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▪ Within the HorizonUAM project, a concept for an air taxi is 

being worked on

▪ The Institute of Flight Systems contributes with research 

activities in the field of the onboard systems

▪ Onboard systems: Vehicle systems and avionics, their 

interfaces to airframe, cabin, environment, vertiport, 

pilot, passengers,….

▪ During the project a special focus was on the full-electric 

flight control system (FCS) incl. the powertrain and 

power supply incl. the thermal management

▪ A multirotor with 4 main rotors and 2 push propellers 

was considered as starting configuration for the 

investigations

▪ Goal: Overview of current status in the system design 

and its results
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Main Rotors

Push Propellers

Main Rotors

Initially developed as Medical Personnel Deployment Vehicle 

(Project Urban Rescue) and adapted as an air taxi vehicle for 

HorizonUAM.
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Conceptual Design Methodology

▪ Enables the examination of full-electric, turbo-electric and 

hybrid-electric powertrain systems 

▪ Based on simple models and assumptions → Uncertainties; 

results should be used with a certain amount of caution 

▪ Quantitative results and qualitative differences in the results 

of the various powertrain architectures are credible

Conceptual Multirotor Design*

▪ Battery and fuel cell systems are important design drivers 
(Maximum take-off mass, overall efficiency,…)

▪ 3 most promising architectures were selected: 

▪ Full-electric with battery, 

▪ Full-electric with fuel cell system and 

▪ Hybrid-electric with battery and fuel cell system

▪ Provide estimated flight performance for system sizing

Key results

*presented at DLRK 2021 and AIAA SciTech 20225

Weight converged?

Yes

No



Overall Systems Design Approach

▪ Centralized system model with recursive

model structure enables model segregation

and distributed, collaborative design

▪ System architecture design and safety

assessment acc. to design standards (e.g. 

ARP4754A) incl. traceability of requirements

▪ Integration of analysis models and impact

analysis of design decisions

Model-Based Systems Engineering 

(MBSE) Approach Recursive Model Structure
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FCS / Powertrain: System Architecture 
Design and Safety Assessment 

▪ SC-VTOL* / Category Enhanced: “The aircraft is capable of 

continued safe flight and landing…”

➢ Safe and redundant design of each main rotor and 

➢ the ability to compensate for the loss of one main rotor with 

the remaining main rotors and the two push propellers

▪ Key results 1: Safety assessment methods (acc to. ARP4761) 

were applied to architect the powertrain / flight control system

▪ Safety goals are basically achievable and safety 

mechanisms were identified 

▪ Different design requirements are derived, e.g. two 

redundant electric motors per rotor, five battery packs, at 

least three FCCs,…

▪ Key results 2: Sizing, modeling and simulation

▪ Direct rotor drive (w/o gearbox) is possible, but poor 

efficiency and high heat losses, higher weight

▪ Rotor drive with gearbox is more complex and expensive, 

but increases the powertrain efficiency

▪ Propeller drive not yet sized

Propeller 

Drive #1

Propeller 

Drive #2

Rotor Drive #1
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Battery
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Power Supply – Architectures and Design Steps

1. Full-Electric with Battery
2. Full-Electric with

Fuel Cell System

3. Hybrid-Electric with

Battery and Fuel Cell System

ሶQ: Heat Flow
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Three different power supply systems were designed and analysed due to their 

electrical and thermal behaviour

• Electrical loads were estimated using the flight performance calculation and 

powertrain architecture efficiencies

• Power management and controller design not yet considered

• Similar design steps for battery pack/system and fuel cell stack/system
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Example: Flight mission analysis with and without battery cooling

Power Supply – Results

▪ For normal conditions the systems are adequately 

dimensioned: The cooling system lowers the 

temperature for the entire mission

▪ The ambient temperature has a significant impact on 

the cooling performance 

▪ The temperature can be easily regulated with the 

volume flow of the air

▪ The water flow will influence the temperature 

distribution in the battery pack (more detailed 

investigations needed)

▪ Based on sensitivity studies a specific cooling 

geometry for the battery pack and fuel cell stack could 

be defined

▪ Similar results for battery cooling in the hybrid-electric 

power supply system

▪ Fuel cell system without cooling is not possible, it 

heats up too fast and too much

Key Results

→ Feasibility of the different power supply

systems was checked and verified
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Summary and Outlook

▪ Onboard systems are an essential part of the air taxi 

concept which is under investigation in the HorizonUAM 

project 

▪ A special focus was on the flight control system incl. the 

powertrain as well as the power supply incl. the thermal 

management concept

▪ The designs and results shown were reached in different 

parallel design streams

▪ Each design stream could verify the basic feasibility of 

the system

▪ Although an attempt was made to proceed from same 

assumptions, this was not always possible

▪ The “System Integration” will harmonize the different 

system designs (and models) to reach consistent design 

results
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