent Unit (GRU) networks and how to distribute the training
using Federated Learning (FL). Section 4.4 covers the experimental results. Finally, Section 4.5 presents
the conclusions and limitations.

4.2 ARCHITECTURE

In this section, the basic concepts of Fog computing are introduced and then applied to the actual use
case. After that, the data analytic pipeline is described along with general ideas regarding the data
processing in this architecture.

4.2.1 Fog computing: Edge-Cloud continuum

Fog computing is composed of three different layers: Edge, intermediate, and Cloud. The first layer is
composed of Edge computing devices that collect data and have enough computing power to process
them for simple analytics. The intermediate layer is composed of mid-range computers that can
aggregate data from different Edge devices and perform more powerful analytics. Finally, Cloud is the
layer where resources can be easily obtained and, therefore, it is possible to perform heavy analytics
and other computing-intensive processes. These layers can be seen in the diagram from Figure 4.3.

Cloud 
HPC Analytics 

and models

Intermediate levels 
Aggregations and

intermediate analytics

Edge 
Sensoring, actuators

and analytics

FIGURE 4.3. Schema of the Fog Infrastructure, from Edge to Cloud.

Fog computing extends the Cloud paradigm [107], allowing computation in any step of the com-
puting pipeline. This is also called Edge-Cloud continuum to represent the possibility of doing the
computation at any point between the Edge and Cloud. This is especially interesting for use cases
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that require that the sensors and actuators located in the Edge remain autonomous if there is any
connectivity issue [100] and when we build near-realtime systems [21].

In our case, we require a system that is able to perform analytics as soon as the data is produced.
These analytics ranges fromML to predict future outcomes from a sensor to applying physical models
to estimate the pollution produced by the transportation means. If this requirement of low-latency on
analytics is fulfilled, it is called near realtime system. This kind of system produces the results almost
instantaneously so that the users can see the system data and derived information (e.g., the pollution
produced in the city by cars) with a small delay. With this kind of system in a Smart City environment
enables the city council or the policymakers to evaluate the status of the city and check if a short-term
policy is correctly working and its effects. Moreover, having almost immediate information can be used
to detect issues that may arise. Compared to a classical Cloud system, the advantage is that the system
produces the derived result as soon as it receives the data, whereas in a Cloud system the data would
take time to be moved to the Cloud and be processed [108]. The more devices there are producing
data, the more computing power would be required in the could. Moreover, it also requires scaling in
network capabilities as more data would be required to be transmitted. On the other hand, in a Fog
computing system the Edge device would always be present, so leveraging this device comes for free as
most of the times it is already part of the system and with this, we do not require to scale up the Cloud.
Also, in case the raw data is not required in the Cloud, the network requirements fall drastically as the
Edge layer can perform aggregations, and also analytics can be sent whenever they are required, e.g.,
sending an alarm after the analytics result overpasses a given threshold. Notice that in scenarios with a
low amount of data per node, ML may underperform if a critical mass of useful examples is not met
or reaching it takes a considerable amount of time. In these cases, it is better to rely on the Cloud or
intermediate nodes. Other scenarios where data is continuously being produced benefit from the Fog
computing approach.

Another aspect of analytics is the trade-off of making use of online analytics versus using offline
analytics. While on off-line ML methodologies we require a training dataset to be built, on online
ML the model is continuously being trained with each arriving data point. Having an online learning
system overcomes the problem of Concept Drift, i.e., changes in the underlying producing mechanism of
the data, which makes the models more robust to changes. However, a hybrid approach with updating
policies is more stable.

CLOUD

Produced data by
sensors and devices

Derived/Curated data 
Emission estimation

with Data Quality
processes and

predictions

Required data 
Aggregated emissions

Fog NodeFog Node

Transportation
Research 

Data pipeline 
(Data Quality and

Use Case)

Fog Computing 

Distributed
Machine Learning 

(Architecture)

FIGURE 4.4. Schema of the Fog Infrastructure applied to transportation research.

In this work, wewant to focus on applyingML at the Edge computing layer. If the analytics required
in the system are computed sensor by sensor and do not require information about neighboring sensors,
they can be performed in the Edge. On the contrary, if the analysis requires neighboring information,
this computation should be moved to an intermediate node that aggregates that information. In the
particular case of this thesis, all the analytics performed are focused on samples from the same sensor,
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therefore we focus on pushing all the computation to the Edge layer. Removing the intermediate layer
would result in the simplified architecture depicted in Figure 4.4. The Fog nodes are the Edge devices
available near where the data is produced. These devices are in charge of receiving the data from
sensors and performing predictions, as will be seen in this chapter, and processes to improve the fitness
of the data for the application, i.e., ensure Data Quality, and estimate the pollution produced by the
transportation means, as will be seen in further chapters.

Usually, the Edge devices or Fog nodes are meant to be low-power, therefore the computing
capacities available are scarce. To simulate this, we include in our experiments a Raspberry Pi 3B (ARM
processor) and a Jetson Nano (ARM processor + GPU) [109] micro-computers to evaluate how the ML
performs in this kind of device and to compare the difference between using CPU or GPU to perform
the analytics.

4.2.2 Data pipeline

As mentioned in previous sections, data can be processed in any tier of the Fog computing architecture.
Therefore, the whole data processing pipeline can be distributed over the infrastructure, i.e. the Data
Science pipeline over the infrastructure. In this particular case, we focus on pushing all the computation
to the Edge level, so that there is no computation required from upper levels aside from aggregations
and models over those aggregations. By doing so, it is possible to offer the end results directly in the
Cloud without further processing, enabling near-realtime visualizations of the complete system. Part
of the processing could be done in intermediate nodes, however for the sake of simplicity only Edge
devices are used.

FIGURE 4.5. Data pipeline including the management and the analytics parts. The data wrangling processes include
data cleaning, aggregation, and interpolation. These processes can be performed by classical techniques or
using ML models, specially in the data cleaning process as will be seen in further chapters. This figure is an
implementation of a subset the Figure 2.9 modules.

Figure 4.5 represents the processing done for each data point. Here, the data is ingested from the
signals received as incoming raw data and then loaded into the system. This system represents a purely
stream system in which data is processed as it comes. After being received, it is cleaned, interpolated
and aggregated to the desired granularity. With this we start two processes: a collection of the data in a
time window to be used for training (model update) and the forecasting with the current model. Notice
that for this work we depart from a dataset and simulate the streaming.
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FIGURE 4.6. Federated model compared to having a centralized model and then broadcasting it. Notice that it is mandatory
to broadcast the model using the FL approach, however, data broadcasting is optional, i.e. it is not necessary
for FL to work.

4.3 METHODOLOGY

In this section, we cover the methodology used to perform FCD time-series forecasting and distributed
modeling on the Edge.

4.3.1 GRU for traffic prediction

This problem targets the prediction of two variables: the number of cars and the average speed. Using
the previous 𝑑 elements, i.e. 𝑑 is the delay, we try to predict from 𝑡 + 1 up to 𝑡 + 𝑁 , where N is the size
of the testing data (approximately 1 day). Because the series have been aggregated the forecast goal is to
predict the next aggregated period of traffic.

GRUs are used given their capabilities to do medium-term forecasting. This is possible because
GRUs are generative and can generate predictions by using their last prediction and status as input/mem-
ory for the next prediction. This means that we can use the predictions as input for the next steps in
forecasting.

In the case of thiswork, we are using amodel composed of one layer ofGRUand one fully connected
layer. This model has the focus to be as easily trained as possible by low-powered computers while
getting the best accuracy possible.

4.3.2 Distributed Machine Learning: Federated Learning

Federated Learning (FL) is a way to distribute ML proposed by McMahan et al. [52] which focuses on
training local neural network models and then merging them centrally. This idea matches with the
Fog computing paradigm, as in FL only the local data is used to train each model, and then the model,
i.e. the neural network weights, are sent to the central coordinating node. In this sense, none of the
data is required to travel through the network and, therefore, network bandwidth is saved. Notice that
there is the possibility to also apply this kind of technique with other types of models, e.g. Random
Forest [110].
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This kind of modeling framework is especially good when computing nodes are required to be as
autonomous as possible as shown in our previous work (Perez et al. [100]). In that case, it was seen that
having local models performed better than sending all the data to the central node and training globally
when network connectivity issues happen. In this sense, we go a step further and extend this idea of
training local models with local synchronization, as proposed in Gutierrez et al. [111]. In this work,
models were trained locally and then averaged to obtain a synchronized model. This way the nodes
can both stay autonomous but synchronized whenever it is possible and the data remains where it is
produced. This makes the framework privacy compliant and also saves bandwidth, which is desirable
for Fog computing systems. Notice that in the cases where local models perform better than centralized
models, it is possible to train Graph NN that can take these considerations into account.

The FL can be seen in Figure 4.6 and it works as follows:

1. Initialize model and distribute it to the Edge nodes

2. Train the model with the required epochs and configuration

3. Send the models back to the central node

4. Average the weights of the models

5. If more FL rounds are required, go back to step 2

By using this procedure what is obtained in the end is a central model that has been trained with
all the data available. This data has not left the Edge nodes and the training process has happened
completely in a distributed way. As mentioned before, this has the advantage of the nodes being able to
adapt to network connectivity issues, respond with less latency and still provide a global model. There
are different approaches for model merging, however, we will focus only on FedAvg without weighting,
which consists in doing the average of the weights without taking into account the number of samples
as the samples of each node will be of the same size. This merging process requires that all the models
have the same structure, so the weights for each neuron can be assigned to their corresponding place,
as represented in Figure 4.7.

FIGURE 4.7. Example of merging weights in a single neuron model. All the weights are averaged taking into account the
network structure. For example 𝑤1 = (∑𝑀

𝑖=1 𝑤1𝑖 )/𝑀 .

On the other hand, the data available at each node may not come from the same producing mecha-
nism, i.e. it can be non-Independent and Identically Distributed (IID). In the work fromMcMahan et
al. [52] the IID vs non-IID is tested. In their results, it is seen that non-IID lead to converging to less
accurate models but really close to the model it would be obtained from central training. On the other
hand, Linardos et al. [112] show that this effect is completely dataset dependent, as in their work they
show that in the non-IID cases the FL model can perform better than the centrally trained one.

In this regard, the work of Izmailov et al. [113] follows the same line of thought. In particular, they
show that using what they define as Stochastic Weight Averaging (SWA) it is possible to obtain models
that generalize better. This technique is based on merging the final model with models generated
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during the training (checkpoints). In this sense, FL follows a similar approach as we are merging models
that have a common structure but are being trained with different data.

In summary, Federated Learning (FL) provides a framework to build models autonomously and in
a distributed way that can be synchronized. It also provides low latency as models are always being
trained locally and, therefore, can react to new situations if needed. It also provides low bandwidth
usage, as only models are required to be transferred and, generally, they should not be big. In our
previous work [111] the model initialization and the FL rounds effect was not taken into consideration,
therefore this work will cover it.

4.4 EXPERIMENTS

This section explores the fitness of GRU for traffic prediction comparing it with other methods, the
effect of the model synchronization (federated training rounds), the learning rate and the common
initialization of models, and the effectiveness of the approach in low-powered computing devices.

4.4.1 Comparison with baseline methods

First, we provide a comparison of the proposed learning method with a previously used method [100]
and a classic time series model used for estimating the traffic data. We compared our solution with
Vector Auto-Regression (VAR), a classic time-series analysis method, and CRBMs.

As we can see in Table 4.1, the proposed solution based on GRU outperforms VAR and provided
comparable performance with CRBMwhen the granularity is set to 5 minutes. As it can be seen, GRU
is better at predicting the number of cars, but worse when predicting the speed. In particular, Figure 4.8
shows GRU is slightly better than CRBM when granularity is finer, compared to the results from
Gutierrez-Torre et al. [21]. Both kinds of neural network perform well in our framework. However,
due to our particular interest in finer granularity, GRU is the chosen method for this work, as we are
focused on 10-minute granularity. For other experiments with different data sets, both methods should
be compared in order to select the final model.

Method RMSE
Cars Speed

VAR 4.99 7.44
CRBM 2.03 5.68
GRU 1.76 6.17

TABLE 4.1. Comparison with baseline models VAR and CRBMs as N = 1 (5 min aggregation). Notice that the results are
for the overall best configurations found.

4.4.2 Single versus distributed models

With the following experiment, we explore the differences between training in the classical way (one
single model) versus using an Federated Learning (FL) framework. In particular, we focus on the effects
of the federated rounds, i.e., howmany times the models are synchronized, and the effect of the learning
rate with respect to the number of nodes used, i.e., the number of models to federate.

The hyper-parameter grid was selected taking into account the hyper-parameters that worked best
in Gutierrez-Torre et al. [21] and extending it to the parameters that were not available. In particular
the hyper-parameters are the following:

• Number of nodes: Number of models to federate. Values: 1, 2, 3.
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FIGURE 4.8. Error vs. Hidden units vs. Time aggregation for the number of cars and speed estimation on CRBMs.

• Hidden units: Number of GRU units that the GRU layer has. Values: 4, 6, 8.

• Batch size: Number of elements to process for each gradient update. Values: 4, 32, 512.

• Epochs/FL rounds: Combination of number of times that the dataset is reviewed by the network
and how many times the whole FL training is done. As these two parameters are related, their
values are selected together. In case the number of nodes is 1, a number of epochs is 94 used [21].
Values (e, r): (94, 5), (31, 15), (1, 100).

• Learning rate: How much the NN weights have to be updated for each step initially. In the
experiments, RMSProp is used as the optimizer, which has an adaptive learning rate mechanism.
Notice that it will reset after each FL round. Values: 0.01, 0.001, 0.0001.

Model evolution in Federated Learning rounds

First, we compare the effect of the number of FL synchronization rounds and, consequently, the number
of epochs with how many models we have to train in parallel. In order to do a fair comparison, instead
of adding new data for each new federated model, we split the total data we have into 𝑁 pieces so that
all combinations of 𝑁 use the same data, therefore making the experiments comparable.

Figure 4.9 upper part shows the average error of all hyper-parameter configurations grouped by
the number of nodes and number of rounds. On average, having 100 rounds with 1 epoch performs
best. This result shows that having high synchronization between the models leads to stable models.
On the other hand, models that do more epochs tend to provide higher errors.

Figure 4.9 lower part shows the error of the best configuration found for each case. In this case, it
can be seen that 100 rounds are still a good choice. However, for 𝑁 = 3 the other two options provide
a lower RMSE in the number of car prediction. Overall it can be observed that with the FL approach
it is possible to obtain models that are close to the centralized model. Moreover, in some cases, the
model can be better.
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FIGURE 4.9. Comparison of the Root Mean Squared Error (RMSE) regarding the number of nodes (federated models) and
the number of FL rounds with (top) the average error of all the tested model configurations and (bottom) the
best model configuration. Notice that the different number of rounds have an associated number of epochs.

Learning rate on Federated Learning

Now the focus is on the effect of the learning rate when using FL. The upper part of Figure 4.10
shows the average error of all hyper-parameter configurations with respect to the learning rate and the
number of nodes.

When the learning rate is small enough, splitting does not have a high impact on the error. However,
if we increase the learning rate, the error increases with respect to the 𝑁 . This effect may happen
because the local models are overfitting and the merged model is not able to fall in the local minima
and lead to divergence. Figure 4.11 is an example of this. When the learning rate is high, the models
are overfitted to the local data as is the case of the local model 2. As the data from local models 1 and
3 might be more similar, the merged model favors them as they have two-thirds of the voting when
averaging. When using a smaller learning rate, the learning curve is smoother and converges to a better
solution that fits all the data splits, i.e. produces a more generalized model. This can be observed in the
lower part of Figure 4.10, which shows the error of the best configurations found for each parameter
combination.

4.4.3 Effect of initialization when using Federated Learning

It is known that using a common initialization of the models before training is required to find a good
solution (McMahan et al. [52]). However, it is not clearly shown what happens when not using the
initialization in the long run. Therefore, in this experiment, we show the effect of using a common
random initialization versus random initialization for each model. The experiments are performed
over the best configuration found for the cases of two and three models from Section 4.4.2. For each
training process, random initialization and common initialization are tested.

In Figure 4.12 it can be observed that initially, the non initialized setting produces a model that



46 ▶ CHAP. 4 DISTRIBUTED ML ON FOG COMPUTING

n_nodes 1 2 3

0.0

0.5

1.0

1.5

1e−04 0.001 0.01
Learning rate

C
ar

s 
R

M
S

E

0

2

4

1e−04 0.001 0.01
Learning rate

S
pe

ed
 R

M
S

E

Learning Rate vs Nodes (mean RMSE of all configuration)

n_nodes 1 2 3

0.0

0.5

1.0

1.5

1e−04 0.001 0.01
Learning rate

C
ar

s 
R

M
S

E

0

2

4

1e−04 0.001 0.01
Learning rate

S
pe

ed
 R

M
S

E

Learning Rate vs Nodes (RMSE of best configuration)

FIGURE 4.10.Comparison of the RMSE regarding the learning rate and the number of nodes (federated models) with (top)
the average error of all the tested model configurations and (bottom) the best model configuration.
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FIGURE 4.11. Cars RMSE with respect to the learning rate and the FL rounds. Notice that when the learning rate is 0.01 the
merged model is overfitted towards the blue local data from models 1 and 3. When the learning rate is smaller,
the model obtained is more general and is able to cover all the data splits. Also notice that for the four models,
the test data is the same, therefore the data used for training in the local model 2 is more different than the
other two splits.

initially has a higher error. This is because the twomodels from the non initialized setting are initialized
differently, producing different weight distributions. This makes that, for example, the hidden unit
1 recognizes one part of the input data while the unit 1 of the other model recognizes another part
of the data. This makes the initial solution produced in the first step is close to random. However,
when synchronization starts, both models get to similar error metrics. Finally, in this case, the speed is
adjusted better in the first rounds of the non-initialized model by chance.

Figure 4.13 shows a similar trend for the experiments federating 3 models. In particular, initial-
ization provides a good solution in the first step from the start as we are training 34 epochs before
synchronizing, a similar setup to what was proposed in Gutierrez-Torre et al. [21]. Notice that the first
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FIGURE 4.12.RMSE of the merged model for the number of cars and speed with 2 federated models comparing having a
common initialization (N2_init) versus random initialization (N2_no_init). Configuration: Hidden units 6, batch
size 32, epochs 1, federated rounds 100, and learning rate 0.0001. RMSE calculated with the test set.

point of the green line represents the proposed method in Gutierrez-Torre et al. [21]. In that previous
work, as federated rounds were not included, the error increased linearly with the number of models
to federate. Moreover, we see that the non-initialized setup reaches a lower error in speed. This is not
because not initializing the process is beneficial but to the stochastic nature of the model initialization.
Different initialization leads the network to different configurations and then different results if the
training falls into local minima.
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FIGURE 4.13.RMSE of the merged model for the number of cars and speed with 3 federated models comparing having a
common initialization (N3_init) versus random initialization (N3_no_init). Configuration: Hidden units 8, batch
size 32, epochs 31, federated rounds 15, and learning rate 0.0001. RMSE calculated with the test set.

In conclusion, providing a common initialization is helpful to have a usable result from the first
synchronization step. However, it is not completely required, as after the second step the models will
share the same structure because of the process.

4.4.4 Evaluation on low-powered devices

In this experiment, we compared a FL round of the proposed solution’s effectiveness on low-power
and resource constraint devices designed for the Edge, like the Raspberry Pimodel 3B and theNVIDIA
Jetsonmodel Nano. Such devices are built for consuming less than 12W and embed low CPU and GPU
computing resources. Raspberry Pi is used for general purposes while the Jetson integrates a GPU
for AI and neural network computing on the Edge and smart devices. We measure the time of doing
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one FL round with the given configuration and 94 epochs to simulate the maximum time required to
process one round.

FIGURE 4.14.Time comparison for configurations in low-power devices vs. single CPU Xeon ref., for each amount of hidden
units.

Testing the grid configurations for Time Aggregation vs. Hidden Units on the Raspberry Pi and the
Jetson Nano, we observed a noticeable increase in execution time in comparison with the single-CPU
Xeon. Still, the training plus validation time is below 30 minutes for nearly a week worth of data. We
tested 4, 32 as 512 Batch Size (BS), i.e., the number of samples used for each training step in the neural
network to check the Jetson GPU’s possible advantages due to data bandwidth. The bigger the batch
size, the more we profit from the GPU’s parallelism up to a certain point. The number of epochs is
fixed at 94, to compare the performance of identical training processes, and the steps (iterations) per
epoch are proportional to the batch size (200 steps/epoch for BS = 4, 25 steps/epoch for BS = 32, 1
step/epoch for BS=512). The objective was to test the method’s performance on low-powered devices
with different properties while maintaining the error (that may vary when modifying the batch size). As
a comparison metric, we show the milliseconds per step and the seconds per epoch. When computing
the average milliseconds/step, the first epoch was excluded as it carries the overhead on warm-up
around ×4 the average epoch.

Figure 4.14 shows the performance in times per step for the different configurations of the GRU in
the different used technologies, for the training time with a common and proper configuration found
for the GRU on the single-CPU Xeon, the Raspberry Pi ARM-based CPU, and the ARM-based and
GPU enhanced Jetson.

From this experiment, we concluded that our method is fully fit for use on low-power or resource-
constrained devices, as training times take at most half an hour for a model representing around six
days. Moreover, we noticed that the GPU at the Jetson Nano does not provide improvement for the
kind of data until the batch size reaches larger sizes.

Figure 4.15 shows the absolute training time for the 3 devices, where the single Xeon outperforms
the low-powered ones but for no more than a factor of 4, and how in scenarios requiring large memory
bandwidth (low data aggregation and large batch sizes), the GPU starts chasing CPU execution times.
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FIGURE 4.15.Average modeling time on different Edge devices.

4.5 CONCLUSIONS

In this chapter, we have explored what Fog computing architectures are and how they are used to build
distributed systems for near-realtime applications. Moreover, the Data Science pipeline was adapted to
this kind of architecture, and Federated Learning (FL) framework was applied to it. Using this system it
is possible to build centralizedMLmodels training themwhere the data is produced. Doing this process
on the Edge, allows the system to avoid sending unnecessary data to the backend which saves network
bandwidth. Moreover, in case of connectivity failures, the training process can be continued unaffected,
which provides a more robust system. In this chapter, we proposed to train the models in the Edge
instead of uploading the data to the Cloud and performing the training there. This leads to two main
advantages: the system can be trained online while receiving data without any additional latency and
with this, a system that detects Concept Drift can be set up so that models are retrained instantly when
they start failing, e.g. detecting changes with statistical mechanisms like Kullback-Leibler divergence.
The architecture was evaluated with road traffic, but the same architecture applies to further chapters
in which the main topic is maritime traffic and emission estimation.

The experiments showed that this kind of system is possible and have extended the work from
Gutierrez-Torre et al. [21]. First, the FL framework produces models that are similar in accuracy to the
ones that would be produced centrally, contrary to our previous work. Moreover, in some situations the
models are better which may be related to the improvement in generalization that merging models can
have [112, 113]. The initialization of the models was also tested and the experimental results showed
that a common initialization of the models is recommendable but not vital for the process, as the first
synchronization performs the same effect as initializing. Mind that not initializing the models leads to
losing computation time of the first step. Finally, the experiments show that this approach can be used
with the proposed model as it is light enough to be trained in low-powered devices.

There are also limitations and future work to cover for this chapter. First, the optimization
algorithm RMSProp is used, which includes an adaptive learning rate mechanism. This is generally good
when training this kind of model. However, when doing a new FL round the learning rate is reset due
to how the current code works internally. It will be positive to create a mechanism that takes this into
account and saves the last learning rate applied to avoid jumps in the error function. Moreover, online
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and batch learning are not compared, only the results for batch learning are provided. As mentioned
before, it is also required to study the Concept Drift in this context, however, this would require extra
data and, if possible, online streaming data. Finally, other techniques like GraphNeural Networks (NNs)
could be explored and also other hardware platforms like MicroController Units (MCUs).



CHAPTER 5

Ship properties missing data estimation and evaluation with Ma-
chine Learning

5.1 INTRODUCTION

Maritime traffic is a key component for the EuropeanCommunity [11] because of its fuel efficiency com-
pared to other means of transportation for goods, according to the European Community Shipowners
Associations (ECSA). As the global economy expands, the relevance of maritime traffic grows, especially
in terms of exhaust emissions. The Third IMO Greenhouse Gas study [96] showed that due to the
global-scale trade the contribution to global Greenhouse Gas will increase between 50% and 250% by
2050. Given this situation, governments and organizations like the World Health Organization are
interested in the advances of emission detection to create law enforcement for Air Quality Standards.

Given the current technological advances, detecting the exhaust emissions from ships in near
real-time is possible. By international regulation, most of the ships are equipped with the AIS system.
This GPS-based tracking system is used to prevent collisions between ships, however, the data can be
correlated with the ship characteristics to estimate how much pollution the ship is producing at that
precise moment.

The estimation of the exhaust emissions with this data is covered in the scientific literature, like
in the work of Jalkanen et al.[1, 16] with their STEAMmethodology. Other methodologies based on
different data sources like the HERMESv3 model [25] can benefit from this data to accurately position
the emissions, improving therefore their spatial and temporal resolution. AIS-enabled methodologies
make use of the AIS speed, timestamp, and position to evaluate how, when, and where the engine is
being used.

Along with this data a static dataset containing the characteristics of the ship is used. This dataset is
crucial as it contains attributes used to compute the emissions, e.g. the total installed engine power. This
dataset is required for the calculations inside the model, defining characteristics like the boundaries of
how much power and fuel is being used, the type of fuel required in the ship, or the amount of auxiliary
engine power at a given point, among others.

Even though the methodology provides high spatio-temporal accuracy compared to other ap-
proaches [98], it is highly dependant on the quality of data, i.e. how fit is the data for a given problem
as defined in Section 2.5.1. On one hand, AIS data may be incorrect due to human or machine errors
or samples may be missing [18, 95]. On the other hand, a similar situation happens with static data
provided by ship registries. The data may be missing due to multiple registries managing the same
area [3] or attributes that are commonly missing or incorrectly set [4, 95].

IMO reports showed that important features for the emission estimation can be missing and that
the methodologies for estimation should be aware of this phenomenon [96]. This is the case of RPM
(91% of availability), the main engine installed power (99.1% of availability), or the length of the ship
(43.2% of availability).

Since vital data for maritime traffic analysis can bemissing, there has been research in this direction.
This process is called in the literature as error correction, data infill or missing data estimation and is
part of the data preparation process in the Data Science pipeline, which is in charge of making sure that
the data is fit for use for a given application. For example, Johansson et al.[26] proposed a mechanism
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to estimate the missing data with ships that are similar to the one being treated. There have been other
efforts using standardMachine Learning [98] and specific studies of a particular ship type [4]. However,
to our knowledge, there is no comparison of methods nor a guideline for practitioners that want to use
this kind of data for maritime studies or emission estimation. Moreover, scenarios with low-powered
compute devices like Smart Cities or Edge Computing settings can benefit from exploring traditional
fast ML techniques. The missing data estimation process can be done in the devices near where the
data is produced, e.g. AIS antennas, so that the data is only transmitted after correction.

Therefore, the contributions of this study are the following:

• Provide a review of the methods that are currently being used for this task in the field.

• Provide a comparative analysis of missing data estimation techniques applied to ship character-
istics.

• Apply standard ML techniques that are easy to use and fast to train.

• Close the gap between practitioners and data analytic techniques providing a guide on how to
successfully apply standard ML techniques.

The structure of the chapter is the following: Section 5.2 presents the background andmethodology
to reproduce this work. Section 5.3 shows the results and the discussion of experiments. Finally,
Section 5.4 contains the conclusions and limitations of this study.

5.2 METHODS AND DATA

In this section all the requiredmethods and data is presented. Some specifics on emission estimation are
provided as context along with the available data required for the process. Then, the manual preprocess
of the data is introduced to ensure the fitness for use of data. The basic ML and state-of-the-art
techniques required to understand this chapter are introduced. Finally, the used validation protocol
and metrics are introduced. All these elements define the prerequisites and key building blocks for this
contribution.

5.2.1 Emission estimation

Ship exhaust emissions can be estimated with different approaches and points of view. Primarily,
there are two main approaches: Top-down and Bottom-up. Top-down starts from the global emission
measure and tries to disaggregate the value to estimate where it comes from. On the other hand,
Bottom-up approaches use positional data, e.g. GPS, to accurately position the origin of the emission.
With the available characteristics from that origin, this kind of methodology can estimate how much
pollution is produced by that origin. This approach is better than the former in precision and temporal
resolution [3]. Notice that there might be methodologies that fall in between the two main approaches.

In particular, this workmakes use of the second approach using the STEAMmethodology proposed
by Jalkanen et al.[1, 16]. STEAM2 from Jalkanen et al.[16] improves STEAM from Jalkanen et al.[1] in
terms of the ship characterization, adding details on water friction, engine load balancing, and other
factors that affect the engine usage.

Both versions of the methodology make use of the data coming from the AIS and static information
from the ship to position the emissions and calculate the amount of pollution that is produced.

Following this methodology, we have to calculate two factors to estimate the emissions: the activity
factor and the emission factor. The activity factor is measured in kWh and refers to how much power
are the engines producing at a given time. The emission factor is measured in g/kWh and refers to
how many grams of each pollutant is emitted for each kWh generated. Equation 5.1 represents the two
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parts needed for the calculation. Notice that with AIS we have the timestamp and the position of each
sample, therefore we can locate spatio-temporally the data with precision.

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑔) = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 (𝑔/𝑘𝑊ℎ) ∗𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 (𝑘𝑊ℎ) (5.1)

For this purpose, we require that the data is available and correct. In STEAM2, whenever a key
attribute is missing, the STEAMmethodology is used as a fallback. This is because the first version is
more general and simple and, therefore, it requires fewer attributes to do the calculation. In this work,
we focus on STEAM so that we make as few assumptions as possible about data.

To estimate the activity factor the methodology needs the current speed of the ship and the installed
power on main and auxiliary engines. For the emission factor the SFOC, the engine’s RPM, and the fuel
type are required. In both STEAM and STEAM2 the SFOC is fixed to a given value. If more accuracy
is desired the approach followed by United Kingdom’s NAEI [95] can be followed. This approach
uses other studies to estimate reference values by using the engine type and fuel type. In this case,
we consider SFOC as constant following STEAM as we are already in a case where data is missing.
Given this information, this work will focus on the requirements from STEAM as STEAM2 uses it as a
fallback when data is missing [16].

Figure 5.1 shows a simplified data pipeline with every step needed for a correct emission estimation.
Static and AIS data cleaning process and data inferencing are the data preparation steps mentioned in
Section 2.5.1 that ensure the fitness for use of data for computing emissions, i.e. they ensure the data
quality. In the following subsections all the processes are described.

 
No data

 
Static data

Infer data

Static data  
cleaning process

 
AIS data

AIS 
cleaning process

 
Clean 

static data

 
Clean 

AIS data
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FIGURE 5.1. Description of the data pipeline from raw data to the emission computation. AIS cleaning process is a simplified
version of Jeon et al. [2]. Data inference when there is no data is covered on Section 5.2.6. This work covers
the static data cleaning process.

Notice that the complete process can be performed on-line. It is possible to use the pipeline in the
system described in Chapter 4 so that the data preparation is performed when the data arrives and then
the emissions are computed. However, the correction of static data is also well suited for the cloud
or central system as this kind of data does not evolve over time. However, it is interesting to use the
approach of Chapter 6 (data inference in the figure) in the Edge as the data required for the process is
collected there.

5.2.2 Data description

There are two datasets required to estimate emissions: the data provided by the AIS and the data
provided by a ship registry. Both datasets are constrained to the area of the port of Barcelona and refer
to the year 2017.

AIS dataset

The first dataset is a time-series dataset that contains the position, speed, and other ship characteristics.
This dataset was obtained from the local port authorities. Each ship emits this data to the others by
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radio frequency using the AIS. This technology was devised to avoid ship collisions and to help the
ships in their navigation. However, this data may be gathered from land to know the actual position
and other data of the ships. However, as in every data problem, this data might not be clean due to
machine or human errors. As seen in Section 3.3.2, there is plenty of work done regarding this issue in
the literature. In particular, Jeong et al.[2] propose a pipeline to find anomalies and completely denoise
the data. For this work, we have simplified this pipeline and only used the Kalman Filter step whenever
it is required as our AIS dataset is already well-curated.

Static characteristics dataset

The second dataset contains the static properties of the vessel, e.g. main engine power, length of the ship.
This dataset was obtained from the company IHS Fairplay but can be obtained from others like Lloyd’s
registry. This dataset shares variables in common with the previous dataset, e.g. length. However, as
the data comes from a curated register they are more reliable.

This work focuses on the variables shown in Table 5.1 as those are the basic characteristics required
for the basic emission estimation. In case STEAM2 wants to be used, the number of variables required
is higher, and, therefore, the amount of uncertainty increases.

Attribute Description Origin Missing
Type Ship type AIS/IHS 0%

Main Engine (ME) power Installed main engine power IHS 0.03%
Auxiliary Engine (AE) power Installed auxiliary engine power IHS 37.11%

ME RPM Main engine RPM IHS 2.57%
AE RPM Auxiliary engine RPM IHS 100%
Eng. type Type of engine installed (Main engine) IHS 0%

L Ship length AIS/IHS 0%
B Ship beam AIS/IHS 0.03%
T Ship draught AIS/IHS 0.21%

TABLE 5.1. Availability in our dataset of the variables required for STEAM emission estimations. Notice this scenario is
not general as the ones seen in the work of Peng et al. [3] and Huang et al. [4].

In Table 5.1 the actual missing values of our data can be observed. Even though there are not many
missing values in our case, it is still a concern to be tackled as suggested by the scientific literature as
there may be missing data due to having multiple administrations for the same space [3] and that some
attributes are prone to be missing [4].

5.2.3 Data filtering

As in every data-related field, data correction may not be warranted. Therefore, before doing any
analysis with data, we are required to do an error analysis of it. Doing this filtering and correction fully
automatically can be dangerous as we could be removing outlier data, i.e. data that is correct but has
uncommon values. Because of this, in this work we have used a combination of automatic and manual
analysis.

To find errors we first need to know which row of our data are outliers. To do so we apply Rosner
filter [114] to find the possible univariate outliers. Notice that we are not using a multivariate outlier
detection technique because we are interested in punctual incorrect values introduced by human error
or device failures. After applying this filter we observe that there are 152 ships with possible outliers.
After building the tables of possible errors, we manually check every row and compare it with the rest
of the ships of the same type and also further information available on the Internet, e.g. MarineTraffic.
We found that 15 of the 152 ships have erroneous values. The most common erroneous value was
Revolutions Per Minute (RPM), reporting unrealistic value. It was followed by Auxiliary Engine (AE)
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power and Main Engine (ME) power. The values are marked as not available so that we can use the
in-fill techniques to correct them afterward.

5.2.4 Statistical and Machine Learning techniques

Missing data can be estimated using statistical and Machine Learning (ML) techniques. These tech-
niques will use the relationship between the variable to be estimated (target) and the variables used
in the process (predictors or features). In this case, all the target variables are numeric, therefore
we will focus on regression algorithms. Most of the algorithms presented below are well-known. If
further information is needed, please consider checking the work of Bishop [115]. All the methods were
implemented using python and the ML library scikit-learn. Gradient boosting trees were implemented
using the XGBoost package. Data is scaled subtracting the mean and dividing by the standard deviation,
i.e. standardizing, to avoid pitfalls in the algorithms and improve prediction, e.g. Neural Networks.

Linear and polynomial regression

We use the well-known linear regression and, in some cases, quadratic regression as a baseline. These
methods are a good starting point as there is no hyper-parameter to be tuned and regression coefficients
can be interpreted. We will use the coefficients to assess the predictors’ importance. Moreover, the
risk of memorizing the training data is low because of the simplicity of these methods, i.e. the risk of
overfitting.

k Nearest Neighbors andMost Similar Vessel

𝑘 Nearest Neighbors (KNN) is a method that uses distances like the Euclidian orMahalanobis distances
to find the 𝑘 data points that are closer to the one we want to estimate. This distance is computed using
the desired predictors. In the case of regression, the data from those 𝑘 points are usually averaged to
obtain the estimation. As the data points are the model, it will always compute the same estimation for
the same input data and point to estimate.

Most Similar Vessel (MSV) is a particular case of KNN proposed by Johansson et al. [26]. In
particular, this is the case when 𝑘 = 1 and the following custom metric is used:

𝑠 =

√︄
𝑎

(
𝑣 − 𝑣𝑐

𝑣𝑐

)2
+
(
𝑙 − 𝑙𝑐

𝑙𝑐

)2
(5.2)

Where 𝑠 measures the similarity of the ship with characteristics to estimate with a candidate vessel
𝑐 . The lower the value 𝑠 is, the more similar is the current ship. Particularly, this approaches uses the
design speed of the ship (𝑣 ) and the length of the ship (𝑙 ) as variables. Moreover, the 𝛼 weight parameter
was added and optimized to 0.35 using a large database of ships and with a Monte Carlo simulation.

Both KNN and MSV were implemented with scikit-learn KNeighborsRegressor, which allows to use
a custom distance function.

Neural Networks

Neural Networks are a set of learning techniques for regression and classification based on intercon-
nected units. In particular, we use the Multi-Layer Perceptron (MLP) which is made of units that
can be regarded as a linear model each. Their output is connected to other units and these units are
interconnected in layers so what the first layer extracts from the data is used in the following layer as
input. For this problem, only one layer and two layers will be used for simplicity. The L2 regularization
parameter 𝛼 (from 10−4 to 5), the initial learning rate (from 10−3 to 0.5), and the number of neurons
per layer (from 1 to 100 in each layer) are tuned.
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Support Vector Machines

Support VectorMachines in regression work similarly to linear regression but provides a mechanism to
regularize (i.e. generalize better), the margin. Moreover, this method can use kernels, which provide the
method to define non-linear regressions. However, as it increases toomuch the computation complexity
in our case this mechanism is left out, only making use of the linear support vector regression. The C
regularization parameter (from 10−3 to 1000) will be tuned.

Random Forest and Gradient Boosting Trees

Random Forest (RF) [116] and Gradient Boosting [117] are both based on the idea of using decision/re-
gression trees together in an ensemble. The primary idea in Random Forest is to generate a variety of
small trees that can be considered weak learners. These learners are trained using a different subset of
predictors each time, therefore never seeing the complete data and generating, thus, different classifiers.
Moreover, the data offered to each tree is a bootstrapped sample of the training data. With these two
mechanisms, the trees can be more independent one from the others, which is a desired property in
ensemble methods. In particular, the number of trees (from 10 to 100) and the maximum depth of each
tree (from 2 to 20) will be tuned.

On the other hand, Gradient Boosting Trees uses the same idea of weak learners but focuses on hard
to predict data. When the first model is trained, the prediction from the data points is checked. Using
that, the next model will be trained to make more emphasis on the data points that are incorrectly
predicted. This way an ensemble of weak learners that focus on different parts of the data is obtained.
In particular, we use the python implementation XGBoost. From the available parameters, number of
trees (from 10 to 100), subsample for each tree (from 20% to 100%), number of columns for each tree
(from 66% to 100%), and a maximum depth of each tree (from 2 to 20) will be tuned.

5.2.5 Validation methodology and metrics

Data with missing values were discarded as we need all the attributes to be present for the validation of
the approach. This is because we calculate the validation metrics by comparing the real value with the
predicted value. After that, the data was split into a training dataset and a test set, in a 70%/30% split.
This split is done using a stratified sampling procedure, which ensures that the train and test sample
contains a similar proportion of ships regarding the ship type. The same testing split is used on every
experiment. This is shown in Figure 5.2. Moreover, we can see how the experiments are done in terms
of data input and results.
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FIGURE 5.2. Experimental pipeline diagram. The configuration is used to define the variables used for prediction and the
target and also define the model to be used and the hyper-parameters to be tuned. The metrics and the models
are stored in the file system for model comparison.

Whenever there are free available parameters from the algorithms of Section 5.2.4, i.e. hyper-
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parameters, they are tuned. To do this, the classic Grid Search can be used. With this approach, a grid is
built with all the possible parameter combinations to be tested. However, this exploration may not be
efficient or optimal. In this work Bayesian Optimization is used as it is a more effective way compared
to Grid Search [118].

To use this approach, the user has to define the range of values to be explored. With this space, the
algorithm builds a surrogate model to search for the best hyper-parameters in a fast way, evaluating
only promising parts of the space, instead of every possible combination. The hyper-parameters and
the range of values for each hyper-parameter are defined in Section 5.2.4.

Test

Test

Test

Training data (70%) Crossvalidation error Test data (30%)

Cross Validation Model Test

FIGURE 5.3. 𝑘-fold Cross-validation and model testing processes. The data is divided into 𝑘 fragments and then 𝑘 models
are trained. These models use 9 folds as input and then the other one as validation data set. Each model uses
a different partition as test. Afterward, the best model configuration found is tested with the test partition.

Inside of the Bayesian Optimization, the classical cross-validation procedure is used. As seen in
Figure 5.3, in cross-validation 𝑘 models are trained with the same hyper-parameters to ensure that
the error estimated is global, i.e. how we split the data does not affect the error estimation. In this
case we use 10 fold cross-validation. This means that for each combination of hyper-parameters we
train 10 models leaving outside a different partition of data (fold) and compute a validation metric with
the remaining fold. The best hyper-parameter combination is obtained from the combination that on
average leads to models with less error. The optimization was implemented using the python package
skopt.

For the internal evaluation of the model the 𝑅2 is used. 𝑅2 shows how much the prediction adjusts
to the real values, being 1 the maximum value. In the experiments, we also show Mean Absolute
Error (MAE) and RMSE. MAE will show on average how much the value of the predictions is wrong,
either by predicting more or less than the actual value. On the other hand, RMSE will penalize bigger
errors. Both MAE and RMSE are measured in the original variable unit.

5.2.6 Absence of static data

Notice that when there is no record of a ship in the static characteristics dataset nor correct static
information in the AIS dataset, the attributes are usually computed using the mean of the attributes by
ship type. If that attribute is also missing, a small ship can be assumed [1]. Another approach is to use
the traces defined in the AIS system to build movement patterns and use those patterns to estimate the
missing attributes as will be seen in the next chapter.

5.3 RESULTS AND DISCUSSION

In this section, we present the experiments to evaluate the proposed corrections. First, a correlation
analysis is done to see which are the linear relationships of the variables, that will be exploited later.
Then we perform the prediction of the variables using all the other variables, then the relevant variables,
and then with just one variable. Finally, we compare this approach with state-of-the-art methods. The
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results presented in this section are summarized. For the complete tables and figures please check the
supplemental material found in Appendix A.

5.3.1 Correlation analysis
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FIGURE 5.4. Variable correlation. me is main engine, ae is auxiliary engine, inst_pow means installed power, b is beam, t is
draft, l is length.

First, we perform correlation analysis to show how the variables are related. Figure 5.4 shows two
groups of variables regarding correlation: size variables and engine variables. These groups are well
correlated among themselves. Notice that this correlation reflects only the linear relationship between
variables.

Design speed has the highest correlation with installed main engine power, as the more power the
engine has, the higher speed it could potentially get. On the other hand, it is important to take into
account also the size of the ship, because bigger ships have higher engine power but may be slower.
Therefore, length and installed main engine power are key components for predicting design speed. Installed
main engine power is highly correlated with the length of the ship. This fact is reasonable as the bigger
the ship is, the more engine power is needed to move it. Installed auxiliary engine power, the attribute
that is most commonly missing, is very correlated with installed main engine power and length.

Regarding the size variables (lenght (l), beam (b) and draft (t)) are very correlated among themselves.
Beam is a good candidate to predict the other two. Length is a good candidate to predict the beam.
Finally, main engine RPM is very correlated negatively with draft, as ships with smaller draft have high
main engine RPM. This could be the case of smaller and faster ships like the yachts.

These attributes hold sound relationships that may be used for prediction. As strong correlations
are found between variables, it may be possible to predict an attribute with just one of the variables.
This fact is explored in Section 5.3.4.

5.3.2 All variables

In this section, we explore the results of modeling each attribute with the other available predictors.
In Table 5.2 it can be seen that from all the available algorithms, the two tree-based algorithms

worked best. In every variable, both algorithms differ very little in error but Random Forest tends to
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𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
Beam XGBoost 1.0000 0.9921 0.0053 0.9476 0.0026 0.4590

RF 0.9985 0.9918 0.4180 0.9644 0.2094 0.4951
Design Speed RF 0.9854 0.9504 0.4849 0.8881 0.2387 0.5133

XGBoost 0.9728 0.9470 0.6611 0.9182 0.4487 0.6052
AE Power RF 0.9823 0.9097 477.5738 1109.8918 210.8580 496.8095

XGBoost 0.9954 0.8969 242.0613 1185.4034 103.0322 530.4132
ME Power XGBoost 0.9999 0.9852 134.5394 2112.8145 22.7920 779.6078

RF 0.9979 0.9850 768.2021 2130.9932 319.0958 844.8177
Length RF 0.9984 0.9909 3.0077 7.2957 1.5252 3.7745

XGBoost 0.9999 0.9900 0.7402 7.6552 0.1760 3.8023
ME RPM RF 0.9903 0.9233 45.2185 125.5659 18.6240 53.1499

XGBoost 0.9995 0.9178 10.0946 130.0155 4.6482 52.2184
Draft XGBoost 0.9997 0.9882 0.0592 0.4033 0.0349 0.2209

RF 0.9974 0.9870 0.1891 0.4238 0.1018 0.2420

TABLE 5.2. Error measures for training and test for the target variable predicted with all the other variables. Only the two
best algorithms are shown for each variable. The full table is available in the supplementary material. Ordered
by test 𝑅2.

work better in this case. Notice that XGBoost usually has less training error than Random Forest but test
error is higher. This is because gradient boosted algorithms tend to perfectly fit the training data even
though there are regularization mechanisms. This is why we always have to test the algorithms using a
separate test set. Overall it can be seen that the 𝑅2 is between 0.92 and 0.99, which is a very good result.
ME RPM is the attribute that appears to be harder to predict, whereas Beam and Length are the easiest.
This is probably due to the high correlation between the size attributes.

Predicting a variable with the others available is not the best situation in a deployed solution. This
is because for a given entry we may have more than one variable missing. Therefore in the following
section, we explore the importance of each variable in prediction so that it is possible to reduce the
number of used variables.

Extracting relevant variables

Given that the variables can be well predicted using the others, now the objective is to reduce the
number of variables necessary for prediction. To find which variables are relevant for prediction, we
analyze the linear model coefficients, the variable importance from Random Forest and XGBoost and the
correlations from Figure 5.4. The importance of the variables of the linear model is calculated by sorting
the t statistic of coefficient relevance in absolute value (the higher, the more important). In the case of
Random Forest and XGBoost, the importance is calculated as how many times is a variable used in the
tree splits. Notice that the linear model coefficients and the variable importance refer to the importance
of the variables for the algorithms and that it may not be extrapolated directly as the importance of
the variables for the data. However, in this work, we propose to use the three different importance
values to extract which variables are relevant in general, regardless of the model that is being used.
Table 5.3 shows the relevant variables for each model and the finally selected ones. Figure 5.5 shows the
importance of each variable for predicting the beam. All the other plots for each variable are available
in the supplementary material provided in Appendix A.

Variable Linear Model Random Forest XGBoost Final
Beam Draft, Lenght, Type Length, Draft Length, Type, Draft Length, Draft, Type
Design Speed Type, ME Power ME Power, Draft, Type Type, Pow. ME Type, ME Power, Draft
AE Power ME Power, Type, Beam ME Power, Length, Beam Type, Length, ME Power ME Power, Length, Type
ME Power Length, Draft, Type Length, Design Speed, Beam Design Speed, Type, Length Length, Design Speed
Length ME Power, Beam, Draft Beam, ME Power, Draft Type, Draft, Beam Beam, ME Power
ME RPM Type, Draft, ME Power Draft, Beam, ME Power Type, Draft, Length Draft, Type, ME Power
Draft Beam, Length, Type Beam, Length, Type Beam, Type, Length Beam, Length, Type

TABLE 5.3. Variable importance for each model and the final selection of variables.
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FIGURE 5.5. Relevance of variables to predict the beam.

Notice that the variable selection matches closely with the correlations shown in Figure 5.4. The
final set of variables is used in Section 5.3.3.

5.3.3 Relevant variables

Here we test the performance of using the relevant variables from Section 5.3.2. In particular, we
wanted to explore the importance of the type variable because it was shown that for some attributes it
was very relevant, e.g. for design speed. Therefore this experiment was done with two sets of variables:
the relevant variables without type (Table 5.4) and the relevant variables with type (Table 5.5), even for
variables where type was not marked as relevant.

Table 5.4 shows the results using only two variables. From Table 5.2 we can observe that Beam
and AE Power prediction stay in the same level of precision. ME Power (Test 𝑅2: 0.985 → 0.98), Length
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𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
Beam RF 0.9975 0.9900 0.5377 1.0659 0.2618 0.5651
(Length, Design Speed) XGBoost 0.9976 0.9893 0.5214 1.1075 0.3092 0.6100
Design Speed XGBoost 0.9563 0.9193 0.8381 1.1323 0.5812 0.7296
(ME Power, Draft) RF 0.9739 0.9132 0.6471 1.1747 0.4019 0.6501
AE Power RF 0.9761 0.8981 554.7271 1178.8827 257.6787 550.5837
(ME Power, Beam) XGBoost 0.9934 0.8821 290.2708 1268.1226 85.3203 511.4801
ME Power RF 0.9969 0.9802 933.4769 2443.5418 407.8315 967.2775
(Length, Design Speed) XGBoost 0.9979 0.9781 776.8909 2571.8108 524.7569 1056.9163
Length RF 0.9966 0.9854 4.3831 9.2533 2.3068 4.9576
(Beam, ME Power) XGBoost 0.9907 0.9800 7.2951 10.8370 5.2606 7.2009
ME RPM RF 0.9853 0.8721 55.6414 162.1726 22.6584 64.8916
(Draft, ME Power) XGBoost 0.9892 0.8675 47.8553 165.0145 22.8113 66.3813
Draft RF 0.9900 0.9622 0.3721 0.7214 0.1892 0.3871
(Beam, Length) XGBoost 0.9893 0.9612 0.3849 0.7305 0.2378 0.4133

TABLE 5.4. Error measures for training and test for the target variable predicted only with the relevant variables. The
variables used to predict are written below the variable to predict. Only the two best algorithms are shown for
each variable. The full table is available in the supplementary material. Ordered by test 𝑅2.

𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
Beam RF 0.0005 0.0011 -0.0506 -0.0611 -0.0313 -0.0613
(Length, Design Speed) XGBoost 0.0015 0.0013 -0.2103 -0.0700 -0.1832 -0.1047
Design Speed XGBoost 0.0277 0.0269 -0.3309 -0.2082 -0.2798 -0.1867
(ME Power, Draft) RF 0.0220 0.0280 -0.3925 -0.2078 -0.2702 -0.1159
AE Power RF 0.0004 -0.0009 -4.9752 5.2422 -8.7550 -16.7539
(ME Power, Beam) XGBoost -0.0151 0.0051 237.2241 -27.9569 250.9958 43.4501
ME Power RF -0.0011 -0.0012 150.1328 73.8664 248.2645 137.4452
(Length, Design Speed) XGBoost 0.0016 -0.0003 -381.3468 18.2249 -276.7815 -62.3720
Length RF 0.0019 0.0062 -1.4683 -2.2352 -0.8114 -0.9614
(Beam, ME Power) XGBoost 0.0069 0.0097 -3.5487 -3.0396 -3.3472 -3.1494
ME RPM RF 0.0115 0.0253 -29.7687 -16.9290 -11.2778 -7.2151
(Draft, ME Power) XGBoost -0.0049 0.0297 9.7729 -19.6946 0.5686 -6.1110
Draft RF 0.0068 0.0259 -0.1616 -0.3174 -0.0728 -0.1559
(Beam, Length) XGBoost 0.0092 0.0251 -0.2393 -0.2967 -0.1553 -0.1761

TABLE 5.5. Difference of error when adding type variable as a predictor with respect to Table 5.4. The variables used to
predict (excluding type which is used in every experiment) are written below the variable to predict. Increase in
𝑅2 and decrease in RMSE and MAE means better fit. Only the two best algorithms are shown for each variable.
The full table is available in the supplementary material. Ordered by test 𝑅2.

(Test 𝑅2: 0.99 → 0.985) and Draft (Test 𝑅2: 0.988 → 0.96) show a slight decrease in precision. On the
other hand, Design Speed (Test 𝑅2: 0.95 → 0.919) andME RPM (Test 𝑅2: 0.92 → 0.87) precision fall
drastically. In particular, we are increasing the mean error in 0.21 knots in Design Speed and 11.7 RPM
forME RPM. Notice that the results provided by RF and XGBoost are still better compared to the other
algorithms, even using just two variables.

Table 5.5 shows the results of using the previous two variables plus type. Overall the increase of
precision is not increased except for Design Speed,ME RPM and Draft, which were the variables that
lost more precision when reducing the variable set. Type is an important variable, however, it may not
as relevant as the others, or the same information is contained in the other variables.

5.3.4 Unique variable

In the extreme case where there is little information, it is still possible to predict the variables with a
certain degree of accuracy. In this case, we have selected the variable that hadmore relevance from 5.3.2,
which matched with the variable with more correlation from Figure 5.4. In Table 5.6 we can observe
the results from this experiment. Compared to the relevant variables without type outcomes (Table 5.4)
we can observe an overall decrease in precision. In particular, it can be seen that KNN and 1 layer
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Neural Network appear now as good solutions to the problem. This is because RF is strong when there
are more variables to sample from. When there are few variables, the trees built are more related. With
this, we lose the tree independence requirement that makes RF work.

Regarding the 𝑅2, Beam can be predicted with a 1.5% of decrease in the metric, which impacts the
average error (MAE) as 0.5 more meters on average incorrectly estimated. In the case of Design Speed,
it can be seen that the decrease is 6%, however, the impact on the actual values is an increase of 0.3
knots in error, which is acceptable for this task. On the other hand,ME Power falls only 2.5%, but this
means that on average we increase the error by 900kW. Notice that regarding RMSE the big errors
grow more than the average. Lenght also suffers from a decrease of 4%, adding 6 meters of error on
average in the estimation. ME RPM keeps a stable error regarding 𝑅2 and on average it only adds 30
RPM to the error. Finally, Draft falls a 4%, but only adds about 0.3 meters to the average error.

𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
Beam XGBoost 0.9868 0.9744 1.2264 1.7085 0.8013 1.0654
(Length) RF 0.9805 0.9727 1.4892 1.7648 0.9385 1.1449
Design Speed XGBoost 0.8695 0.8574 1.4473 1.5057 0.9991 1.0932
(ME Power) KNN 0.8922 0.8561 1.3157 1.5125 0.7975 0.9997
AE Power XGBoost 0.9026 0.8624 1119.2508 1369.8897 651.3921 713.7344
(ME Power) KNN 0.8767 0.8505 1259.3877 1427.8572 611.7369 707.7976
ME Power KNN 0.9665 0.9537 3070.5436 3742.5165 1407.5615 1874.7986
(Length) XGBoost 0.9693 0.9517 2937.0998 3819.8798 1682.1618 2032.9765
Length XGBoost 0.9559 0.9473 15.8575 17.5739 9.8878 10.9411
(Beam) RF 0.9553 0.9471 15.9653 17.6154 9.9571 11.0681
ME RPM 1 layer NNet 0.8671 0.8622 167.5842 168.3189 96.4330 95.5028
(Draft) RF 0.9073 0.8597 139.9690 169.8230 78.0129 89.9753
Draft RF 0.9367 0.9216 0.9344 1.0391 0.6337 0.7072
(Beam) XGBoost 0.9345 0.9211 0.9510 1.0420 0.6555 0.7124

TABLE 5.6. Error measures for training and test for the target variable. The variable used to predict is written below the
variable to predict. Predicted only with the most relevant variable. Only the two best algorithms are shown for
each variable. The full table is available in the supplementary material. Ordered by test 𝑅2.

As observed, with only one variable the variable prediction is still doable with some shortcomings,
e.g. the big increase of error of ME Power. Attributes with strong correlation are logically still easy to
predict. In the case ofME RPM, a conclusion is that ships with less Draft tend to have higherME RPM,
e.g. small yachts, and the other way around, e.g. Cruisers and Cargo ships with low RPM. Another
example is Design Speed, where the more ME Power a ship has, the higher the design speed is. However,
it is obvious that in this case, other characteristics have to be taken into account, like for example Draft
or any of the size measures, as bigger ships need more power to move.

5.3.5 Comparison with existing solutions

MSV comparison

Johansson et al.[26] propose MSV which will use the characteristics of the ship that is most similar
using the metric shown in Section 5.2.4. As seen there, this method is a KNN with a custom metric
over Design Speed and Lenght and a parameter 𝑎 previously adjusted using a Monte Carlo procedure. To
compare we use KNNwith 𝑘 = 1 and 𝑘 = 3. 𝑘 = 1 is the same as doing the MSV with the following
metric (euclidean distance):

𝑠 =

√︃
(𝑣 − 𝑣𝑐)2 + (𝑙 − 𝑙𝑐)2 (5.3)

In Table 5.7 the experiments of using Design Speed and Lenght as predictors are shown. For every
variable, it can be observed that the results are consistently worse than the ones in Table 5.4, which also
use two variables. Moreover, tree-based algorithms are always superior. One thing to notice is that
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𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
Beam RF 0.9957 0.9842 0.6994 1.3413 0.3479 0.7555

XGBoost 0.9966 0.9823 0.6188 1.4219 0.3228 0.8451
3NN 0.9874 0.9823 1.1967 1.4226 0.5906 0.8152
1NN 0.9979 0.9805 0.4920 1.4902 0.0512 0.6413
MSV 0.9973 0.9730 0.5527 1.7562 0.0598 0.7836

AE Power RF 0.9729 0.8890 590.2442 1230.4580 281.1902 580.1873
XGBoost 0.9679 0.8847 642.5920 1253.9018 314.9681 597.1411
1NN 0.9848 0.8825 441.6284 1265.9871 83.2525 541.7500
3NN 0.9292 0.8789 953.9023 1285.2560 449.6223 632.9286
MSV 0.9886 0.8669 382.5517 1347.0451 75.5772 554.3957

ME Power RF 0.9963 0.9799 1025.3560 2465.9112 428.6885 978.8303
3NN 0.9871 0.9755 1901.8463 2721.2939 768.5421 1143.6786
1NN 0.9995 0.9717 368.2261 2927.1558 77.7506 963.1471
MSV 0.9995 0.9710 365.3108 2963.1109 71.6225 1041.1629

ME RPM XGBoost 0.9742 0.8710 73.7837 162.8481 36.6714 82.0743
RF 0.9759 0.8700 71.3819 163.4616 38.1288 83.3670
3NN 0.9297 0.8557 121.8638 172.2444 59.0172 91.1690
1NN 0.9963 0.8223 28.0424 191.1055 3.0852 75.2486
MSV 0.9957 0.7816 30.0128 211.8606 3.5080 85.6100

Draft RF 0.9890 0.9541 0.3890 0.7946 0.2411 0.4687
1NN 0.9963 0.9486 0.2264 0.8413 0.0377 0.3893
3NN 0.9670 0.9410 0.6747 0.9009 0.3497 0.5210
MSV 0.9970 0.9311 0.2029 0.9740 0.0325 0.4515

TABLE 5.7. Comparison of the best algorithms found, KNN and MSV. The full table is available in the supplementary
material. Ordered by test 𝑅2.

MSV is consistently worse than both KNN. This fact shows that the 𝑎 = 0.35 from Johansson et al.[26]
is not a global constant, i.e. it is overfitted to the data, and should be tuned for each database.

Length*Beam

As shown by Huang et al. [4], theME Power can be predicted using the product of the Length and Beam,
i.e. the area of the ship if it was rectangular, for Tankers. In our case, we compare this metric for all the
ship types. Contrary to the situation shown in Huang et al. [4], the correlation ofME Power with Length
times Beam we obtain that it is 0.8377, lower than the correlation of Length, which is 0.8428.

𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
ME Power RF 0.9787 0.9307 2444.9302 4576.5184 951.1324 2006.6138
(Length*Beam) XGBoost 0.9485 0.9257 3803.4448 4739.4473 2081.3133 2576.2111

poly2 0.7225 0.7473 8831.9435 8740.2747 5310.2186 5273.8748
LM 0.7017 0.7180 9155.9720 9232.4103 6155.3972 6231.0306

ME Power RF 0.9934 0.9699 1360.2618 3015.9177 627.2374 1302.5491
(Length, Beam) XGBoost 0.9917 0.9648 1523.9397 3262.3938 942.4226 1515.6529

poly2 0.8995 0.9008 5315.7676 5474.9995 3124.0154 3245.4752
LM 0.7924 0.7847 7637.8210 8067.4960 5432.4080 5712.9536

TABLE 5.8. Installed power main engine predicted with Length*Beam and (Length and Beam). The full table is available in
the supplementary material. Ordered by test 𝑅2.

Table 5.8 shows the two best results of applying all algorithms and also the linearmodel and squared
polynomial regression for comparison with the results from Huang et al. [4]. It can be observed that
in all the cases it is better to leave both variables instead of building the joint Length times Beam, as
with this classifiers have more freedom to adjust how the variables are related. This fact is clear in
Figure 5.6, where the curves produced by the polynomial regression are shown. Figure 5.6a shows
the polynomial regression for Length times Beam. It can be seen that the dispersion along the curve is
high, showing why the model is not that good. On the other hand, Figure 5.6b shows the same data
points with different 𝑥 axis and the polynomial regression for Length and Beam. In this case, the surface
produced by the polynomial regression is not a line but a 2D plane, which allows fitting better the data.



64 ▶ CHAP. 5 SHIP PROPERTIES MISSINGS ESTIMATION WITH ML

0 2500 5000 7500 10000 12500 15000 17500
l_b

0

10000

20000

30000

40000

50000

60000

70000

in
st

_p
ow

_m
e

(A) ME power versus Length times Beam scatterplot. Blue line is
the result of the polynomial regression by using Length times
Beam as predictor.
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(B) ME power versus Length scatterplot. The blue line is the result
of the polynomial regression produced by using Length and
Beam as predictors.

FIGURE 5.6. Polynomial regression scatterplot for each case.

Given these results, we can conclude that the results from Huang et al. [4] are not extrapolable to
other ship types and that this metric needs to be studied before being used.

5.4 CONCLUSIONS

AIS-enabled emission estimation methodologies are growing because of their ability to locate spatio-
temporally the exhaust emissions produced by vessels. By combining AIS data and vessel technical
databases it is possible to produce an estimation. However, both data sources may contain human and
machine errors. If this data is used directly, the estimation produced will be erroneous as well. There
are efforts in the literature to clean AIS data. Nevertheless, there are few approaches to provide clean
data in vessel characteristic databases and there is no comparison among them.

In this work, we have provided a review and a common framework of the current methods that
are being used to in-fill vessel characteristics data and a comparison of the methods. Moreover, we
have explored the relationship between variables to then exploit them with predictive algorithms. And
finally, we have shown how to apply standard techniques for this kind of use case obtaining good
accuracy.

The studied variables have shown strong correlations inside of two groups: variables that are
related to the size of the ship and variables related to the engines. Moreover, there are relationships
between those groups, e.g. installed ME power with the length of the ship. As the variables are very
correlated, the prediction methods provide good accuracy. Finally, we have found which variables are
relevant to predict each variable by analyzing the linear model coefficient and the tree-based algorithms
variable importance. The findings with these methods were closely related to the linear correlations
computed and provided good predictive results. The type variable is a relevant variable for most of the
target variables. However, the experiments show that it is not a vital part of the information for the
prediction in our case.

Regarding predictive methods, Random Forest (RF) and XGBoost are the methods that work best in
the case of predicting the target using two or more predictor variables, confirming that the selection
done in the work of Liu et al. [98] is a good approach (XGBoost). When using only one predictive variable
othermethodsmay outperform them. Methods likeKNN orMSV can provide all the required attributes
from the ship information as they are based on using the actual data directly as the prediction. This
can also be done usingNeural Networks if trained with a multivariate output, i.e. trained to predict an
array instead of one element. Even though of the convenience of this approach, experiments show that
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picking the correct set of predictors leads to better results. The standard KNNwith 𝑘 = 1 has provided
better results thanMSV for every variable. This may happen because the 𝛼 parameter fromMSVmay
be overfitted to the data used in Johansson et al.[26] and could need retuning. Nevertheless, adopting
KNN as a first baseline method is highly recommended because of its simplicity and availability in ML
software.

We have seen that the accuracy of the predictive models decreases with the number of predictor
variables. In this case, what we propose to implement is a system in which can use different trained
models regarding which variables are available in the vessel to correct. This way ships with more
information available benefit from better estimations, i.e. using the All Variablesmodel whenever it is
possible and if not, fall back to the others.

This study is also subject to some limitations. We have not performed the analysis of other interest-
ing variables, e.g. build year of the ship. However, the methodology to perform this analysis would
remain the same. Moreover,Neural Networks could be trained to predict a vector of targets, providing
the same advantage that KNN andMSV have. Future work should cover more ship-related variables.
For example deadweight as covered in the 4th IMO Greenhouse Gas report [97] or the variables used in
emission estimation methodology STEAM2 [16]. Finally, as this data is going to be used in further data
processes, e.g. emission estimation, an uncertainty measure could be provided for each prediction so
that each estimation has an error margin.





CHAPTER 6

Improving maritime traffic emission estimations on missing data
with CRBMs

6.1 INTRODUCTION

Maritime traffic is considered an important contributor to primary atmospheric emissions in coastal
areas [13] and subsequently to European coastal air quality degradation [14], especially in the North Sea
and the Mediterranean basin. It has become a key component for European economy [11], according
to the European Community Shipowners Associations (ECSA) in 2015, being sea transportation more
fuel-efficient than other modes of transport (e.g. trucks or trains). Nevertheless, according to recent
reports by the IMO, this form of transport will continue increasing in the future due to globalization
and global-scale trade [12], increasing between 50% and 250% its contribution to the global Green-
House Gas (actually 2.5%) by 2050. World governments, specially the European Union and the World
Health Organization, are specially interested in advances on detection of emissions, for proper law
enforcement towards the Air Quality Standards.

Given this growing tendency, Smart Cities need to be enabled to know how much pollution do
the citizens suffer and act accordingly. In this case, ships can be seen as connected things like in the
IoT paradigm, informing about position and other characteristics with which exhaust emissions can
be estimated. With all this information the cities will be able to evaluate pollution and propose more
informed measures in order to have a healthier city.

Data from ship positioning and maneuvering is required to compute the emission components
produced by maritime traffic and to understand levels of pollution from Environmental Research
modeling techniques. This data is obtained from the AIS, a GPS based tracking system used for collision
avoidance in maritime transport as a supplement to marine radars, providing for each vessel its unique
identifiers, GPS positioning and speed among other information.

Well known and validated state of the art techniques to estimate emissions are using this information
plus ship engine characteristics databases, like Jalkanen et al. [1, 16]. Doing so enables spotting sources
and amounts of emitted pollutants. Such estimations result in large scale simulations and complex
physics models, that feed from features like speed and installed engine power. Other techniques like the
HERMESv3 [25] model in CALIOPE project [119], one of the trusted sources of Air Quality estimations
by Spanish and Catalan Governments, performed at the Barcelona Supercomputing Center (BSC), use
emissions reports, ship estimated routes and profiles by ship type for calculating ship emissions. While
the HERMESv3 uses estimated routes, AIS-based estimations can place the pollutants estimations
accurately as it uses the actual ship placement, therefore improving the overall precision of the system.

However, AIS data may be incomplete or faulty, e.g. information that could be used to enhance
physical models like the ship operational mode (e.g. cruising) is incorrect, missing or poorly detailed
too often, so are usually discarded when modeling emissions. This also may be the case of commercial
databases that provide the required ship engine characteristics.

Further, dealing with AIS data in populated regions is not trivial, as the average frequency of signal
emission is of one message per each six seconds on average. Only in the coastal region of Barcelona
represents 1.5 million registers per week. Processing this data in a periodical basis requires employing
Big Data techniques, understanding Big Data as those situations where big volumes of input overwhelm

67
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our commonly used methodologies, making us to change them for techniques designed towards
automation, scalability or approximation. Applying the complex physical models and simulations over
such amount of data makes the problem more complex, requiring supercomputing infrastructures
on a daily basis for periodical estimations, also predictions for public health and interest (CALIOPE
computes 48-hour forecasts for all European continent).

To enhance such estimations, allowing better enabling features, we have available Data Mining and
Machine Learning (ML) techniques, to refine, correct and fill missing data, allowing better accuracy on
current air quality methods, also allowing experts on using once discarded features on physics models
with higher confidence on the results. Data Mining provides consolidated techniques for analyzing
such data, extracting relevant values, frequent and rare patterns, and also model behaviors. Most of
those wanted patterns are not trivial or present at simple sight, even they can be found across huge
amounts of data, unable to be handled exclusively by human experts. Considering the AIS obtained
profiles for each ship of any size and characteristics as multi-dimensional time-series representing
their behavior, we can discover new latent features that can enhance the AIS data-set towards modeling
emissions. There are several approaches for mining patterns on time series, e.g. streammining methods
for time-changing data [120], series-aware neural networks as CRBMs [121] or Recurrent NNs, even
Hidden Markov Models for time-series modeling [122].

This work provides a methodology to enhance the obtained AIS data-sets by cleaning, treating and
expanding some of its features using domain knowledge, to produce better emissionmodels and correct
emission inaccuracies. The proposed methodology focuses on using CRBMs to boost clustering and
prediction algorithms, to improve the correctness of features like ship main engine power, navigation
status and ship category, from each ships navigation traces. The decision of using CRBMs is based
on their capacity to deal with AIS as multi-dimensional time-series [89], also encouraged by the
methodology proposed by Buchaca et al. [123] used for detecting phase behavior patterns on time-
series. The CRBMs are used to extract and cluster temporal patterns, also to expand features from the
time series, allowing non-time-aware predictors better accuracy. Our methodology combines CRBMs
with clustering techniques (i.e. 𝑘-means) and prediction techniques (e.g. Random Forests, Gradient
Boosting, Lasso) towards predicting and characterizing the engine installed power, the navigation
status and ship types from their traces, for vessels do not have any of those attributes or that provide
them incorrectly.

To summarize, the contributions are the following:

1) Generate feature representations of local behavior of ship movements using CRBMs. This new
feature representation is a key building block for 2) and 3).

2) Ship type and main engine installed power missing values correction for better emission estima-
tions using the previously generated features plus machine learning algorithms.

3) Provide an initial step to correct and improveNavigational Status AIS feature, using the generated
features plus a clustering technique.

In particular the second contribution of this chapter links with the work done in Chapter 5, where
the focus was on correcting data when other static ship attributes are present. When there is no static
ship attribute available for a ship that has AIS data available, this other approach has to be used. In this
sense, we reconstruct this static data out of the available dynamic data, enabling the model to work
with more data, i.e., doing less assumptions about the ship. Further, this contribution can be computed
completely ant the Edge following the contribution in Chapter 4 as the AIS data is produced there.

The current approach has been tested using real AIS data provided by the Spanish Ports Authority
(Puertos del Estado), complemented by ship and engine characteristics coming from the Ship database
provided by IHS-Fairplay. We validate and test our approach to enrich and complete data by comparing
it against the current state of the art approaches with a methodology based on Jalkanen et al. [1, 16] in
scenarios of missing data, in a supervised manner to get emissions computed with real and complete
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data. After the aggregation of the emissions, we show that when enhancing the data with our method
we are able to detect a 45% of the previously undetected emissions (152.95 tonnes out of 343.47) when
applying the proposed standard procedure. We also show how other faulty features like Navigation
Status and Ship Type can be corrected or improved.

This chapter is structured as follows: Section 6.2 describes the data-set, its features and details.
Section 6.3 explains our methodology and machine learning pipelines. Section 6.4 details the experi-
mentation and validation of our methodology. Finally, section 6.5 summarizes this work, and presents
the future work.

6.2 DATA PREPARATION

Cleaning and interpolation

First of all, rows with incorrect time-stamps are removed if there is no possibility of repairing them.
Names, if missing, are obtained from third party ship databases, freely providing such information,
such as VesselFinder [124]. Next step is to retrieve each ship time series and then processed it for time
regularization and interpolation when required. Data goes through a two step procedure: 1) Produce
the time-steps for the desired time granularity, e.g. a sequence of steps of 5 seconds in between; and 2)
Using the available data, linearly interpolate the steps generated in the previous operation if the time
difference between samples is less than 72 hours[1].

In order to avoid bias or over-fitting on locality when searching for patterns, a new feature is added
indicating the relative movement, by obtaining the difference in Latitude/Longitude between each
consecutive points. This way we register the movements between registered observations instead of
absolute values, having a movement feature free of geographical information. Also, the same procedure
can be performed over rotation features, having as result relative rotation movements. However,
rotation attributes fromAIS are not always available, hence herewe created a rotation variable calculated
from the GPS traces as they are more reliable.

Another generated feature is the zone location of vessels. Following the information provided
from CEPESCA [125], we consider that sea is divided in three zones: coast, fishing area and high sea.
These zones respond where bathymetry is below 50 meters, not suitable for fishing and close to coast,
between 50 and 1000 meters, where fishing vessels labor, and beyond 1000 meters as high sea.

After pre-processing we have a time series for each ship, with regularized time-steps between
observation, and new derived features indicating relative positions and movement, allowing us to
compare ships for their positioning and maneuvering, independent of the origin port or coastal point,
even from length of some pattern repetitions.

The final features, from now on called original features, used for training the CRBM and for com-
parison in the experiments are the following:

• Ship ID: IMO and MMSI number

• Ship type

• Relative GPS rotation

• Speed over Ground

• Bathymetry as a 3 value categorical variable: coast, sea and high sea

In Section 6.4.2 IHS dataset is used for that particular task along with the previously defined data.
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6.3 LEARNING MODELS

Our methodology proposes a set of learning pipelines towards improvement of emission estimation.
First, we attempt to reconstruct the missing data on ship type and engine power, required for emission
estimations. The pipeline for this estimation consists on using the CRBMs to produce a new set of latent
features, to be ingested by classification (ship type) and regression (engine power) algorithms. Second,
we have the pattern mining ensemble, using the CRBMs along clustering algorithms (i.e. k-means), to
find the NavStatus patterns and behaviors on ship traces, intended for future emission models where
NavStatus and latent sub-type ship data can be used.

6.3.1 Data Pipelines

The CRBMs require as input a time-series window, fed by the traces for each ship. The data-set is
composed by time-windows of size 𝑛 + 1, considering at each time 𝑡 an Input 𝑣 (𝑡 ) of dimensions 𝑛𝑣 × 1,
and a history record 𝑣 (𝑡−𝑛) . . . 𝑣 (𝑡−1) of dimensions 𝑛𝑣 × 𝑛. This data-set is produced by sliding the
time-window from time 𝑛 to𝑇 , where𝑇 is the total number of recorded steps. Notice that this implies
to burn the first𝑛 records in order to create a history record for Input 𝑣 (𝑛+1) . The outputs of the CRBMs
are a vector of size 𝑛ℎ , whereℎ is the total size of generated latent features. This CRBM is connected to
a prediction algorithm that will feed from those features, from now on called Activations, and compared
with the real output variables (ship type and engine power) in a supervised learning fashion. For the
scenario of correcting the NavStatus and characterize ships for further usage, we connect the CRBMs
to a clustering method k-means, fed by the CRBM activation vector. The idea of using CRBMs rely
on the fact that those mentioned classical learning algorithms are fed with implicitly time-aware data.
Figure 6.1 shows the schema for both of the pipelines.

FIGURE 6.1. Pipeline for CRBMs, Prediction and Clustering

6.3.2 Training the Pipeline

The CRBM is trained with sample series of data, structured as explained previously. Providing the
history record matrix to a CRBM as the Conditional element, provides the notion of time. This allows
training it through data batches without forcing any particular order between batches, as the notion of
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order is present within each batch. Best practices in modeling and prediction require to split training
data with validation and testing data, to prevent the auto-verification of the model, so for this reason
we performed this training process with a subset of the available time-series. Also the splits have been
performed using the ids from the traces (each id identifies a single time-series), therefore none of the
splits shares a single time step from the other split. Each instance passing through the CRBM is encoded
into an activation vector of size 𝑛ℎ . This way, the ship tracking information and history are codified
by a 𝑛ℎ-length vector, knowing that as far as a CRBM reconstruction misses the original data by little,
such vector contains a compressed or expanded version (depending on the values of ℎ and 𝑛) of the
current and historical status of such ship.

After training the CRBM, using the activation data-set we train the prediction and clustering
algorithms. The principal hypothesis is that shipswith similar propertieswill produce similar activations
over time. For the prediction scenarios, we are using well known algorithms like Random Forests,
Gradient Boosting, Multi-layer perceptron networks, Logistic Regression and Lasso. We chose those
models as the ones performing better or the best models for baseline comparison, discarding those
performing worse on accuracy and slower on training stages. As we have a set of activations, from
time 𝑛 + 1 to𝑇 , for each output value 𝑃 , each ship traces pass through the pipeline creating a vector of
predictions 𝑝 (𝑛+1) . . . 𝑝 (𝑇 ) , then aggregated and compared against 𝑃 . For classification we used the
fashion (top vote), while for regression we used average and median, as explained on the experiments.
For the unsupervised scenarios, we focused directly on k-means algorithm for its simplicity of use and
interpretation. We experimented with these models and their hyper-parameters using cross-validation
and grid search, on a 6 Intel Xeon 40-core and 128GB RAM cluster.

6.4 EXPERIMENTS

When installed power and design speed are missing, Jalkanen et al. [1] propose to use the average of
those characteristics for the given ship type, usually available in AIS data. However, the installed power
has high variance giving an estimator of the installed power with low accuracy. As design speed can be
obtained directly from installed power, we focus on the main engine power.

In the case of auxiliary engine, the methodology defines 3 stages: hoteling (moored), maneuvering
and cruising. These three operational modes have a power consumption associated, different by type, as
there is no other information available for the power estimation of this type of engine. The operational
modes are assigned to the trace using the current speed of the ship. Regarding that for each stage we
have a different value for a given ship type, it is very important to know the actual ship type. In some
cases this type is incorrect or missing in AIS data.

Also, AIS data provides the navigational status of the ship. However, this attribute is not reliable
as it is manually set by the crew and it can have delays or be incorrectly set, e.g. in fishing ships the
status is always engaged in fishing even if they are hoteling. This attribute can potentially give more
information about the current usage of the engine than the simpler division done using the speed of
the ship, however it needs to be fixed in some cases.

Therefore, the experiments focus on the different pipelines used towards the improvement on
emission estimations, as follows:

1. Discriminate ship types: predict the type of a ship given its behavior at every time step.

2. Improving main engine emission modeling: predict installed main engine power when missing
values for emission estimations.

3. Navigational status pattern mining: determining the status of vessel directly from reliable GPS
coordinates, potentially correcting badly inputNavStatus values and finding uncovered behaviors.
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After several experiments with feature selection and refinement of aggregated features, we selected
as input features the bathymetry, the SoG, and the GPS-rotation (the rotation calculated from the GPS
positioning, as the feature rot is frequently missing or with incorrect values), as mentioned in Subsec-
tion 2.4.2. Bathymetry is indicative of the geographical zone where vessels are navigating, if coastal
zones, fishing zones, and open sea. Speed and rotation provide the vector of the vessel movements.

Following the propermethodology for trainingmodels, we have separated the data-set into training
and test, by a random split 0.66 − 0.34 of the ship series. To measure the CRBM errors (minimal error
at data reconstruction), we used the testing series and performed a simulation: passing the whole series
through the CRBM for activation and reconstruction (i.e. the process of generating the input features
from the activations), then computing the MSE of the inputs and reconstructions.

During the experiments we attempted different CRBM hyper-parameters, with a wide range
of hidden units in the hidden layer, and different delay or history window length. For most of the
experiments, we concluded that 10 hidden units with 20 observations of history (1 perminute), provided
us the best reconstruction results and differentiating clusters. For the experiment in Subsection 6.4.2 we
concluded that expanding features (from 60 visible units to 70 hidden units) produced better prediction
results.

6.4.1 Ship Type Prediction

In the emission estimation process it is required to know the type of the ship as the emission model use
it to determine how much power is the auxiliary engine producing given the navigation status. For
instance, in STEAM [1], cruisers are always assumed to constantly use 4000kW of auxiliary engine
power. On the other hand, other ship types may be estimated to use 750kW during cruise, 1250kW
during port maneuvers and 1000kW while hoteling. Therefore it is very important to know which
type the ship is to correctly asses the auxiliary engine consumption.

The following experiment consists on using the CRBM classification pipeline for classifying ship
types on a supervised learning scenario. A train/test split of 70% − 30% is used along with cross-
validation for hyper-parameter search. The target class attribute type is retrieved from the typeofshipand-
cargo AIS variable, that encodes it on its first digit. We are dismissing the type of cargo at this moment,
and focusing on the type of ship. However this makes some classes to be more difficult to predict, e.g.
class 3 “Special Category” has a range of different ships from fishers to tugs, therefore this is a hard
classification problem due to the heterogeneity of ships within one class.

As classifying algorithms we used Logistic Regression, also Multi-Layer Perceptron network with
different values of neurons at the hidden layer, from 100 to 500, obtaining the best results with 500
hidden units, a rectification layer and the Adam optimization method, with 0.9 momentum. Models
have been trained and evaluated with three different sets of features as its input: 1) the original features
(bathymetry, SoG, GPS-rotation); 2) the original features appended by a time window of 20; and 3) the 10
hidden unit activations of the CRBM.

Figure 6.2 shows the accuracy result on the train and test sets. The CRBM features helped both
models to identify ship types and produced more balanced models, e.g. in the case of logistic regression
the other features get better results in training, but in test the activations are better and closer to the
training error. This can also be seen in Figure 6.3, in which it can be seen that the proportion of k-means
clustering result, i.e. the proportion of the found patterns inside one class, is different in some ship
type, therefore it seems that CRBM enhances data separability for this case.
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FIGURE 6.2. Accuracy of the ship classification pipeline depending on the features.

FIGURE 6.3. Proportion of patterns by ship type. It can be seen that some ship types have similar pattern frequency, but
others differ drastically. For example, both special categories 1 and 2 (class 3 and 5 respectively) are quite
different as 3 is more fishing oriented than the service oriented class 5. On the other hand, carrier ships and
others are similar.

6.4.2 Improving main engine emission estimations on the presence of missing data

In order to estimate the emissions that a ship produces some characteristics of the engine are required,
as shown in the work of Jalkanen et al.[1, 16] with their STEAMmethodology. In particular, one of the
most important attributes is the main engine power. This data is available in commercial databases
provided by companies, e.g. IHS Fairplay [126], however the data may be missing for some ships.

The aim is to provide correct attributes to an estimation model results that have been already
validated when all the information is correctly given. When there are missing attributes, assumptions
need to be made. In case that some attributes are missing but other static ship attributes are available,
the approach defined in Chapter 6. However, in case that there is no data about the ship aside from the
data given by AIS, the suggested approach in STEAMmethodologies for main engine power is to use
the average by ship type. It is a simple and effective solution but not the best as the variance in installed
power by ship type is high. We want to use the ship trace along the ship type, data provided by AIS to
estimate the ship characteristics needed for pollution estimation, in this case the already mentioned
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main engine power.
The experiment has the same setup as the use case of Subsection 6.4.1 in terms of validation

framework. In this case, the IMO number is used as identifier, as the IHS data-set only contains ships
with “class A” transceivers and does not provide an MMSI field, hence we have to discard all the ships
that do not provide an IMO number for this experiment. We predict the main engine and we validate it
using a separated test set. We have trained a new CRBMmodel specifically for this use case. The best
results were obtained with 70 hidden units and with ensemble vote functionmedian, which is more
stable than the mean in the experiments using the CRBM activations.

For this experiment we tested different algorithms, e.g. Random Forests, Gradient Boosting and
Lasso Regressing, the average of values per type as proposed by Jalkanen et al. [1], and the global average.
The model that produced the best result was Random Forest with 200 estimators and no limit in
number of features and depth, as can be observed in Table 6.1.

Median Mean
Model Train Test Train Test

Global avg 8815.28 13279.71 8815.28 13279.71
Type avg 7904.08 11870.83 7904.08 11870.83
Lasso act. 8562.75 12744.20 8562.75 12744.20
Lasso hist. 8430.93 12933.68 8237.30 12616.83
GB act. 6365.63 10817.70 6652.80 11130.79
GB hist. 6336.83 11288.47 6269.50 11185.10
RF act. 854.42 8866.62 1328.32 9228.00
RF hist. 2178.95 10001.44 2499.74 9790.29

TABLE 6.1. Main engine installed power regression error (Mean Absolute Error) for the best configuration found for each
model. Votes aggregated with mean and median.

To see the actual impact of the approach, the emissions are estimated with a methodology based
on the STEAMmodel[1, 16] using the power estimated by the best regressors found before (history
and activations), the mean of the ship type and the real value. In Table 6.2 it can be observed that our
approach is closer to the estimated with the real values than the best model with the original input
plus history and the average by type. In fact, the proposed methodology is 152.95 tonnes closer than
the estimation using the average, detecting around 45% of the otherwise undetectable emissions, also
62.15 tonnes than the best model using the original data with history. Notice that this data-set covers 1
week of data and the emissions are evaluated over 31 ships from the test set.

In terms of the overall percentage of pollution regarding the real, we can see that there is between
an 7.9% and 10.2% of improvement from plain prediction method and between a 23.7% and 25% from
the baseline in all the pollutants, as can be observed in Figure 6.4.

There is still room for improvement as around a 31% of pollution is yet to be covered, however this
is not a trivial task as the variability of installed power is high.

Used value SOxME NOxME CO2ME PM ME
Real engine values 0.38 13.31 598.13 0.16

Prediction with activations 0.26 8.82 412.27 0.11
Prediction with history 0.23 7.79 351.19 0.10
Type average engine 0.17 5.64 262.63 0.07

TABLE 6.2. Estimated pollution in tonnes for each component, using the test-set individuals with the different input values.

6.4.3 Navigational Status pattern mining

The NavStatus feature (Navigation Status) is a value manually introduced by the vessel crew. In regular
cruisers or passenger boats, it is expected to be updated in a regular procedure, while most of the fishing
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FIGURE 6.4. Percentage of pollution covered for each method and pollutant with the predicted main engine power. The real
data marks the 100%.

ships do not update it and keep the same value always even though they change of operational mode.
This attribute is essential to estimate the power usage of the auxiliary engines of the ships which

are not reflected in the ship’s speed, contrary to what happens with the main engine power. The
ideal situation would be to use this attribute as proposed in Figure 2.4, however it is not being used
directly in the emission modeling literature as it is not reliable. Instead, a 3 level operational mode
surrogate variable is used. This variable is based on speed limits which define three states: moored,
maneuvering and cruising. Navigational status provides more information about the usage profile of
the ship, therefore it is interesting to explore this attribute and expand.

This use case proposes to focus on using the cluster labels as a surrogate for theNavStatus indicator,
to be compared to the real one and correct it when unavailable or considered more reliable. For this,
we feed the k-means algorithm with the CRBM activations as previously mentioned. In this case, we
selected 𝑘 = 4 as hyper-parameter (not considering burned samples for initial history, marked as
𝐶𝑙𝑢𝑠𝑡𝑒𝑟1), as lower 𝑘 only detected differences between movement and resting, and higher 𝑘 produced
very similar clusters.

At anchor Engaged in fishing Moored Not under command Restricted maneuv. Undefined Under way using engine
1 0.03 0.18 0.09 0.00 0.00 0.03 0.67
2 0.07 0.17 0.50 0.00 0.00 0.04 0.22
3 0.02 0.26 0.11 0.00 0.00 0.06 0.55
4 0.11 0.22 0.47 0.01 0.00 0.05 0.14
5 0.06 0.24 0.32 0.00 0.00 0.04 0.34

TABLE 6.3. Clusters vs. NavStatus labels. Values are normalized per row. Notice that Cluster 1 refers to the delay data not
classified

Table 6.3 shows theNavStatus vs. clustering, grouping those stopped due to anchoring andmooring,
those stopped due to fishing, and those in movement. Such results allow us to validate the cluster
labels: Cluster 1, as mentioned before, is the status for the data used as initial history, not classified;
Cluster 2 refers principally to vessels mooring and in minor measure moving with their engines started,
considering this maneuvering; Cluster 3 indicates those that are moving or fishing, and we visually
detected that it is assigned to those moving towards fishing positions, or it is mixed with cluster 4
in trawlers; Cluster 4 refers to those moored or fishing, and we visually detected that such status is
given to those trawling, moving much slower compared to other speeds (1/4 to 1/10 of regular moving
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FIGURE 6.5. Example of status classification by clustering, on a trawling ship. Visualization tool at http://patrons.bsc.es.

speed); Cluster 5 is split between moving, fishing or moored, but by visualization we observed that
those labeled as 5 are actually sailing towards fishing positions or returning to port.

As fishing vessels usually set their NavStatus to “engaged in fishing” always, even when sailing or
moored, we can determine their “real” status with this classification. Also, for those without status
(“undefined”), we can use the assigned cluster label as expected status, and applying approximate
NavStatus labels by using the majority label for each cluster: indicating as “moored” if Cluster classifies
it as 2, “under way using engine” if Cluster is 3 or 5, “moored OR slow fishing” if cluster is 4.

Even though the correlation of these clusters with the NavStatus is not clear, we can identify new
latent behaviors. As an example, we can identify patterns for ships performing trawling, not present in
other fishing ships, cargos and passenger boats. In this example, shown in Figure 6.5, we can identify a
first cluster (n.2) indicating the maneuvering in port and when shifting trajectories before and after
trawling; two clusters (n.3 and n.4) identifying the movements during trawling, slower that regular
sailing, that potentially can consume more energy thus more emissions, as they are trawling fishing
nets; then a cluster (n.5) for ships speeding towards or from the fishing regions and the port.

For this identification pattern exercise, the validation has been done by expert visual recognition of
ship movement traces and location according to port maps [125], and by identifying the vessels registry
indicating whether they possessed trawling equipment on board. In future research this extra status
found may be used in new emission models.

Finally, this approach shows potential to be applied in other contexts for uncovering behaviors, e.g.
analyzing patterns on road traffic mining or other kind of data-set containing GPS.

6.5 CONCLUSIONS

Computing the pollutant emissions from maritime traffic is an important issue for coastal cities air
quality, as indicated by research in environmental sciences, also amajor concern for world governments
and global health organizations. Current state of the art techniques to model those emissions are based
on processing AIS data, from ships traces, to complement large air quality simulations currently per-
formed in supercomputing centers. The principal problem comes when usually that data is incomplete
or incorrect for a large amount of vessels.

In this chapter we presented a methodology for enhancing AIS data-sets by correcting and ex-
panding its features, towards producing better estimations when using the latest emission models.

http://patrons.bsc.es
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Our proposed methods focus on using CRBMs to boost prediction and clustering algorithms, used
for complete crucial missing data required for producing those estimations. Experiments show that
ship type and navigational status may be corrected on missing data scenarios. Moreover, they show
that navigational status can be expanded with new uncovered behaviors. Finally, Experiments have
proved that our method is able to estimate emissions than those proposed by the current emission
models, detecting around 45% of the usually undetected emissions when the required features are not
available. As the CRBM architecture and the pipelines are computationally light, it is possible to use
them along with the Chapter 4 contribution, the distributed ML system. It provides the near-realtime
systemwith online missing data correction, along with an inferencing process containing the Chapter 5
contribution, so that the emission estimation process can be performed with more accuracy.
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CHAPTER 7

Conclusions and Future Work

7.1 CONCLUSIONS

This thesis has aimed to explore the possibilities of Fog computing systems with Machine Learning
to enable near-realtime analytics and data processing. This aim was described with the following
thesis: It is possible to build a distributed system in a Fog computing environment to apply
complex data processes (i.e. improve data fitness for use, estimate emissions and predict future
values) in a Smart City setting with results in a near-realtime fashion. Figure 7.1 shows how this
thesis is explored. The first contribution provides a framework to address Data Science problems in a
distributed environment like the one presented. This framework enables to do complex computations
likeML or emission estimationwhere the data is being produced, i.e., the Edge. In it we saw how to adapt
the Data Science pipeline in a Fog computing environment, also called the Edge-Cloud continuum. This
kind of architecture can be effectively applied to IoT problems. It is shown that Federated Learning (FL)
is fitting for this setting and proven that it works for predicting road traffic. From this point, we are able
to distribute computing at the Edge and build centralized models by training models locally and then
merging them. This approach has the advantage that the data does not leave Edge, reducing network
usage and increasing privacy. The other two contributions work towards improving the fitness of the
data received and estimating emissions with the improved data, i.e. addressing the data preparation
step. These two contributions can be seen from the pure Data Science point of view. In this sense, both
contributions address correcting data from different starting points.

If the whole system is used, the users are able to improve the fitness for use of data, predict future
outcomes, and perform other processes like emission estimation at the Edge. The first functionality
(contribution 1) enables knowing the status of the city and the status that we will have in the short term
so that the monitoring agencies can act accordingly. The second functionality (contributions 2 and
3) helps to correct the incoming AIS and the registry data, as both sensor data and human input data
can be error-prone. Without correct data, it is not possible to produce correct derived information
like predictions or emission estimation. The more uncertainty we have in our data, the bigger the
uncertainty we will have in the derived results, and errors will increase producing a snowball effect.

The three contributions of this thesis not only propose techniques, solutions, and challenges that
may be found to start building a system that can manage the incoming data in an IoT/Fog computing
scenario but are also interesting for other data systems and architectures. This system is able to gather,
correct, and make use of data where it is produced. Compared to a classic Cloud-based system, this
approach provides lower latency and distributes the computational requirements.

In the following sections, the conclusions for each contribution will be summarized, final remarks
about the overall contribution will be given and future work will be described.

7.1.1 Contribution 1: Machine Learning distribution for traffic prediction

The first contribution explored the possibility of using ML in a distributed system setting and how
can we set up a Data Science pipeline in this kind of environment. When we speak about ML is not
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FIGURE 7.1. Thesis contribution interaction diagram. Contribution 1 offers an architectural framework for distributed ML
that can be used in the other two contributions.

uncommon to think about a centralized application that learns from all the data available. However,
this may not be the best approach for all the different scenarios. In previous works we explored the
concept of local models and training local models and merging them [21, 100], however, in this work
we went a step further.

Whenever a centralmodel is required, Federated Learning (FL) approach can be used. FL framework
provides a mechanism to train models locally and then merge them by a central authority. With this
approach, we can avoid network failures, as the models are trained and used locally. When a network
failure occurs, the Edge node can remain independently trained and using the current model it has
and when the network is again available it can be synchronized again. Also, the network bandwidth
usage is reduced, as only the models are sent through the network. The data, if not required to be
saved completely or in aggregations, stays in the Edge node. In a mixed setting, we can train with the
finer granularity data and report aggregations to the central node. Even though the model in a global
sense has not seen all the data, the local models do. Merging models provide a model comparable to a
centralized model trained with all the data and, in some cases, this model is better than the original
due to the regularizing effect of the merging [113]. In this contribution, a brief guideline on how to
select the hyper-parameters was provided to have a successful FL training process, especially for the
number of epochs and training rounds. The approach was also tested with two low-powered devices
and a Xeon machine. The two low-powered devices produced good enough results in a reasonable time
for this scenario, confirming the viability of the approach in resource-constrained Edge nodes. The
GPU-enabled low-powered device performance was lower than the CPU-based one as the overhead
of transferring the data from RAM to video RAM was higher than the performance using the GPU.
This may not be the case for other workloads as, for instance, the image data workloads could perform
better in this kind of device. This is due to the number of operations and the amount of data is managed
at each CPU/GPU operation.

7.1.2 Contribution 2: Estimating missing data for emission modeling

Chapter 5 provided a review of methods to estimate ship missing registry data, a comparative analysis
of these methods and standard machine learning methods, the variable importance for each attribute
to be fixed, and a guideline on how to fix this kind of data.

This chapter provided a key element to enable the emission estimation process in general, as incor-
rect data lead to incorrect estimations. This contribution wanted to fill the gap between the different
proposed methods for the ship registry data and the practitioners, establishing a fair comparison of the
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methods. Moreover, with models that enable knowing the variable importance to predict the other
variables, a table of variable relevance is given. With this, practitioners will know which variables are
good to start with for doing this process.

Because of the high availability of the ML algorithms used, implementation in their systems will be
easy enough to have at least a baseline running in a short period of time. As these methods are also fast
to produce outputs if they have a favorable configuration, we can utilize them in low-powered edge
devices instead of in the backend, correcting erroneous data locally.

Finally, as the study is done departing from using all the variables available to using only one
variable, a multi-tier prediction method can be built using different models regarding which data is
available and correct. Notice that this contribution can be located both in the Edge and Cloud in the
final system. However, as the data records are highly static, it is more suitable for the Cloud.

7.1.3 Contribution 3: Feature extraction and missing data estimation from alternative data sources

Chapter 6 showed how to build new features from an available time series. In particular, from ship
trajectories, movement patterns are extracted by grouping codes derived from available data time
windows. These patterns are considered the behaviors of the ships at each time point. These patterns
were used to predict the type of ship, generate a new variable related to the navigational status of the
ship, and to predict the main engine. Even though this contribution is exploratory, it provides useful
results for the emission estimation process. This method can be used when no registry data is available.
It can be used as part of a methodology along with the processes discussed in Chapter 5 to provide a
complete missing data estimation solution that considers the availability of data for each ship (from
no data available to one missing field). Considering that this approach is based on the one used in
Chapter 4, this methodology is well fitted for Fog computing settings.

Regarding the application for emission estimation, the method showed that it can outperform the
general assumptions when ship registry data is not available. Even if the complete method is not used,
using the ship traces to estimate the engine power is better than assuming the average of engine power
for the ship type. With the full methodology, we were able to estimate 45% more pollution. Given
the variability of the main engine attribute, it is difficult to estimate it with a high level of accuracy.
However, this method is a good start towards this task.

A final remark about this approach is that with these new uncovered behaviors we may be able to
generate a new more refined Navigational Status value that has a finer granularity than the one already
available in the AIS data. In particular, most of the fishing ships emit the Engaged in fishing even though
they may be hoteling at the port. With this new variable, we can see what these kinds of ships are doing.
Finally, with respect to the Fog architecture, this data preparation process is well suited to run in the
Edge as the input data is the AIS data which comes in streams directly from the ships.

7.1.4 Overall conclusions

The three contributions work in different directions towards the same objective: providing a suitable
framework and techniques to build a near-realtime system with error correction, forecasting capa-
bilities, and feature generation. In a system like this, the fitness for use of data is relevant as derived
information will carry the original errors and even multiply them, losing then accuracy. Therefore
these contributions have to be understood holistically having two parts: A way to distribute computing
with Fog computing (Computer Architectures) and a way to adapt the data processing pipeline to this
environment with a special focus on data preparation (Data Science).

From the user perspective, policymakers like the city councils need to have actionable knowledge
to properly address the city issues. Forecasting provides themwith a glimpse of a possible future so that
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they can act accordingly in the short term. Nevertheless, this is not only useful for policymakers, as the
companies maintaining the infrastructure may also benefit from this capability, e.g. predicting when a
device or the network is going to fail and deploying countermeasures. Finally, the feature generation
procedure enables the development of new markers that can be useful to generate new information or
to refine the actual data that the system has. This can help provide extra information for future tasks
that the system tenant may have.

These functionalities were tested in a low-powered device distributed system with network fault
tolerance, mimicking a realistic system that may be available in the real world. This work provided an
analysis of alternative ways to make use of distributed ML and its application in data preparation. The
capabilities were evaluated with two real use cases: road and ship traffic. In particular, for ship traffic,
there was an emphasis on correctly evaluating the data to provide good exhaust emission estimation.
Both use cases were satisfied by the proposedmethods and architecture. The data preparation processes
produceddata ensuring that is fit for the application, enabling the use of the application. Moreover, when
there is no ship registry data these approaches provided a better solution than the standard methods
leading to the detection a 45%more of the undetected pollution. Considering what is mentioned before,
this thesis offers a framework, references, ideas, and details on how to build a system that can clean
data, estimate emissions and predict the future status of the city in a data-centric approach.

Finally, the thesis has opened collaborations inside the Barcelona Supercomputer Center between
Computer Sciences and Earth Sciences departments. Moreover, it has also opened collaborations
with the Spanish Port Authorities, University of Padua, the Punjab University, and the company Near-
byComputing, where a patent extracted from this work is currently in industrial use. The emission
estimation module produced for this thesis has been used effectively in the FemIoT project (SIFE-
CAT/RIS3CAT 001-P-00166). The research on FL has been a starting point to important architectural
contributions in the INCISIVE and CALLISTO EU2020 Horizon projects (grant agreement No.952179
and No.101004152), in which our expertise in FL is being used for medical and satellite data security
and privacy.

7.2 FUTURE WORK

This work has also its limitations, especially due to time constraints. This section covers possible future
lines of research and the application of this thesis.

Complete system integration Even though the emission estimation pipeline is completely imple-
mented, the work done has been performed in an experimental setting. A possible future line of research
would be to gather all the knowledge contributed to this thesis and build the complete near-realtime
system in real edge nodes distributed in the city or different places on the coast of Spain. We made a
Raspberry Pi-based edge device with AIS gathering capabilities which were used for experimental data
gathering, therefore it is possible to make such a device and create a network as described in this thesis.
Moreover, in a real environment, the failures, in general, must be taken into account. Sensor failures
can be addressed using the defined ML at the edge nodes and network errors are also regarded in the
present work. However, other ways to mitigate errors can be devised, e.g. node redundancy at the edge.

Ship emission estimation In this work STEAM [1] and STEAM2 [16] were implemented. Also,
considerations from other methodologies like HERMESv3 [25] or NAEI emission inventory [95] were
included. However, to provide a reliable system more effort should be done in this direction regarding
the evaluation of the estimated pollutants Moreover, Chapter 5 work can be expanded to cover more
ship-related variables. In particular, it needs to evaluate the usage of the deadweight variable as used
in the Fourth Greenhouse Gas study performed by the IMO [97]. In terms of emission estimation
methodology, STEAM2 [16] makes use of a bigger amount of input variables to produce better emission
estimations. These variables should be verified as this work does with the ones from STEAM. Even
though STEAM is the default backup method for STEAM2 when there is data missing, it is interesting
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to apply the methodology to the missing variables so that STEAM2 can be used. Finally, as the corrected
data is going to be used in further data processes, e.g. emission estimation, an uncertainty measure
could be provided for each prediction so that each estimation has an error margin. This would enable
users to evaluate how trustable are the derived values.

Concept drift In the development and execution of such a system, new questions should be
addressed. For example, this kind of temporal data is sensitive to concept drift as mentioned in the
work of Bifet [106]. Therefore, this should be studied and addressed by building policies on how and
when to update both local models and federated models.

Minimization of power Even though the present work explores the usage of low-powered
computing resources, in extreme cases we may be required to have devices that consume even less
electric power. There is a new interesting trend in the ML area towards using MCUs to perform
predictive tasks, e.g. TinyML [58]. Even though there are already systems that can learn from the data
in these devices, there is no work to our knowledge that makes use of FL along with several devices.

Further exploration of Federated Learning and Swarm Learning Federated Learning (FL)
provides a framework in which learning tasks can be done where the data is produced and without it
leaving the system. This reduces avoids sending the data over the network and enables using learning
methods with privacy in multi-tenant environments. However, in this work, we have applied the most
basic way of merging the learning models. In the work of Li et al. [110] they propose a regression/clas-
sification tree-based approach that can establish weights for each local model to be merged. As can be
seen in the work of Perez et al. [100], local models may be better fitted to their region because each
region may have a different data distribution behind. Regarding this, we may be able to build a set of
centralized models that take into account these distributions but remain general enough to predict
bigger areas or use models like Graph NN that can take into account this kind of relationship between
the data and their position.

On the other hand, using similar ideas to the ones found in the work of Li et al. [110], Warnat et
al. [127] propose the Swarm Learning framework. This framework is similar to the FL framework but
the synchronization mechanism is not centralized and it happens in each node. This way in case of
losing back-haul connectivity, the devices that remain connected between themmay keep collaborating
in their learning task independently.





APPENDIX A

Supporting information for Chapter 5

A.1 VARIABLE IMPORTANCE

The importance of the variables in linear regression is shown using the absolute value of the t statistic
for coefficient relevance. The importance of the variables in Random Forest and XGBoost is measured
as the percentage of how many times they are selected for a split in a tree.
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A.1.2 Design speed
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A.1.3 Auxiliary Engine Power

type_Vehicles_Carrier

type_Bitumen_Tanker

type_General_Cargo_Ship

type_Tug

type_Others

type_Ro−Ro_Cargo_Ship

type_Cement_Carrier

type_Oil_Products_Tanker

type_Heavy_Load_Carrier

type_Chemical/Oil_Products_Tanker

type_Passenger/Ro−Ro_Cargo_Ship

type_Refrigerated_Cargo_Ship

design_speed

type_Yacht

type_Passenger_(Cruise)_Ship

type_LPG_Tanker

l

type_Bulk_Carrier

t

b

type_Container_Ship

type_Crude_Oil_Tanker

inst_pow_me

0.0 2.5 5.0 7.5 10.0
Importance

V
ar

ia
bl

es

pow_ae with Linear Regression

type_Tug

type_Cement_Carrier

type_Crude_Oil_Tanker

type_Yacht

type_Heavy_Load_Carrier

type_Bitumen_Tanker

type_Ro−Ro_Cargo_Ship

type_Oil_Products_Tanker

type_Refrigerated_Cargo_Ship

type_Passenger/Ro−Ro_Cargo_Ship

type_Others

type_General_Cargo_Ship

type_Vehicles_Carrier

type_LPG_Tanker

type_Bulk_Carrier

type_Chemical/Oil_Products_Tanker

type_Container_Ship

type_Passenger_(Cruise)_Ship

design_speed

t

l

b

inst_pow_me

0.0 0.2 0.4 0.6
Importance

V
ar

ia
bl

es

pow_ae with Random Forest

type_Heavy_Load_Carrier

type_Tug

type_Crude_Oil_Tanker

type_Yacht

type_Bitumen_Tanker

type_Cement_Carrier

type_Oil_Products_Tanker

type_Refrigerated_Cargo_Ship

type_Ro−Ro_Cargo_Ship

type_Chemical/Oil_Products_Tanker

type_General_Cargo_Ship

type_LPG_Tanker

t

b

type_Vehicles_Carrier

design_speed

type_Others

type_Bulk_Carrier

inst_pow_me

l

type_Passenger_(Cruise)_Ship

type_Passenger/Ro−Ro_Cargo_Ship

type_Container_Ship

0.00 0.05 0.10 0.15 0.20 0.25
Importance

V
ar

ia
bl

es

pow_ae with XGBoost

A.1.4 Main Engine Power
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A.1.5 Length
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A.1.6 Main Engine RPM
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A.1.7 Draft
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A.2 MODELING RESULTS

𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
Beam XGBoost 1.0000 0.9921 0.0053 0.9476 0.0026 0.4590

RF 0.9985 0.9918 0.4180 0.9644 0.2094 0.4951
1_nnet 0.9752 0.9751 1.6797 1.6864 1.2317 1.2385
2_nnet 0.9725 0.9727 1.7689 1.7650 1.3174 1.3040
LM 0.9658 0.9664 1.9742 1.9574 1.4669 1.4528
LinearSVR 0.9648 0.9651 2.0030 1.9955 1.4464 1.4540
KNN 0.9617 0.9163 2.0872 3.0910 0.9394 1.5892

Design Speed RF 0.9854 0.9504 0.4849 0.8881 0.2387 0.5133
XGBoost 0.9728 0.9470 0.6611 0.9182 0.4487 0.6052
1_nnet 0.9176 0.9144 1.1499 1.1666 0.7033 0.7617
2_nnet 0.8971 0.9063 1.2851 1.2202 0.7645 0.7811
KNN 0.9368 0.8878 1.0077 1.3354 0.5259 0.8142
LM 0.8717 0.8800 1.4355 1.3809 0.9054 0.9016
LinearSVR 0.8679 0.8788 1.4565 1.3877 0.8878 0.8937

AE Power RF 0.9823 0.9097 477.5738 1109.8918 210.8580 496.8095
XGBoost 0.9954 0.8969 242.0613 1185.4034 103.0322 530.4132
1_nnet 0.8978 0.8700 1146.3312 1331.5715 584.3455 648.2852
KNN 0.9166 0.8681 1035.5013 1341.1556 457.1699 671.5843
2_nnet 0.8755 0.8575 1265.2180 1393.7973 641.4432 678.7502
LM 0.7991 0.8099 1607.4082 1610.0121 870.5261 840.3555
LinearSVR 0.7783 0.7882 1688.4671 1699.3521 803.0704 797.6508

ME Power XGBoost 0.9999 0.9852 134.5394 2112.8145 22.7920 779.6078
RF 0.9979 0.9850 768.2021 2130.9932 319.0958 844.8177
KNN 0.9920 0.9808 1497.6143 2411.3010 622.7143 1002.6652
1_nnet 0.9758 0.9740 2606.6319 2802.9684 1367.4226 1546.4405
2_nnet 0.9759 0.9720 2604.7079 2910.0035 1386.7669 1614.4761
LM 0.9181 0.9156 4798.3514 5050.3459 3540.9936 3728.3430
LinearSVR 0.8806 0.8752 5791.9700 6142.0933 3354.1845 3607.7780

Length RF 0.9984 0.9909 3.0077 7.2957 1.5252 3.7745
XGBoost 0.9999 0.9900 0.7402 7.6552 0.1760 3.8023
1_nnet 0.9844 0.9832 9.4250 9.9355 6.8689 7.4538
2_nnet 0.9769 0.9769 11.4673 11.6457 8.9308 9.1718
LM 0.9773 0.9764 11.3698 11.7616 8.5005 9.0830
LinearSVR 0.9766 0.9756 11.5581 11.9503 8.4038 9.0489
KNN 0.9663 0.9192 13.8470 21.7596 7.0771 12.1295

ME RPM RF 0.9903 0.9233 45.2185 125.5659 18.6240 53.1499
XGBoost 0.9995 0.9178 10.0946 130.0155 4.6482 52.2184
1_nnet 0.9184 0.9036 131.3299 140.7847 75.8189 82.3809
2_nnet 0.9086 0.8988 138.9945 144.2164 80.3988 81.6040
LinearSVR 0.8625 0.8683 170.4456 164.5590 110.9466 114.1900
LM 0.8766 0.8648 161.5082 166.7049 112.0303 117.6057
KNN 0.8966 0.7500 147.8039 226.6873 54.2122 96.8462

Draft XGBoost 0.9997 0.9882 0.0592 0.4033 0.0349 0.2209
RF 0.9974 0.9870 0.1891 0.4238 0.1018 0.2420
1_nnet 0.9783 0.9758 0.5470 0.5778 0.4032 0.4358
2_nnet 0.9720 0.9708 0.6213 0.6344 0.4652 0.4899
LM 0.9598 0.9581 0.7452 0.7592 0.5689 0.5919
LinearSVR 0.9573 0.9565 0.7680 0.7736 0.5523 0.5792
KNN 0.9315 0.8504 0.9725 1.4353 0.4640 0.7746

TABLE A.1. Error measures for training and test for the target variable predicted with all the other variables. Ordered by
test 𝑅2.
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𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
Beam RF 0.9975 0.9900 0.5377 1.0659 0.2618 0.5651
(Length, Design Speed) XGBoost 0.9976 0.9893 0.5214 1.1075 0.3092 0.6100

KNN 0.9904 0.9864 1.0459 1.2453 0.4745 0.6591
1_nnet 0.9520 0.9513 2.3391 2.3567 1.7915 1.8127
2_nnet 0.9517 0.9512 2.3454 2.3587 1.7839 1.8114
LM 0.9390 0.9393 2.6352 2.6317 2.0339 2.0283

Design Speed XGBoost 0.9563 0.9193 0.8381 1.1323 0.5812 0.7296
(ME Power, Draft) RF 0.9739 0.9132 0.6471 1.1747 0.4019 0.6501

1_nnet 0.8767 0.8826 1.4068 1.3661 0.9168 0.9582
KNN 0.9205 0.8804 1.1298 1.3789 0.5910 0.8444
2_nnet 0.8679 0.8791 1.4563 1.3863 0.9518 0.9756
LM 0.6674 0.6830 2.3109 2.2446 1.7474 1.7296

AE Power RF 0.9761 0.8981 554.7271 1178.8827 257.6787 550.5837
(ME Power, Beam) XGBoost 0.9934 0.8821 290.2708 1268.1226 85.3203 511.4801

KNN 0.9139 0.8633 1052.0568 1365.0408 472.4986 678.3114
1_nnet 0.8179 0.8260 1530.1503 1540.4794 831.0015 817.2586
2_nnet 0.8064 0.8164 1577.7856 1582.2966 835.1635 842.2111
LM 0.7512 0.7680 1788.6386 1778.7299 969.6205 960.3790

ME Power RF 0.9969 0.9802 933.4769 2443.5418 407.8315 967.2775
(Length, Design Speed) XGBoost 0.9979 0.9781 776.8909 2571.8108 524.7569 1056.9163

KNN 0.9871 0.9755 1901.8463 2721.2939 768.5421 1143.6786
2_nnet 0.9599 0.9620 3356.9234 3388.0010 1697.9294 1780.7107
1_nnet 0.9594 0.9610 3379.2634 3435.1680 1732.0385 1836.4477
LM 0.8222 0.8208 7068.9221 7360.7513 5446.5547 5667.8594

Length RF 0.9966 0.9854 4.3831 9.2533 2.3068 4.9576
(Beam, ME Power) XGBoost 0.9907 0.9800 7.2951 10.8370 5.2606 7.2009

1_nnet 0.9664 0.9664 13.8348 14.0375 10.1501 10.4048
2_nnet 0.9622 0.9617 14.6715 14.9932 10.8966 11.2012
LM 0.9583 0.9561 15.4130 16.0371 11.6735 12.1337
KNN 0.9650 0.9197 14.1169 21.7004 7.4996 12.3789

ME RPM RF 0.9853 0.8721 55.6414 162.1726 22.6584 64.8916
(Draft, ME Power) XGBoost 0.9892 0.8675 47.8553 165.0145 22.8113 66.3813

2_nnet 0.8676 0.8648 167.2442 166.6835 95.6990 93.7148
1_nnet 0.8653 0.8609 168.6983 169.0908 107.4685 105.6136
KNN 0.8608 0.6393 171.4968 272.2922 64.7574 121.2643
LM 0.6239 0.6388 281.9134 272.4814 199.7586 191.6954

Draft RF 0.9900 0.9622 0.3721 0.7214 0.1892 0.3871
(Beam, Length) XGBoost 0.9893 0.9612 0.3849 0.7305 0.2378 0.4133

KNN 0.9680 0.9429 0.6649 0.8864 0.3453 0.4915
2_nnet 0.8993 0.8898 1.1788 1.2318 0.8410 0.8882
1_nnet 0.8971 0.8867 1.1914 1.2489 0.8430 0.8906
LM 0.8826 0.8726 1.2729 1.3243 0.9694 1.0162

TABLE A.2. Error measures for training and test for the target variable predicted only with the relevant variables. The
variables used to predict are written below the variable to predict. Ordered by test 𝑅2.
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𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
Beam RF 0.0005 0.0011 -0.0506 -0.0611 -0.0313 -0.0613
(Length, Design Speed) XGBoost 0.0015 0.0013 -0.2103 -0.0700 -0.1832 -0.1047

KNN 0.0006 0.0037 -0.0314 -0.1820 -0.0249 -0.0825
1_nnet 0.0229 0.0230 -0.6475 -0.6464 -0.5835 -0.5942
2_nnet 0.0146 0.0160 -0.3869 -0.4239 -0.3212 -0.3688
LM 0.0265 0.0266 -0.6544 -0.6594 -0.5671 -0.5682

Design Speed XGBoost 0.0277 0.0269 -0.3309 -0.2082 -0.2798 -0.1867
(ME Power, Draft) RF 0.0220 0.0280 -0.3925 -0.2078 -0.2702 -0.1159

1_nnet 0.0275 0.0188 -0.1666 -0.1141 -0.1400 -0.1628
KNN -0.0264 0.0180 0.1742 -0.1081 0.2326 0.0070
2_nnet 0.0531 0.0028 -0.3302 -0.0164 -0.3661 -0.1452
LM 0.2033 0.1944 -0.8699 -0.8490 -0.8367 -0.8152

AE Power RF 0.0004 -0.0009 -4.9752 5.2422 -8.7550 -16.7539
(ME Power, Beam) XGBoost -0.0151 0.0051 237.2241 -27.9569 250.9958 43.4501

KNN 0.0001 0.0001 -0.8868 -0.4871 -2.3689 -2.3310
1_nnet 0.0412 0.0283 -184.2369 -130.9249 -146.6328 -108.9719
2_nnet -0.0136 -0.0079 54.4307 33.6192 82.1859 49.9145
LM 0.0392 0.0386 -146.7625 -154.7597 -82.0153 -103.5795

ME Power RF -0.0011 -0.0012 150.1328 73.8664 248.2645 137.4452
(Length, Design Speed) XGBoost 0.0016 -0.0003 -381.3468 18.2249 -276.7815 -62.3720

KNN 0.0003 0.0003 -22.3113 -17.6821 -36.3525 -53.4362
2_nnet 0.0143 0.0090 -666.4766 -427.7605 -303.5019 -159.7036
1_nnet 0.0127 0.0099 -576.0113 -466.4431 -283.3240 -190.4030
LM 0.0734 0.0722 -1651.9714 -1671.6840 -1331.5225 -1394.5369

Length RF 0.0019 0.0062 -1.4683 -2.2352 -0.8114 -0.9614
(Beam, ME Power) XGBoost 0.0069 0.0097 -3.5487 -3.0396 -3.3472 -3.1494

1_nnet 0.0105 0.0099 -2.3676 -2.2438 -1.4518 -1.4262
2_nnet 0.0135 0.0137 -2.9168 -2.9703 -1.9030 -2.0084
LM 0.0136 0.0151 -2.7539 -3.0579 -2.0267 -2.1668
KNN 0.0001 -0.0001 -0.0283 0.0171 -0.0590 0.0124

ME RPM RF 0.0115 0.0253 -29.7687 -16.9290 -11.2778 -7.2151
(Draft, ME Power) XGBoost -0.0049 0.0297 9.7729 -19.6946 0.5686 -6.1110

2_nnet 0.0409 0.0302 -28.2491 -19.7805 -16.2814 -10.8410
1_nnet 0.0379 0.0263 -25.6869 -16.8007 -18.3823 -13.8981
KNN 0.0107 0.2162 -6.7456 -99.9706 52.4929 1.3610
LM 0.2386 0.0031 -111.4247 -1.1652 -135.4681 -71.9654

Draft RF 0.0068 0.0259 -0.1616 -0.3174 -0.0728 -0.1559
(Beam, Length) XGBoost 0.0092 0.0251 -0.2393 -0.2967 -0.1553 -0.1761

KNN 0.0061 0.0299 -0.0668 -0.2749 0.0995 -0.0221
2_nnet 0.0751 0.0827 -0.5846 -0.6162 -0.4035 -0.4243
1_nnet 0.0785 0.0678 -0.6115 -0.4578 -0.5593 -0.4689
LM 0.0692 0.0768 -0.4575 -0.4900 -0.3315 -0.3574

TABLE A.3. Difference of error when adding type variable as a predictor with respect to Table 5.4. The variables used to
predict (excluding type which is used in every experiment) are written below the variable to predict. Increase in
𝑅2 and decrease in RMSE and MAE means better fit. Ordered by test 𝑅2.
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𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
Beam XGBoost 0.9868 0.9744 1.2264 1.7085 0.8013 1.0654
(Length) RF 0.9805 0.9727 1.4892 1.7648 0.9385 1.1449

KNN 0.9785 0.9721 1.5636 1.7839 0.8181 1.0666
2_nnet 0.9166 0.9154 3.0818 3.1067 2.2648 2.2795
1_nnet 0.9109 0.9120 3.1856 3.1693 2.2747 2.2939
LM 0.9001 0.9006 3.3731 3.3675 2.4921 2.4923

Design Speed XGBoost 0.8695 0.8574 1.4473 1.5057 0.9991 1.0932
(ME Power) KNN 0.8922 0.8561 1.3157 1.5125 0.7975 0.9997

RF 0.8853 0.8495 1.3572 1.5467 0.8984 1.0560
1_nnet 0.7529 0.7831 1.9919 1.8567 1.4820 1.4357
2_nnet 0.7359 0.7678 2.0593 1.9211 1.5473 1.4991
LM 0.6616 0.6813 2.3309 2.2508 1.8127 1.7850

AE Power XGBoost 0.9026 0.8624 1119.2508 1369.8897 651.3921 713.7344
(ME Power) KNN 0.8767 0.8505 1259.3877 1427.8572 611.7369 707.7976

RF 0.9158 0.8330 1040.4658 1508.7723 576.0408 728.9788
1_nnet 0.7504 0.7645 1791.5748 1791.8935 978.9485 975.6295
LM 0.7432 0.7585 1817.1219 1814.8075 1000.7697 1007.3105
2_nnet 0.7431 0.7582 1817.5333 1815.7456 1006.2254 1013.1059

ME Power KNN 0.9665 0.9537 3070.5436 3742.5165 1407.5615 1874.7986
(Length) XGBoost 0.9693 0.9517 2937.0998 3819.8798 1682.1618 2032.9765

RF 0.9745 0.9517 2675.5138 3820.3715 1473.3089 1941.0761
1_nnet 0.8564 0.8730 6353.7081 6195.3436 3889.8189 3849.9655
2_nnet 0.8566 0.8729 6348.0268 6198.7748 3786.8094 3753.9687
LM 0.7103 0.7116 9023.7655 9336.1202 6694.5049 6891.3160

Length XGBoost 0.9559 0.9473 15.8575 17.5739 9.8878 10.9411
(Beam) RF 0.9553 0.9471 15.9653 17.6154 9.9571 11.0681

KNN 0.9335 0.9288 19.4619 20.4260 10.2588 10.9091
LM 0.9001 0.9006 23.8586 24.1373 17.5235 17.8596
1_nnet 0.8995 0.9004 23.9278 24.1684 17.6645 17.9829
2_nnet 0.9001 0.9002 23.8561 24.1844 17.5174 17.8817

ME RPM 1_nnet 0.8671 0.8622 167.5842 168.3189 96.4330 95.5028
(Draft) RF 0.9073 0.8597 139.9690 169.8230 78.0129 89.9753

2_nnet 0.8648 0.8576 169.0427 171.0586 99.3597 97.5212
XGBoost 0.9206 0.8570 129.5553 171.4625 70.7456 89.7742
KNN 0.9203 0.8434 129.8078 179.4019 61.9109 87.0557
LM 0.6123 0.6262 286.2200 277.1728 205.7639 197.9765

Draft RF 0.9367 0.9216 0.9344 1.0391 0.6337 0.7072
(Beam) XGBoost 0.9345 0.9211 0.9510 1.0420 0.6555 0.7124

KNN 0.9241 0.9123 1.0232 1.0991 0.6926 0.7264
1_nnet 0.8933 0.8879 1.2133 1.2421 0.8778 0.9168
2_nnet 0.8906 0.8840 1.2285 1.2636 0.9186 0.9569
LM 0.8820 0.8727 1.2761 1.3237 0.9733 1.0181

TABLE A.4. Error measures for training and test for the target variable. The variable used to predict is written below the
variable to predict. Predicted only with the most relevant variable. Ordered by test 𝑅2.
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𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
Beam RF 0.9957 0.9842 0.6994 1.3413 0.3479 0.7555

XGBoost 0.9966 0.9823 0.6188 1.4219 0.3228 0.8451
3NN 0.9874 0.9823 1.1967 1.4226 0.5906 0.8152
1NN 0.9979 0.9805 0.4920 1.4902 0.0512 0.6413
MSV 0.9973 0.9730 0.5527 1.7562 0.0598 0.7836
1_nnet 0.9505 0.9496 2.3753 2.3974 1.7842 1.8258
2_nnet 0.9493 0.9476 2.4039 2.4455 1.8259 1.8725
LM 0.9121 0.9124 3.1644 3.1621 2.4926 2.4942

AE Power RF 0.9729 0.8890 590.2442 1230.4580 281.1902 580.1873
XGBoost 0.9679 0.8847 642.5920 1253.9018 314.9681 597.1411
1NN 0.9848 0.8825 441.6284 1265.9871 83.2525 541.7500
3NN 0.9292 0.8789 953.9023 1285.2560 449.6223 632.9286
MSV 0.9886 0.8669 382.5517 1347.0451 75.5772 554.3957
1_nnet 0.8093 0.8194 1565.8429 1569.1679 838.8283 823.0631
2_nnet 0.7985 0.8089 1609.7925 1614.1963 888.2305 853.7966
LM 0.6904 0.7046 1995.3682 2006.9952 1293.5314 1261.6120

ME Power RF 0.9963 0.9799 1025.3560 2465.9112 428.6885 978.8303
3NN 0.9871 0.9755 1901.8463 2721.2939 768.5421 1143.6786
XGBoost 0.9889 0.9749 1765.0277 2755.9600 1071.7574 1360.7880
1NN 0.9995 0.9717 368.2261 2927.1558 77.7506 963.1471
MSV 0.9995 0.9710 365.3108 2963.1109 71.6225 1041.1629
1_nnet 0.9607 0.9612 3323.5682 3426.6575 1716.1289 1813.7950
2_nnet 0.9601 0.9609 3350.3343 3439.1123 1756.7301 1868.6926
LM 0.8222 0.8208 7068.9221 7360.7513 5446.5547 5667.8594

ME RPM XGBoost 0.9742 0.8710 73.7837 162.8481 36.6714 82.0743
RF 0.9759 0.8700 71.3819 163.4616 38.1288 83.3670
3NN 0.9297 0.8557 121.8638 172.2444 59.0172 91.1690
1_nnet 0.8302 0.8307 189.4050 186.5293 113.5908 110.3079
2_nnet 0.8213 0.8289 194.3407 187.5346 113.9136 111.6540
1NN 0.9963 0.8223 28.0424 191.1055 3.0852 75.2486
MSV 0.9957 0.7816 30.0128 211.8606 3.5080 85.6100
LM 0.5209 0.5222 318.1662 313.3820 241.4797 236.8057

Draft RF 0.9890 0.9541 0.3890 0.7946 0.2411 0.4687
1NN 0.9963 0.9486 0.2264 0.8413 0.0377 0.3893
3NN 0.9670 0.9410 0.6747 0.9009 0.3497 0.5210
XGBoost 0.9553 0.9331 0.7857 0.9594 0.5346 0.6618
MSV 0.9970 0.9311 0.2029 0.9740 0.0325 0.4515
1_nnet 0.9275 0.9192 1.0004 1.0547 0.6880 0.7527
2_nnet 0.9251 0.9155 1.0168 1.0789 0.7119 0.7880
LM 0.8658 0.8531 1.3607 1.4220 1.0250 1.0796

TABLE A.5. Comparison of the best algorithms found, KNN and MSV. Ordered by test 𝑅2.

𝑅2 RMSE MAE
Target Algorithm Train Test Train Test Train Test
ME Power RF 0.9787 0.9307 2444.9302 4576.5184 951.1324 2006.6138
(Length*Beam) XGBoost 0.9485 0.9257 3803.4448 4739.4473 2081.3133 2576.2111

KNN 0.9485 0.9156 3805.4634 5052.3433 1482.7439 2236.7024
1_nnet 0.7253 0.7497 8786.1284 8699.0627 5153.0976 5164.2718
2_nnet 0.7251 0.7480 8789.1669 8728.6609 5179.9932 5202.7271
poly2 0.7225 0.7473 8831.9435 8740.2747 5310.2186 5273.8748
LM 0.7017 0.7180 9155.9720 9232.4103 6155.3972 6231.0306

AE Power RF 0.9934 0.9699 1360.2618 3015.9177 627.2374 1302.5491
(Length, Beam) XGBoost 0.9917 0.9648 1523.9397 3262.3938 942.4226 1515.6529

KNN 0.9810 0.9630 2308.7373 3343.5428 1083.6797 1572.7905
2_nnet 0.9197 0.9269 4749.8280 4700.3711 2961.2582 3018.5387
1_nnet 0.9193 0.9210 4762.0252 4888.1198 2896.2361 3046.5558
poly2 0.8995 0.9008 5315.7676 5474.9995 3124.0154 3245.4752
LM 0.7924 0.7847 7637.8210 8067.4960 5432.4080 5712.9536

TABLE A.6. Installed power main engine predicted with Length*Beam and (Length and Beam). Ordered by test 𝑅2.
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AE Auxiliary Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

AIS Automatic Identification System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

AQMS Air Quality Modelling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

BSC Barcelona Supercomputing Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

BS Batch Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

CALIOPE CALIdad del aire Operacional Para España . . . . . . . . . . . . . . . . . . . . . . 4

CNN Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CPU Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CRBM Conditional Restricted Boltzmann Machine . . . . . . . . . . . . . . . . . . . . . . . 9

CoG Course over Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

EIONET European Environment Information and Observation NETwork . . . . . . . . . . . 4

FCD Floating Car Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

FL Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

GB-RBM Gaussian Bernoulli RBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

GPS Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

GPU Graphics Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

GRU Gated Recurrent Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

GT Gross Tonnage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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HERMES High-Elective Resolution Modelling Emission System . . . . . . . . . . . . . . . . 4
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