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Abstract

Being able to tailor biocatalysts at will is crucial for switching from inorganic catalysts
to enzymes in the industry. The advances in computational power, followed by the reper-
toire of modeling tools, are pushing the design of the next generation of biocatalysts. This
thesis aims at developing a novel concept, which refers to the pluriZymes. PluriZymes are
proteins with plural catalytic active sites where one (at least) of them is artificially de-
signed. The type of introduced active site has been the hydrolase site due to its simplicity
(only 3 catalytic residues needed) and does not need a cofactor. Moreover, the studied
systems were transaminases and esterases because they are widely used in the market,
and extensively studied by our collaborators. Thus, the thesis presents a set of research
articles where several pluriZymes have been engineered and a new algorithm to ease the
design of artificial active sites. With all these advances in the design of pluriZymes, we
hope people in the field get attracted to the idea.
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1 | Introduction

1.1 Enzymes
Enzymes are biological macromolecules that catalyze chemical reactions without being
consumed during the process (Nelson and Cox, 2008a,e). In nature, enzymes are the
elements that make life kinetically possible. In fact, some decarboxylation reactions are
estimated to have half-time values close to the age of the Earth in the absence of enzymes
(Neet, 1998; Wolfenden*, 2006; Wolfenden* and Snider, 2001). In contrast, enzymes can
reduce these mentioned half-time values up to milliseconds. Thus, life, as we know it,
could not be conceived without enzymes.

Although the details of the mechanism and the factors that enable enzymes to catalyze
reactions are not fully comprehended yet (Knowles, 1991; Kraut, 1988), they either reduce
the reaction TS energy barrier (decrease the value of ∆G‡) or enhance the productive cross
of the TS by the reactants (increase the value of κ) according to the widely known TS
theory (Figure 1.1) (Eyring, 1935; Truhlar, 2015; Zinovjev and Tuñón, 2017).

The first theories to address how enzymes decreased the activation energy barrier were
Fischer’s "lock-and-key" model and Koshland’s "induced-fit" model. The first model stated
that the shape of the enzyme’s active site (where the reaction occurs) is complementary
to the substrate one (Fischer, 1894). The second, more recent one proposed that the
shape of the active site of the enzyme changes along the reaction and is prepared to
stabilize the TS, rather than the substrate (Koshland, 1958). Albeit the high usage of
these theories in the field of enzymology, they lack a lot of key concepts like allosteric
effects, macromolecule dynamics, and more (Kamerlin and Warshel, 2010; Kohen, 2014;
Sutcliffe and Scrutton, 2000; Agarwal, 2006).

1
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Figure 1.1: Free energy profile of a reaction without enzyme (in black,
uncatalyzed) and with enzyme (in red, catalyzed). As it can be seen, en-
zymes can either decrease the value of ∆G‡ or increase the number of
productive crosses (as it can be seen by the curve with arrows along the
reaction coordinate). The formation of the enzyme-substrate complex and
the dissociation of the enzyme-product complex account for the two ad-
ditional peaks in the catalyzed free energy profile. The S, P, TS, and E
stand for substrate, product, transition state, and enzyme, respectively.
Reaction coordinate corresponds to a metric that represents the progress

of the chemical reaction. Figure adapted from (Roda et al., 2020).

1.1.1 Structure of enzymes

Typically, enzymes are proteins, meaning they are made from chains of the 21 canonical
amino acids used in living organisms. These canonical amino acids are α amino acids
with a carboxyl and an amino group bound to the α carbon (known as the main chain or
backbone). What makes one amino acid different from another is the third group bound
to the α carbon, which is named the side chain or R group (Figure 1.2).
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Figure 1.2: Classification of the 21 common amino acids according to
their R group and their charge at physiological pH (7.4). Still, more classi-
fications according to the nature of the R group exist due to the complexity

of amino acids. Figure drawn with ChemDraw.
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In proteins, these amino acids are covalently bound through the peptide bond and are
called residues inside a protein. Each protein has a unique sequence of residues (sequence
length, order, and the type of amino acids) that defines its structure and function. This
sequence of residues is known as the primary protein structure, which includes the disulfide
bonds of cysteine residues. After this first structural level, three others exist derived
from the primary one. The arrangement of the backbone of the residues can acquire
structural patterns due to local H-bonds in the structure. These patterns include the
α-helix, the β-sheet, the turn, and the random coil. The structural disposition of these
local arrangements in the space is a higher structural level, the tertiary structure. This
tertiary structure explains the core function of the protein and is folded thanks mainly
to non-local non-covalent interactions and entropic effects (like the hydrophobic core, salt
bridges, post-translational modifications, and more). The last structural level, known as
quaternary structure, happens when protein subunits bind to generate a larger complex
(Nelson and Cox, 2008c,d) (Figure 1.3).
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Figure 1.3: Representation of the four levels of structure in proteins in
the case of an alcohol dehydrogenase (PDB ID: 2OHX).

Enzymes can also contain cofactors (including inorganic ions and complex organic
molecules) and chemicals different from amino acids required for catalytic activity (and
usually for folding). Hence, the wide variety that amino acids and cofactors offer explains
the large number of enzymes found in nature and factors that can modulate their cat-
alytic activity (such as pH, ionic concentration, temperature, presence or absence of the
cofactor or activator/inhibitor molecules, and more (Robinson, 2015)).

Although the vast majority of enzymes are of proteic nature, RNA-based ("ribozymes"),
DNA-based ("deoxyribozymes"), and even lipid-based enzymes (meaning that they show
catalytic properties) have been found in nature (Breaker and Joyce, 2014; Silverman, 2004;
Kruger et al., 1982; Breaker, 1997; Guerrier-Takada et al., 1983; Kahana and Lancet, 2021;
Yeung et al., 2013; Taylor et al., 2017; Ihara et al., 1983). It has been recently hypoth-
esized that catalytic lipid assemblies could have been the protocell precursors without
replicating catalytic biopolymers (RNA or DNA) due to their catalytic properties shown
in micelles and vesicular bilayers along with their autocatalytic proliferation and their
prebiotic compatibility (Kahana and Lancet, 2021). Still, these lipids lost their catalytic
properties through the evolution timeline and gained a more structural role (containment),
leaving biopolymers (proteins, RNA, and DNA) as the preferred choice for catalysis. The
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abundance of protein-based enzymes in nature compared to D/RNA-based enzymes can
be explained due to the higher number of combinations that amino acids offer compared
to nitrogenous bases (21n >> 4n, having more different sequences with the same length
n of the macromolecule) (Doudna and Lorsch, 2005). However, ribozymes are still key in
living organisms (they are the catalytic part of the ribosome, the machine that synthe-
sizes proteins), and it is also thought that they were the first catalysts in the origin of life
(Gilbert, 1986).

1.1.2 Enzymes’ theory

As mentioned earlier, enzymes are catalysts, meaning the study of the kinetics of the
catalyzed reaction must follow. We usually assume that enzymes follow the Michaelis-
Menten kinetic model, which is based on a single-substrate reaction like the following:

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P (1.1)

Based on this drawn chemical reaction, the substrate must bind to the enzyme’s active site
(with a certain rate of association, k1). Then, the reaction can occur, leading to product
formation (with a specific catalytic rate, k2), or the substrate can dissociate from the
enzyme’s active site and return to the solvent (with a particular rate of dissociation, k−1).
This leads to the reaction rate, depending on both the concentration of the substrate ([S])
and the concentration of the enzyme ([E]), as well as the kinetic constants of the specific
enzyme (Johnson and Goody, 2011).

v = d[P ]
dt

= Vmax
[S]

KM + [S] = kcat
[E][S]

KM + [S] (1.2)

This equation states that at [S] ↓, the reaction rate increases linearly with the [S], as
not all enzyme molecules are occupied. Still, at [S] ↑, the reaction rate approaches the
Vmax value, and thus, the speed of the reaction only depends on the [E] and the turnover
number of the enzyme (kcat). kcat is the number of times a substrate is converted into a
product per unit of enzyme and time, and the constant can coincide with k2 when there
are not several intermediates involved in the catalytic mechanism. The Michaelis-Menten
constant (KM) is the substrate concentration at which the reaction rate is Vmax2 . This
constant is defined as:

KM = k2 + k−1

k1
(1.3)

Thus, KM could be seen as a measure of the substrate’s affinity for the enzyme (meaning
the lower the KM , the lower [S] will be needed to reach the Vmax), as it is described by
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all constants affecting the enzyme-substrate complex.

Although the Michaelis-Menten model makes some assumptions (unimolecular reaction
with no intermediates, [S] >> [E], free diffusion ...), it is the most commonly employed
model of enzyme kinetics, and it is used (with its assumptions) to experimentally char-
acterize the kcat and KM values of an enzyme against a particular substrate in a specific
set of conditions (for instance, temperature and pH).

Computationally predicting these two constants is not straightforward since they can
depend on multiple rate constants. In the case of the kcat, it can be estimated, by modeling
the transition state and using Eyring’s equation (Figure 1.1), on simple reactions where
the rate-limiting step is known. Still, the exact catalytic mechanism of many enzymes
is unknown (due to the existence of several hypotheses), and that is where modeling
enzymes with molecular modeling hybrid (QM/MM) techniques become essential.

1.2 Enzyme engineering
Even though we mentioned the high "catalytic proficiency" of enzymes, only a few of them
are known to have reached the maximal performance an enzyme can accomplish, which
is the physical limit of diffusion rate ( kcat

KM

> 109 M−1 · s−1) (Goldsmith and Tawfik, 2017;

Bar-Even et al., 2011). In fact, the average kcat
KM

reported in the literature is 4 orders of
magnitude below the perfect enzyme (Bar-Even et al., 2011). The reason behind this is
that enzymes are optimized according to the physiological needs of the cell. Thus, their
kcat
KM

value is limited by many factors occurring simultaneously in a living organism (such
as the flux of metabolites) (Goldsmith and Tawfik, 2017).

However, enzymes can have their kcat
KM

improved by engineering them (Fasan et al., 2008;
Goldsmith and Tawfik, 2017). This property and many others (an increase of thermal sta-
bility, switch of optimum pH, allowance to work in different types of solvents, acceptance
of more substrates...) can be improved by enzyme engineering (Lutz and Bornscheuer,
2011; Jemli et al., 2016; Bell et al., 2021). Biocatalysts have gained relevance in the in-
dustry in recent years thanks to the improvements enzyme engineering can bring (Jemli
et al., 2016; Bell et al., 2021; Hughes, 2018). Clear examples of this approach include the
optimization of a ω-transaminase to enable the biosynthesis of sitagliptin (an antidiabetic
drug) (Savile et al., 2010), the de novo design of enzymes to catalyze non-natural complex
reactions (Siegel et al., 2010; Röthlisberger et al., 2008; Jiang et al., 2008), the design of
an enzyme with multiple active sites to enable interesting one-pot cascade reactions (San-
tiago et al., 2018; Filice et al., 2015; Bos et al., 2012, 2015; Zhou and Roelfes, 2020), and
many more (Lin et al., 2012; Santiago et al., 2016; Tournier et al., 2020). This engineering
can be performed either with experimental or computational procedures (or by combining
both of them (Steiner and Schwab, 2012; Chica et al., 2005)), and they will be further
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presented below.

1.2.1 Experimental strategies

Enzyme engineering was born with the advances in molecular biology techniques, which
included the usage of recombinant DNA for the production of the desired protein by the
user (Cohen et al., 1973; Goeddel et al., 1979), the amplification of this DNA by the poly-
merase chain reaction (PCR) (Mullis, 1990), the site-specific manipulation of DNA with
restriction nucleases and ligases (Winter et al., 1982; Wilkinson et al., 1983; Hutchison 3rd
et al., 1978), and DNA sequencing (Sanger et al., 1977) (in fact, all these methods were
awarded 3 Nobel Prizes, 2 in Chemistry and 1 in Physiology). These methods allowed
for the specific mutation of some particular residues in a protein sequence, which was
quickly used to make an enzyme (subtilisin) resistant to chemical oxidation with a single
mutation (Met to Ser, Ala, or Leu) (Estell et al., 1985). Although the enzyme lost some
catalytic activity, they could tailor the biocatalyst to the desired conditions. These first
studies of enzyme engineering mainly used the knowledge of the crystallographic structure
of the protein. This use of the available knowledge of the protein to smartly generate a
small subset of variants that are expected to improve the desired property is what we call
rational design (Chen, 1999, 2001). However, when there is little or no knowledge of the
system, one can take advantage of the potential of natural selection to highly improve a
property of an enzyme.

Directed evolution

Directed evolution uses random mutagenesis (Cadwell and Joyce, 1992) with the creation
of a library of mutated versions of the studied gene, followed by the selection of the
best ones according to the better performance of the protein variant reflected in the cell
fitness (Chen, 2001; Kuchner and Arnold, 1997; Romero and Arnold, 2009). Then, the
best-selected variants can be used for the next rounds of evolution (until the property you
want to improve reaches the desired value). Thus, directed evolution requires: a) a method
to randomly introduce changes in the studied enzyme; b) an efficient selection/screening
method to be able to distinguish between the enhanced and deleterious variants; c) a
practical evolution strategy that allows the improvement of the desired property in a
short time and is cost-effective.

A lot of methods to develop random mutations on a DNA sequence exist (Labrou, 2010),
such as error-prone PCR (where the used Taq DNA polymerase has low fidelity in check-
ing the nitrogenous bases added in the synthesized DNA chain) (Cadwell and Joyce, 1992;
Wilson and Keefe, 2001; McCullum et al., 2010), chemical damaging of the DNA (Chu
et al., 1979; Shortle and Botstein, 1983), DNA shuffling (based on genetic recombination)
(Zhao and Arnold, 1997), the use of bacterial mutator strains that lack DNA repair mech-
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anisms (Cox, 1976; Bornscheuer et al., 1998), and even the newer CRISPR-Cas9 system
can help (Jakočiūnas et al., 2018; Li et al., 2020). Each procedure has its limitations
(Labrou, 2010; Lutz and Iamurri, 2018), but by combining them, large random libraries
can be easily obtained. High-throughput screening/selection methods to test the library
of randomly generated variants include the use of microtiter plates with colorimetric or
fluorometric assays (where the aid of robots comes in handy) (Watt et al., 2000), direct
digital imaging of the colonies considering the color observed in each pixel (Delagrave
et al., 2001), flow cytometry with fluorometric assays (Yang and Withers, 2009), droplet-
based microfluidics (a newer method that was created to overcome the limitations of the
other ones) (Agresti et al., 2010), and the display techniques where the gene and the pro-
tein are directly or indirectly linked, and then, the protein is tested against the desired
property (the most famous being the phage display (Smith, 1985; Smith and Petrenko,
1997), which was awarded half share of the Nobel Prize in Chemistry in 2018) (Xiao et al.,
2015).

The strategy to follow for improving the desired property of your particular enzyme system
with the mentioned methods depends on them. In other words, the higher number of
mutations you try, the more options you will have to boost your catalyst. However, this
trial of enormous libraries of variants can be extremely costly and time-consuming. To
get an idea, if only a third of positions in a protein of 250 residues were allowed to mutate,
the number of possible combinations is 2083. This is where the user’s system’s available
knowledge can help to create smaller libraries with a higher probability of containing
sounder mutations (Steiner and Schwab, 2012; Chica et al., 2005), as well as fine-tuned
reliable methods that allow the generation of a diversified set of mutants (Gonzalez-Perez
et al., 2014). Despite its limitations, directed evolution has proven to be an essential
tool for the improvement of enzymes with several reference studies (Savile et al., 2010;
Heinzelman et al., 2009; Chen and Arnold, 1993; Moore and Arnold, 1996) (and even
allows the creation of new chemistry (Hammer et al., 2017; Kan et al., 2016; Zhang et al.,
2018)), and it has also been awarded the other half share of the Nobel Prize in Chemistry
in 2018.

1.2.2 Computational strategies

The development of computational methods and more refined algorithms combined with
the improvement in the power of computation (predicted by Moore’s law) have taken
enzyme engineering to a new level (Steiner and Schwab, 2012; Barrozo et al., 2012; Roda
et al., 2020, 2021). Since the first trials of computational tools for protein (and enzyme)
engineering (DeGrado et al., 1985; Craik et al., 1985; Hellinga et al., 1991; Wilson et al.,
1991; Hurley et al., 1992), this field has thrived with several methods that can use as
input any of the explained four structural levels of proteins (Roda et al., 2020). Although
sequence-based approaches can be helpful to improve some properties of enzymes and
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Figure 1.4: Comparison of directed evolution vs rational design for en-
zyme engineering.

primarily design smaller libraries for directed evolution, structural-based modeling is the
primary technique used for computational enzyme engineering (Roda et al., 2020, 2021).

For instance, the computational modeling of an enzyme can help characterize its catalytic
mechanism (Friesner and Guallar, 2005; Ranaghan and Mulholland, 2010; Lonsdale et al.,
2012; Kamp and Mulholland, 2013), study its interactions with substrates (Gilabert et al.,
2018; Roda et al., 2020), and determine its key conformational dynamics (Kamerlin and
Warshel, 2010; Petrović et al., 2018). Then, this acquired information of the system can
be applied to change the pH dependency of an enzyme based on the study of the dynamics
of a loop (Shen et al., 2021), to enhance the activity of the enzyme based on analyzing
the electrostatic environment in its active site (Santiago et al., 2016), or to switch the
type of reaction the enzyme catalyzes based on modeling the active site residues and the
TS of the reaction at the QM level of theory (Branneby et al., 2003).

Until recently, these types of computational studies and following rational redesigns of en-
zymes could only be done when the 3D structure was available, or a homologous sequence
of high identity had a 3D structure that could be used as a template (since the structure
is more conserved than sequences (Rost, 1999; Illergård et al., 2009)). This problem was
a significant limitation as only a small portion of the protein sequences have an experi-
mentally solved 3D structure deposited in the PDB. In fact, scientists have tried to unveil
the physical rules that dictate a particular sequence of amino acids folds into its native
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structure for half a century (Dill and MacCallum, 2012). Now, thanks to the power of
deep learning, DeepMind, a subsidiary company from Google, and Baker’s lab have cre-
ated AlphaFold (Jumper et al., 2021) and RoseTTAFold (Baek et al., 2021), respectively,
complex software that use multiple sequence alignments as input to extract evolutionary
constraints of the structure, and then, the residues of the desired sequence are modeled
based on these extracted evolutionary constraints plus physics and geometric-based ones,
and the final structure is obtained. This breakthrough will allow the structural-based
modeling of any enzyme, skipping the painful and challenging part of experimentally ob-
taining its 3D structure. Since the amount of data has grown during the last 25 years,
machine learning is also starting to be applied in enzyme engineering (Mazurenko et al.,
2019). Still, it has just begun to be employed, and it faces a big problem in comparability
and consistency between data sets of different groups.

What makes computational approaches stand out over experimental ones is the possibility
to design de novo enzymes to catalyze complex reactions, which are not known to exist
in nature (some enzymes were discovered to be able to catalyze some of these reactions
(Kim et al., 2011; Miao et al., 2017), but after the publication of the de novo designs).
A pioneer in this subject is Baker’s lab, where they created retro-aldolases (Jiang et al.,
2008), Kemp eliminases (Röthlisberger et al., 2008), and Diels-Alderases (Siegel et al.,
2010) with the help of their famous software, Rosetta (Rohl et al., 2004). Nonetheless,
kcat
KM

values are modest compared to the most proficient naturally occurring enzymes, and
they require directed evolution to reach higher values (Althoff et al., 2012; Khersonsky
et al., 2012; Zanghellini, 2014).

1.3 Computational methodology
Although the articles presented in the thesis required experimental characterization of
the computational analysis performed, this section will only focus on explaining the com-
putational methodology, as it is the one that represents all the work I have done.

To model enzymes in the computer, we must keep in mind that they are macromolecules
(50 kDa or 450 residues), having a massive number of variables and making it complex
to simulate their behavior in silico. This vast number of variables comes from its con-
formational space (the number of conformations the enzyme can explore), leading to a
well-known case of a combinatorial explosion in chemistry (Howard and Kollman, 1988).
To picture this, Levinthal’s paradox states that if a protein of 100 residues is considered
and only three conformations of the backbone are applied, the amount of possible confor-
mations is 3100. This means that protein folding cannot be random and computational
biochemists must sample proteins (and thus, enzymes) smartly.

Several methods have been created working at different levels of theory. Next, a summary
of molecular modeling is given.
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1.3.1 Molecular modeling

Molecular modeling is the name we give to all techniques that simulate (bio)chemical and
physical systems in silico. These methods can be classified either if they use Newton’s
laws (classical physics), which we term molecular mechanics (MM), or if they use the
Schrödinger equation (quantum physics), which is called quantum mechanics (QM). Both
have their advantages and limitations, MM is more simple and, thus, less expensive com-
putationally. Nevertheless, QM calculi are more accurate and allow a better estimation
of the user’s parameters of interest (Jensen, 2007c).

Molecular mechanics

MM simplifies the system by treating atoms as the smallest and indivisible units without
considering subatomic particles. Atoms are connected by bonds, which are considered
harmonic oscillators. This description of molecules with atoms and their bonds is known as
the "ball-and-stick" model. Thus, the system’s potential energy is parametrized according
to the coordinates of the atoms, their types, and their local rearrangement (meaning
bonds, angles, and dihedrals), which is commonly known as force fields (FF) (Figure 1.5).

ESystem = EBonding + ENon−bonding (1.4)

Where EBonding and ENon−bonding are comprised by:

EBonding = EStretching + EBending + ETorsions (1.5)

ENon−bonding = EV an der Waals + EElectrostatic (1.6)

The numerical values assigned to the constants of the energy terms, the functional form
used, and the number of parameters and terms taken into account define and distinguish
one FF from another (Figure 1.5). Also, these numerical values are extracted either
from experimental or computational (from QM calculi) data. Thus, the accuracy of the
energy calculation of the user’s system will depend, in principle, on the applied FF; at a
practical level, most FFs give similar results on standard systems. A handful of widely
used FFs exist, including AMBER (Bayly et al., 1995), CHARMM (Brooks et al., 1983),
OPLS (Jorgensen et al., 1983), and GROMOS (Berendsen et al., 1995). One of the other
main advantages of using FFs is that they are transferable, meaning that the parameters
of an amino acid are the same for the different positions of that residue in the protein
system and different systems. Still, this limits the incorporation of polarization effects in
a specific residue position, and bonds cannot be formed nor broken.
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Figure 1.5: Illustrative scheme of the different interactions that define
the energy of the system in a classical FF.
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Since enzymes typically work in aqueous media, water must be considered in the sim-
ulations. There are two main ways to model the solvent with explicit waters (meaning
modeling every water molecule with the used FF) or implicit ones (meaning the solvent
is represented as a continuum medium). The number of explicit water molecules required
to model the solvent surrounding an enzyme is too large, making it unnecessarily compu-
tationally demanding. The solution for modeled explicit solvents is the usage of periodic
boundary conditions (PBC), in which the system is confined in a box (called a unit cell),
and it is repeated throughout the 3D space by rigid translations.

If one’s system is big and the simulation time is large, implicit solvents can be used, saving
computational resources and allowing more extended simulations. However, they cannot
account for the H-bonds formed in the system (between the solvent and the protein).
Implicit solvents consider electrostatic and van der Waals effects, as well as the free
energy penalty, derived from creating a cavity in the solvent bulk (cavitation). Inside
implicit solvation, we have three main methods (Cramer and Truhlar, 1999).

• SASA-based methods; no electrostatic effect is considered.

• Poisson-Boltzmann model; the exact electrostatic effect of the solute is considered,
and it is the most precise one.

• Generalized Born model; the electrostatic effect is also considered but less accurate.
They are an approximation to the exact Poisson-Boltzmann model, where the solute
is regarded as a set of spheres with a particular dielectric constant.

Quantum mechanics

QM describes the system using subatomic particles, electrons, and nuclei. The Schrödinger
equation must be solved to study these entities explicitly (compared to MM methods,
where subatomic particles are considered implicitly). To obtain the energy and the wave-
function of the system, computational biochemists use the time-independent Schrödinger
equation, because the protein is treated as a stationary system.

ĤΨ = (T̂N + T̂e + ÛNN + ÛeN + Ûee)Ψ = EΨ (1.7)

Where ĤΨ is the Hamiltonian operator, T̂ represents the kinetic part, Û represents the
potential part, e states for electrons, and N for nuclei. Thus, all interactions are taken into
account, including between electrons (ee), nuclei (NN), and electron-nuclei (eN). Due
to the high complexity of this equation, the Born-Oppenheimer approximation is used
(Jensen, 2007d). This notion considers that the position of the nuclei is fixed compared
to the electrons’ positions because the much higher mass of the nuclei (3 orders of mag-
nitude higher) makes their movement negligible compared to the electronic motion. This
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approximation leads us to a simplified version of the equation, the electronic Schrödinger
equation:

ĤeΨi(R, r) = (T̂e + ÛNN + ÛeN + Ûee)Ψi(R, r) = Ei(R)Ψi(R, r) (1.8)

R denoting nuclear positions and r electron coordinates. The analytical solution of this
equation can only be obtained for a small list of systems, and they do not contain mul-
tiple electrons. Many-electron systems require a numerical answer and depending on the
accuracy desired, several methods exist (Jensen, 2007d). The three main groups are:

• Hartree Fock (HF): The method is based on the assumption that the exact N-
body wavefunction of the system can be approximated by a single Slater determinant
of mono-electronic wavefunctions or spin-orbitals (φi) (Jensen, 2007d). φi are built
from the linear combination of atomic spin-orbitals χ, which are mono-electronic
functions based on the atom nuclei (so, φi = ∑Mbasis

α cαiχα where α denotes a specific
spin quantum number). χ is a basis set, and the type of basis function can be
any (exponential, Gaussian, polynomial, cube functions, wavelets ...). Depending
on the basis set used (and the particular problem we are facing), the accuracy of
the results can vary a lot (Jensen, 2007d). HF is an accurate method, but the
electron-electron interactions are only considered as an average effect. The explicit
treatment of the electron-electron interactions is neglected, and thus, the correlation
energy is not properly estimated. To have a more accurate and exact solution,
post-HF methods that consider correlation energy have been developed (including
configuration interaction, coupled cluster, and the Møller-Plesset methods). Still,
these post-HF methods are limited to only calculations with small systems (1000
electrons at best), since the computational effort increases by N6.

• Density Functional Theory: This methodology is based on the Hohenberg-Kohn
theorem, which states that the ground-state electronic energy is determined only by
the electron density (ρ) (Jensen, 2007e). It is said that the integral of the electron
density defines the number of electrons, the cusps in the electron density relate to the
position of the nuclei, and the heights of the cusps define the corresponding nuclear
charges (Steiner, 2004). The main advantage of this methodology is that the electron
density depends only on three spatial coordinates and, thus, is independent of the
number of electrons (compared to wavefunction methods that have 4N variables,
three spatial and one spin coordinate for each electron). Still, the exact functional
that connects the electron density with the ground state energy is unknown. To
address this, the Khon-Sham theory expresses the electron density of the system as
a linear combination of basis functions (similar to HF) and assumes electrons are
not interacting to calculate the kinetic energy (and the remaining kinetic energy
is transferred to an exchange-correlation term). The main advantage of DFT is
that the computational cost is lower than in HF methods while not losing accuracy.
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Also, calculations can be correlated with experiments, since electron density can be
measured (for instance, X-ray diffraction techniques). Its main problem comes with
the inability to systematically improve its results, compared to HF, where additional
determinants can be added to bear in mind the correlation energy.

• Semi-empirical methods: These methods come from adding more approxima-
tions to HF methods, mainly neglecting all integrals involving three or more nuclei
when constructing the Fock matrix (Jensen, 2007d). These integrals are transformed
into parameters and fitted to experimental data. Likewise, the only electrons treated
explicitly are the valence ones, and a minimal number of basis sets is used. Several
semi-empirical methods are defined depending on how many integrals we neglect, the
parametrization used, and the number of basis sets used for the valence electrons.
The main advantage of this approach is reducing the computational cost compared
to the other two methods, allowing for the simulation of more extensive systems (like
biomolecules). Also, they can be handy when a lot of experimental data is available
for the studied system. However, they perform poorly when systems with limited
experimental data are simulated (like FF-based methods, although semi-empirical
QM methods can describe bond-breaking and forming reactions).

Quantum mechanics / molecular mechanics

To study the catalytic mechanism of an enzyme, we need to simulate the system at the
QM level. Still, the system’s size is too big to study it all at that level of theory. Even
though we could simulate only the part of the enzyme where the reaction occurs, the
influence of the rest of the protein would not be taken into account, leading to wrong
answers. To solve this problem, QM/MM methods were created (Warshel and Levitt,
1976; Field et al., 1990), where the part in which the reaction takes place is modeled at
the QM level, while the remaining portion of the system (protein+solvent) is modeled at
the MM level (Figure 1.6).

One of the main problems in QM/MM methods is representing the interaction between
both regions (QM and MM). Thus, a simple way to think of the energy of the whole
system would be:

Esystem = EQM + EMM + EQM/MM (1.9)

The interface bonds must be dealt with when the MM region and the QM one are co-
valently bound. Three main methods exist; frozen orbitals (orbitals that cap the QM
region and represent the cut bond), link atoms (usually a hydrogen atom, and it is used
to saturate the valence of the frontier QM atom), or boundary atoms (the frontier MM
atom appears in both QM and MM calculi). The covalent terms in the energy involving
the border QM/MM atoms are treated classically, while in the electrostatic terms, frontier
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QM region

ĤΨ = EΨ

Figure 1.6: Illustrative scheme of a QM/MM calculation. The system is
an ω-transaminase (PDB ID: 5FR9).

MM atoms have their charges replaced by spherical gaussian charges (and redistributed)
to avoid over-polarization of the charges in the frontier QM atoms.

The development of QM/MM methods was awarded the Nobel Prize in Chemistry in 2013
since they enabled the study of complex chemical systems in silico. This Nobel Prize could
not have been conceived without another Nobel Prize in Chemistry, the one in 1998 given
to the development of DFT and computational methods for quantum chemistry.

1.3.2 Optimization and simulation techniques

The main methodology to study enzymes and obtain the energy of the whole system at
different levels of theory has been described. Likewise, the parameters or notions from
enzymes that computational biochemists want to study have also been explained.

Still, I have not explained how to use molecular modeling to sample the mentioned con-
formational space of a protein smartly. The energy of all the conformations of a system
represented as a function of its degrees of freedom is what is known as its potential energy
surface (PES). In statistical mechanics, it is well-known that the conformations with the
lowest energies (meaning local minima of the PES) are the more frequent and represen-
tative of the whole system. Thus, computational chemists tend to explore the PES of
a system to find stationary points (points in the PES where the first derivative is zero)
(Jensen, 2007a). The energy of a system can be optimized with different numerical meth-
ods and by iteratively slightly modifying its coordinates until a convergence criterion is
reached. These optimization techniques are mainly steepest descent, conjugate gradient,
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and Newton-Raphson methods. These methods will lead to a final geometry where the
energy is lower than the initial one and depending on if we obtain imaginary frequencies
in the Hessian matrix diagonalization or not, a minimum or a saddle point (transition
state) will have been reached (Jensen, 2007a).

However, not all initial conformations of the system are equally suitable for optimization.
Moreover, several local minima of a system might be studied or even less represented
conformations of the PES as well. Two main methods exist to achieve a representative
sampling of the PES space: Monte Carlo (MC) and molecular dynamics (MD) (Jensen,
2007b).

Molecular dynamics

Molecular dynamics simulate the behavior of a system and its coordinates over time by
applying Newton’s equations of motion (Jensen, 2007a,b). Since the force can be expressed
as the gradient of the potential energy (dV

dri
), the forces of the system can be obtained for

each particle in the system (with its specific mass and coordinates in the space; mi and
ri) by evaluating the PES along the time axis:

ai(t) = Fi
mi

= −1
mi

dV

dri
(1.10)

The forces are conservative, meaning they do not depend on the taken path, but only the
V and ri. Therefore, an MD simulation starts with an initial conformation of the system
(with the positions of all its particles), and a set of initial velocities for each atom in the
system are sampled using the Boltzmann distribution at the user’s defined temperature.
Then, we update the positions and velocities of all atoms in the system based on the
calculated accelerations after each time step. The time step used to integrate Newton’s
laws of motion must be much smaller (an order of magnitude) than the time required for
the system to execute the fastest movement. The frequency of vibration of hydrogens (the
lightest particles in an MM-based simulation) has a typical value of around ∼ 10−14s−1,
meaning that the time step should be around 1 (where H atom vibrations are considered)
or 2 (where H bonds are fixed) fs to consider the system classically (Jensen, 2007b).

New positions and velocities of all atoms in the system are obtained after every time step
until the desired simulation time is reached. The concatenation of all the coordinates in
every time step is known as the system’s trajectory. A basic scheme of an MD simulation
is depicted in Figure 1.8.

Despite the explained fundamental functioning of an MD simulation, several parameters
and concepts must be included to simulate a protein system properly. The system must
be prepared and adequately equilibrated before running an MD simulation. This prepa-
ration means solvating the protein structure (as they do not exist in the vacuum or gas
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Figure 1.7: Illustrative scheme representing the PES of an enzyme-
substrate complex where the bound state represents the local minimum.
Both conformations of the adenylate kinase are extracted from the PBD

codes: 2RH5 and 2RGX (with the bound substrate analog).
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Get the ri=0  and give vi=0, a = 0.0, t= 0.0 

Predict atom coordinates and velocities of next step:

rp = ri + vi Δt + 1/2 a Δt
2
 + other terms

vp = vi + a Δt + other terms

  

F = - ∇Vrp → a = F/m 

Adjust atom coordinates and velocities based on new a:

ri+1 = rp + ƒ(a, Δt) 

vi+1 = vp + ƒ(a, Δt)

  

Apply boundary conditions, temperature, and pressure control as needed  

Output the physical quantities of interest from the simulation  

Figure 1.8: General scheme of an MD simulation.

phase), defining a specific thermodynamic ensemble (NVT, with constant volume and a
thermostat, or NPT, with both a barostat and a thermostat), laying thermodynamic and
spatial boundary conditions, and deciding the integration algorithm (typically the Verlet
algorithm).

Although usually the energy of the whole system is obtained with a certain FF (AMBER,
CHARMM, OPLS, GROMOS...), MD simulations can calculate a section of the system
by means of QM and the Schrödinger equation (what is known as ab initio MD), allowing
to study chemical reactions of enzymes over time.
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Nowadays, the usage of graphical processing units (GPUs) to accelerate the simulation of
all-atom MD simulations allows running 0.5 µs

day
in a protein of ∼ 300 residues. Thus, we

can currently study side chain rotations, loop motions, ligand/substrate binding, and some
domain folding. If we want to see phenomenons that occur at the micro and milliseconds
timescale (like folding/unfolding, allosterism, or catalysis), more ingenious ways to sample
the system (Lane et al., 2013) or finer hardware (Shaw et al., 2008, 2014) are needed.

Monte Carlo

MC-based methods are another main alternative besides MD simulations to smartly ex-
plore the system’s PES. (Jensen, 2007b). MC algorithms generate the new conformations
based on stochastic perturbations of the system instead of using Newton’s laws of mo-
tion. Hence, this heuristic approach for exploring the conformational space of a system is
time-independent. The performed perturbation is accepted or rejected based on the final
energy of the system compared to the energy before the perturbation. The generated
conformation is always accepted if ∆E < 0. Otherwise, the Boltzmann factor is used
(e
−∆E
kBT ), and its value is compared to a random number (0 ≤ R ≤ 1). If e

−∆E
kBT > R, the

new geometry is accepted. Else, the new geometry is rejected, and a new perturbation is
tried from the initial configuration. This manner of deciding whether to accept or reject
the executed perturbation in the system, called the Metropolis criterion, is summarized
in the following equation:

Pi→j =


1 ∆Ei→j < 0

e
−∆Ei→j
kBT > R ∆Ei→j > 0

(1.11)

The differences between MC algorithms reside in how the perturbation is done. Compared
to MD simulations, these methods require less computational resources, but they lack
the perspective of time. Moreover, the random perturbation of MC methods hinders the
study of correlated motions, meaning that exploring whole proteins in an explicit solvent is
inefficient since multiple perturbations must synchronize to generate good conformations.
Thus, MC methods are handy for studying relatively small molecules’ conformational
space around protein systems (Jensen, 2007b; Gilabert et al., 2018; Jorgensen and Tirado-
Rives, 2005).

Molecular docking

Docking techniques aim to find the preferred binding orientation between the ligand (ei-
ther small molecule or protein) and the receptor (protein). In this case, the methodology
aims at quickly finding the most stable conformation of a ligand-receptor pair rather than
exploring the PES of the system. Typically, docking methods provide multiple ligand
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Figure 1.9: Illustrative representation of molecular docking. Some con-
formations of the ligand inside the protein cavity are shown and tagged

with a specific score in the table.

conformations that are later ranked by a scoring function (Figure 1.9). This scoring func-
tion can either be knowledge-based, empirical-based, or physics-based (where FFs are
used). These methods are extremely fast compared to MC and MD simulations. Thus,
one can evaluate thousands of ligands in the same receptor, allowing structural-based vir-
tual screening of compounds for the pharmaceutical industry (Sousa et al., 2013; Kitchen
et al., 2004). The problem with docking is the requirement of defining a grid box to
explore around a protein cavity (meaning the active site must be known). Likewise, dock-
ing methods tend to use a unique rigid protein conformation, which can be inconvenient
when the receptor is not in the bound conformation. Ensemble docking tries to address
this issue by docking the ligand against different conformations of the receptor (probably
obtained from an MD simulation).

Protein Energy Landscape Exploration

Protein Energy Landscape Exploration (PELE) is an MC-based algorithm developed in
our laboratory that aims to sample the protein-ligand conformational space, exceeding
the limitation of classical MC methods mentioned earlier (Kenneth W. Borrelli et al.,
2005; Municoy et al., 2020). This heuristic algorithm combines a random perturbation
of the ligand (translations and rotations) with protein structure prediction techniques,
considering the movement of both entities. The software starts by sampling the different
microstates of the ligand through small rotations and translations. Then, the protein’s
flexibility is also contemplated by applying low-frequency normal modes through the
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anisotropic network model (ANM) approach. The protein is depicted as a network of
elastic forces connected by the alpha carbons of its residues. The obtained modes/vectors
allow the protein’s backbone to move (Atilgan et al., 2001). After perturbing the whole
system, side chains of the residues close to the ligand are sampled to evade steric clashes.
Finally, the entire system is minimized with a truncated Newton minimization (by using
the OPLS2005 force field (Banks et al., 2005) and a generalized Born implicit solvent
model), and the step is accepted or rejected based on the previously mentioned Metropolis
criterion. The explained protocol is illustrated in Figure 1.10.

The sampling of PELE can be enhanced with a clustering/spawning technique called
Adaptive-PELE, based on an adaptive reinforcement learning procedure (Lecina et al.,
2017). Adaptive-PELE consists of concatenated short PELE simulations, named epochs,
where the less explored regions (smaller clusters) have more sampling in the next epoch.
These regions are defined based on a clustering algorithm and a specific metric.

Albeit PELE was intended for mapping the ligand diffusion into the active site (Kenneth
W. Borrelli et al., 2005), it has been employed for many other purposes, such as global
exploration for binding sites of a specific substrate in a protein (Diáz et al., 2020), fragment
growing onto a scaffold while exploring the protein-ligand energy landscape (for hit-to-lead
drug design) (Perez et al., 2020), estimation of absolute binding free energies through the
usage of Markov state models (Takahashi et al., 2014; Gilabert et al., 2019), or discovery
of the location of buried waters (hydration sites) in proteins (Municoy et al., 2020).
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Figure 1.10: Illustrative scheme of a step from the PELE algorithm.
A step is comprised of the system perturbation, its later relaxation, and

acceptance or rejection according to the Metropolis criterion.



24 1 | Introduction

1.4 Systems of study
This section presents a summary of the studied enzymes in this thesis, mainly structural
information, catalytic mechanism, the importance of these types of enzymes and their
applications. The studied biocatalysts are serine hydrolases and ω-transaminases, which
are a big market in the food, detergent, and pharmaceutical industry (Jemli et al., 2014;
Kelly et al., 2018; Wu et al., 2021).

1.4.1 Serine hydrolases

Serine hydrolases are part of the big family of hydrolases (Enzyme Commission [EC]
number 3). This family of enzymes catalyze the cleavage of chemical bonds by using water
(hydrolysis) (Nelson and Cox, 2008b), and the difference between hydrolases resides in the
nature of the broken chemical bond. Serine hydrolases include esterases and proteases,
being one of the biggest (they represent 1 % of the human proteome and are abundant
in other eukaryotic and prokaryotic proteomes (Simon and Cravatt, 2010)) and most
important subfamily of hydrolases.

Their general catalytic mechanism can be separated into two steps. First, the electrophilic
carbon in the reactive bond/group is nucleophilically attacked by the catalytic serine
residue. The nucleophilic Oγ of the catalytic serine residue is activated by a charge-relay
system comprised of a histidine residue (that acts as a base) and an acid residue (aspartate
or glutamate). These three residues are named catalytic triad, the key elements of a serine
hydrolase. The histidine residue extracts a proton of the serine residue in this first step of
the reaction. The acid residue stabilizes the position of the histidine residue and polarizes
it by stabilizing the positive charge. After the nucleophilic attack, a covalent bond between
the enzyme and the substrate is formed, known as the first tetrahedral intermediate. The
carbonyl oxygen of the substrate gets a negative charge (oxyanion) in this stage, which
is stabilized by either two amino groups of the backbone amide bonds of two residues or
by positively charged residues. This preorganized environment to stabilize the mentioned
negative charge is named oxyanion hole. The tetrahedral intermediate is subsequently
disrupted by recovering the carbonyl double bond in the substrate and ejecting part of
it as the first product, activated by the donation of a proton by the protonated histidine
residue. The first part of the reaction ends with the remaining part of the substrate
covalently bound to the serine residue (known as the acyl-enzyme intermediate) (Nelson
and Cox, 2008e; Dodson and Wlodawer, 1998; Rauwerdink and Kazlauskas, 2015).

The second step of the reactions procceds with the nucleophilic attack of a water molecule
to the acyl-enzyme intermediate. The O of the water molecule is activated by the same
histidine residue. The attack results in the formation of second tetrahedral intermediate,
followed by the release of the second product of the reaction. A general scheme of the
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Figure 1.11: General scheme of the catalytic mechanism of serine hydro-
lases. The catalytic triad and oxyanion hole are tagged with curly brackets.
The X can be -NH in amides and O in esters. The scheme was drawn with

ChemDraw.

catalytic mechanism can be found (Figure 1.11).

Regarding their structural features, the vast majority of serine hydrolases share a classical
α/β fold. The fold can be described as parallel β-sheets (usually eight) that are inter-
connected with α-helices (usually 6). Both the catalytic triad and the oxyanion hole are
frequently located on the loops between β-sheets and α-helices (Ollis et al., 1992; Lenfant
et al., 2013) (Figure 1.12). Likewise, a common and important feature found in serine
hydrolases is the "nucleophilic elbow", a sequence motif around the nucleophilic serine
residue: Gly-X-Ser-X-Gly (X referring to any of the 21 common amino acids) (Nardini
and Dijkstra, 1999).

Applications

Since serine hydrolases include lipases, esterases, and proteases, they are one of the most
used enzyme families (estimated to cover around 75 % of the commercially used enzymes)
in the industry (Prakash et al., 2013; Jemli et al., 2014). Hydrolases (mainly proteases)
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Figure 1.12: Illustration of the α/β hydrolase fold represented with the 6
α-helices (red rectangles) and 8 β-sheets (blue arrows) (right). The location
of the three catalytic residues and the oxyanion hole are displayed in both

the scheme and the 3D representation.

have been extensively used in the detergent industry since the availability of enzyme pro-
duction from microbial origins in the 1960s (Maurer, 2004), allowing to remove difficult
stains from different sources at milder temperatures (affecting less the properties of the
tissues’ clothes). Subtilisins (alkaline proteases from Bacillus species) are the main pro-
teases used in the detergent industry (Maurer, 2004; Jemli et al., 2014) due to their high
stability, high substrate promiscuity, and the fact that the enzyme is secreted outside of
the cell (simplifying the separation of the enzymes from the bacteria/cells). However,
there is an interest towards finding psychrophilic enzymes that could work at low temper-
atures (10-20 oC) with the same advantages of subtilisins to have environmental benefits
by saving energy (Maurer, 2004; Jemli et al., 2014).

The food processing industry has a long story with the usage of enzymes, dating back to
their earliest applications in 6000 BC with beer production, bread baking, cheese making,
and other fermentation processes (Jemli et al., 2014). Nowadays, the food processing
industry is one of the biggest in the market and enzymes are widely used in this area.
Esterases and lipases are essential in producing flavours due to their specificity toward fats
and oils (Casas-Godoy et al., 2012; Jemli et al., 2014), either with hydrolysis of the ester
bonds or by catalyzing the transesterification of desired esters. They can also be applied
in the juice, baking, and brewing industries (Casas-Godoy et al., 2012; Jemli et al., 2014).

The pulp and paper, textile, and leather industries also employ hydrolases for pitch control
in pulping processes (Kontkanen et al., 2004), refinement of cotton/polyester fibers for
final product quality (Degani et al., 2002; Vertommen et al., 2005), dehairing of animal
skins to obtain leather (Dayanandan et al., 2003). Serine hydrolases can be used for the
chiral synthesis of drugs in the pharmaceutical industry by enantioselective hydrolysis of
racemic mixtures of esters (Wu et al., 2021). A relevant example includes the use of a
mutant CalB (I189K) to efficiently synthesize the chiral intermediate of moxifloxacin (Shen
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et al., 2018), an antibiotic employed to treat penumonias, conjunctivitis, endocarditis,
tuberculosis, and sinusitis (Hoogkamp-Korstanje and Roelofs-Willemse, 2000).

Recently, the value of hydrolases in the market and society has dramatically increased after
the discovery of a microorganism, named Ideonella sakaiensis that feeds from polyethylene
terephthalate (PET) (Yoshida et al., 2016). Ideonella sakaiensis contains two serine
hydrolases (called PETase and MHETase), one extracellular involved in degrading the
polymer into the monomer (mono-(2-hydroxyethyl)terephthalate or MHET) and the other
is anchored to the membrane, breaking the monomer into smaller building blocks that
the bacteria can use as carbon source. After this finding, several studies have tried
to create engineered versions of the PETase (Austin et al., 2018; Liu et al., 2018; Son
et al., 2019; Cui et al., 2021; Lu et al., 2022) or other cutinases (Tournier et al., 2020)
that can act against PET as well. Moreover, other PET hydrolyzing enzymes have been
discovered from other sources and with different optimal temperatures, turnover rates,
and thermostabilities (Buchholz et al., 2022). Thus, these enzymes could be substantially
valuable for PET recycling and a circular economy of PET (Rosenboom et al., 2022).

1.4.2 ω-transaminases

Transaminases (EC 2.6.1) are enzymes that catalyze the transfer of an amine group from
an amine donor to an acceptor (frequently being a ketone or aldehyde) (Ghislieri and
Turner, 2014; Kelly et al., 2018). Transaminases (TAs) are a big family of enzymes,
and they are classified according to the amine group’s relative position to the substrate’s
carboxyl moiety. α-TAs have the amine group bound to the same C atom as the carboxyl
group, whereas ω-TAs can have the amine group in any position relative to the carboxyl
group. Thus, ω-TAs are more suited for industrial processes since they can accept a
broader range of substrates.

TAs require a pyridoxal 5’-phosphate (PLP) cofactor to catalyze the reaction. PLP is co-
valently bound to the protein forming a Schiff base (internal aldimine) with the ε-amino
group of the catalytic lysine residue (Ghislieri and Turner, 2014; Kelly et al., 2018). The
reaction starts with a nucleophilic addition of the amine group in the substrate to the PLP
cofactor, breaking the internal aldimine and forming one with the substrate. The depro-
tonated ε-amino group of the catalytic lysine residue extracts a proton from the C next to
the bound amine group, activated by the electron sink nature of PLP. The extracted elec-
trons by PLP are returned, allowing the C=C next to the pyridine ring to deprotonate the
catalytic lysine residue again. Finally, an activated water molecule, through deprotona-
tion by the catalytic lysine residue, nucleophilically attacks the C=N bond, releasing the
initial substrate in its corresponding keto acid and producing pyridoxamine-5’-phosphate
(PMP) (Eliot and Kirsch, 2004; Malik et al., 2012). This first part of the reaction is
known as oxidative deamination of the amine donor.
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The second part of the reaction, called reductive amination of the amine acceptor, contin-
ues with the amine group of PMP nucleophilically attacking the carbonyl carbon of the
amine acceptor (second substrate), forming a Schiff base and releasing a water molecule
(deprotonating the catalytic lysine residue in the process). The catalytic lysine residue
deprotonates the C atom next to the N of the newly formed Schiff base, activated again by
the mentioned electron sink nature of PLP. The N+=C bond uses this pair of extracted
electrons to deprotonate the catalytic lysine residue again. Lastly, the deprotonated cat-
alytic lysine residue binds again to PLP, resulting in the release of the amine acceptor
and the regeneration of the PLP cofactor. A scheme depicting the explained mechanism
is shown in Figure 1.13. The electron sink nature of PLP is enhanced in the active site
by a close interaction of the nitrogen in the pyridine ring with an acid residue (Eliot and
Kirsch, 2004).

The structures of TAs are comprised of two major domains, a small (S) one and a large
(L) one. The L domain has a Rossmann-like fold (with a seven-stranded parallel β sheet).
The S domain can be divided into the N-terminal and C-terminal regions. As mentioned
earlier, the structure contains a catalytic lysine residue that binds to the PLP cofactor,
and the protein is a functional dimer (Figure 1.13).

Applications

Even though TAs are not as widely spread as serine hydrolases, they are a crucial family
of enzymes in the pharmaceutical industry. It is estimated that 40 % of pharmaceutical
drugs contain a chiral amino group within their structure (Ghislieri and Turner, 2014;
Kelly et al., 2018). Chirality is critical in a drug, going from treatment to severe adverse
effects on someone’s health, depending on the purity of the right enantiomer. Thus, the
synthesis of an enantiopure drug is a must. Enzymes come in handy as they are catalysts
with high enantioselectivities, compared to inorganic chemical catalysts. Thus, TAs are
key for synthesizing a lot drugs.
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Figure 1.13: General scheme of the catalytic mechanism of TAs and their
archetypical fold. The oxidative deamination is highlighted with a green
frame, while the reductive amination with a yellow one. The Rs are the
other possible chemical groups in the substrates. The catalytic Lys residue
bound to the PLP cofactor is displayed. The L domain is stained in blue,
while the S domain is shown in purple (PDB ID: 4E3R). The scheme of the

catalytic mechanism was drawn with ChemDraw.
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ω-TA

Figure 1.14: Asymmetric synthesis of sitagliptin by an evolved (R)-
selective ω-TA with isopropylamine as amine donor.

The synthesis of chiral amines by ω-TAs can be accomplished via kinetic resolution
of a racemic mixture or asymmetric synthesis from the corresponding prochiral ketone
(Bezborodov and Zagustina, 2016). The kinetic resolution works by using the undesired
enantiomer as the amine donor in the transaminase. One successful example of using
an ω-TA for synthesizing a vital drug refers to an evolved (R)-selective ω-TA to bind
prositagliptin and synthesize sitagliptin (Savile et al., 2010) (Figure 1.14). Sitagliptin is
one of the 15-20 best-selling drugs (with revenue of 5.288 billion USD in 2021). Replacing
the former rhodium-catalyzed asymmetric enamine hydrogenation with the transaminase-
catalyzed amination for its synthesis allowed a 10-13 % improvement in overall yield, 53
% increase in productivity (as the enzyme can work under milder conditions), and 19 %
reduction in total waste (Savile et al., 2010; Kelly et al., 2018). This improvement shows
the urgent need for transaminases in the pharmaceutical industry for a more sustainable
future due to the enormous amounts of drugs manufactured per day.

1.5 PluriZymes
The one-pot cascade reactions that allow the synthesis of compounds of industrial interest
are really compelling (Devine et al., 2018; Sperl and Sieber, 2018; Huffman et al., 2019; Wu
et al., 2021; Bell et al., 2021). Enzymes are suited for biocatalytic cascade reactions, since
they are much more regioselective and stereoselective compared to inorganic catalysts
and can work under milder conditions. Plus, enzymes can be further engineered, as we
explained, to further improve e.g., enzyme activity for industrial production and compete
with current chemical processes to synthesize the same compound (McIntosh and Owens,
2021; Nazor et al., 2021). For instance, Merck & Co. engineered (evolved) 5 enzymes of a
designed nine-enzyme cascade process to efficiently synthesize islatravir, a potential drug
for HIV treatment (Huffman et al., 2019).

Our lab computationally designed a pluriZyme, an enzyme with added active site(s), en-
abling it to catalyze different types of chemical reactions in the same protein scaffold
(Santiago et al., 2018; Alonso et al., 2019; Roda et al., 2021). The first pluriZyme con-
sisted of a serine ester hydrolase, where a second catalytic triad was added. Although
they performed the same chemistry, one of the active sites (the WT one) was converted
into a metal-complex chemocatalytic site by binding a suicide inhibitor that could coordi-
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nate a transition-metal ion (Alonso et al., 2019). This incorporation allowed the designed
pluriZyme to perform hydrolysis, as well as oxidation and Friedel–Crafts alkylation reac-
tions (Figure 1.15A). Thus, pluriZymes could be employed to do some one-pot cascade
reactions, saving the amount of expressed protein of a particular enzyme cascade reaction
and more likely to be more efficient.

In spite of the fact that other studies related to pluriZyme-like systems have been pub-
lished, the approaches and the designed catalyst were different, giving several strategies to
tackle the desired cascade process (Roda et al., 2021). One of them consisted in the self-
assembly of histidine-tyrosine peptides, which had esterase activity, were electrochemically
active, and could polymerize polypyrrole (Díaz-Caballero et al., 2020) (Figure 1.15B). An-
other group used a non-catalytic protein scaffold with a big hydrophobic cleft in its dimer
interface (Lactococcal multidrug resistance Regulator, LmrR) to add two abiological ac-
tive sites (Zhou and Roelfes, 2020). First, they bound a Cu(II) complex in the dimer
interface, and then, they introduced a non-canonical amino acid (p-aminophenylalanine).
These two changes allowed the generated catalyst to perform Michael additions where the
added non-canonical amino acid activates an enal through iminium ion formation, and
the Cu(II) complex activates the nucleophile by enolization and binds it to the preferred
prochiral face of the activated enal (Figure 1.15C).

Another approach aims at designing pluriZymes by coupling small metal nanoparticles
with an enzyme, combining their catalytic properties (Filice et al., 2013, 2015; Benavente
et al., 2018; Palomo, 2019; Benavente et al., 2020). An example includes the combination
of the lipase B from Candida antarctica (CalB) with Pd nanoparticles that enabled both
the one-pot cascade conversion of p-nitrophenyl propionate to p-aminophenol in water at
room temperature, as well as the production of N-[(1R)-phenylethyl]acetamide coming
from a racemic mixture of 1-phenylethylamine in toluene at 70oC (Figure 1.15D). Thus,
this outlook of enzyme-metal hybrids allows one-pot cascade reactions in truly different
conditions. Lastly, a recent publication showed an original way to replace the native
NADH cofactor of an enzyme for a new molecule that emulates both the native cofactor
and the flavin analog, allowing the direct proton and electron transfer between cofac-
tors without being consumed nor affected by diffusion (Zhao et al., 2020). They took
a formate dehydrogenase and replaced the NADH cofactor with Zn-ZPA, the complex
containing a dihydropyridine amido motif, which mimics the NADH. This introduced
complex has the space to confine both the substrate and riboflavin tetraacetate (RFT),
the catalyst of the monooxygenation reaction. The designed catalyst–enzyme coupled sys-
tem enhanced the Baeyer–Villiger oxidation of substituted 3-phenylcyclobutanones and
substituted thioanisoles (Figure 1.15E).

The recent development of pluriZymes and their potential motivated me to pursue a PhD
in Guallar’s lab and push the concept forward with new ideas and some hypotheses to
test in mind.
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Figure 1.15: Current designed pluriZymes accompanied by an example of the catalyzed cascade
reaction. A) Designed chemo-biocatalyst hydrolyzing vinyl crotonate followed by the Friedel-Crafts
alkylation of the acid product of the previous reaction. B) Amyloid-like fibrils of histidine-tyrosine
peptides hydrolyzing p-nitrophenyl acetate and polymerizing pyrrole. C) Modified LmrR protein
can perform Michael additions. D) Enzyme-metal hybrid based on CalB and Pd-nanoparticles
performing the dynamic kinetic resolution of 1-phenylethylamine using the transesterification with
ethyl esters. E) Designed catalyst–enzyme coupled system improved the monooxygenation of sub-
stituted 3-phenylcyclobutanones. Protein structures are shown with the ribbon representation. The
residues or molecules in the active sites have the C atoms stained in green and purple, respectively
(except from the metal ions, which use the color of the element). Likewise, the reaction arrows are
colored according to the active site catalyzing the reaction. All 3D representations of residues or
molecules are displayed with the ball-and-stick model (except from the metal ions, for which the
CPK model is used). The PDB codes are 6RKY, 6I8N, 4K6G, and 2NAC. The RFT molecule was
extracted from PubChem with compound identification number: 9915369. The Zn-ZPA complex

was obtained from the CCDC database with the number: 1920570.
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The purpose behind this thesis has been to further advance the concept of pluriZymes.
Thus, the focus of the objectives has been specially given to the design of active sites
in functional enzymes to create catalysts with multiple functionalities and the enhance-
ment of these artificial functional sites. The generated variants were later experimentally
validated by our collaborators to test the performance of our methods/ideas to create
compelling pluriZymes. The work is depicted as a compendium of research articles that
address the objectives of the thesis:

• To obtain an enzyme with more than two active sites (active sites ≥ 3):
What is the limit of functionalities in a single protein scaffold? To answer this
question, a recent design of a pluriZyme with two active sites was used as starting
point. A new type of active site was added to add different chemistries to the newly
designed biocatalyst.

• To design pluriZymes in interesting enzymes according to the academic
community or the industrial sector, aiming to attract investors and other
research groups to the idea: Until now, our pluriZymes have only been designed
for serine esterases, and the added functionality has been a hydrolase site. Demon-
strating that pluriZymes can be generalized in other enzyme families would show
their potential for cascade reactions in a single protein scaffold without requiring
suicide inhibitors. As mentioned in Chapter 1, ω-TAs are incredibly pivotal for syn-
thesizing enantiopure drugs in the pharmaceutical industry, making them a great
candidate to highlight the capabilities of pluriZymes.

• To enable the tailoring of artificial hydrolase sites from pluriZymes at will:
Can we improve the activity of an added hydrolase site towards a specific substrate?
Can we make the active site accept a broader range of substrates? The latter
has been explored in this thesis with the study of substrate promiscuity on serine
esterases, followed by transforming a low-promiscuous enzyme into a prominent one
while not affecting its activity.
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• To ease and improve the computational design of pluriZymes: The goal is
to democratize the development of functional sites to the community, by automa-
tizing the process and lowering the computational costs. The knowledge obtained
from previous objectives was essential to achieving this goal, giving us a benchmark
of systems. A heuristic method was developed to test different variants computa-
tionally and rank them according to the system’s total energy, imposing the proper
catalytic architecture to design a new active site. The code was tested on an esterase
with experimental validation of the variants.
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The results chapter is encompassed as a compendium of publications (either published or
under review). The articles included in the thesis are presented according to the proposed
objectives. My contribution to each paper is briefly but clearly explained next.

Articles of the thesis:

• Article I: Fernandez-Lopez L, Roda S, Gonzalez-Alfonso JL, Plou FJ, Guallar
V, Ferrer M. Design and Characterization of In-One Protease-Esterase PluriZyme.
International Journal of Molecular Sciences. 2022; 23(21):13337
My contribution: I performed the whole computational part of the study and came
up with the design of the enzyme variant. I played an important role in writing the
main manuscript.

• Article II: Roda S, Fernandez-Lopez L, Benedens M, Bollinger A, Thies S, Schu-
macher J, Coscolín C, Kazemi M, Santiago G, Gertzen CGW, Gonzalez-Alfonso JL,
Plou FJ, Jaeger KE, Smits SHJ, Ferrer M, Guallar V. A Plurizyme with Transam-
inase and Hydrolase Activity Catalyzes Cascade Reactions. Angewandte Chemie
International Edition. 2022; 61(37), e202207344
My contribution: I performed the whole computational part of the article and de-
veloped the different mutants. I played a major role in writing the main manuscript.

• Article III: Roda S, Fernandez-Lopez L, Cañadas R, Santiago G, Ferrer M, Guallar
V. Computationally driven rational design of substrate promiscuity on serine ester
hydrolases. ACS Catalysis. 2021; 11(6), 3590–3601
My contribution: I performed half of the work related to computer simulations and
played a leading role in writing the main manuscript.

• Article IV: Roda S, Terholsen H, Meyer JRH, Guallar V, Bornscheuer U, Kazemi
M. AsiteDesign: A semi-rational algorithm for automated enzyme design. The
Journal of Physical Chemistry B. 2022 (In review)
My contribution: I helped in the development of the new algorithm. I mainly
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performed the computational benchmark of the developed tool, selected the variants,
and wrote a big part of the manuscript.

Articles not included, but related to the thesis:

• Article V: Municoy M, Roda S, Soler D, Soutullo A, Guallar V. AquaPELE: A
Monte Carlo-Based Algorithm to Sample the Effects of Buried Water Molecules in
Proteins. Journal of Chemical Theory and Computation. 2020; 16(12), 7655–7670
My contribution: I collaborated in the validation of the conceived method and
helped in the writing of the manuscript.

• Article VI: Roda S, Robles-Martín A, Xiang R, Kazemi M, Guallar V. Structural-
Based Modeling in Protein Engineering. A Must Do. The Journal of Physical
Chemistry B. 2021; 125(24), 6491–6500
My contribution: I mainly wrote the review and performed the shown in silico
simulations as well.

• Article VII: Vidal P, Martínez-Martínez M, Fernandez-Lopez L, Roda S, Méndez-
García C, Golyshina OV, Guallar V, Peláez AI, Ferrer M. Metagenomic Mining for
Esterases in the Microbial Community of Los Rueldos Acid Mine Drainage Forma-
tion. Frontiers in Microbiology. 2022; 13
My contribution: I performed the computational analysis shown in the article, wrote
that part of the manuscript, and helped revise the document.

• Book chapter I: Roda S, Santiago G, Guallar V. Mapping enzyme-substrate in-
teractions: its potential to study the mechanism of enzymes. Advances in Protein
Chemistry and Structural Biology. 2020; 122, 1–31
My contribution: I wrote the whole book chapter and prepared all figures except
figure 4 of the manuscript.
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Abstract: Proteases are abundant in prokaryotic genomes (~10 per genome), but their recovery
encounters expression problems, as only 1% can be produced at high levels; this value differs from
that of similarly abundant esterases (1–15 per genome), 50% of which can be expressed at good levels.
Here, we design a catalytically efficient artificial protease that can be easily produced. The PluriZyme
EH1AB1 with two active sites supporting the esterase activity was employed. A Leu24Cys mutation
in EH1AB1, remodelled one of the esterase sites into a proteolytic one through the incorporation of a
catalytic dyad (Cys24 and His214). The resulting artificial enzyme, EH1AB1C, efficiently hydrolysed
(azo)casein at pH 6.5–8.0 and 60–70 ◦C. The presence of both esterase and protease activities in the
same scaffold allowed the one-pot cascade synthesis (55.0 ± 0.6% conversion, 24 h) of L-histidine
methyl ester from the dipeptide L-carnosine in the presence of methanol. This study demonstrates
that active sites supporting proteolytic activity can be artificially introduced into an esterase scaffold
to design easy-to-produce in-one protease-esterase PluriZymes for cascade reactions, namely, the
synthesis of amino acid esters from dipeptides. It is also possible to design artificial proteases with
good production yields, in contrast to natural proteases that are difficult to express.

Keywords: esterase; PluriZyme; protease; protein engineering; computational chemistry; cascade re-
action

1. Introduction

One-pot cascade reactions are chemical processes highly appealing to the industrial
sector, as they allow the synthesis of complex products, starting from relatively simple reac-
tion conditions [1–4]. Nevertheless, the implementation of these reactions is a demanding
task, and usually, it requires the engineering of each catalyst from each internal chemical
reaction. Moreover, catalysts must be specific for their reactant, avoiding unpleasant side
products as much as possible. For that reason, enzymes are excellent candidates to set up
multistep tandem reactions, since they work under milder conditions than inorganic cata-
lysts and are also regio- and stereo-selective/specific [2–4]. Additionally, recent advances in
the rational design and directed evolution of enzymes have introduced a significant success
rate in improving diverse enzymatic properties, allowing them to compete with conven-
tional catalysts [2–5]. Remarkably, current developments include designing enzymes with
new-to-nature catalytic activities, such as carbene transfer in an engineered cytochrome
P450 enzyme [6], expanding the variety of the cascade reactions we can tackle. Another
interesting example of the usage of enzymes for cascade reactions is the one developed by
Merck & Co., to synthesize islatravir (a potential drug for HIV treatment) from relatively
simple building blocks [7].

Performing the cascade reaction within a single enzyme introduces complexities. For
this reason, the study and design of biocatalysts performing different chemical reactions
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in either the same protein scaffold [8–13] or by linking multiple domains [14–17] have
become a hot topic in protein engineering through a number of strategies [18,19]. One
of these strategies is to benefit from the capabilities of protein engineering supported by
the computational resources for the design of artificial enzymes with a superior or novel
performance, compared to natural enzymes. Beyond the engineering of enzymes by these
techniques, the possibility of incorporating active centers into protein scaffolds opens the
opportunity to design artificial biocatalysts. A number of computational methods have been
successfully applied to introduce biological active sites into protein scaffolds. They include,
the Rosetta-like methods and the Protein Energy Landscape Exploration (PELE) software,
through which biological sites supporting ester-hydrolysis have been incorporated in
different protein scaffolds [8,9,19]. However, PELE is the only described method to generate
several artificial biological actives sites in the same enzyme scaffold, which open a range of
possibilities in cascade reactions, as demonstrated using different enzyme scaffolds into
which two same or different biological activities were introduced [8,20]. These two-active
sites enzymes, named PluriZymes, could introduce an ideal scenario for one-pot cascade
reactions, by reducing the costs of producing two enzymes separately. In some cases, their
use may also allow increased yields by facilitating the transfer of reaction intermediates
between active sites within the same protein, compared to the transfer between sites of
different proteins [20]; however, this will depend on the architecture and positioning of
these sites.

One example is our recent work building PluriZymes in two different enzyme families.
First, we developed an esterase, EH1AB1, where a second catalytic triad (Ser-His-Asp/Glu)
was added, creating an enzyme with artificial and native active sites supporting ester hy-
drolysis (Topt of 8–45 ◦C) [8]. Importantly, the native active site could be transformed into a
metal-complex chemocatalytic site by adding a suicide inhibitor, allowing the oxidation and
Friedel–Crafts alkylation reactions. Thus, one-pot cascade reactions could be constructed
from this biocatalyst [8]. Second, we took an ω-transaminase and added an artificial site
supporting ester hydrolysis through the introduction of a catalytic triad (Ser-His-Asp/Glu).
A polypeptide having two biotic sites catalysing different types of chemical reactions was
thus designed, which could transform oxo-esters into amino acids in a one-pot reaction [20].

In the present study, we aimed at a different approach, pushing the limits of a hydrolase
site by adding extra biochemistry through the addition of a cysteine-histidine catalytic
dyad. Using our PluriZyme EH1AB1, we introduced the protease activity by designing
a single mutant, Leu24Cys, which was capable of recycling a histidine residue, His214,
from an already existing catalytic triad. A priori, computational analyses indicate that the
mutation should not disrupt the esterase activity of the recycled esterase site. Therefore,
the newly designed PluriZyme, herein referred to as EH1AB1C, included three potential sites.
The first supports ester hydrolysis through a native catalytic triad (Ser161, Asp256 and
His286) and an oxyanion hole (Gly88, Gly89 and Gly90), with Ser161 being the nucleophile.
The second, also supporting ester hydrolysis, would employ an artificial catalytic triad
(Ser211, Asp25 and His214) with Ser211 as the nucleophile and an oxyanion hole (Gly207,
Tyr208 and Phe209). The third would support the protease activity through a catalytic dyad
(Cys24 and His214).

Adding a site supporting proteolytic activity was targeted, as proteases are pivotal
enzymes for the hydrolysis of peptide bonds in materials where proteins are abundant
components and are also widely used in organic synthesis [21]. This is why they constitute
60–65% of the global industrial market, growing at an annual growth rate of 5.6% [22].
Through evolution, proteases have adapted to the wide range of conditions found in
complex organisms (variations in pH, reductive environment, etc.) and use different
catalytic mechanisms for substrate hydrolysis [23]; their mechanism of action classifies them
as either serine, cysteine or threonine proteases (amino-terminal nucleophile hydrolases) or
aspartic, metallo and glutamic proteases (with glutamic proteases being the only subtype
not found in mammals thus far) [24]. Proteases specifically cleave protein substrates either
from the N or C termini (aminopeptidases and carboxypeptidases, respectively) and/or in



Int. J. Mol. Sci. 2022, 23, 13337 3 of 14

the middle of the molecule (endopeptidases). Proteases can be easily screened by functional
screens or in silico predictions in microorganisms or microbial communities by applying
genomic and metagenomic approaches [22]. Of course, it should be stressed that the
novelty itself does not guarantee a better enzymatic performance and better opportunities
for commercialization, whose analysis requires laborious wet lab work. This is not a trivial
exercise, given that not all genes in a genome or a metagenome can be successfully cloned
and expressed. This is especially important in the cases of proteases that suffer major
problems of expression, compared to other types of enzymes that are as easy to be screened
as proteases but better to be produced at high levels [22]. Proteases are used in a broad
range of applications, including biorefineries targeting a broad range of biomasses [22].
However, the known and new proteases positively impact additional processes, such as
cascade reactions where proteases have a pivotal role [25]. Here, we targeted a cascade
reaction involving peptide bond cleavage and ester bond formation and demonstrated
that the newly designed EH1AB1C PluriZyme was capable of converting the dipeptide L-
carnosine (β-alanine-L-histidine) into L-histidine methyl ester, an intermediate for the
design of Schiff base ligands [26].

2. Results
2.1. Molecular Simulations

This work is based on the design of PluriZymes (latin root pluri: multiplicity), an
enzyme design in which a single polypeptide harbours two different active centers, one
native and one artificial [8,20]. The idea is based on locating a native enzyme, through the
Protein Energy Landscape Exploration (PELE) software, existing binding pockets where
a target substrate could be accommodated and turning them into catalytic active sites by
introducing all the residues needed for the catalysis. Following from this, we have recently
successfully found and designed, by introducing a few mutations, a second artificial active
site (Ser-His-Asp) in an esterase containing a native site to generate a PluriZyme, EH1AB1,
with two efficient biological active sites for the ester hydrolysis that coexists in a close
region. Compared to the natural triad (referred to as EH1A1), the newly introduced artificial
site (referred to as EH1B1) is slightly more solvent exposed and located at an ~10 A distance
(Figure 1A). We have considered increasing the number of chemical reactions within this
enzymatic design. The computational protocol employed herein is similar to the one used
in our PluriZyme designs, largely described in [8,9,19,27], but we have focused more on a
local region exploration.

Figure 1. (A) Slice of the 3D structure of EH1AB1 representing the main and artificial active sites.
The C atoms are stained in maroon and dark green in the main active site and artificial active site,
respectively. (B) Representative binding pose of glyceryl tripropionate (with C atoms stained in gray)
where we can see the position of Leu24. Leu24 (in yellow) forms a hydrogen bond with the carbonyl
O atom in the ester bond by the NH group in the backbone (indicated by a cyan dashed line) and is
close to the His214 residue.

We first attempted to perform an additional global surface exploration for locating
potential sites supporting the ester hydrolysis using glyceryl tripropionate as a probe. As
shown in Figures S1 and S2, we did not obtain additional alternatives. We then considered
the incorporation of a new active center to support another reaction, namely, proteolysis,
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to explore the possibility of designing an in-one protease-esterase PluriZyme. For this,
we focused on the local analysis of the catalytic triad regions (Figure 1A), where we
clearly observed how the more exposed site, EH1B1, could accommodate bulkier substrates
(as in the case of peptides). Following the inspection of the best enzyme-substrate poses
(Figure 1B), we decided to introduce the Leu24Cys variant, named EH1AB1C, which, together
with the catalytic histidine of EH1B1, His214, could introduce a catalytic dyad similar to
those seen in proteases.

We proceeded by preparing multiple dipeptides, namely, AH, AQ, DI, EA, FF, KA,
LA, LL, NV, PF, QQ, RG, SW, TM, YN and YY, and performed a local PELE exploration
for each dipeptide. By doing so, we can model the propensity to form catalytically active
positions between each peptide bond and the newly designed catalytic dyad: Cys24 and
His214. Here, we were not searching for the best peptide but to see if a diverse set of them
could reach catalytically active conformations. Interestingly, as shown in Figure 2, Table S1,
and Figures S3–S5, all dipeptides, except for YY were able to find the EH1B1 site and reach
catalytic poses around the engineered cysteine-histidine dyad. Likewise, it can be seen that
the catalytic hydrogen bond distances (Cys to His) were quite good during the simulation
(Table S2, Figures S6 and S7).

Figure 2. PELE’s energy analysis and representative geometries. EH1AB1C density plots of the
distribution of the catalytic cysteine-substrate distances against the interaction energy for the best-
bound dipeptide substrate (PF, top) and the worst one (YY, bottom). Only the 10% lowest percentile,
regarding the distance is shown. In the right panel, we display representative catalytic poses of the
dipeptide substrate in the putative protease site. The C atoms are stained in maroon, dark green and
yellow in the EH1A1 active site residues, EH1B1 and Cys24, respectively, and each substrate is shown
using the density plot colour (in wheat for PF and blue for YY). The energy profiles were created with
the Matplotlib library [28].

2.2. Experimental Validation: EH1AB1C Is an Efficient Protease

The recombinant mutant, hereafter referred to as EH1AB1C, was successfully expressed
in soluble form in Escherichia coli and purified by nickel affinity chromatography. The
purified protein (approx. 10 mg per litre of culture) was desalted by ultrafiltration, and its
proteolytic activity was tested through a general fluorescence assay, namely, the BODIPY-
FL-casein assay using the EnzChek® Protease Assay Kit, which is insensitive to pH changes.
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First, the pH profile of the enzyme was obtained (Figure 3A). Its optimal pH for activity
was 7.0, retaining more than 70% of the maximal activity at pH values from 6.5 to 8.0. We
then analysed its temperature profile using the chromogenic substrate azocasein. At pH 7.0,
EH1AB1C showed maximal activity at 70–75 ◦C, retaining more than 70% of the maximum
activity at 50–85 ◦C (Figure 3B). The specific activity of EH1AB1C was compared to that of
the commercial protease Neutrase 0.8 L (Novozymes A/S, Bagsvaerd, Denmark). At pH
7.0 and 30 ◦C, the specific activity of EH1AB1C was 2.63 ± 0.06 U/mg protein, while that
of the commercial Neutrase 0.8 L was 1.86 ± 0.11 U/mg protein. Note that the original
design, EH1AB1, did not show any proteolytic activity with BODIPY-FL-casein or azocasein,
demonstrating that the incorporation of the dyad Cys24-His214 introduced proteolytic
activity.

Figure 3. pH and temperature profiles of the purified EH1AB1C. (A) pH profile at 30 ◦C. (B) Tempera-
ture profile at pH 7.0. The maximal activity was defined as 100%, and the relative activity is shown as
the percentage of the maximal activity (mean ± SD of triplicates), determined under standard reaction
conditions with BODIPY-FL-casein (in panel (A)) and azocasein (in panel (B)) as the substrates. The
graphics were created with Excel version 14.0.

The esterase activity of the EH1AB1C mutant was quantified at 30 ◦C and pH 8.0 with
the model ester glyceryl tripropionate and compared to that of the initial construct EH1AB1.
This substrate can be converted by both esterase sites (the native and the artificial sites).
We found that the EH1AB1C mutant is an efficient esterase capable of hydrolysing this ester
at 3160 ± 76 U/g. However, we observed that this value was only 14.5% of that of EH1AB1.
To evaluate whether this reduction could be because the artificial esterase center (B site),
during its remodelling to add a protease center, has been altered and with it, its activity,
would require evaluating the activity with B-site specific esters. However, all tested esters
hydrolysed by this site are also hydrolysed by the native esterase center (A-site), due
to the broad substrate specificity of the latter [8]. Therefore, we cannot be sure whether
the observed reduction in activity is due to a possible effect of the mutation introduced
(Leu24Cys) on the architecture of the B-center, to a local effect on the structure, or to the
possibility of partial autolysis (self-digestion) by the addition of the protease site.

2.3. Application of EH1AB1C in a One-Pot Cascade Reaction

Following the computational design of a protease site in EH1AB1 and the character-
ization of the successful variant EH1AB1C, we wanted to test the ability of this validated
PluriZyme to catalyse a cascade reaction of interest. As a model reaction, we chose to syn-
thesize L-histidine methyl ester, an intermediate for the design of Schiff base ligands [26],
from the dipeptide L-carnosine (β-alanine-L-histidine) (Figure 4).
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The simulation of the reaction by a local PELE exploration showed efficient L-alanine-
L-histidine (AH) catalytic (hydrolytic) binding poses at the proteolytic site (Table S1).
We also obtained good catalytic poses for L-carnosine (β-alanine-L-histidine) (Figure 5;
Table S1). Thus, we expected that L-carnosine would be hydrolysed at the protease site,
due to its similarity with the L-alanine-L-histidine. We set up two reactions at 40 ◦C and
pH 7.0. The first one contained L-carnosine (5 mM) in the buffer, 40 mM HEPES, at pH 7.0.
The second one represented a one-pot cascade reaction with all the reagents necessary for
the hydrolysis of L-carnosine and the esterification of the corresponding reaction products
with methanol, i.e., L-carnosine and methanol. Following the addition of the E. coli cells
expressing the EH1AB1C PluriZyme, the levels of the substrate L-carnosine, the intermediates
β-alanine and L-histidine, and the possible products β-alanine methyl ester and L-histidine
methyl ester, were quantified using high-performance liquid chromatography (HPLC) over
20 h (Figure 6 and Figure S8). Note that for these tests, cells expressing EH1AB1C were used
instead of purified protein to increase the stability of the biocatalysts, which in soluble form
may be inactivated.

Figure 4. Schematic representation of the main product obtained in a one-pot reaction with the
dipeptide L-carnosine (β-alanine-L-histidine) and methanol. A schematic representation of the
two reaction intermediates and the two possible products (β-alanine and L-histidine methyl esters)
is shown. As shown in the figure, the preferential route found is the production of L-histidine
methyl ester via the hydrolysis of L-carnosine at the protease site and the selective esterification
with methanol of L-histidine (but not β-alanine) at the esterase site. No appreciable formation of
L-carnosine methyl ester and β-alanine methyl ester (gray colour) was detected. The figure was
created using ChemDraw 18.2.
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Figure 5. EH1AB1C density plot of the distribution of the catalytic cysteine-substrate distance against
the interaction energy for L-carnosine. Only the 10% lowest percentile, regarding the distance is
shown. In the right panel, we display the representative catalytic poses of L-carnosine in the putative
protease site. The C atoms are stained in maroon, dark green, and yellow in the EH1A1 active site
residues, EH1B1, and Cys24, respectively, and L-carnosine is shown using the pink colour used in the
density plot. The energy profiles were created with the Matplotlib library [28].

We found that the L-carnosine dipeptide (concentration of 5 mM) was fully converted
(>93.0 ± 0.1%) after 20 h in the buffer, obtaining β-alanine (4.5 ± 0.1 mM) and L-histidine
(4.75 ± 0.05 mM) (Figure 6). When the reaction was performed in methanol, L-carnosine
was converted after 20 h (90.5 ± 12.3%), with the main products being β-alanine (4.5
± 0.1 mM), L-histidine (1.8 ± 0.1 mM) and L-histidine methyl ester (2.8 ± 0.5 mM). β-
Alanine methyl ester and L-carnosine methyl ester were not found as products. This result
demonstrates that L-carnosine is hydrolysed at the artificial proteolytic site; furthermore,
the esterase site only recognized L-histidine but not β-alanine as a substrate, which is
esterified to yield L-histidine methyl ester as the only amino acid ester.

Figure 6. Concentrations of the substrates, intermediates and final products obtained for the con-
version of L-carnosine by the EH1AB1C PluriZyme in the absence (A) or presence (B) of methanol.
Reaction conditions in A: [cells expressing EH1AB1C]: 5 µL of resuspended cells at OD600 nm of
15.0; [L-carnosine]: 5 mM; buffer: 92.5 µL 40 mM HEPES, pH 7.0; reaction final volume: 100 µL.
Reaction conditions in A: [cells expressing EH1AB1C]: 5 µL of resuspended cells at OD600 nm of 15.0;
[L-carnosine]: 5 mM; solvent: 92.5 µL methanol; reaction final volume: 100 µL (92.5% methanol).
Note, that the amount of the β-Ala methyl ester was below the detection limit under our experimental
conditions, and this is why yellow bars are not visible in the figure. The figure was created using
SigmaPlot 14.0 software.

To highlight, we found that when using as biocatalyst cells expressing the original
EH1AB1 PluriZyme, L-carnosine was not converted to any of the intermediates or final
products (Figure S9A); this indicates that the proteases in E. coli do not affect the results
and that in the absence of the artificial proteolytic center, the cascade reaction is not feasible.
Further, both the original EH1AB1 PluriZyme and the mutant EH1AB1C PluriZyme biocatalysts
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were shown to convert L-histidine to L-histidine methyl ester in the presence of methanol,
but not β-alanine to the corresponding methyl ester (Figure S9B,C). These control tests,
together with the results presented in Figure 6, demonstrated that the incorporation of
the dyad Cys24-His214 in the EH1AB1C PluriZyme was responsible for the proteolysis of
L-carnosine, and that the esterase(s) active site(s) originally present in EH1AB1C supported
the acylation of L-histidine and the production of the amino acid ester (L-histidine methyl
ester).

3. Discussion

Proteases that can break ester bonds and esterases and lipases that can break amide
bonds exist in nature; they are an example of catalytically promiscuous enzymes [29–34].
The presence of a Ser or a Cys catalytic residue, along with differences in the substrate
binding site, seems to be the main reason for substrate discrimination and the promis-
cuous behavior. When attempting to engineer such activity from scratch (ab initio) or
when introducing enough mutations to accommodate a dyad/triad, we typically find low
activity profiles [35–37]. Nevertheless, these results have paved the way for more recent
implementations, such as our recent PluriZymes, where the extensive in silico optimization
(catalytic distances) has provided wide substrate promiscuity, high substrate conversion
rates, and even the development of cascade reactions [8,9]. In this study, we introduced
the protease activity by reusing a (previously engineered) esterase site. We recycled the
catalytic histidine and inserted only a cysteine residue, achieving high catalytic rates in
the standard peptide assays. As in our previous designs, the potential of running accurate
enzyme-substrate induced fit simulations provided enough insights. Thus, these results
again illustrate how simulation techniques using molecular modelling are mature enough
and capable of providing a realistic description of localized changes. Such modelling po-
tential, along with the propensity of catalytic dyads/triads to form (stabilizing) hydrogen
bonds, makes the design of hydrolase active sites an affordable task; we have succeeded in
all recent attempts [8,9,20].

The main reason behind our efforts derives from our goals of developing single scaf-
fold enzymes with multiple biochemical activities that are capable of performing one-pot
cascade reactions. Previous attempts in the native esterase EH1 focused on introducing a
second artificial esterase active site and the incorporation of an irreversible-linked inhibitor
containing a meta-chelating moiety to one of the sites, allowing the addition of artificial
abiotic oxidative chemistry as a complement to the original biotic esterase activity [8]. More
recently, we were able to add artificial biotic esterase activity into an ω-transaminase [20].
With our new catalytically efficient design, EH1AB1C, we are now capable of breaking
amide bonds and forming ester bonds to yield natural and nonnatural amino acid es-
ters, herein exemplified by L-histidine methyl ester, which are important intermediates
in organic synthesis [38]. Amino acid methyl esters, such as L-histidine methyl ester, can
be chemically synthesized at room temperature through the esterification of L-histidine
with trimethylchlorosilane (TMSCl) and methanol at high yields (88–96%, using 10 mM
L-histidine) [38]; the biocatalysts reported herein offer milder and environmentally friendly
conditions and good yields for the synthesis of amino acid esters useful in the pharmaceuti-
cal industry. In addition, both protease and esterase sites in EH1AB1C may offer specificity,
as shown here, for example, by the capacity of the latter to esterify L-histidine but not
β-alanine. The capacity of some proteases to catalyse ester hydrolysis has been used to
produce amino acid esters with a high optical purity through the selective hydrolysis of
D,L-amino acid esters (e.g., methyl and benzyl esters) to provide, for example, L-amino
acids and optically pure D-amino acid esters [39,40]. However, in this case, an amino acid
ester is needed as the initial substrate, in contrast to our PluriZyme, which can directly use
dipeptides and possibly longer oligopeptides.

We would like to highlight that the reaction conditions for the substrate reported in
this work and others yet to be tested have not been optimized. Thus, this design offers
interesting properties to be utilized in industrial settings, such as an integrated biorefinery



Int. J. Mol. Sci. 2022, 23, 13337 9 of 14

for biomass recovery based on proteases for the production of protein hydrolysates, bioac-
tive peptides, and amino acids applicable to a wider range of applications. It also offers a
platform to synthesize a wide range of biobased products through in-one cascade reactions
involving ester and amine bond hydrolysis and formation.

4. Materials and Methods
4.1. Materials

Azocasein (ref. A2765-1G), β-alanine (ref. 146064-25G), L-histidine (ref. H7750-25G),
L-histidine methyl ester (ref. H15403-25G), β-alanine methyl ester (ref. 05210-10G), L-
carnosine (ref. C9695-10MG), glyceryl tripropionate (ref. W328618-1KG-K), and methanol
(ref. 34966-1L) were ordered from Merck Life Science S.L.U. (Madrid, Spain). The EnzChek®

Protease Assay Kit (ref. E6638) was provided by Invitrogen, Thermo Fisher Scientific Inc.,
Waltham, MA, USA. FMOC chloride (ref. GE3236-1G) was purchased from Glentham Life
Sciences, Corsham, UK.

4.2. Protein and Chemical Preparation for the In Silico Analysis

The apo EH1A crystal structure (5JD4) and the holo EH1AB1 crystal structure (6RB0)
were prepared and protonated at pH 8.0, the pH at which the experimental assays were
performed, using Protein Preparation Wizard [41]. This includes fixing side chains and
loops missing in the crystal structure using Prime software [42]. The ester compound
used as a probe to find noncatalytic hydrolase sites was glyceryl tripropionate; the peptide
binding assays of the generated variant used 16 dipeptides (AH, AQ, DI, EA, FF, KA, LA,
LL, NV, PF, QQ, RG, SW, TM, YN, and YY) as substrates. All substrates were modelled using
the OPLS2005 force field [43]. The atomic charges of glyceryl tripropionate and the catalytic
serine residues bound with the methyl hydrogen (R)-hexylphosphonate inhibitor [8,20]
were calculated with Jaguar [44] using density functional theory with a B3LYP-D3 exchange-
correlation functional and the polarized triple-zeta (pVTZ) basis set.

4.3. Protein Energy Landscape Exploration (PELE) Simulations

PELE was used to find the noncatalytic peptide binding sites in EH1A/EH1AB1 and
check if the catalytic poses can be reached in the functionalized variant [8,9,19,27]. PELE is a
Monte Carlo (MC)-based algorithm coupled with protein structure prediction methods [45].
The heuristic MC approach begins with the sampling of different microstates by initially
applying small perturbations (translations and rotations) on the ligand. Then, the flexibility
of the protein is taken into account by applying normal modes through the anisotropic
network model (ANM) approach. Once the system has been perturbed, side chains of the
residues near the ligand are sampled with a library of rotamers to avoid steric clashes.
Finally, a truncated Newton minimization with the OPLS2005 force field [43] is performed,
and the new microstate is accepted or rejected, according to the Metropolis criterion. The
variable dielectric generalized Born non-polar (VDGBNP) implicit solvent [46] was applied
to mimic the influence of water around the protein.

4.4. Prediction of ∆∆G in the EH1AB1 Variant

The ∆∆G(mut-WT) of stability in the experimentally tested variants was calculated
using the module of thermodynamic stability from HotSpot Wizard, which uses FoldX
to repair possible problems in the protein structure and Rosetta to perform the energy
minimization and ∆∆G calculation (according to protocol 3 from Rosetta) [47].

4.5. Source and Production of EH1AB1C

The sequence of EH1AB1C was synthesized by GenScript Biotech (GenScript Biotech,
EG Rijswijk, Netherlands) and was codon-optimized to maximize the expression in E. coli.
The gene was flanked by BamHI and HindIII (stop codon) restriction sites and inserted
into a pET-45b(+) expression vector with an ampicillin selection marker (GenScript Biotech,
EG Rijswijk, Netherlands), which was further introduced into E. coli BL21(DE3). The
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soluble N-terminal histidine (His)-tagged protein was produced and purified (98% purity,
as determined by SDS–PAGE analysis using a Mini PROTEAN electrophoresis system,
Bio-Rad, Madrid, Spain; Figure S10) at 4 ◦C after binding to a Ni-NTA His-Bind resin
(Merck Life Science S.L.U., Madrid, Spain), as previously described [8,20], and stored
at −20 ◦C until use at a concentration of 1.5 mg/mL in 40 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) buffer (pH 7.0). Approximately 10 mg of purified
EH1AB1C was obtained on average from a 1-L culture.

4.6. Activity Tests

The proteolytic activity was tested with the EnzChek® Protease Assay Kit containing
casein labelled with BODIPY® FL (E6638) dye (green fluorescence), which is insensitive
to pH. The assay was prepared, according to the protocol provided by the manufacturer
(Thermo Fisher, Madrid, Spain). If otherwise not indicated, the reactions were carried
out in 96-well plates by adding 1 µL of BODIBY FL casein (1 mg/mL) to 99 µL of 40 mM
HEPES buffer at pH 7.0 with 1.0–5.0 µg of protein and incubated for 1 h, protected from
light at 30 ◦C. The fluorescence (λexc: 485 ± 20 nm; λemm: 528 ± 20 nm) was then measured
in a Synergy HT multi-mode microplate reader (Biotek Instruments, Winooski, VT, USA).
All values were determined in duplicate by determining the fluorescence at 60 min and
were corrected for nonenzymatic transformation. For the pH determination (in triplicate),
the previous conditions were used but with 50 mM Britton and Robinson buffer at pH
3.0–8.5. To determine the thermal profile (in triplicate), the substrate used was chromogenic
azocasein. Briefly, to 25 µL of 2.5% w/v azocasein (prepared in water), 15 µL of 40 mM
HEPES at pH 7.0 and 10 µL of EH1AB1C (from a 1.4 mg/mL stock) were added. This
reaction was incubated for 40 min with shaking at 700 rpm at different temperatures (20–
90 ◦C). Then, 200 µL of trichloroacetic acid was added to stop the reaction, which was then
centrifuged for 5 min at 13,000 rpm. Subsequently, 50 µL of this supernatant was added
to 150 µL of 0.5 M NaOH in a 96-well plate, and its absorbance at 440 nm was measured
in a Synergy HT Multi-Mode Microplate Reader. In all cases, the control reactions with
EHAB1 under the same experimental conditions were performed. In all cases, the values
were corrected for nonenzymatic transformation.

The hydrolysis of the model ester glyceryl tripropionate by EH1AB1 and EH1AB1C
was assayed using a pH indicator assay in 384-well plates (ref. 781162, Greiner Bio-
One GmbH, Kremsmünster, Austria) at 30 ◦C and pH 8.0 (5 mM 4-(2-hydroxyethyl)-1-
piperazinepropanesulfonic acid (EPPS) buffer containing 0.45 mM phenol red) in a Synergy
HT multi-mode microplate reader in continuous mode at 550 nm over 30 min (extinction
coefficient (ε) of phenol red: 8450 M−1 cm−1), as reported in [8,20]. The conditions for
determining the specific activity (U/mg) were as follows: [protein]: 5 µg/mL; [ester]: 10
mg/mL; reaction volume: 44 µL; T: 30 ◦C; and pH: 8.0. The activity was calculated by
determining the absorbance per minute from the slopes generated [8,20]. In all cases, all
values in triplicate were corrected for nonenzymatic transformation, with the absence of
activity defined as having at least a twofold background signal.

4.7. Cascade Reaction and the HPLC Analysis

L-Carnosine, used as the substrate, and β-alanine, L-histidine, β-alanine methyl ester
and L-histidine methyl ester, used as the standards, were obtained from Merck Life Science
S.L.U., Madrid, Spain. The reactions were performed using resting cell assays. Briefly, E.
coli BL21(DE3) expressing EH1AB1C, His-tagged at the N-terminus, was grown at 37 ◦C
on solid LB agar medium supplemented with 100 µg/mL ampicillin, and one colony was
picked and used to inoculate 50 mL of Luria Bertani broth plus antibiotic in a 0.25-L flask.
The culture was then incubated at 37 ◦C and 200 rpm overnight. Then, 50 mL of this
culture was used to inoculate 1-l of LB medium plus antibiotic in a 2.5-L flask, which was
then incubated to an OD600 nm of approximately 0.7–1.0 at 37 ◦C. The protein expression
was induced by adding isopropyl β-D-1-thiogalactopyranoside to a final concentration of
approximately 1 mM, followed by incubation for 16 h at 16 ◦C at 220 rpm. The cells were
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harvested by centrifugation at 5000× g for 15 min to yield a pellet of 2–3 g/L (wet weight).
The wet cell pellet was resuspended in 60 mL of 40 mM HEPES at pH 7.0 and centrifuged as
before, and the cells were retained. Finally, the cells were resuspended in 60 mL of 40 mM
HEPES at pH 7.0 until an OD600 nm of 15.0 and used directly for the activity tests.

To evaluate the proteolytic capacity of EH1AB1C against L-carnosine, the following
reaction conditions were used in a 1.5 mL Eppendorf tube: [cells expressing EH1AB1C]: 5 µL
of resuspended cells at OD600 nm of 15.0; [L-carnosine]: 2.5 µL of a 200 mM stock solution
in 40 mM HEPES at pH 7.0; T: 30 ◦C; buffer/solvent: 92.5 µL of 40 mM HEPES buffer at pH
7.0; and reaction final volume: 100 µL (100% buffer). To evaluate the capacity of EH1AB1C to
produce amino esters in a cascade reaction, the following conditions were used in a 1.5 mL
Eppendorf tube: [cells expressing EH1AB1C]: 5 µL of resuspended cells at OD600 nm of 15.0;
[L-carnosine]: 2.5 µL of a 200 mM stock solution in 40 mM HEPES at pH 7.0; T: 30 ◦C;
buffer/solvent: 92.5 µL of methanol; and reaction final volume: 100 µL (7.5% buffer and
92.5% methanol). Control reactions with L-histidine and β-alanine (using stock solutions
at the same concentrations as L-carnosine) instead of L-carnosine were set-up. The same
reaction tests were performed with cells expressing EHAB1 under the same experimental
conditions.

Aliquots of 100 µL of the reaction mixture were taken at different times. The aliquots
were filtered using 0.45 µm Durapore filter unit inserts (Millipore Corporation, Billerica,
MA, USA) to remove the cells and stop the reaction. The solvent was evaporated using
a SpeedVac Concentrator (Model 5301, Eppendorf, Hamburg, Germany) at 30 ◦C. The
remaining L-carnosine and the formed reaction products were derivatized by adding
500 µL of B4Na2O7 buffer at pH 9.0 (100 mM) followed by the addition of 500 µL FMOC
chloride (4 mM) in acetonitrile. The samples were shaken in a vortexer for 1 h. Then, the
samples were analysed by HPLC using a quaternary pump (Model 600, Waters, Milford,
MA, USA) coupled to an autosampler (Model 420, Varian ProStar, Wainut Creek, CA, USA).
The injection volume was 10 µL. The column was a Zorbax Eclipse Plus C-18 (4.6 × 100 mM,
3.5 µm, Agilent Technologies, Santa Clara, CA, USA) at 40 ◦C, and the mobile phase was
an acetonitrile/H2O gradient with both solvents acidified with 0.1% (v/v) formic acid and
degassed with helium. The gradient (20 min in total) is specified as follows: 0–12 min,
20→90% acetonitrile; 12–15 min, 90% acetonitrile; 15–15.5 min, 90→20% acetonitrile; 15.5–
20 min, 20% (initial conditions). The flow rate was 1.0 mL/min. The detection of peaks was
carried out using a photodiode array detector (Model 335, Varian ProStar), and integration
was carried out using Varian Star LC Workstation 6.41 at a wavelength of 264 nm. The
quantification of the reaction products was performed with the calibration curves of the
standards of L-carnosine and the corresponding amino acids and esters at concentrations
between 0 and 500 µM.

5. Conclusions

To the best of our knowledge, we have designed the first example of an in-one protease-
esterase PluriZyme. This construct was built by engineering an artificial active site sup-
porting the protease activity into an esterase by remodelling one of the two esterase active
sites of a recent PluriZyme design through a Let24Cys mutation. The resulting mutant does
contain a native Ser-His-Asp catalytic triad supporting esterase activity and an artificial
Cys-His dyad supporting proteolysis. We will continue to explore the biocatalytic potential
of this new type of biocatalyst, as suggested by the data presented here, particularly for the
synthesis of amino acid esters, which are versatile chiral auxiliary groups employed for the
asymmetric synthesis of pharmaceuticals [47]. This exploration will include the use of this
enzyme design in other chain reactions, and its comparison with traditional bioenzymatic
systems in which an esterase and a protease are combined in one-pot, either in soluble
form or co-immobilized preparations. That said, we have previously demonstrated that a
PluriZyme supporting two different activities works as efficiently as when mixing separate
enzymes supporting the two activities needed for the cascade reaction [20]. In both cases,
the yields and conversions will depend on multiple factors, yet to be explored. For example,
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the separation of the two active sites within the protein scaffold in the case of the PluriZyme
and the transfer of reaction intermediates between them; this can also occur between active
centers of different enzymes in bi-enzymatic systems.
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Table S1: Absolute and relative number of accepted and total catalytic events (at 3.75 Å, 4.25 Å, and 5 
Å) of EH1AB1C from the local exploration for the different dipeptide substrates (A) and L-carnosine (B). 
 
A) 

 

Dipeptide 
substrate 

Number of 
accepted 
catalytic 

events  [3.75 
Å] 

Number of 
total catalytic 
events  [3.75 

Å] 

Number of 
accepted 
catalytic 

events  [4.25 
Å] 

Number of 
total catalytic 
events  [4.25 

Å] 

Number of 
accepted 
catalytic 

events  [5 Å] 

Number of total 
catalytic events  

[5 Å] 
AH 129 (0.265 %) 2121 (0.422 %) 443 (0.91 %) 7708 (1.533 %) 779 (1.6 %) 12349(2.455 %) 
AQ 17 (0.04 %) 97 (0.019 %) 105 (0.248 %) 1709 (0.341 %) 421 (0.995 %) 5433 (1.083 %) 
DI 3 (0.012 %) 6 (0.001 %) 68 (0.279 %) 1103 (0.22 %) 144 (0.59 %) 1597 (0.318 %) 
EA 14 (0.034 %) 101 (0.02 %) 584 (1.416 %) 2887 (0.571 %) 1200 (2.91 %) 11398 (2.255 %) 
FF 0 0 7 (0.025 %) 58 (0.012 %) 41 (0.145 %) 1468 (0.296 %) 
KA 5 (0.013 %) 10 (0.002 %) 412 (1.093 %) 2840 (0.581 %) 1197 (3.177 %) 11745 (2.402 %) 
LA 14 (0.033 %) 77 (0.015 %) 777 (1.858 %) 3748 (0.74 %) 1163 (2.781 %) 7051 (1.391 %) 
LL 0 0 17 (0.044 %) 124 (0.025 %) 67 (0.172 %) 621 (0.124 %) 
NV 0 0 7 (0.018 %) 49 (0.01 %) 371 (0.935 %) 3211 (0.638 %) 
PF 58 (0.171 %) 1294 (0.259 %) 495 (1.456 %) 6355 (1.27 %) 657 (1.933 %) 7984 (1.596 %) 
QQ 20 (0.065 %) 233 (0.047 %) 128 (0.415 %) 2656 (0.536 %) 295 (0.955 %) 4529 (0.914 %) 
RG 9 (0.029 %) 36 (0.007 %) 171 (0.553 %) 2301 (0.465 %) 1016 (3.286 %) 9615 (1.941 %) 
SW 47 (0.147 %) 1267 (0.256 %) 444 (1.393 %) 4699 (0.949 %) 513 (1.609 %) 5177 (1.045 %) 
TM 38 (0.095 %) 570 (0.112 %) 404 (1.014 %) 7220 (1.418 %) 635 (1.594 %) 10478 (2.057 %) 
YN 20 (0.081 %) 297 (0.06 %) 56 (0.227 %) 838 (0.17 %9 72 (0.292 %) 950 (0.192 %) 
YY 0 0 0 0 0 0 

 
B) 
 

Dipeptide 
substrate 

Number of 
accepted 
catalytic 
events  [3.75 
Å] 

Number of 
total catalytic 
events  [3.75 
Å] 

Number of 
accepted 
catalytic 
events  [4.25 
Å] 

Number of 
total catalytic 
events  [4.25 
Å] 

Number 
of 
accepted 
catalytic 
events  [5 
Å] 

Number 
of total 
catalytic 
events  [5 
Å] 

L-
carnosine 

 

26 (0.102 %) 433 (0.098 
%) 

166 (0.654 
%) 

2344 (0.531 
%) 

425 (1.675 
%) 

5082 
(1.151 %) 

 
 
Table S2: predicted ΔΔG(mut-WT) of the EH1AB1C and its alternative calculated using the module of 
thermodynamic stability from HotSpot Wizard (see reference [45]) in both EH1A and EH1AB1 crystal 
structures. 
 
 Variant ΔΔG(mut-WT) [5JD4] ΔΔG(mut-WT) [6RB0] 

EH1AB1C (L24C) 6 4.2 
EH1AB1C* (L24C/V36H) 6.8 31.4 

 



3 
 

 
 

 
 
Figure S1. Global exploration of the potential hydrolase sites in the EH1AB1 structure with the methyl 
hydrogen (R)-hexylphosphonate inhibitor bound to both catalytic serine residues. Accepted PELE steps 
around, what we called site C, are highlighted in the energetic profile with a yellow color. On the right, 
we represent a binding pose of the probe ester in site C. The main active site has the C atoms stained in 
maroon, the artificial active site has them stained in dark green, and the potential residue to mutate to 
cysteine to add a protease site has them stained in yellow. The energy profile was created with the 
Matplotlib library (see reference [28]). 
 
 

 
 
Figure S2. Global exploration of the potential hydrolase sites in the EH1A structure. Accepted PELE steps 
around, what we called site C, are highlighted in the energetic profile with a yellow color. On the right, 
we represent a binding pose of the probe ester in site C. The main active site has the C atoms stained in 
maroon, the artificial active site has them stained in dark green, and the potential residue to mutate to 
cysteine to add a protease site has them stained in yellow. The energy profile was created with the 
Matplotlib library (see reference [28]). 
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Figure S3. EH1AB1C density plots of the distribution of the catalytic cysteine-substrate distance against 
the interaction energy for the other simulated dipeptide substrates. Only the 10% lowest percentile 
regarding the distance is shown. On the right, we represent a catalytic pose of the dipeptide substrate 
in the protease site. The main active site has the C atoms stained in maroon, the artificial active site has 
them stained in dark green, the cysteine residue from the protease site has them stained in yellow, and 
each substrate has them stained in a particular color. The energy profiles were created with the 
Matplotlib library (see reference [28]). 
 

 

Figure S4. Violin plot representing the cysteine-substrate distance along all the accepted PELE steps 
from the local explorations for the different dipeptide substrates against EH1AB1C. The red line indicates 
the average value of the metric in all simulations. The figure was created with the Matplotlib library 
(see reference [28]). 
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Figure S5. Violin plot representing the histidine-substrate distance along all the accepted PELE steps 
from the local explorations for the different dipeptide substrates against EH1AB1C. The red line indicates 
the average value of the metric in all simulations. The figure was created with the Matplotlib library 
(see reference [28]). 

 

Figure S6. Violin plot representing the cysteine-histidine distance along all the accepted PELE steps 
from the local explorations for the different dipeptide substrates against EH1AB1C. The red line indicates 
the average value of the metric in all simulations. The figure was created with the Matplotlib library 
(see reference [28]). 
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Figure S7. Violin plot representing the aspartate-histidine distance along all the accepted PELE steps 
from the local explorations for the different dipeptide substrates against EH1AB1C. The red line indicates 
the average value of the metric in all simulations. The figure was created with the Matplotlib library 
(see reference [28]). 

 

Figure S8. HPLC chromatograms representing the elution time of all substrates, intermediates and final 
products identified. As shown after derivatization some of the chemicals elute at different times 
(demonstrated by analysing each single chemical; not shown) and for the calculation of the 
concentration and conversion for each of them, the areas of each peak representing each chemical, were 
considered. 
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Figure S9. Concentrations of substrates and products obtained for the conversion of L-carnosine (A), L-
histidine (B) and -alanine (C) with whole cells expressing EH1AB1 PluriZyme (left panels) or EH1AB1C 
PluriZyme (right panels) in the presence of methanol. The figure was created using SigmaPlot 14.0 
software. As can be seen in panel A, the original EH1AB1 PluriZyme does not hydrolyse L-carnosine oes 
not esterify it. The results in panels B and C demonstrate that both the original EH1AB1 PluriZyme and 
the mutant EH1AB1C PluriZyme esterify L-histidine, but not -alanine. 
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Figure S10. SDS-PAGE gel showing steps of EH1AB1C purification. Twelve percent SDS-PAGE gel stained 
with Coomassie blue. Lane 1 contains molecular weight markers. Lane 2 contains whole cell lysate of E. 
coli expressing soluble protein. Lane 3 shows the whole cell lysate of E. coli expressing insoluble protein. 
Lane 4 shows the His-tagged protein and demonstrates protein purity of >95%. 
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(A) 

pH 
Fluorescence 485/20,528/20 

EH1AB1C 
3 4 8 

3,5 12 14 
4 20 22 

4,5 23 30 
5 30 35 

5,5 68 75 
6 122 105 

6,5 133 133 
7 174 180 

7,5 145 146 
8 115 132 

8,5 109 122 
 
(B) 
 

T (°C) 
Absorbance at 440 nm 

EH1AB1C 
20 0,024 0,027 
30 0,054 0,055 
40 0,076 0,067 
50 0,096 0,096 
60 0,135 0,134 
70 0,143 0,141 
75 0,137 0,147 
80 0,138 0,142 
85 0,128 0,124 
90 0,0112 0,0112 

 
(C) 

 

pH 
Relative activity (%) 

EH1AB1C (average % and SD) 
3 3,4 1,6 

3,5 7,4 0,8 
4 11,9 0,8 

4,5 15 2,8 
5 18,4 2 

5,5 40,4 2,8 
6 64,1 6,8 

6,5 75,1 0 
7 100 2,4 

7,5 82,2 0,4 
8 69,8 6,8 

8,5 65,3 5,2 

T (°C) 
Relative activity (%) 
(average % and SD) 

20 18 1,5 
30 38,4 0,5 
40 50,4 4,5 
50 67,6 0 
60 94,7 0,5 
70 100 1 
75 100 5 
80 98,6 2 
85 88,7 2 
90 7,8 0 
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(D) 

 Hydrolysis (buffer, no methanol) raw data (Figure 6A), in the presence of EH1AB1C. 

 
 
 
 
 
 
 

 

  
  

Reaction time (h) Carnosine β-Ala His His-methyl ester Total
0 h 5.000 0.000 0.000 0 5.000
1 h 3.789 1.320 1.102 0 6.211
2 h 1.824 3.297 3.054 0 8.176

24 h 0.356 4.544 4.745 0 9.644

Sample concentration in reaction medium (mM) -Normalized to (5 mM carnosine)
Reaction time (h) Carnosine β-Ala His His-methyl ester

0 0.035 0.000 0.000 0.000
1 0.137 0.018 0.177 0.000
2 0.170 0.085 0.394 0.000
24 0.037 0.081 0.052 0.000

SD  mM

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 66045886.33 0 0 0
1 56405937.67 9510840.333 12435133.33 0
2 20673479.67 18079872 26227694 0

24 5599927 34623204 56609214.33 0

Area - Average
Reaction time (h) Carnosine β-Ala His His-methyl ester

0 925255.158 0 0 0
1 4081705.52 129504.134 1999902.55 0
2 3855347.19 468065.626 3379406.28 0

24 1165884.48 620605.567 620605.567 0

Area - Deviation

Reaction time (h) Carnosine β-Ala His His-methyl ester Total Total (residues)
0 417.6392355 0 0 0 417.6392355 835.2784709
1 356.6813013 124.2711031 103.7705251 0 584.7229295 941.4042308
2 130.7281456 236.2362902 218.868709 0 585.8331447 716.5612903

24 35.41097502 452.3957509 472.4008773 0 960.2076032 995.6185782

Sample concentration (µM)
Reaction time (h) Carnosine β-Ala His His-methyl ester

0 5.850824 0 0 0
1 25.8105457 1.69213456 16.6890802 0
2 24.3791755 6.1158667 28.2009654 0

24 7.37243649 8.10899308 5.17892039 0

SD (µM)
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 Cascade reaction (with metanol) raw data (Figure 6B), in the presence of EH1AB1C. 

 

 
 

 

  
 
  

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 11167492.4 0 0 0
1 6726467.34 34811.0622 1241768.93 844628.1463
2 4946823.13 264351.172 2486694.35 2122136.349

24 1081449.47 369638.206 369638.206 5926748.901

Area - Deviation

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0.383 0.000 0.000 0.000
1 0.238 0.005 0.104 0.070
2 0.231 0.035 0.208 0.177
24 0.052 0.048 0.031 0.495

SD  mM

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 72916723.33 0 0 0
1 55722512.67 9406029 7916764 4090492
2 21611397 19710882 17615182.33 8929280.333

24 4923047 34745890.67 16872401.67 26284110.33

Area - Average

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 70.6173123 0 0 0
1 42.53462 0.45485036 10.3624956 7.048376877
2 31.2810918 3.45408088 20.7513319 17.70911476

24 6.83851415 4.82978853 3.08461113 49.45840379

SD (µM)

Reaction time (h) L- Carnosine β-Ala His His-methyl ester Total
0 h 5.000 0.000 0.000 0.000 5.000
1 h 3.943 1.229 0.810 0.419 6.401
2 h 2.016 2.575 1.709 0.866 7.167

24 h 0.474 4.540 1.775 2.765 9.554

Sample concentration in reaction medium (mM) -Normalized to (5 mM carnosine)

Reaction time (h) Carnosine β-Ala His His-methyl ester Total Total (residues)Total His+ His-ME
0 461.0867728 0 0 0 461.0867728 922.1735455 0
1 352.3596832 122.9016111 66.06497376 34.13493779 575.4612058 893.6859513 100.1999115
2 136.6590385 257.5474893 146.997758 74.51436861 615.7186544 677.8633242 221.5121266

24 31.13074408 453.9988066 140.7992929 219.3395002 845.2683439 657.0595877 360.1387932

Sample concentration (µM)
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(E) 

 Cascade reaction (with metanol) raw data, in the presence of EH1AB1 (Figure S9A). 

 

 L- Histidine reaction (with metanol) raw data in the presence of EH1AB1 (Figure S9B). 

 

 

  

Reaction time (h) Carnosine β-Ala His His-methyl ester Total Total (residuos)
0 0 0 296.5392644 0 296.5392644 296.5392644
2 0 0 266.2641927 0 266.2641927 266.2641927

24 0 0 107.3820261 305.8037602 413.1857863 413.1857863

Sample concentration (µM)

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0 0 4.79897732 0
2 0 0 3.97167135 0

24 0 0 3.27816774 1.583013881

SD (µM)

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0 0 35535189.67 0
2 0 0 31907237 0

24 0 0 12867910.33 36645382

Area - Average
Reaction time (h) Carnosine β-Ala His His-methyl ester

0 0 0 575075.85 0
2 0 0 475937.293 0

24 0 0 392832.675 189697.3025

Area - Deviation
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 - Histidine reaction (with metanol) raw data in the presence of EH1AB1C (Figure S9B). 

 

  

 

 

 β-Alanine reaction (with metanol) raw data in the presence of EH1AB1 (Figure S9C). 

 

 

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0.000 0.000 0.040 0.000
2 0.000 0.000 0.037 0.000
24 0.000 0.000 0.020 0.010

SD  mM

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0 0 35111999 0
2 0 0 25123322.67 19989914.67

24 0 0 14500647.67 41832287.33

Area - Average
Reaction time (h) Carnosine β-Ala His His-methyl ester

0 0 0 401282.111 0
2 0 0 282187.094 162377.1727

24 0 0 87384.3772 297615.2006

Area - Deviation

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0 0 3.34867783 0
2 0 0 2.35483627 1.355028854

24 0 0 0.72921797 2.483582991

SD (µM)

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0.000 0.000 0.029 0.000
2 0.000 0.000 0.016 0.009
24 0.000 0.000 0.004 0.013

SD  mM

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0 38621021.33 0 0
2 0 34250592 0 0

24 0 35603589.33 0 0

Area - Average
Reaction time (h) Carnosine β-Ala His His-methyl ester

0 0 1955503.02 0 0
2 0 112858.066 0 0

24 0 33521.6922 0 0

Area - Deviation

Reaction time (h) L-Carnosine β-Ala L-His L- His-methyl esterTotal
0 h 0.000 0.000 2.500 0.000 2.500
2 h 0.000 0.000 2.500 0.000 2.500

24 h 0.000 0.000 0.650 1.850 2.500

Sample concentration in reaction medium (mM) -Normalized to (2.5 mM His)

Reaction time (h) Carnosine β-Ala His His-methyl ester Total Total (residues)
0 0 0 293.0077608 0 293.0077608 293.0077608
2 0 0 209.652789 166.8147728 376.4675618 376.4675618

24 0 0 121.0071321 349.0882089 470.095341 470.095341

Sample concentration (µM)

Reaction time (h) L-Carnosine β-Ala L-His L- His-methyl esterTotal
0 h 0.000 0.000 2.500 0.000 2.500
2 h 0.000 0.000 1.392 1.108 2.500

24 h 0.000 0.000 0.644 1.856 2.500

Sample concentration in reaction medium (mM) -Normalized to (2.5 mM His)
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 β-Alanine reaction (with metanol) raw data in the presence of EH1AB1C (Figure S9C). 

 

  
 

  

Raw Dataset. (A) Raw fluorescence data (corresponding to Figure 3A) after the hydrolysis of BODIBY FL casein by EH1AB1C, at different pH values (corrected 
by background signal). Reaction conditions as described in Section 4.5. (B) Raw absorbance data (corresponding to Figure 3B) after the hydrolysis of azocasein 
by EH1AB1C, at different temperatures. Reaction conditions as described in Section 4.5. (B) Representative time-course curve for the hydrolysis of glyceryl 
tripropionate by EH1AB1C (corrected by background signal). Shown are the raw data (absorbance at 550 nm over time), corresponding to calculations of specific 
activity. Reaction conditions as described in Section 4.5. (A) Representative time-course curve for the hydrolysis of glyceryl tripropionate by EH1AB1C andEH1AB1. 
Shown are the raw data (absorbance at 550 nm over time), corresponding to calculations of specific activity. Reaction conditions as described in Section 4.5. (D) 

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0 25.5511089 0 0
2 0 1.47463272 0 0

24 0 0.43800311 0 0

SD (µM)

Reaction time (h) L-Carnosine β-Ala L-His L- His-methyl esterTotal
0 h 0.000 5.000 0.000 0.000 5.000
2 h 0.000 5.000 0.000 0.000 5.000

24 h 0.000 5.000 0.000 0.000 5.000

Sample concentration in reaction medium (mM) -Normalized to (5 mM Ala)
Reaction time (h) Carnosine β-Ala His His-methyl ester

0 0.000 0.253 0.000 0.000
2 0.000 0.016 0.000 0.000
24 0.000 0.005 0.000 0.000

SD  mM

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0 715050.418 0 0
2 0 67054.195 0 0

24 0 247115.117 0 0

Area - Deviation

Reaction time (h) Carnosine β-Ala His His-methyl ester Total Total (residues)
0 0 492.1246173 0 0 492.1246173 492.1246173
2 0 447.1597873 0 0 447.1597873 447.1597873

24 0 443.4476283 0 0 443.4476283 443.4476283

Sample concentration (µM)
Reaction time (h) Carnosine β-Ala His His-methyl ester

0 0 9.34303396 0 0
2 0 0.87614748 0 0

24 0 3.22887011 0 0

SD (µM)

Reaction time (h) L-Carnosine β-Ala L-His L- His-methyl esterTotal
0 h 0.000 5.000 0.000 0.000 5.000
2 h 0.000 5.000 0.000 0.000 5.000

24 h 0.000 5.000 0.000 0.000 5.000

Sample concentration in reaction medium (mM) -Normalized to (5 mM Ala)
Reaction time (h) Carnosine β-Ala His His-methyl ester

0 0.000 0.095 0.000 0.000
2 0.000 0.010 0.000 0.000
24 0.000 0.036 0.000 0.000

SD  mM

Reaction time (h) Carnosine β-Ala His His-methyl ester
0 0 37663773.33 0 0
2 0 34222480 0 0

24 0 33938377.33 0 0

Area - Average
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Raw data and calculations corresponding to Figure 5 (cascade reaction with EH1AB1C). (E) Raw data and calculation for the control cascade reaction in the presence 
of EH1AB1C; as shown no reactions products were found. 
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A Plurizyme with Transaminase and Hydrolase Activity Catalyzes
Cascade Reactions

Sergi Roda+, Laura Fernandez-Lopez+, Marius Benedens, Alexander Bollinger,

Stephan Thies, Julia Schumacher, Cristina Coscolín, Masoud Kazemi, Gerard Santiago,

Christoph G. W. Gertzen, Jose L. Gonzalez-Alfonso, Francisco J. Plou, Karl-Erich Jaeger,

Sander H. J. Smits, Manuel Ferrer,* and Víctor Guallar*

Abstract: Engineering dual-function single polypeptide catalysts with two abiotic or biotic catalytic entities (or
combinations of both) supporting cascade reactions is becoming an important area of enzyme engineering and catalysis.
Herein we present the development of a PluriZyme, TR2E2, with efficient native transaminase (kcat: 69.49�1.77 min�1)
and artificial esterase (kcat: 3908–0.41 min�1) activities integrated into a single scaffold, and evaluate its utility in a cascade
reaction. TR2E2 (pHopt: 8.0–9.5; Topt: 60–65 °C) efficiently converts methyl 3-oxo-4-(2,4,5-trifluorophenyl)butanoate into
3-(R)-amino-4-(2,4,5-trifluorophenyl)butanoic acid, a crucial intermediate for the synthesis of antidiabetic drugs. The
reaction proceeds through the conversion of the β-keto ester into the β-keto acid at the hydrolytic site and subsequently
into the β-amino acid (e.e. >99%) at the transaminase site. The catalytic power of the TR2E2 PluriZyme was proven
with a set of β-keto esters, demonstrating the potential of such designs to address bioinspired cascade reactions.

Introduction

Microorganisms are regarded as self-replicating containers
of enzymes that catalyze enzyme cascades (or biosynthetic
pathways), yielding complex products.[1] Cascade reactions
are also relevant in the field of biocatalysis for the synthesis
and assembly of numerous molecules.[2] In vitro cascades
have been investigated with at least two enzymatic reactions
combined with a chemical step[3] or purely enzymatic
systems, excluding enzymes required for the regeneration of
cofactors or the removal of poisonous side products.[2] Thus,
multienzyme systems and biomimetic or bioinspired archi-
tectures have been built to spatially organize different
enzymes with nanometer precision.[4–6] Using this approach,
the transport of intermediates between enzymes in close
proximity, known as proximity channeling, is efficiently
controlled, thus favoring the progression of chain
reactions.[7,8] Recent examples illustrating the design of
microfluidic electrospray microcapsules mimicking natural
subcellular compartments, such as organelles or organs,[9] or
onion-like photonic spheres,[10] demonstrate the relevance of
systems that minimize the diffusion of intermediates be-
tween enzymes, enhancing the overall efficiency of bio-
reactions. At the nanoscale, artificial chimeric proteins in
which two modules, domains, or enzymes, each being
different concerning the chemistry or reaction step cata-
lyzed, are joined via a linker have also been developed. An
example is the design of enzyme chimeras in which an
endoglucanase and a β-glucosidase are linked to support
polysaccharide degradation.[11] Other examples include the
design of two-enzyme polyethylene terephthalate depolyme-
rization systems for plastic upcycling[12] and the fusion of
enzymes integrating terpene synthases.[13]
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The design of dual-function catalysts characterized by
the precise positioning of two abiotic[14] or biotic[15] catalytic
entities (or a combination of both),[16] that act in concert to
catalyze synergetic reactions, represent complementary
alternatives to the traditional two-catalysts systems (either
mixed or fused[11–13]). They have provided new solutions for
activating and transforming specific molecules involving
several steps, or even new-to-nature reactions.[14–16] The
challenge originates from the difficulty in precisely control-
ling the positioning of the catalytic entities in a single
protein scaffold, which is different from combining the
active centers of two covalently bound enzymes.[11–13] The
catalytic potential of an artificial protein scaffold with two
abiotic catalytic groups has been recently demonstrated by
the design of a chimeric streptavidin with two adjacent AuI

complexes structurally equal. Both gold entities can work
individually but, through adopting multiple poses, can work
in synergy to activate an alkyne.[14, 17] In a recent elegant
study, the incorporation of a serine close to the haem
cofactor of a P450 enzyme allowed the design of a dual-
function catalyst for efficient enantioselective carbene C�H
insertion reactions.[15] The serine residue contributes to
controlling the orientation and activation of the reaction
intermediates. Other examples of artificial protein scaffolds
with combined abiotic and biotic catalytic groups supporting
tandem catalysis have been reported.[16] These recent studies
exemplify the interest in designing multi-function enzymes
for synthetic chemistry. In this study, we went one step
further and designed an enzyme with two biotic sites, one
supporting hydrolase and one transaminase activity, that are
independent catalytic entities but can also work in synergy
(Scheme 1).

For this purpose, we used recently published computa-
tional tools to design PluriZymes,[18,19] the name we assigned
to the concept of adding multiple active sites to the same

enzyme structure. In detail, we report the addition of a
catalytic triad (Ser, His, Asp/Glu) and an oxyanion hole
supporting ester hydrolysis in a class III ω-transaminase (ω-
TA), which is subsequently referred to as TR2 (GenBank
acc. nr. MH588437).[20] ω-TA is a well-established enzyme
used to design artificial biocatalytic linear cascades to
prepare organic molecules,[21] and thus, it was targeted in the
present study. We designed a PluriZyme, hereafter referred
to as TR2E2, able to catalyze the one-pot cascade synthesis
of the β-amino acid (R)-3-amino-4-(2,4,5-trifluorophenyl)-
butanoic acid (3-ATfBA), a key precursor in the synthesis
of gliptins (Scheme 1).[22,23] Our results show that the design
of this catalytically efficient PluriZyme is feasible and
facilitates the generation of 3-ATfBA from the methyl 3-
oxo-4-(2,4,5-trifluorophenyl)butanoate (3-OTfBE) β-keto
ester with an excellent conversion rate (>99%; conc.:
14 mM) and enantioselectivity (e.e. >99%). Moreover, by
using a range of β-keto esters, we further demonstrated that
dual function PluriZymes are powerful catalysts for tandem
reactions. In addition, we report the crystal structures of the
TR2 enzyme and the newly designed TR2E2 PluriZyme.

Results and Discussion

In this study, we targeted TR2, a class III ω-TA (GenBank
acc. nr. MH588437) isolated from the beach acidic pool on
Vulcano Island and most likely derived from a bacterium of
the Acidihalobacter genus.[20] TR2 showed maximal trans-
aminase activity at 45–55 °C, suggesting that it is moderately
thermostable. It also showed a broad substrate range and
efficiently converted bulky ketones and amines with (R)
stereochemistry, which is rare among class III ω-TAs.

We aimed to crystalize and solve the structure of TR2.
We used sitting drop vapor diffusion and tested 2000

Scheme 1. The general concept for transforming a wild-type class III ω-TA (A) into an artificial PluriZyme with transaminase (TR) and ester
hydrolase (EH) activities (B). The cascade reaction supported by TR2E2, namely, the hydrolysis of 3-OTfBE to methyl 3-oxo-4-(2,4,5-trifluorophenyl)-
butanoic acid (3-OTfBA) and its further transamination to (R)-3-ATfBA, is shown. Methyl 3-amino-4-(2,4,5-trifluorophenyl)butanoate (3-ATfBE) was
detected as a minor by-product.
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conditions from commercially available screens to achieve
this goal. The obtained crystals were optimized in 24-well
sitting drop crystallization plates. The crystals of TR2

diffracted moderately, and a dataset was collected at 3.6 Å
resolution (statistics for the data are presented in Table S1).
The TR2 crystals were phased by molecular replacement
using PHASER in the Phenix program,[24] and a model
calculated with AlphaFold as a template.[25] The structure
was then refined in iterative cycles of manual building and
refinement in Coot, followed by software-based refinements
using the Phenix program suite.[26, 27]

TR2 shows an asymmetric unit of four peptide chains
building a functional dimer (Figure 1A,B). It presents the
typical type I fold of class III ω-TA observed in known
structures present in the PDB database (Table S1),[28] and it
contains the characteristic pyridoxal-5’-phosphate (PLP)-
binding domain composed of β-sheets and the catalytic base
Lys289. The TR2 monomer is subdivided into a core domain,
which is the PLP-binding domain, and a C-terminal sub-
domain. The core domain is composed of a central β-sheet
consisting of the strands β1–β7 surrounded by helices α1–α2
and the short helical structures η1 and η2. The smaller
subdomain at the C-terminus consists of the three α-helices

and β-strands 8, 9, and 10. TR2 is a functional dimer, as
represented by Figure 1B; here, the tunnel for accessing the
binding pocket with the catalytic base (red circle) is
composed of the two monomers (highlighted in different
colors).

The protocol used to design an artificial hydrolase site
has been explained previously,[18, 19] including two review
articles.[29,30] Briefly, the process begins with scanning the
transaminase surface to identify noncatalytic ester binding
sites using global Protein Energy Landscape Exploration
(PELE) exploration.[31] Next, we perform local explorations
of active site variants to introduce a well-positioned catalytic
triad while also considering the existence of oxyanion holes
that are required for efficient ester hydrolysis.[32] Finally,
optimum variants designed with PELE are ranked through
i) Molecular Dynamics (MD) refinement simulations, ac-
counting for the integrity of the triad, and ii) ΔΔG

estimations using the HotSpot Wizard.
As shown in Figure 2, several potential sites for ester

binding were located with global exploration. During the
local exploration, we focused on the enzyme-substrate
interaction energy (see Figure S1), the catalytic triad hydro-
gen bond lengths (see Figures S2–S5), and the occurrence

Figure 1. A) Secondary structural elements of TR2, with α-helices (red), β-strands (orange) and loops (green) shown. B) Surface representation of
the TR2 dimer with highlighted transaminase binding site (red circle). C) Higher-magnification image of the TR2E2 structure at the Ser172 and
His173 mutations. D) Surface representation of the TR2E2-PLP dimer with a highlighted transaminase binding site (red circle). PLP is located in the
transaminase binding site and is shown as a ball-and-stick representation. The positions of the Ser172 and His173 mutations are colored magenta.
The figure was created using PyMOL Version 2.3.2.
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(density) of catalytic poses (see Table S2) to introduce the
catalytic triad in each of the sites described above. Typically,
we aimed for the ester carbon to be located within 3–4 Å
from the serine nucleophilic oxygen and catalytic hydrogen
bonds to be located within reasonable distances (3.5 Å).
These distance parameters, the root mean square deviation
(RMSD) of the overall structure, and the local RMSD of the
main catalytic lysine and the designed triad (see Figures S6–

S8) were estimated from MD simulations. Then, a score
ranking of all mutants was created from all these metrics
and combined with the ΔΔG stability calculation (see
Table S3); the average of each metric was compared to ideal
values obtained from the simulations to obtain the score.
Although, the ΔΔG stability calculation of the variants was
just used to penalize or even discard the high destabilizing
mutants (ΔΔG>5 kcalmol�1), it has been proven to be
crucial for enzyme design.[33–35] The final list contained 20
ranked mutants (only 6 were discarded due to drastic
deviations in the metrics).

TR2 and the 20 designed mutants (Table S4) were
produced and purified, and their transaminase activity was
quantified to evaluate whether any of the mutations were
deleterious to the original transaminase activity. Of the 20
mutants examined, only six showed transaminase activity,
retaining 58 to 92% of the original TR2 activity (kcat: 83.38�
2.52 min�1) when using hexanal, a model aldehyde that was
shown to be one of the preferred substrates for TR2 (see
Table S4, Figure S9).[20] These mutants contain from 1 to 3
mutations (Table S4) located at sites B, E, F, and G, as
shown in Figure 2C.

All six mutants retaining transaminase activity were
further examined for the presence of hydrolytic activity
using model esters p-nitrophenyl acetate (pNPA), propio-
nate (pNPP), and butyrate (pNPB). As shown in Table 1,
only purified TR2E2 (Figure S10), which retained approx-
imately 80% of the original transaminase activity (kcat:
69.48�1.77 min�1), was capable of hydrolyzing pNPA,
pNPP, and pNPB, with the latter being the preferred
substrate (kcat: 0.41�0.05 min�1). This variant contains two
mutations, A172S and Q173H. We further observed that
TR2E2 hydrolyzed 52 of a set of 96 chemically and
structurally diverse esters tested (kcat: 3908 to 1.2 min�1)
(Table S5). Under the same conditions, the activity for TR2

was below the detection limit for all esters. When the
residues Ser172 and His173 were replaced with Ala, the
activity was completely abolished. Thus, the A172S and
Q173H mutations in TR2E2 (located at site G in Figure 2)
do not exert a deleterious effect on the original transaminase
activity and, importantly, confer esterase activity.

Furthermore, we tested 3-OTfBE as a substrate. This
ester is used to synthesize precursors of gliptins, namely, β-
amino acids obtained through bienzymatic cascade reactions
catalyzed by esterases and transaminases.[22, 23] TR2E2 was
shown to efficiently hydrolyze 3-OTfBE (kcat: 32.47�
1.13 min�1). Using 3-OTfBE and High Performance Liquid
Chromatography (HPLC) determinations, TR2E2 showed
maximal hydrolytic activity at pH ranging from 8.0 to 9.5
(Figure 3A) and temperatures ranging from 60 to 65 °C
(Figure 3B). The optimal pH (ca. 8.5) and temperature (ca.
50–55 °C) for the transaminase activity of the variant TR2E2

were similar to those of TR2 itself (Figure 4A and B). The
finding that both TR2 and TR2E2 retained high activity at
50–65 °C was consistent with their denaturation temper-
atures (56.23�0.09 °C and 61.85�0.11 °C, respectively), as
revealed by circular dichroism spectroscopy (Figure 4C).

Diffracting crystals were obtained for TR2E2 as well.
Datasets for each crystal were collected and refined to a

Figure 2. Global exploration of noncatalytic ester binding sites on the
TR2 surface with PELE. Energetic profiles for the monomer (A) and
dimer (B) are shown. Representative PELE steps around the non-
catalytic ester binding sites are highlighted in the energetic profiles
with a particular color (site A in dark blue, site B in purple, site C in
lime, site D in turquoise, site E in dark green, sites F/F’ in orange for
chains A and B and sites G/G’ in green for chains A and B). C) 3D
structure of TR2 with representative binding poses of the probe ester in
the different noncatalytic binding orientations. The surface is displayed
in a transparent blue-white color, and the secondary structure of each
monomer is shown as ribbons. Substrate molecules highlight C atoms
using the energetic profile colors (underlying the noncatalytic ester
binding sites). Energetic profiles were created with the Matplotlib
library.
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resolution of 3.3 Å. All statistics for the data are presented
in Table S1. The artificial esterase catalytic triad was
observed in the TR2E2 crystal structures and is composed of
Ser172 and His173 of chain A (Figure 1C, magenta) and
Glu317 of chain B (Figure 1C, green); similar to the trans-
aminase’s active site, the esterase site is composed of a
functional protein dimer. Figure 1B presents the surface of
the TR2 protein (monomer A in light green and monomer B
in wheat) compared to TR2E2 (monomer A in light purple
and monomer B in blue) (Figure 1D). The position of the
mutation used to gain the esterase function is shown in
magenta and features good accessibility, as it is located at
the surface, whereas the transaminase catalytic base is
located within a small notch, as shown by the bound PLP

(highlighted in ball and sticks in Figure 1D). The RMSD
between TR2 and TR2E2 was calculated to be 0.71 Å
between 299 of 389 C_α atoms of the aligned residues,
indicating that no large conformational change occurs due to
mutations, as also confirmed by the transaminase activity
assay (Tables 1 and S4). Notably, the distance between both
active sites is �20 Å, with the esterase site being more
solvent-exposed and located at the beginning of the tunnel
and the transaminase site being more buried in the protein
structure.

Additionally, we succeeded in growing crystals and
solving the structure of TR2E2 bound to the PLP cofactor
(Figure 5A, resolution of 3.5 Å) and in complex with the
ethanolamine O-sulfate (EOS) inhibitor (Figure 5B, resolu-

Table 1: Kinetic constants for the enzymatic activities of TR2E2.

Substrate Km [mM] kcat [min�1] kcat/Km [s�1 M�1]

Hydrolytic activity[a,b]

pNPA[a] 2.056�0.239 0.323�0.010 2.62�0.70
pNPP[a] 2.664�0.642 0.409�0.051 2.57�1.3
pNPB[a] 0.279�0.096 0.112�0.010 6.67�1.75
3-OTfBE[b] 2.407�0.038 32.47�1.13 224.9�11.4
3-ATfBE[b] 4.750�0.503 0.131�0.02 0.460�0.12

Transaminase activity[c]

3-OTfBE[c] 12.27�0.47 0.771�0.20 1.05�0.07
3-OTfBA[c] 7.65�0.35 92.91�1.16 202.5�11.8

Reaction conditions as detailed in Supporting Experimental Procedures: [a] Km-[protein]: 4.5 μgmL�1; [ester]: 0–7 mM; reaction volume: 200 μL; T:
30 °C; pH: 7.0 (40 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer). [b] Km-[protein]: 4.5 μgmL�1; [ester]: 0–25 mM; reaction
volume: 44 μL; T: 30 °C; pH: 8.0 (5 mM 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPS) buffer, plus 0.45 Phenol Red®). [c] Km-[protein]:
4.5 μgmL�1; [substrate]: 0–100 mM; [PLP]: 1 mM; [2-(4-nitrophenyl)ethan-1-amine (NPEA)]: 0–100 mM; reaction volume: 200 μl; T: 40 °C; pH: 7.5
(100 mM K2HPO4 buffer). In all cases, kcat was calculated assuming v=kcat when v=μM product min�1 μM�1 enzyme. Raw data for the kinetic
experiments are shown in Figure S11.

Figure 3. Optimal parameters for assessing the hydrolytic activity of purified TR2E2. A) TR2E2 activity toward 3-OTfBE at different pH values.
Reaction conditions: [protein]: 31 μM; [3-OTfBE]: 7.2 mM; pH: 50 mM Britton–Robinson (BR) buffer with a pH ranging from 3 to 11; reaction
volume: 100 μL; and T: 30 °C. B) TR2E2 activity toward 3-OTfBE at different temperatures. Reaction conditions: [protein]: 31 μM; [3-OTfBE]: 7.2 mM;
T: 25–80 °C; pH: 100 mM K2HPO4 buffer, pH 7.5; and reaction volume: 100 μL. In both cases, the reactions were performed in triplicate and were
incubated for 15 min at 750 rpm, after which 300 μL of a solution composed of acetonitrile, H2O and formic acid (10 :10 :0.6) were added to stop
the reaction. Substrate depletion was detected using HPLC. The figure was created using SigmaPlot 14.0 software.

Angewandte
ChemieResearch Articles

Angew. Chem. Int. Ed. 2022, e202207344 (5 of 10) © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH



tion of 3.6 Å), located in the transaminase catalytic center.
All data statistics are presented in Table S1. The functional
TR2E2 dimer shows one monomeric subunit (chain A) with
PLP bound to the ɛ-amino group of the catalytic base
Lys289, forming an internal aldimine (Figure 5A). The other
monomeric subunit (chain B) shows no linkage to the
cofactor but an orientation in the catalytic center with
stabilization of chain A, indicating that ω-transaminase
forms a functional dimer.

After the computational design of a hydrolase site in
TR2 and characterization of the successful variant TR2E2, we
wanted to test the ability of this validated PluriZyme to
catalyze a cascade reaction of interest. Therefore, as a model
reaction, we chose to synthesize 3-ATfBA from 3-OTfBE;
this molecule is an intermediate of gliptins.[22, 23] Simulation

of the reaction by a local PELE exploration showed efficient
3-ATfBE and 3-OTfBE catalytic (hydrolytic) binding poses:
23 catalytic events for 3-ATfBE and 42 for 3-OTfBE when
the serine-substrate distance threshold was set to 4 Å (Fig-
ure S12). Glyceryl tripropionate, an example of an ester
commonly hydrolyzed by most esterases,[36] had 121 catalytic
events with an associated experimental kcat of 388.1 min�1

(Table S5). Thus, we expected that 3-OTfBE would be
preferentially hydrolyzed. This prediction was confirmed
experimentally by showing that the catalytic efficiency of
TR2E2 for the hydrolysis of 3-OTfBE was 480-fold higher
than that of 3-ATfBE (Table 1).

We set up a one-pot reaction at 40 °C and pH 7.5 with all
the reagents necessary for the hydrolysis and transamination
reactions, i.e., 3-OTfBE, PLP (as a cofactor) and NPEA (as

Figure 4. Optimal parameters for the transaminase activity and stability of purified TR2 (black) and TR2E2 (white). A) pH profiles of TR2 and TR2E2.
Reaction conditions: [protein]: 31 μM; [hexanal]: 14 mM; [PLP]: 1 mM; [NPEA]: 14 mM; T: 40 °C; pH: 50 mM BR buffer with a pH ranging from 3 to
11; reaction volume: 200 μL. B) Thermal profiles of TR2 and TR2E2. Reaction conditions: [protein]: 31 μM; [hexanal]: 14 mM; [PLP]: 1 mM; [NPEA]:
14 mM; T: 22–80 °C; pH: 100 mM K2HPO4 buffer, pH 7.5; and reaction volume: 200 μL. C) The thermal denaturation curves of TR2 and TR2E2 at
pH 7.0, as measured by changes in ellipticity at 220 nm. The figure was created using SigmaPlot 14.0 software.

Figure 5. Comparison of the transaminase catalytic site in the TR2 and TR2E2 structures. A) Representation of the catalytic center of TR2E2 with PLP
(magenta) bound to Lys289. The TR2 (orange) structure is overlaid with the TR2E2-PLP bound structure (blue). B) Overlay of the EOS inhibitor
binding site. The TR2 structure (orange) is compared with the TR2E2 structure (blue) within the EOS (cyan) binding site. The introduction of the
mutation does not alter either the PLP or the EOS binding site. The figure was created using PyMOL Version 2.3.2 software.
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amine donor). After adding the TR2E2 PluriZyme, the levels
of the substrate 3-OTfBE, the intermediates 3-ATfBE and
3-OTfBA, and the product 3-ATfBA were quantified using
HPLC over 21 h (Figure 6 and Figure S13), and the e.e. was
analyzed using Gas Chromatography (GC). The same
experimental conditions were employed with TR2 and a
control reaction with no enzymes.

We found that the β-keto ester substrate 3-OTfBE
(concentration, 14 mM) was fully converted (>99%) after
60 min, and that the reaction proceeded via the formation of
the β-keto acid 3-OTfBA (initial rate: 0.702�
0.07 mMmin�1), which reached the maximal concentration
(9.2�0.8 mM) at 30 min. Afterward, the β-amino acid (R)-3-
ATfBA (initial rate: 0.479�0.08 mMmin�1) was finally
produced (14.3�0.21 mM; e.e. >99%). The intermediate β-
amino ester 3-ATfBE was a minor product of the reaction
during the early stages of the reaction (max. conc. 1.05�
0.03 mM at 15 min; initial rate: 0.290�0.04 mMmin�1), but
was subsequently consumed. This result is consistent with
the higher transamination efficiency (ca. 200-fold) of TR2E2

for 3-OTfBA compared to 3-OTfBE and the 480-fold lower
capacity of TR2E2 to hydrolyze 3-ATfBE compared to the
initial substrate 3-OTfBE (Table 1). Notably, when the
reaction was established in the presence of TR2, no β-amino
acid 3-ATfBA was formed, and only a minor conversion to
3-ATfBE β-amino ester was detected (Figure S14).

In summary, of the two possible routes by which the β-
keto ester substrate may yield the β-amino acid in the
presence of TR2E2, we identified the preferential route as
the conversion of the β-keto ester to the β-keto acid at the
hydrolytic site, followed by its subsequent amination at the
transaminase site (Scheme 2A).

In order to demonstrate the catalytic potential of the
dual-function TR2E2 enzyme, a range of additional sub-
strates were further tested. A series of β-keto esters were
tested as potential substrates, because they are commercially
available, and have various potential applications as bio-
medical compounds or are important synthons for natural
products synthesis. Both hydrolase and transaminase activ-
ities were evaluated and quantified.

In detail, a set of 7 β-keto esters were tested, which
included the aromatic substrates benzyl 3-oxobutanoate,
indole-3-pyruvic acid methyl ester, methyl 2-oxo-3-phenyl-
propanoate, 2-methyl-4-oxo-4H-pyran-3-yl propionate, ethyl
(4-ethoxyphenyl)(oxo)acetate, and ethyl (1-hydroxy-4-
oxocyclohexyl)acetate, and the linear alkyl β-keto ester
dimethyl 2-oxoglutarate (Table S6; Figure S11). Among
them, 6 were hydrolyzed by the biotic artificial esterase site
in TR2E2, at different rates. In addition, 6 were also accepted
as amine acceptors in transaminase reaction by the biotic
native transaminase site in TR2E2; they were converted at a
lower rate compared to hexanal.

We first set up a one-pot cascade reaction with benzyl 3-
oxobutanoate, using similar conditions as those used for 3-
OTfBE (see Figure 6), as it was one of the preferred β-keto
esters for both hydrolase and transaminase reactions from
those seven tested, and the possible end β-amino acid
product of the reaction is an important intermediate for the
production of biomedicals.[36] The products were quantified
using HPLC. We found that the β-keto ester benzyl 3-
oxobutanoate (concentration, 14 mM) was converted to a
high extent (>95% after 20 min and 99% after 60 min;
Figure S15). The reaction proceeded via the rapid formation
of benzyl alcohol (initial rate: 5.85�0.04 mMmin�1) and 3-

Figure 6. Concentrations of substrates, intermediates and the final product obtained for the conversion of 3-OTfBE by the PluriZyme TR2E2. The
following reaction conditions were used: [protein]: 31 μM; [3-OTfBE]: 14 mM; [PLP]: 1 m; [NPEA]: 14 mM; pH: 100 mM K2HPO4 buffer, pH 7.5;
reaction volume: 100 μL; and T: 40 °C. The figure was created using SigmaPlot 14.0 software.
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oxo-butyric acid, finally yielding the expected amine-product
(R-3-aminobutyric acid, e.e. >99%) (Scheme 2B), as con-
firmed by high-resolution mass spectrometry (HR-MS; Fig-
ure S16) analysis which determined the m/z ratio 104.0701
for the composition C4H10NO2 ([M+H]) with an error of less
than 5 ppm with respect to the theoretically calculated mass
for that composition.

Under similar conditions and by HPLC, we further
succeed in the one-pot conversion at 60 min of the aromatic
β-keto ester indole-3-pyruvic acid methyl ester to tryptophan
(44�1%, 60 min; Figure S17) and of methyl 2-oxo-3-phenyl-
propanoate to phenylalanine (12�1%, 60 min; Figure S18)
(Scheme 2B).

Structural analysis revealed a 20 Å distance between
both active sites, with the esterase site being solvent-exposed
and the transaminase site buried in the protein structure

(Figure 1D), thus ensuring that the transfer of the reaction
intermediate within the protein structure is theoretically
possible. Actually, we tested the migration of 3-OtfBA using
PELE from the esterase site to the transaminase one for
TR2E2 and for two mutants, TR2E2A232F/L60F and
TR2E2A232F/F89W, designed to close the access channel to
the transaminase site. As it can be seen in the energetic
profiles of those simulations, the substrate can easily reach
the transaminase site from the esterase site in TR2E2 but not
in the two mutants (Figure S19). The feasibility of such a
connection between sites was further proven by experimen-
tally characterizing the TR2E2A232F/L60F. Indeed, this
mutant retained the affinity and hydrolytic activity for 3-
OTfBA (Km of 2.063�0.046 mM and kcat of 28.89�
1.52 min�1), while showing lower affinity and transamination
activity for 3-OTfBA (Km of 9.98�0.32 mM and kcat of
44.87�4.14 min�1) (Figure S20), compared to TR2E2 (see
Table 1). This indicates that mutations affect the substrate
access to the transaminase site but not the esterase site. This
was further validated by following the one-pot conversion
from 3-OTfBE to 3-(R)-ATfBA by HPLC (Figure S21),
which was 3-fold times lower in the mutant at a short
incubation time (6 minutes); however, at 60 min an almost
full conversion was achieved with TR2E2 and TR2E2A232F/
L60F, most likely due to the possibility that the intermediate
diffuse from one side to the other at longer incubation
times.

Conclusion

We have documented the successful design and construction
of a PluriZyme integrating biotic transaminase and esterase
activities and its application in a cascade reaction. We
achieved these results by applying computational techniques
to a class III ω-TA and by examining a set of 20 mutants
supporting presumptive catalytic triads and oxyanion holes
for ester hydrolysis. Of the six variants retaining trans-
aminase activity, one acquired additional esterase activity
and was capable of hydrolyzing multiple esters at turnover
numbers approaching those of highly efficient similar native
esterases/lipases reported in the literature.[37] Interestingly,
TR2E2 was designed using a site where a loop was missing in
the crystal structure of the original transaminase TR2; the
loop contained one mutation and was modeled with Prime
and refined through MD simulations (Figure S22). Thus, the
insertion of the hydrolytic site helped stabilize this region by
adding two internal hydrogen bonds, improving the thermo-
stability of the enzyme. The incorporation of a second
biological activity to support a cascade reaction into an
enzyme may not occur at the expense of the activity and
stability of the original enzyme.

We further revealed that this bioinspired design facili-
tates the one-step synthesis of a sitagliptin intermediate,
specifically the conversion of 3-OTfBE into 3-ATfBA in a
single one-pot reaction (Scheme 2). This β-amino acid is
commonly synthesized through a bienzymatic cascade reac-
tion that involves an esterase and a transaminase or a
recombinant Escherichia coli strain coexpressing both

Scheme 2. Schematic representation the one-pot reaction products for
converting a set of β-keto esters by TR2E2. A) Schematic representation
of the two possible routes for converting 3-OTfBE into 3-ATfBA. As
shown in the figure, the preferential route is the production of 3-ATfBA
via hydrolysis of 3-OTfBE to 3-OTfBA, which then yields (R)-3-ATfBA,
and not via formation of 3-ATfBE (gray color). B) Schematic representa-
tion of one-pot synthesis of amino acids from a set of β-keto esters.
The conversion, determined by HPLC for all substrates, at 60 min is
shown. The figure was created using ChemDraw 18.2.
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enzymes.[22,23,38] A series of chiral 3-substituted cyclo-hexyl-
amine derivatives, capsaicin analogs and nylon-6 monomer
6-aminohexanoic acid, to cite some significant examples,
have also been synthesized by combining hydrolases with
ωTAs as separate catalytic entities.[39–41] It is worth mention-
ing that to date, only three native hydrolases, namely, those
from Candida rugosa, Pseudomonas avellanae and
P. stutzeri,[22, 23,37] have been reported as capable of hydro-
lyzing 3-OTfBE and used in the cascade synthesis of 3-
ATfBA. Thus, the computational approach used here
expands the range of biocatalysts supporting this trans-
formation. The TR2E2 PluriZyme achieved (R)-3-ATfBA
production rates (ca. 0.479�0.08 mMmin�1) in the range of
the previously reported bienzymatic cascade systems (ca.
0.05–0.4 mMmin�1).[22, 38] Having said that, further studies
are needed to determine whether using a single artificial
enzyme with two “bioactive” sites in cascade reactions, is
more efficient than a conventional multienzyme system and
natural or artificial chimeric enzymes with hybrid
activities.[11–13] Among the advantages, it is worth mentioning
that using one enzyme with two biotic sites catalysing
different chemistry would reduce the development and costs
associated with the production of several enzymes, each
supporting one chemistry, or favoring reaction yields by
helping the substrates channeling; however, these and other
advantages, yet to be defined, may vary from enzyme to
enzyme.

In this study, we used a transaminase as a scaffold to
introduce esterase activity. We consider this workflow more
appropriate than the other approach, namely, exploring
esterases or lipases to find alternative binding sites to
accommodate a new site supporting transaminase activity.
This design would require cofactor binding sites or large
channels to accommodate the substrates, which may be
technically more challenging.

The bioinspired design of the PluriZyme described here
clearly provides a computational and experimental frame-
work to develop future enzyme designs integrating two
biotic-catalytic centers, which, being independent, can also
work in synergy for cascade reactions. In this direction, the
fact that TR2E2 could convert multiple keto esters exempli-
fied the catalytic potential of such designs. An important
aspect of such future work will be the configuration of
PluriZymes that, by supporting multiple biological activities
through the assembly of appropriated binding and catalytic
pockets, might reassemble in vitro “artificial metabolisms”
as pathways for the preparation of valuable biomolecules,
including medicines.

We would like to highlight that biosynthetic enzymes
with different domains, in which a substrate is channelled
between two biotic sites catalysing different chemistries,
already exist in Nature.[13] Therefore, the dual active site
strategy herein designed, namely the artificial TR2E2

enzyme, may represent a complementary one to that already
employed by Nature for multi-domain enzymes. In addition
to that, the catalytic promiscuous character of the enzyme
design herein reported may complement the catalytic
potential of engineered promiscuous enzymes that are
known to represent attractive alternatives to conventional

chemical catalysts. A recent example is the promiscuous
acyltransferase activity of certain hydrolases that can
catalyze not only the formation of esters, but also the
formation of amides, carbonates, and carbamates in water.[42]

While such catalytic promiscuous enzymes can potentially
perform two different chemistries, their use in cascade
reactions have been rarely investigated compared to our
design.
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Abstract: Engineering dual-function single polypeptide catalysts with two abiotic or biotic catalytic entities (or combinations of both) supporting 

cascade reactions is becoming an important area of enzyme engineering and catalysis. Here we present the development of a PluriZyme, 

TR2E2, with efficient native transaminase (kcat: 69.49±1.77 min-1) and artificial esterase (kcat: 3908 to 0.41 min-1) activities, integrated into a single 

scaffold and evaluate its utility in a cascade reaction. TR2E2 (pHopt 8.0-9.5; Topt: 60-65 °C) efficiently converts methyl 3-oxo-4-(2,4,5-

trifluorophenyl)butanoate into 3-(R)-amino-4-(2,4,5-trifluorophenyl)butanoic acid, a crucial intermediate for the synthesis of antidiabetic drugs. 

The reaction proceeds through the conversion of the -keto ester to the -keto acid at the hydrolytic site and subsequently to the -amino acid 

(e.e. >99%) at the transaminase site. The catalytic power of the TR2E2 PluriZyme was proved with a set of -keto esters, demonstrating the 

potential of such designs to address bioinspired cascade reactions. 
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Experimental Procedures 

Chemicals. All esters used here were of the highest purity and were obtained from the manufacturers described in a previous 
study.[1] Hexanal (ref. 115606), PLP (ref. P9255), and NPEA (ref. 184802-5G) were ordered from Merck Life Science S.L.U. (Madrid, 
Spain). 3-OTfBE, 3-OTfBA, 3-ATfBA, and 3-ATfBE were purchased from FluoroChem (Hadfield, UK). 2-Methyl-4-oxo-4h-pyran-3-yl 
propionate (ref. 28245775), ethyl (4-ethoxyphenyl)(oxo)acetate (100873341), ethyl (1-hydroxy-4-oxocyclohexyl)acetate (311298422), 
and benzyl 3-oxobutanoate (28792564) were from AldrichCPR, Merck Life Science S.L.U. Madrid, Spain). Indole-3-pyruvic acid methyl 
ester was ordered from Biosynth Carbosynth, Compton, United Kingdom (ID FI30480), methyl 2-oxo-3-phenylpropanoate from Biosynth 
Carbosynth, Compton, United Kingdom (ID GAA36258), and dimethyl 2-oxoglutarate from Merck Life Science S.L.U., Madrid, Spain 
(ID 349631). The intermediates indole-3-pyruvic acid (I7017), 2-oxo-3-phenylpropionic acid (ID 286958), and 2-oxoglutaric acid (ID 
1051940025) were ordered from Merck Life Science S.L.U., Madrid, Spain. 

Enzyme source, production, and purification. The sequences encoding wild-type TR2 (GenBank acc. nr. MH588437),[1] and its 
mutants (TR2E2, and TR2E2A232F/L60F) were used as templates for gene synthesis (GenScript, US), and genes were codon-optimized 
to maximize expression in E. coli. Genes were flanked by BamHI and HindIII (stop codon) restriction sites and inserted in a pET-45b(+) 
expression vector with an ampicillin selection marker (GenScript, US). This plasmid, which was introduced into E. coli BL21(DE3), 
supports the expression of N-terminal histidine (His) fusion proteins. The soluble His-tagged proteins were produced and purified at 4 
°C after binding to a Ni-NTA His-Bind resin (Merck Life Science S.L.U., Madrid, Spain), as previously described. [1] The purity was 
assessed to be >98% by performing an SDS–PAGE analysis using a Mini PROTEAN electrophoresis system (Bio-Rad, Madrid, Spain). 
Purified proteins were stored at -86 °C until use at a concentration of 10 mg ml-1 in 40 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES) buffer (pH 7.0). Approximately 32-45 mg of purified recombinant proteins (TR2, TR2E2, and TR2E2A232F/L60F) were 
obtained on average from a 1-liter cultures. 

Hydrolytic activity assessments. The activity toward the model esters pNPA, pNPP and pNPB was assessed as described 
previously[2] by monitoring the production of 4-nitrophenol at 348 nm (pH-independent isosbestic point, ε = 4147 M-1 cm-1) in 96-well 
plates (ref. 655801, Greiner Bio-One GmbH, Kremsmünster, Austria). Conditions for determining Km were as follows - [protein]: 4.5 μg 
ml-1; [pNP ester]: 0-7 mM; reaction volume: 200 μl; T: 30 °C; pH: 7.0 (40 mM HEPES buffer). The activity was calculated by determining 
the absorbance per minute from the generated slopes and applying the following formula (Equation 1): 

 

𝑅𝑎𝑡𝑒 ( 𝜇𝑚𝑜𝑙𝑚𝑖𝑛𝑚𝑔𝑝𝑟𝑜𝑡𝑒𝑖𝑛) =
∆ |Abs|𝑚𝑖𝑛4147𝑀 − 1𝑐𝑚 − 1 ∗ 10.4𝑐𝑚 ∗ 106𝜇𝑀1𝑀 ∗ 0.0002 𝐿 ∗ 1𝑚𝑔𝑝𝑟𝑜𝑡𝑒𝑖𝑛 

        
Equation 1. Formula to calculate hydrolase rate with pNP esters. 
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Hydrolysis of a set of 96 additional esters, plus 3-OTfBE, 3-ATfBE, 2-methyl-4-oxo-4h-pyran-3-yl propionate, ethyl (4-
ethoxyphenyl)(oxo)acetate, ethyl (1-hydroxy-4-oxocyclohexyl)acetate, and benzyl 3-oxobutanoate, was also assayed using a pH 
indicator (Phenol Red®) assay in 384-well plates (ref. 781162, Greiner Bio-One GmbH, Kremsmünster, Austria), at 550 nm.[1] If 
otherwise not indicated, esters and conditions were described in detail in a previous study. [1] Conditions for determining Km were as 
follows - [protein]: 4.5 μg ml-1; [ester]: 0-25 mM (range depending on the substrate); reaction volume: 44 μl; T: 30 °C; pH: 8.0 (5 mM 
EPPS buffer, plus 0.45 Phenol Red®). The activity was calculated by determining the absorbance per minute from the generated slopes 
and applying the following formula (Equation 2): 

𝑅𝑎𝑡𝑒 ( 𝜇𝑚𝑜𝑙𝑚𝑖𝑛𝑚𝑔𝑝𝑟𝑜𝑡𝑒𝑖𝑛) =
∆ |Abs|𝑚𝑖𝑛8450𝑀 − 1𝑐𝑚 − 1 ∗ 10.4𝑐𝑚 ∗ 106𝜇𝑀1𝑀 ∗ 0.000044 𝐿 ∗ 1𝑚𝑔𝑝𝑟𝑜𝑡. 

 
Equation 2. Formula to calculate hydrolyse rate with a pH indicator (Phenol Red®) assay. 

 
In all cases, kcat was calculated assuming v = kcat when v = µM product min-1 µM-1 enzyme. In case of esters others that pNP esters, 

3-OTfBE, 3-ATfBE, 2-methyl-4-oxo-4h-pyran-3-yl propionate, ethyl (4-ethoxyphenyl)(oxo)acetate, ethyl (1-hydroxy-4-
oxocyclohexyl)acetate, benzyl 3-oxobutanoate, and methyl 2-oxo-3-phenylpropanoate, kcat were calculated under substrate saturation 
conditions (50 mM substrates[1]). In all cases, all values, which were determined in triplicate, were corrected for nonenzymatic 
transformation, and the absence of activity was defined as an at least two-fold increase compared with the background signal, as 
described previously.[1,2] A Synergy HT Multi-Mode Microplate Reader (Agilent, Madrid, Spain) was used for continuous monitoring of 
the signal. 

Transaminase activity assay. Transaminase activity was assayed using NPEA as an amine donor and hexanal, 3-OTfBA, 3-
OTfBE, 2-methyl-4-oxo-4h-pyran-3-yl propionate, ethyl (4-ethoxyphenyl)(oxo)acetate, ethyl (1-hydroxy-4-oxocyclohexyl)acetate,  
benzyl 3-oxobutanoate, indole-3-pyruvic acid methyl ester, methyl 2-oxo-3-phenylpropanoate, and dimethyl 2-oxoglutarate as  
acceptors, as previously described with some modifications.[3] Briefly, assay reactions were conducted in a Synergy HT Multi-Mode 
Microplate Reader as described below. Before the assay, a solution of 14 mM NPEA, the amine donor, and 1.0 mM PLP, the cofactor, 
was prepared in 100 mM K2HPO4 buffer, pH 7.5 (40 ml). A 224 mM acceptor stock solution was prepared in acetonitrile. If otherwise not 
indicated, reaction assays in 96-well microtiter plates were started by adding 10 μl of a protein solution (stock solution, 10.0 mg ml-1 in 
100 mM K2HPO4 buffer, pH 7.5) to an assay mixture containing 185 μl of the PLP/NPEA solution and 12.5 μl of the acceptor stock 
solution. The final volume of the assay mixture was 200 μl, and the amine donor and acceptor concentrations were 14 mM each. Unless 
indicated otherwise, all measurements were performed at 40 °C, and the absorbance was continuously recorded at 600 nm for a total 
time of 180 min. One unit (U) of enzyme activity was defined as the amount of protein required to transform 1 μmol of substrate in 1 min 
under the assay conditions using a reaction product extinction coefficient of 537 M-1 cm-1.[3] Conditions for the determination of kinetic 
constants for 3-OTfBE and 3-ATfBE were as follows: 1) for Km - [protein]: 4.5 μg ml-1; [substrate]: 0-100 mM (range depending on the 
substrate); [PLP]: 1 mM; [NPEA]: 0-100 mM; reaction volume: 200 μl; T: 40 °C; pH: 7.5. 2) kcat was calculated assuming v = kcat when 
v = µM product min-1 µM-1 enzyme. All values, which were recorded in triplicate, were corrected for nonenzymatic transformation. The 
activity was calculated by determining the absorbance per minute from the generated slopes and applying the following formula 
(Equation 3): 

𝑅𝑎𝑡𝑒 ( 𝜇𝑚𝑜𝑙𝑚𝑖𝑛𝑚𝑔𝑝𝑟𝑜𝑡𝑒𝑖𝑛) =
∆ |Abs|𝑚𝑖𝑛567𝑀 − 1𝑐𝑚 − 1 ∗ 10.4𝑐𝑚 ∗ 106𝜇𝑀1𝑀 ∗ 0.0002 𝐿 ∗ 1𝑚𝑔𝑝𝑟𝑜𝑡. 

 
Equation 3. Formula to calculate transaminase rate. 

 
pH and temperature profiles. The reaction conditions used to determine the optimal pH for the hydrolysis of 3-OTfBE were as 

follows: [protein]: 31 μM; [3-OTfBE]: 7.2 mM; pH: 50 mM Britton–Robinson (BR) buffer with a pH ranging from 3 to 11; reaction volume: 
100 μl; and T: 30 °C.  The reaction conditions used to determine the optimal temperature for 3-OTfBE hydrolysis were as follows: 
[protein]: 31 μM; [3-OTfBE]: 7.2 mM; T: 25-80 °C; pH: 50 mM BR buffer pH 8.0; reaction volume: 100 μl In both cases, triplicate reactions 
were incubated for 15 min at 750 rpm, after which 300 µl of a solution composed of acetonitrile, H2O and formic acid (10:10:0.6) were 
added to stop the reaction. Substrate depletion in triplicate reactions was detected using HPLC (see a description of the analytical 
conditions below). 

The reaction conditions used to determine the optimal pH for the transamination of hexanal were as follows: [protein]: 31 μM; 
[hexanal]: 14 mM; [PLP]: 1 mM; [NPEA]: 14 mM; T: 40 °C; pH: 50 mM BR buffer with a pH ranging from 3 to 11; and reaction volume: 
200 μl. The reaction conditions used to determine the optimal temperature for the transamination of hexanal were as follows: [protein]: 
31 μM; [hexanal]: 14 mM; [PLP]: 1 mM; [NPEA]: 14 mM; T: 20-80 °C; pH: 100 mM K2HPO4 buffer, pH 7.5; and reaction volume: 200 μl. 
In all cases, the absorbance was continuously recorded at 600 nm for a total time of 180 min, and all values were corrected for 
nonenzymatic transformation. 

Circular dichroism spectroscopy to determine the thermal denaturation profile. Circular dichroism (CD) spectra were acquired 
between 190 and 270 nm with a Jasco J-720 spectropolarimeter equipped with a Peltier temperature controller employing a 0.1-mm 
cell at 25 °C. Spectra were analyzed, and the denaturation temperature (Td) values were determined at 220 nm between 10 and 85 °C 
at a rate of 30 °C per hour in 50 mM BR buffer at pH 7.0. A protein concentration of 1.0 mg ml -1 was used. The Td (and standard 
deviation of the linear fit) was calculated by fitting the ellipticity (mdeg) at 220 nm at each of the different temperatures using a 5-
parameter sigmoid fit with SigmaPlot 14.0 software. 
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One-pot Conversion of 3-OTfBE to 3-ATfBA, and Other -Keto Esters. Prior to the assay, a solution containing 14 mM NPEA, 
the amine donor, and 1.0 mM PLP was first prepared in 100 mM K2HPO4 buffer, and a 224 mM 3-OTfBE stock solution was prepared 
in acetonitrile. Reactions were prepared in 5-ml penicillin vials that were closed tightly and started by adding the PLP/NPEA solution 
(to a final volume of 1 ml), 62.5 μl of the 3-OTfBE stock solution and 125 μl of a protein solution (stock solution, 12.5 mg ml-1 in 100 mM 
K2HPO4 buffer, pH 7.5). The final volume of the assay mixture was 1000 μl, and the amine donor and 3-OTfBE concentrations were 
14 mM each. Aliquots (100 μl) were removed at different time points, and reactions were stopped by adding 300 μl of a mixture 
containing acetonitrile, H2O and formic acid (ratio 10:10:0.6). Both the substrate and products were monitored using HPLC (see below). 
Enantiomeric excess (e.e.) in the reaction mixture was determined using GC as reported previously.[3] Similar conditions were used for 
the reactions with benzyl 3-oxobutanoate, indole-3-pyruvic acid methyl ester, and methyl 2-oxo-3-phenylpropanoate. 

HPLC analysis. The substrates and reaction products were quantified using HPLC with a quaternary pump (Model 600, Waters) 
coupled to an autosampler (Varian ProStar, Model 420) and a photodiode array detector (ProStar, Varian). The injection volume was 
20 µL (for reactions with 3-OTfBE, benzyl 3-oxobutanoate, and methyl 2-oxo-3-phenylpropanoate), or 1 µL (for reactions with indole-3-
pyruvic acid, methyl ester). The temperature of the column was kept constant at 40 °C. Quantification was performed at a wavelength 
of 265 nm (for reactions with 3-OTfBE),  220 nm (for reactions with benzyl 3-oxobutanoate), 280 nm (for reactions with indole-3-pyruvic 
acid, methyl ester), and 256 nm and 210 nm (for reactions with methyl 2-oxo-3-phenylpropanoate: 256 nm for detecting methyl 2-oxo-
3-phenylpropanoate and the intermediate phenylpyruvic acid; and 210 nm for detecting phenylalanine), and integration was carried out 
using the Varian Star LC workstation 6.41. The column was a Gemini C6-Phenyl 110A (4.6 x 150 mm, 5 μm, Phenomenex) for reactions 
with 3-OTfBE and methyl 2-oxo-3-phenylpropanoate, and Zorbax Eclipse Plus C-18 (4.6 x 100 mm, 3.5 µm, Agilent) for benzyl 3-
oxobutanoate and indole-3-pyruvic acid, methyl ester reactions. For the analysis of the reaction products of 3-OTfBE, the mobile phase 
was a gradient of acidified acetonitrile containing formic acid at 0.2% (v/v), and water, both degassed with helium. The flow rate was 
0.8 ml min-1, and the total analysis time was 25 min. The mobile phase (acetonitrile with 0.2% formic acid) was continuously fed as 
follows: 0-4.5 min, 12%; from 4.5 to 15 min, 60% → 70%; from 15 to 25 min. 12%. For the analysis of the reaction products of benzyl 
3-oxobutanoate the mobile phase was ACN/H2O degassed with helium and acidified with a 0.1 % (v/v) of formic acid with a flow rate 
fixed at 1.0 ml min-1. The gradient consisted of an initial 15 % (v/v) of acetonitrile to 85 % (v/v) in 20 min, followed by additional 10 
minutes to re-equilibrate the column at initial conditions. For the analysis of the reaction products of indole-3-pyruvic acid, methyl ester, 
the mobile phase was methanol and water degassed with helium with a flow rate fixed at 1.0 ml min-1. The gradient consisted of: 0-2 
min, 4% methanol; from 2.0 to 6.0 min, 4% → 20%; from 6.0 to 6.5 min, 20% → 60%; from 6.5 to 10.9 min, 60%; from 10.9 to 11.0 min, 
60% → 4%; and from 11 to 20 min, 4%. For the analysis of the reaction products of methyl 2-oxo-3-phenylpropanoate, the mobile 
phase was a gradient with acidified acetonitrile containing formic acid at 0.2 % (v/v), and water degassed with helium. The flow rate 
was 0.8 ml min-1 and the total analysis time was 25 min. The gradient consisted of: from 0 to 4.5 min, 6% → 15%; from 4.5 to 15 min, 
60% → 70%; from 15 to 25 min, 6%. In all cases, a calibration curve with standards was made between 0 and 5 mM for 3-OTfBE 
reaction, between 0 and 10 mM for benzyl 3-oxobutanoate reaction, and between 0 and 2 mM for indole-3-pyruvic acid, methyl ester, 
and methyl 2-oxo-3-phenylpropanoate reactions. 

Mass spectrometry. The samples were analyzed in a mass spectrometer with a hybrid analyzer QTOF model MAXIS II from 
Bruker. Samples were introduced into the spectrometer by direct infusion using a syringe pump at a flow rate of 3 ul min -1. Methanol 
with 0.1% formic acid was used as the ionizing phase for positive mode analysis (ESI+) and methanol for negative ion detection mode 
analysis (ESI-). The assays were performed with exact mass determination using a mixture of phosphazenes (Agilent Technologies) 
as a calibrant. The Data Analysis v.4.0 spectrometer software allowed studying the probable elemental compositions for each m/z value 
obtained. The analyses (analysis ID 120-12561)were performed at the Servicio Interdepartamental de Investigación (SIDI) from the 
Autonomous University of Madrid, Spain. 

Protein preparation for in silico analysis. The apo TR2 crystal structure was prepared and protonated at pH 7.5, the pH at which 
the experimental assays were performed, using the Protein Preparation Wizard.[4] This process includes fixing side chains and loops 
missing in the crystal structure using Prime software.[5] The ester compound used as a probe to identify noncatalytic binding sites was 
glyceryl tripropionate; activity simulations of the proposed variants used 3-ATfBE and 3-OTfBE as substrates; migration simulations of 
the functional variant and the two mutants enclosing the channel used 3-OTfBA as substrate. All substrates were modeled using the 
OPLS2005 force field,[6]except for the atomic charges, which were calculated with Jaguar using density functional theory[7] with a 
B3LYP-D3 exchange-correlation functional and the polarized triple-zeta (pVTZ) basis set. 

Protein Energy Landscape Exploration (PELE) simulations. PELE was used to identify the noncatalytic ester binding sites in 
TR2 and to assess if catalytic poses were achieved in the functionalized site variants. [2,8-10] PELE is a Monte Carlo (MC)-based algorithm 
coupled with protein structure prediction methods.[11] The heuristic MC approach begins with the sampling of different microstates by 
initially applying small perturbations (translations and rotations) to the ligand. Then, the flexibility of the protein is considered by applying 
normal modes through the anisotropic network model (ANM) approach. Once the system has been perturbed, side chains of the 
residues near the ligand are sampled with a library of rotamers to avoid steric clashes. Finally, a truncated Newton minimization with 
the OPLS2005 force field is performed,[6] and the new microstate is accepted or rejected according to the Metropolis criterion. The 
Surface Generalized Born Non-Polar (SGBNP) implicit solvent was applied to mimic the effect of water molecules around the 
protein.[12,13] 

Molecular dynamics (MD) simulations. Four replicates of 500 ns of apo MD simulations were performed with OPENMM to assess 
the integrity of the designed catalytic triad.[14] Likewise, 4 replicates of 250 ns of apo MD simulations were performed to further refine 
the modeled loops. A water cubic box (distance of 8 Å between the closest protein atom and the edge of the box) was created around 
the system using the TIP3P water model,[15] and the charge of the system was stabilized using monovalent ions (Na+ and Cl-). The 
protein system was parameterized with the AMBER99SB force field.[16] The Andersen thermostat[17] and Monte Carlo barostat[18,19] were 
applied to the NPT ensemble (constant pressure and temperature of 1 bar and 300 K, respectively). The NVT equilibration lasted 400 
ps, and a constraint of 10 kcal/(mol·Å2) was applied to the system, while the NPT equilibration lasted 1 ns, and a milder constraint of 5 
kcal/(mol·Å2) was used. The Verlet integrator,[20] which has a 2 fs time step, was used with constraints between H and heavy atoms. 
For the nonbonded long-range interactions, a radius of 8 Å was used. 

Prediction of ΔΔG for the TR2 variants. The stability (ΔΔG(mut-WT)) of the experimentally tested variants was predicted using 
the module of thermodynamic stability from HotSpot Wizard, which uses FoldX to repair possible problems in the protein structure and 
Rosetta to perform the energy minimization and ΔΔG calculation (according to protocol 3 from Rosetta).[21] 

Crystallization and structure determination. TR2 was crystallized using hanging-drop vapor diffusion at 12 °C. A total of 1.5 µl of 
10 mg ml-1 TR2 in 20 mM HEPES, pH 7.5, 300 mM NaCl, and 160 mM imidazole, 1.5 µl of reservoir solution consisting of 4% (w/v) 
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PEG 6000 and 100 mM citric acid, pH 4, and 0.3 µl of 200 mM NDSB 211 as a crystallization additive were mixed. This drop was 
equilibrated against the reservoir solution, and crystals formed after 1-2 d. Crystals were harvested, immersed in mineral oil for 
cryoprotection, and flash frozen, and diffraction data were collected at beamline ID30 B (ESRF, Grenoble, France). The TR2 crystals 
diffracted to 3.8 Å resolution. Crystallization of TR2E2 was achieved using hanging-drop vapor diffusion at 4 °C. Two microliters of 7-9 
mg ml-1 TR2E2 in 300 mM NaCl and 20 mM HEPES, pH 7.5, were mixed with 1 µl of reservoir solution consisting of 200 mM calcium 
acetate, 100 mM HEPES, pH 7.5, and 10% (w/v) PEG 8000. A total of 0.2 µl of seeding solution consisting of crushed TR2E2 crystals 
in reservoir solution was added to the crystallization drops, which were then equilibrated against the reservoir solution, and crystals 
were observed after 1-3 days. The crystals were cryoprotected by immersing them in reservoir solution with 25% glycerol and flash 
frozen. Diffraction data were collected at beamline ID 30A-3 (ESRF, Grenoble, France). TR2E2 crystallized in space group P212121, 
and the crystals diffracted to a 3.3 Å resolution. Crystals were prepared as described above to determine the structure of TR2E2 bound 
to PLP. A total of 0.2 µl of 30 mM PLP in meso 2,3-dimercaptosuccinic acid (DMSA) was added to the crystallization drops, and the 
crystals were soaked for 16 h. The crystals were cryoprotected by immersing them in the reservoir solution containing 25% ethylene 
glycol and 1 mM PLP and flash frozen, and diffraction data were collected at beamline P13 (EMBL, Hamburg, Germany). Crystals of 
TR2E2 bound to PLP diffracted to a 3.5 Å resolution. The structure of TR2E2 bound to ethanolamine O-sulfate (EOS) was determined 
by preincubating the protein with 1 mM EOS at 4 °C for at least 1 h. Crystals were produced as described for TR2E2 without the inhibitor 
and cryoprotected by immersing the crystals in a reservoir solution containing 1 mM EOS and 25% ethylene glycol and flash freezing. 
Diffraction data were collected at beamline P13 (EMBL, Hamburg, Germany). The structure of TR2E2 bound to EOS crystallized in 
space group P212121, and the crystals diffracted to 3.6 Å resolution. 

Results and Discussion 

Table S1. A) Data collection and refinement statistics. B) Similarity between the TR2 structure and other known structures was 
calculated using Ebi-fold (https://www.ebi.ac.uk/msd-srv/ssm/). The ten structures are highlighted. 
 
A) 

 TR2 (7QYG)1 TR2E2 (7QYF)1 TR2E2 EOS (7QX3)1 TR2E2 PLP (7QX0)1 

Wavelength 0.9762 0.9762 0.9762 0.9762 

Resolution range 49.09 - 3.6 
 (3.729 - 3.6) 

39.65 -3.3  
(3.418 - 3.3) 

48.94 - 3.6 
(3.729  - 3.6) 

48.62 - 3.5 
(3.625  - 3.5) 

Space group P 21 21 21 P 21 21 21 P 21 21 21 P 21 21 21 

Unit cell 60.776 166.626 
209.821 90 90 90 

100.358 108.988 
212.178 90 90 90 

100.61 109.502 
211.455 90 90 90 

99.921 107.627 
211.637 90 90 90 

Total reflections 48221 (3588) 176427 (18057) 360952 (37338) 189998 (18912) 

Unique reflections 24144 (1812) 34886 (3500) 27774 (2733) 29483 (2892) 

Multiplicity 2.0 (2.0) 5.1 (5.2) 13.0 (13.7) 6.4 (6.5) 

Completeness (%) 94.21 (71.93) 98.45 (98.01) 99.85 (99.96) 99.80 (99.93) 

Mean I/sigma(I) 10.23 (1.95) 7.83 (1.43) 15.38 (7.71) 15.40 (3.97) 

Wilson B-factor 113.55 109.49 78.95 107.15 

R-merge 0.04228 (0.4077) 0.1872 (1.212) 0.1731 (0.6662) 0.08209 (0.5359) 

CC1/2 1 (0.887) 0.994 (0.643) 0.997 (0.977) 0.999 (0.915) 

Reflections used in refinement 24087 (1794) 35219 (3442) 27750 (2733) 29459 (2892) 

Reflections used for R-free 1995 (149) 1933 (191) 965 (89) 1267 (128) 

R-work 0.3451 (0.3999) 0.2260 (0.3489) 0.1606 (0.1998) 0.2000 (0.2451) 

R-free 0.4222 (0.4890) 0.2797 (0.3600) 0.2183 (0.2962) 0.2866 (0.3519) 

CC(work) 0.883 (0.711) 0.944 (0.513) 0.966 (0.923) 0.953 (0.883) 

CC(free) 0.831 (0.555) 0.862 (0.386) 0.963 (0.761) 0.899 (0.779) 

Number of non-hydrogen atoms 12076 12929 13069 13408 

  macromolecules 12076 12929 13068 13344 

  ligands    64 

  solvent   1  

Protein residues 1558 1672 1687 1724 

RMS(bonds) 0.007 0.012 0.008 0.007 

RMS(angles) 1.04 1.48 1.25 1.20 
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Ramachandran favored (%) 72.97 86.79 90.27 87.40 

Ramachandran allowed (%) 20.06 11.28 7.46 9.91 

Ramachandran outliers (%) 6.97 1.93 2.27 2.70 

Rotamer outliers (%) 0.08 4.61 0.00 0.00 

Clashscore 34.60 15.38 17.11 25.21 

Average B-factor 130.73 96.81 78.21 99.65 

  macromolecules 130.73 96.81 78.21 99.68 

  ligands    93.77 

  solvent   46.13  

1Statistics for the highest-resolution shell are shown in parentheses. 

 
B) 

PDB code Rmsd (Å) % seq identity 
4a6r 1.29 52 

4ba5 1.57 52 
5ti8 1.12 61 

5ghg 1.47 38 
6hx9 1.17 60 

4a6u 1.20 51 

5ghf 1.66 38 
5ztx 1.72 32 

3nui 1.8 32 

4ysv 1.99 26 
 
 
Table S2. Number of catalytic events of TR2 variants determined from the local exploration.  

 

PluriZyme variant Number of catalytic events Site 
TR2E7 377 A 
TR2E16 326 A 

TR2E9 1 D 

TR2E2 3 G 
TR2E18 17 E 

TR2E10 1 B 
TR2E19 27 B 

TR2E3 0 C 

TR2E11 13 B 
TR2E12 0 B 

TR2E8 742 A 

TR2E13 14 G 
TR2E1 0 E 

TR2E17 0 C 
TR2E20 19 B 

TR2E5 4 F 

TR2E14 13 C 
TR2E4 17 E 

TR2E15 0 C 
TR2E6 0 E 

 
 
Table S3. Computational score (from 0 to 10) of TR2 variants based on PELE & MD simulations and calculations of ΔΔG for thermo-
stability.  

 

PluriZyme variant Computational score Site 
TR2E7 8.0 A 

TR2E16 8.0 A 
TR2E9 7.5 D 

TR2E2 7.25 G 

TR2E18 7.25 E 
TR2E10 7.0 B 

TR2E19 7.0 B 
TR2E3 6.875 C 
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TR2E11 6.75 B 
TR2E12 6.75 B 

TR2E8 6.75 A 
TR2E13 6.75 G 

TR2E1 6.5 E 

TR2E17 6.5 C 
TR2E20 6.375 B 

TR2E5 5.5 F 

TR2E14 5.5 C 
TR2E4 5.25 E 

TR2E15 4.25 C 
TR2E6 4.0 E 

 
 
Table S4. Effect of mutations on the transaminase (TR) activity of TR2. 

 

ID Mutations Nr. of mutations kcat [min-1] (hexanal) 
TR2 WT - 83.38±4.04 
TR2E1 K110D  1 76.71±2.78 

TR2E2 A172S Q173H  2 69.49±1.77 
TR2E3 W272S V107H  2 - 

TR2E4 M112H M302D  2 - 

TR2E5 G420S G399H  2 68.73±0.86 
TR2E6 M112H T108D  2 - 

TR2E7 V377S Y277H T271D  3 - 

TR2E8 V377S Y277H Y278D  3 - 
TR2E9 Q52S Y44H Q435E  3 - 

TR2E10 F190S Y188H I236D  3 - 
TR2E11 F190S Y188H G191D  3 55.05±2.22 

TR2E12 F190S Y188H R192E  3 48.22±1.67 

TR2E13 A169S M167H M170D  3 - 
TR2E14 W272S I347H E348D  3 - 

TR2E15 V107S W272H G351K  3 - 
TR2E16 V377S Y277H T271D Q276E  4 - 

TR2E17 V107S W272H I347D G351K  4 - 

TR2E18 A251S D283H R306D  3 67.92±12.93 

TR2E19 F190S E384H T422D R375A  4 - 
TR2E20 F190S E373H E384D R375G R394G  5 - 

 
Table S5. kcat of TR2E2 with different chemically diverse esters. 

 

Ester kcat [min-1] 
1-Napthyl acetate 2104±48 

1-Naphthyl butyrate 53.45±11.52 

Glyceryl triacetate 44.85±2.15 

Glyceryl tripropionate 388.1±17.5 

Glyceryl tributyrate 284.9±12.4 

Methyl-2-bromobutyrate 82.52±18.64 

Hexyl acetate 4.08±0.12 

Octyl acetate 10.75±0.98 

Dodecanoyl acetate 2.23±0.33 

Pentadecyl acetate  8.37±0.83 

Ethyl propionate 93.04±1.69 

Ethyl butyrate 5.92±2.1 

Ethyl hexanoate 85.91±1.35 

(1R)-(-)-Menthyl acetate 4.43±0.87 

Methyl (R)-(-)-mandelate 53.02±5.37 

Methyl (S)-(+)-mandelate 351.4±10.59 

Ethyl (R)-(+)-4-chloro-3-hydroxybutyrate 16.98±0.83 

Ethyl (S)-(−)-4-chloro-3-hydroxybutyrate 11.30±1.07 

(+)-Ethyl D-Lactate 9.04±0.36 

(−)-Ethyl L-lactate 17.73±0.59 

(+)-Methyl (S)-3-hydroxybutyrate 8.89±0.75 

(-)-Methyl (R)-3-hydroxybutyrate 5.14±0.76 
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(−)-Methyl (R)-3-hydroxyvalerate 12.11±0.68 

(+)-Methyl (S)-3-hydroxyvalerate 124.86±15.54 

Benzyl (R)-(+)-2-hydroxy-3-phenylpropionate 4.66±0.87 

Methyl benzoate 1.2±0.28 

Methyl butyrate 7.12±2.93 

Propyl hexanoate 3.17±0.17 

Isobutyl cinnamate 5.18±0.7 

Methyl 2,5-dihydroxycinnamate 6.18±0.4 

Methyl cinnamate 1.76±0.25 

Methyl ferulate 18±2.3 

Vinyl acetate 17.89±1.78 

Vinyl propionate 1310±11 

Vinyl butyrate 523.18±129 

Vinyl benzoate 17.6±3.39 

Geranyl acetate 48.44±6.78 

3-Methyl-3-buten-1-yl acetate 8.49±0.16 

Ethyl 2-ethylacetoacetate 18.22±1.38 

Ethyl 2-methylacetoacetate 206.84±0.95 

Ethyl 3-oxohexanoate 313.47±76.82 

Ethyl acetoacetate 233.54±31.04 

Ethyl propionylacetate 434.29±13.86 

ϒ-Valerolactone 20.11±0.83 

Methyl glycolate 3.37±0.81 

Cyclohexyl butyrate 15.23±1.04 

(+)-Methyl D-Lactate 13.22±0.86 

(-)-Methyl L-Lactate 18.75±1.65 

Propyl acetate 1.46±0.31  

Butyl acetate 5.24±2.8 

Phenyl acetate 2915±93 

Phenyl propionate 3908±66 

 
Table S6. Specific activity of TR2E2 towards a series of chemically and structurally diverse -keto esters. 
 

Substrate Structure 
Hydrolase 

activity [U/g][a] 

Transaminase 

activity [U/g][b 

Benzyl 3-oxobutanoate 

 

391.5±5.8 12.36±0.05 

Indole-3-pyruvic acid methyl ester 

 

350.8±5.4 6.16±0.29 

Methyl 2-oxo-3-phenylpropanoate 

 

313.41±0.59 13.91±1.10 

Dimethyl 2-oxoglutarate 

 

253.38±3.04 25.74±1.83 
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2-Methyl-4-oxo-4H-pyran-3-yl propionate 

 

187.2±1.43 n.d. 

Ethyl (4-ethoxyphenyl)(oxo)acetate 

 

5.70±0.50 1.43±0.01 

Ethyl (1-hydroxy-4-oxocyclohexyl)acetate 

 

n.d. 1.86±0.01 

Hexanal 
  n.d. 36.05±0.04 

[a] Reactions conditions as follows: - [protein]: 0.045-0.45 mg ml-1 (depending on the substrate); [substrate]: 20 mM; reaction volume: 

44 μl; T: 40 °C; pH: 8.0 (5 mM EPPS buffer, plus 0.45 Phenol Red®). [b] Reactions conditions as follows: - [protein]: 0.5 mg ml-1; 

[substrate]: 20 mM; [PLP]: 1 mM; [NPEA]: 20 mM; reaction volume: 200 μl; T: 40 °C; pH: 7.5 (100 mM K2HPO4 buffer). As control, 

hexanal was included. Raw data in Figure S11. n.d. activity not detected under our assay conditions. 

Figures 

 
Figure S1. Box plot representing the interaction energy along all the accepted PELE steps from the local explorations of all variants. 
The red line indicates the average value of the metric for all variants. The figure was created with the Matplotlib library.[22] 
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Figure S2. Box plot representing the serine-histidine distance along all the accepted PELE steps from the local explorations of all 
variants. The red line indicates the average value of the metric for all variants. The figure was created with the Matplotlib library.[22] 

 

Figure S3. Box plot representing the acid-histidine distance along all the accepted PELE steps from the local explorations of all 
variants. The red line indicates the average value of the metric for all variants. The figure was created with the Matplotlib library. [22] 
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Figure S4. Box plot representing the serine-histidine distance ( ) along the 500 ns of the 4 MD replicates performed for 
all variants. The figure was created with the Matplotlib library.[22] 

 

Figure S5. Box plot representing the acid-histidine distance distance ( ) along the 500 ns of the 4 MD replicates 
performed for all variants. The figure was created with the Matplotlib library. [22] 
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Figure S6. Box plot representing the overall RMSD along the 500 ns of the 4 MD replicates (excluding the initial frame) performed for 
all variants. The figure was created with the Matplotlib library.[22] 

 

Figure S7. Box plot representing the local RMSD of the catalytic lysine residue in the transaminase site along the 500 ns of the 4 MD 
replicates (excluding the initial frame) performed for all variants. The figure was created with the Matplotlib library. [22] 
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Figure S8. Box plot representing the local RMSD of the catalytic triad in the added hydrolase site along the 500 ns of the 4 MD 
replicates (excluding the initial frame) performed for all variants. The figure was created with the Matplotlib library. [22] 

 
 

Figure S9. Visualization of the transaminase activity assays of the purified TR2 mutants (reaction: 8 h) using hexanal as the 
substrate. 

 

  
 

Figure S10. SDS–PAGE analysis of the TR2E2 mutant using a 12% Tris-glycine SDS-polyacrylamide gel. Lane A: Soluble proteins in 
culture. Lane B: 0.005 mg of TR2E2.  
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Figure S11. Determination of Km and kcat for TR2E2. Curves representing the esterase (A) and transaminase (B) activities vs substrate 
concentration are plotted. The figure was made with SigmaPlot 14.0, and the Km values reported in the text were obtained from the 
best linear fit using SigmaPlot 14.0. kcat was calculated assuming v = kcat when v = µM product/min/µM enzyme. Reaction conditions 
as described in Table 1. Activities were calculated according to Equations 1-3. 
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A) 
 

 
B) 
 

 
 

Figure S11 cont. Representative time course curve for the hydrolysis (A) and transamination (B) of -keto esters. Reaction conditions 
as described in Table 2 and Experimental Section. In A, the figure representing the variation of absorbance at 550 nm (in arbitrary 
units) vs time is shown (controls are represented in the upper points/lines in each panel). In B, the figure representing the variation of 
absorbance at 600 nm (in arbitrary units) vs time is shown (control in the blue color of each panel). The figure was made with Excel 
2019. The time course for a control reaction (no enzyme added) is also shown in the upper part of panel A, or with blue color in panel 
B. Activities were calculated according to Equations 2 and 3. 
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Figure S12. Representative catalytic poses of 3-ATfBE and 3-OTfBE in the hydrolase site of TR2E2. Both the ligand and the catalytic 
residues are shown as ball-and-stick models. Catalytic triad distances (in Å) are shown in green, the substrate-serine/histidine distances 
are shown in black, and the oxyan-ion-hole distances are shown in purple. 
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Figure S13. HPLC chromatograms representing the substrates, intermediates, and final products obtained when converting 3-OTfBE 
in the presence of TR2E2. 
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Figure S14. Concentrations of substrates, intermediates, and final products obtained when converting 3-OTfBE in the presence of TR2. 
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Figure S15. HPLC chromatograms representing the follow-up (A) and concentration (B) of reaction substrate and product obtained 
when converting benzyl 3-oxobutanoate in the presence of TR2E2. Conditions as in Figure 6. Note that detection was performed using 
a photodiode array detector that allows detecting at 220 nm the substrate (β-ketoester, benzyl 3-oxobutanoate) and the reaction product 
benzyl alcohol. However, it does not allow the detection of the possible reaction products 3-oxobutyric acid and 3-aminobutyric acid, 
whose presence was confirmed by HR-MS obtained by ESI-MS analysis (Figure S16). 
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A) 

 
B) 

 
D) 

 
 
Figure S16. HR-MS spectra (obtained by ESI-MS analysis) of reaction mixtures containing the β-ketoester BOB (initial concentration 
14 mM) with TR2E2. Shown are the ESI-MS of samples at times 0 (A), 2 (B,C) and 60 (D) min. Note: original figure provided by the 
Servicio Interdepartamental de Investigación (SIDI) from the Autonomous University of Madrid, Spain; raw data (Analysis ID 120-
12561) can be provided upon request to María Jesús Vicente Arana (mjesus.vicente@uam.es), responsible for the Molecular Mass 
Spectrometry Unit. A) In the samples at time 0, the expected product is observed, which ionizes preferentially by sodium capture, giving 
the [M+Na]+ type ion at m/z 215.0676, this being the base peak of the spectrum. The [M+K]+ at m/z 231.0419 is also observed. The 
determination of the exact mass is consistent with the composition C11H12O3 with an error of less than 5 ppm with respect to the 
theoretically calculated mass. B) Using methanol+0.1% formic acid (C) as ionizing phase, the species at m/z 104.0701 is observed, 
which seems to correspond by its exact mass to the composition C4H10NO2 ([M+H]), which could be the 3-aminobutanoic compound 
(the 10 most referenced structures found in the Scifinder database for this composition). C) In the sample at the time 20 min, the 
compound amino butanoic acid (m/z 104.0710) found in the sample at the time 2 min is obtained again. The complete analysis and 
raw datasets are available upon request to the authors.  



SUPPORTING INFORMATION          

20 

 

 

 
 
Figure S17. HPLC chromatograms representing the one-pot reaction substrate and product obtained when converting indole-3-pyruvic 
acid methyl ester to tryptophan in the presence of TR2E2. Conditions as in Figure 6. Note that detection was performed using a 
photodiode array detector that allows detecting at 280 nm the substrate and the reaction product. Note: the peaks at time 2-3 minutes 
include the reactions constituents, PLP, and amine donor. Standards at concentrations of 500 µM are shown. 

 
 
Figure S18. HPLC chromatograms representing the one-pot reaction substrate and product obtained when converting methyl 2-oxo-
3-phenylpropanoate to phenylalanine in the presence of TR2E2. Conditions as in Figure 6. The substrate and the intermediate were 
quantified at 256 nm, and the product at 210 nm (superimposed in grey color). 
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Figure S19. Initial pose from where PELE's migration simulations started in TR2E2, TR2E2A232F/L60F, and TR2E2A232F/F89W being 
near the esterase site (top). Box plot representing the cofactor-substrate distance (distance to the transaminase site) of all the accepted 
PELE steps with a relative solvent-accessible surface area of 0.1 or lower from the 3-OtfBA simulations (middle). Bottom, representative 
3-OtfBA catalytic poses in the transaminase site of TR2E2, TR2E2A232F/L60F, and TR2E2A232F/F89W (bottom). Both the ligand and 
the catalytic cofactor are shown as ball-and-stick models. The figure was created with the Matplotlib library. 
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Figure S20. Determination of Km and kcat of TR2E2A232F/L60F for 3-OtfBA (representing transaminase activity) and 3-OtfBE 
(representing esterase activity). Curves representing the transaminase (A) and esterase (B) activities vs substrate concentration are 
plotted. The figure was made with SigmaPlot 14.0, and the Km values reported in the text were obtained from the best linear fit using 
SigmaPlot 14.0. kcat was calculated assuming v = kcat when v = µM product/min/µM enzyme. Reaction conditions as described in Table 
1 and Fig. S11. Activities were calculated according to Equations 1-3. 
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Figure S21. A) Conversion of 3-OtfBE to 3-(R)AtfBA by TR2E2 and TR2E2A232F/L60F at short (6 min) and longer (60 min) incubation 
time. The following reaction conditions were used: [protein]: 31 μM; [3-OTfBE]: 14 mM; [PLP] : 1 mM ; [NPEA]: 14 mM; pH: 100 mM 
K2HPO4 buffer, pH 7.5; reaction volume: 100 μl; and T: 40 °C. Reactions were made in triplicates with standard deviation shown. The 
conversion was calculated as in Figure 6. HPLC chromatograms representing the one-pot reaction products by TR2E2 (B) and 
TR2E2A232F/L60F (C)  are shown. The figure was created using SigmaPlot 14.0 software. 
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Figure S22. Modeling of the missing loop where the catalytic triad of the TR2E2 variant resides. First, the initial crystal structure was 
prepared using Protein Preparation Wizard,[23] followed by the modeling of loops using Prime.[24] Then, the modeled loops were further 
refined with 250 ns (4 replicas) of apo MD of the dimer structure to obtain the final structure used in the analysis. Both the secondary 
structure and the C atoms are shown in light green for the residues present in the crystal structure and in blue for the missing residues. 
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ABSTRACT: Enzymes with a broad substrate specificity are of
great interest both at the basic and applied level. Understanding
the main parameters that make an enzyme substrate ambiguous
could be thus important not only for their selection from the ever-
increasing amount of sequencing data but also for engineering a
more substrate promiscuous variant. This issue, which remains
unresolved, was herein investigated by targeting a serine ester
hydrolase (EH102), which exhibits a narrow substrate spectrum,
being only capable of hydrolyzing 16 out of 96 esters tested. By
using a modeling approach, we demonstrated that one can
rationalize active site parameters defining substrate promiscuity,
and that based on them the substrate specificity can be significantly
altered. This was accomplished by designing two variants, EH102DM2 and EH102TM2, that hydrolyze 51 and 63 esters, respectively,
while maintaining similar or higher turnover rates compared to the original enzyme. We hypothesized that the parameters identified
here (the volume, size, exposure, enclosure, hydrophobicity, and hydrophilicity of the active site cavity and its tightness) can serve in
the future to expand the substrate spectra of esterases and thus expand their use in biotechnology and synthetic chemistry.

KEYWORDS: enzymology, esterase, protein engineering, substrate promiscuity, computational chemistry

■ INTRODUCTION

The current needs of most biotechnology areas, both in the
research and industrial sectors, demand the engineering of
enzymes; new variants are continuously designed, leading to a
wide variety of applications.1 To this purpose, two main
approaches have arisen.2 The first one is rational design, which
uses available knowledge to predict mutations.3,4 On the other
hand, directed evolution applies several random mutations to
the system, and then selects those that enhance the desired
property/ies.4,5 Albeit both methods have benefited from
important technological advances, including computational
tools, the modification of the properties of a protein remains a
challenging task.6,7

Substrate ambiguity, also called substrate promiscuity, the
ability of a certain enzyme to catalyze a particular reaction for a
wide range of substrates, is an appealing characteristic from the
environmental and biotechnological points of view.8 However,
the properties that define whether an enzyme will have or not a
broad substrate scope are not yet fully comprehended. Some
investigations have addressed this issue,9−12 but more precise
information is still needed to engineer enzymes for increasing/
decreasing their range of substrates with ease. In a recent
article, by computing the substrate specificity datasets from
more than one hundred diverse serine ester hydrolases,
hereinafter referred to as esterases, when tested against a

wide range of esters,13 we introduced a new descriptor of
substrate promiscuity. It involves the solvent accessibility and
the volume of the catalytic cavity, which could give an idea of
the amount of substrates an enzyme can accept. Notice,
however, that the active site volume alone does not produce
any correlation with promiscuity (r2 ∼ 0), requiring additional
descriptors for an efficient classification. In addition, the
volume cannot be well defined in really exposed cavities, and
this is why we consider the need for a deeper analysis, which
should take into account the fact that enzymes with similar size
cavities could accept significantly different number of
substrates because of the physical/chemical properties of the
amino acids conforming the active sites, and the role they may
have in allowing substrate docking freedom.
Esterases (EC 3.1) are a subfamily of hydrolytic enzymes

capable of breaking ester bonds (with the help of a water
molecule), resulting in the alcohol and acid derived from the
ester. Although this family of enzymes includes multiple
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different protein folds and structures, substrate specificities,
and biological functions, a substantial fraction of esterases
shares the α/β fold.14−16 Likewise, the vast majority of them
have the archetypical Ser−His−Asp/Glu catalytic triad in the
active site, which is a motif that enables the nucleophilic attack
of the oxygen by the side chain of the serine on the
electrophilic carbon of the ester bond. Regarding the industrial
interest of esterases, several applications exist like their use for
flavor development in food and beverages,17 depolymerization
of plastic polymers such as polyethylene terephthalate (PET)
or polyhydroxyalkanoate (PHA),18,19 production of fatty
acids,20 and more. In fact, together with lipases, most active
toward insoluble esters, the market is projected to grow rapidly
with new products and applications.17,21 Thus, they have been
commonly used in several applications of different sectors,
which is expected to increase in the near future.17,20,22

When selecting an esterase to be of interest for
pharmaceutical or industrial processes, substrate promiscuity
becomes an important parameter, as an enzyme with broad
substrate specificity opens the application range. Hence,
understanding what makes an esterase promiscuous or not,
and the further transformation of an esterase with a low
substrate spectrum into one with a broad substrate spectrum
would be a compelling accomplishment. Some studies have
exemplified that influencing and also slightly expanding
substrate specificity of enzymes is feasible by providing key
substitutions in the proximity of the active and in the access
tunnels.23−31 However, in most cases, the specificity was
established on the basis of a limited set of structurally similar
substrates, which a priori limits to what extent the substrate
specificity can be significantly altered. In this direction, there
are no works, to the best of our knowledge, that demonstrate
that significantly altering substrate specificity by rational design
is feasible. In other words: to transform an enzyme with a low
substrate spectrum with, a priori, low biotechnological
potential, into a highly substrate promiscuous one with higher
applied potential.
In this work, we present an in-depth analysis of the cavity

and of the enzyme−substrate migration pathways of four serine
ester hydrolases previously published,13 two being highly
substrate ambiguous (EH1 and CalB) and two being highly
specific (EH88 and EH102). The comparative analysis allowed
extracting the information that defines substrate promiscuity,
from which we successfully approached the alteration of
substrate specificity of the latter (EH102) by site-directed
mutagenesis of residues near the active site. The enhancement
of the substrate spectrum of an enzyme, through modifying
residues near the active site, can compromise its activity,
referring to the ability to increase the turnover rate of a certain
reaction against a concrete substrate. Thus, we tried to find
those mutations that gave us a tradeoff, increasing the range of
substrates hydrolyzed without affecting the maximum specific
activity of the native enzyme. We achieved our goals with two
variants, capable of hydrolyzing a larger number of substrates
while maintaining activity.

■ METHODOLOGY

Protein and Ester Preparation for In Silico Analysis.
Three serine ester hydrolases, EH1, EH88, and EH102,
isolated from the metagenomic DNA of microbial commun-
ities inhabiting the Lake Arreo, an evaporite karst lake in
Spain,13 and the commercial lipase CalB from Pseudozyma
aphidis (formerly Candida antarctica), were used in the present

study. According to experimental information of substrate
specificity, evaluated against a customized (diverse) library of
96 different esters,13 EH1 and CalB could be considered as
substrate promiscuous given their capacity to hydrolyze 72 and
68 out of the 96 esters. By contrast, EH102 and EH88 capable
of hydrolyzing only 16 and 13 esters, were considered as low
substrate ambiguous.13 Crystal structures of EH1 (5JD4),
Ca3lB (4K6G), and EH102 (5JD3) are available, and that of
EH88 was modeled using homology modeling with Prime32

(the template structure used was the PDB code: 1FXW, with
33% sequence identity and 93% coverage). For in silico
analysis, proteins were prepared and protonated at pH 8.0 (the
pH at which the experimental assays were performed) using
Protein Preparation Wizard33 and PROPKA,34 including fixing
side-chains and missing loops using Prime.32 A later user’s
check was done by mainly inspecting whether the catalytic His
residue was δ-protonated or not and the catalytic Asp residue
was deprotonated or not, ensuring the proper hydrogen bond
network of the catalytic triad. A final restrained minimization
of root mean square deviation (rmsd) of 0.30 Å was carried
out.
The ester compounds were modeled using the OPLS2005

force field,35 except for the charges, which were calculated with
Jaguar36 using the density functional theory, with a B3LYP-D3
exchange−correlation functional, and the polarized triple-zeta
(pVTZ) basis set. Finally, electrostatic potential (ESP) charges
were fitted on the force field file to obtain the final atomic
charges of the ligand.

Protein Energy Landscape Exploration Simulations.
Protein energy landscape exploration (PELE) was used to
study ligand migration and protein−ligand interactions. PELE
is a Monte Carlo-based algorithm coupled with protein
structure prediction methods.37 The basic idea of this
approach is to sample different microstates by initially applying
small perturbations (translations and rotations) on the ligand.
Also, the flexibility of the protein is taken into account by
applying normal modes through the Anisotropic Network
Model (ANM) approach or from a Principal Component
Analysis (PCA). Once the system (protein and ligand) has
been perturbed, side chains of the residues near the ligand are
sampled with a library of rotamers to avoid steric clashes.
Finally, a truncated Newton minimization with the OPLS2005
force field35 is performed and the new microstate is accepted
or rejected according to the Metropolis criterion, what we call
a PELE step.
Ligand perturbation in all PELE simulations was constrained

around a spherical box of 15 Å of radius around the active site.
Moreover, rotations and translations were tuned smoothly as
the ligand increased its contacts with the protein [the solvent-
accessible surface area (SASA), of the substrate decreased] to
enhance the exploration around the active site. Thus, the
maximum translation allowed was 1.5 Å when the SASA was
bigger than 0.15, otherwise the translation was restricted to 0.5
Å. Concerning the maximum rotation, it was 20° when the
SASA was bigger than 0.15, otherwise it was reduced to 5°.
The six lowest ANM eigenvectors were linearly combined at
random to move the protein. The side chain phase included all
residues within 6 Å of the ligand. The variable dielectric
generalized-born nonpolar (VDGBNP) implicit solvent38 was
applied to mimic the influence of waters around the protein.
The PELE simulations were run in the MareNostrum IV
cluster from the Barcelona Supercomputing Center (BSC)
with 64 cores and each core performed 1000 PELE steps.
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The main variables studied in these simulations were the
enzyme−substrate interaction energies, the SASA of the ligand,
or distances between the oxygen of the catalytic Ser and the
electrophilic carbon of the ester, referred to as the “serine-
substrate distance”.
Molecular Dynamics. Four replicas of 500 ns of molecular

dynamics (MD) simulations with OPENMM39 were per-
formed to analyze the flexibility of the protein and particularly
of the catalytic triad of selected systems. A water cubic box (a
distance of 8 Å between the closest protein atom and the edge
of the box) was created around the system using the TIP3P
water model40 and the charge of the system was stabilized
using monovalent ions (Na+ and Cl−). The protein system was
parameterized with the AMBER99SB force field.41 The
Andersen thermostat42 and the Monte Carlo barostat43,44

were applied for the NPT ensemble (constant pressure and
temperature, being 1 bar and 300 K, respectively). The NVT
equilibration lasted for 400 ps and a constraint of 10 kcal/
(mol·Å2) was applied to the system, while the NPT
equilibration lasted for 1 ns and a milder constraint of 5
kcal/(mol·Å2) was used. The Verlet integrator45 with a 2 fs
time step was used, using constraints between H and heavy
atoms. For the nonbonded long−range interactions, a radius of
8 Å was used.
Molecular Docking Calculations. Prior to the PELE

simulations, esters were docked at the active site of the studied
enzymes using Glide.46 First, the grid of each protein was
generated with the center being located at the center of masses
of the residues defining the catalytic triad, and the inner box
was limited to a cube with an edge of 10 Å. The ligand was
sampled as flexible and standard precision was used. 10 poses
were extracted and all of them minimized after the molecular
docking with the OPLS2005 force field.35 All docking results
were visually inspected and those with better catalytic
positions, typically the top-ranked Glide score, were used to
perform the PELE simulation.
Active Site Cavity Analysis. To infer those properties that

defined promiscuity, SiteMap47,48 was used. It was also used to
infer the properties of the active site cavity in the different
mutants. This software enables finding binding sites in a
protein surface and ranks them according to several chemical
and physical properties. These properties include: volume, size,
exposure, enclosure, contact (tightness), hydrophobicity, and
hydrophilicity. The volume is calculated by first identifying all
points on the cubic mapping grid that lie within 4 Å of any site
point and are outside the protein surface, then the volume is
computed from the number of remaining volume points and
the grid-box volume, which is (0.7 Å)3 in the default case. The
number of site points, where typically 2−3 site points
correspond to each atom of the bound ligand, including
hydrogens, is equivalent to the size of the cavity. The exposure
is calculated by using the ratio of the number of extension
points to the number of original points plus extension points.
“Extension” site points are points that must lie within a given
distance in x, y, or z from an original site point (by default 3
Å), and must make good contact with the receptor or lie at
least 4 Å from the nearest protein atom. Enclosure is the
fraction of radial rays drawn from the site points that strike the
receptor surface within a distance of 10 Å over the original and
“extension” site points calculated in the exposure property.
Contact is computed by averaging the ligand−receptor vdW
interaction energies (with nominal vdW parameters) over the
original and “extension” site points. Hydrophobicity and

hydrophilicity are computed by averaging the Gridphobic
(Gridphobic = EvdW − 0.3·Eoriented−dipole) or Gridphilic (Gridphilic
= EvdW + Eoriented−dipole) potential over the original and
“extension” site points. The ligand used to probe the active
site region (which included a box around the ligand of 6 Å)
was ethyl-3-oxohexanoate and it was docked prior to SiteMap
with the docking protocol explained in the Methodology.

Prediction of ΔΔG in the EH102 Variants. ΔΔG(mut‑WT)

of stability in the experimentally tested variants was calculated
using the module of thermodynamic stability from HotSpot
Wizard, which uses FoldX to repair possible problems in the
protein structure and Rosetta to perform the energy
minimization and ΔΔG calculation (according to protocol 3
from Rosetta).49

Chemicals, Oligonucleotides, Source of Enzyme, and
Strains. The sources of all chemicals (of the purest grade
available), oligonucleotides for DNA amplification and serine
ester hydrolases EH102 (available in the expression vector
pET46 Ek/LIC plasmid in Escherichia coli BL21 as a host) used
in the present study, were as reported in ref 13.

Site-Directed Mutagenesis in EH102. To obtain EH102
variants containing mutations, the pET46 Ek/LIC plasmid
containing EH102 DNA insert was used.13 Mutagenic PCR
was developed using the QuikChange Lightning Multi Site-
Directed Mutagenesis kit (Agilent Technologies, Cheadle, UK)
and conditions described previously.50 The following muta-
tions were introduced, individually or in combination:
Ile16Val, Ile16Ala, Ile16Gly, Ile92Gly, Ile92Ala, and Trp96Gly.
We produced mutants where single (Ile16Val, Ile16Ala,
Ile16Gly) or multiple (Ile92Gly Trp96Gly, Ile92Ala Trp96Gly,
Ile92Gly Trp96Gly Ile16Val, Ile92Gly Trp96Gly Ile16Gly,
Ile92Ala Trp 96Gly Ile16Val, Ile92Ala Trp96Gly Ile16Ala,
Ile92Ala Trp96Gly Ile16Gly, Ile92Gly Trp96Gly Ile16Ala)
mutations were introduced. In all cases, the forward primers
used to generate the EH102 variants are as follows:
Ile16ValFwd: ATC ATC GGC GAC TCG gTC ACG GAC
GCG GGA C; Ile16AlaFwd: ATC ATC GGC GAC TCG gcC
ACG GAC GCG GGA CG; Ile16GlyFwd: ATC ATC GGC
GAC TCG ggC ACG GAC GCG GGA CG; Ile92GlyTrp96-
GlyFwd: GCG ATG ATG ATC GGC ggC AAC GAC GTC
gGG CGC CAG TTC GAC CTG; Ile92AlaTrp96GlyFwd:
GCG ATG ATG ATC GGC gcC AAC GAC GTC gGG CGC
CAG TTC GAC CTG.

Protein Production and Purification. Seven native
serine ester hydrolases, EH1 (protein data bank acc. nr.
5JD4), EH3 (GenBank acc. nr. KY483645), EH5 (GenBank
acc. nr. KR107271), EH7 (GenBank acc. nr. KY483644),
EH12 (GenBank acc. nr. KR107263), EH37 (GenBank acc. nr.
KR107248), and EH102 (protein data bank acc. nr. 5JD3)
from metagenomic origin, and four mutants derived from
EH102 (EH102TM1, EH102SM1, EH102DM2, and EH102TM2),
were used to perform substrate fingerprint and kinetic
determination (kcat and KM). The vector pET46 Ek/LIC and
the host E. coli MC1061 were the source of the His6-tag EH1,
EH5, EH12, EH17, EH37, EH102, EH102TM1, EH102SM1,
EH102DM2, and EH102TM2, and the vector pBXNH3 and the
host E. coli MC1061 were the source of the His6-tag EH3. For
enzyme production, a single colony, previously grown at 37 °C
on solid Luria Bertani (LB) agar medium supplemented with
100 μg mL−1 ampicillin (Amp), was picked and used to
inoculate 50 mL of LB-Amp medium in a 0.25 L flask, followed
by cultivation at 37 °C and 200 rpm overnight. Afterward, 50
mL of this culture was used to inoculate 1 L of LB-Amp
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medium in a 2.5 L flask, which was then incubated at 37 °C to
an OD600nm of approximately 0.8 (ranging from 0.7 to 0.9).
Protein expression was induced by adding IPTG to a final
concentration of approx. 1%, followed by incubation for 16 h at
16 °C and 220 rpm. The cells were harvested by centrifugation
at 8000g for 15 min to yield a pellet of 2−3 g (wet weight).
The wet cell pellet was frozen at −86 °C overnight, thawed,
and resuspended in 15 mL of 50 mM sodium phosphate, pH
8.0, 10 mM imidazole, and 300 mM NaCl. Lysonase
Bioprocessing Reagent (Novagen, Darmstadt, Germany) was
added (4 μL g−1 wet cells) and incubated for 1 h on ice with
rotating mixing. The cell suspension was sonicated for a total
of 5 min and centrifuged at 15,000g for 15 min at 4 °C, and the
supernatant was retained. The soluble His-tagged protein was
purified at 4 °C after binding to a Ni-NTA His-Bind resin
(Sigma-Aldrich, MO, US) and eluting with 50 mM sodium
phosphate, pH 8.0, 250 mM imidazole, and 300 mM NaCl.
Eluted protein was subjected to ultrafiltration through low
adsorption hydrophilic 10,000 nominal molecular weight limit
cutoff membranes (regenerated cellulose, Amicon) to concen-
trate the protein solution. An extensive dialysis of protein
solutions against 40 mM (4-(2-hydroxyethyl)-1-piperazinee-
thanesulfonic acid) (HEPES) buffer (pH 7.0) was then
performed using the Pur-A-LyzerTM Maxi 1200 dialysis kit
(Sigma-Aldrich, MO, US) as follows: 2 mL concentrated
protein solution was dialyzed against the 2 L buffer for 1 h at
room temperature, after which the buffer was replaced with
another 2 L buffer and maintained for 1 h more. Then, the
buffer was changed and the dialysis was kept overnight at 4 °C.
The dialyzed protein solution was recovered and concentrated
as before. Purity was assessed as >98% using sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) anal-
ysis in a Mini PROTEAN electrophoresis system (Bio-Rad,
Madrid, Spain). On average, a total of about 10−20 mg total
purified recombinant proteins were obtained from 1 L culture.
Substrate Fingerprint and Kinetic Parameter Deter-

mination. Hydrolytic activity was assayed using a pH
indicator assay at 550 nm using 96 structurally diverse esters
in 384-well plates as previously described,13 with slight
modifications. Briefly, to 20 μL of 5 mM 4-(2-hydroxyethyl)-
1-piperazinepropanesulfonic acid (EPPS) buffer (pH 8.0), 2
μL of a stock ester solution was added to achieve the desired

concentration of each ester. Then, 20 μL of 5 mM EPPS buffer
pH 8.0 containing 0.95 mM Phenol Red was added. Buffer was
dispensed with a QFill3 Microplate Filler (Genetix, CA, USA)
and the buffers with a PRIMADIAG Demo liquid handling
robot (EYOWN TECHNOLOGIES S.L., Madrid, Spain).
Finally, 2 μL of the stock protein solution (from stock
solutions at different concentrations, in 40 mM HEPES buffer
pH 7.0) was immediately added to each well, to achieve the
desired protein concentration, using an Eppendorf Repeater
M4 pipet (Eppendorf, Hamburg, Germany). The total reaction
volume was 44 μL. Ester hydrolysis was measured at 30 °C
using a Synergy HT Multi-Mode Microplate Reader (Izasa
Scientific, Madrid, Spain) in continuous mode at 550 nm over
24 h, although initial rates were only considered for
calculations. One unit (U) of enzyme activity was defined as
the amount of free enzyme or enzyme bound to the carrier
required to transform 1 μmol of substrate in 1 min under the
assay conditions using the reported extinction coefficient
(Phenol red at 550 nm = 8450 M−1 cm−1). All values, in
triplicates, were corrected for nonenzymatic transformation;
the absence of activity was defined as at least a two-fold
background signal. For KM determination, [protein]: 4.5 μg
mL−1; [ester]: 0−100 mM; reaction volume: 44 μL; T: 30 °C;
and pH: 8.0. For kcat determination, [protein]: 0−270 μg
mL−1; [ester]: 50 mM; reaction volume: 44 μL; T: 30 °C; and
pH: 8.0.

■ RESULTS AND DISCUSSION

Computational Study of Substrate Promiscuity. In
order to extract important features describing the substrate
promiscuity of the four different esterases selected as targets,
their active sites were studied using the SiteMap software.47,48

Seven properties were analyzed: volume, size, exposure,
enclosure, contact (tightness), hydrophobicity, and hydro-
philicity. Size, which accounts for the number of cavity points
in SiteMap’s procedure, is a similar measure to the one
corresponding to the volume. Exposure and enclosure
properties provide different measures of how opened is the
site to the solvent. Low exposure/high enclosure values mean
that the cavity is not very solvent-exposed. The contact feature
describes the degree of tightness of the cavity. Therefore, the
higher this value the more compact the cavity will be.

Figure 1. Bar plot representing the volume, size, exposure, enclosure, contact, hydrophobicity, and hydrophilicity properties of the active site cavity
of two high substrate promiscuous and two low substrate promiscuous esterases with SiteMap.47,48 The Y red axis on the left represents the scale for
the volume (in Å3) and the size properties of the active site cavity, while the Y blue axis on the right represents the remaining ones. The figure was
created with the Matplotlib library.51
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As it can be seen in Figure 1, some properties are well
correlated with the degree of substrate promiscuity of the
enzyme. In the two high-promiscuous esterases, we can
observe that the volume of the cavity is 235.64 Å3 for EH1
and 249.70 Å3 for CalB, while the low-promiscuous esterases
have volumes of 68.94 Å3 for EH88 and 34.99 Å3 for EH102.
Thus, the esterases with a broad substrate range have active

site cavities 3- to 7-fold higher than those with narrow
substrate spectra. We see a similar trend regarding the size
property, meaning that the active site has to be big enough to
accommodate a wide variety of substrates. Regarding
enclosure, hydrophobicity, and contact properties, they also
are higher in esterases with the highest substrate ambiguity,
whereas the exposure is significantly lower. These results

Figure 2. Density plots of the distribution of the catalytic serine-substrate distance against the interaction energy from the 10% lowest percentile
regarding the serine-substrate distance of the accepted steps in the PELE simulations for the different studied esterases with phenyl acetate as the
substrate (3226 data points for CalB, 3095 for EH1, 2647 for EH102, and 2734 for EH88), accompanied by one representing binding pose
obtained during the simulation. The colors in the density plots represent each esterase: CalB (brown), EH1 (orange), EH102 (purple), and EH88
(green). The density plots were created with the Matplotlib library.51 In the shown binding poses, the ligand has the C atoms stained in lilac and
the overall structure represented in the CPK model, followed by the ball-and-stick representation of the residues 4 Å far from it. Protein ribbon is
colored according to the secondary structure (ruby: α-helix, golden: β-sheet, and gray: loops).
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clearly give us a qualitative idea of the shape and the chemical
properties (type of residues) of the active sites. Esterases
accepting a higher number of esters have large enough, well
defined, hydrophobic, and compact cavities, sheltered from the
solvent, whereas low substrate promiscuous esterases possess
active sites not so large nor well-defined, less hydrophobic, and
significantly more exposed to the solvent.
So far, we have gained insights into the properties of the

cavities. Now, we will turn to simulate substrate−enzyme
interactions to see how much they correlate with their
substrate range, with the goal to infer which residues could
be mutated to enhance the substrate range, and thus, substrate
promiscuity in an esterase only hydrolyzing a few esters.
PELE simulations were carried out with two esters; phenyl

acetate (128.57 Å3), which is catalyzed by the four esterases
and it is an ester commonly hydrolyzed by most such
enzymes,13 and ethyl-3-oxohexanoate (159.92 Å3), which is
only catalyzed by the highly promiscuous ones.13 Still, the
activity against phenyl acetate is much higher in the EH1 and
CalB because of the better overall properties of the active site
and cavity. Looking at Figure 2 for the phenyl acetate
compound, it can be seen that in EH1 and CalB, which are
much more promiscuous and active than EH102 and EH88,
the catalytic distances and the interaction energies are lower,
which means that the ligand is more stable and in a closer
interaction for the covalent addition. Besides, Figure S1 shows
that SASA values are smaller in EH1 and CalB esterases,
meaning that the substrate is more buried in the cavity of those
esterases in comparison with the low-promiscuous ones.
Concerning the simulations with ethyl-3-oxohexanoate, we
observe similar results as it can be seen in Figures S2 and S3.
Therefore, our results indicate that in order to turn an

esterase into a more promiscuous one, the cavity has to be
enlarged but protected from large solvent exposure.
Importantly, besides a quick calculation of the (change in)
cavity properties, enzyme−substrate simulations should
provide a clear indication of the change in substrate activity.
Rational Design of a Low-Promiscuous Esterase to

Increase Its Substrate Range. We select as target the
esterase EH102 because the crystal structure is available
(5JD3), and that, despite its cavity size, is capable of efficiently
hydrolyzing substrates such as glucose pentaacetate. Regarding
the surroundings of its catalytic triad, many bulky residues can
be found, hiding a possible cavity where the substrate could
bind; the overall active site presents an excess of solvent-
exposure. Based on a preliminary visual inspection, we focused
on the Ile16, Ile92, and Trp96 residues. Taking into account
the information extracted from the computational studies of
the previous section, we first attempted a drastic cavity
enlargement by combining three mutations, I16G/I92A/
W96G, where the I92A mutation was performed to keep
some hydrophobicity. Hereinafter, this triple mutant was
designated as TM1 (Figure 3; see Table 1 to check the
nomenclature).
To understand in depth the properties of this mutant, we

first compute the seven properties used to analyze promiscuity
(Figure 1). As expected, the volume of the new cavity, its size,
its tightness, its enclosure, and hydrophobicity have increased
in comparison with the wild type (WT) solvent-exposed active
site, whereas the exposure has decreased (Figure 4).
Molecular sampling using PELE was also performed for two

ester substrates that were not hydrolyzed by EH102WT: the
previously used ethyl-3-oxohexanoate and the small (112.31

Å3) vinyl crotonate.13 As it can be seen in Figures 5 and S4,
EH102TM1 shows better accommodation of substrates with
smaller serine-substrate distances and interaction energies.
Moreover, SASA also decreased, confirming that the
engineered cavity has the ligand more buried in the protein.
Current state of the art enzyme engineering efforts

combining in silico and in vitro techniques are mostly based
on early experimental validation. As in other molecular
engineering fields, such as drug discovery, the most efficient
route is to find an early (but weak) activity, followed by
additional rounds of refinement designs. Moreover, our goal
when introducing high-performance computing and sophisti-
cated simulation techniques, such as PELE, is to drastically
eliminate experimental efforts in such “lead optimization”
processes; we aim at finding significantly enhancing variants
within ∼10 proposed mutants. Within this in mind, we
proceed to experimentally test our initial in silico validated
mutant. Experimental tests, consisting in quantifying kcat and
KM against the set of 96 structurally diverse esters (Figure 6),
corroborated that the substrate range was enhanced, going
from hydrolyzing only 16 esters in EH102WT to 35 esters in
EH102TM1, with glucose pentaacetate (kcat of ca. 152.124
min−1) and phenyl propionate (kcat of ca. 9.966 min−1) serving
as the best substrates, respectively (Figure 6 and Table S1).
Nonetheless, the average kcat of the variant for all converted
substrates decreased considerably by 70-fold (maximum: 450-
fold for glyceryl triacetate; minimum: 5-fold for phenyl
propionate), although no major effect in substrate affinity
was observed (average KM fold change of ca. 1.2). We have
shown in a recent study, involving the design of artificial active
sites with esterase activity, that the lack of a tight catalytic triad,
with short hydrogen bond distances, may be mainly
responsible for low activity.50,52 Thus, the substitution of one
of the big hydrophobic residues for smaller ones could have
introduced more flexibility to the catalytic triad, disrupting the
catalytic mechanism.
From the three different mutations, I16G is right beside the

catalytic Ser residue (S15) and could be directly affecting the
hydrogen bond between the catalytic His and Ser residues. To
confirm this hypothesis, we ran classical MD simulations for
EH102WT and EH102TM1 throughout 500 ns with 4 replicas
each. Figure 7 illustrates the catalytic serine−histidine distance
where we clearly observe a significant increase for EH102TM1 in
comparison with the EH102WT enzyme. Likewise, the aspartic-
histidine distance and the local rmsd of the residues in the

Figure 3. 3D representation of the surface of EH102WT (left) and
EH102TM1 (right). The mutated residues have the C atoms stained in
orange and their labels in black, while the residues of the catalytic
triad have them stained in green and the labels in yellow. All shown
residues are displayed with the CPK model.
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catalytic triad have significant larger values as well in the
proposed variant (Figures S5 and S6). However, the rmsd of
the protein backbone converges to similar values (Figure S7),
indicating that the mutations do not destabilize considerably.
Overall, these results clearly point to significant larger
fluctuations of the catalytic triad in the variant, most likely as
a result of side chain flexibility, compromising the hydrolytic
activity of the enzyme.
Rational Design to Balance the Increase in Substrate

Promiscuity with the Conversion Rate: from Prediction
to Experimental Validation. From all the information
gathered from the EH102TM1 variant, we proceed to the
second mutant-refinement stage. As a reminder, our goal is not
to design an extensive library of mutants but to narrow down
the list of mutants to only a few, by means of using molecular
modeling. Single mutants at the position 16, the closest one to
the catalytic serine, were assayed to see the progressive effect of
substituting for a smaller and less-hydrophobic residue in

activity and promiscuity. Moreover, double mutants were
performed at the two other residues (92 and 96) in order to
reduce the increase of flexibility of the catalytic serine and to
check whether substrate promiscuity can be increased without
changing residue 16. Finally, we tried six TM variants that were
created from the permutations of mutating I92 to A92 or G92,
I16 to (not so small residues) V16, A16, or G16, and W96 to
G96; W96G mutation was always kept, as it is the most
solvent-exposed residue and the biggest one, significantly
increasing the cavity (and its access) once it is mutated. On the
other hand, I92 was substituted by both A and G because it is a
more buried residue. Table 1 lists all variants studied.
We quickly checked the cavity properties of these variants

with SiteMap,47,48 seeing similar results for the triple mutants
and double mutants to those of the first TM1 mutant (Figure
S8); smaller changes with the single mutants were observed, as
expected. Thus, changes in the cavity are also predicted in the
double mutant and triple mutant variants, where we would

Table 1. Recompilation of all the Experimental EH102 Variants That Have Been Designed and Assayed and Their
Nomenclature along the Document

WT TM1 TM2 TM3 TM4 TM5 TM6 DM1 DM2 SM1 SM2 SM3

Ile16 Gly16 Val16 Val16 Ala16 Ala16 Gly16 Val16 Ala16 Gly16

Ile92 Ala92 Ala92 Gly92 Gly92 Ala92 Gly92 Gly92 Ala92

Trp96 Gly96 Gly96 Gly96 Gly96 Gly96 Gly96 Gly96 Gly96

Figure 4. Bar plot representing the volume, size, exposure, enclosure, contact, hydrophobicity, and hydrophilicity properties of the active site cavity
of the EH102WT in comparison with EH102TM1 obtained with SiteMap.47,48 The Y red axis on the left represents the scale for the volume (in Å3)
and the size properties of the active site cavity, while the Y blue axis on the right represents the remaining ones. The figure was created with the
Matplotlib library.51

Figure 5. Density plots of the distribution of the catalytic serine-substrate distance against the interaction energy (left) and SASA (right) from the
10% lowest percentile regarding the serine-substrate distance of the accepted steps in the PELE simulation for EH102WT and EH102TM1 with ethyl-
3-oxohexanoate as the substrate (2332 data points for EH102WT and 2225 for EH102TM1). The density plots were created with the Matplotlib
library.51
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expect an increase in substrate promiscuity. This time,
however, we used MD simulations to probe the stability of
the catalytic triad. EH102TM2 (containing V16/A92/G96) and
EH102TM6 (G16/G92/G96) variants improved the catalytic
distances and the overall geometry of the catalytic triad
(Figures S9−S11). Regarding those variants that maintained
similar values with the WT enzyme, we find the EH102TM3

(V16/G92/G96), EH102TM4 (A16/G92/G96), EH102DM1

(G92/G96), and EH102DM2 (A92/G96) variants. The
remaining variants showed disturbed catalytic triads according
to the studied metrics.
In addition, we estimated ΔΔGs of stability in the different

variants (Figure S12). Although both EH102TM2 and
EH102TM6 variants seemed the most promising ones, the
large destabilization of the EH102TM6 variant questions its

integrity. Thus, out of the triple mutants, EH102TM2 seems the
best candidate for properly folding and increasing the
promiscuity of the WT enzyme without compromising its
overall catalytic activity. Moreover, combining the results of
single mutation stability analysis with the MD results (Figures
S9−S11) suggests that residue 16 should be either substituted
with a valine residue (EH102SM1) or preserved because of its
role in maintaining the catalytic integrity; to prove this,
EH102SM2 (A16) and EH102SM3 (G16) were produced.
Similarly, comparing the EH102DM2 and EH102DM1 variants
seems to indicate that residue 92 must have some kind of side
chain (larger than a Gly hydrogen).
We proceeded to express all the 10 additional mutants (for

summary, see Table 1). Only three (EH102SM1, EH102DM2,
and EH102TM2) were produced in soluble active forms, and
their substrate spectra and kcat and KM were determined, and
compared with those of EH102WT and EH102TM1, when tested
against the 96 structurally diverse esters.
We first observed that, surprisingly, the mutant containing

the single mutation I16V (EH102SM1) was capable of
hydrolyzing as many esters (36 in total) as EH102TM1 (35 in
total) (Figure 6, Table S1). However, a closer inspection of
substrates being converted reveals that 24 esters were common
substrates, but that compared to EH102WT, EH102SM1 gained
the capacity to hydrolyze 12 substrates that EH102TM1 could
not; they mostly include esters with a volume lower than 200
Å3, but one higher than 200 Å3, which was vinyl laurate (kcat
0.028 min−1). In contrast, EH102TM1 gained the capacity to
convert 11 esters not hydrolyzed by the EH102SM1, all of them
being molecules with a volume below 200 Å3. In addition,
differences were also observed at the level of catalytic turnover

Figure 6. Substrate spectra of the EH102WT, EH102TM1, EH102SM1, EH102DM2, and EH102TM2. The identification code of each variant can be
found at the X axis, while the ester names are placed at the Y axis. The size of the points indicates a higher value for the represented property of
each ester, which was determined as described in the Methodology. Substrates are grouped in the different ester families in which they can be
classified to. The figure was created with the Matplotlib library.51 For raw data, see Table S1.

Figure 7. Box plot representing the serine−histidine distance (

−γ ε
d
H N
Ser His) along the 500 ns of the 4 MD replicas performed for

EH102WT and EH102TM1. The figure was created with the Matplotlib
library.51
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and substrate affinities, which range from ca. 9.966 to 0.032
min−1 and from ca. 0.043 to 51.612 mM, respectively for
EH102TM1 and from 122.732 to 0.002 min−1 from 8.2 × 10−5

to 30.002 mM, respectively for EH102SM1. Interestingly, out of
the 24 esters hydrolyzed by both mutants, we noticed that 14
were preferably converted by EH102SM1 (from 2.5- to 400-fold
in terms of kcat), 9 by EH102TM1 (from 7- to 95-fold), and only
1 was equally converted; interestingly, most esters above 200
Å3 were better (2.5- to 32-fold) converted by EH102SM1 and
also had higher substrate affinities (average for these
substrates: 0.934 mM for EH102TM1 and 0.575 mM for
EH102SM1). We further observed that the overall catalytic
turnover of EH102SM1 (up to 122.7 min−1) approaches that of
the EH102WT (up to ca. 152.124 min−1), although still the
mutation reduced the rate of hydrolysis for most of the
substrates (from 1.3- to 1258-fold in terms of kcat for 9), while
slightly increasing kcat for a few substrates (from 1.3- to 2.5-fold
for three esters), without altering substrate affinities. Thus, the
added flexibility in the active site by the I16V mutation could
enhance the catalytic binding of large but also relatively small
substrates, but the active site environment still compromises
the overall catalytic rate.
We further observed that the mutations I92A/W96G (in

EH102DM2) significantly promoted the substrate spectrum to
51 esters (Figure 6, Table S1). Its catalytic turnover (up to ca.
216.103 min−1) was significantly higher than that observed for
EH102SM1 and EH102TM1, and comparable or even higher (for
8 esters) to that of the EH102WT. This confirms that the
preservation of the hydrophobicity in the active site provided
by Ile16 is important to maintain the geometry of the catalytic
triad, and of the conversion rate. Compared to the EH102WT

enzyme, EH102DM2 gained activity toward 11 esters that were
not hydrolyzed neither by EH102SM1 nor EH102TM1. They all
represent molecules with a volume lower than 200 Å3 but
pentadecyl acetate (309 Å3), and mostly include alkyl-(propyl
propionate, propyl butyrate, propyl hexanoate, octyl acetate,
pentadecyl acetate, ethyl 2-ethylacetoacetate, ethyl 2-methyl-
acetoacetate, and (+)-methyl (S)-3-hydroxyvalerate) and
alkenyl-(vinyl acetate and vinyl acrylate) like esters of different
sizes, and they were converted at rates up to 31.268 min−1 (KM

values from ca. 0.084 to 8.538 mM).
Finally, the mutations I16V/I92A/W96G (in EH102TM2)

were found to promote a further step in the substrate
spectrum. Indeed, the EH102TM2 variant was capable of
hydrolyzing 63 esters (Figure 6, Table S1), which represent 47,

28, 27 and 12 more esters than EH102WT, EH102TM1,
EH102SM1, and EH102DM2, in the same order. In addition,
the three mutations gained activity for eight esters, which could
not be hydrolyzed by any of the previous variants nor the WT,
namely, methyl benzoate, phenylethyl cinnamate, methyl
ferulate, methyl 2,5-dihydroxycinnamate, isobutyl cinnamate,
propylparaben, methyl 2-hydroxybenzoate, and n-pentyl
benzoate; they all represent aromatic esters, which were
converted at rates as high as 11.625 min−1 (KM: from ca. 0.175
to 47.283 mM). The extended level of substrate docking
provided by the three mutations, by meaning of the higher
number of esters being accepted, does not entail, however, an
overall increase in catalytic turnover (kcat up to ca. 119.348
min−1) compared to EH102WT and the mutants EH102SM1 and
EH102DM2. The fact that this variant contains a mutation at
I16, which was found to be the key for the optimal geometry of
the active site and the conversion rate, may agree with the fact
that the activity of EH102TM2 was not further promoted. At the
same time, it further demonstrates that this residue is
important for favoring substrate docking freedom and thus
expanding the substrate spectrum.
The above results first demonstrate that it is feasible to

significantly expand the substrate spectrum of a hydrolase with
an initial narrow substrate spectrum, by introducing mutations
in a set of residues at the proximity of the active site. Second,
although this can occur at the expense of activity, we further
demonstrated that by applying rational design a balance
between substrate promiscuity and the conversion rate can be
achieved. Importantly, this was accomplished with a rather
small library of mutants; all mutants assayed have been
exposed here! Such success was possible, in our opinion, by
efficiently combining molecular modeling and experimental
validation, the latter being introduced very early in the design
process. Using this approach and starting from a hydrolase
capable of hydrolyzing only 16 esters out of 96 tested, we have
engineered two hydrolases, which exhibit an impressive 51-
(EH102DM2) and 63-(EH102TM2) substrate repertoire. Such a
repertoire approximates that of the most substrate promiscu-
ous esterases, such as EH1 and CalB, capable of hydrolyzing as
much as 72 and 68 out of the 96 esters tested (Figure 8).13

Likewise, no significant difference was observed in the size of
the hydrolyzed esters between the WT enzyme and the
successful variants (Figure S13), meaning that the increase in
substrate promiscuity is independent of the substrate size. In
addition, we also observed that our engineered hydrolase

Figure 8. Comparison of the substrate promiscuity of EH102 variants against the published dataset of esterases.13 The plot shows the number of
esters hydrolyzed by EH102WT, EH102TM1, EH102SM1, EH102DM2, and EH102TM2 in comparison with the other 146 ester hydrolases. The figure
was created with the Matplotlib library.51
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gained the capacity to convert substrates that are rarely
converted by esterases, such as pantolactone, pentadecyl
acetate, and vinyl laurate, which under similar conditions
used in the present study, were only hydrolyzed by four out of
147 such enzymes.13 Also, our approach gained the capacity to
hydrolyze a combination of esters such as coumaric and ferulic
esters (e.g., isobutyl cinnamate, methyl 2,5-dihydroxycinna-
mate, methyl cinnamate, and methyl ferulate) rarely hydro-
lyzed together, for example, can only be observed in three
other esterases.13 Finally, it is noteworthy that the catalytic
efficiency of mutant variants with the higher level of
promiscuity (i.e., EH102DM2 and EH102TM2), measured
under the same assay conditions, approached those of naturally
promiscuous enzymes with a similar substrate range. This was
confirmed by selecting six representative ester hydrolases
reported to exhibit substrate repertoires ranging from 72 to 28
esters,13 and 1-naphthyl acetate, and ester commonly hydro-
lyzed by ester hydrolases, as a model substrate (Table 2).

■ CONCLUSIONS

Our study demonstrates that it is possible to infer computa-
tionally the properties that describe substrate promiscuity in
serine ester hydrolases, and use them to increase the substrate
range of a hydrolase with narrow substrate spectra. Moreover,
we accomplished to enhance substrate promiscuity without
compromising the turnover rate of the enzyme against its
native substrates. In fact, it can be said that we transformed a
low substrate promiscuous esterase into a prominently
promiscuous one. Also, the created variants have gained the
ability to hydrolyze esters rarely hydrolyzed by esterases, some
of which, for example, lactones are of great interest for
industrial purposes.
This rational design of substrate promiscuity would help

surpass current problems in industrial settings, where multiple
catalysts have to be used to convert different substrates with
similar chemical groups.53,54

Thus, the substrate promiscuity of an enzyme can be
enhanced by rationally optimizing several active site properties,
involving not only its volume/size but also its exposure,
enclosure, tightness, and so forth; such a balance is necessary
for the preservation of its catalytic distances. Importantly, such
an enhancement can be achieved with a very small mutant
library when efficiently combining in silico and in vitro
techniques.
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Table 2. Kinetic Parameters Determined for the Model
Ester 1-Naphthyl Acetate

hydrolase number of esters
hydrolyzed

kcat
(min−1)

KM
(μM)

kcat/KM
(s−1 M−1)

EH102WT 16 73.333 190 6418

EH102TM1 35 0.730 84 145

EH102SM1 36 50.174 254 3289

EH102DM2 51 71.483 54 22,103

EH102TM2 63 67.777 58 19,466

EH1 72 2247.0 272 40,126

EH3 69 173.260 231 33,706

EH5 67 416.670 56 32,477

EH7 64 1683.80 249 29,056

EH12 51 3360.0 657 25,240

EH37 28 59.840 35 23,827
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■ ABBREVIATIONSPARA

EH ester hydrolase
CalB Candida antarctica lipase B
rmsd root mean square deviation
PELE protein energy landscape exploration
SASA solvent-accessible surface area
MD molecular dynamics
WT wild type
TM triple mutant
DM double mutant
SM single mutant
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This supporting information contains the following information: 

Substrate spectra of the successful variants; Auxiliary density plots and poses of the results from 

the PELE simulations; Plots of the metrics obtained from the MD simulations; Bar plot of the 
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properties of the active site cavity for the remaining variants; Representation of the predicted ΔΔG 

of the tested variants; Violin plot of the volume of the hydrolyzed esters by the WT enzyme and 

the successful variants; Protein purity as determined by SDS-PAGE.

Table S1. Substrate spectra of the EH102WT, EH102TM1, EH102SM1, EH102DM2, and EH102TM2. 

The chemically and structurally distinct esters out of the 96 tested for which activity was detected 

in one of the enzymes are listed on the left side of the table. The kcat (in min-1), KM (in μM), and 

kcat/KM (in s-1M-1) for each substrate when tested at pH 8.0, 30ºC and 50 mM ester is shown for 

each variant.

Ester Volume 

[Å3]

kcat 

(WT)

KM 

(WT)

kcat 

(TM1)

KM 

(TM1)

kcat 

(SM1)

KM 

(SM1)

kcat 

(DM2)

KM 

(DM2)

kcat 

(TM2)

KM 

(TM2)

kcat/KM 

(WT)

kcat/KM 

(TM1)

kcat/KM 

(SM1)

kcat/KM 

(DM2)

kcat/KM 

(TM2)

1-Naphthyl 

acetate

172.56 73.33

3

190.4

31

0.73 84.201 50.174 254.254 71.483 53.903 67.777 58.029 6418.

19

144.58 3288.9

5

22102.

65

19466.

32

1-Naphthyl 

butyrate

206.17 28.36

4

216.4

26

0.337 133.19

2

0.852 267.123 8.89 118.966 0.49 219.831 2184.

3

42.18 53.15 1245.4

1

37.12

Glyceryl 

triacetate

196.65 31.15

7

140.6

49

0.07 2481.2

38

27.97 122.617 107.09

4

2051.88

8

33.921 2012.23

2

3692.

1

0.47 3801.7

7

869.88 280.95

Glyceryl 

tripropionate

247.06 52.00

1

103.0

77

3.379 1032.6

29

41.337 117.546 87.769 1679.77

4

49.551 1740.74 8408.

19

54.54 5861.0

3

870.84 474.43

Glyceryl 

tributyrate

297.46 0 0 0.608 2003.6

53

11.989 36.585 2.874 60.148 12.194 2019.00

9

0 5.06 5461.6

7

796.48 100.66

Hexyl acetate 157.73 5.523 2300 0 0 0.423 2019.22

7

6.3 712.398 1.64 933.16 40.02 0 3.49 147.39 29.3

Octyl acetate 191.34 2.518 5770.

386

0 0 0.87 2286.15

6

2.882 779.375 1.305 783.017 7.27 0 6.34 61.63 27.77

Lauryl acetate 258.55 0 0 0 0 0 0 0.111 148.226 0.02 145.103 0 0 0 12.49 2.26

Pentadecyl 

acetate

308.95 0 0 0 0 0 0 0.034 84.337 0.016 291.367 0 0 0 6.68 0.9
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Ethyl acetate 90.53 0 0 0.037 1583.0

28

0 0 1.421 3518.08

7

1.396 3007.89

2

0 0.39 0 6.73 7.73

Ethyl 

propionate

107.33 0 0 0.415 6581.6

2

0 0 6.698 1598.81

2

13.673 7032.17

8

0 1.05 0 69.82 32.41

Ethyl butyrate 124.13 0 0 0.496 7404.5

88

0 0 11.808 7960.65

6

10.423 7234.92

3

0 1.12 0 24.72 24.01

Ethyl 

hexanoate

157.73 0 0 0.658 2354.6

66

0 0 0 0 1.352 2050.21 0 4.66 0 0 10.99

Ethyl 

octanoate

191.34 0 0 0.331 1026.5

49

0.024 2008.33

6

0 0 0.818 1012.30

7

0 5.37 0.2 0 13.47

Ethyl benzoate 145.37 0 0 0.462 2251.8

63

0 0 0 0 0 0 0 3.42 0 0 0

Methyl (R)-

(−)-mandelate
153.42 0 0 0.754 3914.6

57

0.032 4943.66

2

3.67 7408.73 0.035 6182.97

1

0 3.21 0.11 8.26 0.1

Methyl (S)-

(+)-mandelate

153.42 0 0 0.806 3432.8

36

0.035 5807.69

2

3.908 7025.93

5

0.04 6298.71 0 3.91 0.1 9.27 0.1

Ethyl (R)-(+)-

4-chloro-3-

hydroxybutyra

te

145.95 0 0 0.473 14287.

858

0.043 10010.5

78

0.294 10029.9

86

0.028 10001.8

86

0 0.55 0.07 0.49 0.05

Ethyl (S)-(−)-
4-chloro-3-

hydroxybutyra

te

145.95 0 0 0.592 14418.

143

0.028 10006.3

48

0.26 10039.2

82

0.003 10368.9

04

0 0.68 0.05 0.43 0.01

(+)-Ethyl D-

lactate

115.37 0 0 0.191 9147.0

34

0.002 0.082 3.968 10043.9

78

0.024 9000.16

7

0 0.35 493.25 6.58 0.04

(−)-Ethyl L-

lactate

115.37 0 0 0.73 5273.5

24

0.055 7003.59

9

3.742 9596.18

2

0.052 10001.6

98

0 2.31 0.13 6.5 0.09

Propylparaben 170.19 0 0 0 0 0 0 0 0 0.028 3353.75

3

0 0 0 0 0.14

Butylparaben 187 0 0 0 0 0.032 1079.25

2

0 0 0.035 430.558 0 0 0.49 0 1.37

Methyl 2-

hydroxybenzo

ate

136.59 0 0 0 0 0 0 0 0 0.024 4669.41

2

0 0 0 0 0.08

(−)-Methyl 
(R)-3-

hydroxyvalerat

e

132.17 0 0 0 0 0.024 994.529 9.726 1613.53

6

0.024 1002.60

5

0 0 0.4 100.46 0.4
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(+)-Methyl 

(S)-3-

hydroxyvalerat

e

132.17 0 0 0 0 0 812.1 10.265 1970.98

7

2.997 1329.84

4

0 0 0 86.8 37.56

Benzyl (R)-

(+)-2-hydroxy-

3-

phenylpropion

ate

241.87 0 0 0.325 1585.1

56

0.043 2404.22

5

25.923 1246.95

2

14.425 1063.93

5

0 3.42 0.3 346.48 225.97

Methyl 

benzoate

128.57 0 0 0 0 0 0 0 0 11.625 175.373 0 0 0 0 1104.8

Methyl 

butyrate

107.33 5.21 857.6 0.177 657.12

6

0 0 15.012 637.269 10.137 837.352 101.2

5

4.49 0 392.6 201.76

Propyl 

propionate

124.13 0 0 0 0 0 0 26.693 1766.30

9

9.903 1996.96

2

0 0 0 251.87 82.65

Propyl 

butyrate

140.93 0 0 0 0 0 0 16.185 3250.28

8

9.803 3169.59

5

0 0 0 82.99 51.55

Propyl 

hexanoate

174.54 0 0 0 0 0 0 8.209 935.21 7.972 1050.90

2

0 0 0 146.3 126.42

Phenylethyl 

cinnamate

244.44 0 0 0 0 0 0 0 0 10.051 4892.80

7

0 0 0 0 34.24

Isobutyl 

cinnamate

206.18 0 0 0 0 0 0 0 0 7.181 2801.92

2

0 0 0 0 42.71

Methyl 2,5-

dihydroxycinn

amate

172.03 0 0 0 0 0 0 0 0 5.386 47283.6

61

0 0 0 0 1.9

Methyl 

cinnamate

155.99 0 0 0.032 873.91

9

0 0 0 0 9.956 1039.31

5

0 0.6 0 0 159.66

Methyl 

ferulate

189.55 0 0 0 0 0 0 0 0 7.94 8482.14

3

0 0 0 0 15.6

Vinyl acetate 84.89 0 0 0 0 0 0 31.268 8538.37

8

7.513 8214.09

7

0 0 0 61.03 15.24

Vinyl 

propionate

101.7 28.88

6

3873 0.278 17461.

903

0 0 44.158 4559.89

1

10.808 4539.13

5

124.3

1

0.27 0 161.4 39.68

Vinyl butyrate 118.5 0 0 0 0 0.02 3691.90

1

10.112 1274.79

6

6.382 1628.00

5

0 0 0.09 132.21 65.33

Vinyl laurate 252.91 0 0 0 0 0.028 1810.58

8

7.727 1380.85

5

6.35 1608.85

1

0 0 0.26 93.27 65.79

Vinyl 

benzoate

139.74 0 0 0 0 0.032 0.357 9.074 5634.58

6

9.64 5713.01 0 0 1474.6

5

26.84 28.12
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Vinyl 

crotonate

112.31 0 0 0.037 3041.2

13

0 0 1.613 3194.30

3

6.817 3974.85

7

0 0.2 0 8.41 28.58

Vinyl acrylate 96.06 0 0 0 0 0 0 2.753 8124.54

5

7.046 7867.56

1

0 0 0 5.65 14.93

Geranyl 

acetate

212.09 5.454 348.6

8

0.361 127.96

1

5.879 346.301 2.908 226.124 7.374 275.352 260.6

9

47.06 282.97 214.32 446.36

3-Methyl-3-

buten-1-yl 

acetate

135.06 1.93 1438

9.167

0.078 3988.2

44

4.734 14029.3

63

9.229 4700.35

4

5.165 4158.83

5

2.24 0.33 5.62 32.72 20.7

Ethyl 2-

ethylacetoacet

ate
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Figure S1. Density plots of the distribution of the catalytic serine-substrate distance against the 

SASA from the 10% lowest percentile regarding the serine-substrate distance of the accepted steps 
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in the PELE simulations for the different studied esterases with phenyl acetate as substrate (3226 

data points for CalB, 3095 for EH1, 2647 for EH102, and 2734 for EH88). The colors in the density 

plots represent each esterase: CalB (brown), EH1 (orange), EH102 (purple), and EH88 (green). 

The density plots were created with the Matplotlib library1.
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Figure S2. Density plots of the distribution of the catalytic serine-substrate distance against the 

interaction energy from the 10% lowest percentile regarding the serine-substrate distance of the 

accepted steps in the PELE simulations for the different studied esterases with ethyl-3-

oxohexanoate as substrate (2732 data points for CalB, 2568 for EH1, 2332 for EH102, and 2557 

for EH88), accompanied with one representing binding pose obtained during the simulation. The 

colors in the density plots represent each esterase: CalB (brown), EH1 (orange), EH102 (purple), 

and EH88 (green). The density plots were created with the Matplotlib library1. In the shown 

binding poses, the ligand has the C atoms stained in lilac and the overall structure represented in 

the CPK model, followed by the ball-and-stick representation of the residues 4 Å far from it. 

Protein ribbon is colored according to the secondary structure (ruby: ɑ-helix, golden: 𝛽-sheet, and 

gray: loops).
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Figure S3. Density plots of the distribution of the catalytic serine-substrate distance against the 

SASA from the 10% lowest percentile regarding the serine-substrate distance of the accepted steps 

in the PELE simulation for the different studied esterases with ethyl-3-oxohexanoate as substrate 

(2732 data points for CalB, 2568 for EH1, 2332 for EH102, and 2557 for EH88). The colors in the 

density plots represent each esterase: CalB (brown), EH1 (orange), EH102 (purple), and EH88 

(green). The density plots were created with the Matplotlib library1.
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Figure S4. Density plots of the distribution of the catalytic serine-substrate distance against the 

interaction energy (left) and SASA (right) from the 10% lowest percentile regarding the serine-

substrate distance of the accepted steps in the PELE simulation for EH102WT and EH102TM1 with 

vinyl crotonate as substrate (2910 data points for EH102WT and 3445 for EH102TM1). The density 

plots were created with the Matplotlib library1.

Figure S5. Box plot representing the aspartic-histidine distance ( ) along the 500 ns of 

the 4 MD replicas performed for EH102WT and EH102TM1. The figure was created with the 

Matplotlib library1.
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Figure S6. Box plot representing the local RMSD of the catalytic triad along the 500 ns of the 4 

MD replicas (excluding the initial frame) performed for EH102WT and EH102TM1. The figure was 

created with the Matplotlib library1.
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Figure S7. Plot representing the global RMSD of the protein backbone along the 500 ns of the 4 

MD replicas performed for EH102WT and EH102TM1. The plot was created with the Matplotlib 

library1.
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Figure S8. Bar plot representing the Volume (in Å3) and Size of the active site cavity of the 

EH102WT in comparison with EH102TM2, EH102TM3, EH102TM4, EH102TM5, EH102TM6, 

EH102DM1, EH102DM2, EH102SM1, EH102SM2, and EH102SM3 obtained with SiteMap2,3 (Figure 

S8A). Bar plot representing the Exposure, Enclosure, Contact, Hydrophobicity, and Hydrophilicity 

properties of the active site cavity of the EH102WT in comparison with EH102TM2, EH102TM3, 

EH102TM4, EH102TM5, EH102TM6, EH102DM1, EH102DM2, EH102SM1, EH102SM2, and EH102SM3 

obtained with SiteMap2,3 (Figure S8B). The figure was created with the Matplotlib library1.

Figure S9. Box plot representing the serine-histidine distance ( ) along the 500 ns of the 

4 MD replicas performed for EH102WT, EH102TM2, EH102TM3, EH102TM4, EH102TM5, EH102TM6, 

EH102DM1, EH102DM2, EH102SM1, EH102SM2, and EH102SM3. The figure was created with the 

Matplotlib library1.
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Figure S10. Box plot representing the aspartic-histidine distance ( ) along the 500 ns of 

the 4 MD replicas performed for EH102WT, EH102TM2, EH102TM3, EH102TM4, EH102TM5, 

EH102TM6, EH102DM1, EH102DM2, EH102SM1, EH102SM2, and EH102SM3. The figure was created 

with the Matplotlib library1.
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Figure S11. Box plot representing the local RMSD of the catalytic triad along the 500 ns of the 4 

MD replicas (excluding the initial frame) performed for EH102WT, EH102TM2, EH102TM3, 

EH102TM4, EH102TM5, EH102TM6, EH102DM1, EH102DM2, EH102SM1, EH102SM2, and EH102SM3. 

The figure was created with the Matplotlib library1.
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Figure S12. predicted ΔΔG(mut-WT) of the experimentally tested variants calculated using the 

module of thermodynamic stability from HotSpot Wizard4. The variants that could not be 

expressed are highlighted in red, the ones that lost a big part of their activity in green, and the ones 

that were fully functional in blue. The figure was created with the Matplotlib library1.
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Figure S13. Violin plot of the volume of the hydrolyzed esters by EH102WT, EH102TM1, 

EH102SM1, EH102DM2, and EH102TM2. The figure was created with the Matplotlib library1.
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Figure S14. Protein purity as determined by SDS-PAGE. A Coomassie brilliant blue (Protoblue 

Safe, National Diagnostics, GA, USA) stained 15% SDS-PAGE gel in which a total of 12-18 µg 

of proteins purified after the His6-tag purification step, are shown. Purity of the proteins was high 

(>99% by densitometry). The theoretical molecular mass of the native EH102 protein is 24328.8 

Da, respectively. SDS-PAGE was performed in a Mini PROTEAN electrophoresis system (Bio-

Rad).
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Abstract

With advances in protein structure predictions, the number of available high quality

structures has increased dramatically. In light of these advances, structure-based enzyme

engineering is expected to become increasingly important for the optimization of biocatalysts

for industrial processes. Here we present AsiteDesign, a Monte Carlo-based protocol for

structure based engineering of active sites. AsiteDesign provides a framework for

introducing new catalytic residues in a given binding pocket to either create a new catalytic

activity or alter the existing one. AsiteDesign is implemented using pyRosetta and

incorporates enhanced sampling techniques to efficiently explore the search space. The

protocol was tested by designing an alternative catalytic triad in the active site of

Pseudomonas fluorescens esterase (PFE). The designed variant was experimentally verified

to be active, demonstrating that AsiteDesign can find alternative catalytic triads. Additionally,

the AsiteDesign protocol was employed to enhance the hydrolysis of a bulky chiral substrate

(1-phenyl-2-pentyl acetate) by PFE. The experimental verification of the designed variants

demonstrated that F158L/F198A and F125A/F158L mutations increased the hydrolysis of

1-phenyl-2-pentyl acetate from 8.9% to 66.7% and 23.4%, respectively, and reversed the

enantioselectivity of the enzyme from (R) to (S)-enantiopreference, with 32 and 55 %ee,

respectively.
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Introduction

Structure-based enzyme engineering is widely used in the development of biocatalysts for

industrial purposes1–5. These approaches have been employed to engineer protein

thermostability, enzyme activity, or substrate selectivity. FRESCO6, FoldX6,7, and Rosetta8

are among the noteworthy methods for enhancing enzyme thermostability, but many more

also have been developed 9–15. Similarly, a wide range of computational methods are

available for engineering enzyme activity or for changing the selectivity, for instance,

Rosetta8, nAPOLI16, EnzymeMiner17, HotSpot Wizard18, Caver19, FireProtASR20, LoopGrafter21,

and DaReUS-Loop 22. However, Rosetta and its derived methods23,24 have become one of

the most widely used tools in this area.

Current advances in deep learning structural prediction methods increased the number of

available protein structures dramatically25,26. Additionally, de novo protein design techniques

are becoming increasingly accurate24,27,28, which makes it possible to create tailor made

protein scaffolds. Considering these developments, structure-based enzyme engineering is

expected to play an even more critical role in optimizing enzymes for industrial applications.

Structure-based enzyme engineering could be used to either optimize enzyme activity and

selectivity for a given substrate or to introduce new functionality into a protein cavity29–34. The

latter approach has the potential to create enzymes that are capable of catalyzing new

chemical reactions35. For example, by mutating catalytic glutamate, a glycosidase enzyme

was converted to a glycosynthase33,34. Alternatively, new catalytic residues can be introduced

in a protein cavity. This approach, for instance, was used to create a second active site with

hydrolysis activity in a transaminase. The engineered multifunctional enzyme combines

transaminase and hydrolase activities in a single protein scaffold, allowing the conversion of

β-keto esters into β-amino acids, which can be used for the synthesis of a key precursor of a

family of antidiabetic drugs32.

These applications require (re)designing catalytic residues in a given binding pocket. One

way to approach such tasks is by grafting an active site into a protein scaffold, which has

been performed, e.g. by Rosetta Match36,37. This method is based on identifying a suitable

cavity by searching many protein scaffolds. Here we present an alternative method,

AsiteDesign, for this task. AsiteDesign is capable of identifying the best positions for a set of

predefined catalytic residues in a given active site without the need for searching different

protein scaffolds. The method is based on a Monte Carlo (MC) simulation and has been

implemented using pyRosetta. Additionally, the protocol employs enhanced sampling

techniques to improve the simulation convergence. It also includes the sampling of rotatable
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substrate bonds, which can potentially improve the identification of design solutions that may

not be found otherwise. Furthermore, the substrate sampling can easily be restricted to

predefined intervals, allowing to perform partial optimizations for large molecules. Here we

demonstrate the application of the method by designing an alternative catalytic triad in the

active site of the Pseudomonas fluorescens esterase (PFE)38. The protocol was further

employed to alter the enzyme selectivity for a bulky chiral substrate.
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Computational methods

Design of catalytic residues

For a given enzymatic chemical reaction, the amino acid identity of the catalytic residues is

known a priori. Considering PFE as an example, the catalytic triad consists of a nucleophile

residue (Ser) that attacks the substrate, a general base (His) that accepts the proton, and an

acidic residue (Asp/Glu) that activates the base. The principle of this catalytic triad is

common to all serine hydrolases. As such, the main task here was to identify a set of

positions in the binding pocket that can accommodate the catalytic residues at the correct

distances relative to each other. This goal was achieved by first assigning random positions

to each catalytic residue and performing an MC simulation to identify the optimal positions

for these residues. During the simulation, in each iteration, one catalytic residue was then

assigned to a new random position by mutating it, and the previously assigned position is

recovered to the native amino acid. The correct distances of the catalytic residues are

enforced by imposing distance restraints during simulations.

Adequate sampling could be challenging as the number of design elements increases. To

overcome this, the adaptive reinforcement learning protocol39 was incorporated into the

simulation. In this scheme, the simulation is performed in epochs in which the MC sampling

of the catalytic residues is performed by multiple explorers in parallel using a distributed

memory parallelization scheme. At the end of each epoch, the results from explorers are

collected and ranked based on a given objective function (total energy, ligand energy,

restraint energy, etc.), and the next epoch is spawned by the top ranking results. To further

improve the sampling, a simulated annealing scheme was also used during the simulation.

Ligand sampling is performed by dividing its atoms into core and side chains. The core

atoms are only subjected to the rigid body rotation translation (RGB) perturbation. The ligand

side chain atoms, in addition to RGB transformation, are perturbed by first choosing a

random interval for rotatable bonds and then performing a partial optimization in the selected

intervals. Compared to the conventional method of choosing a random angle, this approach

can identify the most suitable conformation for chosen dihedral intervals. The minimization is

performed using a two step process. The first step is an iterative grid search to identify the

minimum energy conformation in internal coordinates. In this step, a multidimensional grid is

constructed for the side chain rotatable bonds in the corresponding angle intervals, and the

conformation with the lowest energy is identified by evaluating the ligand energy on each

grid point. In the next iteration, a new higher resolution grid is constructed on a smaller
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interval centered on the dihedral angles of the identified conformation from the previous

step. This process is repeated three times to identify the ligand conformation with the lowest

energy for given intervals. The final ligand conformation is then minimized with a gradient

descent approach in cartesian coordinates.

Molecular Dynamics

Four replicas of 100 ns of molecular dynamics (MD) simulations with OPENMM40 were

performed to analyze the stability of the newly designed catalytic triads. A water cubic box

(distance of 8 Å between the closest protein atom and the edge of the box) was created

around the system using the TIP3P water model, and the charge of the system was

stabilized using monovalent ions (Na+ and Cl-). The protein system was parameterized with

the AMBER99SB force field. Andersen thermostat and MC barostat were applied for the

NPT ensemble (constant pressure and temperature, being 1 bar and 300 K, respectively).

An NVT equilibration phase lasted 400 ps using a constraint of 10 kcal/(mol·Å2) to the whole

solute system, followed by a 1 ns NPT equilibration with a milder constraint of

5 kcal/(mol·Å2); the production run only included constraints between H and heavy atoms.

The Verlet integrator with a 2 fs time step was used with an 8 Å non-bonded long-range

interactions cutoff.

Protein Energy Landscape Exploration simulations

Protein Energy Landscape Exploration (PELE) was used to analyze the substrate binding of

the evolved variants using AsiteDesign. PELE is a heuristic MC-based algorithm coupled

with protein structure prediction methods41,42. The software begins by sampling the different

microstates of the ligand through small rotations and translations. Applying normal modes

through the anisotropic network model (ANM) approach43, the protein's flexibility is also

considered. Once the whole system has been perturbed, side chains of the residues close to

the ligand are sampled to avoid steric clashes. Lastly, a truncated Newton minimization with

the OPLS2005 force field is performed44, and the new microstate is accepted or rejected

based on the Metropolis criterion. The Variable Dielectric Generalized Born Non-Polar

(VDGBNP) implicit solvent model45 was used to mimic the effect of water molecules around

the protein.

The exploration of the substrate was enhanced with Adaptive-PELE39 to improve the

exploration of the search space46.

Experimental Description

6



Material

The chemicals rac-1-phenyl-2-pentanol (≥99%) and rac-1-phenylethyl acetate (≥98%) were

ordered from Sigma-Aldrich. All other chemicals and solvents were purchased from

Sigma-Aldrich, VWR or Carl Roth and were used without further treatment.

Synthesis of 1-phenyl-2-pentyl acetate

500 µL acetic anhydride and 100 µL rac-1-phenyl-2-pentanol were added in a 1.5 mL tube.

The reaction was started by adding 10 µL pyridine to the mixture. The reaction was shaken

at 25°C and 500 rpm until complete conversion was achieved. Samples of 2 µL were

withdrawn and diluted in 198 µL ethyl acetate for gas chromatographic (GC) analysis. The

reaction was quenched by adding the mixture to a 15 mL tube containing 2 mL ddH2O. The

product rac-1-phenyl-2-pentyl acetate (1) formed a second phase, was separated and dried

over anhydrous sodium sulfate. The oily rac-1-phenyl-2-pentyl acetate was obtained in 51%

yield.

Plasmid construction and site-directed mutagenesis

Synthetic genes of the PFE variants 1, 4, 8, 11, 12 in pET28a were ordered from BioCat

(Heidelberg, Germany) using seamless cloning with the flanking regions 5’ aaggagatatacc 3’

(5’ flanking) and 5’ CACCACCACCACCACCACTGAGATCCGG 3’ (3’ flanking). The mutants

are based on the sequence of the PFE wild-type (GeneBank: WP_120448209.1). The

sequences were extended by a C-terminal linker (GS) and a His6-tag, as is the case of the

sequence used for the 1VA4 crystal structure.

PFE variants 2 and 3 were constructed based on PFE_1, PFE_5-7 were based on PFE_4,

and PFE_9-10 were based on PFE_8 using the Q5® Site-Directed Mutagenesis Kit (New

England Biolabs GmbH, Ipswich, UK). Non-overlapping DNA-oligonucleotides were

designed using the online NEBaseChanger tool for the mutations. The list of primers used

for mutagenesis is given in Table S7. The annealing temperatures suggested by

NEBaseChanger online tool (https://nebasechanger.neb.com/) were used for the polymerase

chain reaction (PCR), which was performed according to the manufacturer's protocol. The

obtained constructs were amplified in E. coli Top10 and used for heat-shock transformation

of E. coli BL21 (DE3).
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Protein preparation

Pre-cultures (4 mL LB containing kanamycin) of E. coli BL21 (DE3) colonies harboring the

constructs for the expression of the PFE variants were incubated overnight (37°C, 180 rpm).

LB medium (50 mL containing kanamycin) was inoculated with 1% (v/v) of the preculture and

incubated (37°C, 180 rpm) until it reached an OD600 of 0.6. Protein expression was induced

by the addition of isopropyl-β-D-thiogalactopyranoside (IPTG) to a final concentration of

0.5 mM followed by incubation for ~20 h at 20°C at 180 rpm. Cells were harvested by

centrifugation at 10,000 × g and 4°C for 3 min, and the cell pellets were resuspended with

4 mL equilibration buffer (50 mM potassium phosphate, 300 mM sodium chloride, 10 mM

imidazole, pH 8.0). Cells were disrupted by sonication on ice (five cycles of 1 min sonication

at 30% intensity, and 50% pulsed cycle) using a SONOPULS HD 2070 (BANDELIN

Electronic GmbH & Co. KG, Berlin, Germany), and the lysates were clarified by

centrifugation at 10,000 × g and 4°C for 30 min. For purification, the crude lysates were

applied to 1.5 mL Roti® Garose-His/Ni Beads (Carl Roth, Karlsruhe, Germany). The resins

were washed with 15 mL washing buffer (50 mM sodium phosphate, 300 mM sodium chloride,

20 mM imidazole, pH 8.0) before target proteins were eluted with elution buffer (50 mM

sodium phosphate, 300 mM sodium chloride, 250 mM imidazole, pH 8.0). Protein-containing

fractions were pooled and re-buffered in 50 mM KPi pH 7.5 using PD10 columns (GE

Healthcare, Buckinghamshire, UK). PFE wild-type was expressed as previously reported47.

Activity assays

The activity of the PFE variants towards the hydrolysis of para-nitrophenyl acetate (pNPA)

was analyzed. For this purpose, 20 µL of a 100 mM pNPA solution in DMSO was added to a

96-well plate and 180 µL of a PFE solution of known concentration in 50 mM KPi pH 7.5 was

added to start the reaction. The absorbance was followed at 405 nm and the initial slope was

calculated. The reaction was carried out at 25°C. Autohydrolysis was determined by adding

180 µL of the 50 mM KPi pH 7.5 buffer and subtracting the value from the hydrolysis rate of

the PFE mutants. Specific activity was calculated using a standard curve of para-nitrophenol

(0-1 mM). The hydrolysis of rac-1-phenyl-2-pentyl acetate (1) and rac-1-phenylethyl acetate

(2) was analyzed for all PFE mutants. For this purpose, 975 µL of a 90 µg/mL PFE solution

was added to a 1.5 mL tube. The reaction was started by adding 25 µL of a 200 mM substrate

solution in acetonitrile (final concentration 5 mM), and was run for 24 h at 37°C and

1000 rpm. Time samples of 200 µL were taken after 1, 2, 4, and 24 h and extracted with

200 µL of ethyl acetate twice. The organic phases were pooled, dried over anhydrous sodium

sulfate, and analyzed by GC.
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Scheme 1. Kinetic resolution of substrates 1 and 2 studied using PFE and its variants.

Gas chromatography (GC) analysis

Analysis was performed by gas chromatography with a flame ionization detector (GC-2010,

Shimadzu, Kyoto, Japan) equipped with a Hydrodex β3P column (25.0 m × 0.25 mm,

0.25 μm film thickness, Macherey–Nagel, Düren, Germany). For the detection of the

synthesis or hydrolysis of 1 column temperature was held at 95°C for 30 min, increased to

110°C with 5°C/min, and held for 45 min. Retention times: (S)-1-phenyl-2-pentyl acetate

50.5 min, (R)-1-phenyl-2-pentyl acetate 51.5 min, (S)-1-phenyl-2-pentanol 66.7 min,

(R)-1-phenyl-2-pentanol 69.2 min. For the detection of the hydrolysis of 2 column

temperature was held at 110°C for 30 min. Retention times: (S)-1-phenyl-ethyl acetate:

4.3 min, (R)-1-phenyl-ethyl acetate: 5.9 min, (S)-1-phenylethanol: 8.0 min,

(R)-1-phenylethanol: 7.1 min.

Results and Discussion

Catalytic residues redesign

The esterase I from Pseudomonas fluorescens (PFE), with wide experimental validation 47–49,

was chosen as the test scaffold protein. This enzyme hydrolyzes small aliphatic esters and

its active site contains the typical Ser-His-Asp catalytic triad (Figure S1).

To test the performance of AsiteDesign in identifying optimum positions for placing the

catalytic residues, the amino acids forming the esterase catalytic triad in the wild-type (WT)

enzyme (Ser94, His251, and Asp222) were mutated to Ala. Using this mutated structure, an
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MC search was performed, employing ethyl acetate as the probing substrate. In the

simulation, all residues listed in Table S1 were allowed to be mutated to one of the residues

of the catalytic triad. As mentioned in the method section, during the simulation once a new

position is accepted for a given catalytic residue, the previous position of the catalytic

residue is mutated back to the WT amino acid. Encouragingly, the catalytic residues of the

WT enzyme were recovered as the best solution (Table S2). This result demonstrates that

the protocol can identify the optimal positions for the catalytic residues.

In addition, the simulation resulted in three enzyme variants (PFE_1, PFE_1*+I155D,

PFE_1*+A183D) in which both positions 28 and 29 are assigned to the Ser and His

residues, respectively (Figure S1). The only difference resides in the location of the acid

residue. It is interesting to highlight that, in these enzyme variants, the catalytic residues are

the mirror image of the WT enzyme (Figure 1). Therefore, these variants are expected to

exhibit opposite enantioselectivity relative to the WT enzyme.

Figure 1. PFE WT and the newly designed active site. The catalytic triad residues of the WT

are colored in red and labeled, while the ones from the PFE_1 design are also shown in

yellow and labeled. The figure displays that the designed variants are the mirror image of the

WT active site in the same protein cavity.
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To test the stability of the predicted variants, 100 ns MD simulations were performed for each

enzyme. These simulations indicated that the variants are less stable compared to the WT

(Figure S2). The PFE_1 variant, however, exhibited acceptable catalytic distances (Figure 2

and S3). The analysis of the MD simulations suggests that the W28S mutation in PFE_1

results in a cavity that is occupied with water, thereby destabilizing the structure. To address

this, compensatory mutations (C194T, V195M, and C194T/V195M) were introduced. These

mutants, however, exhibited similar values for the metrics of the MD simulations.

Figure 2. Distribution of the catalytic distances (serine–histidine distance, dHγSer–Nδ/εHis;

acid–histidine distance, dOδ/εAsp/Glu–Hδ/εNHis) along the MD simulations. Four MD

replicas of 100 ns were performed for both the WT and all selected mutants from the

AsiteDesign pipeline. PFE_1* stands for W28S/L29H/S94A.

The computationally designed variants, recombinantly expressed in E. coli and purified, were

then verified experimentally to characterize the enzymes’ activities (Tables 1 and S2). In

these variants, the native catalytic machinery was disabled by mutating the nucleophilic

Ser94 to Ala. The experimental results showed that the PFE_1 variant is indeed active in the
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hydrolysis of pNPA and the racemic compounds 1 and 2. Its activity, however, was lower

than the WT enzyme. This could be due to the destabilization effect of mutations, as can be

seen from the decreased melting temperature of the designed variants. Alternatively, the

lower observed activity could be because of less optimum catalytic distances (Figure 2) and

less stability of the active site as it can be seen from the catalytic triad's local RMSD (Figure

S2). These observations imply that this variant has a less organized catalytic geometry. This

phenomenon has been observed in other designed (or natural) hydrolase active sites, where

improving these distances gave better overall activities30,50. This was predicted by the MD

simulations of the mutants. Interestingly, the PFE_1 variant exhibited an inverse selectivity

for the bulky compound 1. Variants PFE_2 and PFE_3 were both inactive toward 1 but

showed activity toward pNPA (Table S4).

It was confirmed that the pNPA hydrolysis was not caused by potential imidazole impurities

from purification. This was demonstrated by the hydrolysis of 2, which is not hydrolyzable by

imidazole and is a less challenging PFE substrate than the bulky substrate 1 (Table S4).

Since all the purified PFE variants showed activity and selectivity in the hydrolysis of 2, and

autohydrolysis was not observed, the experimental data clearly confirm enzymatic

hydrolysis.

Table 1. Experimental measured activities for the catalytic designs in the hydrolysis of

substrate 1. The activity is reported as conversion. The residue numbering corresponds to

the 1VA4 structure. [a]: after 24 hours, [b]: after 1 hour.

PFE variants Mutations Substrate 1 Predicted selectivity

WT - 8.9 % (8 %ee (R), E 1)[a] -

PFE_1 W28S/L29H/T191D/
S94A

2.3 % (13 %ee (S), E 1)[a] (S)

PFE_2 W28S/L29H/T191D/
S94A/C194T

Not detectable (S)

PFE_3 W28S/L29H/T191D/
S94A/V195M

Not detectable (S)

E values were calculated according to Chen et al51.

These results suggest that, for a given binding pocket, the protocol is able to identify multiple

viable solutions for designing catalytic residues, which can be used as a starting point for

further optimization.
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Binding pocket redesign

To test the performance of AsiteDesign for non-catalytic residues, 1 was chosen as the

substrate (Scheme 1). The WT enzyme exhibits low activity and enantioselectivity for 1,

which makes it a good candidate for improvement. Additionally, the previous site-directed

mutagenesis of this enzyme did not yield any variants with high activity for 147 . The binding

pocket design simulations were performed by including 31 residues of the active site (Table

S3; design domain, notice that catalytic residues were excluded). In these simulations, no

assumptions were made for the positions of mutations and all residues are present in the

first shell of the active site, 11 residues (Figure 3; highlighted in yellow), were allowed to

mutate while the rest were only repacked. Since the enzyme was expected to hydrolyze a

hydrophobic substrate, the allowed mutations were limited to hydrophobic amino acids (A, I,

L, F, P, W, V, Y).

Figure 3. Active site of PFE and the used design domain. The catalytic triad residues are

colored in red, the mutable residues in yellow, and the only repackable residues in violet.

In addition, sequence restraints were imposed on the active site residues (which correspond

to the WT active site) to avoid large divergence from the WT enzyme, thereby favoring

sequence conservation with an energy penalty. The substrate was placed in the active site

manually and MC simulations were performed while imposing distance restraint between the

carbonyl carbon of substrate and Ser94.

Two separate MC simulations were performed for the (R)- and (S)-enantiomers of 1, thereby

evolving the active site for each enantiomer independently. For each enantiomer, the 50

variants with the overall best energies (protein and substrate binding) were selected. These
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structures were then clustered based on the binding mode of the substrate and from each

cluster one variant was chosen (Table S5). Encouragingly, the simulations targeted many of

the active site positions that were previously suggested to be important for enantioselectivity

(F125, F158, and I224)47 in addition to some new positions (W28, V121, and F198).

However, the predicted mutations for these positions may differ from the previous study.

To test the predicted variants activities, substrate binding was simulated by PELE software42.

In these simulations, the substrate was placed outside the active site and the binding was

monitored by counting catalytic events and computing the average energy of the ligand in

the active site (Figure 4). A catalytic event is defined as a conformation where the distance

between the carbonyl C of the substrate and the alcoholic O of the catalytic Ser residue is

within 4 Å, while the H-bonds of the catalytic triad are within reasonable distances

(<= 3.5 Å)31. Also, the distance between the catalytic His residue and the ether O of the

substrate is less than 6.5 Å (as the protonated His residue will give a proton to this atom

during the reaction, to release the alcohol product52). Overall, the predicted variants

exhibited a higher number of catalytic events compared to the WT (Table S5). Moreover, the

distribution of the average interaction energy (Figure S4) is better in many variants

compared to the WT, and key catalytic distances have good values as well (Figure S5-8).
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Figure 4. Initial setup for PELE simulations and the representation of a catalytic event. The

substrate is placed outside the active site and allowed to explore around the drawn box

(top). The catalytic event is represented with every key distance highlighted in a different

color (blue for serine-histidine, beige for acid-histidine, violet for serine-substrate, and green

for histidine-substrate) (bottom). The catalytic triad residues are colored in red, and the

substrate in cyan.
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Table 2. Experimental measured activities for the binding pocket redesigns in the hydrolysis

substrate 1. The activity is reported as conversion. The residue numbering corresponds to

1VA4 structure. [a]: after 24 hours, [b]: after 1 hour, [c]: after 2 hours.

PFE variants Mutations Substrate 1 Predicted
selectivity

WT - 8.9 % (8 %ee (R), E 1)[a] -

PFE_4 W28A/F158L/F198A 6.0 % (3 %ee (S), E 1)[a] -

PFE_5 F158L/F198A 66.7 % (32 %ee (S), E
4)[a]

(S)

PFE_6 W28A/F125A/F158L/F19
8A

3.3 % (9 %ee (S))[a] (S)

PFE_7 W28A/F158L/F198A/I22
4L

5.2 % (8 %ee (R), E 1)[a] (S)

PFE_8 F125A/F158L 23.4 % (55 %ee (S), E
4)[a]

(R)

PFE_9 F125A/F158L/I224L 1.4 % (29 %ee (R))[a] (R)

PFE_10 F125A/F158L/F198A 16.3 % (60 %ee (S), E
4)[a]

(R)

PFE_11 V121A/F125A/I224L 2.9 % (38 %ee (S))[a] (R)

PFE_12 V121A/F158A/F198V 1.6 % (100 %ee (S))[a] (R)

Based on the in silico analysis, 8 variants with the highest number of catalytic events relative

to the WT enzyme, were selected for experimental verification. The experimental results

show that three predicted variants (PFE_5, PFE_8, and PFE_10) exhibited significant

improvement over the WT enzyme in the hydrolysis of 1 and, in contrast to the WT enzyme,

they are selective for the (S) substrate (Table 2). These variants contain F158L, F125A, and

F198A substitutions. Mutation of these bulky residues to smaller hydrophobic ones opens up

the active site to accommodate the bulky substrates (Figure 5).

These results demonstrate that the design protocol is able to identify the hot spots in the

active site and propose mutations that can potentially improve the enzyme activity for a
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given substrate. However, the simulations were not able to predict the variants

enantioselectivity accurately. The main reason for this could be that the design/predictions

were performed based on ligand binding energies, which does not necessarily correlate with

enantioselectivity. This can potentially be improved by incorporating a transition state analog

as the probing substrate, which is the main deciding factor for enantioselectivity.

Nevertheless, an accurate prediction of the enantioselectivity is notoriously challenging as

the energy difference between the activation energies of enantiomers are often very small.

The binding pocket designed variants also exhibited lower melting temperatures. The main

reason for this is that the simulations are driven by improving the ligand binding energies,

at the expense of protein stability. This issue can be alleviated by downstream enzyme

stability optimization of the designed variants either computationally or experimentally6–10.

Figure 5. Representative catalytic pose of the WT enzyme and the successful in silico

evolved variants. The catalytic triad residues are colored in red, the substrate in cyan, and

the mutated residues in yellow. Possible pi-pi interactions between the substrate and Phe

residues are shown with a dashed green line.
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Conclusions

This work presents the AsiteDesign protocol, which aims at engineering active sites of

enzymes to either introduce new catalytic residues or to modify an existing active site in

silico. The protocol is implemented using the pyRosetta library, and it combines MC

sampling of the active site residues with enhanced sampling techniques to identify the most

suitable positions for a given active site. The ligand sampling is also included in the

simulation, which is necessary to identify the optimal solutions.

To demonstrate the performance of the protocol, a new catalytic triad was designed in the

active site of the esterase I from Pseudomonas fluorescens (PFE). The experimental

characterization demonstrated that the designed variants are not only active biocatalysts, but

they also exhibited inverse enantioselectivity for the bulky chiral substrate 1. Thus, the

binding pocket of the enzyme was also successfully engineered to improve the activity for 1.

Overall, these examples demonstrate that the AsiteDesign protocol is able to identify

multiple viable solutions for designing active site residues for a given active site. This

approach, thus, can be used in the engineering of multifunctional catalysts or designing new

catalytic residues in a given putative binding pocket.
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Supporting Information

Table S1. Recompilation of all the residues in the design domain of the catalytic residues

redesign’s experiment. The residue numbering corresponds to 1VA4 structure.

Residue number

27

28

29

30

34

57

69

93

94

95

120

121

125

135
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139

140

143

147

154

155

158

162

183

191

195

198

199

222

224

225

230

251

Table S2. Top 10 catalytic designs given at the end of the ASiteDesign simulation with PFE’s

structure (where the original catalytic residues have been mutated to ALA). The variants are

ranked according to the total energy.

Total Energy Mutations

-3170.1 A94S/A251H/A222D (WT)

-3160.1 W28S/L29H/T191D (PFE_1)

-3159.6 A94S/V225H/A222D

-3157.8 A94S/A251H/F162D

-3156.8 A94S/A251H/I224D

-3156.1 W28S/L29H/I155D (PFE_1*+I155D)

-3150.8 A94S/V225H/F125D
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-3150.1 W28S/L29H/A183D (PFE_1*+A183D)

-3148.5 W28S/V195H/T191D

-3147.7 W28S/M95H/V121D

Table S3. Recompilation of all the residues in the design domain of the binding redesign

pocket’s experiment. The residue numbering corresponds to 1VA4 structure.

Residue number Type of
alteration along
simulation

28 Mutable

29 Mutable

30 Mutable

34 Only repackable

57 Only repackable

69 Only repackable

93 Only repackable

94 Only repackable

95 Only repackable

120 Only repackable

121 Mutable

125 Mutable

135 Only repackable

139 Only repackable

140 Only repackable

143 Mutable

147 Only repackable

154 Only repackable

155 Only repackable

158 Mutable
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162 Mutable

183 Only repackable

191 Only repackable

195 Only repackable

198 Mutable

199 Only repackable

222 Only repackable

224 Mutable

225 Mutable

230 Only repackable

251 Only repackable

Table S4. Experimental measured activities for the catalytic designs with the other tested

substrates; pNPA and 2. pNPA activity is recorded according to specific activity, while for

substrate 2 the conversion is reported. The melting points (Tm) of the PFE variants were

determined by NanoDSF. The residue numbering corresponds to the 1VA4 structure. [a]:

after 24 hours, [b]: after 1 hour.

PFE variants Mutations Tm
[ºC]

pNPA
activity
[U/mg]

Substrate 2

WT - 71.8 162.2 48.7 % (91 %ee (R), E
59)[b]

PFE_1 W28S/L29H/T191D/S9
4A

44.9 0.9 17.7 % (80 %ee (R), E
11)[a]

PFE_2 W28S/L29H/T191D/S9
4A/C194T

50.9 0.2 2.1 % (43 %ee (R), E 3)[a]

PFE_3 W28S/L29H/T191D/S9
4A/V195M

44.8 1.3 0.9 % (11 %ee (R), E 1)[a]

Table S5. PELE simulation results of selected mutants with 1. Some variants were selected

based on two structures by combining the mutations. The residue numbering corresponds to

the 1VA4 structure.
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Probing
substrate

Mutations Structure Catalytic
events

(S-substrat
e)

Average
Interaction

Energy
(S-substrate)

[kcal/mol]

Catalytic
events

(R-substrate)

Average
Interaction

Energy
(R-substrate)

[kcal/mol]

(R,S)-1 - 1VA4 0 -29.8 24 -34.4

(S)-1 F158L/F198A PFE_5 1849 -33.8 1291 -33.0

(S)-1 W28A/F125A/
F158L/F198A

PFE_6 2731 -32.1 1721 -32.5

(S)-1 W28A/F158L/F
198A/I224L

PFE_7 3497 -32.3 2916 -32.9

(R)-1 F125A/F158L PFE_8 0 - 3155 -33.1

(R)-1 F125A/F158L/I
224L

PFE_9 15 -28.1 810 -31.1

(R)-1 F125A/F158L/
F198A

PFE_10 1079 -31.6 1775 -33.2

(R)-1 V121A/F125A/I
224L

PFE_11 820 -33.0 989 -34.0

(R)-1 V121A/F158A/
F198V

PFE_12 156 -32.2 1153 -34.7

(S)-1 F143A/F198A PFE_13 491 -32.9 2003 -33.6

(S)-1 V121A/F125A/
F198I

PFE_14 2525 -31.8 2835 -32.1

(S)-1 W28A/V121A/
F158L

PFE_15 17 -31.3 746 -34.0

(R)-1 W28A/F158L/I
224L

PFE_16 3684 -31.5 2484 -33.0

(R)-1 V121A/F198A/
V225A

PFE_17 274 -31.9 164 -28.9

Table S6. Experimental measured activities for the binding pocket redesigns with the other

tested substrates; pNPA and 2. pNPA activity is recorded according to specific activity, while

for substrate 2 the conversion is reported. The melting points (Tm) of the PFE variants were

determined by NanoDSF. The residue numbering corresponds to the 1VA4 structure. [a]:

after 24 hours, [b]: after 1 hour, [c]: after 2 hours.
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PFE
variants

Mutations Tm
[ºC]

pNPA
activity
[U/mg]

Substrate 2

WT - 71.8 162.2 48.7 % (91 %ee (R), E 59)[b]

PFE_4 W28A/F158L/F198
A

57.0 19.1 47.4 % (95 %ee (R), E 115)[a]

PFE_5 F158L/F198A 69.5 79.0 43.8 % (89 %ee (R), E 36)[b]

PFE_6 W28A/F125A/F158
L/F198A

58.2 1.3 2.0 % (50 %ee (R), E 3)[a]

PFE_7 W28A/F158L/F198
A/I224L

57.3 1.7 10.6 % (74 %ee (R), E 7)[a]

PFE_8 F125A/F158L 63.6 162.6 48.4 % (95 %ee (R), E 118)[c]

PFE_9 F125A/F158L/I224
L

62.0 83.4 47.6 % (98 %ee (R), E >200)[c]

PFE_10 F125A/F158L/F198
A

63.6 2.9 39.6 % (96 %ee (R), E 94)[c]

PFE_11 V121A/F125A/I224
L

59.7 13.4 31.6 % (71 %ee (R), E 8)[a]

PFE_12 V121A/F158A/F19
8V

60.4 26.9 13.1 % (88 %ee (R), E 18)[a]

Table S7. Primers used for the construction of the PFE_2 (C194T_fw/rv; from PFE_1),

PFE_3 (V195M_fw/rv; from PFE_1), PFE_5 (A28W_fw/rv; from PFE_4), PFE_6

(F125A_fw/rv; from PFE_4), PFE_7 (I224L_fw/rv; from PFE_4), PFE_9 (I224L_fw/rv; from

PFE_8), PFE_10 (F198A_fw/rv; from PFE_8).

Primer Sequence (5’→3’) Ta [ºC]

C194T_fw CGATGTTGATaccGTGACCGCCTTCG 63

C194T_rv GCTTTCAGGCTTGCCAGC 63

V195M_fw TGTTGATTGTatgACCGCCTTCG 66

V195M_rv TCGGCTTTCAGGCTTGCC 66

A28W_fw CAGCCATGGTtggCTGCTGGATG 61
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A28W_rv AACAGCACCGGTTTACCA 61

F125A_fw GACCCCGCTGgcaGGCCAGAAACCG 68

F125A_rv ACGGCACCCAGCAGAACC 68

I224L_fw TGGCGATCAGctgGTGCCGTTCG 65

I224L_rv TCGCCATGAATCACCAGG 65

F198A_fw CGTTACCGCCgcaGCCGAAACCG 62

F198A_rv CAATCCACGGTTGCTTTC 62

29



Figure S1. PFE and its catalytic residues (top). The catalytic triad residues are colored in

red and labeled (PDB code: 1VA4). Potential positions for the design of an alternative

catalytic triad (bottom). The amino acid positions Trp28 and Leu29, which are mutated to Ser

and His, respectively, in the three variants PFE_1, PFE_1*+I155D, and PFE_1*+A183D, are

colored beige. The introduced Asp, whose location differs in PFE_1, PFE_1*+I155D, and

PFE_1*+A183D, is shown in pink.
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Figure S2. Distribution of the RMSD of the whole protein and its catalytic triad along the MD

simulations. Four MD replicas of 100 ns were performed for both the WT and all selected

mutants from the AsiteDesign pipeline. PFE_1* stands for W28S/L29H/S94A.

Figure S3. Distribution of the key distances between the substrate and the active site along

the MD simulations. Four MD replicas of 100 ns were performed for both the WT and all

selected mutants from the AsiteDesign pipeline. PFE_1* stands for W28S/L29H/S94A.

31



Figure S4. Distribution of the interaction energy between the substrate and the enzyme

along the PELE simulations of the WT and all assayed variants.

Figure S5. Distribution of the serine-histidine distance along the PELE simulations of the WT

and all assayed variants.
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Figure S6. Distribution of the acid-histidine distance along the PELE simulations of the WT

and all assayed variants.

Figure S7. Distribution of the serine-substrate distance along the PELE simulations of the

WT and all assayed variants.
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Figure S8. Distribution of the histidine-substrate distance along the PELE simulations of the

WT and all assayed variants.
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4 | Discussion

This chapter tries to easily describe my computational work of the articles presented in
Chapter 3. The experimental work of the shown research has been performed by others
who deserve credit for it, meaning I will only shortly report the outcome. Thus, I will go
one by one, explaining my contributions to each paper.

4.1 Design of a pluriZyme with more than
two active sites

As mentioned in the first goal of Chapter 2, we wanted to create an enzyme with 3 bi-
ological active sites or more. As a starting point, the pluriZyme created from a serine
esterase extracted from a metagenomic sample of Lake Arreo was used (PDB ID: 6RB0)
(Martínez-Martínez et al., 2013; Alonso et al., 2019). First, we performed a global explo-
ration of the protein surface to find alternative binding sites using PELE (Kenneth W.
Borrelli et al., 2005; Diáz et al., 2020). The used substrate was glyceryl tripropionate,
which contains three ester bonds and is a widely standard ester compound. These alter-
native binding sites are local minima where the catalytic residues or the functional site
are not present (Figure 4.1).

Interestingly, an alternative binding site was found next to the cavity of the artificial
active site (named site II). To ensure that the active sites would not compromise each
other, the simulations were run with the crystal structure that has the suicide inhibitor
molecules bound to the catalytic Ser residues of both existing active sites. These results
showcased that the cavity of site II was quite big (it could accommodate both the suicide
inhibitor and a glyceryl tripropionate molecule), and thus, we imagined this pocket could
fit peptides.

169
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Figure 4.1: Representative plot of a global exploration of alternative
ester binding sites in the pluriZyme (PDB ID: 6RB0) structure with the
bound suicide inhibitors. Accepted PELE steps are depicted as a dot in the
scatter plot. The X axis refers to the distance to site II (distance between
the ester C atoms of the substrate and the nucleophilic O of the catalytic
Ser residue) and the Y axis to the interaction energy. The steps exploring
the new found site are highlighted in yellow color. A representative pose
of the alternative binding site is depicted on the right (main active site C
atoms are stained in maroon and the artificial active site in dark green).

For this reason, we decided to add a cysteine-histidine dyad, which facilitates hydrolysis
of peptide bonds. Also, this approach allowed us to both create a new type of active site,
as well as reuse the histidine residue of site II to create the catalytic dyad. The candidate
residue to change for a cysteine was Leu24 due to its proximity to the catalytic histidine
residue of site II and its location in the cavity (Figure 4.2).

Then, several dipeptides (AH, AQ, DI, EA, FF, KA, LA, LL, NV, PF, QQ, RG, SW, TM,
YN, and YY) of different nature were prepared, and local PELE explorations of the newly
functionalized site (site III) were performed. The intention was to explore the likelihood of
the new active site binding peptides in catalytic positions (Cys residue close to the peptide
bond) to see whether the new site could have protease activity or not. All dipeptides
reached good catalytic poses (dCamide−SCysγ

≤ thresholdÅ & dHCys
γ −NHis

ε
≤ 3.5 Å) around

site III, except for YY (Table 4.1). One example of the results with the simulation of two
dipeptides is shown in Figure 4.3.

These results encouraged us to send the single mutant to our collaborators from Ferrer’s
laboratory (CSIC) for experimental verification of protease activity. Once the protease
and esterase activities of the developed pluriZyme were characterized, a cascade reaction
using both sites was elaborated. The chosen reaction was the synthesis of L-histidine
methyl ester, an intermediate for the design of Schiff base ligands (Ogawa et al., 2018),
from the dipeptide L-carnosine. To computationally test whether the artificial protease
site could break the peptide bond in L-carnosine, a local PELE exploration was per-
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Figure 4.2: Illustrative binding pose of glyceryl tripropionate with the
Leu24 and catalytic His from site II are highlighted. Leu24 makes a H-
bond with the carbonyl O atom in the ester bond by the NH group in the

backbone (indicated by a cyan dash line).
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Table 4.1: Absolute and relative (divided by all the other poses. Value in
%) number of catalytic poses with threshold of d

Camide−SCysγ
≤ threshold Å

being 3.75, 4,25, 5 Å.

Dipeptide
sub-
strate

Number of accepted cat-
alytic poses [3.75 Å]

Number of accepted cat-
alytic poses [4.25 Å]

Number of accepted cat-
alytic poses [5 Å]

AH 129 (0.265 %) 443 (0.91 %) 779 (1.6 %)
AQ 17 (0.04 %) 105 (0.248 %) 421 (0.995 %)
DI 3 (0.012 %) 68 (0.279 %) 144 (0.59 %)
EA 14 (0.034 %) 584 (1.416 %) 1200 (2.91 %)
FF 0 7 (0.025 %) 41 (0.145 %)
KA 5 (0.013 %) 412 (1.093 %) 1197 (3.177 %)
LA 14 (0.033 %) 777 (1.858 %) 1163 (2.781 %)
LL 0 17 (0.044 %) 67 (0.172 %)
NV 0 7 (0.018 %) 371 (0.935 %)
PF 58 (0.171 %) 495 (1.456 %) 657 (1.933 %)
QQ 20 (0.065 %) 128 (0.415 %) 295 (0.955 %)
RG 9 (0.029 %) 171 (0.553 %) 1016 (3.286 %)
SW 47 (0.147 %) 444 (1.393 %) 513 (1.609 %)
TM 38 (0.095 %) 404 (1.014 %) 635 (1.594 %)
YN 20 (0.081 %) 56 (0.227 %) 72 (0.292 %)
YY 0 0 0
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KA

FF

Figure 4.3: Density plots of the distribution of the catalytic cysteine-
substrate distances against the interaction energy of FF and KA peptides.
Only the poses of the 10% lowest percentile regarding the distance are
shown. A representative pose of the bound dipeptide in site III is depicted

on the right.
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Figure 4.4: Density plot of the distribution of the catalytic cysteine-
substrate distances against the interaction energy of L-carnosine peptide.
Only the poses of the 10% lowest percentile regarding the distance are
shown. A representative pose of the bound dipeptide in site III is depicted

on the right.

formed. The results showed good catalytic poses (26 for dCamide−SCysγ
≤ 3.75Å, 166 for

dCamide−SCysγ
≤ 4.25Å, 425 for dCamide−SCysγ

≤ 5Å) and overall distribution of the catalytic
cysteine-substrate distance versus the interaction energy (Figure 4.4).

The resulting designed catalyst could hydrolyze azo(casein) (a substrate model for pro-
tease activity). Likewise, it could synthesize L-histidine methyl ester from L-carnosine in
the presence of methanol, showing its potential to perform one-pot cascade reactions.

4.2 A Plurizyme for the pharmaceutical in-
dustry

Until recently, the designed pluriZymes in our laboratory had no specific application for
the industry. Thus, we wanted to show whether we could develop a compelling cascade
reaction with a single protein scaffold using another type of enzyme family. The phar-
maceutical industry must catalyze several chemical reactions to transform inexpensive
starting fragments into valuable drugs/chemicals (requiring several inorganic or biologi-
cal catalysts). As explained in Chapter 1, around 40 % of pharmaceutical drugs contain a
chiral amino group within their structure (Ghislieri and Turner, 2014; Kelly et al., 2018).
Hence, the design of a hydrolase site in an ω-TAs could be profitable for the pharmaceu-
tical industry.

The used ω-TA (named TR2) for that purpose is a class III ω-TA extracted from an
acidic beach pool on Vulcano Island (Coscolín et al., 2019). The design protocol starts
with the global exploration of the protein surface to find noncatalytic ester binding sites
with PELE and glyceryl tripropionate as the probe. Since ω-TAs are functional dimeric
proteins and each monomer had 457 residues, several noncatalytic ester binding sites were
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found (Figure 4.5).

Several variants were designed to introduce catalytic triads in the different found ester
binding sites, assaying more options (Table 4.2). The variants were created manually,
taking into account a few rules/tips; the fewer mutations, the better (meaning trying
to reuse present residues in the found cavity is always better), and the less drastic the
changes, the better.

The variants were computationally tested with local PELE explorations, MD simulations,
and ∆∆G estimations using the HotSpot Wizard server (Sumbalova et al., 2018). As in
the previously explained paper, local PELE explorations were used to examine whether
catalytic poses can be reached or not. MD simulations describe how well the catalytic
architecture of the active site is maintained over time and the overall geometry of the
protein. The ∆∆G estimations were used to see if some of the mutations were highly
destabilizing. All the plots and data regarding these simulations can be seen in Chapter
3.

All variants were tried experimentally at Ferrer’s laboratory (CSIC) to gather more in-
formation about designing pluriZyme variants and see if the best ones, according to the
computational analysis, would be good in real life.

Once we had the experimental feedback of the variants, we studied whether we could
tailor a cascade reaction with the newly created pluriZyme. The considered example
was one precursor block of all gliptins (a family of antidiabetic drugs), (R)-3-amino-4-
(2,4,5-trifluorophenyl)-butanoic acid (3-ATfBA) (Savile et al., 2010; Kim et al., 2019;
Khobragade et al., 2021). 3-ATfBA is synthesized from an ester precursor (methyl 3-
oxo-4-(2,4,5-trifluorophenyl)butanoate, 3-OTfBE) by using both a serine esterase and an
ω-TA (Kim et al., 2019; Khobragade et al., 2021). To see if 3-ATfBA could be synthesized
from the pluriZyme alone, we computationally studied whether 3-OTfBE and the amino
ester, methyl 3-amino-4-(2,4,5-trifluorophenyl)butanoate (3-ATfBE), could bind to the
added hydrolase site in a catalytic manner. Both substrates showed catalytic poses (23
for 3-ATfBE and 42 for 3-OTfBE), but with an order of magnitude lower than glyceryl
tripropionate, expecting some catalytic activity, but slower than tripropionin. Represen-
tative found catalytic poses with PELE are shown in Figure 4.6.

The experimental validation showed that the developed enzyme could synthesize 3-ATfBA
from 3-OTfBE in a single protein scaffold with a kcat

KM

= 202.5M−1 · s−1 for the amination

of the β-keto acid and a kcat
KM

= 224.9M−1 · s−1 for the hydrolysis of the ester bond in
the β-keto ester. Moreover, the added hydrolase site could hydrolyze 52 esters from a set
of 96 diverse molecules, meaning the artificial active site was highly promiscuous. Thus,
we decided to experimentally try other transformations of β-keto esters into enantiopure
β-amino acids, and 3 out of 7 substrates were successfully converted.
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Figure 4.5: Global exploration of noncatalytic ester binding sites on the
TR2 surface with PELE. Scatter plots represent the global exploration of
the monomeric (A) and dimeric (B) structures. In both plots, the X axis
refers to the distance of the substrate to the transaminase site (the catalytic
Lys residue bound to the PLP cofactor) and the Y axis to the interaction
energy. The steps exploring around found ester binding sites are highlighted
in a particular color (site A in dark blue, site B in purple, site C in lime,
site D in turquoise, site E in dark green, sites F/F’ in orange for chains A
and B and sites G/G’ in green for chains A and B). Representative poses
of glyceryl tripropionate in the found ester binding sites are depicted (C
atoms of the ester molecules are stained according to in which ester binding

site they are placed).
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Table 4.2: TR2 designed variants, their mutations, and which site is being
functionalized.

ID Mutations Number of
mutations

Ester binding
site

TR2 WT - -
TR2E1 K110D 1 E
TR2E2 A172SQ173H 2 G
TR2E3 W272SV107H 2 C
TR2E4 M112HM302D 2 E
TR2E5 G420SG399H 2 F
TR2E6 M112HT108D 2 E
TR2E7 V377SY277HT271D 3 A
TR2E8 V377SY277HY278D 3 A
TR2E9 Q52SY44HQ435E 3 D
TR2E10 F190SY188H I236D 3 B
TR2E11 F190SY188HG191D 3 B
TR2E12 F190SY188HR192E 3 B
TR2E13 A169SM167HM170D 3 G
TR2E14 W272S I347HE348D 3 C
TR2E15 V107SW272HG351K 3 C
TR2E16 V377SY277HT271DQ276E 4 A
TR2E17 V107SW272H I347DG351K 4 C
TR2E18 A251SD283HR306D 3 E
TR2E19 F190SE384HT422DR375A 4 B
TR2E20 F190SE373HE384DR375GR394G 5 B
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 3-ATfBE  3-OTfBE

Figure 4.6: Representative catalytic poses of 3-ATfBE and 3-OTfBE in
the hydrolase site of the successful variant. Catalytic triad distances (in
Å) are shown in green, the substrate-serine/histidine distances are shown

in black, and the oxyanion-hole distances are displayed in purple.

To computationally demonstrate the option of substrate channeling between both ac-
tive sites, we simulated the migration of 3-oxo-4-(2,4,5-trifluorophenyl)-butanoic acid (3-
OTfBA), the product of the hydrolysis of 3-OTfBE, from the added esterase site to the
WT transaminase site with PELE. Likewise, we designed two mutants (A232F/L60F and
A232F/F89W) to close the access channel, hindering the access of the reaction interme-
diate to the transaminase site. These simulations showed that the substrate could easily
reach the transaminase site from the designed hydrolase site but not in the two enclosing
mutants (Figure 4.7). Experimentally, we saw that the hydrolase activity of the assayed
mutant (A232F/L60F) was similar to the original pluriZyme, but the transaminase activ-
ity was lower. Moreover, the conversion of 3-OTfBE to 3-ATfBA was 3 times slower in the
enclosing mutant at short incubation times. Hence, both computational and experimental
results proved the possible substrate channeling between both functional sites.

To conclude, the pluriZyme is capable of using both active sites synergistically to trans-
form β-keto esters into enantiopure β-amino acids. Moreover, the mutations of the sucess-
ful pluriZyme were introduced in a missing loop at the original crystal structure of TR2,
which was modeled with Prime (Madhavi Sastry et al., 2013) and refined with MD sim-
ulations (Figure 4.8). Hence, inserting a catalytic triad stabilized the missing loop by
adding two internal H-bonds, improving the thermostability of the enzyme, meaning a
second biological active site does not always come at the expense of losing stability or
activity of the original active site.
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Figure 4.7: Initial pose near the esterase site from where 3-OTfBA started
in PELE’s migration simulations (top). Box plot representing the cofactor-
substrate distance (distance to PLP in the transaminase site) of all the
accepted PELE steps with a relative SASA of 0.1 or lower from these
simulations (middle). Representative 3-OTfBA poses of the PELE’s mi-
gration simulations in TR2E2, TR2E2 A232F/L60F , and TR2E2 A232F/F89W

(bottom).
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Prime MD

~ 250 ns

Figure 4.8: Modeling of the missing loop where the catalytic triad of the
TR2E2 variant resides. The initial crystal structure had the missing loop
modeled using Prime (Madhavi Sastry et al., 2013). Then, the modeled
loops were further refined with 250 ns (4 replicas) of apo MD of the dimer
structure to obtain the final structure used in the analysis. Both the sec-
ondary structure and the C atoms are shown in light green for the residues

present in the crystal structure and in blue for the missing residues.

4.3 Rational design of substrate promiscu-
ity on serine esterases

Once Ser-His-Asp/Glu catalytic triads are inserted into a functional enzyme, creating a
pluriZyme, it would be appealing to be able to engineer the new active site to enhance
the property of interest. Improving the overall activity of a serine hydrolase has been
performed widely (Ma et al., 2018; Liu et al., 2018; Moore and Arnold, 1996; Bornscheuer
et al., 1998). Still, the engineering of substrate promiscuity (the ability of an enzyme to
catalyze several substrates of different chemical nature) is less explored.

An in-depth analysis of the active site’s cavity and the study of the enzyme-substrate
migration pathways in two-high promiscuous and two low-promiscuous serine hydrolases
were performed before starting the design of substrate promiscuity on a serine hydrolase
active site. The four studied enzymes were previously published (Martínez-Martínez et al.,
2018, 2013), where three (EH1, EH88, and EH102) were extracted from a metagenomic
sample of Lake Arreo (Martínez-Martínez et al., 2018, 2013), and the other one was CalB.
EH1 and CalB were used as the high-promiscuous esterases (capable of hydrolyzing 72 and
68 esters of a library of 96 different esters), and EH88 and EH102 as the low-promiscuous
ones (capable of hydrolyzing 13 and 16 esters of a library of 96 distinct esters).

First, the active site’s cavity was analyzed with SiteMap (Halgren, 2007, 2009) and seven
features were extracted; volume, size (the number of inside points found in the cav-
ity according to SiteMap), exposure, enclosure, contact (tightness, the higher, the more
compact), hydrophobicity, and hydrophilicity. As seen in Figure 4.9, high-promiscuous es-
terases have bigger, more hydrophobic, and more compact (higher contact value) cavities
with more shelter from the solvent (higher enclosure/exposure ratios).
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Figure 4.9: Bar plot showing the SiteMap features of the active site’s
cavities of the four studied esterases. The Y red axis comprises the volume
(in Å3) and the size. The blue Y axis represents the remaining properties.

Then, the substrate-enzyme interactions were simulated with PELE to see how they
correlate with their substrate range. Two substrates were studied for all systems; phenyl
acetate, which could be hydrolyzed by all of them, and ethyl-3-oxohexanoate, which
could only be hydrolyzed by the high-promiscuous biocatalysts. All the plots regarding
these simulations can be found in Chapter 3. Basically, they show that high-promiscuous
esterases tend to have better interaction energies with the substrates and the reactive
region of the substrate tends to stay closer to the active site than the low-promiscuous
ones. Moreover, the SASA values are lower, meaning that the substrate is more buried in
the cavity in the high-promiscuous serine hydrolases. Plots representing the simulations
of EH1 and EH102 against phenyl acetate are shown in Figure 4.10 to exemplify these
results.

This rationalization of substrate promiscuity in serine hydrolases led us to transform
EH102 into a high-promiscuous esterase, using the different features and simulations that
let us know what a high-promiscuous esterase is. EH102 was selected over EH88 because
of the availability of its crystal structure (PDB ID: 5JD3), having a more reliable starting
point. By taking a look at the vicinity of the catalytic triad, several bulky residues
can be found, hiding a potentially bigger and more enclosed cavity that would allow
the binding of many more substrates (Figure 4.11). These residues are Ile16, Ile92, and
Trp96. The first assayed mutant aimed at drastically enlarging the active site’s cavity with
three mutations; I16G/I92A/W96G (EH102TM1). The active site’s cavity properties were
computed with SiteMap for the variant to see if the applied changes made the enzyme’s
cavity resemble one from a high-promiscuous esterase. Encouragingly, the volume, size,
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Figure 4.10: Density plots of the distribution of the catalytic serine-
substrate distance against the interaction energy (top) and SASA (bottom)
from the 10 % lowest percentile regarding the serine-substrate distance of
the accepted steps in the PELE simulations for EH1 and EH102 with phenyl
acetate as substrate. A representative binding pose is displayed (where
the ligand C atoms are stained in lilac and the protein ribbon colored
according to the secondary structure; ruby: α-helix, golden: β-sheet, and

gray: loops).
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Figure 4.11: Active site’s cavity of EH102WT (left) and EH102TM1
(right). The bulky residues targeted for mutation have the C atoms stained

in orange, while the catalytic residues have them in green.

tightness, enclosure, and hydrophobicity of the new cavity increased, while its exposure
decreased (Figure 4.12).

Also, PELE simulations to study the enzyme-substrate interactions in the designed cavity
with two unhydrolyzed substrates (ethyl-3-oxohexanoate and vinyl crotonate) by the WT
enzyme were performed. Both substrates showed better accommodation in the variant
compared to the WT enzyme with smaller serine-substrate distances, interaction energies,
and SASA values (plots regarding the simulation with ethyl-3-oxohexanoate as substrate
are displayed in Figure 4.13).

The variant was sent to be assayed experimentally at Ferrer’s laboratory (CSIC) to verify
if the designed mutations accomplished an increase in the substrates hydrolyzed by the
enzyme compared to the WT. Indeed, the mutant doubled the number of catalyzed sub-
strates (from 16 in the WT to 35 in EH102TM1). However, the overall activity (meaning
the average of the kcat against the different substrates) was compromised.

Mutating residues near the active site can alter the overall geometry of the catalytic
residues, making the H-bond distances in the catalytic triad worse. This effect of the
mutations can be monitored through MD simulations, and the improvement of these
distances can boost the overall activity of the biocatalyst (Santiago et al., 2018; Alonso
et al., 2019; Roda et al., 2021).

The mutations in EH102TM1, which went from bulky hydrophobic residues to smaller
ones, could have introduced more flexibility to the catalytic triad. Residue 16 is next to



184 4 | Discussion

Figure 4.12: Bar plot showing the SiteMap features of the active site’s
cavities of EH102WT in comparison with EH102TM1. The Y red axis
comprises the volume (in Å3) and the size. The blue Y axis represents the

remaining properties.

Figure 4.13: Density plots of the distribution of the catalytic serine-
substrate distance against the interaction energy (left) and SASA (right)
from the 10 % lowest percentile regarding the serine-substrate distance of
the accepted steps in the PELE simulations for EH102WT and EH102TM1

with ethyl-3-oxohexanoate as substrate.
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Figure 4.14: Box plots representing the Ser-His (dHSer
γ −NHis

ε
) and Asp-

His (d
OAsp
δ
−HHis

δN
) distances along the 500 ns of the 4 MD replicas performed

for EH102WT and EH102TM1.

Table 4.3: Recompilation of all the EH102 designed variants

WT TM1 TM2 TM3 TM4 TM5 TM6

Ile16 Gly16 Val16 Val16 Ala16 Ala16 Gly16
Ile92 Ala92 Ala92 Gly92 Gly92 Ala92 Gly92
Trp96 Gly96 Gly96 Gly96 Gly96 Gly96 Gly96

WT DM1 DM2 SM1 SM2 SM3

Ile16 Val16 Ala16 Gly16
Ile92 Gly92 Ala92
Trp96 Gly96 Gly96

the catalytic Ser residue, which means it could be hindering the H-bond between Ser and
His residues. 4 replicas of 500 ns MD simulations were run to confirm this hypothesis.
Both Ser-His and Asp-His distances significantly increased in the mutant compared to the
WT (Figure 4.14).

Based on the MD results, we proceeded by designing the second round of mutants aiming
at increasing the substrate promiscuity without compromising the overall activity. Single
mutants of position 16 were computationally assayed to see the progressive effect of sub-
stituting for a smaller and less-hydrophobic residue. Double mutants considered the other
two positions (92 and 96) to reduce the increase of flexibility of the catalytic Ser residue
and check whether substrate promiscuity can be increased without changing residue 16.
Triple mutants were designed by combining the variants from the single and double mu-
tants (Table 4.3). W96 was always mutated to G, since it is the most solvent-exposed and
biggest residue of the three residues, significantly increasing the cavity once it is mutated.

Again, the active site’s cavity properties were computed with SiteMap for all the variants.
The triple and double mutants showed similar cavities to the one from EH102TM1 (Figure
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4.15). On the other hand, single mutants gave smaller improvements of the cavity’s
properties.

The computational study of these mutants was followed by MD simulations to probe
the stability of the catalytic triad over time. Both EH102TM2 and EH102TM6 improved
the catalytic distances and the overall geometry of the catalytic triad (check the plots
in Chapter 3). EH102TM3, EH102TM4, EH102DM1, and EH102DM2 maintained similar
values with the WT enzyme. The remaining mutants showed disturbed catalytic triads
according to the studied metrics and performed simulations.

∆∆G estimations were used to see which variants would be more destabilizing than oth-
ers. According to this calculation, EH102TM2 seemed more promising (better ∆∆G value)
than EH102TM6. The MD results and stability analysis also suggested that residue 16
should be either substituted with a valine residue or preserved due to its role in main-
taining the catalytic integrity. Similarly, the results of both EH102DM1 and EH102DM2

variants seemed to point out that residue 92 must have some side chain (avoiding a Gly
residue).

Either way, we sent all mutants to be tested by our collaborators from Ferrer’s laboratory
(CSIC) for experimental validation to see if we could predict which variants could be
better computationally. The outcome was two prominent promiscuous esterases that
could hydrolyze 51 and 63 esters (EH102DM2 and EH102TM2, respectively) from the
mentioned library of 96 esters with similar or higher turnover rates in contrast with the
WT enzyme.
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A

B

Figure 4.15: Bar plots showing the SiteMap features of the active site’s
cavities of EH102WT in comparison with the second round mutants. The
top plot (A) represents the volume (in Å3) and the size. The bottom (B)

plot represents the remaining properties.
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4.4 A tool to automate the design of plur-
iZymes

PluriZymes developed in our laboratory used chemical intuition to add the catalytic
residues in a found alternative binding site to functionalize it. A set of rules/factors were
considered, such as the conservation of the mutated residues, prioritization to mutate
residues of the same category to the introduced one, choosing those combinations where
the catalytic residues are close in sequence and not only spatially, and trying to add the
functionality with the fewer mutations possible (reusing some already present residues in
the binding site). Although these designs were studied computationally through analysis
of the enzyme-substrate interactions in the new functionalized site (with PELE simu-
lations) and the stability of the catalytic architecture and the overall fold (with MD
simulations), the developed variants relied on someone coming up with them.

AsiteDesign, a heuristic algorithm capable of identifying the best positions for placing
the catalytic residues of a specific active site in the user’s protein scaffold, was developed.
The reason behind making this method was to democratize the idea of pluriZymes and
allow everyone to design an active site in their enzyme of interest with relatively modest
computational resources. The algorithm consists in an MC simulation (implemented with
pyRosetta) that randomly assigns the catalytic residues to a set of positions defined by
the user (being the residues in the alternative binding site) at every iteration, aiming
to find the optimal positions for these residues. The correct distances of the catalytic
residues are enforced by imposing distance restraints along the simulations.

At each iteration, a random position is mutated to one of the catalytic residues, and
the previously mutated position is recovered to the native residue. Simultaneously, the
substrate is first sampled by a rigid random translation and rotation. Then, a random
set of its rotatable bonds are chosen, followed by a partial optimization of them (instead
of assigning a random angle value). This sampling approach consists in an iterative grid
search to find the minimum energy conformation(s) (a full explanation on how it works
in Chapter 3). At last, the obtained ligand conformation is minimized with a gradient
descent approach.

An adaptive reinforcement learning protocol was implemented (Lecina et al., 2017) to
enhance the sampling in finding the optimal designs. The reason was that the number
of possible designs increases substantially with the number of input positions, plus the
iterations get more costly with bigger ligands. Basically, the algorithm runs in epochs
where the MC sampling of the catalytic residues is performed by multiple processors in
parallel. After an epoch ends, all designs are ranked based on a given objective function
(for instance, the total energy or the ligand energy), and the top ones are used as starting
point in the next epoch.
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Table 4.4: Top 10 catalytic designs returned by ASiteDesign with PFE’s
mutated structure. The variants are ranked according to the total energy.

Total Energy Mutations

-3170.1 A94S/A251H/A222D (WT)
-3160.1 W28S/L29H/T191D (PFE1)
-3159.6 A94S/V225H/A222D
-3157.8 A94S/A251H/F162D
-3156.8 A94S/A251H/I224D
-3156.1 W28S/L29H/I155D (PFE1∗+I155D)
-3150.8 A94S/V225H/F125D
-3150.1 W28S/L29H/A183D (PFE1∗+A183D)
-3148.5 W28S/V195H/T191D
-3147.7 W28S/M95H/V121D

Moreover, AsiteDesign can also be used to design an active site to enhance productive
substrate binding (and thus, catalytic activity). Hence, it can be employed for in silico
directed evolution of enzymes and to generate a smart library of mutants.

The method was assayed against the Pseudomonas fluorescens esterase (PFE) (Khala-
meyzer et al., 1999) to see if it could design an alternative catalytic triad in its active
site’s cavity. Likewise, the protocol was employed to enhance the hydrolysis of a bulky
chiral substrate (1-phenyl-2-pentyl acetate) by the WT’s active site.

The enzyme contains the archetypical Ser-His-Asp catalytic triad (Figure 4.16), but we
were aiming at designing alternative catalytic triads on the same active site’s cavity.
The amino acids comprising the WT catalytic triad were mutated to Ala to test the
performance of AsiteDesign in identifying optimum positions for placing the catalytic
residues.

The mutated structure was used as a starting point for the MC simulation with ethyl
acetate as the substrate. All of the positions in the active site’s cavity were allowed to be
assigned one of the catalytic residues; 27, 28, 29, 30, 34, 57, 69, 93, 94, 95, 120, 121, 125,
135, 139, 140, 143, 147, 154, 155, 158, 162, 183, 191, 195, 198, 199, 222, 224, 225, 230,
and 251.

As expected, the results showed that the best found solution was the WT catalytic triad
(Table 4.4). Additionally, three variants seemed promising as well. In those designs, the
catalytic Ser residue is placed in position 28, and the catalytic His residue in position
29. The only difference between the variants resides in the location of the catalytic Asp
residue (Figure 4.16).
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Figure 4.16: PFE and its catalytic residues (top). The catalytic triad
residues are colored in red and labeled (PDB ID: 1VA4). Potential positions
for the design of an alternative catalytic triad (bottom). The positions
colored in beige (28 and 29) represent the ones that were mutated to Ser
and His in the promising variants. The residues colored in pink are all the

possible locations of the Asp residue in the promising variants.
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Figure 4.17: Violin plots of the catalytic Ser-His (dHSer
γ −NHis

ε
) and Asp-

His (d
OAsp
δ
−HHis

δN
) distances along the MD simulations. PFE1∗ stands for

W28S/L29H/S94A.

4 replicas of 100 ns MD simulations were performed for the WT enzyme and each variant
to predict their stability. These simulations pointed out that the catalytic designs are less
stable compared to the WT one (Figure 4.17). Still, the PFE1 variant seemed to have
acceptable catalytic distances. Some mutations were introduced to improve them, but
did not succeed.

The PFE1 variant and two others with additional mutations were sent to be experimen-
tally verified by Bornscheuer’s laboratory (University of Greifswald). Due to the MD
results and the values of the catalytic distances, we expected a lower activity of the al-
ternative catalytic triad than the WT one. Certainly, the experimental results showed
PFE1 had hydrolase activity, but lower than the WT enzyme.

As mentioned earlier in the text, AsiteDesign was assessed for the improvement of the
hydrolytic activity of the WT enzyme towards 1-phenyl-2-pentyl acetate. The MC simu-
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Figure 4.18: Active site of PFE and the used design domain. The cat-
alytic triad residues are colored in red, the mutable residues in yellow, and

the only repackable residues in violet.

lation included 11 residues of the active site (excluding the catalytic residues) as mutable,
and 20 more were only repacked (Figure 4.18). As the enzyme was intended to hydrolyze
a hydrophobic substrate (with the ester bond as the only polar moiety), the allowed mu-
tations were only to hydrophobic residues (A, F, I, L, P, V, W, Y). Moreover, sequence
restraints were placed on the selected mutable residues to avoid considerable differences
from the WT enzyme, applying an energy penalty to favor sequence conservation.

Due to the chirality of the substrate, two separate MC simulations were run for the (R)-
and (S)-enantiomers of 1-phenyl-2-pentyl acetate. Thus, mutants evolving the active site
for each enantiomer alone are generated. For both enantiomers, the top 50 variants were
selected, and then, clustered based on the substrate’s binding mode. Finally, variants
were chosen based on the centroids of each cluster.

The selected variants were further examined through studying the enzyme-substrate in-
teraction with PELE. In these simulations, the substrate was placed outside the active
site’s cavity and the binding was followed by counting catalytic poses and computing the
average interaction energy once the ligand is inside the active site (Figure 4.19).

Overall, the variants showed more catalytic poses, as well as better average interaction
energies than the WT enzyme (all plots and results can be found in Chapter 3). The
8 variants with the highest number of catalytic poses were selected for experimental
testing by Bornscheuer’s laboratory. Their validation showed that 3 mutants improved
the hydrolysis of 1-phenyl-2-pentyl acetate with reversed enantioselectivity (from (R) to
(S) enantiomer).
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Figure 4.19: Initial setup for PELE simulations and the representation of
a catalytic pose. The substrate is placed outside the active site and allowed
to explore around the drawn box (top). A catalytic pose is represented
with every key distance highlighted in a different color (blue for serine-
histidine, beige for aspartate-histidine, violet for serine-substrate, and green
for histidine-substrate) (bottom). The catalytic triad residues are colored

in red, and the substrate in cyan.
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To sum up, this thesis has proven the potential of pluriZymes and the value of compu-
tational methods for enzyme engineering. Enzymes with multiple active sites could be a
promising idea to be used in the industry soon to make processes more sustainable and
cheaper. Moreover, the shown results in the thesis ease the process of developing an extra
active site and allow for its enhancement according to the user’s needs.

Therefore, the main conclusions of the thesis are:

• The design of an enzyme with more than two active sites is feasible: A
protease site was successfully designed in a pluriZyme, having the three sites func-
tioning simultaneously. The new active site allowed the serine esterase to catalyze
both the hydrolysis of ester and peptide bonds, having a potential interest for the
detergent industry. Likewise, both protease and esterase sites were combined for
the one-pot cascade synthesis of L-histidine methyl ester, an intermediate for the
design of Schiff base ligands.

• A pluriZyme for the pharmaceutical industry: A hydrolase site was incor-
porated in a metagenomic ω-TA, allowing the synthesis of enantiopure β-amino
acids from β-keto esters in a single protein scaffold. Thus, we proved that one
enzyme could perform compelling cascade reactions by synthesizing 3-ATfBA, a
crucial intermediate to manufacture a family of antidiabetic drugs. Besides, this
design proved that pluriZymes can be conceived in other enzyme families.

• Substrate promiscuity of serine hydrolases can be rationalized and cus-
tomized: The computational study allowed us to accurately identify what makes a
serine hydrolase highly promiscuous or not. Subsequently, this knowledge was used
to transform a low-promiscuous esterase into a prominent one without compromis-
ing its average turnover rates. This example shows how artificial catalytic triads of
pluriZymes could be enhanced toward hydrolyzing a broader range of substrates.

• AsiteDesign: a new approach to automate and ease the design of active
sites: A semi-rational algorithm was developed to generate and rank possible vari-

195
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ants to functionalize a site. In addition, the method was capable of generating a
smart library of mutants to enhance the property of an existing active site. Bench-
marking the protocol experimentally with an esterase allowed a demonstration of
its potential.
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