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Abstract. Motivated by a specific decision-making situation, this work proposes the concept and definition of unsymmetrical
basic uncertain information which is a further generalization of basic uncertain information and can model uncertainties in
some new decision-making situations. We show that unsymmetrical basic uncertain information in some sense can model
linguistic hedges such as “at least” and “at most”. Formative weighted arithmetic means and induced aggregations are defined
for the proposed concept. Rules-based decision making and semi-copula based integral for this concept with some numerical
examples are also presented.
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1. Introduction

Uncertainty is pervasive in a wide range of
decision making and evaluation problems, from
involved information type [1–6] to decision method-
ology and result [7, 8]. Some typical quantitative
uncertain information includes interval informa-
tion, probability information, fuzzy information [9],
and their related extension or generalization forms
[10–13].

The uncertainties involved, contained in or related
to the above mentioned information types can have
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different embodiments. For example, in an interval
information granule [a, b] ⊆ [0, 1], the uncertainty
involved can be expressed by the amount b − a; in
probability information, variance is usually a suitable
gauge to measure the involved uncertainty; and in
fuzzy information, the membership/non-membership
degrees often directly serve as a yardstick to show the
certainties/uncertainties concerned. In addition, more
types of known, unknown or unexplainable types of
uncertainties can be found in decision making prac-
tices.

Diverse forms of uncertainties may result in incom-
patibility and complexity in decision making. Hence,
using an integrated, comprehensive and generalized
concept and normative form to express and model
more uncertain information is very practical and
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appealing. Recently, [14] and [15] proposed the con-
cept of basic uncertain information (BUI) which can
well model and handle a large class of quantitative
uncertain information including the ones aforemen-
tioned. BUI has soon been further developed and
applied in several areas [16–22].

A standard BUI granule has a pair form (x, c) in
which x ∈ [0, 1] is a concerned evaluation value and
c ∈ [0, 1] is the certainty degree of x; and 1 − c ∈
[0, 1] is the uncertainty degree of x. In practice, cer-
tainty degrees may represent the degrees to which
decision makers are confident, sure, certain or definite
of the concerned evaluation values, while uncertainty
degrees may indicate the extents to which they are
unconfident, unsure, uncertain or indefinite of the
concerned evaluation values. Note that when c = 1,
(x, 1) indicates the full certainty over evaluation value
x and thus it can be understood to be equivalent to
the real value x; when c = 0, (x, 0) shows the full
uncertainty over evaluation value x, and the situa-
tion that every value between [0,1] can be considered
as a true value, and thus no substantial and effective
information can be available.

For any BUI granule (x, c), an intuitively accept-
able transformation T can be applied to transform
it into an interval value T (x, c) = [a, b] = [cx, x +
(1 − c)(1 − x)]. It can be observed from the convex
combination form T (x, c) = c[x, x] + (1 − c)[0, 1]
that the “dilation process” actually is toward the two
ends of unit interval [0,1] with a same extent 1 − c.
The dilation can be also seen as “symmetrical” not
in sense of “x − a = b − x” but in the sense that cer-
tainty degree c determine the same proportion with
which x is far from the two ends of [0,1].

In practice, such symmetry might not always be
obtained or appropriately derived. The following
decision making situation shows this fact.

Assume an examination score for a student is
known to be x ∈ [0, 1] but with uncertainty because
in general a score may not accurately or correctly
represent the true performance of that student. Sup-
pose the uncertainty is further interpreted by a simple
statistics from a team of teachers: suppose 100yU%
of all the teachers think the true performance of that
student should be higher than x; 100yL% of them
think it should be lower than x; in addition, 100y% of
them cannot judge whether or not the score x is accu-
rate; and finally 100z% = 100(1 − yU − yL − y)%
of them believe x in general exactly embodies the
true performance of that student. BUI is clearly also
not suitable to be applied in this satiation without any
adaptation or extension.

The original BUI granule with its existing evalu-
ation models apparently cannot fit well to model or
cope with the above mentioned evaluation situation.
Against this background, we will adapt the original
BUI and propose an unsymmetrical form of it which
will then be able to well model those situations.

The remainder of this work is arranged as follows.
Section 2 gives the strict definition for unsymmet-
rical basic uncertain information and shows some
theoretical and practical features. Section 3 discusses
formative weighted arithmetic means and induced
aggregations for UBUI. After that, in Section 4 some
related rules-based decision making and semi-copula
based integral are analyzed with examples. Section 5
concludes and remarks this work.

2. Unsymmetrical basic uncertain
information

Some related notations and expressions are fixed
or reviewed as follows. A real vector of dimen-
sion n is denoted by x = (xi)ni=1 ∈ [0, 1]n. All
of the closed intervals (or called interval values,
interval numbers) [a, b] ⊆ [0, 1] are denoted by
I. In addition, [a, a] is sometimes identified with
real number a. For intervals, review the lattice
(I, ≤Int) with the standard partial order ≤Int such
that [a1, b1]≤Int[a2, b2] if and only if a1 ≤ a2 and
b1 ≤ b2; denote [a1, b1]<Int[a2, b2] if and only if
[a1, b1]≤Int[a2, b2] and [a1, b1] /= [a2, b2].

The set of all BUI granules (x, c) is denoted by B.
A BUI vector is denoted by (x, c) = (xi, ci)ni=1 ∈ Bn

where x = (xi)ni=1 ∈ [0, 1]n represents an evaluation
vector while c = (ci)ni=1 ∈ [0, 1]n is the certainty
vector corresponding to x. Unless otherwise noted,
the weight vector or probability vector (of dimension
n) used in this work is with the form w = (wi)ni=1 ∈
[0, 1]n such that

∑n
i=1 wi = 1; and the space of such

vectors is denoted by W(n).
Next, we give the definition of unsymmetrical basic

uncertain information as follows.

Definition 1. (i) (unsymmetrical basic uncertain
information) A granule of unsymmetrical basic
uncertain information (UBUI) is expressed by the
form (x, (cL, cU )), in which x ∈ [0, 1] is the con-
cerned evaluation value and (cL, cU ) ∈ [0, 1]2 the
certainty pair of x, measuring the degree of being
trusted, convincing or believable etc., of input value
x. In (cL, cU ), cU is called the upper certainty (of
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x) and cL lower certainty (of x). Correspondingly,
(1 − cL, 1 − cU ) is called the uncertainty pair of x,
in which 1 − cU is called the upper uncertainty (of
x) and 1 − cL lower uncertainty (of x).

(ii) (UBUI vector) The set of all UBUI gran-
ules is denoted by UB. An UBUI vector is denoted
by (x, (cL, cU )) = (xi, (cLi, cUi))ni=1 ∈ (UB)n where
x = (xi)ni=1 ∈ [0, 1]n represents an evaluation vector
while cU = (cUi)ni=1 ∈ [0, 1]n and cL = (cLi)ni=1 ∈
[0, 1]n are the upper certainty vector and lower cer-
tainty vector corresponding to x , and (cL, cU ) =
(cLi, cUi)ni=1 is called the certainty pair vector.

Remark 1. For an UBUI granule (x, (cL, cU )), when
cL = cU , it clearly degenerates into a BUI granule
(x, cL).

Return to the decision making situation discussed
in Introduction which cannot be directly or suitably
handled by BUI. We next to show that UBUI can well
tackle it.

We can reasonably obtain an UBUI by considering
the known value x and the statistics (a probability
vector (yL, yU, y, z)) with a transformation function
S : [0, 1] × W(4) → UB:

S(x, (yL, yU, y, z)) = (x, (yL + y, yU + y)) (1)

With any obtained UBUI granule (x, (cL, cU )), we
use the following formula T ∗ : UB → I to transform
it into an interval which sometime can be much easier
to handle in decision making.

T ∗(x, (cL, cU )) = [cLx, x + (1 − cU )(1 − x)] (2)

Using standard partial order ≤Int or some further
well defined linear orders [24] can make some com-
parisons that in general cannot be obtained even in
UBUI environment.

Remark 2. For an UBUI granule (x, (cL, cU )), it
may have or convey more practical meanings. For
example, it is interesting to find that (x, (1, 0)) may
indicate a usually used linguistic term: (a value is) “at
least x”; similarly, (x, (0, 1)) can represent linguistic
term: “at most x”. Besides, T ∗(x, (1, 0)) = [x, 1] and
T ∗(x, (0, 1)) = [0, x].

3. Formative weighted arithmetic means and
induced aggregations for UBUI

The weighted arithmetic means for aggregating
UBUI granules can be formatively made in some

piecewise ways. More importantly, with such def-
initions we can conveniently carry out induced
aggregations.

Definition 2. The interval weighted arithmetic mean
(with weight vector w) (ItWAM) ItWAMw : In → I
is defined such that

ItWAMw([a,b]) =
[∑n

i=1
wiai,

∑n

i=1
wibi

]
(3)

Definition 3. [14] The BUI weighted arithmetic mean
(with weight vector w) (BWAM) BWAMw : Bn →
B is defined such that

BWAMw(x, c) =
(∑n

i=1
wixi,

∑n

i=1
wici

)
(4)

In a similar way, we can directly have the weighted
arithmetic means for UBUI vectors because UB is
clearly convext.

Definition 4. The UBUI weighted arithmetic
mean (with weight vector w ∈ W(n)) (UBWAM)
UBWAMw : (UB)n → UB is defined such that

UBWAMw(x, (cL, cU ))

=
(∑n

i=1
wixi, (

∑n

i=1
wicLi,

∑n

i=1
wicUi)

)
(5)

Definition 5. For two UBUI granules (x1, (cL1, cU1))
and (x2, (cL2, cU2)),
(x1, (cL1, cU1)) is said to be with certainty not higher
than (x2, (cL2, cU2)) if and only if cL1 ≤ cL2 and
cU1 ≤ cU2.

Some related simple properties can be obtained as
follows.

Proposition 1.
(i) For two UBUI granules (x, (cL1, cU1)) and

(x, (cL2, cU2)), if cL1 ≤ cL2 and cU1 ≤ cU2, then
T ∗(x, (cL2, cU2)) ⊆ T ∗(x, (cL1, cU1)); if cL1 ≤ cL2
and cU1 ≥ cU2, then T ∗(x, (cL1, cU1))≤IntT

∗(x,

(cL2, cU2)).
(ii) For two UBUI granules (x1, (cL, cU )) and

(x2, (cL, cU )), if x1 ≤ x2, then T ∗(x1, (cL, cU ))
≤IntT

∗(x2, (cL, cU )).
With a vector of UBUI granules (x, (cL, cU )) =

(xi, (cLi, cUi))ni=1, a reasonable induced weighting
method is to allocate larger weight to those xi’s
that have larger certainties. For two UBUI gran-
ules (x1, (cL1, cU1)) and (x2, (cL2, cU2)), Definition
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5 provides a means to compare their certainties with
(cL1, cU1) ≤ (cL2, cU2) if cL1 ≤ cL2 and cU1 ≤ cU2.
Sometimes (cL1, cU1) and (cL2, cU2) cannot be com-
pared. Therefore, some lattice based inducing and
weighting methods (such as the three-set method
[25, 26] can be suitably applied in this setting.
Another effective and practical method is to use
binary aggregation functions [15] to firstly merge cer-
tainty pairs into some corresponding real certainties.
For example, recall a semi-copula (x, y) �→ x ◦ y is
a binary aggregation operator which is monotonic
non-decreasing w. r. t. each parameter and satisfies
1 ◦ x = x ◦ 1 = x.

Correspondingly, some types of preference for
high certainties (derived from certainty pairs) are dis-
cussed below.

– Preference for high lower certainties cLi, indi-
cating a decision making emphasis on relatively
guaranteed lower bounds.

– Preference for high upper certainties cUi, indi-
cating a decision making emphasis on relatively
guaranteed upper bounds.

– Preference for high overall certainties cLi + cUi,
indicating a decision making emphasis on rela-
tively accuracy of evaluation values.

– Preference for high aggregated certainties cLi ◦
cUi (with ◦ being any semi-copula), indicating
another type of decision making emphasis on
relatively accuracy of evaluation values.

Remark 3. Ordered weighted averaging (OWA) [27]
is a widely applied powerful tool to model bi-polar
preferences [28, 29]. We adapt OWA operator to
UBUI environment not in a strict mathematical sense,
but in a more formal, defining and decision mak-
ing methodological way. For having a thorough way
of defining such OWA aggregation, one may refer
to some recent literatures [25, 26]. Hence, the cer-
tainty induced UBUI ordered weighted averaging
(CIUBOWA) (with weight vector w), CIUBOWAw :
(UB)n → UB, is defined as an UBWAM operator with
the same weight vector w, UBWAMw : (UB)n →
UB, where the weight vector w is must directly related
to the certainty pair vector (cL, cU ) = (cLi, cUi)ni=1,
while in UBWAM we allow the involved weight vec-
tor w to be either related or not related to the certainty
pair vector.

Example 1. Assume we have a vector of UBUI with
four pieces of granules

(x, (cL, cU )) = ((0.5, (1, 0.3)), (0.8, (0.8, 0.5)),
(0.3, (0.4, 0.8)), (0.6, (0.6, 0.6)).
And suppose a decision maker has emphasis

on high aggregated certainties cLi · cUi to a mod-
erate extent which can derive the weight vector
w) from a weight vector u = (0.4, 0.3, 0.2, 0.1)
with a moderately decreasing trend. Since (cLi ·
cUi)4

i=1 = (0.3, 0.4, 0.32, 0.36), we may accordingly
assign a corresponding higher weight in u =
(0.4, 0.3, 0.2, 0.1) to a corresponding higher value
in (cLi · cUi)4

i=1 = (0.3, 0.4, 0.32, 0.36). That is, we
may assign weight 0.4 to (cL2 · cU2) (namely to
i = 2), assign weight 0.3 to (cL4 · cU4), assign weight
0.2 to (cL3 · cU3), and assign weight 0.1 to (cL1 ·
cU1), which constitutes a desired weight vector w =
(0.1, 0.4, 0.2, 0.3). Then,

CIUBOWAw(a, (cL, cU )) =
UBWAMw(a, (cL, cU ))

=
(∑4

i=1 wiai, (
∑4

i=1 wicLi,
∑4

i=1 wicUi)
)

= ((0.05 + 0.32 + 0.06 + 0.18), ((0.1 + 0.32
+0.08 + 0.18), (0.03 + 0.2 + 0.16 + 0.18)))

= (0.61, (0.68, 0.57)).

4. Rules-based decision making and
semi-copula based integral in UBUI
environment

In contrast to optimal value aimed analytic decision
making, rules-based decision making [30–33] can
provide with some more efficient, flexible, automatic,
and still sensible and effective decision procedures
especially in the situations where the conditions for
using analytic decision making are very limited.
Besides, rules-based decision making, in a heuris-
tic way, can be quite suitable for the multi-objective
decision situations with well preset multiple rules.

Through a given UBUI granule (x, (cL, cU )), next
we exemplify some sets of decision rules for perform-
ing multiple satisfactions aimed decision making.

Rule set (i): “x ≥ 0.7”, “cL ≥ 0.8” and “cU ≤
0.3”.

Rule set (ii): “x ≥ 0.9”, and “cL ≥ 0.3”.
Rule set (iii): “x ≥ 0.4”, and “cL ∧ (1 − cU ) ≥

0.9”.
Rule set (iv): “0.3 ≤ x ≤ 0.7”, and “cL + cU ≥

1.5”.
Rule set (v): “cL = 1”, and “x + 1.5(1 − cU ) ≥

2”.
To show its further potential in decision making

and evaluation, we present the following illustrative
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example where multiple satisfactions aimed decision
making can be carried out by a union of several indi-
vidual rule sets.

Suppose there is a need to evaluate the compre-
hensive performance of a university teacher in the
past three years of employment term. Therefore,
some well predetermined sets of rules seem efficient
and objective to perform this evaluation task. For
example, we may come up with four sets of rules
corresponding to four criteria: (i) academic perfor-
mance; (ii) teaching spirit and attitude; (iii) teaching
effect; (iv) social service done. There are two ways
of being qualified for a teacher: (A) criteria (i) is sat-
isfied; and (B) any two of criteria (ii), (iii) and (iv)
are satisfied. Assume the individual performances for
each criterion have already been transformed into
UBUI granules, which is represented by (x, (cL,

cU )) = ((0.3, (1, 0.3)), (0.8, (0.1, 0.1)), (0.5, (0.4,

0.4)), (0.4, (0.7, 0.7)) . And assume the rules for sat-
isfactions of the four criteria are formulated below,
respectively:

Rule set (i): “x1 ≥ 0.6”, and “cL1 ≥ 0.8”.
Rule set (ii): “x2 ≥ 0.8”, and “cL2 ∧ (1 − cU2) ≥

0.4”.
Rule set (iii): “x3 ≥ 0.7”, “cL3 ≥ 0.8” and “cU3 ≤

0.5”.
Rule set (iv): “x4 ≥ 0.3”, and “cL4 ≥ 0.5”.

Clearly, only (iv) has been satisfied for that teacher
and thus neither the way (A) nor the way (B)
has been fulfilled. Hence, the teacher cannot be
judged to be qualified in the current situation
where data collected is with some relative high
uncertainties. Suppose another teacher gains the
following different performance (x′, (c′

L, c′
U )) =

((0.7, (0.8, 0)), (0.8, (0.1, 0.1)), (0.1, (1, 1)), (0.9,

(0.4, 0.3)), then clearly he should be qualified since
(A) has been satisfied.

We now consider a variation of fuzzy integral in
UBUI environment (the fuzzy integral in BUI envi-
ronment has been recently thoroughly analyzed in an
unpublished work [34]).

Recall a fuzzy measure (also known as capac-
ity) [35] on set [n] = {1, · · · , n} is a set function
μ : 2[n] → [0, 1] such that (i) μ(∅) = 0 and μ([n]) =
1; and (ii) μ(A) ≤ μ(B) whenever A ⊂ B. A semi-
copula based integral [24, 35, 36] with fuzzy measure
μ defined on [n] and semi-copula ◦, Fμ,◦ : [0, 1]n →
[0, 1], is an aggregation function of dimension n such
that

Fμ,◦(x) = max
A⊆2[n]\{∅}

{
min
i∈A

{xi} ◦ μ(A)

}
(6)

Note that for semi-copula “min” we have a familiar
version of Sugeno integral, for semi-copula “product”
we obtain a version of Shilkret integral, and for semi-
copula that is a strict t-norm, we achieve a version of
Weber integral.

However, when the inputs xi’s are with uncer-
tainties and expressed by BUI granules, it may be
unreasonable for Equation (6) to be directly carried
out. In [34], some special techniques are discussed to
cope with such problem and here we extend it to adapt
to UBUI environment by proposing the following
form Uμ : (UB)n → [0, 1]:

Uμ,◦(x, (cL, cU ))

= max
A⊆2[n]\{∅};min

i∈A
{cLi}≥α,min

i∈A
{cUi}≤β

{
min
i∈A

{xi} ◦ μ(A)

}

(7)

where α, β ∈ [0, 1] are fixed thresholds.

Example 2. Still consider the above illustrated exam-
ple of university teacher performance evaluation.
Assume μ : 2[4] → [0, 1] represents the interrelated
importance between the four criteria: (i) academic
performance; (ii) teaching spirit and attitude; (iii)
teaching effect; (iv) social service done. μ satisfies
μ(∅) = μ({2}) = μ({3}) = μ({4}) = 0, and μ(A) =
1 whenever A /∈ {∅, {2}, {3}, {4}}. Preset the two
thresholds α = 0.6 and β = 1, and adopt min ∧ oper-
ator for the semi-copula. Predetermine the decision
rule: if Uμ,◦(x, (cL, cU )) ≥ 0.5, then the perfor-
mance is qualified.

Then, we observe Uμ,◦(x, (cL, cU )) = max{0.3 ∧
1, 0.4 ∧ 0} = 0.3; so the related performance can-
not be considered to be qualified with current
knowledge. Still, note that Uμ,◦(x′, (c′

L, c′
U )) =

max{0.7 ∧ 1, 0.1 ∧ 0} = 0.7 and hence the related
teacher should be directly given the “qualified” eval-
uation according to the preset rules.

5. Conclusions

BUI as a power information type can handle a large
variety of uncertain decision making and evaluation
problems. BUI has different structure and practical
meaning to some other types of uncertain information
such as intuitionistic fuzzy information and hesitant
fuzzy information, to name just a few. For some more
situations where BUI cannot be well applied, we pro-
posed an extended form of it called UBUI, which
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proved to have more uses and can model more sit-
uations and even linguistic expressions. UBUI is a
generalization of BUI, and when the two certainty
parameters in UBUI coincide, it degenerates into
BUI. The weighted means for UBUI are discussed
but in a more formative form. Nevertheless, induced
ordered weighted averaging is still as powerful in
UBUI environment as in other data environments.

Rules-based decision making and semi-copula
based integral in UBUI environment are also briefly
discussed which have good potential to be further
investigated and applied. Some exemplified cases in
educational evaluation are presented to show it has
further application background. Though it is with sev-
eral advantages and opportunities, UBUI currently
still has limitations. For example, how to design effec-
tive or reasonable aggregation functions for them, and
how to derive and elicit such type of two-parameter
uncertainty from individual decision maker rather
than from statistics, should be more deeply studied
in future works.
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