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Abstract

Essays in Economic Theory

Suneil Parimoo

This dissertation looks at models in which agents make decisions under various economic

frictions, and examines the role of their preferences. The first two chapters analytically

characterize an infinite-horizon open economy under the friction of a stock collateral constraint,

whereby borrowing is limited by the value of capital assets available. The model that is

considered allows for general subjective discounting of households and fully variable

productivity. The third chapter looks at a model of an ambiguity-averse benevolent mediator

tasked with choosing a price contract at which a risk neutral buyer and seller transact an

indivisible good under the friction of unquantifiable uncertainty of their reservation values.

The first chapter establishes that it is possible for households to enjoy the allocation they

would obtain absent a stock collateral constraint under a condition that relates to their patience;

this condition requires a long-run depression when agents are impatient relative to the market, and

allows for an economic expansion when agents are more patient relative to the market. When this

condition is not met, households are tightly constrained at least once and experience debt

deleveraging in all periods and deflation of asset prices in periods preceding the constrained

period relative to their unconstrained allocation. Households also ration their consumption more

when they expect to be more tightly constrained in the future.

The second chapter is a sequel to the first chapter and shows that under constant output,

agents who are impatient relative to the market can face two and three-period cycles in



consumption, debt, and asset prices. Further, large initial debt can lead to multiple equilibria.

The third chapter considers a mediator who plays a Stackelberg game against Nature to

maximize the distributionally worst-case expected weighted Nash product subject to known mean

and boundary constraints on buyer and seller reservation values. We study the role of bargaining

power and show that relative to what the buyer and seller themselves would choose when

equipped with the mediator’s information, the mediator’s price contract has a shallow dependency

on bargaining power, which is only exacerbated by the possibility of dependent buyer and seller

values. Comparative statics results are obtained.
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Chapter 1: Open Economies with Stock Collateral Constraints Under

General Impatience

1.1 Introduction

This paper analytically studies a model of an open economy with a stock collateral constraint,

whereby external debt is restricted by the collateralizable value of capital assets. Stock collateral

pledging plays an important role in financing activities of firms, and more broadly, in business

cycles. Its cyclical role has been referred to as the “collateral channel” (Gan 2007, Chaney, Sraer,

and Thesmar 2012), a vicious circle whereby a business downturn deteriorates asset values, thus

reducing borrowing capacity, leading to depressed investment, further exacerbating the downturn

(Figure 1.1).1 The collateral channel has been regarded as a suspect for the severity of the Great

Depression (Bernanke 1983). Conversely, its virtuous circle counterpart, whereby an economic

boom leads to increased investment, has been cited as contributing to the expansion of the Japanese

economy at the end of the 1980s (Cutts 1990). In addition to its role in amplifying business cycles,

can asset collateral pledging in a debtor open economy be an engine in generating business cycles

in the first place? Can asset collateral pledging engender self-fulfilling crises, inducing households

to pessimistically choose a “bad” cycle over a “good” one? Further, what role does household

patience play in such an economy?

The model considered here is a generalization of one that is presented in Schmitt-Grohé and

Uribe 2017a (henceforth SGU), which in part approaches the question of self-fulfilling crises and

considers the amplificatory role of stock collateral constraints. SGU focus on the effects of one-

time deterministic initial shocks to an otherwise constant output on equilibria in a perfect-foresight

1The idea of a debt-deflation channel goes back to Fisher 1933. See also Bernanke and Gertler 1989, 1990 and
Kiyotaki and Moore 1997.
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Figure 1.1: Collateral channel

model. In their setup, SGU show that under relatively small negative shocks to productivity—what

they refer to as “regular shocks”—the economy can be sustained in a steady-state equilibrium

without being affected by the collateral constraint. Small shocks induce households to borrow

internationally to smooth consumption, the equilibrium price of capital unaffected. In contrast,

they show that shocks that are sufficiently large—surpassing the threshold defined by “regular

shocks”—put households up against their borrowing constraint in at least one period. When up

against the collateral constraint at least once, agents are shown to initially deleverage (reduce debt)

and contract their initial consumption relative to the steady-state, while experiencing Fisherian

deflation (a reduced price of capital) relative to the steady state in all periods prior and up to the

first period in which they are up against the constraint. The other key finding of SGU is that

open economies may be vulnerable to nonfundamental (or sunspot) shocks in the sense that poor

fundamentals (including sufficiently high initial debt) can support both the steady-state equilibrium

that is free from the collateral constraint as well as a welfare-inferior equilibrium where households

are up against their borrowing constraint at the outset and thereafter enjoy a constraint-free steady-

state allocation.

The approach of this paper is to explore equilibrium dynamics of the SGU model under two

primary extensions: 1) a more general impatience assumption, and 2) fully variable output (sub-
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ject to having finite net present value). In approaching the role of patience, we define the relative

patience ratio δ := β(1 + r), which is the ratio of the subjective discount factor of households,

β ∈ (0,1), to the market discount factor under a constant interest rate r > 0, 1
1+r . While the SGU

model makes a standard simplifying assumption that δ = 1, we allow for more general δ, with

the focus of this paper being the case when δ < 1. That is, agents are permitted to subjectively

discount the future relatively more than the market, in which case they are said to be impatient

relative to the market. In fact, many results of this paper apply to δ ≥ 1 as well, although to ease

exposition, the default assumption for much of this paper (sections 1.2-2.2) is δ < 1, with the

case δ ≥ 1 discussed in section 2.3. This extension that permits general impatience relative to the

market is certainly of theoretical interest, but it is also of empirical interest in light of calibrations

that feature δ < 1 (c.f. Bianchi 2011 and Ottonello 2021). Further, we shall see δ < 1 is key

to explaining the emergence of business cycles. Absent any collateral constraint (which we refer

to as the unconstrained model), when δ = 1, agents enjoy constant consumption, thus perfectly

smoothing their consumption profile. In contrast, when δ < 1, absent any collateral constraint,

agents frontload their consumption through borrowing internationally via the current account, al-

lowing their future consumption to diminish at the rate of the relative patience ratio, approaching

zero in the long run (a property we refer to as eventual starvation). Further, absent the collateral

constraint, in the long run, such impatient households approach their limiting natural debt limit,

an exogenous upper bound on borrowing equivalent to the net present value of output that is in-

dependent of the collateral constraint. Given this dynamic nature of debt insofar as its tendency

to approach the natural debt limit under relative impatience, the second key extension we allow

for, namely fully general—instead of constant—output, enters as a reasonable complement to the

model since output controls the natural debt limit.

In allowing for these extensions, the methods we use in studying model equilibria are different

from those pursued in SGU. While SGU generally use the recursive-form equilibrium conditions

directly, which are often aptly visualized in terms of fixed-point iteration in a state space, we

aim to obtain closed-form solutions throughout where possible. After recapping the SGU model in

3



section 1.2.1, we first show in section 1.2.2 how the model equilibria can be explicitly characterized

in terms of the path of a single endogenous variable, namely the shadow value associated with

the collateral constraint. This novel characterization supplies a powerful framework that applies

under general δ and facilitates a straightforward approach to obtain stronger results than those in

SGU. In section 1.3, we solve for the steady-state equilibrium. SGU show that the steady-state

equilibrium when δ = 1 has households always free from the collateral constraint, which is always

satisfied under the aforementioned “regular shocks” condition. In contrast, we show that when

δ < 1, the steady-state equilibrium has households always up against the constraint and exists

under knife-edge initial debt (admitting other parameters as given). In section 1.4, we solve for

the unconstrained equilibrium, the equilibrium of the unconstrained model (the model without the

collateral constraint). A key contribution of this paper is that under δ < 1, households can enjoy the

allocation of the unconstrained equilibrium (which we refer to as the eternally slack equilibrium

when it is supported by the full model with the collateral constraint) under a generalization of the

“regular shocks” condition. This more generalized condition requires that the economy should

endure a depressionary scenario in the long run, with productivity tending to zero over time. In

this respect, allowing for fully variable output is clearly useful for appreciating the equilibrium

dynamics. The intuition of this generalized condition is that when households expect to face a

long-run depression, they are incentivized to deleverage over time and possibly switch to an asset

(lending) position to fund their frontloaded consumption. This deleveraging behavior protects

them against the collateral constraint. In the event households assume lending, as consumption

diminishes over time, households require less of the asset position over time, and thus diminish

their lending to nil in the long run, all the while free from the collateral constraint. Thus, under

δ < 1, we have two benchmark equilibria: the steady-state equilibrium in which households are

ever up against their collateral constraint, and the eternally slack equilibrium in which they are

ever free from their constraint.

With these benchmark equilibria in hand, we show in section 1.5 how the key properties ob-

tained in SGU of initial consumption rationing, initial deleveraging, and Fisherian deflation—all
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relative to the unconstrained equilibrium (instead of the steady-state equilibrium)— apply under

general δ. These properties are obtained using the equilibria characterization from section 1.2.2.

This analysis provides more insight than do recursive-form equilibrium conditions, and hence al-

lows for a strengthening of the SGU results. In section 1.5.1, we show how Fisherian deflation

occurs relative to the unconstrained equilibrium in all periods during or preceding those in which

households are up against the collateral constraint, while no such deflation occurs in a period if

households expect to never be up against their constraint. In section 1.5.2, we discuss the dynam-

ics of consumption. Agents are shown to feature a rationing property, whereby the less tightly

constrained they were in the past or the more tightly constrained they expect to be from today

onward, the more they plan to ration today. This analysis allows us to obtain an upper bound on

consumption: it can never exceed the future value of the initial consumption of the unconstrained

equilibrium. A special case of this result is initial consumption rationing relative to the uncon-

strained equilibrium, as obtained in SGU. In section 1.5.3, we show how deleveraging occurs in all

periods —not just the initial period as predicted in SGU—relative to the unconstrained equilibrium

when households are up against the collateral constraint at least once.

Section 1.5.4 considers long-run equilibrium behavior and shows how under reasonable output

paths, it is not possible for the shadow value of the collateral constraint to be persistently too large

or persistently too small in the long run as large shadow values in the long run would be accom-

panied by agents taking a long-term asset position to fund growing consumption (thus slackening

the constraint), while small shadow values would be accompanied by eventual starvation and are

only supported under long-run depressionary output. Indeed, the eternally slack equilibrium is one

special case of this latter behavior where the shadow value is always zero. In section 2.1, we study

when equilibria can take the form of periodic cycles. Section 2.1.1 characterizes cycles of arbitrary

periodicity. The prospect of cycles emerges due to both the friction of the collateral constraint as

well as impatience relative to the market. In particular, the constraint introduces a shadow cost of

borrowing needed to fund consumption and thus induces households to push forward consumption,

while impatience relative to the market induces households to frontload consumption; the compe-
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tition between these two forces thus allows for the possibility of cycles. Section 2.1.2 examines the

special case of 2-cycles, and we show that under plausible parametrizations, any kind of 2-cyclic

equilibrium can exist under a constant output trend. Section 2.1.3 obtains a particular 3-cyclic

equilibrium, and considers the prospect of cycles of higher periodicity and chaos. In section 2.2,

we look at when multiple equilibria can coexist. Section 2.2.1 considers variable output regimes,

demonstrating an extension of a result in SGU, namely coexistence of the eternally slack equilib-

rium and a welfare-inferior one in which households are initially borrowing-constrained. Section

2.2.2 considers constant output regimes, and shows how different 2-cyclic equilibria can coexist

with each other and with the steady-state equilibrium. In this sense, our model shows that a non-

fundamental shock can trigger the collateral channel, precipitating a choice of a “bad equilibrium”

associated with the effects in Figure 1.1. Households may choose a welfare-inferior equilibrium

due to the fact they do not internalize the effect of their demand for capital on the market price for

capital, thus allowing room for macroprudential policy intervention. Section 2.3 discusses how the

results from preceding sections extend to δ ≥ 1. Section 2.4 concludes.

Related literature

This work contributes to a growing literature on open economies with collateral constraints.

Often, a fundamental problem in open economy macroeconomic models is aptly constructing a

debtor economy as a means of explaining emerging countries with substantial external debt that

we observe in the data. Such models that incorporate a financial friction (such as a collateral

constraint) and impatience relative to the market (δ < 1) have the desirable feature of inducing

nontrivial borrowing behavior along a balanced growth path. In contrast, closed economy models

generally do not seek to explain external borrowing behavior (the model economy having a nil cur-

rent account), and as such, many closed economy models adopt the assumption δ = 1 as featured

in real business-cycle models in the tradition of Kydland and Prescott 1982. Consequently, these

differing models posit quite distinct explanations for the emergence of business cycles: While Kyd-

land and Prescott 1982 explain how cycles arise from productivity shocks, this paper shows how

6



cycles arise from the forces of a stock collateral constraint and impatience relative to the market

when productivity is constant.

The friction of stock collateral constraints has been analytically treated in Kiyotaki and Moore

1997, which departs from the Kydland and Prescott 1982 tradition by introducing a closed econ-

omy model (with endogenous interest rate) with risk neutral lenders and borrowers (the latter

assumed to be impatient relative to the market) and shows how the collateral constraint amplifies

shocks, in that temporary shocks to income can result in persistent fluctuations in asset prices.2

Subsequent theory work on stock collateral constraints has built on this model,3 or has obtained

this amplification result in a simplified small open economy setting that assumes δ = 1, as in SGU

(c.f. also Kocherlakota 2000). Often, the interest in such work is studying the effect of transi-

tory shocks to an economy in steady state, and the analytical approach that is typically adopted—

particularly in looking at model simulations— involves looking at linearized approximations about

the steady state. Jeanne and Korinek 2019 consider a stochastic model that is more similar to the

one presented in this paper, and they focus on the case where δ < 1 under a stochastic binomial

trend in output in their calibration. Methodologically, they offer a heuristic analysis to determine

conditions for equilibrium uniqueness, a counterpoint to this paper’s aim of searching for multiple

equilibria.4 In comparison to many of these papers, our work builds on a fairly tractable model

while more completely exploring the role of household patience and providing a precise analytical

characterization of equilibria in terms of the path of the constraint’s shadow value. This character-

ization may be of methodological service to related theory work on collateral constraints.

A cousin to the class of models with stock collateral constraints in this literature is one with

flow collateral constraints, where debt is restricted by income or output.5 Relatively recent progress

2See also Bernanke and Gertler 1989 for a closed economy “financial accelerator” model.
3See, for instance, Paasche 2001, which studies a three-country version of Kiyotaki and Moore 1997. See also

Iacoviello 2005, which starts with a variant of the Bernanke and Gertler 1989 model and incorporates a stock collateral
constraint in the spirit of Kiyotaki and Moore 1997.

4Jeanne and Korinek 2019 explain how multiplicity of equilibria comes from a self-reinforcing loop that links
consumption to the price of collateral. They focus on obtaining a sufficient condition for equilibrium uniqueness in
the special case of constant output and δ = 1 and offer intuitive guidance on how an extension of this condition may
apply under a more general output trend and impatience assumption.

5See, for instance, Bernanke and Gertler 1989, Mendoza 2002, and Aghion, Bacchetta, and Banerjee 2004.
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on flow constraints includes Schmitt-Grohé and Uribe 2021 and Schmitt-Grohé and Uribe 2020

among others, both of which analytically explore a model under flow collateral constraints that

is quite similar to the SGU model. The former work considers δ < 1 and fully characterizes a

debt policy function, establishing the existence of debt cycles in which periods of debt growth

are followed by periods of debt deleveraging (c.f. also Aghion, Bacchetta, and Banerjee 2004),

akin to our result on deterministic cycles;6 however, while they only show cycles in which debt

oscillates above and below its steady-state level, we allow for the full debt policy correspondence

and show cycles in which debt never exceeds its steady-state level. The latter work considers

δ = 1 and shows the existence of multiple equilibria (c.f. also Mendoza, Bergoeing, and Roubini

2005, which considers conditions for equilibrium uniqueness), similar to the result discussed in this

paper; however, they focus on coexistence between an equilbirum with an ever slack constraint and

one where the constraint initially binds, while we consider this coexistence as well as coexisting

cycles. While some insights thus apply to both models with stock and flow collateral constraints,

conceptually, the former class of models is analytically more challenging in a certain sense. The

challenge arises from the fact that such flow collateral constraint models restrict debt according to

exogenous income or output, while stock collateral constraint models restrict debt according to an

endogenous level of assets and effectively incorporate an additional Euler equation. Nonetheless,

by abstracting away from uncertainty and other complications, our model allows for a fruitful

exploration of equilibrium properties while uniting results from the “stock” and “flow” strands of

the collateral constraint theory literature.

While this work is of theoretical interest on its own, it is a serviceable companion to the

emerging quantitative literature on collateral constraints. For instance, Mendoza 20107 considers a

6There is also a growing closed economy literature showing how endogenous cycles can arise from financial
frictions. See, for instance, Woodford 1989, Suarez and Sussman 1997, Matsuyama 2007, Martin and Ventura 2012,
Gu et al. 2013, Gorton and Ordoñez 2014, 2020, Benhabib, Miao, and Wang 2016, Azariadis, Kaas, and Wen 2016,
Benhabib, Dong, and Wang 2018, Miao and Wang 2018, Beaudry, Galizia, and Portier 2020, Dong and Xu 2020,
Chousakos, Gorton, and Ordoñez 2020, and Cui and Kaas 2021, among others.

7In contrast to our model, Mendoza works with a particular class of preferences with an endogenous subjective
discount factor that enables the model to support a unique, invariant limiting distribution of foreign assets. However,
he later points out in the context of calibrating the model that any “impatience effects” introduced by endogenous dis-
counting have negligible quantitative implications. Our perfect-foresight model with exogenous discounting abstracts
away from these considerations.
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stochastic model calibrated to Mexico data and finds a low sensitivity of the standard deviation of

output to the model both with and without a stock collateral constraint, suggesting such constraints

do not amplify regular business cycles. However, under large negative output shocks, Mendoza

finds that a binding constraint exacerbates aggregate dynamics. Devereux, Young, and Yu 2016

work with a stock constraint model calibrated under δ < 1 to ensure net borrowing behavior in

the steady state, and focus more on the normative question of the optimal policy to internalize

the pecuniary externality8 of the model, while quantifying welfare effects. While flow constraint

models may not be particularly suited for describing the aforementioned collateral channel effects

on real business cycles, both stock and flow models share this pecuniary externality feature, and

there has been extensive theoretic and quantitative work on this topic along with the role of macro-

prudential policy in addressing this friction.9 Such quantitative work on policy questions premised

on collateral constraint models would proceed in largely a conjectural manner absent a full analyt-

ical characterization of model equilibria. In this context, this paper’s exact approach in studying

equilibrium properties provides a theoretic foundation to facilitate further quantitative work.

1.2 Model

1.2.1 Setup and definition of equilibrium

In this section, we summarize the SGU model and our definition of an equilibrium under gen-

eral impatience and variable output. The model is characterized by a perfect-foresight small open

economy with a large number of infinitely-lived homogeneous households with intertemporally

separable log-utility preferences, with lifetime utility at time 0 given by

∞∑
t=0

βt log ct,

8As described in the sequel, this externality results from agents not internalizing general equilibrium effects of
their decisions on asset prices.

9See, for instance, Uribe 2006a,b, Lorenzoni 2008, Korinek 2011, Bianchi 2011, Bianchi and Mendoza 2015,
Benigno et al. 2013, 2016, Schmitt-Grohé and Uribe 2017b, Dávila and Korinek 2018, and Jeanne and Korinek 2019,
among others.
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where ct denotes consumption and β ∈ (0,1) is the subjective discount factor of households.

Households face a sequential budget constraint given by

(SBCt) ct + dt + qt(kt+1 − kt) = yt +
dt+1
1 + r

,

where r > 0 is the interest rate on international debt dt (acquired in period t − 1 and due in period

t), kt is the stock of physical capital at time t, qt is the price of capital (taking consumption as the

numeraire) at time t, and yt is output produced according to Cobb-Douglass technology

(TECHt) yt = At kαt ,

where At ≥ 0 is an exogenous deterministic productivity factor, and α ∈ (0,1) is a technology pa-

rameter controlling the marginal product of capital. Borrowing is constrained by a stock collateral

constraint according to

(CCt) dt+1 ≤ κqt kt+1,

where κ ∈ (0,1) is the fraction of the value of the capital stock pledged as collateral for the debt

obligation due the following period.10 Households are atomistic, treating the price of capital, qt , as

exogenous, though endogenous to the economy overall in equilibrium, thus inducing a pecuniary

externality. In other words, an increase in market demand for capital serves to boost qt , allowing

agents to borrow more, while a fall in market demand for capital serves to drive down qt , which

may force deleveraging. However, households do not internalize this mechanism as they correctly

understand their individual demand for capital has a negligible impact on its price.

10An alternative specification would be to assume that borrowing is constrained according to the expected value of
capital at the time of maturation, in which case the right-hand side of the constraint would be κqt+1kt+1. This kind of
constraint is adopted in Devereux, Young, and Yu 2016, Kiyotaki and Moore 1997, and Iacoviello 2005, whereas our
timing convention is more in tune with Bianchi and Mendoza 2015. Devereux, Young, and Yu 2016 observe that either
timing convention can be appropriately microfounded, but empirically, it is an open question what type of constraint
fits the data best.
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The trade balance at time t, tbt , is defined as the gap between output and consumption,

tbt ≡ yt − ct,

and the current account at time t, cat, as the trade balance less interest paid on debt borrowed in

the preceding period,

cat ≡ tbt −
r

1 + r
dt .

The problem faced by households at time 0 is to choose sequences ct > 0, kt+1 ≥ 0, and dt+1 to

maximize lifetime utility subject to SBCt,TECHt, and CCt for all t ≥ 0, admitting the sequences

of prices qt and productivity factors At along with initial endowments k0 ≥ 0 and d0 as given. The

Lagrangian for the problem is given by

L =

∞∑
t=0

βt
{
log ct + λt

[
At kαt +

dt+1
1 + r

− (ct + dt + qt(kt+1 − kt))

]
+ λtµt [κqt kt+1 − dt+1]

}
,

where βtλt and βtλtµt are Lagrange multipliers respectively associated with SBCt and CCt . The

first-order conditions with respect to ct, dt+1, and kt+1 are respectively given by

c−1
t = λt,

λt
[
(1 + r)−1 − µt

]
= βλt+1,

and

λtqt [1 − κµt] = βλt+1
[
αAt+1kα−1

t+1 + qt+1
]
.

The second first-order condition, the Euler equation for debt, equates the marginal benefit of dt+1,

which is λt(1 + r)−1 utility units from increased consumption today, with the marginal cost, which

is the sum of βλt+1 utility units (owing to giving up a unit of consumption tomorrow) and µλt

utility units (reflecting a shadow punishment for increasing debt when the household is up against

the collateral constraint). The third first-order condition, the Euler equation for capital, equates the
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marginal cost of a unit of capital, which is λtqt utility units, with the marginal benefit, which is the

sum of βλt+1
[
αAt+1kα−1

t+1 + qt+1
]

(the present value of additional output it generates—or marginal

product of capital— in the next period and the price at which it can be sold in the next period

in utility terms) and λtκµtqt (reflecting the shadow benefit from relaxing the collateral constraint

when the household is up against it).

Complementary slackness of CCt implies

µt ≥ 0, µt(κqt kt+1 − dt+1) = 0.

Further, SGU show that the nonsatiation of preferences in the household’s optimization problem

implies a terminal optimality condition:11

lim
t→∞

dt+1
(1 + r)t

= κ lim
t→∞

qt kt+1
(1 + r)t

.

Aggregate supply of capital is assumed to be fixed for all time (e.g. a plot of land) at k > 0, so

that in equilibrium, market clearing requires

kt = k .

Note that under a fixed capital supply, the price of capital directly reflects the market demand for

capital. We also restrict ourselves to equilibria where the price of capital, qt ≥ 0, obeys a no-bubble

condition,

(NOBUB) lim
t→∞

qt

(1 + r)t
= 0,

so that the terminal optimality condition and constant capital supply imply a no-Ponzi game con-

dition,
11Effectively, if this condition was not satisfied, households can issue additional debt to fund an increase in con-

sumption while still meeting the collateral constraint, improving lifetime utility in the process.
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(NPG) lim
t→∞

dt+1
(1 + r)t

= 0.

The NPG condition along with forward iteration of SBCt imply an intertemporal resource con-

straint, whereby exogenous initial debt is covered by the net present value of future trade balances:

d0 =

∞∑
t=0

tbt

(1 + r)t
.

We define the relative patience ratio as δ := β(1 + r), which is the ratio of household-to-market

discount factors. We focus on the case where households are impatient relative to the market:

δ < 1. In fact, several analytic results that follow extend to δ ≥ 1 as well, but the economic

interpretations are somewhat different. Hence, to ease exposition, we will maintain δ < 1 as the

default assumption throughout sections 1.2-2.2 of this paper unless otherwise specified, leaving

the discussion of the case where δ ≥ 1 to section 2.3. Also, since the relative patience ratio enters

quite naturally into various expressions and since the restriction δ < 1 must be accounted for, we

typically express β in terms of δ, with only a few exceptions for symbolic conciseness. From the

above relations, we define the equilibrium:

Definition 1 A competitive bubble-free equilibrium (or equilibrium) is the sequence of vectors

((ct, µt,qt, dt+1))t≥0 having ct > 0, µt ≥ 0,qt ≥ 0, satisfying

d0 =

∞∑
t=0

yt − ct

(1 + r)t
, (1.1)

(1 + r) (ct + dt − yt) = dt+1, (1.2)

ct+1
ct
=

δ

1 − µt(1 + r)
, (1.3)

1 − κµt

1 − µt(1 + r)
(1 + r) qt −

α

k
yt+1 = qt+1, (1.4)
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µt (κkqt − dt+1) = 0, (1.5)

dt+1 ≤ κkqt, (1.6)

lim
t→∞

qt

(1 + r)t
= 0, (1.7)

given d0 and the exogenous sequences (At)t≥0 and (yt)t≥0 with yt = At kα.

In the absence of the collateral constraint, we refer to the model as the unconstrained model, in

contrast to the general constrained model. We refer to an equilibrium in the unconstrained model

as an unconstrained equilibrium, which obeys the exact same equilibrium conditions (1.1)-(1.7)

excluding (1.6) and with µt = 0 ∀t ≥ 0. For brevity, we also refer to {µτ}τ≥0 variously as the

Lagrange multipliers (or simply multipliers) or shadow values of the collateral constraint.

1.2.2 µ̃t characterization of equilibria

In this section, we characterize equilibria in terms of the path of a single endogenous variable,

namely the shadow value of the collateral constraint. We observe that the expression 1 − µt(1 + r)

appears in Definition 1. Moreover, from (1.3), we see that ct > 0 and µt ≥ 0 imply 1 − µt(1 + r) ∈

(0,1]. Thus, 1 − µt(1 + r) is simply a normalization of the multiplier µt that is confined to the

unit interval and decreases in µt . We hence define the following to ease the exposition of shadow

values in the sequel.

Definition 2 The normalized multiplier in period t is the quantity

µ̃t ≡ 1 − µt(1 + r), (1.8)

whose range is given by

µ̃t ∈ (0,1]. (1.9)

The collateral constraint is tight in period t when µ̃t < 1 (equivalently, µt > 0). The collateral
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constraint is slack in period t when µ̃t = 1 (equivalently, µt = 0).

With slight abuse, we will often refer to an equilibrium in terms of the normalized multipliers, i.e.

as a sequence ((ct, µ̃t,qt, dt+1))t≥0. Note that a slack constraint as given in Definition 2 permits the

collateral constraint in (1.6) to either bind or hold with strict inequality in accordance with (1.5).

We adopt this nomenclature throughout this paper for simplicity since the positivity of the shadow

value µt , rather than inequality of the constraint, is ultimately what materially affects equilibrium

dynamics. Complementing Definition 2, we also describe the collateral constraint using qualitative

terms such as “tighter” (resp. “less tight”) to describe a higher (resp. lower) µt , or equivalently, a

lower (resp. higher) µ̃t .

We now proceed to characterize all endogenous variables in terms of { µ̃t}t≥0. Recursive depen-

dencies are eliminated by backward iteration of (1.3) (using (1.1) to determine c0), and forward

iteration of (1.2) and (1.4) (availing of the NPG and NOBUB terminal optimality conditions).

Backward iteration of (1.3) yields12 ∀t ≥ 0

ct =

(
δt

t−1∏
τ=0

µ̃−1
τ

)
c0. (1.10)

By the same method used to obtain the equilibrium condition (1.1), NPG and forward iteration of

(1.2) applied to debt at any time t ≥ 0 imply

dt =

∞∑
τ=0

yt+τ − ct+τ

(1 + r)τ
. (1.11)

Since cτ > 0 ∀τ ≥ 0 implies dt <
∑∞
τ=0

yt+τ
(1+r)τ when the latter is well-defined, we define

dNDL
t ≡

∞∑
τ=0

yt+τ

(1 + r)τ
(1.12)

as the natural debt limit at time t, an exogenous quantity that is simply the net present value of

12In general we adopt the convention that for a generic sequence {aτ}τ≥0, we have
∑−1
τ=0 aτ = 0, and

∏−1
τ=0 aτ = 1,

which are natural extensions of summation and product notation.
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output from time t onward. We thus implicitly assume throughout this paper that the exogenous

initial debt is less than the initial natural debt limit that is well-defined (d0 < dDNL
0 < ∞) to ensure a

valid equilibrium.13 Note that we make no restriction on the sign of d0; if d0 > 0, then households

are initially endowed as net debtors, while if d0 < 0, they are initially endowed as net lenders.

Substituting (1.10) into (1.1) determines initial consumption according to

c0 =
(
dNDL

0 − d0

) [
∞∑

t=0
βt

t−1∏
τ=0

µ̃−1
τ

]−1

. (1.13)

Thus, consumption and debt are expressible in terms of { µ̃t}t≥0. Moreover, since d0 < dDNL
0 , we

see the condition µ̃t > 0 (equivalently, µt < (1+ r)−1) holding in all periods is in fact equivalent to

consumption being positive for all periods.

Likewise, forward iteration of (1.4) until some time T ≥ t implies

qt =


α

k

T−1∑
τ=0

yt+1+τ

τ∏
j=0

µ̃t+ j

1 + r − κ + κ µ̃t+ j

 + qt+T

T−1∏
j=0

µ̃t+ j

1 + r − κ + κ µ̃t+ j
. (1.14)

Since the product
∏T−1

j=0
µ̃t+j

1+r−κ+κ µ̃t+j
is positive by (1.9) and strictly increasing in the normalized

multipliers,14 it is maximized when the normalized multipliers are set to unity, and hence bounded

above by
∏T

j=1
1
(1+r) = (1 + r)−T . Consequently, the NOBUB condition (1.7) implies the last term

in (1.14) vanishes in the limit as T →∞, yielding

qt =
α

k

∞∑
τ=0

yt+1+τ

τ∏
j=0

µ̃t+ j

1 + r − κ + κ µ̃t+ j
. (1.15)

An equilibrium may have the collateral constraint slack for all periods, tight for all periods, or

13Note that dDNL
0 is well-defined if and only if dNDL

t is well-defined. Moreover, since output is nonnegative, well-
definedness of dNDL

0 is equivalent to the series
∑∞
τ=0

yτ
(1+r)τ not diverging to infinity (which we write as dDNL

0 < ∞).
This assumption does not hold if, for instance, output geometrically grows faster than rate 1+ r . The well-definedness
of the natural debt limit is not required to ensure (1.11) gives a valid equilibrium debt, which only requires a well-
defined net present value of trade balances. Nonetheless, the well-definedness of the natural debt limit will avoid
indeterminacies associated with the characterization that follows.

14To see the product is strictly increasing in the normalized multipliers, note that the function characterized by
g(µ̃) := µ̃

1+r−κ+κµ̃ can be expressed as g(µ̃) = 1
κ

(
1 − 1+r−κ

1+r−κ+κµ̃

)
and 1 + r > κ.
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tight for some periods. Having expressed all quantities in terms of the normalized multipliers,

we may in principle solve for equilibria in terms of fundamentals by considering generic equilib-

rium candidates that feature tightness in various periods. If, for instance, we consider a candidate

equilibrium with a tight collateral constraint for M specifically chosen periods, then complemen-

tary slackness condition (1.5) applied to those periods gives M binding constraints through which

the M positive Lagrange multipliers for those periods may be solved for, with the multipliers for

the remaining periods set to nil (i.e. normalized multipliers set to unity). Once the multipliers

and other endogenous quantities are solved for in terms of fundamentals, they will collectively

comprise an equilibrium if the tight multipliers satisfy their presupposed constraints, namely that

their normalized counterparts are in the open unit interval (0,1), and if the collateral constraint is

confirmed to hold for the periods that were presumed to have a slack constraint.

Analytically implementing this procedure for a generic equilibrium candidate to obtain closed-

form equilibrium expressions is unfortunately not tractable in general, as the equations that deter-

mine the multipliers comprise an M-dimensional nonlinear system. This nonlinearity may generate

multiple equilibria having the same temporal pattern of constraint tightness, something we show

in section 2.2. In general, however, the system is infinite-dimensional if we assume the constraint

is tight infinitely often.15 Still, we can use this characterization to explicitly solve for simple kinds

of equilibria or otherwise obtain insights on general properties of any equilibrium, which is our

approach for the remainder of the paper.

In the sequel, the preceding equilibrium characterization is referred to as the µ̃t-characterization.

Below are some useful facts and other terminology that will facilitate our discussion.

Fact 1 Given ρ ∈ (0,1), a nonnegative real sequence (xt)t≥0 is bounded if and only if the sequence

of its net present values
(∑∞

τ=0 ρ
τxt+τ

)
t≥0 is bounded.

Proof.

xt ≤ x̄ =⇒
∞∑
τ=0

ρτxt+τ ≤

∞∑
τ=0

ρτ x̄ =
1

1 − ρ
x̄.

15As we discuss in section 2.1, an exception here is in solving for N-cyclic equilibria, which feature a constraint that
binds infinitely often but whose characterization can nonetheless be reduced to solving a finite-dimensional system.
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∞∑
τ=0

ρτxt+τ ≤ X̄ =⇒ xt ≤ xt + ρ

∞∑
τ=0

ρτxt+1+τ =

∞∑
τ=0

ρτxt+τ ≤ X̄ .

�

Fact 2 Given ρ ∈ (0,1), a real sequence (xt)t≥0 converges to x if and only if the sequence of its net

present values
(∑∞

τ=0 ρ
τxt+τ

)
t≥0 converges to

∑∞
τ=0 ρ

τx = x/(1 − ρ).

Proof. Define Xt :=
∑∞
τ=0 ρ

τxt+τ. If xt → x, then ∀ε > 0 ∃T ≥ 0 s.t. ∀t ≥ T , |xt − x | < (1− ρ)ε so�����Xt −

∞∑
τ=0

ρτx

����� =
����� ∞∑
τ=0

ρτ (xt+τ − x)

����� ≤ ∞∑
τ=0

ρτ |xt+τ − x | <
∞∑
τ=0

ρτ(1 − ρ)ε = ε .

If Xt →
∑∞
τ=0 ρ

τx, then ∀ε > 0 ∃T ≥ 0 s.t. ∀t ≥ T ,
��Xt −

∑∞
τ=0 ρ

τx
�� < ε/(1 + ρ) so

|xt − x | =

�����Xt −

∞∑
τ=0

ρτ x + ρ

(
∞∑
τ=0

ρτ x − Xt+1

)����� ≤
�����Xt −

∞∑
τ=0

ρτ x

�����+ ρ
����� ∞∑
τ=0

ρτ x − Xt+1

����� < ε

1 + ρ
+ ρ

ε

1 + ρ
= ε .

�

Definition 3 Given sequence (xt)t≥0, define x∞ ≡ limt↑∞ xt when the limit is well-defined. An

equilibrium features eventual starvation whenever c∞ = 0 (equivalently d∞ = dNDL
∞ ). A constant

output regime has positive constant output from period 1 onward: {yt+1}t≥0 = y > 0 .

1.3 Steady-state equilibrium

As a first step to understanding equilibrium dynamics, we consider the steady-state equilibrium

(SSE).

Definition 4 A steady-state equilibrium (SSE) is a constant equilibrium where (ct, µ̃t,qt, dt+1) =

(c∗, µ̃∗,q∗, d∗) ∀t ≥ 0.

An SSE in the unconstrained model is naturally defined identically to that of the constrained model,

with µ∗ = 0 and excepting (1.6). Note that unless δ = 1, there can be no SSE in the unconstrained

setting, since (1.10) implies any steady-state consumption must have c∗ = 0 when δ , 1, which

violates the requirement that c∗ > 0.
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At this point, we solve for the SSE and obtain its existence conditions. While we may use the

µ̃t-characterization to do so, it is straightforward to directly appeal to Definition 1. In an SSE,

observe that (1.2) implies yt+1 must be constant for t ≥ 0 :

yt+1 = c∗ +
r

1 + r
d∗ =: y, t ≥ 0. (1.16)

Then (1.1) implies

d0 = y0 − c∗ +
∞∑

t=1

y − c∗

(1 + r)t
,

and by (1.16) we have

y0 = d0 + c∗ −
1

1 + r
d∗. (1.17)

The simultaneous equations (1.16) and (1.17) give SSE values of consumption and debt in terms

of output and initial debt:

d∗ = y − y0 + d0, (1.18)

c∗ =
y + r(y0 − d0)

1 + r
. (1.19)

Thus SSE debt is simply the sum of initial debt and the change in output from period 0 to period 1,

while SSE consumption is a weighted average between the output from period 1 onward, y , and

the surfeit in period 0 after the initial debt obligation is satisfied, y0 − d0. Note that from (1.16),

we may equivalently write c∗ = y − r
1+r d∗, a typical characteristic of open economy models in the

steady state, which conveys that households consume their permanent income, given by the sum

of nonfinancial income, y, and interest income, −rd∗/(1 + r).

Observe from (1.3), we obtain µ̃∗ :

µ̃∗ = δ, (1.20)

which implies that households must be tightly borrowing-constrained in an SSE. This result stands

in contrast to the SGU model when δ = 1, under which the SSE has a slack constraint (µ̃∗ = 1).
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However, this result is to be expected in an economy in which absent any collateral constraint,

impatient households would frontload consumption, incur eventual starvation, and approach their

natural debt limit (as detailed in section 1.4).

Substituting (1.20) into (1.4) yields the SSE price of capital:

q∗ =
δ

r + (1 − δ)(1 − κ)
αy

k
. (1.21)

Note that since µ̃∗ < 1, the complementary slackness condition (1.5) implies the collateral con-

straint binds, which, by (1.18), restricts the level of initial debt that can sustain an SSE:

dSSE
0 = y0 −

(
1 −

ακδ

r + (1 − δ)(1 − κ)

)
y. (1.22)

Recall that c∗ > 0 requires that initial debt respects its natural debt limit, which will, in fact,

automatically be satisfied under our parameter restrictions so long as y > 0:

dSSE
0 < y0 +

1 − r
r

y < y0 +
y

r
= dNDL

0 ,

the first inequality following from the fact that dSSE
0 is strictly increasing in α, κ, and δ and hence

has a supremum corresponding to when these parameters are set to unity.

The SSE values of consumption and debt in terms of output are then given as follows:

d∗ = κkq∗ =
ακδ

r + (1 − δ)(1 − κ)
y. (1.23)

c∗ = y −
r

1 + r
d∗ =

(
1 −

αrκδ
(1 + r) (r + (1 − δ)(1 − κ))

)
y. (1.24)

Finally, the SSE values of the trade balance and current account are given by

tb∗t =


r

1+r d∗ − (y − y0) t = 0

r
1+r d∗ t ≥ 1

, (1.25)
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ca∗t =


− 1

1+r (y − y0) t = 0

0 t ≥ 1
. (1.26)

In other words, the trade balance is simply the interest obligations on external debt for all periods,

except in period 0, where there is a downward adjustment if there is a negative shock to output

(y0 < y). Likewise, the current account is initially commensurate with any such initial shock in

output, and is nil thereafter since the net debt position is constant in the steady state.

Thus, an SSE can be supported by any constant output regime so long as initial debt is given

by (1.22) (admitting all other fundamentals as given) so that the collateral constraint always binds,

with the corresponding SSE values given by (1.20), (1.21), (1.23), and (1.24). The fact that initial

borrowing is restricted is in fact shared by any equilibrium featuring regular cycles, as discussed

in section 2.1. Note that c∗ decreases in δ, while d0, d∗, µ̃∗, and q∗ increase in δ. That is, the more

impatient households are, a valid SSE must feature greater consumption and a greater shadow

price of borrowing against a tight constraint (lower µ̃∗), with consumers borrowing less (given

smaller future trade balances to borrow against) and consequently requiring less capital value to

collateralize their debt. It is important to interpret these comparative statics results with some

caution. In particular, it may appear that more patient agents enjoy less welfare in an SSE (lower

c∗). However, comparing welfare of SSEs under differing patience is meaningless since different

SSEs can only be supported under differential initial debts. Indeed, more patient agents must

be endowed with a greater debt obligation in a valid SSE since they are less tightly borrowing-

constrained (higher µ̃∗). The intuition regarding this latter relation will become more clear in the

context of consumption growth in section 1.5.2. Essentially, more patient agents wish to frontload

their consumption less, while being more tightly constrained (lower µ̃∗) corresponds with a higher

shadow cost of borrowing and induces agents to push forward their consumption, the latter effect

thus complementing the former. Hence, the more patient agents are, the higher µ̃∗ must be to

maintain a constant consumption path. Still, when agents are impatient relative to the market, µ̃∗

must be less than unity to induce some counteracting forward-pushing behavior.
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1.4 Unconstrained equilibrium

In this section, we solve for the unique equilibrium of the unconstrained model. This analysis

will serve as a useful benchmark against which to compare the constrained model. Moreover,

solving for the unconstrained equilibrium allows us to find when the constrained model can support

an eternally slack equilibrium (ESE).

Definition 5 A eternally slack equilibrium (ESE) is an equilibrium where µ̃t = 1 ∀t ≥ 0.

Clearly, the ESE —if it exists under appropriate restrictions on the exogenous variables of the

constrained model— must concur with the unconstrained equilibrium by definition.

To solve for the unconstrained equilibrium, we may use the µ̃t-characterization, taking the case

where µ̃t = 1 ∀t ≥ 0. From (1.10), the unconstrained equilibrium consumption is given by

cUE
t = cUE

0 δt, (1.27)

with (1.13) determining initial consumption as

cUE
0 = (1 − β)

(
dNDL

0 − d0

)
. (1.28)

Substituting (1.27) and (1.28) into (1.11) yields the debt as

dUE
t = dNDL

t −

(
dNDL

0 − d0

)
δt . (1.29)

Finally, (1.15) determines the price of capital as

qUE
t =

α

k(1 + r)
dNDL

t+1 . (1.30)

Thus, (1.27) -(1.30) give the unconstrained equilibrium.16 Moreover, the trade balance and current

16Note that the assumption that the natural debt limit is well-defined is clearly required to support the unconstrained
equilibrium under general δ; otherwise, the price of capital (among other things) would be ill-defined.
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account in equilibrium are given by

tbUE
t = yt − cUE

0 δt, (1.31)

caUE
t = yt −

r
1 + r

dNDL
t −

1 − δ
1 + r

(
dNDL

0 − d0

)
δt . (1.32)

Note that the unconstrained equilibrium expressions apply even when δ = 1, in which case they

coincide with the steady-state equilibrium in a constant output regime. Also note that while qUE
t

does not depend on β, we see that cUE
0 and

{
dUE
τ+1

}
τ≥0 decrease in β. Thus, absent any collateral

constraint, the more impatient households are, the more they borrow to frontload consumption,

allowing their future consumption to diminish exponentially at rate δ and approaching their natural

debt limit over time. In the long run, we have the following when y∞ is well-defined:

cUE
∞ = 0,

dUE
∞ = dNDL

∞ =
1 + r

r
y∞,

qUE
∞ =

α

k(1 + r)
dNDL
∞ =

α

rk
y∞,

tb∞ = y∞,

ca∞ = 0.

Thus, we see that the unconstrained equilibrium features eventual starvation.

Now consider whether the constrained model can support an ESE. A unique ESE specified by

(1.27) -(1.30) exists so long as dUE
t+1 ≤ κkqUE

t ∀t ≥ 0, or equivalently,

ESE existence condition:
1 + r − ακ

1 + r
dNDL

t+1 ≤
(
dNDL

0 − d0

)
δt+1 ∀t ≥ 0. (1.33)
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This inequality gives the necessary and sufficient condition for existence of an ESE and is a

generalization of the “regular shocks” condition in SGU (which is obtained by setting δ = 1,

{yτ+1}τ≥0 = y). The left-hand side of (1.33) is equivalently dNDL
t+1 − κkqUE

t and the right-hand side

is δt+1 ∑∞
τ=0

cτ
(1+r)τ , so that in words, this restriction asserts that the extent to which the natural debt

limit for the debt obligation due at time t + 1 exceeds the collateral constraint is no more than the

time t + 1 value (discounting under relative patience ratio δ) of the net present value of the entire

consumption stream (equivalently, dNDL
0 − d0, the extent to which the initial natural debt limit ex-

ceeds the initial debt obligation). Note that (1.33) requires that yt = O(δt), and thus a necessary

condition for (1.33) is y∞ = 0. Consequently, the ESE is only sustainable in an economy that faces

depressionary production in the long run, with all endogenous ESE quantities thus vanishing in the

limit. Moreover, this observation implies that the ESE and SSE can never coexist since an SSE

requires a constant output regime while an ESE requires that any constant output path from period

1 onward must be a zero sequence.

An extreme example of an economy that can support an ESE is indeed one with no production

from period 1 onward ({yt+1}t≥0 = 0) with initial debt strictly less than initial output (d0 < dNDL
0 =

y0). In fact, regardless of impatience, the ESE is the unique equilibrium that can be supported by

such constant zero output since (1.15) implies the price of capital in this case would always be

zero, while a binding collateral constraint in any period would imply a zero debt obligation in the

following period, which would violate the zero natural debt limit. In effect, impatient agents in

this setting initially consume a fraction 1 − β (commensurate with their degree of impatience) of

their surfeit of output net of their debt obligations (y0 − d0) in period 0, and lend the remaining

surfeit to generate income in period 1. Without production thereafter, their income in subsequent

periods comes exclusively from the principal and interest payments on the debt lent out in previous

periods. However, since consumption diminishes at the rate of the relative patience ratio, the

lending diminishes (equivalently, their debt position increases) at the same rate, with the agents

eventually approaching their limiting natural debt limit of zero (the net present value of future

output) over time. Thus, so long as households initially have enough output to fund their initial
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debt obligation, having no output thereafter ensures agents will always face a net lending position

and thus be free from the collateral constraint. More generally, we see from (1.33) that the closer

the initial debt is to the initial natural debt limit or the more impatient the agents are, the stronger

the restriction that the economy should produce less output from period 1 onward for the constraint

to be slack. In other words, when agents are initially endowed less as net debtors or more as net

lenders (i.e. smaller d0) or when they are more patient (i.e. higher δ), the greater flexibility

afforded to them to sustain greater positive output after time 0 while never facing a tight collateral

constraint.

Example 1 ESE in an eternal depression. A less extreme example of an economy that would

satisfy (1.33) is one where output geometrically declines at least as fast as the relative patience ra-

tio, according to yt = y0γ
t for y0 > 0, γ ∈ (0, δ]. Unlike in the previous toy example, this economy

always produces positive output, but does so exponentially less over time, so that households face a

permanent depression. This permanent depression is compatible with the preferences of impatient

agents, who wish to consume their most at time 0 and sacrifice consumption in later periods absent

any collateral constraint. We can see what parameter restrictions would suffice for such an output

rule to guarantee the existence of the ESE by substituting the rule into (1.33):

1 + r − ακ
1 + r

y0

(
1 −

γ

1 + r

)−1
γt+1 ≤

(
y0

(
1 −

γ

1 + r

)−1
− d0

)
δt+1 ∀t ≥ 0,

so that it suffices if the parameters satisfy

1 + r − ακ
1 + r

y0

(
1 −

γ

1 + r

)−1
≤ y0

(
1 −

γ

1 + r

)−1
− d0,

or equivalently,
d0
y0
≤

ακ

1 + r − γ
⇐⇒ γd0 ≤ κkqUE

0 .

We see that it suffices if the initial debt-to-output ratio is accordingly bounded. The lattermost

inequality affords another interpretation: it suffices if γd0, the period 1 value of the initial debt
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obligation when discounted at rate γ, obeys the initial collateral constraint. Figure 1.2 illustrates

the equilibrium paths in an ESE for such an economy with γ = 0.75δ, d0
y0
= ακ

1+r−γ . We see the value

of collateral mimics the behavior of output since the former is proportional to next period’s natural

debt limit, the net present value of future output. Consumption declines geometrically but not as

fast as output does since it only falls at the rate of the relative patience ratio. Debt, on the other

hand, behaves non-monotonically. Households are initially endowed as net borrowers (d0 > 0),

but they soon react to the rapidly declining output and transition to a lending position to raise

additional income, increasing their lending for some finite time. They remain lenders thereafter,

but reduce their lending position after some time as they only need fund lower consumption in the

long run. In the long run, they approach their zero long-term natural debt limit. If output declines

at a sufficiently smaller rate (higher γ, very close to δ), households tend to take longer to transition

to lending (Figure 1.3, γ = 0.95δ). If output declines at the rate of the relative patience ratio itself,

then households never lend if they are initial borrowers, and simply diminish their borrowing at

the rate of the relative patience ratio (dUE
t = d0δ

t). The trade balance and current account mimic

the debt behavior.

As a final remark for this section, note it is generally possible for d0 > y0, with households

borrowing against future income to fund consumption, so long as the initial debt is strictly less than

the net present value of all future output (the initial natural debt limit). However, certain parameter

values may require d0 ≤ y0 to sustain an ESE. To see this, note that at time 0, the inequality of

(1.33) is

(1 + r − ακ)
(
dNDL

0 − y0

)
≤

(
dNDL

0 − d0

)
δ, (1.34)

and we see that in the event 1 + r ≥ ακ + δ, it is required that d0 ≤ y0 to ensure the existence

of the ESE. That is, if the gross interest rate on debt obligations is sufficiently high relative to the

combined impact of the household’s relative patience ratio and the importance of capital (ακ) in the

economy, then agents cannot afford to have an initial debt obligation exceeding initial production

if they wish to never face a tight collateral constraint. This observation will be pertinent to our
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Figure 1.2: ESE under output rule yt = y0γ
t with γ = 0.75δ. Parameters are set as y0 = 1,r =

0.01, δ = 0.95, κ = 0.5, α = 0.3, d0 =
ακ

1+r−γ y0.

discussion of multiplicity of equilibria in section 2.2.1.

1.5 Characteristics of equilibria

In the previous two sections, we have shown that under appropriate restrictions on exogenous

parameters, there is an equilibrium where the collateral constraint is always tight (SSE) and one

where the constraint is always slack (ESE). In general, there may be other kinds of equilibria,

including those with an occasionally tight constraint. In this section, we discuss general properties

featured in any equilibrium using the µ̃t-characterization. Moreover, the properties in sections
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Figure 1.3: ESE under output rule yt = y0γ
t with γ = 0.95δ. Parameters are set as y0 = 1,r =

0.01, δ = 0.95, κ = 0.5, α = 0.3, d0 =
ακ

1+r−γ y0

1.5.1-1.5.3 apply for any δ, hence subsuming the SGU model.

1.5.1 Fisherian deflation relative to unconstrained equilibrium

Our first object is to show how any equilibrium features relative Fisherian deflation, or a strictly

lower price of capital in a period when the collateral constraint is tight compared to the uncon-

strained equilibrium (or equivalently the ESE when it exists). Note that (1.15) shows that qt is

positive if output is positive at least once in a future period, and is strictly increasing in { µ̃τ}τ≥t ,

and is thus maximized when these normalized multipliers are set to unity (corresponding with the

unconstrained equilibrium). Moreover, demand for capital does not depend on past multipliers.

28



These observations give the following proposition:

Proposition 1 In equilibrium, qt > 0 if ∃τ ≥ t ≥ 0 where yτ+1 > 0; further,

qt ≤ qUE
t ∀t ≥ 0 (1.35)

and qt = qUE
t if and only if µ̃τ = 1 ∀τ ≥ t ≥ 0.

Proposition 1 gives a stronger result than Fisherian deflation relative to the unconstrained equi-

librium, since it asserts that all periods contemporaneous to and prior to a period facing a tight

constraint feature a lower price of capital compared to the unconstrained equilibrium. More gener-

ally, (1.15) shows that tighter contemporaneous or future collateral constraints (lower µ̃τ ∀τ ≥ t)

yield a lower equilibrium price of capital.

The intuition behind this result can be gleaned from the Euler equations for capital and debt

discussed in section 1.2.1:

λtqt [1 − κµt] = βλt+1
[
αAt+1kα−1

t+1 + qt+1
]
,

λt
[
(1 + r)−1 − µt

]
= βλt+1.

One one hand, we see from the first Euler equation that the tighter the collateral constraint is

(higher µt), the higher the marginal benefit of an additional unit of capital is since the shadow

benefit from relaxing the constraint, λtκµtqt , is higher. This contribution from a tighter constraint

should increase demand for capital, inducing an upward effect on the equilibrium price of capi-

tal. At the same time, from the second Euler equation, we see that the tighter the constraint is,

the higher the marginal cost of an additional unit of debt is since the shadow punishment from

incurring additional debt, λtµ, is higher. This latter contribution should decrease demand for debt,

reducing the demand for collateral value (since debt and collateral are effectively complements),

inducing a downward effect on the equilibrium price of capital. Since the fraction of capital posted
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as collateral is small relative to the gross interest rate (κ < 1 + r), the second effect (the comple-

mentary debt channel) dominates the first, leading to this “tightness”-induced Fisherian deflation.

Stated differently, the equilibrium price of capital responds negatively to the shadow value of the

constraint since the negative effect from the shadow cost of borrowing along with complementarity

of debt and collateral value outweigh the positive effect of the shadow benefit of relaxing the con-

straint. The fact that the price of capital depends on its next period’s realization leads to a similar

Fisherian deflation induced by future tightness, a consequence of the forward-planning nature of

agents. Nonetheless, since agents always consume a positive amount in equilibrium, so long as

there is some positive output to be produced in a future period, there will be positive demand for

capital to collateralize borrowing.

While any equilibrium features Fisherian deflation relative to the unconstrained equilibrium, a

natural question to consider is whether any equilibrium features absolute Fisherian deflation, or a

drop in the price of capital when transitioning from a period with a slack constraint to one with a

tight constraint. In general, absolute Fisherian deflation is not guaranteed in our model, although

the next claim provides sufficient conditions for this behavior.

Claim 1 In equilibrium, if yt+1+τ ≥ (resp. ≤)yt+2+τ and µ̃t+τ ≥ (resp. ≤)µ̃t+1+τ ∀τ ≥ 0, then

qt ≥ (resp. ≤)qt+1 for t ≥ 0.17

Proof. From (1.15), we have

qt − qt+1 =
α

k


∞∑
τ=0

yt+1+τ

τ∏
j=0

µ̃t+ j

1 + r − κ + κ µ̃t+ j
−

∞∑
τ=0

yt+2+τ

τ∏
j=0

µ̃t+1+ j

1 + r − κ + κ µ̃t+1+ j


≥ (resp. ≤)

α

k


∞∑
τ=0
(yt+1+τ − yt+2+τ)

τ∏
j=0

µ̃t+ j

1 + r − κ + κ µ̃t+ j

 ≥ (resp. ≤)0,

the first inequality following from the monotonic chain of inequalities for the normalized multipli-

ers, and the second inequality following from the monotonic chain of inequalities for output. �

17The inequality for the price of capital is strict if at least one of the chain of inequalities for the trajectory of output
or normalized multipliers is strict.
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That is, the price of capital falls if future output monotonically falls and the constraint monoton-

ically tightens. Conversely, monotonic growth in future output and monotonic weakening of the

constraint ensure inflation in the price of capital. This result is quite intuitive in a perfect-foresight

economy; though a tight constraint would lead agents to demand less capital than they would in the

unconstrained equilibrium, they need not reduce their demand for capital from the preceding pe-

riod unless they expect an even more dismal economic situation in the future. Indeed, if households

expect future productivity to improve and to be less borrowing-constrained with a lower shadow

value for the constraint over time, they may possibly increase their demand for capital despite

transitioning to a period where they are transitorily more tightly constrained. Thus, the growth in

the price of capital responds not just to the contemporary shadow value of the constraint, but future

shadow values as well. This observation stands in contrast to consumption growth, discussed in

section 1.5.2.

1.5.2 Consumption rationing

As with the price of capital, we determine how consumption in any equilibrium depends on

the tightness of the collateral constraint. An initial observation we make concerns consumption

growth. From the Euler equation for debt (1.3), we see ct+1 T ct whenever µ̃t S µ̃∗; that is,

consumption growth is positive (resp. negative) from t to t + 1 so long as the collateral constraint

is tighter (resp. less tight) in period t relative to its steady-state tightness. Moreover, ct+1/ct ≥ δ,

so that consumption growth is always at least as great as that of the unconstrained equilibrium,

wherein consumption decreases at the rate of the relative patience ratio. The intuition here is

that with a less tight contemporaneous constraint (relative to the SSE), the impatient agent prefers

frontloading consumption, and thus plans for less consumption in the next period. However, a

tighter contemporaneous constraint induces a higher marginal cost of raising an additional unit of

debt to fund consumption in that period, so households are willing to frontload less and possibly

push forward consumption, consuming more in the next period when the constraint is sufficiently

tight (µ̃t < µ̃∗).
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While we thus appreciate the dynamics of consumption growth, we also consider the dynam-

ics of consumption levels. Observe from (1.13) that initial consumption is strictly increasing in

{ µ̃t}t≥0. Moreover, substituting initial consumption (1.13) into (1.10) yields

ct = δt
(
dNDL

0 − d0

) [
t−1∑
τ=0

βτ
(
Π

t−1
j=τ µ̃j

)
+ βt +

∞∑
τ=t+1

βτ
(
Π
τ−1
j=t µ̃

−1
j

)]−1

, (1.36)

which shows that ct is strictly decreasing in { µ̃τ}τ≤t−1 and strictly increasing in { µ̃τ}τ≥t . That

is, tighter collateral constraints prior to a period serve to boost consumption in that period, while

tighter constraints contemporaneous to or after a period serve to diminish consumption in that pe-

riod. Households thus display this kind of rationing property, whereby the less tightly constrained

they were in the past or the more tightly constrained they expect to be from today onward, the

more they plan to ration today. Conversely, the more tightly constrained they were in the past or

the less tightly constrained they expect to be from today onward, the more they plan to enjoy a glut

today. From these relations, we obtain an upper bound on consumption by setting past normalized

multipliers to zero, and setting the contemporaneous and future normalized multipliers to unity,

giving the next proposition and corollary.

Proposition 2 In equilibrium,

ct ≤ δ
t
(
dNDL

0 − d0

) [
∞∑
τ=t

βτ

]−1

= (1 + r)tcUE
0 ∀t ≥ 0, (1.37)

where the inequality binds only in an ESE at t = 0.

Corollary 1 If the collateral constraint is tight for at least one period, then an equilibrium has

c0 < cUE
0 . (1.38)

Proposition 2 states that in any equilibrium, no matter if consumption grows during very tight

periods as described before, consumption at any time t cannot exceed the period t future value

of the unconstrained initial consumption. Corollary 1 is obtained in SGU and asserts that when
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facing the eventuality of a tight constraint, households always ration initial consumption relative

to its unconstrained counterpart.18

1.5.3 Debt deleveraging relative to unconstrained equilibrium

An immediate consequence of Corollary 1 is that the household deleverages (reduces debt) in

period 1 relative to the unconstrained equilibrium if the collateral constraint is tight at least once.

This result follows from the sequential budget constraint (1.2) at time 0, by which c0 < cUE
0 implies

d1 < dUE
1 . Naturally this result also implies ca0 > caUE

0 and tb0 > tbUE
0 when the constraint is

tight at least once.

In fact, we can strengthen this deleveraging result by seeing how equilibrium debt depends

on all the normalized multipliers. As discussed in section 1.5.1, the Euler equation for debt sug-

gests that a tighter contemporaneous constraint increases the shadow punishment from incurring

additional debt, which should lead to decreased borrowing in equilibrium. Moreover, given the

complementary relationship between debt and collateral value, one would expect the former to re-

spond negatively to tighter future constraints as does the latter. Additionally, tighter past constraints

incentivize agents to plan for a glut in future consumption, leaving less trade balances to borrow

against, implying a negative impact on equilibrium debt. We appeal to the µ̃t-characterization to

see these dependencies more completely. For convenience, define Mt :=
∏t−1

τ=0 µ̃τ (with the normal-

ization M0 = 1 as per footnote 12). Mt measures “aggregate tightness” of the collateral constraint

in the periods preceding t (being smaller when the constraint is more tight in these periods). Then

18In fact, while we obtained Corollary 1 using the µ̃t -characterization, we can obtain it more directly using the
equilibrium conditions, as done in SGU. To see how, recall consumption growth is bounded below according to
ct+1/ct ≥ δ. Moreover, if there is at least one period with a tight constraint, then that period experiences consumption
growth strictly greater than δ. However, the intertemporal resource constraint (1.1) asserts that initial debt is the net
present value of all future trade balances, so that any equilibrium must have a fixed net present value of consumption
given an exogenous initial debt and output path. Since the unconstrained equilibrium quantities themselves were
solved to satisfy this restriction on the net present value of consumption, then it follows that any equilibrium with
a tight constraint for some period has initial consumption strictly less than that of the unconstrained counterpart (
c0 < cUE

0 ) to ensure both consumption paths have the same net present value.
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by (1.10), (1.11), and (1.13), we have

dt+1 = dNDL
t+1 − δ

t+1
(
dNDL

0 − d0

) ∞∑
τ=0

wτ

(
t+τ∏
j=τ

µ̃ j

)−1

, (1.39)

wτ :=
βτM−1

τ∑∞
j=0 β

j M−1
j

.

Recall from (1.11) that the extent to which the natural debt limit at any time exceeds borrowing

is the net present value of consumption from that time onward: dNDL
t − dt =

∑∞
τ=0

ct+τ
(1+r)τ . Thus,

in words, (1.39) states that the net present value of consumption from time t + 1 onward is the

δ−discounted time t + 1 future value of the net present value of the entire consumption stream

adjusted by a particular weighted average of
(∏t+τ

j=τ µ̃ j

)−1
across τ ≥ 0. This representation seems

to concisely suggest a positive association between the normalized multipliers and debt, suggesting

that tighter collateral constraints (lower µ̃t) should reduce debt. In fact, this positive association

is true but care needs to be taken since the weights of the weighted average depend positively on

some of the normalized multipliers.

Proposition 3 In equilibrium,

dt+1 ≤ dUE
t+1 ∀t ≥ 0, (1.40)

with equality in any period holding only in an ESE.

Proof. It suffices to show dt+1 is strictly increasing in { µ̃τ}τ≥0.

We proceed in two steps: first, we show dt+1 is strictly increasing in { µ̃τ}τ≤t = { µ̃0, ..., µ̃t} and

separately we show that it is strictly increasing in { µ̃τ}τ≥t = { µ̃t, µ̃t+1, ...}.

1. By (1.11), we have that dt+1 strictly decreases in {cτ}τ≥t+1. From section 1.5.2, we know ct

is strictly decreasing in { µ̃τ}τ≤t−1 and strictly increasing in { µ̃τ}τ≥t . Consequently, {cτ}τ≥t+1

strictly decreases in { µ̃τ}τ≤t , so dt+1 strictly increases in { µ̃τ}τ≤t .
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2. The weighted average in (1.39) can be expressed as

∞∑
τ=0

wτ

(
t+τ∏
j=τ

µ̃ j

)−1

= β−(t+1)

(
1 −

∑t
τ=0 β

τM−1
τ∑∞

τ=0 β
τM−1

τ

)
,

and the right-hand side is strictly decreasing in { µ̃τ}τ≥t . �

Both Propositions 1 and 3 have immediate implications on the collateral constraint. For in-

stance, we see that a sufficient condition for the collateral constraint to be satisfied in any equi-

librium is dUE
t+1 ≤ κkqt . Moreover, equilibria where the constraint is slack after some transition

time yield a relatively easy way to check if the collateral constraint holds from the transition time

onward:

Corollary 2 If for time T ≥ 0, µ̃t = 1 ∀t ≥ T , then the inequality of the ESE existence condition

(1.33) holding for t ≥ T is sufficient for the collateral constraint to hold for all t ≥ T in equilibrium.

Proof. For t ≥ T , dt+1 ≤︸︷︷︸
Prop. 3

dUE
t+1 ≤︸︷︷︸

(1.33)

κkqUE
t =︸︷︷︸

Prop. 1

κkqt . �

Having established deleveraging relative to the unconstrained equilibrium, another point to

consider is when households deleverage from one period to the next. The next claim addresses this

question.

Claim 2 In equilibrium, if yt+τ ≥ (resp. ≤)yt+1+τ and µ̃t+τ ≤ (resp. ≥)µ̃∗ ∀τ ≥ 0, then dt ≥

(resp. ≤)dt+1 for t ≥ 0.19

Proof. (1.11) and (1.3) imply

dt − dt+1 =

∞∑
τ=0

yt+τ − ct+τ

(1 + r)τ
−

∞∑
τ=0

yt+1+τ − ct+1+τ
(1 + r)τ

=

∞∑
τ=0

yt+τ − yt+1+τ + ct+1+τ − ct+τ

(1 + r)τ

19The inequality for debt is strict if at least one of collection of inequalities for the normalized multipliers or the
trajectory of output is strict.
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=

∞∑
τ=0

yt+τ − yt+1+τ + (µ̃
∗/µ̃t+τ − 1) ct+τ

(1 + r)τ
≥ (resp. ≤)0.

�

That is, households deleverage from one period to the next if they expect output to monoton-

ically fall and the constraint to be tighter than the steady state. Conversely, monotonic growth in

output and sub-steady-state tightness of the constraint drives increased borrowing.

The reader may wonder whether the conditions of Claims 1 and 2 may coincide to ensure

a concurrent decrease (resp. increase) in borrowing and collateral value, i.e. dt+1 ≥ (resp. ≤

)dt+2,qt ≥ (resp. ≤)qt+1. Our discussion in section 1.5.4 will clarify when these conditions can

overlap. We shall see that if future output is not constantly zero, the sufficient conditions of Claim

1 for qt ≥ (resp. ≤)qt+1 —namely yτ+1 ≥ (resp. ≤)yτ+2 and µ̃τ ≥ (resp. ≤)µ̃τ+1 for all τ ≥ t—

can only be met if µ̃∞ ≥ (resp. ≤)µ̃∗.20 Meanwhile, the sufficient conditions of Claim 2 for

dt+1 ≥ (resp. ≤)dt+2 —namely yτ+1 ≥ (resp. ≤)yτ+2 and µ̃τ+1 ≤ (resp. ≥)µ̃∗ for all τ ≥ t—can

only be met if µ̃∞ = µ̃∗. The conditions of both claims then overlap only if { µ̃τ}τ≥t+1 = µ̃∗.

Thus, a monotonic fall (resp. rise) in future output along with future steady-state tightness is

sufficient—though not necessary—to guarantee a concurrent decrease (resp. increase) in borrow-

ing and collateral value.

1.5.4 Long-run behavior

Our preceding analyses were based on how equilibrium quantities depend on the multipliers.

As discussed in section 1.2.2, analytically solving for the equilibrium multipliers themselves is

generally cumbrous. Nonetheless, it is possible to determine the kinds of behavior of the equilib-

rium multipliers that are not permissible in the long run. To facilitate such discussion, we define

the following.

Definition 6 An equilibrium features stabilizing tightness when µ̃∞ exists. .

20If future output is zero, i.e. {yτ+1}τ≥t = 0, then µ̃τ ≤ µ̃τ+1 for all τ ≥ t does not require µ̃∞ ≤ µ̃∗. A simple
counterexample is the ESE.
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Note the SSE and ESE feature stabilizing tightness, with µ̃∞ = µ̃∗ = δ and µ̃∞ = 1 respectively.

Now consider the long-run behavior of consumption and debt. From our discussion of consump-

tion growth in section 1.5.2, we see that if the constraint is weakly less tight relative to the SSE

after some transition time and nonvanishingly less tight than the SSE infinitely often in the sense

that there is a constant µ̃ so that µ̃τ ≥ µ̃ > µ̃∗ for infinitely many τ ≥ 0, then the long-run growth

rate of consumption is negative and nonvanishing, implying such an equilibrium must feature even-

tual starvation. Conversely, if the constraint is weakly more tight relative to the SSE after some

transition time and nonvanishingly more tight than the SSE infinitely often so that µ̃τ ≤ µ̃ < µ̃∗

for infinitely many τ ≥ 0 for some constant µ̃, then the long-run growth rate of consumption

is positive and nonvanishing, implying consumption grows unbounded. In the latter scenario, if

households are not endowed with unboundedly increasing output, they must eventually take an un-

bounded lending position to fund their future consumption growth. However, this behavior implies

the collateral constraint is eventually slack, contradicting the presumed long-run tightness of the

constraint. Even if output is permitted to grow unboundedly but has well-defined net present value,

the constraint still cannot be so tight in the long run to induce long-run consumption growth greater

than rate 1+r , or else the net present value of trade balances—and hence equilibrium debt—would

be ill-defined. These observations suggest the kinds of behavior that are permissible in the long

run in any equilibrium.

Lemma 1 An equilibrium that features eventual starvation exists only if y∞ = 0.

Proof. From (1.11), the collateral constraint, and Proposition 1, we have

dNDL
t+1 −

∞∑
τ=0

ct+1+τ
(1 + r)τ

= dt+1 ≤ κkqt ≤ κkqUE
t =

ακ

1 + r
dNDL

t+1 ,

so that
1 + r − ακ

1 + r
dNDL

t+1 ≤

∞∑
τ=0

ct+1+τ
(1 + r)τ

.

Thus, ct → 0 ⇐⇒
∑∞
τ=0

ct+1+τ
(1+r)τ → 0 =⇒ dNDL

t+1 → 0 ⇐⇒ yt → 0 (both ⇐⇒ are by Fact 2).

�
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Proposition 4

1. Under a well-defined dNDL
0 < ∞, an equilibrium never has µ̃τ ≤ β ∀τ ≥ T for some time

T ≥ 0.

2. Under a bounded output path, an equilibrium never has µ̃τ̂ ≤ µ̃∗ ∀τ̂ ≥ T for some time

T ≥ 0 with µ̃τ ≤ µ̃ < µ̃∗ infinitely often for constant µ̃.

3. An equilibrium where µ̃τ̂ ≥ µ̃∗ ∀τ̂ ≥ T for some time T ≥ 0 with µ̃τ ≥ µ̃ > µ̃∗ infinitely

often for constant µ̃ always features eventual starvation and hence exists only if y∞ = 0.

Proof. Note that by (1.3) and (1.11), whenever µ̃τ ≤ ¯̃µ ∀τ ≥ T ≥ 0 for some constant ¯̃µ, then

dt+1 ≤ dNDL
t+1 −

∞∑
j=0

ct+1

(1 + r) j
(
µ̃∗/ ¯̃µ

) j
∀t ≥ T .

1. Under well-defined dNDL
0 < ∞, we have dNDL

t+1 < ∞ ∀t ≥ 0. If there is some time T where

µ̃τ ≤ β ∀τ ≥ T , then letting ¯̃µ = β in the above inequality implies the right-hand side is

−∞, a contradiction.

2. Under a bounded path of yt , or equivalently a bounded path of dNDL
t (c.f. Fact 1 ) with

dNDL
t ≤ d̄ < ∞ ∀t ≥ 0, if there is some µ̃ and time T where µ̃τ̂ ≤ µ̃∗ ∀τ̂ ≥ T with

µ̃τ ≤ µ̃ < µ̃∗ infinitely often, then letting ¯̃µ = µ̃∗ in the above inequality implies dt+1 <

d̄ − ct+1
∑∞

j=0
1

(1+r)j .
21 Since ct → ∞, then dt → −∞, giving an eventually slack constraint,

contradicting the presupposed tightness.

3. Suppose there is some time T where µ̃τ̂ ≥ µ̃∗ ∀τ̂ ≥ T with µ̃τ ≥ µ̃ > µ̃∗ infinitely often.

Then c∞ = 0 and hence y∞ = 0 by Lemma 1.

�

Corollary 3
21The inequality can be made strict here since µ̃τ < µ̃∗ infinitely often.
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1. Under a well-defined dNDL
0 < ∞, any equilibrium with stabilizing tightness has µ̃∞ ≥ β.

2. Under a bounded output path, any equilibrium with stabilizing tightness has µ̃∞ ≥ µ̃∗ = δ.

3. Under a nonvanishing output path, any equilibrium with stabilizing tightness has µ̃∞ ≤ µ̃∗ =

δ.

We can see how the requirement y∞ = 0 in an ESE is a special case of statement 3 of Proposition 4.

When output is bounded and nonvanishing (e.g. a constant output regime), Proposition 4 implies

any equilibrium cannot have a shadow value of the collateral constraint that is nonvanishingly

persistently lower or persistently higher than the steady-state level in the long run. Thus, when

agents are impatient relative to the market, an equilibrium in a regime of bounded and nonvanishing

output must either have µ̃∞ = µ̃∗ or otherwise feature infinite vacillation between very tight periods

(µ̃t < µ̃∗) and less tight periods (µ̃t > µ̃∗). The long-run behavior of µ̃t relates to long-run behavior

of other endogenous variables: For instance, if y∞ > 0 exists, then µ̃∞ = µ̃∗ is necessary for c∞

and d∞ to exist.22 In contrast, the case of vacillating µ̃t motivates the possibility of deterministic

cycles, which we explore in the sequel.

22If d∞ exists, then c∞ = y∞ −
r

1+r d∞ by (1.2). If c∞ exists and y∞ > 0, then c∞ > 0 (Lemma 1), so ct+1/ct → 1,
which is equivalent to µ̃∞ = µ̃∗ by (1.3). Note that (1.3) does not ensure µ̃∞ = µ̃∗ is sufficient for c∞ to exist since a
vanishing growth rate does not imply convergence; a counterexample is the sequence 2,1, 3/2,2, 5/3, 4/3,1, 5/4, 6/4, 7/4,2...
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Chapter 2: Deterministic Cycles and Multiple Equilibria in Open Economies

with Stock Collateral Constraints

2.1 Deterministic cycles

Thus far, we have looked at properties featured in any equilibrium. In this section, we draw

our attention to a broad class of equilibria featuring regular cycles. The benchmark equilibria we

have discussed at this point—namely the SSE and ESE— feature a constant pattern of constraint

tightness. In this respect, it is of particular interest to determine whether our parameter assumptions

permit the existence of other kinds of equilibria with an always tight constraint, or alternatively,

feature persistent vacillation between periods of tightness and slackness. Indeed, we show such

equilibria exist under plausible parametrizations.

2.1.1 N-cyclic equilibria

To motivate this discussion, we define the notion of an N-cyclic quantity.

Definition 7 Given integers N > 0 and τ ≥ 0, a sequence (xt+τ)t≥0, is N-cyclic when

t ≡ t′(mod N) =⇒ xt+τ = xt ′+τ∀t, t′ ≥ 0.

A cycle of xt+τ is any N consecutive realizations of xt+τ.

An N-cyclic quantity is thus one that repeats itself every N periods (at least from some period τ

onward), and an N-cyclic equilibrium is simply an equilibrium that is N-cyclic where the constraint

is tight at least once in a cycle.1 Of course, if xt is N-cyclic, then it is also Nτ-cyclic for any

integer τ ≥ 1, although our general focus will be on N-cyclic quantities where N is minimal. The
1Note that the ESE cannot be N-cyclic since all endogenous ESE quantities vanish in the limit as t ↑ ∞.

40



possibility of N-cyclic equilibria arises due to competition between two forces: the friction of the

collateral constraint and impatience relative to the market. As the Euler equation for debt (1.3)

shows, the former force induces households to push forward consumption due to the shadow cost

of borrowing today, while the latter force induces households to frontload consumption. The SSE

that we have examined is the unique 1-cyclic equilibrium. The next proposition characterizes the

more general N-cyclic equilibria.

Proposition 5 Suppose (εt)t≥0 is an equilibrium, εt = (ct, µ̃t,qt, dt+1). Then εt is N-cyclic if and

only if µ̃t and yt+1 are N-cyclic with yn′+1 > 0, µ̃n < 1 for some n,n′ ∈ N ≡ {0,1, ...,N − 1}.

Moreover, if εt is an N-cyclic equilibrium, it can only be supported under unique d0 given (µ̃n)n∈N

and other parameters,2 and satisfies

(∏
τ∈N

µ̃τ

)1/N

= µ̃∗. (2.1)

Proof. See Appendix A.1. �

It is easily verified that the SSE satisfies Proposition 5. Proposition 5 reveals that cyclicity of the

shadow values and output are necessary and sufficient conditions for cyclicity of an equilibrium.

Of course, cyclic output subsumes the case of constant output. Moreover, as with the SSE, an

equilibrium of a given sequence of multipliers that features regular cycles can only exist under

unique initial borrowing (given other parameters),3 which, by the sequential budget constraint

(1.2), is on the path of the debt cycle adjusting for any output shock: d0 = dN − yN + y0. This

restriction emerges from an overdetermined system; in addition to the binding collateral constraint

that determines the shadow values in the tight periods, an additional restriction is imposed by

cyclicity. Particularly, by our discussion of consumption growth in section 1.5.2, the fact that N-

cyclic consumption has zero growth over any N consecutive periods implies the geometric average

of the normalized multipliers in a cycle must be their steady-state value, µ̃∗ = δ. This averaging

2Note the unique d0 satisfies its natural debt limit: d0 = dN − yN + y0 < dNDL
N − yN + y0 = dNDL

0 .
3This result contrasts with the ESE, for instance, where a continuum of values of d0 is permissible (given other

parameters) so long as the ESE existence condition is met.
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condition is also appreciated in the context of our discussion of long-run behavior, since a bounded

nonvanishing output path requires stabilizing tightness at the steady-state level or else vacillation

between super-steady-state tightness (µ̃t < µ̃∗) and sub-steady-state tightness (µ̃t > µ̃∗) infinitely

often.

In general, the µ̃t-characterization gives an infinite-dimensional system that determines the

shadow values if the constraint is tight infinitely often. However, cyclicity greatly simplifies

the analysis; Appendix A.2 shows all cyclic equilibria are characterized by an explicit finite-

dimensional system, with as many dimensions as there are assumed tight periods in the cycle.

Cyclicity also strengthens infinite-horizon properties of general equilibria, as seen in the following

analogues of Claims 1 and 2.

Claim 3 In an N-cyclic equilibrium, if yn+1+τ ≥ (resp. ≤)yn+2+τ and µ̃n+τ ≥ (resp. ≤)µ̃n+1+τ

∀τ ∈ {0, ...,N − 2}, then qn ≥ (resp. ≤)qn+1 for n ≥ 0.4

Proof. By cyclicity, qt+N = qt ∀t ≥ 0, so that rearranging (1.14) implies

qt =
α

k
©«1 −

∏
j∈N

µ̃ j

1 + r − κ + κ µ̃ j

ª®¬
−1 ∑

τ∈N

yt+1+τ

τ∏
j=0

µ̃t+ j

1 + r − κ + κ µ̃t+ j
. (2.2)

Consequently, we have

qn−qn+1 =
α

k
©«1 −

∏
j∈N

µ̃j

1 + r − κ + κ µ̃j
ª®¬
−1 

∑
τ∈N

yn+1+τ

τ∏
j=0

µ̃n+j

1 + r − κ + κ µ̃n+j
−

∑
τ∈N

yn+2+τ

τ∏
j=0

µ̃n+1+j

1 + r − κ + κ µ̃n+1+j


≥ (resp. ≤)

α

k
©«1 −

∏
j∈N

µ̃j

1 + r − κ + κ µ̃j
ª®¬
−1 

∑
τ∈N

(yn+1+τ − yn+2+τ)

τ∏
j=0

µ̃n+j

1 + r − κ + κ µ̃n+j


=
α

k
©«1 −

∏
j∈N

µ̃j

1 + r − κ + κ µ̃j
ª®¬
−1 − (yn+1 − yn+N )

∏
j∈N

µ̃j

1 + r − κ + κ µ̃j
+

N−2∑
τ=0
(yn+1+τ − yn+2+τ)

τ∏
j=0

µ̃n+j

1 + r − κ + κ µ̃n+j


≥ (resp. ≤)

α

k
©«1 −

∏
j∈N

µ̃j

1 + r − κ + κ µ̃j
ª®¬
−1 ©«

∏
j∈N

µ̃j

1 + r − κ + κ µ̃j
ª®¬
[
− (yn+1 − yn+N ) +

N−2∑
τ=0

yn+1+τ − yn+2+τ

]
= 0.

4The inequality for the price of capital is strict if at least one of the chain of inequalities for the trajectory of output
or normalized multipliers is strict.
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The first inequality follows from the fact that the monotonic chain of inequalities for the normal-

ized multipliers implies
∏τ

j=0
µ̃n+j

1+r−κ+κ µ̃n+j
≥ (resp. ≤)

∏τ
j=0

µ̃n+1+j
1+r−κ+κ µ̃n+1+j

. The second inequality

follows from the monotonic chain of inequalities for output and the fact that
∏τ

j=0
µ̃n+j

1+r−κ+κ µ̃n+j
is a

cumulative discount factor for part of the cycle (τ+1 periods), which is greater than
∏

j∈N
µ̃j

1+r−κ+κ µ̃j

—the cumulative discount factor for the entire cycle. �

Claim 4 In an N-cyclic equilibrium, if yn+1+τ ≥ (resp. ≤)yn+2+τ and µ̃n+1+τ ≤ (resp. ≥)µ̃∗

∀τ ∈ {0, ...,N − 2}, then dn+1 ≥ (resp. ≤)dn+2 for n ≥ 0.5

Proof. From (1.11), cyclicity implies that ∀t ≥ 0,

dt+1 =
∑
τ∈N

yt+1+τ − ct+1+τ
(1 + r)τ

+ (1 + r)−N dt+1

=⇒ dt+1 =
1

1 − (1 + r)−N

∑
τ∈N

yt+1+τ − ct+1+τ
(1 + r)τ

. (2.3)

By (1.3), the condition on normalized multipliers gives cn+1+ j ≤ (resp. ≥)cn+2+ j , j ∈ {0, ...,N − 2},

so

dn+1 − dn+2 =
1

1 − (1 + r)−N
∑
τ∈N

yn+1+τ − cn+1+τ
(1 + r)τ

−
1

1 − (1 + r)−N
∑
τ∈N

yn+2+τ − cn+2+τ
(1 + r)τ

=
1

1 − (1 + r)−N

[
−(1 + r)−(N+1) (yn+1 − yn+N + cn+N − cn+1) +

N−2∑
τ=0

yn+1+τ − yn+2+τ + cn+2+τ − cn+1+τ
(1 + r)τ

]

≥ (resp. ≤)
(1 + r)−(N+1)

1 − (1 + r)−N

[
− (yn+1 − yn+N + cn+N − cn+1) +

N−2∑
τ=0

yn+1+τ − yn+2+τ + cn+2+τ − cn+1+τ

]
= 0.

�

That is, under cyclicity, monotonically falling output and monotonic tightening of the constraint

for the duration of a cycle guarantees absolute Fisherian deflation. Likewise, super-steady-state

tightness for all periods but the final period in the cycle (which exhibits sub-steady-state tightness

by (2.1)) and monotonically falling output for the duration of a cycle guarantees deleveraging from

one period to the next. Intuitively, it suffices to examine a single cycle in an N-cyclic equilibrium
5The inequality for debt is strict if at least one of collection of inequalities for the normalized multipliers or the

trajectory of output is strict.

43



since subsequent cycles are discounted iterations of the contemporaneous one.

2.1.2 2-cyclic equilibria

We now consider the most elementary kind of cyclic equilibria beyond the SSE, namely 2-

cyclic equilibria. In such equilibria, the geometric average condition (2.1) requires µ̃1 = δ2/µ̃0,

and hence their period 0 multiplier characterizes their entire behavior. In the special case of 2-

cyclic equilibria, Claims 3 and 4 reduce to the following corollary.

Corollary 4 In a 2-cyclic equilibrium, if y1 ≥ (resp. ≤)y2 and µ̃0 ≥ (resp. ≤)µ̃∗, then q0 ≥

(resp. ≤)q1 and d1 ≥ (resp. ≤)d2.6

In other words, a 2-cyclic equilibrium features a concurrent decline (resp. rise) in borrowing and

collateral value from period 0 to period 1 if the period 0 constraint is less (resp. more) tight than

in the steady state and future output falls (resp. rises) in the course of a cycle.

We classify 2-cyclic equilibria into three types, which are studied in detail in Appendix A.3:

Definition 8 A 2-cyclic equilibrium is one of three types:

1. Slack-tight : Slack constraint in period 0 (µ̃0 = 1, µ̃1 = δ
2)

2. Tight-slack : Slack constraint in period 1 (µ̃0 = δ
2, µ̃1 = 1)

3. Tight-tight : Always tight constraint (µ̃0 ∈ (δ
2,1), µ̃1 = δ

2/µ̃0)

The SSE is one tight-tight equilibrium that exists in a constant output regime, where µ̃0 = δ. In fact,

any 2-cyclic equilibrium exists in a constant output regime under fairly plausible parametrizations:

Proposition 6 In a constant output regime under the unique d0 required to support the 2-cyclic

equilibrium of given µ̃0,

1. For r sufficiently small and either i) δ large enough, or ii) ακ large enough, a slack-tight

equilibrium and a tight-slack equilibrium exist.

2. For r sufficiently small, and either i) δ sufficiently large or ii) κ sufficiently large, for any

µ̃0 ∈ (δ
2,1), there is an α ∈ (0,1) such that the corresponding tight-tight equilibrium exists.

6The inequalities for the price of capital and debt are strict if either the inequality for output or normalized multiplier
is strict.
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Proof. See Appendix A.3.1-A.3.3. �

Thus, a 2-cyclic equilibrium corresponding to any kind of feasible µ̃0 ∈ [δ
2,1] can be con-

structed under the required d0 when parameters are tuned accordingly. The initial borrowing re-

striction ensures the collateral constraint is met in one tight period in the cycle, while the other

parameter assumptions ensure the constraint is met in the other period in the cycle. Note that the

slack-tight and tight-slack equilibria exist under the same conditions (so long as their respective

initial borrowing requisites are met); as we show in Appendix A.3, this concurrence arises from

the fact that in a constant output regime, both equilibria have the exact same restriction on fun-

damentals for the constraint to be met in the slack period. Indeed by symmetry, the slack-tight

and tight-slack equilibria are mirror images of one another in a constant output regime, with pe-

riod 0 equilibrium values for one swapped with period 1 equilibrium values for the other and vice

versa. For these equilibria, when r is sufficiently small, it suffices if δ is approximately greater

than 1−ακ
1+ακ ; in other words, under a low interest rate, it suffices if agents are either sufficiently pa-

tient (δ large) or capital is very important to the economy (ακ large). In contrast, constructing an

arbitrary tight-tight equilibrium requires ensuring the constraint binds in both periods of the cycle.

Our construction uses the intermediate value theorem to show for any µ̃0 ∈ (δ
2,1), there is an

α ∈ (0,1) under which the constraint binds for the tight-tight equilibrium when the interest rate is

sufficiently small and either households are sufficiently patient (δ ≈ 1) or the fraction of capital

that is collateralized is sufficiently large (κ ≈ 1).

Although the sufficient conditions for existence of the different kinds of 2-cyclic equilibria

appear to overlap in Proposition 6, the proposition does not guarantee that different 2-cyclic equi-

libria can coexist, since each particular equilibrium has its own requisite d0. However, Table 2.1

gives a parametrization consistent with Proposition 6 that supports both the SSE and a tight-slack

equilibrium, illustrated in Figure 2.1. In this tight-slack equilibrium, we observe an initial expan-

sionary phase, wherein the tight constraint at the outset induces households to plan for a boost in

consumption for the next period, yielding a decline in the current account and a trade deficit. In ac-

cord with Corollary 4, to fund next period’s increased domestic absorption, households raise their

45



r = .01, δ = 0.95, κ = 0.18272563, α = 0.3, k = 1, {yt}t≥1 = y > 0
Period µ̃t ct/y dt+1/y qt/y κkqt/y

Tight-slack
t = 0 0.9025 0.9646 0.9983 5.4636 0.9983
t = 1 1.0000 1.0154 1.0238 5.7065 1.0427

SSE
t ≥ 0 0.9500 0.9899 1.0238 5.6032 1.0238

Table 2.1: 2-cyclic equilibria (d0 = d2 − y + y0)

external borrowing and demand for collateral, resulting in capital appreciation. The constraint now

slackened, household impatience dominates, rendering a contractionary phase featuring delever-

aging, capital depreciation, and a current account reversal. We revisit the example in Table 2.1 and

the more general possibility of multiple equilibria in section 2.2.

2.1.3 Cycles of higher periodicity and chaos

Appendix A.2 shows how a general N-cyclic equilibrium is obtained as the solution (if it exists)

of an explicit finite-dimensional nonlinear system. From this characterization, a specific 3-cyclic

equilibrium has been obtained, shown in Table 2.2 and illustrated in Figure 2.2. This equilibrium

has a tight-tight-slack pattern and exists in a constant output regime under a parametrization that is

fairly consistent with the kind suggested in Proposition 6 (particularly, low r and high δ). In this

cycle, we observe that though households are tightly constrained at the outset, their impatience

dominates, rendering an initial contractionary phase. The following expansion and contraction of

the cycle after a respective tight and slack constraint mimic those seen in Figure 2.1. In contrast

to Figure 2.1, the economy displayed in Figure 2.2 always enjoys a trade surplus. The existence

of a 3-cyclic equilibrium is significant: if there is an appropriate equilibrium selection rule under

which a debt policy function exists,7 i.e. dt+1 = D(dt) for a function D : R → R, then the Li-

Yorke theorem (Li and Yorke 1975) implies the existence of debt cycles of any periodicity as well

as chaos, a result shown in the context of flow collateral constraints (Schmitt-Grohé and Uribe

2021). Characterizing such a debt policy function is elusive at the moment but is attractive for
7In general, the prospect of multiple equilibria discussed in section 2.2 gives rise to a debt policy correspondence.

A debt policy function gives rise to a univariate difference equation to which the Li-Yorke theorem may be applied.
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Figure 2.1: Tight-slack equilibrium (blue) and SSE (red) given in Table 2.1 (y0 = y)

future research.

2.2 Self-fulfilling financial crises

In this section, we discuss whether a given set of fundamentals can support multiple equilibria.

The key finding here is that weak economic fundamentals may give rise to multiple equilibria, with

agents thus possibly choosing a welfare-inferior equilibrium driven by nonfundamental pessimistic

expectations of collateral value as part of a self-fulfilling financial crisis. The pecuniary external-

ity in the economy allows for coexistence with such a “bad” equilibrium. We consider multiple

equilibria in two cases: 1) a variable output regime, and 2) a constant output regime.
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r = .01, δ = 0.95, κ = 0.65, α = 0.3, k = 1, {yt}t≥1 = y > 0
Period µ̃t ct/y dt+1/y qt/y κkqt/y

t = 0 0.9569 0.9203 6.6452 10.2234 6.6452
t = 1 0.8960 0.9137 6.6245 10.1915 6.6245
t = 2 1.0000 0.9687 6.6591 10.4192 6.7725

Table 2.2: 3-cyclic equilibrium (d0 = d3 − y + y0)

2.2.1 Variable output regime

To motivate the kind of equilibrium we consider in this subsection, we define the following:

Definition 9 A τ−spot tight equilibrium (τ−STE) is an equilibrium where the collateral constraint

is tight only in period τ ≥ 0.

The SGU model with δ = 1 and constant output shows that it is possible for weak fundamentals

to support both the SSE—for which the collateral constraint is always slack under δ = 1— and a

0-STE that transitions to a steady state after period 0. We will show the direct extension of this

result for δ ≤ 1 under variable output, namely that it is possible to sustain both the ESE and a

0-STE.

As a first step, we invoke the µ̃t-characterization to write a 0-STE. For t ≥ 1, a 0-STE, ex-

pressed in terms of its period 0 normalized multiplier, µ̃0, is given by

c0−STE
t = ((1 − β)µ̃0 + β)

−1 cUE
t , (2.4)

c0−STE
0 =

(
1 − β + µ̃−1

0 β
)−1

cUE
0 , (2.5)

d0−STE
t = dUE

t − δ
t(dNDL

0 − d0)
(
((1 − β)µ̃0 + β)

−1 − 1
)
, (2.6)

q0−STE
t = qUE

t , (2.7)

q0−STE
0 =

1 + r
κ + (1 + r − κ) µ̃−1

0
qUE

0 , (2.8)

where µ̃0 ∈ (0,1) solves d0−STE
1 = κkq0−STE

0 , the binding constraint in period 0. The expressions

(2.4)-(2.8) clearly illustrate our observations on the comparison between the 0-STE and ESE from
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Figure 2.2: 3-cyclic equilibrium given in Table 2.2 (y0 = y)

section 1.5, shown in Figure 2.3. In the 0-STE, pessimistic expectations for the value of collat-

eral in period 0 induce households to substantially contract their initial consumption and plan a

slight glut in later periods relative to the ESE (in accord with our discussion in section 1.5.2) and

deleverage in all periods relative to the ESE (as per Proposition 3). Their expectations are fulfilled

when their behavior in aggregate deflates the price of capital in period 0 relative to the ESE (as per

Proposition 1), rendering a tight constraint in period 0. We note how the 0-STE exhibits signs asso-

ciated with a sudden stop, including the initial increased current account and contracted domestic

absorption. The next result reveals when the 0-STE coexists with the ESE.

Proposition 7 Consider the following conditions:
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Figure 2.3: ESE (blue) and 0-STE (red) under same parameters as those of Figure 1.3. Note qt
coincides for both equilibria for t ≥ 1.

1. The ESE existence condition (1.33) holds for all periods with strict inequality in period 0,

2. d0 > y0.

The ESE and 0-STE coexist if both 1. and 2. hold, and only if 2. holds.

Proof. By Corollary 2, the inequality of (1.33) applied to all times from period 1 onward is suffi-

cient for the collateral constraint to be satisfied in the 0-STE for these periods. The constraint in

period 0, d0−STE
1 = κkq0−STE

0 , determines µ̃0 ∈ (0,1) as the root of a parabola:

Λ(µ̃0) = 0,
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Λ(µ̃) := Aµ̃2 + B µ̃ + C,

A = dNDL
1 κ(1 − α)(1 − β)

B = dNDL
1 [(1 − β)(1 + r) − κ(1 − β(1 − α))] + κδ(d0 − y0)

C = δ(1 + r − κ)(d0 − y0).

Observe that

Λ(1) = A + B + C

= (1 + r)
(
1 + r − ακ

1 + r
dNDL

1 − (dNDL
0 − d0)δ

)
,

and by inspection, the condition of (1.33) applied to period 0 is equivalent to Λ(1) ≤ 0. Note that

since A > 0, Λ(·) has positive end behavior and thus can have a root in (0,1) only if

Λ(0) = C > 0 ⇐⇒ d0 > y0.

This shows necessity of condition 2. Sufficiency of condition 1 and 2 follows from the fact that

Λ(·) has a root in (0,1) if Λ(1) < 0 and Λ(0) > 0. �

Proposition 7 shows that weak fundamentals, including high foreign debt, make economies

more vulnerable to financial crises driven by nonfundamental shocks. Note that from our discus-

sion in section 1.4, the gross interest rate must be small relative to the combined impact of patience

and the importance of capital (in the sense that 1 + r < ακ + δ) if d0 > y0 and the ESE existence

condition is to be satisfied.

Note the 0-STE is welfare-inferior relative to the ESE since it results in a reallocation of con-

sumption relative to the latter. In particular, the consumption paths in both equilibria have the same

lifetime net present value, but the initial rationing of the 0-STE is substantial enough to render it

welfare-inferior (see Figure 2.3). Moreover, the welfare gain of the ESE over the 0-STE is com-

mensurate with the shadow value of the initial collateral constraint in the 0-STE. Formally, the
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Equilibrium Constraint tightness Conditions for existence (N=necessary, S=sufficient)

SSE always tight N and S:{yt+1 }t≥0 = y > 0 , d0 = κkq
∗ − (y − y0)

ESE never tight N and S: ESE existence condition (1.33)

0-STE tight only initially S: ESE existence condition (with strict inequality at t = 0), d0 > y0

N -cyclic equilibrium repeats every N periods N: N -cyclic µ̃t and yt+1, Πτ∈N µ̃τ = δN , unique d0 (see Appendix A.2 for S)

Table 2.3: Types of equilibria

welfare gain of the ESE over the 0-STE is given by

W(µ̃0) ≡

∞∑
t=0

βt log cUE
t −

∞∑
t=0

βt log c0-STE
t ,

which, by (2.4)-(2.5), simplifies to

W(µ̃0) =
1

1 − β
log

(
(1 − β)µ̃β0 + βµ̃

−(1−β)
0

)
, (2.9)

which is positive and strictly decreasing in µ̃0, since W(1) = 0 and

sign
{
∂µ̃0W(µ̃0)

}
= sign

{
∂µ̃0 exp{(1 − β)W(µ̃0)}

}
= sign

{
−β(1 − β)µ̃−(1−β)0

(
µ̃−1

0 − 1
)}
< 0.

Thus, under weak fundamentals of the kind in Proposition 7, households effectively under-borrow

in the 0-STE , such that a benevolent social planner would always prefer the ESE to the 0-STE.

Various kinds of equilibria that we have discussed thus far and their characteristics are summarized

in Table 2.3.

2.2.2 Constant output regime

Coexistence between the ESE and a welfare-inferior equilibrium requires a long-run depres-

sion. However, it is of interest to determine whether self-fulfilling financial crises can emerge in

constant output regimes. Since such regimes necessarily lead to a tight collateral constraint in-

finitely often (Proposition 4), the simplest kind of equilibria to consider in this respect are 2-cyclic

equilibria, which include the SSE. Since such equilibria exist under knife-edge initial borrowing,
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coexistence between two such equilibria requires that the initial borrowing requisites coincide. In-

terestingly, under some of the same conditions from Proposition 6 that guarantee existence, param-

eters can be tuned to ensure the concurrence of the required d0, and hence guarantee coexistence.

Lemma 2 For the set of 2-cyclic equilibria, in which each member is uniquely characterized by

its period 0 normalized multiplier µ̃0 ∈ [δ
2,1], the following hold in a constant output regime:

1. The required d0 is strictly decreasing in µ̃0 ∈ [δ,1].

2. The required d0 is strictly decreasing in µ̃0 if either i) δ is sufficiently small, ii) r is suffi-

ciently large, or iii) κ is sufficiently small.The required d0 is strictly decreasing in µ̃0 ∈ (δ
2,1] if

δ ≤ 1+r−κ√
κ(1+κ)

.

3. The slack-tight equilibrium requires lower d0 than any other 2-cyclic equilibrium.

4. A tight-tight equilibrium has the same required d0 as at most one other tight-tight equilib-

rium. For r sufficiently small, and either i) δ large enough and κ > 1
2 or ii) κ sufficiently large,

there are values ν1 ∈ (δ
2, δ) and ν2 ∈ (δ,1) such that any tight-tight equilibrium with µ̃0 ∈ (δ

2, ν1)

(resp. µ̃0 ∈ (ν1, ν2)) has the same required d0 as exactly one other tight-tight equilibrium with

µ̃0 ∈ (ν1, ν2) (resp. µ̃0 ∈ (δ
2, ν1)).8.

5. For r sufficiently small, ∀µ̃0 ∈ (δ
2,1), ∃κ ∈ (0,1) such that the tight-tight equilibrium

corresponding to µ̃0 has the same required d0 as the tight-slack equilibrium.

Proof. See Appendix A.3.4. �

Existence conditions in Proposition 6 combined with requisite initial borrowing properties in

Lemma 2 immediately give the following result on coexistence.

Proposition 8 In a constant output regime,

1. No two distinct 2-cyclic equilibria both having µ̃0 ∈ [δ,1] can coexist.

2. For either i) δ sufficiently small, ii) r sufficiently large, or iii) κ sufficiently small, no two

distinct 2-cyclic equilibria can coexist. No two distinct 2-cyclic equilibria both having µ̃0 ∈ (δ
2,1]

can coexist if δ ≤ 1+r−κ√
κ(1+κ)

.

8The explicit values of ν1 and ν2 are given in Appendix A.3.4
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3. The slack-tight equilibrium cannot coexist with any other 2-cyclic equilibrium.

4. A tight-tight equilibrium can coexist with at most one other tight-tight equilibrium. For r

sufficiently small, and either i) δ large enough and κ > 1
2 or ii) κ sufficiently large, there is an

α ∈ (0,1) such that the SSE coexists with a tight-tight equilibrium having µ̃0 < δ.

5. For r sufficiently small and δ large enough, ∀µ̃0 ∈ (δ
2,1), ∃α,κ ∈ (0,1) such that the

tight-tight equilibrium corresponding to µ̃0 coexists with the tight-slack equilibrium.

Note a 2-cyclic equilibrium is completely characterized by µ̃0 (recall µ̃1 = δ
2/µ̃0 by Proposition 5).

Lemma 2 is obtained by studying the shape of the requisite d0 for 2-cyclic equilibria as a function

of µ̃0 in a constant output regime, visualized in Figure 2.4. Our proof of Lemma 2 in Appendix

A.3.4 is based on studying the required d0 (as a function of µ̃0) imputed by the binding constraint in

period 1 for tight-tight and slack-tight equilibria (red curve in Figure 2.4), and separately studying

the required d0 imputed by the binding constraint in period 0 for tight-slack equilibria (blue dot in

in Figure 2.4). The first three results of Lemma 2 and Proposition 8 give uniqueness conditions

within subclasses of 2-cyclic equilibria based purely on the requisite d0; they assert that two distinct

2-cyclic equilibria cannot coexist if one of them is the slack-tight equilibrium, or if they both have

a period 0 constraint that is less tight than steady-state level (i.e. µ̃0 ≥ δ), or if households are

sufficiently impatient relative to the spread between gross interest and the fraction of collateralized

capital, as these conditions induce incompatible initial borrowing restrictions whereby the requisite

d0 is greater for the equilibrium with the tighter period 0 constraint.

The last two results of Lemma 2 and Proposition 8 give conditions for multiplicity of equilib-

ria. These conditions guarantee nonmonotonic behavior of the requisite d0 as a function of µ̃0. We

show in Appendix A.3.4 that for µ̃0 ∈ (δ
2,1), the required d0 as a function of µ̃0 has a derivative

with monotonically decreasing sign, implying a tight-tight equilibrium can have compatible requi-

site d0 with at most one other tight-tight equilibrium. Clearly, by the second statement of Lemma

2, a necessary condition for such compatibility is that δ > 1+r−κ√
κ(1+κ)

, while the fourth statement of

Lemma 2 gives sufficient conditions. We show that under a sufficiently small interest rate and δ

approximately greater than 1−κ
κ , the requisite d0 in the limit as µ̃0 → δ2 is at a lower level than that
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corresponding to the SSE and increases in the interval µ̃0 ∈ (δ
2, ν1) (attaining a maximum when

µ̃0 = ν1 < δ) and decreases in the interval µ̃0 ∈ (ν1,1) (attaining a minimum when µ̃0 = 1, cor-

responding to the slack-tight equilibrium), as seen in Figure 2.4. Thus, for a low enough interest

rate, there is a window of infinitely many pairs of possible tight-tight equilibria having compatible

initial borrowing when a sufficiently large amount of capital is collateralized, or at least half of

capital is collateralized and households are sufficiently patient. While this result allows for the

possibility of infinitely many coexisting pairs of tight-tight equilibria, obtaining sufficient condi-

tions for such coexistence requires the existence of such equilibria in the first place, and is hence

more delicate than simply ensuring compatible d0 requirements. Statement 2 of Proposition 6 en-

sures existence of an arbitrary candidate tight-tight equilibrium by tuning α to ensure the collateral

constraint binds for the particular µ̃0 considered. However, α cannot generally be tuned to ensure

the constraint binds for two distinct candidate equilibria, while other parameters are restricted to

give sufficient conditions for compatible d0 or existence. Nonetheless, the SSE has a weak exis-

tence requirement since it exists under arbitrary parameters in a constant output regime subject to

its d0 requirement. Thus, statement 4 of Proposition 8 gives a more conservative result of ensuring

coexistence of the SSE with a tight-tight equilibrium having a period 0 constraint tighter than the

steady-state level.

Table 2.4 shows various parametrizations supporting 2-cyclic equilibria in a constant output

regime. Parametrizations 1-2 show how a slack-tight (ST) equilibrium is supported when ακ is

large enough (No. 1) or δ is large enough (No. 2) in accordance with statement 1 of Propo-

sition 6. Under the same parameters, a tight-slack equilibrium that is a mirror image of the

slack-tight equilibrium exists; of course, a slack-tight equilibrium requires lower d0 than the tight-

slack equilibrium (statement 3 of Lemma 2).9 In accordance with statements 4-5 of Proposition 8,

parametrizations 3-5 show how α or κ can be calibrated to ensure coexistence of the SSE with an-

other tight-tight (TT) equilibrium having µ̃0 < δ, particularly under sufficiently large κ (No. 3) or

large enough δ (No. 4), or coexistence of a tight-tight equilibrium with the tight-slack equilibrium

9In a constant output regime, since d0 = d2 − y + y0 and the slack-tight and tight-slack equilibria are mirror images
of one another, an equivalent statement is that d2 < d1 in a slack-tight equilibrium, which follows from Corollary 4.
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Figure 2.4: Required d0−y0
y of 2-cyclic equilibria as a function of µ̃0 in a constant output regime

imputed by a binding period 0 constraint and alternatively a binding period 1 constraint. Parameters
here are set as r = 0.01, δ = 0.95, κ = 0.65, α = 0.3, {yt}t≥1 = y > 0. The blue point corresponds
with the requisite d0 that sustains a tight-slack (TS) equilibrium, while the red point corresponds
with the requisite d0 that sustains a slack-tight (ST) equilibrium. If the blue and red curves intersect
at an interior µ̃0, then a tight-tight equilibrium associated with that µ̃0 can be sustained at the
corresponding requisite d0 (they always intersect at µ̃0 = µ̃

∗). If the blue and red curve intersect at
two distinct interior µ̃0 at the same level of d0−y0

y , then two distinct tight-tight equilibria coexist.

(No.5, also in Table 2.1).10

Between two coexisting 2-cyclic equilibria under general fundamentals (including variable out-

put regime), the one with the tighter period 0 constraint (smaller µ̃0) is welfare-inferior. To see this

result formally, we obtain the welfare gap between two 2-cyclic equilibria in terms of their period

0 normalized multipliers (µ̃2−cyc,1
0 , µ̃2−cyc,2

0 ) in Appendix A.3.5:

W(µ̃2−cyc,1
0 , µ̃

2−cyc,2
0 ) ≡

∞∑
t=0

βt log c2−cyc,1
t −

∞∑
t=0

βt log c2−cyc,2
t

10Note that No. 5 does not fine-tune α (a condition of statement 2 of Proposition 6, and relatedly statement 5 of
Proposition 8) since the tight-tight equilibrium in question is the SSE, which exists under arbitrary parameters (subject
to its initial debt requirement).
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No. r δ κ α Equilibrium c0
y ,

c1
y

d1
y ,

d2
y

κkq0
y ,

κkq1
y

1 0.01 0.65 0.95 0.30 ST 1.1441, 0.7437 5.7665, 5.5653 5.7924, 5.5653

2 0.06 0.95 0.30 0.30 ST 0.9738, 0.9251 0.9053, 0.8802 0.9153, 0.8802

3 0.01 0.65 0.95 0.23502055
TT (µ̃0 = 0.62105263) 0.9263, 0.9694 5.2556, 5.2773 5.2556, 5.2773

SSE 0.9477 5.2773 5.2773

4 0.01 0.95 0.65 0.05960432
TT (µ̃0 = 0.90769231) 0.9644, 1.0093 1.3158, 1.3384 1.3158, 1.3384

SSE 0.9867 1.3384 1.3384

5 0.01 0.95 0.18272563 0.30
TS 0.9646, 1.0154 0.9983, 1.0238 0.9983, 1.0427

SSE 0.9899 1.0238 1.0238

Table 2.4: Various parametrizations supporting 2-cyclic equilibria ({yt}t≥1 = y > 0, d0 = d2− y+
y0).

=
1

1 − β2

log
©«

µ̃
2−cyc,1
0(

µ̃
2−cyc,1
0 + β

)1+β

ª®®¬ − log
©«

µ̃
2−cyc,2
0(

µ̃
2−cyc,2
0 + β

)1+β

ª®®¬
 .

Thus,

W
(
µ̃

2−cyc,1
0 , µ̃

2−cyc,2
0

)
> 0 ⇐⇒

µ̃
2−cyc,1
0(

µ̃
2−cyc,1
0 + β

)1+β >
µ̃

2−cyc,2
0(

µ̃
2−cyc,2
0 + β

)1+β ⇐⇒ µ̃
2−cyc,1
0 > µ̃

2−cyc,2
0 ,

where the lattermost implication follows from the fact that

sign
{
∂µ̃0

µ̃0

(µ̃0 + β)
1+β

}
= sign

{
(µ̃0 + β)

1+β − (1 + β)µ̃0(µ̃0 + β)
β
}
= sign

{
β(µ̃0 + β)

β(1 − µ̃0)
}
≥ 0,

with the inequality binding only when µ̃0 = 1. We also see in parametrizations 3-5 of Table 2.4

how households underborrow in the welfare-inferior 2-cyclic equilibrium relative to the SSE. Note

that all examples of multiple equilibria that we have looked at occur when d0 > y0, which was

a necessary feature in Proposition 7. It is of interest in subsequent research to consider whether

d0 > y0 is indeed always necessary for multiple equilibria.

2.3 The case when δ ≥ 1

As a final discussion point, it may be of interest to the theoretically-minded reader see how

robust the findings of this paper are under a more general patience assumption. This paper has
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largely been framed in the context of δ < 1 due to both theoretical and empirical interest and to

ease exposition, but many analytic results are not sensitive to this assumption, though the inter-

pretations may be different. The µ̃t-characterization primarily shows the dependency of equilibria

on the shadow values of the collateral constraint and was obtained free of assumptions on δ. Con-

sequently, the ESE and ESE existence condition obtained in section 1.4 still apply under δ ≥ 1.

Likewise, the main results of Fisherian deflation, consumption rationing, deleveraging, and multi-

plicity of equilibria under variable output—as given in Propositions 1, 2, 3, and 7 along with their

associated corollaries, in addition to Claims 1 and 2—still apply.11 It is worth noting that the ESE

existence condition is far more permissive when δ > 1, since output can grow unboundedly over

time, though it cannot persistently grow faster than the relative patience ratio. Thus, the allocation

of the unconstrained equilibrium can be supported under eventually constant output or indeed an

eternal economic expansion, an interesting counterpart to the eternal depression example discussed

in section 1.4.

The primary difference when δ ≥ 1 is in deterministic cycles and long-run behavior. When

δ = 1 the SSE has an always slack constraint (µ̃∗ = 1) and coincides with the ESE in a regime with

constant output from period 1 onward, while when δ > 1 there can be no SSE since the equilibrium

normalized multiplier given by (1.20) would exceed unity—instead, consumption would always

grow. More generally, it is clear that an N-cyclic equilibrium (for N ≥ 2) cannot exist for δ ≥ 1

since it is impossible for the geometric average condition (2.1) of Proposition 5 to be met when the

constraint is tight at least once. These observations have immediate implications on the long-run

behavior discussed in section 1.5.4. Statement 1 of Proposition 4 (and relatedly statement 1 of

Corollary 3), whereby a well-defined natural debt limit prohibits the normalized multiplier from

being too small in the long run (weakly smaller than β), still applies when δ ≥ 1. Moreover,

11Due to long-run behavior, the claims are simplified as follows when δ ≥ 1:
Claim 1: In equilibrium, if there is a period t ≥ 0 where yt+1 ≥ yt+2 ≥ yt+3... and { µ̃τ}τ≥t = 1, then qt ≥ qt+1; if

yt+1 ≤ yt+2 ≤ yt+3... and µ̃t ≤ µ̃t+1 ≤ µ̃t+2..., then qt ≤ qt+1. In both cases, the inequality for the price of capital is
strict if at least one of the chain of inequalities for the trajectory of output or normalized multipliers is strict.

Claim 2: In equilibrium, if there is a period t ≥ 0 where yt ≥ yt+1 ≥ yt+2... , then dt ≥ dt+1, and the inequality for
debt is strict if at least one of the chain of inequalities for the output trajectory is strict or the collateral constraint is
tight at any time from t onward; if yt ≤ yt+1 ≤ yt+2... and { µ̃τ}τ≥t = 1, then dt ≤ dt+1, and the inequality for debt is
strict if at least one of the chain of inequalities for the output trajectory is strict
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Lemma 1 and statement 3 of Proposition 4 concerning equilibria that are less tight than the SSE

in the long run do not apply when δ ≥ 1 since an equilibrium can neither have ct → 0 nor a

negative shadow value of the constraint. Correspondingly, statement 3 of Corollary 3 is trivially

true regardless of output since µ̃t ≤ 1 ≤ δ. Statement 2 of Proposition 4 and statement 2 of

Corollary 3 are slightly different, however, when δ ≥ 1:

Case 1

δ = 1: Here, µ̃∗ = 1 and from (1.3), consumption growth is always non-negative in equilibrium.

The second statement of Proposition 4 still holds; that is, an equilibrium can never have a nonvan-

ishingly tight constraint infinitely often under a bounded output trajectory. The second statement

of Corollary 3 then amounts to asserting that under a path of bounded output, an equilibrium must

feature stabilizing tightness with µ̃∞ = 1.

Case 2

δ > 1: Here, µ̃∗ > 1 and from (1.3), consumption growth is always nonvanishingly positive in

equilibrium. Consequently, unless output is permitted to grow unboundedly, an equilibrium nec-

essarily features agents eventually assuming a permanent unboundedly growing lending position,

implying that the collateral constraint eventually slackens. Thus, the second statement of Propo-

sition 4 and the second statement of Corollary 3 are both replaced by the following statement: if

the output path is bounded, an equilibrium has some threshold time T so that µ̃τ = 1 ∀τ ≥ T and

hence must feature stabilizing tightness with µ̃∞ = 1.

These observations on stabilizing tightness are summarized in Figure 2.5, where the bold and

shaded regions indicate possible (for δ ∈ (0,1)) and necessary (for δ ∈ [1,1 + r)) values of the

limiting normalized multiplier as a function of the relative patience ratio (fixing r) when the output

path is bounded. Though Figure 2.5 formally shows the limiting normalized multiplier under sta-

bilizing tightness, it may be understood more loosely as conveying the feasible long-run behavior

of the normalized multiplier in the sense that it cannot remain below the bolded boundary line
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Figure 2.5: Stabilizing tightness under bounded output trajectory

persistently in the long run (and nonvanishingly so infinitely often) in the way described in Propo-

sition 4. We see that the greater δ is, the less flexibility afforded to the long-run behavior of the

normalized multiplier. The intuition is as follows: The more patient agents are, the less they prefer

frontloading consumption. Absent an unboundedly growing output path, less of such consumption

frontloading (more forward-pushing behavior) implies households do not have as much in future

trade balances to borrow against in the long run. Since a lower normalized multiplier makes the

shadow cost of borrowing higher, it exacerbates the behavior from higher δ by inducing even more

forward-pushing behavior. Forward-looking agents who are thus more patient would then account

for this behavior by borrowing less, thereby facing a larger long-term normalized multiplier. When

households are so patient that they never frontload consumption and in fact would only push for-

ward their consumption (δ ≥ 1), their shadow cost of borrowing must vanish in the long run

(µ∞ = 1), or else they would not have enough in future trade balances to borrow against under a

persistently non-negligible shadow cost of borrowing that would push forward consumption even

more.
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2.4 Conclusion

This paper has analytically established how stock collateral constraints affect open economies

when agents have general subjective discounting and face variable productivity. We have seen

that it is possible for such economies to enjoy the unconstrained allocation under a condition

on output that relates to their patience. When agents are impatient relative to the market, this

condition requires that agents face a long-run depressionary scenario that would incentivize them

to deleverage over time and even possibly switch to an asset position to protect themselves from

the constraint. This condition is more permissive and allows for an economic expansion when

agents are more patient relative to the market. When this condition is not satisfied, the collateral

constraint binds at least once, aggravating the business cycle. In particular, households deleverage

in all periods and experience deflation of asset prices in all periods up to any constrained period

relative to what would have been experienced absent the collateral constraint. Moreover, the more

tightly constrained households expect to be in the future, the more they ration their consumption.

While collateral constraints exacerbate the business cycle, they also may be its engine and

induce nonfundamental instability. When households are impatient relative to the market, under

plausible fundamentals in a constant output regime, it is possible for households to face deter-

ministic 2-cycles and even 3-cycles, periodically vacillating between more constrained and less

constrained periods, and these cycles can also coexist. In variable output regimes, a welfare-

inferior equilibrium with an initially binding constraint can coexist with one that always yields the

unconstrained allocation.

All instances of multiple equilibria that we have looked at in our model feature an initial debt-

to-output ratio greater than one, and it would be of interest in future work to determine whether

this condition is necessary for multiplicity. It would also be of interest to more fully characterize

a debt policy function under an appropriate equilibrium selection rule. The existence of such a

function would imply existence of debt cycles of any periodicity and chaos. Further, the properties

of such a function would allow an analysis of the stability of different debt cycles.
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Chapter 3: Robust Pricing Mediation in Bargaining

3.1 Introduction

Price contracting between a buyer and seller under mutual uncertainty of their reservation val-

ues appears in economic and legal applications. For instance, in a corporate acquisition, the ac-

quirer is a buyer and the acquiree is a seller, both of whom may be uncertain about the value of

the acquiree. In the legal domain, a defendant and plaintiff may be a buyer and seller respectively

of an out-of-court settlement claim, both of whom may be uncertain of the potential damages that

would be mandated and legal costs that would be incurred if the damage suit was taken to trial.1

Such settings are often amenable to intervention by a mediator who has general historical infor-

mation on which to recommend a price contract, even if not possessing particular information on

the reservation values of the parties involved. The mediator may manifest as an online trading

platform, which is able to efficiently gather information and make such a recommendation. Such

a platform may be endowed with a historical repository of quantifiable information on the distri-

bution of reservation values for the transacting parties. Our interest, however, is in a much weaker

informational setting where no one is equipped with such quantifiable information of risks.2 We

focus on risk neutral trading parties who must contract on a transaction price before themselves re-

alizing their values and thus seek the help of an uncertainty-averse mediator who is fundamentally

benevolent. The benevolence is reflected in the mediator’s preferences in that the mediator would

choose a price contract identical to what the parties themselves would choose if all were equipped

with complete information on reservation values. We also allow for parties to have asymmetric bar-

gaining power, reflecting exogenous institutional features. In the legal and corporate acquisition

1Damage suit settlement is also a motivating application in bargaining under private information, studied in Kennan
and Wilson 1993.

2Indeed, even with such information, one may not have good reason to believe a historical distribution of reserva-
tion values reflects the present distribution of values.
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examples, the transacting parties may be risk neutral firms having different powers (e.g. powers in

attorney access or market powers) who hire an arbitrator, whose compensation may be tied with

the ultimate success of the price contract when values are realized. In this setting, how should the

mediator choose a price contract when only equipped with sparse summary statistics on the reser-

vation values of the parties? How does this contract compare with what the parties would choose if

equipped with the same information? Moreover, how resilient are these price contracts to changes

in bargaining power?

In our model, a mediator chooses a price at which a buyer and seller trade an indivisible good.

The unknown reservation values are the valuation that the buyer gains and the cost that the seller

incurs, both drawn from some unknown joint distribution (independently so in the baseline model).

With complete information on their ex post reservation values, the buyer and seller negotiate a price

a price as per the Nash bargaining solution (Nash 1953; Nash 1950), maximizing the Nash product

of payoffs under exogenous bargaining powers α, 1 − α ∈ (0,1) afforded to the buyer and seller

respectively. This choice, the complete information price (CIP), represents a simple weighted av-

erage of the ex post buyer’s valuation and seller’s cost, the weighting determined by the bargaining

powers. Absent complete information, the trading parties recruit the mediator, who only has ag-

gregate historical information—captured in our model as means and a feasible range of the buyer

and seller values— and understands there is surplus to be enjoyed from trade in expectation. Un-

der such limited information, the ambiguity-averse mediator chooses the incomplete information

price (IIP) to maximize the distributionally worst-case expected Nash product by playing against

an adversarial Nature in a Stackelberg game, an approach we discuss more in the sequel.

The object of this paper is to explore the analytic properties of the IIP and determine how the

IIP compares with the mean CIP, which is what the trading parties themselves would negotiate

if symmetrically equipped with the mediator’s information. We first explicitly obtain worst-case

distributions that Nature would choose in response to the mediator in the determination of the IIP,

both when buyer and seller values are independent (Proposition 9) and when they are permitted to

be dependent (Proposition 13). The admission of dependence always makes the mediator worse
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off, and in fact, may prevent trade from ever occurring in the worst case regardless of the medi-

ator’s price strategy when the expected surplus from trade is small enough—we refer to such a

scenario as a dismal equilibrium, and fully characterize its necessary and sufficient conditions in

Corollary 5. Nonetheless, regardless of the prospect of dependence, it is always optimal for Na-

ture in equilibrium to ensure the marginal distribution of each party’s value has two-point support

containing the boundary point of the feasible range at which that party would trade and the me-

diator’s price (at which that party would not trade), the masses accordingly chosen to respect the

mean constraints. We establish in Propositions 10 and 14 how the mean CIP and the IIP—both in

the cases of independent and dependent buyer and seller values—compare in terms of bargaining

power. We show that while the mean CIP is fully sensitive to bargaining power, the IIP has a more

shallow dependency on bargaining power, the shallowness only exacerbated when the mediator

faces the prospect of dependent values. That is, there is a unique critical bargaining power level

where the two price objects will concur, but the mediator does not incorporate the full effect of

the bargaining power in the IIP relative to the mean CIP at other bargaining power levels. Further,

the critical bargaining power is more in favor of the buyer (resp. seller) if the feasible range of

the buyer’s valuation above the mean valuation is greater (resp. less) than the feasible range of the

seller’s cost below the mean cost.

We then pursue comparative statics results for both the IIP and this critical bargaining power at

which IIP and mean CIP coincide. Propositions 11 and 15 show how IIP depends upon the model

fundamentals—namely the means, feasible range bounds, and bargaining power. While the IIP and

mean CIP both increase in the means and seller’s bargaining power, the IIP, somewhat counterin-

tuitively, is set lower when the bounds of feasible ranges are higher in the independent values case

in order to offset the party made more likely to trade by Nature’s mean-preserving strategy. The

prospect of dependence complicates this relationship in potentially nonmonotonic ways, particu-

larly when bargaining power is not extreme. However, Proposition 15 shows that when a party’s

bargaining power is small enough, the IIP decreases in the bound of the feasible range at which

that party would trade (if their value realized that bound). Proposition 12 obtains how the critical
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bargaining power at which IIP and mean CIP intersect depends upon model fundamentals in the

independent values case. Here, we show the critical bargaining power of the buyer increases in the

feasible range bounds but behaves nonmonotonically in the mean buyer and seller values due to

competing effects from the mean CIP and IIP; however, when the expected surplus is large enough,

the critical buyer bargaining power decreases in the means.

The remainder of this paper is organized as follows: Section 3.2 presents and solves the base-

line model where buyer and seller values are independent, and discusses model assumptions in

detail. Section 3.3 discusses the comparison between the IIP and mean CIP. Section 3.4 discusses

comparative statics results. Section 3.5 extends results of the baseline model obtained in the pre-

ceding sections to allow for dependent values. Section 3.6 concludes.

Related literature

The distinction between quantifiable “risk” and unquantifiable “uncertainty” goes back to at

least Knight 1921. While problems of risk are often approached in a Bayesian setup under the

assumption of a known prior distribution (either objective or subjective), problems of Knightian

uncertainty are not immediately amenable to an obvious solution. Apart from the issue of how to

decide on an appropriate prior, the Bayesian approach to model such uncertainty suffers from com-

pelling experimental critiques pointed out by Ellsberg 1961.3 The problem of modeling decision

making under Knightian uncertainty found a rigorous solution concept in the theory of statistical

decision functions (c.f. Wald 1949, Blackwell and Girshick 1954), which regards the problem

of a decision maker faced with distributional uncertainty as a zero-sum game with Nature. This

approach of a maxmin game with Nature found a rigorous economic footing in the seminal pa-

per Gilboa and Schmeidler 1989 that axiomatized the preferences of a maxmin expected utility

decision maker in a way that is consistent with the critique of Ellsberg 1961.4

3A particularly stark example is used to illustrate the Ellsberg paradox: if an urn A has 50 red and 50 black balls,
and an urn B has an unknown mixture of red and black balls, people typically strictly prefer taking a bet that they
would draw a red ball from urn A over one where they would draw one from urn B, even while strictly preferring to
take a bet that they would draw a black ball from urn A over one where they would draw one from urn B.

4The behavioral literature has ripened with models that aim to resolve the Ellsberg paradox; see Gilboa and Mari-
nacci 2013 for a review. Leading approaches include Schmeidler 1989, Segal 1987, 1990, Epstein 1999, Klibanoff,
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The approach of robust decision making in a game with Nature is congruent with Wilson’s doc-

trine (Wilson 1987) in not relying on complete information of prior distributions and has also en-

joyed recent application in mechanism design and operations research among others. One strand in

these literatures takes a minimax regret approach, which minimizes the worst-case shortfall of the

chosen mechanism relative to the complete-information optimal mechanism. This approach can be

traced back to at least Savage 1951, 1954 and was independently suggested by Niehans 1948 (c.f.

Bergemann and Schlag 2008, Guo and Shmaya 2019, and Koçyiğit, Rujeerapaiboon, and Kuhn

2021 among some recent applications). Another strand adopts a maxmin payoff approach, which

is what we pursue. Such work often assumes various moment or boundary conditions are known,

thus becoming constraints for adversarial Nature. The methods used in this respect trace back to

Scarf 1957, who looks at a worst-case demand distribution under a mean and variance constraint

in a problem of inventory management. Delage and Ye 2010 likewise look at distributionally ro-

bust stochastic programs under first and second moment constraints, allowing for some degree of

moment uncertainty. Blanchet et al. 2020 show how dropout training used in generalized linear

models in machine learning is minimax under mean and range constraints. Meanwhile, a similar

approach has been adopted in mechanism design applications: Carrasco et al. 2018 consider the

monopoly pricing problem in the case of a single buyer in the setup of a simultaneous game with

Nature under arbitrarily many moment conditions, and solves the special case of a known mean

and range. Che 2022 solves the same special case in the more general setting of multiple buyers

and looks at optimal auction format design (c.f. also Brooks and Du 2021). Che and Zhong 2021

broaden the application to selling multiple goods. Carroll 2015, 2019 look at contracting settings.

We adapt methods used in this literature in tractably solving Nature’s problem (c.f. Wiesemann,

Kuhn, and Sim 2014 for discussion on tractability), even while looking at a novel application of

distributionally robust decision making to a bargaining setup.

While many works look at a saddle point solution, others, including Wolitzky 2016 and Koçy-

iğit et al. 2020, look at a Stackelberg game with Nature, which is what we pursue. There are some

Marinacci, and Mukerji 2005, and Maccheroni, Marinacci, and Rustichini 2006, among others. See also Stoye 2012
for a survey of several axiomatizations of methods that resolve Knightian uncertainty, including minimax regret.

66



compelling model motivations for the sequential approach. Analytically, our sequential maxmin

approach renders the model quite tractable, in contrast to solving for a saddle point in a simultane-

ous game. By the max-min inequality, zero-sum games have a second mover advantage, so in this

sense, we exacerbate the worst-case approach that the mediator takes in choosing a price. More

fundamentally, however, a sequential maxmin game with Nature can be interpreted metaphorically

as representing the preferences of a mediator who simply is a minimal expected utility maximizer,

which has an axiomatic basis in uncertainty aversion (c.f. Gilboa and Schmeidler 1989). Thus, the

Stackelberg setup allows us to obviate the need for Nature in the first place by simply assuming an

uncertainty-averse mediator.

3.2 Model

3.2.1 Setup

A mediator chooses a transaction price at which a risk neutral buyer and seller trade an indivis-

ible good. If the trade occurs at price p, the buyer enjoys valuation v and pays the seller the price

p, while the seller incurs a cost c. If trade does not occur, both buyer and seller attain an outside

option payoff of zero. Neither the parties nor mediator observe the values v and c when deciding

the price, but the mediator knows that these values are independently drawn from an unknown

joint distribution, and that the supports of their marginal distributions are contained in a known

range [w, w̄], where w ≥ 0. The mean values of v and c are also known by the mediator, where

E [v] = µv,E [c] = µc, and w̄ > µv > µc > w. Thus, the mediator knows there is positive surplus

to be enjoyed in expectation, but does not know whether this is also the case ex post.

If symmetrically informed of both their values v and c, the parties would negotiate a price p

without intervention according to the Nash bargaining solution with exogenous bargaining powers

α and 1 − α afforded to the buyer and seller respectively, where α ∈ (0,1). That is, if there is

surplus from trade, the transaction price under complete information, pCIP, is chosen to maximize
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the weighted Nash product:

pCIP ∈ arg max
p≥0

(v − p)α(p − c)1−α1c<p<v

= (1 − α)v + αc.

We call the above the complete information price (CIP), which is simply a weighted average of the

buyer’s valuation and seller’s cost, the weights determined by bargaining power, so that pCIP ↑ v

as α ↓ 0 and pCIP ↓ c as α ↑ 1 .

In the absence of information of the values v and c as well as their joint distribution, agents act

in the following manner: If the buyer and seller were symmetrically informed of both their mean

values (which is the information the mediator has), the price they would negotiate is the mean CIP,

defined as5

p̄CIP ≡ (1 − α)µv + αµc. (3.1)

This choice follows from the assumed risk neutrality of the buyer and seller and the fact that the

Nash bargaining solution assumes that payoffs in the Nash product are von Neumann-Morgenstern

utilities (c.f. Harsanyi 1956). In constrast, the mediator plays against adversarial Nature by choos-

ing a price (possibly in mixed strategies) in an attempt to maximize the mean Nash product, where-

upon Nature, observing a realized price from the mediator’s strategy, adversarially chooses a Borel

probability measure on R2
≥0 from the set of all such measures, P

(
R2
≥0

)
, subject to known mean

and boundary constraints to minimize the mean Nash product. Explicitly, admitting (v, c) as an

R2
≥0-valued random vector, the mediator chooses the incomplete information price (IIP) as6

pIIP
⊥⊥ ∈ arg max

p≥0
min

H∈P(R2
≥0)
E(v,c)∼H

[
(v − p)α(p − c)1−α1c<p<v

]
(3.2)

5The mean CIP is so named since it satisfies p̄CIP = E
[
pCIP |v > c

]
. Thus, the mean CIP can be thought of as what

would be chosen (either by the mediator or negotiated by the transacting parties absent a mediator) on average in a
setting of complete information given there is surplus from trade.

6Since Nature observes a realized price, we may restrict our focus to pure strategies for the mediator.
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subject to

v and c independent: v ⊥⊥ c (3.3)

E(v,c)∼H [(v, c)] = (µv, µc), (3.4)

supp [H] ⊆ [w, w̄]2. (3.5)

While the buyer and seller do not play a strategic role in the above setup, we do consider

when their corresponding terms in the Nash product are positive, and occasionally refer to their

realized values as inducing buyer-side, seller-side, all-sides, and no-sides trade, corresponding

with when v > p, c < p, c < p < v, and v ≤ p ≤ c respectively. In the sequel, I denote a

generic probability measure H with finite support {h1, ..., hk} having respective probability masses

{π1, ..., πk} by H =
∑k

i=1 πiδhi .

3.2.2 Discussion of model assumptions

There are quite a few model features and assumptions that merit discussion. We have made

assumptions on the exogenous parameters. First, we have assumed that buyer and seller values are

independent. For the applications we consider, such as corporate acquisitions and legal disputes,

this is a strong assumption that is likely not to hold. However, independence offers a baseline

setting (considered in sections 3.2-3.4) from which we can derive useful insights and to which we

compare with the more general setting in which values can be dependent (section 3.5). The possi-

bility of dependence clearly offers more flexibility to Nature and thus contributes to exacerbating

the worst-case setup of the mediator’s problem. Second, we have assumed a common range for

buyer and seller values, along with zero outside options. As will become apparent in the argument

that follows, the minimum of the range of c and the maximum of the range of v are the primary

relevant features,7 so a common range assumption merely dispenses of superfluous information.

Moreover, zero outside options is without loss since nonzero outside options can be absorbed in

7Section 3.2.3 shows the lower bound on v can be as high as µc and the upper bound on c can be as low as µv .
Further flexibility on the bounds can only improve the prospects for the mediator.
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v and c. Third, we have included a role for bargaining power, a departure from the symmetry as-

sumption of the original Nash bargaining model (Nash 1953; Nash 1950). This inclusion plays an

important role in our analysis; if the price is the instrument through which surplus is divided, then

bargaining power refines this instrument, and as we shall formally see in section 3.3, this refining

power—if appropriately tuned—allows us to consider the coincidence of various price contracts.

We focus on interior bargaining powers (α ∈ (0,1)) to simplify discussion, although our results

can be extended fairly simply for the extreme cases where α = 0,1. In these extreme cases, the

strategy for Nature that we consider would be valid so long as the mediator’s payoff is zero when

the price is exactly equal to either c or v (the indicator as written in (3.2)).8

It is also worth pointing out the role of implicit preferences and information structure in the

game. Ex post, the mediator would choose a price that maximizes the Nash product just as the

negotiating parties themselves would if their values were commonly known. In this sense, the

mediator is understood to be benevolent in that the Nash product is an ex post utility function for

the mediator. Consequently, admitting the mean Nash product as the mediator’s payoff in the in-

complete information setup assumes the mediator acts as a (worst-case) expected utility maximizer.

This benevolence of the mediator can be motivated by augmenting the game to include a third stage

(after the mediator and Nature) in which the buyer and seller both symmetrically observe their ac-

tual values v and c and the mediator’s recommended price contract and compensate the mediator

an amount that is commensurate with the ex post Nash product, a proxy for the ultimate success of

the price contract. Note that by Jensen’s inequality, for any giving pricing scheme, the mediator,

endowed with such preferences, would be better off if the mean values of buyer and seller were

realized with certainty rather than be subject to the incomplete information setting. However, the

substance of Propositions 10 and 14 is that there is a unique bargaining power that would induce

the mediator to choose exactly identical price contracts in these two setups, but the mediator would

otherwise underweight the effect of bargaining power under incomplete information.

8Such a payoff can be endogenously motivated by augmenting the game to include a third stage (after the mediator
and Nature) where buyer and seller would decide to accept or reject the price contract after observing their actual
private values, in which case a well-defined equilibrium would have the buyer and seller breaking ties in favor of
Nature.
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Our approach to resolving the unquantifiable uncertainty is through a Stackelberg game with

Nature under known mean and boundary constraints, where Nature moves after observing a real-

ized price from the mediator’s strategy. Our constraints offer a fairly weak informational setting,

although the ambiguity set of the mediator may be enriched by including higher-order moment

constraints, a feature considered in Carrasco et al. 2018; for instance, we may consider an upper

bound constraint on variance. Che and Zhong 2021 point out that such convex moment constraints

tend to play similar roles in Nature’s strategy as the boundary constraints that we consider. We

have discussed some general model motivations for a sequential approach, but it is also worth not-

ing that Nature’s equilibrium strategy is robust to the mediator’s payoff in the sequential game.

For instance, as will become clear, Nature’s optimal strategy in the sequential setup would remain

unchanged if the mediator’s objective was to maximize the probability of trade, in which case the

objective in (3.2) would be given by E(v,c)∼H
[
1c<p<v

]
; the exercise of obtaining the mediator’s

price under this objective is pursued in Appendix B.2. The concavity associated with the media-

tor’s objective, rather than the particular form of the objective, is what is material to adversarial

Nature in a Stackelberg game. Contrastingly, Nature is sensitive to the form of the objective in a

simultaneous game since Nature’s strategy is then chosen to make the mediator indifferent across

the support of the mediator’s mixed strategy. As such, a simpler objective—maximizing worst-

case probability of trade, for instance— would make the model more amenable to constructively

obtaining a saddle point solution, although this objective abstracts away from bargaining power

considerations, which is a key focus of our exercise.

3.2.3 Nature’s problem

By independence, Nature’s problem reduces to choosing F∗,G∗ given price p where

F∗ ∈ arg min
F∈P(R≥0)

Ev∼F
[
(v − p)α1p<v

]
, (3.6)
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G∗ ∈ arg min
G∈P(R≥0)

Ec∼G
[
(p − c)1−α1c<p

]
, (3.7)

subject to (3.4) and (3.5).

If the mediator chooses price p ≥ µv, then it suffices for Nature to choose F having unit mass

at µv and to choose any G that satisfies its mean constraint. Likewise, if the mediator chooses

price p ≤ µc, then it suffices for Nature to choose G having unit mass at µc and to choose any

F that satisfies its mean constraint. To solve Nature’s strategy if the mediator’s price is chosen as

p ∈ (µc, µv), we appeal to the following lemma, adapted from Lemma 1 in Che 2022:

Lemma 3 Suppose P(Ω, µ) is the set of Borel probability measures on Rn with mean µ and having

support contained in Ω, where Ω is a compact subset of Rn. Given function φ : Ω→ R,

H∗ ∈ arg min
H∈P(Ω,µ)

Ez∼H [φ(z)] (3.8)

if and only if H∗ ∈ P(Ω, µ) and there is an affine function L : Ω→ R such that

1. L(z) ≤ φ(z) ∀z ∈ Ω

2. supp [H∗] ⊆ {z : L(z) = φ(z)} .

Proof. We show sufficiency (necessity can be shown using the dual program and is found in Che

2022). Observe that for any H ∈ P(Ω, µ), we have

Ez∼H∗ [φ(z)] = Ez∼H∗ [L(z)] = Ez∼H [L(z)] ≤ Ez∼H [φ(z)] ,

the first equality following from condition 2, the second equality following from the mean con-

straint and affinity of L, and the final inequality following from condition 1. �

A straightforward application of Lemma 3 allows us to solve Nature’s problems (3.6) and (3.7):

Proposition 9 If the mediator chooses price p ∈ (µc, µv), then the unique equilibrium strategy for

Nature is given by
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F∗ = (1 − πw̄(p))δp + πw̄(p)δw̄ (3.9)

G∗ = (1 − πw(p))δp + πw(p)δw, (3.10)

πw̄(p) =
µv − p
w̄ − p

(3.11)

πw(p) =
p − µc

p − w
. (3.12)

Proof. We appeal to Lemma 3. The payoff functions are given by φ(v) = (v − p)α1p<v and

φ(c) = (p − c)1−α1c<p, both of which are strictly concave over their positive portions. It is easily

verified that F∗ having supp [F∗] = {p, w̄} and the affine function L(v) = v−p
(w̄−p)1−α satisfy the

conditions of the lemma for φ(v). Likewise, it is easily verified that G∗ having supp [G∗] = {w, p}

and the affine function L(c) = p−c
(p−w)α satisfy the lemma for φ(c). The masses πw̄(p), πw(p) are

determined by the mean constraints.

To show uniqueness, we appeal to the necessity of the conditions of the lemma. It is clear that a

singleton support at the mean is not optimal as this would ensure certain trade for the corresponding

party, so the supports must have at least two points. Each support cannot contain a non-boundary

point in the positive portion of the payoff function; otherwise, any affine function intersecting

the payoff function at such a point (by condition 2 of the lemma) would violate condition 1 of

the lemma for some portion of the feasible range. Each support cannot contain a point in the zero

portion of the payoff function other than price p; otherwise, any affine function would either violate

condition 1 or must be identically zero. The latter cannot be true or else the support would only be

contained within the zero portion of the payoff functions (by condition 2) so that supp [F] (resp.

supp [G]) would always lie below (resp. above) the mean. �

The intuition of Proposition 9 is as follows: Nature chooses F and G to put as much of their

mass as possible at values where trade does not occur, subject to obeying the moment conditions.

For each distribution, this is done precisely by allocating mass over a two-point support that in-

cludes price p— at which trade does not occur— and the boundary point at which trade does occur.
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The masses are determined by the moment conditions, so that more mass of a distribution is placed

at the transaction price if the price is closer to the distribution’s mean.

3.2.4 Mediator’s problem

Working backwards, the mediator chooses the IIP as

pIIP
⊥⊥ ∈ arg max

p∈(µc,µv)

{
Π⊥⊥(p) ≡ Ev∼F∗

[
(v − p)α1p<v

]
Ec∼G∗

[
(p − c)1−α1c<p

]}
.

Substituting in (3.9)-(3.12) yields

pIIP
⊥⊥ ∈ arg max

p∈(µc,µv)
(w̄ − p)α(p − w)1−απw̄(p)πw(p) (3.13)

= arg max
p∈(µc,µv)

(µv − p)(p − µc)(w̄ − p)α−1(p − w)−α. (3.14)

Note that since the objective is zero at p = µc and p = µv, Rolle’s theorem implies that there is an

interior optimal price in the interval (µc, µv) where the FOC will be satisfied. The FOC is given by

Π
′
⊥⊥(p) = (w̄− p)α−2(p−w)−α−1

[
2
(

1
2
(µv + µc) − p

)
(w̄ − p)(p − w) +

(
p −

(
(1 − α)w + αw̄

) )
(µv − p)(p − µc)

]
= 0.

(3.15)

Defining

h⊥⊥(p) ≡ (w̄ − p)2−α(p − w)1+αΠ′⊥⊥(p), (3.16)

we see h⊥⊥ is a cubic polynomial with a positive leading coefficient (of unity), satisfying h⊥⊥(µc) =

(µv − µc)(w̄ − µc)(µc − w) > 0 and h⊥⊥(µv) = −(µv − µc)(w̄ − µv)(µv − w) < 0, implying there is a

unique pIIP
⊥⊥ ∈ (µc, µv) that satisfies the FOC.

3.3 Comparison between IIP and mean CIP

An immediate question that arises is how the IIP obtained in section 3.2.4, pIIP
⊥⊥ , compares with

the mean CIP obtained in section 3.2.1, p̄CIP. Both prices are in the interval (µc, µv), although
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the former is chosen by the mediator, while the latter is what would be chosen by the transacting

parties when equipped with the mediator’s information. The next proposition establishes how the

IIP and mean CIP relate to each other based on bargaining power.

Proposition 10 There is a unique α∗⊥⊥ ∈ (0,1) such that for α S α∗⊥⊥, we have p̄CIP T pIIP
⊥⊥ . More-

over, α∗⊥⊥ T
1
2 when µc −w S w̄− µv. Finally, limµv−µc↓0 α

∗
⊥⊥ =

1
2 , limµc−w↓0 α

∗
⊥⊥ = 1,limw̄−µv↓0 α

∗
⊥⊥ =

0.

Proof. A useful fact to appeal to is the following:

Fact 3 A generic cubic polynomial in variable x of the form

M(x) = Ax3 + Bx2 + Cx + D

with A < 0 (resp. A > 0) will have a unique real root if it is weakly decreasing (resp. increasing)

at its inflection point, which occurs if and only if

0 ≥ (resp. ≤)M′
(
−

B
3A

)
= −

B2

3A
+ C ⇐⇒ B2 ≤ 3AC.

In order to see how bargaining power affects the relation between mean CIP and IIP, treat α as a

variable. Define hCIP
⊥⊥ (·) as a function of 1 − α induced by the function h⊥⊥(·) evaluated at p̄CIP:

hCIP
⊥⊥ (1 − α) ≡ h⊥⊥

(
p̄CIP

)
. (3.17)

Expanding (3.17), hCIP
⊥⊥ (·) is given by

hCIP
⊥⊥ (1 − α) = −(µv − µc)

2(w̄ − µv + µc − w)(1 − α)3 + 3(µc − w)(µv − µc)
2(1 − α)2

− (µc − w)(µv − µc)(2(w̄ − µc) + µv − µc)(1 − α) + (µv − µc)(µc − w)(w̄ − µc). (3.18)

Recall from section 3.2.4 that hCIP
⊥⊥ (0) = h⊥⊥(µc) = (µv − µc)(w̄− µc)(µc −w) > 0 and hCIP

⊥⊥ (1) =

h⊥⊥(µv) = −(µv − µc)(w̄ − µv)(µv − w) < 0. Thus, hCIP
⊥⊥ has at least one root in (0,1). It is easily
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verified that hCIP
⊥⊥ satisfies the condition of Fact 3 with strict inequality and thus the root is unique,

corresponding to the value of α for which the mean CIP satisfies the FOC and is thus equivalent to

the IIP. Consequently, there is a unique α∗⊥⊥ ∈ (0,1) such that for α S α∗⊥⊥, we have hCIP
⊥⊥ (1− α) S 0,

and thus p̄CIP T pIIP
⊥⊥ . Moreover, when α = 1

2 , we have

hCIP
⊥⊥

(
1
2

)
=
(µv − µc)

2

8
[
(µc − w) − (w̄ − µv)

]
.

Thus, we have 1
2 S α∗⊥⊥ when hCIP

⊥⊥

(
1
2

)
S 0 ⇐⇒ (µc − w) − (w̄ − µv) S 0. Further, as

(µv − µc) ↓ 0, 1
(µv−µc)

hCIP
⊥⊥

(
1
2

)
→ 0 =⇒ α∗⊥⊥ →

1
2 ; as (µc − w) ↓ 0,hCIP

⊥⊥ (0) → 0 =⇒ α∗⊥⊥ ↑ 1; and

as (w̄ − µv) ↓ 0, hCIP
⊥⊥ (1) → 0 =⇒ α∗⊥⊥ ↓ 0. �

Proposition 10 reveals the manner in which uncertainty aversion distorts the mediator’s pricing

strategy relative to what the buyer and seller would choose with the same information set. There is

some critical intermediate level of bargaining power, α∗⊥⊥, where the two prices coincide. In effect,

if the mediator could commit before the game to a contract that endows the buyer with this critical

bargaining power, then the mediator would act as the buyer and seller would. However, the IIP

has an overall shallower dependency on α than the mean CIP, so that when the seller (resp. buyer)

has bargaining power greater than 1 − α∗⊥⊥ (resp. greater than α∗⊥⊥), the mediator chooses a lower

(resp. higher) price than what the buyer and seller would choose. This critical bargaining power

will be more in favor of the buyer (α∗⊥⊥ > 1
2 ) if the feasible range of the buyer’s valuation above

its mean is greater than the feasible range of the seller’s cost below its mean. The intuition on

this latter result regarding the degree of asymmetry afforded by the critical bargaining power will

become more clear in our comparative statics discussion in section 3.4. In Figure 3.1, we see the

comparison between the IIP and mean CIP and how the critical bargaining power is thus affected

under various parametrizations for the feasible range bounds (fixing the means). It can be seen

that while the mean CIP is fully sensitive to bargaining power, IIP has a shallow dependency on

bargaining power that ensures that they concur at a unique bargaining power in the way predicted

by Proposition 10.
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Figure 3.1: IIP vs. mean CIP as a function of bargaining power. Parameters are set so that µc and
µv are fixed, while w̄ and w vary.

3.4 Comparative Statics

It is clear from (3.1) how the mean CIP responds to the underlying parameters. If either the

mean seller’s cost or mean buyer’s valuation increases, the mean CIP—the weighted average of

the two— increases as well. Moreover, if the buyer has greater bargaining power, the mean CIP

decreases toward the seller’s mean cost. The next proposition establishes how these properties

extend to the IIP.

Proposition 11 pIIP
⊥⊥ strictly increases in µv, µc and strictly decreases in w, w̄, α.

Proof. With slight abuse of notation, augment h⊥⊥(·) in (3.16) to admit generic parameter β ∈

{µv, µc, w̄,w, α} as an argument. By definition of pIIP
⊥⊥ and the implicit function theorem, we have

h⊥⊥
(
pIIP
⊥⊥ , β

)
= 0 =⇒ ∂βpIIP

⊥⊥ = −
∂βh (p, β)
∂ph (p, β)

����p=pIIP
⊥⊥
.
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From section 3.2.4, we know h⊥⊥(·, β) is strictly decreasing at pIIP
⊥⊥ . Thus, sign

{
∂βpIIP
⊥⊥

}
= sign

{
∂βh⊥⊥

(
pIIP
⊥⊥ , β

)}
. Differentiating yields

∂αh⊥⊥
(
pIIP
⊥⊥ , α

)
= − (µv − p) (p − µc)

(
w̄ − w

) ����p=pIIP
⊥⊥
< 0,

∂µv h⊥⊥
(
pIIP
⊥⊥ , µv

)
=

1
µv − p

[
h⊥⊥ (p, µv) + (p − µc) (w̄ − p)

(
p − w

) ] ����p=pIIP
⊥⊥
> 0,

∂µc h⊥⊥
(
pIIP
⊥⊥ , µc

)
=

1
p − µc

[
−h⊥⊥ (p, µc) + (µv − p) (w̄ − p)

(
p − w

) ] ����p=pIIP
⊥⊥
> 0,

∂wh⊥⊥
(
pIIP
⊥⊥ ,w

)
=

1
p − w

[
−h⊥⊥

(
p,w

)
− α (µv − p) (p − µc) (w̄ − p)

] ����p=pIIP
⊥⊥
< 0,

∂w̄h⊥⊥
(
pIIP
⊥⊥ , w̄

)
=

1
w̄ − p

[
h⊥⊥ (p, w̄) − (1 − α) (µv − p) (p − µc)

(
p − w

) ] ����p=pIIP
⊥⊥
< 0.

�

Proposition 11 thus establishes that the IIP responds to the parameters µv, µc, and α in the

same way that the mean CIP does, a fairly intuitive result. The results for w and w̄, while initially

somewhat counterintuitive, are appreciated when the role of Nature is considered. When the lower

bound of the feasible cost values, w, is increased toward µc, adversarial Nature is compelled by the

moment conditions to place more mass of the seller’s distribution at w for a given price, increasing

the seller-side probability of trade. Since the buyer has some positive bargaining power, the medi-

ator is thus afforded the flexibility to favor the buyer more by decreasing the price, which compels

Nature to put more mass of the buyer’s distribution at w̄, thus increasing the buyer-side probability

of trade. Conversely, when the upper bound of feasible buyer valuations, w̄, is decreased toward

µv, Nature places more mass of the buyer’s distribution at w̄ for a given price, making buyer-side

trade more likely. Since the seller has some positive bargaining power, the mediator is afforded the

flexibility to favor the seller more by increasing the price, which compels Nature to put more mass

of the seller’s distribution at w, thus making seller-side trade more likely.

It is also of interest to see how the critical bargaining power of Proposition 10 at which the

mean CIP and IIP coincide responds to the fundamentals. The following proposition establishes
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Figure 3.2: α∗⊥⊥ as a function of various parameters.

these relations.

Proposition 12 1. α∗⊥⊥ strictly increases in w and w̄.

2. If µc ≥
1
2
(
w + w̄

)
, then α∗⊥⊥ <

1
2 strictly decreases in µv. Otherwise, given w̄,w, µc, there is a

µ∗v ∈
(

1
2
(
w + w̄

)
, w̄ + w − µc

)
so that α∗⊥⊥ strictly increases (resp. decreases) in µv < (resp. >)µ∗v .

3. If µv ≤ 1
2
(
w + w̄

)
, then α∗⊥⊥ >

1
2 strictly decreases in µc. Otherwise, given w̄,w, µv, there is a

µ∗c ∈
(
w̄ + w − µv,

1
2
(
w + w̄

) )
so that α∗⊥⊥ strictly increases (resp. decreases) in µc > (resp. <)µ∗c.

Proof. See Appendix B.1. �

The comparative statics results of Proposition 11 helps us better understand both Proposition

12 and the degree of asymmetry of α∗⊥⊥ specified by Proposition 10. First let us consider how α∗⊥⊥
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depends on the bounds w and w̄. If µc−w = w̄− µv, then we have a symmetric setup so that the IIP

and mean CIP coincide under equitable bargaining power (α∗⊥⊥ =
1
2 ). If the upper bound of feasible

buyer valuations, w̄, is unilaterally increased from the symmetric setup so that µc−w < w̄−µv, then

the mean CIP is unchanged, but the IIP decreases for every possible bargaining power allocation

as per Proposition 11 (shift from red curve to yellow curve in Figure 3.1); since the IIP has a

shallower dependency on bargaining power than the mean CIP, the two prices can only coincide

at a higher α. Relatedly, if the lower bound of feasible seller costs, w, is unilaterally decreased

from the symmetric setup so that µc − w > w̄ − µv, the IIP increases for every possible bargaining

power allocation by Proposition 11 (shift from red curve to blue curve in Figure 3.1) so that the

two prices can only coincide at a lower α. These relations produce the monotonic behavior seen in

the bottom two panels of Figure 3.2 .

However, the dependency of α∗⊥⊥ on the mean buyer and seller valuations is nonmonotonic since

the means affect both the mean CIP and the IIP. On one hand, if either the mean buyer valuation

or mean seller cost is unilaterally increased, this drives an increase in the IIP for any bargaining

power allocation, which contributes to decreasing α∗⊥⊥. On the other hand, an increase in either of

the means also drives an increase in the mean CIP for any bargaining power allocation, which

contributes to increasing α∗⊥⊥. If the expected surplus from trade is large (resp. small), in that µv

is large (resp. small) or µc is small (resp. large), then if µv or µc are respectively increased, the

resulting positive effect on α∗⊥⊥ from the mean CIP is outweighed by (resp. outweighs) the negative

effect from the IIP, producing the relations seen in the top two panels of Figure 3.2.

3.5 Dependent values

3.5.1 Setup and equilibrium

It is natural for applications involving uncertainty to consider buyer and seller reservation val-

ues that are possibly dependent. This setting is identical to that considered in section 3.2.1 without

the independence assumption (3.3). How is Nature’s strategy affected in this case? The next propo-

sition asserts that Nature would always exploit the extra freedom afforded to it by rendering values
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that are dependent and obtains Nature’s resulting strategy.

Proposition 13 In the absence of the independence restriction (3.3), Nature’s equilibrium strategy

always has v and c dependent. For p ∈ (µc, µv), an equilibrium strategy for Nature, H∗, is given by

the following:

1. If πw̄(p) + πw(p) < 1, H∗ = πw̄(p)δ(w̄,p) + πw(p)δ(p,w) +
(
1 − πw̄(p) − πw(p)

)
δ(p,p)

2. If πw̄(p)+πw(p) > 1, H∗ =
(
1 − πw(p)

)
δ(w̄,p)+(1 − πw̄(p)) δ(p,w)+

(
πw̄(p) + πw(p) − 1

)
δ(w̄,w)

3. If πw̄(p) + πw(p) = 1, H∗ = πw̄(p)δ(w̄,p) + πw(p)δ(p,w).

The (behavioral) strategy in case 2 is unique.

Proof. Independent values is never optimal for Nature by Lemma 3. If in fact Nature’s strategy

in Proposition 9 was optimal, then the imputed joint distribution has four-point support given by

{(p,w), (w̄, p), (p, p), (w̄,w)}. Since the mediator’s payoff φ(v, c) is positive at (w̄,w) and identically

zero at the other three points (whenever either the buyer or seller value coincides with the price

p), there can never be an affine function (a plane in this case) that coincides with the payoff φ(v, c)

over the four-point support, contradicting the necessity of the conditions of the lemma.

Sufficiency is easily shown by Lemma 1 with the obvious choices of affine functions (in case 3,

there are infinitely many affine functions that suffice). The (behavioral) strategy in case 2 is unique

as any other points in the support would make any affine function satisfying condition 2 violate

condition 1 of the lemma. �

Proposition 13 shows that under dependent values, it is still optimal for Nature to choose the

same marginal distributions as in the independent values case. However, while the independent val-

ues case allowed the mediator to obtain a positive expected payoff when choosing any p ∈ (µc, µv),

dependence allows for the possibility that Nature may always achieve its first best of giving a zero

payoff to the mediator regardless of the latter’s pricing strategy, thus making the mediator’s equi-

librium strategy ill-defined. We call this a dismal equilibrium, and it occurs if the parameters allow

Nature’s equilibrium support to always feature either the buyer or seller values coinciding with the

mediator’s price. The following corollary characterizes when the dismal equilibrium occurs.
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Corollary 5 Define the following quadratic function in p:

Λ(p) ≡ (µv − p)(p − µc) − (w̄ − µv)(µc − w). (3.19)

Then a dismal equilibrium occurs if and only if

Λ

( µv + µc

2

)
≤ 0. (3.20)

Moreover,

1. If w̄ − µv = µc − w, then (3.20) is satisfied if and only if µc ≥
3
4w +

1
4 w̄, or equivalently,

µv ≤
1
4w +

3
4 w̄.

2. If w̄ − µv > µc − w, then (3.20) is satisfied if µc ≥
3
4w +

1
4 w̄ and only if µv ≤ 1

4w +
3
4 w̄.

3. If w̄ − µv < µc − w, then (3.20) is satisfied if µv ≤ 1
4w +

3
4 w̄ and only if µc ≥

3
4w +

1
4 w̄.

Proof. By Proposition 13, the dismal equilibrium occurs if and only if for any p ∈ (µc, µv), we have

πw̄(p) + πw(p) ≤ 1 ⇐⇒ Λ(p) ≤ 0. Note that Λ(p) is a downward facing parabola in p satisfying

Λ(µc) = Λ(µv) = −(w̄ − µv)(µc − w) < 0 and is thus maximized at pmax ≡
µc+µv

2 . Consequently,

the dismal equilibrium occurs if and only if Λ (pmax) ≤ 0. Observe that for w̄ − µv T µc − w,

2
( µv + µc

2
− w

) (
3
4
w +

1
4
w̄ − µc

)

T
( µv + µc

2
− w

) (
1
2
µv + w −

3
2
µc

)
=

( µv − µc

2

)2
− (µc − w)

2

T Λ (pmax) =
( µv − µc

2

)2
− (w̄ − µv)(µc − w)

T
( µv − µc

2

)2
− (w̄ − µv)

2 =
(
w̄ −

( µv + µc

2

)) (
3
2
µv − w̄ −

1
2
µc

)
T 2

(
w̄ −

( µv + µc

2

)) (
µv −

1
4
w −

3
4
w̄

)
.
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The desired necessary and sufficient conditions follow immediately. �

Our object of interest in the dependent value case is thus to look at the mediator’s optimal price

strategy in a non-dismal equilibrium. By Proposition 13, this equilibrium is valid so long as there

is a price for which πw̄(p) + πw(p) > 1, which holds when the condition of Corollary 5 is violated.

Qualitatively, Corollary 5 is violated when the mean buyer and seller values are far apart, so that as

long as the expected surplus is sufficiently large, the mediator enjoys the prospect of a non-dismal

equilibrium. In this case, the mediator chooses the IIP as

pIIP ∈ arg max
p∈(µc,µv)

{
Π(p) ≡ (w̄ − p)α(p − w)1−α

(
πw̄(p) + πw(p) − 1

)}
(3.21)

= arg max
p∈(µc,µv)

(w̄ − p)α(p − w)1−α
(
πw̄(p)πw(p) − (1 − πw̄(p))

(
1 − πw(p)

))
. (3.22)

Comparison of (3.22) with (3.13) shows exactly how dependent values makes the mediator

worse off relative to independent values for any price strategy. The probability of all-sides trade

in the dependent values case is the probability of all-sides trade less the probability of no-sides

trade in the independent values case. We discuss the import of this dependence penalty more in the

context of Proposition 15.

Substituting in (3.11)-(3.12), the objective in (3.22) simplifies to

Π(p) = Λ(p)(w̄ − p)α−1(p − w)−α,

where Λ(p) is as defined in (3.19). By Rolle’s theorem, there is an interior optimal price in the

interval (Λ−,Λ+) where the FOC will be satisfied, where Λ−,Λ+ are the roots of Λ given by

Λ± ≡
1
2
(µv + µc) ±

√
1
4
(µv − µc)

2 − (w̄ − µv)(µc − w). (3.23)

It is clear how dependence limits the profitable portion of the mediator’s strategy set since (Λ−,Λ+)
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⊂ (µc, µv). The FOC is then given by

Π
′(p) = (w̄ − p)α−2(p − w)−α−1

[
2
(
1
2
(µv + µc) − p

)
(w̄ − p)(p − w) +

(
p −

(
(1 − α)w + αw̄

) )
Λ(p)

]
= 0.

(3.24)

Defining

h(p) ≡ (w̄ − p)2−α(p − w)1+αΠ′(p), (3.25)

(3.24) shows that h(p) is a cubic polynomial in p with leading coefficient of unity satisfying

h(Λ±) ≶ 0, implying a unique solution to the FOC.

3.5.2 Comparison between IIP and mean CIP and comparative statics

Proposition 10 shows how the dependency of the price upon α is shallowed by playing against

adversarial Nature. The following lemma compares the IIP in the dependent case with that in the

independent case and shows how this shallowness is only exacerbated when Nature is made more

adversarial in being afforded the freedom of dependence.

Lemma 4 (1 − α)w + αw̄ S pIIP S pIIP
⊥⊥ .

Proof. Comparing (3.15) and (3.24), the FOCs in the dependent and independent cases are related

in that

h(p) = h⊥⊥(p) −
(
p −

(
(1 − α)w + αw̄

) )
(w̄ − µv)(µc − w). (3.26)

We thus have pIIP S pIIP
⊥⊥ if and only if

0 S −h⊥⊥
(
pIIP
⊥⊥

)
+ h⊥⊥

(
pIIP

)
= −h⊥⊥

(
pIIP
⊥⊥

)
+ h

(
pIIP

)
+

(
pIIP −

(
(1 − α)w + αw̄

) )
(w̄ − µv)(µc − w)

=
(
pIIP −

(
(1 − α)w + αw̄

) )
(w̄ − µv)(µc − w),

where the first inequality is from the fact h⊥⊥ is decreasing over its domain, the following equality

uses (3.26), and the final equality is by definition of pIIP
⊥⊥ and pIIP satisfying their respective FOCs.

�
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We now extend Proposition 10 to see how all three price objects we have discussed—the mean

CIP and the IIP in the independent and dependent cases—compare in terms of bargaining power.

The comparison is illustrated in Figure 3.3.
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Figure 3.3: IIP (independent and dependent) vs. mean CIP as a function of bargaining power.
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Proposition 14 For µc − w S w̄ − µv , there are unique α∗, α∗∗ ∈ (0,1) satisfying α∗∗ S 1
2 S α

∗ S

α∗⊥⊥ so that

1) For α S α∗∗,we have pIIP S pIIP
⊥⊥

2) For α S α∗,we have pIIP S p̄CIP

Proof. Observe that p̄CIP = (1−α)µv+αµc and ŵ ≡ (1−α)w+αw̄ coincide at α = α̂ ≡ µv−w

µv−w+w̄−µc
.

For µc − w S w̄ − µv, we must have α̂ S 1
2 , and by Proposition 10, since 1

2 S α∗⊥⊥, we have

ŵ = p̄CIP T pIIP
⊥⊥ at α = α̂. Since ŵ is increasing in α and pIIP

⊥⊥ is decreasing in α (Proposition 11),

ŵ and pIIP
⊥⊥ uniquely coincide at α∗∗ S α̂ S 1

2 . Lemma 4 then immediately gives the first result.

To show the second result, note that p̄CIP and pIIP coincide when h
(
p̄CIP) = 0, or by (3.26)

when

h⊥⊥
(
p̄CIP

)
=

(
p̄CIP − ŵ

)
(w̄ − µv)(µc − w),

for which the left hand side is increasing in α (c.f. proof of Proposition 10) and the right hand side

is decreasing in α, while h⊥⊥
(
p̄CIP) S 0 whenever α S α∗⊥⊥ and p̄CIP− ŵ S 0 whenever α T α̂. Thus

p̄CIP and pIIP uniquely coincide at α = α∗, which must be between α∗⊥⊥ and α̂, and hence between

α∗⊥⊥ and α∗∗. Since h(·) is decreasing in its price argument, it is thus clear how the second result

follows.

Finally, observe p̄CIP = 1
2 (µv + µc) when α = 1

2 . Thus, since Λ
( µv+µc

2
)
> 0 in a non-dismal

equilibrium (c.f. Corollary 5 ), by (3.24), h
(
p̄CIP) |α= 1

2
=

(
1
2 (µv + µc) −

1
2
(
w + w̄

) )
Λ

( µv+µc
2

)
S 0

when µc − w S w̄ − µv, and since h
(
p̄CIP) is increasing in α, this implies 1

2 S α
∗. �

We also consider the comparative statics of pIIP, extending Proposition 11 to the dependent

setup.

Proposition 15 pIIP strictly increases in µv, µc and strictly decreases in α. For µc − w sufficiently

small, pIIP strictly decreases in w̄; for w̄ − µv sufficiently small, pIIP strictly decreases in w. For α

sufficiently small (resp. large), pIIP strictly decreases (resp. increases) in w̄ and strictly increases

(resp. decreases) in w.9

9In fact, the proof shows that for the same value of α chosen extreme enough, pIIP is strictly monotonic in w̄ and
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Proof. With slight abuse of notation, augment h(·) to admit generic parameter β ∈ {µv, µc, w̄,w, α}

as an argument. By definition of pIIP, we have

h
(
pIIP, β

)
= 0 =⇒ ∂βpIIP = −

∂βh (p, β)
∂ph (p, β)

����p=pIIP .

Since h(·, β) is strictly decreasing at pIIP, sign
{
∂βpIIP

}
= sign

{
∂βh

(
pIIP, β

)}
. Differentiating

yields

∂αh
(
pIIP, α

)
= −(w̄ − w)Λ

(
pIIP

)
< 0,

∂µv h
(
pIIP, µv

)
= (1 − α)

(
pIIP − w

) (
w̄ − w

)
> 0,

∂µc h
(
pIIP, µc

)
= α

(
w̄ − pIIP

) (
w̄ − w

)
> 0,

∂w̄h
(
pIIP, w̄

)
=

1
w̄ − p

[
h (p, w̄) − (1 − α) (µv − p)

(
p − w

)2
+ α

(
µc − w

)
(w̄ − p)2

] ����p=pIIP,

∂wh
(
pIIP,w

)
=

1
p − w

[
−h

(
p,w

)
− α (p − µc) (w̄ − p)2 + (1 − α) (w̄ − µv)

(
p − w

)2
] ����p=pIIP .

Inspection of the last two derivatives makes clear how the desired results for w̄ and w hold locally,

i.e. given particular w and w, the values of α, µc −w, or w̄− µv may be chosen to obtain the desired

monotonic behavior of pIIP in w̄ and w. However, allowing w̄ or w to unilaterally vary is subject

to ensuring w̄ is bounded above and w is bounded below in a way that respects Λ
( µv+µc

2
)
> 0, the

condition for the non-dismal equilibrium.10 Thus, it is clear that the desired results indeed hold

globally, i.e. a fixed value of α, µc − w, or w̄ − µv may be chosen to obtain the desired monotonic

behavior of pIIP in the entire feasible range of w̄ or w. �

We see that while the IIP under dependent values responds to the mean reservation values and

bargaining power monotonically in a manner analogous to the independent case, its dependency

on the bounds of the feasible range is more complicated and can be potentially nonmonotonic.

Such nonmonotonicity arises due to a tradeoff induced by Nature’s strategy under dependence,

w over their entire feasible ranges. Likewise, for the same value of µc − w (resp. w̄ − µv) chosen small enough, pIIP

strictly decreases in w̄ (resp. w) over its entire feasible range.
10Of course, w is also bounded below by zero by assumption
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although can be tempered to exhibit monotonic behavior at extreme bargaining powers or mean

reservation values. Recall that for any price, Nature maintains the same probability of buyer-side

and seller-side trade as in the independent case, namely πw̄(p) and πw(p) respectively. However, as

per (3.22), Nature penalizes the probability of all-sides trade relative to the independent case when

the probability of trade from either side is low (note the probability of buyer-side and seller-side

trade cannot both be less than 1/2). If the lower bound of the feasible cost values, w, is increased

toward µc, then for a given price, Nature places more mass of the seller’s marginal distribution

at w, thus increasing likelihood of seller-side trade. If the mediator cares about the buyer enough

(α large) or if Nature induces a high enough likelihood of buyer-side trade (w̄ − µv small), the

mediator would choose to favor the buyer more and decrease the price, just as in the independent

values case. However, decreasing the price also renders a lower seller-side likelihood of trade,

which aggravates the aforementioned dependence penalty imposed by Nature’s strategy. If the

mediator cares about the seller enough (α small), the mediator would then choose to complement

Nature’s seller-favoring behavior by increasing the price. Similarly, if the upper bound on feasible

buyer valuations, w̄, is decreased toward µv, then for a given price, Nature places more mass of the

of the buyer’s marginal distribution at w̄, increasing buyer-side likelihood of trade. If the mediator

cares about the seller enough (α small) or if Nature induces a high enough likelihood of seller-side

trade (µc − w small), the mediator would choose to favor the seller more and increase the price,

just as in the independent values case. However, increasing the price renders a lower buyer-side

likelihood of trade, which exacerbates Nature’s dependence penalty. If the mediator cares about

the buyer enough (α large), the mediator would choose to complement Nature’s buyer-favoring

behavior by decreasing the price.

The comparative statics of α∗∗ and α∗ may also be explored, extending Proposition 12. We do

not do so as that is not our primary objective in this paper, but given the nonmonotonic dependency

on the bounds of the feasible range in Proposition 15, we expect the results of Proposition 12 to

only be further compounded with nonmonotonic behavior.
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3.6 Conclusion

This paper has analytically considered how an uncertainty-averse mediator motivated by the

ultimate success of a transaction would choose a price contract for a risk neutral buyer and seller

to trade a good in a setting of unquantifiable uncertainty with sparse information on means and

feasible ranges of their reservation values and knowledge of expected surplus. We have studied

the role of bargaining power and looked at how the mediator’s choice that insures against distribu-

tional uncertainty would compare with what the parties themselves would choose when equipped

with the mediator’s information. We have seen these choices may coincide, but while the parties

themselves would decide on a contract that fully responds to bargaining power, the mediator’s

worst-case approach of playing against Nature produces a shallow dependency of the price con-

tract on bargaining power. If buyer and seller values may be dependent, then when the expected

surplus from trade is small, Nature may produce a distribution of buyer and seller values under

which trade would never occur, rendering the mediator’s price contract indeterminate. However,

if trade does occur with positive probability in the worst case under dependent values, this more

adversarial game with Nature only aggravates the shallow dependency of the price contract upon

bargaining power. Nonetheless, the choices of both the mediator and the transacting parties quali-

tatively respond similarly in some intuitive ways in that they both increase in the mean buyer and

seller values and decrease in the buyer’s bargaining power. However, the mediator’s price contract

responds to the bounds of the feasible range of buyer and seller values in a way that offsets the

party that is made more likely to trade by Nature’s moment-preserving strategy, a relation that can

be nonmonotonic by complementing Nature when buyer and seller values are dependent.

It is of interest to see how our model can be adapted to address other questions. We may extend

our model to a multi-party setup where multiple corporate entities aim to contract on transfer

prices—we expect our results to qualitatively extend in such an environment. It may also be of

interest to compare the mediator’s worst-case price contract to other price contracts, such as one

that would be decided between buyer and seller in a Bayesian game under various priors. Such
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comparisons provide insights into the role of preferences and information structure in contracts.

Finally, this paper’s study of sensitivity of various price contracts to bargaining power may be of

consequence for future policy work seeking to construct contracts that are resilient to institutional

changes.
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Appendix A: Appendix to Chapter 2

We assume throughout this appendix that δ ∈ (0,1). To ease notation, we define Zt,τ :=∏τ−1
j=0

µ̃t+j
1+r−κ+κ µ̃t+j

, and as in section 1.5.3, we define Mt :=
∏t−1

τ=0 µ̃τ and wτ := βτM−1
τ∑∞

j=0 β
jM−1

j

(with the

normalization Zt,0 = M0 = 1 as per footnote 12). Note that from (1.15) in the µ̃t-characterization,

Zt,τ is the τ-period ahead discount factor of future output that determines the equilibrium price of

capital at time t; this factor never exceeds (1 + r)−τ.

A.1 Proof of Proposition 5

First, we show that a necessary condition for an N-cyclic equilibrium is that yt+1 is N-cyclic

with yn′+1 > 0 for some n′ ∈ N . Given qt and µ̃t are N-cyclic, by (1.15), we have ∀t ≥ 0,

0 = qt+N − qt =
α

k

∞∑
τ=1

Zt,τ (yt+N+τ − yt+τ)

=
α

k
Zt,1 (yt+N+1 − yt+1) +

α

k
µ̃t

1 + r − κ + κ µ̃t

∞∑
τ=1

Zt+1,τ (yt+N+1+τ − yt+1+τ) ,

and we also have

0 = qt+N+1 − qt+1 =
α

k

∞∑
τ=1

Zt+1,τ (yt+N+1+τ − yt+1+τ) .

Substituting the latter equality into the former shows yt+1 = yt+N+1, so that yt+1 is N-cyclic.

Moreover, yn′+1 > 0 for some n′ ∈ N since constant zero output uniquely supports the ESE.

Next, we show that an equilibrium having N-cyclic µ̃t and yt+1 with yn′+1 > 0, µ̃n < 1 for

some n,n′ ∈ N must be an N-cyclic equilibrium with (
∏

τ∈N µ̃τ)
1/N = δ. Note that ∀t ≥ 0, we

have
∏

τ∈N µ̃t+τ = MN , while (1.15) shows that qt must be N-cyclic. Moreover, by (1.39), a tight
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constraint in period n and n + N implies

dn+1 = dNDL
n+1 − δ

n+1
(
dNDL

0 − d0

) ∞∑
τ=0

wτ

(
n+τ∏
j=τ

µ̃ j

)−1

= κkqn,

dn+N+1 = dNDL
n+N+1 − δ

n+N+1
(
dNDL

0 − d0

) ∞∑
τ=0

wτ

(
n+N+τ∏

j=τ

µ̃ j

)−1

= κkqn+N,

so that subtracting the two expressions yields

0 = dn+N+1 − dn+1 = δ
n+1

(
dNDL

0 − d0

) ∞∑
τ=0

wτ

(
n+τ∏
j=τ

µ̃ j

)−1 (
1 − δN M−1

N

)
.

Thus, we have that MN =
∏

τ∈N µ̃τ = δ
N . By (1.10), we then have ∀t ≥ 0,

ct+N = δ
t+N M−1

t+N c0 =

(
δt+N

t+N−1∏
τ=0

µ̃−1
τ

)
c0 = δ

N M−1
N ct = ct,

implying ct is N-cyclic. Moreover, dt+1 is N-cyclic by (1.11) since ∀t ≥ 0,

dt+N+1 =

∞∑
τ=0

yt+N+1+τ − ct+N+1+τ
(1 + r)τ

=

∞∑
τ=0

yt+1+τ − ct+1+τ
(1 + r)τ

= dt+1.

Finally, observe that collateral constraint binding during all the tight periods along with the

restriction MN = δ
N yields an overdetermined system, so that an equilibrium of a given sequence

of multipliers can only be supported under unique d0 (admitting other parameters as given).

A.2 Finite-dimensional characterization of N-cyclic equilibria

Suppose an N-cyclic equilibrium has a tight constraint in periods Ñ ⊆ N . We reduce the sys-

tem of binding constraints that determine the tight multipliers to a
(
|Ñ | − 1

)
-dimensional system

using the cyclicity of the multipliers and the restriction MN = δ
N . Note that Zt,N = Zt ′,N ∀t, t′ ≥ 0,
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so we let ZN := Zt,N denote this common value. Recall from (2.2), collateral value is

κkqn = ακ

∞∑
τ=0

Zn,τ+1yn+1+τ =
ακ

1 − ZN

∑
τ∈N

Zn,τ+1yn+1+τ .

From (1.39), debt is given by

dn+1 = dNDL
n+1 − δ

n+1
(
dNDL

0 − d0

) ∞∑
τ=0

wτ

(
n+τ∏
j=τ

µ̃ j

)−1

= dNDL
n+1 − δ

n+1
(
dNDL

0 − d0

) ∑∞
τ=0 β

τM−1
n+τ+1∑∞

τ=0 β
τM−1

τ

.

By the geometric average condition (2.1), the numerator of the second term simplifies to

∞∑
τ=0

βτM−1
n+τ+1 =

N−n−2∑
τ=0

βτM−1
n+τ+1 + β

N−n−1M−1
N

∞∑
τ=0

βτM−1
τ

= β−n−1

[
N−1∑
τ=n+1

βτM−1
τ + (1 + r)−N

∞∑
τ=0

βτM−1
τ

]
while the denominator of the second term simplifies to

∞∑
τ=0

βτM−1
τ =

1
1 − (1 + r)−N

∑
τ∈N

βτM−1
τ ,

so that debt is

dn+1 = dNDL
n+1 − (1 + r)n+1

(
dNDL

0 − d0

) [(
1 − (1 + r)−N

) ∑N−1
τ=n+1 β

τM−1
τ∑

τ∈N β
τM−1

τ

+ (1 + r)−N

]
.

Finally, the natural debt limits are given by

dNDL
0 = dNDL

N + y0 − yN,
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dNDL
n+1 =

1
1 − (1 + r)−N

∑
τ∈N

yn+1+τ
(1 + r)τ

.

In summary, an N-cyclic equilibrium where the constraint is tight in periods Ñ ⊆ N exists so

long as the following conditions are satisfied:

1. yt+1 is N-cyclic and strictly positive at least once in its cycle

2. Given that µ̃t is N-cyclic and { µ̃n}n∈N\Ñ = 1, there exists values of { µ̃n}n∈Ñ ∈ (0,1) and

initial debt d0 satisfying
∏

τ∈Ñ µ̃τ = δ
N and the binding collateral constraint ∀n ∈ Ñ :1

dNDL
n+1 − (1 + r)n+1

(
dNDL

0 − d0

) [(
1 − (1 + r)−N

) ∑N−1
τ=n+1 β

τM−1
τ∑

τ∈N β
τM−1

τ

+ (1 + r)−N
]
= ακ (1 − ZN )

−1
∑
τ∈N

Zn,τ+1yn+1+τ .

3. The collateral constraint holds ∀n ∈ N\Ñ :

dNDL
n+1 − (1 + r)n+1

(
dNDL

0 − d0

) [(
1 − (1 + r)−N

) ∑N−1
τ=n+1 β

τM−1
τ∑

τ∈N β
τM−1

τ

+ (1 + r)−N
]
≤ ακ (1 − ZN )

−1
∑
τ∈N

Zn,τ+1yn+1+τ .

A.3 2-cyclic equilibria and proofs of Proposition 6 and Lemma 2

In this appendix section, we discuss 2-cyclic equilibria in detail. Appendices A.3.1-A.3.3 dis-

cuss the three kinds of such equilibria using the characterization in Appendix A.2 and collectively

prove Proposition 6, while appendix A.3.4 considers their coexistence in proving Lemma 2. Note

that from the characterization in Appendix A.2, in a general N-cyclic equilibrium, the debt obliga-

tion due in period N is the same as the initial debt obligation adjusted for the difference in output

(dN = d0 − y0 + yN ),2 so the constraint in period N − 1 simplifies to the following restriction on

initial borrowing:

d0 ≤ y0 − yN + ακ (1 − ZN )
−1

∑
τ∈N

ZN−1,τ+1yN+τ . (A.1)

1The system may be effectively characterized as (|Ñ | − 1)- dimensional in determining |Ñ | − 1 of the tight multi-
pliers. The requisite initial debt and remaining tight multiplier are then trivially determined by the remaining binding
collateral constraint and geometric average condition respectively.

2This also follows directly from the sequential budget constraint (1.2).

102



Also in the special case of a 2-cyclic equilibrium, the natural debt limit in period 1 is given by

dNDL
1 =

1
1 − (1 + r)−2

(
y1 +

y2
1 + r

)
. (A.2)

A.3.1 Slack-tight

In this case, µ̃0 = 1, µ̃1 = δ
2, and hence, Z0,1 =

1
1+r , Z1,1 =

δ2

1+r−κ+κδ2 , Z2 =
δ2

(1+r)(1+r−κ+κδ2)
. By

(A.1), the binding constraint in period 1 implies initial debt must satisfy

d0 = y0 − y2 + ακ
Z1,1y2 + Z2y1

1 − Z2
,

or equivalently,

d0 = y0 − y2 + ακδ
2 (1 + r)y2 + y1

(1 + r)
(
1 + r − κ(1 − δ2)

)
− δ2 . (A.3)

Moreover, the collateral constraint must hold in period 0:

dNDL
1 −

(
y0 +

1
1 + r

dNDL
1 − d0

) [
1 + δ(1 + r)

1 + r + δ

]
≤ ακ

Z0,1y1 + Z2y2

1 − Z2
,

or equivalently, substituting in the initial debt required in (A.3) and natural debt limit in (A.2), we

obtain a cubic inequality in δ:3

Ξ(δ |y1, y2) ≥ 0

Ξ(δ |y1, y2) := Aδ3 + Bδ2 + Cδ + D,

A = −ακ(1 + r − κ)y1 +
(
κ(1 − α)(1 + r)2 − (1 + r − ακ)

)
y2,

B = (1 + r − ακ)(1 − κ(1 + r))y1,

C = ακ(1 + r − κ)y1 + (1 + r)2(1 + r − κ)y2,

3We condition the cubic inequality on output in the functional form to more easily compare it with the condition
for the tight-slack equilibrium in the sequel.
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D = −(1 + r)(1 + r − κ) (1 + r − ακ) y1.

Now assume a constant output regime, so that y1 = y2 =: y > 0. Then Ξ(·|y, y) has a root

at δ = 1, and the remaining roots can be solved as roots of a quadratic function by polynomial

division. To simplify the analysis, note that evaluating at r = 0 yields

Ξ(δ |y, y)
��
r=0 = y(1 − κ)

[
−(1 + ακ)δ3 + (1 − ακ)δ2 + (1 + ακ) δ − (1 − ακ)

]
= y(1 − κ)(1 + ακ)(1 − δ)(1 + δ)

(
δ −

1 − ακ
1 + ακ

)
,

so that Ξ(δ |y, y)
��
r=0 > 0 ∀δ ∈

(
1−ακ
1+ακ ,1

)
. Thus, by continuity, for sufficiently low r > 0 and either

i) high enough δ < 1 or ii) high enough ακ < 1, the collateral constraint is satisfied in period 0,

and the slack-tight equilibrium exists when initial debt is restricted as per (A.3).

A.3.2 Tight-slack

In this case, µ̃0 = δ
2, µ̃1 = 1, and hence, Z0,1 =

δ2

1+r−κ+κδ2 , Z1,1 =
1

1+r , Z2 =
δ2

(1+r)(1+r−κ+κδ2)
. In

this case, initial borrowing is restricted by the binding collateral constraint in period 0:

dNDL
1 −

(
y0 +

1
1 + r

dNDL
1 − d0

) [
1 + r + δ

1 + δ(1 + r)

]
= ακ

Z0,1y1 + Z2y2

1 − Z2
,

or equivalently,

dNDL
1 −

(
y0 +

1
1 + r

dNDL
1 − d0

) [
1 + r + δ

1 + δ(1 + r)

]
= ακδ2 (1 + r)y1 + y2

(1 + r)
(
1 + r − κ(1 − δ2)

)
− δ2 .

Substituting in the natural debt limit expression in (A.2), then solving for d0 and substituting into

the collateral constraint in period 1 implies that the tight-slack equilibrium exists when

d0 = y0 − δ
(1 + r)y1 + y2

1 + r + δ

(
1 −

ακδ(1 + δ(1 + r))
(1 + r)

(
1 + r − κ(1 − δ2)

)
− δ2

)
(A.4)
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≤ y0 − y2 + ακ
Z1,1y2 + Z2y1

1 − Z2
,

which simplifies to the following cubic inequality in δ:

Ξ(δ |y2, y1) ≥ 0.

In other words, the underlying constraint on fundamentals for the collateral constraint to be met in

the non-tight periods in the tight-slack equilibrium is exactly the same as that required in the slack-

tight equilibrium, except swapping y1 and y2. As a result, in a constant output regime, excluding

the initial borrowing requirement, a tight-slack equilibrium exists under the same conditions dis-

cussed in the slack-tight case, as expected.

A.3.3 Tight-tight

In this case, µ̃0 ∈ (δ
2,1), µ̃1 = δ

2/µ̃0, and we have Z0,1 =
µ̃0

1+r−κ+κ µ̃0
, Z1,1 =

δ2/µ̃0
1+r−κ+κδ2/µ̃0

, Z2 =

Z0,1Z1,1. Such an equilibrium, like the SSE, features a constraint that always binds and conse-

quently, borrowing always perfectly mimics the price of capital.

In a tight-tight equilibrium, we admit initial borrowing to be restricted by the binding collateral

constraint in period 1, i.e.4

d0 = y0 − y2 + ακ
Z1,1y2 + Z2y1

1 − Z2
,

or explicitly as a function of the period 0 normalized multiplier,

d2−cyc,TT
0 (µ̃0 |y1, y2) = y0 − y2 + ακδ

2 (κy2 + y1)µ̃0 + y2(1 + r − κ)

κ (1 + r − κ) µ̃2
0 +

(
(1 + r − κ)2 − δ2(1 − κ2)

)
µ̃0 + δ2κ(1 + r − κ)

,

(A.5)

while the binding collateral constraint binding in period 0 yields

dNDL
1 −

(
y0 +

1
1 + r

dNDL
1 − d0

) [
µ̃0 + δ(1 + r)
(1 + r)µ̃0 + δ

]
= ακ

Z0,1y1 + Z2y2

1 − Z2
.

Substituting the initial debt restriction, d2−cyc,TT
0 (µ̃0 |y1, y2), into the binding constraint in period 0

4One could also consider d0 restricted by the binding collateral constraint in period 0.
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determines µ̃0 according to the following cubic equation:

Υ(µ̃0 |y1, y2) = 0,

Υ(µ̃|y1, y2) := Aµ̃3 + B µ̃2 + C µ̃ + D,

A = κ(1 + r)(1 − α)(1 + r − κ)y1

B =
[
(1 + r)

(
(1 + r − κ)2 − δ2(1 − κ2)

)
− αδκ (δ ((1 + r)κ − 1) + 1 + r − κ)

]
y1−δκ(1+r−κ) (1 + r + αδ) y2

C = δ2κ(1 + r − κ) (1 + r + αδ) y1 − δ
[
(1 + r)

(
(1 + r − κ)2 − δ2(1 − κ2)

)
− αδκ (δ ((1 + r)κ − 1) + 1 + r − κ)

]
y2

D = −κδ3(1 + r) (1 − α) (1 + r − κ)y2.

Now consider a constant output regime. In this case, clearly µ̃0 = µ̃∗ = δ is one valid root of

Υ(·|y, y) since the SSE is one kind of tight-tight equilibrium in a constant output regime,5 and

the remaining roots can be found by polynomial division. To simplify the analysis, assume r is

sufficiently small. Additionally, assume either i) δ is sufficiently large, or ii) κ is sufficiently large:

i) Evaluating at r = 0 and δ = 1 yields

Υ(µ̃|y, y)|r=0,δ=1 = κ(1 − κ) (1 − µ̃)
[
µ̃ (α + 3) − (1 − α)

(
1 + µ̃ + µ̃2

)]
y,

5In fact, a tight-tight equilibrium with µ̃0 = δ must have constant output in order for the collateral constraint to hold
and hence uniquely corresponds to the SSE. To see this, note that since r > 0, we have δ ((1 + r)κ − 1) + 1 + r − κ >
(1 − κ)(1 − δ) > 0, and thus the coefficient of y1 in B is decreasing in α. Consequently, for y1 > (resp. <)y2, we have

Υ(δ |y1, y2) = δ
3κ(1 + r − κ) (2(1 + r) − α(1 + r − δ)) (y1 − y2)

+δ2
[
(1 + r)

(
(1 + r − κ)2 − δ2(1 − κ2)

)
− αδκ (δ ((1 + r)κ − 1) + 1 + r − κ)

]
(y1 − y2)

> (resp. <)δ2(1 + r − κ) [δ (rκ − δ(1 − κ)) + (1 + r)(1 + r − κ)] (y1 − y2) > (resp. <)0.

The first inequality comes from setting α = 1 in the first expression since it is decreasing (resp. increasing) in α. The
last inequality comes from noting that either rκ − δ(1 − κ) > 0 and we are done, or else, if rκ − δ(1 − κ) < 0, then
δ (rκ − δ(1 − κ)) is decreasing in δ and hence minimized at δ = 1, and δ (rκ − δ(1 − κ)) + (1 + r)(1 + r − κ)|δ=1 =
r(2 + r) > 0. Thus, Υ(δ |y1, y2) = 0 if and only if y1 = y2.
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and evaluating at α = 0 and α = 1 yields

Υ(µ̃|y, y)|r=0,δ=1,α=0 = −κ(1 − κ) (1 − µ̃)3 y < 0 < 3κ(1 − κ)µ̃ (1 − µ̃) y = Υ(µ̃|y, y)
��
r=0,δ=1,α=1.

ii) Evaluating at r = 0 and taking the limit κ → 1 yields

lim
κ→1

Υ(µ̃|y, y)

1 − κ

����
r=0

= lim
κ→1

µ̃ (δ − µ̃)
(
−(1 − κ) + δ2(1 + κ) + αδκ (1 − δ) + δκ (1 + αδ)

)
y − κ(1 − α)

(
δ3 − µ̃3

)
y

= (δ − µ̃)
[
µ̃

(
2δ2 + αδ (1 − δ) + δ (1 + αδ)

)
− (1 − α)

(
δ2 + δµ̃ + µ̃2

)]
y,

and observe that for µ̃ < (resp. >)δ, evaluating at α = 0 and α = 1 implies

lim
κ→1

Υ(µ̃|y, y)

1 − κ

����
r=0,α=0

= −(δ−µ̃)
[
δ2 + µ̃2 − 2µ̃δ2] y < (resp. >)−(δ−µ̃)

[
δ2 + µ̃2 − 2µ̃δ

]
y = −(δ−µ̃)3y < (resp. >)0,

lim
κ→1

Υ(µ̃|y, y)

1 − κ

����
r=0,α=1

= 2δµ̃(1 + δ)(δ − µ̃) > (resp. <)0.

Thus, by continuity and the intermediate value theorem, sufficiently small r and either i) suffi-

ciently large δ or ii) sufficiently large κ ensures there is an α ∈ (0,1) under which Υ(µ̃0 |y, y) = 0

for any µ̃0 ∈ (δ
2,1) and the corresponding tight-tight equilibrium exists.

A.3.4 Proof of Lemma 2

Throughout this appendix section, unless otherwise specified, assume a constant output regime

and denote the resultant required d0 in the slack-tight equilibrium, tight-slack equilibrium, and

an arbitrary tight-tight equilibrium respectively by d2−cyc,ST
0 , d2−cyc,TS

0 , and d2−cyc,TT
0 (µ̃0 |y, y) (c.f.

(A.3)-(A.5) under constant output), where µ̃0 ∈ (δ
2,1). We first study the restricted borrowing

function for a tight-tight equilibrium, d2−cyc,TT
0 (·|y, y) (c.f. red curve in Figure 2.4). Note that

since this function was derived from a binding constraint in period 1, it also applies to a slack-tight

equilibrium: d2−cyc,TT
0 (1|y, y) = d2−cyc,ST

0 ; in fact, this relation holds under variable output as well.
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Now we appeal to the following fact:

Fact 4 A function f : x → Ax+B
Cx2+Dx+E is increasing (resp. decreasing) at x̄ if

sign

{
f ′(x̄) =

A
(
Cx̄2 + Dx̄ + E

)
− (Ax̄ + B) (2Cx̄ + D)(

Cx̄2 + Dx̄ + E
)2

}
= sign

{
−ACx̄2 − 2BCx̄ + AE − BD

}
> (resp. <)0.

By Fact 4, the sign of the derivative of d2−cyc,TT
0 (·|y, y) at µ̃0 ∈ (δ

2,1) is given by the sign of

−κ(1+κ) (1 + r − κ) µ̃2
0−2κ(1+r−κ)2 µ̃0+δ

2κ(κ+1)(1+r−κ)−(1+r−κ)
(
(1 + r − κ)2 − δ2(1 − κ2)

)
(A.6)

= (1 + r − κ)
[
−κ(1 + κ)

(
µ̃2

0 − δ
2
)
− 2κ(1 + r − κ)µ̃0 −

(
(1 + r − κ)2 − δ2(1 − κ2)

)]
< (1 + r − κ)

[
−κ(1 + κ)

(
µ̃2

0 − δ
2
)
− 2κ(1 + r − κ)δ2 −

(
(1 + r − κ)2 − δ2(1 − κ2)

)]
= (1 + r − κ)

[
−κ(1 + κ)

(
µ̃2

0 − δ
2
)
− (1 + r − κ)2 + δ2

(
1 − 2κ(1 + r) + κ2

)]
< (1 + r − κ)

[
−κ(1 + κ)

(
µ̃2

0 − δ
2
)
− (1 + r − κ)2 + δ2

(
(1 + r)2 − 2κ(1 + r) + κ2

)]
= − (1 + r − κ)

[
κ(1 + κ)

(
µ̃2

0 − δ
2
)
+

(
1 − δ2

)
(1 + r − κ)2

]
, (A.7)

where the first inequality comes from µ̃0 > δ2 and the second inequality comes from r > 0.

Observe that the expression in (A.7) is negative if µ̃0 ≥ δ. Consequently, d2−cyc,TT
0 (µ̃0 |y, y) is

strictly decreasing in µ̃0 for 2-cyclic equilibria having µ̃0 ∈ [δ,1], proving statement 1 of Lemma

2. Also, since the expression in (A.7) is strictly decreasing in µ̃0, it is less than its value at µ̃0 = δ
2,

which is given by

− (1 + r − κ)
[
κ(1 + κ)

(
δ4 − δ2

)
+

(
1 − δ2

)
(1 + r − κ)2

]

= − (1 + r − κ)
(
1 − δ2

) (
(1 + r − κ)2 − δ2κ(1 + κ)

)
,

which is nonpositive if δ ≤ 1+r−κ√
κ(1+κ)

, so that when this condition is met, the requisite initial debt
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is decreasing in µ̃0 for 2-cyclic equilibria having µ̃0 ∈ (δ
2,1].6 Note that this condition is met

for either i) δ sufficiently small, ii) r sufficiently large, or iii) κ sufficiently small. Moreover,

any of these three conditions would also ensure the requisite initial borrowing for the tight-slack

equilibrium (corresponding to µ̃0 = δ
2) is greater than that of any other 2-cyclic equilibrium since

d2−cyc,TS
0 − d2−cyc,TT

0 (δ2 |y, y)

=

[
y0 −

δ(2 + r)
1 + r + δ

(
1 −

ακδ(1 + δ(1 + r))
(1 + r)(1 + r − κ(1 − δ2)) − δ2

)
y

]
−

[
y0 − y + ακy

(κ + 1)δ2 + 1 + r − κ
(1 + r)(1 + r − κ(1 − δ2)) − δ2

]
,

and taking the various parameter limits yields

[
d2−cyc,TS

0 − d2−cyc,TT
0 (δ2 |y, y)

] ����
δ=0
=

1 + r − ακ
1 + r

y > 0,

lim
r→∞

[
d2−cyc,TS

0 − d2−cyc,TT
0 (δ2 |y, y)

]
= (1 − δ)y > 0,

[
d2−cyc,TS

0 − d2−cyc,TT
0 (δ2 |y, y)

] ����
κ=0
=
(1 + r)(1 − δ)

1 + r + δ
y > 0,

proving statement 2 of Lemma 2.

To prove statement statement 3 of Lemma 2, we first show a slack-tight equilibrium (cor-

responding to µ̃0 = 1) always requires less initial borrowing than any tight-tight equilibrium.

Since (A.6) shows the sign of the derivative of d2−cyc,TT
0 (µ̃0 |y, y) is monotonically decreasing in

µ̃0 ∈ (δ
2,1], it suffices to show that d2−cyc,TT

0 (δ2 |y, y) > d2−cyc,TT
0 (1|y, y) = d2−cyc,ST

0 , which is

satisfied since

d2−cyc,TT
0 (δ2 |y, y) − d2−cyc,ST

0

6In fact, these properties extend for nonconstant output. Going through the same steps shows that the sign of
the derivative of d2−cyc,TT

0 (·|y1, y2) at µ̃0 is less than − (1 + r − κ)
[
κ(y1 + κy2)

(
µ̃2

0 − δ
2) + y2

(
1 − δ2) (1 + r − κ)2

]
,

which is negative for µ̃0 > δ or y2 > 0; in the case where µ̃0 = δ and y2 = 0, the derivative is zero, implying
d2−cyc,TT

0 (·|y1, y2) is maximized at µ̃0 = δ. Moreover, d2−cyc,TT
0 (µ̃0 |y, y) is monotonically decreasing in µ̃0 for all

µ̃0 ∈ (δ
2,1) if δ ≤ (1 + r − κ)

√
y2

κ(y1+κy2)
.
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=

[
y0 − y + ακy

(κ + 1)δ2 + 1 + r − κ
(1 + r)(1 + r − κ(1 − δ2)) − δ2

]
−

[
y0 − y + ακy

δ2(2 + r)
(1 + r)(1 + r − κ(1 − δ2)) − δ2

]
= ακy

(1 + r − κ)(1 − δ2)

(1 + r)(1 + r − κ(1 − δ2)) − δ2 > 0.

Moreover, the slack-tight equilibrium requires less initial borrowing than the tight-slack equilib-

rium:

d2−cyc,TS
0 − d2−cyc,ST

0

=

[
y0 −

δ(2 + r)
1 + r + δ

(
1 −

ακδ(1 + δ(1 + r))
(1 + r)(1 + r − κ(1 − δ2)) − δ2

)
y

]
−

[
y0 −

(
1 −

ακδ2(2 + r)
(1 + r)(1 + r − κ(1 − δ2)) − δ2

)
y

]
=

1 − δ
1 + r + δ

(
1 + r −

ακδ2(2 + r)r
(1 + r)(1 + r − κ(1 − δ2)) − δ2

)
y >
(1 − δ)(1 + r − δ)

1 + r + δ2 y > 0,

where the penultimate strict inequality comes from the fact that the preceding expression is de-

creasing in α and κ and hence has an infimum when these values are set to unity. This result can

be seen more directly by noting that in a constant output regime, d0 = d2 − y + y0 and symme-

try between the slack-tight and tight-slack equilibria (i.e. period 0 equilibrium values for one are

swapped with period 1 equilbrium values for the other and vice versa) imply d2−cyc,TS
0 > d2−cyc,ST

0

is equivalent to d1 > d2 in a slack-tight equilibrium, which follows from Corollary 4. This proves

statement 3 of Lemma 2.

To show statement 4 of Lemma 2, note that the monotonically decreasing sign of the deriva-

tive of d2−cyc,TT
0 (·|y, y) implies that a tight-tight equilibrium can only have the same requisite initial

borrowing with at most one other tight-tight equilibrium. To show the second part of the statement,

by monotonicity of the derivative sign and the fact that d2−cyc,TT
0 (·|y, y) is decreasing at µ̃0 = δ, it

suffices to show that d2−cyc,TT
0 (δ2 |y, y) < d2−cyc,TT

0 (δ |y, y) = dSSE
0 under the proposed parameter

limits; then clearly, there will be some ν1 ∈ (δ
2, δ) that maximizes the required initial borrowing

and some ν2 ∈ (δ,1) such that every tight-tight equilibrium having period 0 normalized multiplier

in the interval (δ, ν1) has exactly one counterpart tight-tight equilibrium with period 0 normalized

multiplier in the interval (ν1, ν2) with matching requisite initial borrowing, and vice versa. Explic-
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itly, ν1 is computed as the positive root of the expression given in (A.6), i.e.

0 = −κ(1 + κ)
(
ν2

1 − δ
2
)
− 2κ(1 + r − κ)ν1 −

(
(1 + r − κ)2 − δ2(1 − κ2)

)
=⇒ ν1 = −

(1 + r − κ)
1 + κ

+

√√√
1
κ

(
δ2 −

(
1 + r − κ

1 + κ

)2
)
, (A.8)

while ν2 is computed as the solution in the interval (δ,1) such that

d2−cyc,TT
0 (ν2 |y, y) = d2−cyc,TT

0 (δ2 |y, y)

.

=⇒ y0 − y + ακyδ2 (κ + 1)ν2 + 1 + r − κ

κ (1 + r − κ) ν2
2 +

(
(1 + r − κ)2 − δ2(1 − κ2)

)
ν2 + δ2κ(1 + r − κ)

= y0 − y + ακy
(κ + 1)δ2 + 1 + r − κ

(1 + r)(1 + r − κ(1 − δ2)) − δ2

=⇒ ν2 =
δ2 (1 + κ − κ(1 + r − κ)) − (1 + r − κ)2

κ(δ2(1 + κ) + 1 + r − κ)
. (A.9)

Now observe that

dSSE
0

����
r=0
− d2−cyc,TT

0 (δ2 |y, y)

����
r=0

=

[
y0 −

(
1 −

ακδ

(1 − δ)(1 − κ)

)
y

]
−

[
y0 −

(
1 − ακ

(1 + κ)δ2 + 1 − κ(
1 − δ2) (1 − κ) )

y

]
=

ακ2

(1 + δ)(1 − κ)

[
δ −

(
1 − κ
κ

)]
y,

which is positive if δ > 1−κ
κ , which requires κ > 1

2 . Continuity completes the argument for

statement 4.

For statement 5 of Lemma 2, we appeal to the intermediate value theorem to show there is a

κ ∈ (0,1) such that the tight-slack initial borrowing concurs with that of an arbitrary tight-tight
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equilibrium when r is small enough. Take any µ̃0 ∈ (δ
2,1). Now note that at κ = 0 we have

d2−cyc,TT
0 (µ̃0 |y, y)

����
κ=0
= y0 − y < y0 −

δ(1 + r) + δ
1 + r + δ

y = d2−cyc,TS
0

����
κ=0

.

At r = 0, taking limits as κ → 1 yields

lim
κ→1
(1−κ)d2−cyc,TT

0 (µ̃0 |y, y)

����
r=0
= lim

κ→1
(y0 − y) (1−κ)+ακyδ2 (κ + 1)µ̃0 + (1 − κ)

κ µ̃2
0 +

(
(1 − κ) − δ2(1 + κ)

)
µ̃0 + δ2κ

= 2αyδ2 µ̃0

µ̃2
0 − 2δ2 µ̃0 + δ2

>
2αδ2

1 − δ2 y

= lim
κ→1

(
y0 −

2δ
1 + δ

y

)
(1 − κ) +

2ακδ2

1 − δ2 y = lim
κ→1
(1 − κ)d2−cyc,TS

0

����
r=0
,

where the inequality is easily seen by noting that d2−cyc,TT
0 (µ̃0 |y, y) must be strictly greater than

d2−cyc,ST
0 by statement 3 of Lemma 2, and

lim
κ→1
(1 − κ)d2−cyc,ST

0

����
r=0
=

2αδ2

1 − δ2 y.

A.3.5 Welfare

Consider welfare of a 2-cyclic equilibrium, which by (1.10) of the µ̃t-characterization simpli-

fies to

∞∑
t=0

βt log ct =
1

1 − β2

[
log c0 + β log

(
δ

µ̃0

)
c0

]
. (A.10)

By (1.13) of the µ̃t-characterization, initial consumption is

c0 =
(
dNDL

0 − d0

) [
∞∑
τ=0

βτM−1
τ

]−1

=
(
1 − (1 + r)−2

) (
dNDL

0 − d0

) (
µ̃0

µ̃0 + β

)
,
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and substituting into (A.10) and simplifying yields welfare as

1
1 − β2

[
(1 + β) log

(
1 − (1 + r)−2

) (
dNDL

0 − d0

)
+ β log δ + log

(
µ̃0

(µ̃0 + β)
1+β

)]
.

Thus, under the same fundamentals, the welfare gap between two 2-cyclical equilibria in terms of

their period 0 normalized multipliers (µ̃2−cyc,1
0 , µ̃

2−cyc,2
0 ) is given by

W(µ̃2−cyc,1
0 , µ̃

2−cyc,2
0 ) =

∞∑
t=0

βt log c2−cyc,1
t −

∞∑
t=0

βt log c2−cyc,2
t

=
1

1 − β2

log
©«

µ̃
2−cyc,1
0(

µ̃
2−cyc,1
0 + β

)1+β

ª®®¬ − log
©«

µ̃
2−cyc,2
0(

µ̃
2−cyc,2
0 + β

)1+β

ª®®¬
 .
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Appendix B: Appendix to Chapter 3

B.1 Proof of Proposition 12

Proof. Define

δ ≡ µv − µc, δ ≡ µc − w, δ̄ ≡ w̄ − µc, δ̄
′ ≡ w̄ − µv, δ

′ ≡ µv − w. (B.1)

It will be more instructive in understanding the symmetries of the problem to work with hCIP
⊥⊥ (·) in

(3.18) expressed in terms of δ, δ, δ̄ to understand how α∗⊥⊥ depends on µv,w:

hCIP
⊥⊥ (1 − α) = −δ2 (

δ̄ + δ − δ
)
(1 − α)3 + 3δδ2(1 − α)2 − δδ

(
2δ̄ + δ

)
(1 − α) + δδδ̄. (B.2)

To understand how α∗⊥⊥ depends on µc, w̄, we work with a slight redefinition of hCIP
⊥⊥ (·) expressed as

a function of α in terms of δ, δ′, δ̄′:

ĥCIP
⊥⊥ (α) ≡ δ

2 (
δ′ + δ̄′ − δ

)
α3 − 3δ̄′δ2α2 + δ̄′δ

(
2δ′ + δ

)
α − δδ̄′δ′. (B.3)

With slight abuse of notation, augment hCIP
⊥⊥ (·) in (B.2) to admit generic parameter β ∈ {δ, δ} as an

argument, and augment ĥCIP
⊥⊥ (·) in (B.3) to admit generic parameter β̂ ∈ {δ̄′, δ} as an argument. By

definition of α∗⊥⊥, we have

hCIP
⊥⊥ (1 − α∗⊥⊥, β) = 0 =⇒ ∂βα

∗
⊥⊥ =

∂βhCIP
⊥⊥ (1 − α, β)

∂1−αhCIP
⊥⊥ (1 − α, β)

����α=α∗⊥⊥,
ĥCIP
⊥⊥ (α

∗
⊥⊥, β̂) = 0 =⇒ ∂β̂α

∗
⊥⊥ = −

∂β ĥCIP
⊥⊥ (α, β̂)

∂α ĥCIP
⊥⊥ (α, β̂)

����α=α∗⊥⊥ .
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From the proof of Proposition 10, we know hCIP
⊥⊥ (·, β) is strictly decreasing at 1−α∗⊥⊥, and relatedly,

ĥCIP
⊥⊥ (·, β̂) is strictly increasing at α∗⊥⊥. Thus,

sign
{
∂βα

∗
⊥⊥

}
= −sign

{
∂βhCIP
⊥⊥ (1 − α∗⊥⊥, β)

}
sign

{
∂β̂α

∗
⊥⊥

}
= −sign

{
∂β̂ ĥCIP
⊥⊥ (α

∗
⊥⊥, β̂)

}
.

Differentiating hCIP
⊥⊥ in (B.2) yields

∂δhCIP
⊥⊥ (1 − α∗⊥⊥, δ) =

1
δ

[
hCIP
⊥⊥ (1 − α∗⊥⊥, δ) + δ2 (

δ̄ − δ
)
(1 − α)3

]
> 0,

∂δhCIP
⊥⊥ (1− α∗⊥⊥, δ) =

1
δ

[
hCIP
⊥⊥ (1 − α∗⊥⊥, δ) + δ2(1 − α∗⊥⊥)

(
−

(
δ̄ + δ − 2δ

)
(1 − α∗⊥⊥)2 + 3δ(1 − α∗⊥⊥) − δ

)]
= δ(1 − α∗⊥⊥)

(
−

(
δ̄ + δ − 2δ

)
(1 − α∗⊥⊥)2 + 3δ(1 − α∗⊥⊥) − δ

)
.

Since ∂δα∗⊥⊥ = −∂wα
∗
⊥⊥, the desired result for w is immediate. To examine the sign of ∂δα∗⊥⊥ =

∂µvα
∗
⊥⊥, define the function ∆δ(1 − α∗⊥⊥) ≡

∂δhCIP
⊥⊥ (1−α∗⊥⊥,δ)
δ(1−α∗⊥⊥)

, which is quadratic in the argument 1 − α∗⊥⊥

and satisfies

∆δ(0) = −δ < 0,4∆δ
(
1
2

)
= ∆δ(1) = δ + 2δ − δ̄ = 2

(
µv −

1
2

(
w + w̄

) )
.

We consider various cases:

Case 3 Suppose w̄ − µv ≤ µc − w (equivalently, 1 − α∗⊥⊥ ≥
1
2 by Proposition 10). This condition is

met if µc ≥
1
2
(
w + w̄

)
and only if µv > 1

2
(
w + w̄

)
, and the latter implies that ∆δ(1 − α∗⊥⊥) > 0 for

1 − α∗⊥⊥ ≥
1
2 . Thus, α∗⊥⊥ ≤

1
2 strictly decreases in µv.

Case 4 Suppose w̄ − µv > µc − w (equivalently, 1 − α∗⊥⊥ <
1
2 by Proposition 10). This condition is

met only if µc <
1
2
(
w + w̄

)
.

i. If µv ≤ 1
2
(
w + w̄

)
, then ∆δ(1 − α∗⊥⊥) is a downward parabola (since in this case we have

δ + δ = µv − w ≤ w̄ − µv = δ̄ − δ, so that the leading coefficient is −
(
δ̄ + δ − 2δ

)
≤ −2δ < 0).
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We wish to show ∆δ(1 − α∗⊥⊥) < 0 for 1 − α∗⊥⊥ < 1
2 . If µv = 1

2
(
w + w̄

)
, then ∆δ(1 − α∗⊥⊥) has

roots at 1 − α∗⊥⊥ =
1
2,1 giving the desired result. If µv < 1

2
(
w + w̄

)
, it suffices to show that

either ∆δ(1 − α∗⊥⊥) has negative discriminant (and hence is always negative) or is maximized at

1 − α∗⊥⊥ ≥
1
2 . Suppose by contradiction that ∆δ(1 − α∗⊥⊥) has both nonnegative discriminant and a

vertex at some 1−α∗⊥⊥ ≤
1
2 . ∆δ(1−α

∗
⊥⊥) has nonnegative discriminant when 9δ2−4

(
δ̄ + δ − 2δ

)
δ ≥

0 ⇐⇒ 5δ − 4
(
δ̄ − 2δ

)
≥ 0. The vertex of ∆δ(1 − α∗⊥⊥) occurs at some 1 − α∗⊥⊥ ≤

1
2 when

3δ
2(δ̄+δ−2δ)

≤ 1
2 ⇐⇒ −2δ + δ̄ − 2δ ≥ 0. Summing the two inequalities yields 3δ − 3

(
δ̄ − 2δ

)
≥

0 ⇐⇒ 0 ≤ δ − δ̄ + 2δ = −2
(

1
2
(
w + w̄

)
− µv

)
, a contradiction. Thus, α∗⊥⊥ >

1
2 strictly increases

in µv ≤ 1
2
(
w + w̄

)
.

ii. If instead µv > 1
2
(
w + w̄

)
,then ∆δ(1−α∗⊥⊥) has a unique root at some 1−α̃ ∈ (0, 1

2 ) (dependent

upon the other parameters) so that ∆δ(1 − α∗⊥⊥) < (resp. >)0 whenever 1 − α∗⊥⊥ < (resp. >)1 − α̃.

That is, α∗⊥⊥ > (resp. <)α̃ is strictly increasing (resp. decreasing) in µv .

From Case 4i, at µv = 1
2
(
w + w̄

)
, α∗⊥⊥ is increasing in µv and thus α∗⊥⊥ > α̃ at this point. Also

observe

∂µv α̃ = ∂δα̃ =
∂δ∆δ(1 − α)
∂1−α∆δ(1 − α)

����α=α̃,
and since ∆δ is strictly increasing at 1−α̃, sign

{
∂µv α̃

}
= sign

{
∂δ∆δ(1 − α̃) = 2(1 − α̃)2

}
> 0, and

thus α̃ is strictly increasing in µv. Since α∗⊥⊥ =
1
2 when µv = w̄ +w − µc, it is thus clear that there is

a µ∗v ∈
(

1
2
(
w + w̄

)
, w̄ + w − µc

)
at which α∗⊥⊥ = α̃ (attaining a maximum) so that α∗⊥⊥ > (resp. <)α̃

is strictly increasing (resp. decreasing) in µv < (resp. >)µ∗v.

The results for w̄, µc are obtained analogously by appealing to the symmetry of the problem,

observing that ĥCIP
⊥⊥ (·) has the same form as −hCIP

⊥⊥ (·), except that 1 − α, δ̄, δ in the latter are respec-

tively replaced by α, δ′, δ̄′ in the former, and noting that ∂δ̄′α
∗
⊥⊥ = ∂w̄α

∗
⊥⊥, ∂δα

∗
⊥⊥ = −∂µcα

∗
⊥⊥. �
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B.2 Pricing to achieve best worst-case probability of trade

In this section, we solve for the mediator’s pricing strategy that maximizes the worst-case

probability of trade, namely the price that solves

max
p≥0

min
H∈P(R2

≥0)
E(v,c)∼H

[
1c<p<v

]
(B.4)

subject to (3.4) and (3.5). We consider the problem both with and without the independence con-

straint (3.3), and denote the resulting price strategies by p̃IIP
⊥⊥ and p̃IIP respectively. We also obtain

comparative statics results. As mentioned in section 3.2.2, Nature’s optimal strategy is unchanged

for the new objective.

B.2.1 Independent values

Under the independence constraint, the mediator chooses a price

p̃IIP
⊥⊥ ∈ arg max

p∈(µc,µv)

{
Π̃⊥⊥(p) ≡ Ev∼F∗

[
1p<v

]
Ec∼G∗

[
1c<p

]}
and substituting in Nature’s strategy, summarized by (3.9)-(3.12), we see the mediator’s price is

given by

p̃IIP
⊥⊥ ∈ arg max

p
πw̄(p)πw(p)

= arg max
p

µv − p
w̄ − p

p − µc

p − w
.

The FOC is given by

0 = Π̃′⊥⊥(p) = (w̄ − p)−2 (
p − w

)−2
[
2
(
1
2
(µv + µc) − p

)
(w̄ − p)(p − w) + 2

(
p −

1
2

(
w + w̄

) )
(µv − p)(p − µc)

]
= (w̄ − p)−2 (

p − w
)−2 [ (

(µc − w) − (w̄ − µv)
)

p2 + 2
(
w̄w − µvµc

)
p +

(
w + w̄

)
µvµc − (µv + µc) w̄w

]
.

(B.5)
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Defining

h̃⊥⊥(p) ≡ (w̄ − p)2
(
p − w

)2
Π̃
′
⊥⊥(p), (B.6)

we see from (B.5) that h̃⊥⊥ is a linear or quadratic polynomial, satisfying h̃⊥⊥(µc) = (µv − µc) (w̄ −

µc)(µc − w) > 0 and h̃⊥⊥(µv) = − (µv − µc) (w̄ − µv)(µv − w) < 0, implying there is a unique

p̃IIP
⊥⊥ ∈ (µc, µv) that satisfies the FOC. Consider three cases:

Case 5 µc − w < w̄ − µv. Then h̃⊥⊥ is a downward parabola, of which p̃IIP
⊥⊥ is its upper root:

p̃IIP
⊥⊥ =

(
w̄w − µvµc

)
+

√
(w̄ − µv)

(
µc − w

) (
µv − w

)
(w̄ − µc)

(w̄ − µv) − (µc − w)
.

Case 6 µc − w > w̄ − µv. Then h̃⊥⊥ is an upward parabola, of which p̃IIP
⊥⊥ is its lower root:

p̃IIP
⊥⊥ =

−
(
w̄w − µvµc

)
−

√
(w̄ − µv)

(
µc − w

) (
µv − w

)
(w̄ − µc)

(µc − w) − (w̄ − µv)
.

Case 7 µc − w = w̄ − µv. Then h̃⊥⊥ is a line and p̃IIP
⊥⊥ =

1
2 (µv + µc).

Moreover, we have the direct analogue of Proposition 11:

Proposition 16 p̃IIP
⊥⊥ strictly increases in µv, µc and strictly decreases in w, w̄.

Proof. With slight abuse of notation, augment h̃⊥⊥(·) in (B.6) to admit generic parameter β ∈

{µv, µc, w̄,w} as an argument. By definition of p̃IIP
⊥⊥ , we have

h̃⊥⊥
(
p̃IIP
⊥⊥ , β

)
= 0 =⇒ ∂β p̃IIP

⊥⊥ = −
∂β h̃ (p, β)

∂p h̃ (p, β)

����p=p̃IIP
⊥⊥
.

Since h̃⊥⊥(·, β) is strictly decreasing at p̃IIP
⊥⊥ , sign

{
∂β p̃IIP
⊥⊥

}
= sign

{
∂β h̃⊥⊥

(
p̃IIP
⊥⊥ , β

)}
. Differentiating

yields

∂µv h̃⊥⊥
(
p̃IIP
⊥⊥ , µv

)
=

1
µv − p

[
h̃⊥⊥ (p, µv) + (p − µc) (w̄ − p)

(
p − w

) ] ����p=p̃IIP
⊥⊥
> 0,
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∂µc h̃⊥⊥
(
p̃IIP
⊥⊥ , µc

)
=

1
p − µc

[
−h̃⊥⊥ (p, µc) + (µv − p) (w̄ − p)

(
p − w

) ] ����p=p̃IIP
⊥⊥
> 0,

∂w h̃⊥⊥
(
p̃IIP
⊥⊥ ,w

)
=

1
p − w

[
−h̃⊥⊥

(
p,w

)
− (µv − p) (p − µc) (w̄ − p)

] ����p=p̃IIP
⊥⊥
< 0,

∂w̄ h̃⊥⊥
(
p̃IIP
⊥⊥ , w̄

)
=

1
w̄ − p

[
h̃⊥⊥ (p, w̄) − (µv − p) (p − µc)

(
p − w

) ] ����p=p̃IIP
⊥⊥
< 0.

�

B.2.2 Dependent values

Absent the independence constraint, the mediator chooses the price as

p̃IIP ∈ arg max
p∈(µc,µv)

(
Π̃(p) ≡ πw̄(p)πw(p) − (1 − πw̄(p))

(
1 − πw(p)

))
. (B.7)

Substituting (3.11)-(3.12), the objective in (B.7) simplifies to

Π̃(p) =
[
(w̄ − p)(p − w)

]−1
Λ(p)

where Λ(p) is as defined in (3.19). The FOC is given by

0 = Π̃′(p) = (w̄ − p)−2(p − w)−2
[
2
(
1
2
(µv + µc) − p

)
(w̄ − p)(p − w) + 2

(
p −

1
2

(
w̄ + w

) )
Λ(p)

]
= (w̄−p)−2(p−w)−2 [ (

(µc − w) − (w̄ − µv)
)

p2 + 2
(
w (w̄ − µv) − w̄

(
µc − w

) )
p + w̄2(µc − w) − w

2(w̄ − µv)
]
.

Defining

h̃(p) ≡ (w̄ − p)2(p − w)2Π̃′(p),

we see that h̃ is a linear or quadratic polynomial, satisfying h̃(Λ±) ≶ 0, where Λ± is as defined in

(3.23), implying there is a unique p̃IIP ∈ (Λ−,Λ+) that solves the FOC. Consider three cases:
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Case 8 µc − w < w̄ − µv. Then h̃ is a downward parabola, of which p̃IIP is its upper root:

p̃IIP =
w (w̄ − µv) − w̄

(
µc − w

)
+

√
(w̄ − µv)

(
µc − w

) (
w̄ − w

)2

(w̄ − µv) − (µc − w)
.

Case 9 µc − w > w̄ − µv. Then h̃ is an upward parabola, of which p̃IIP is its lower root:

p̃IIP =
w̄

(
µc − w

)
− w (w̄ − µv) −

√
(w̄ − µv)

(
µc − w

) (
w̄ − w

)2

(µc − w) − (w̄ − µv)
.

Case 10 µc − w = w̄ − µv. Then h̃ is a line and p̃IIP = 1
2 (µv + µc).

Moreover, we have the direct analogue of Proposition 15:

Proposition 17 p̃IIP strictly increases in µv, µc. For µc−w sufficiently small, p̃IIP strictly decreases

in w̄; for w̄ − µv sufficiently small, p̃IIP strictly decreases in w. 1

Proof. With slight abuse of notation, augment h̃(·) to admit generic parameter β ∈ {µv, µc, w̄,w}

as an argument. By definition of p̃IIP, we have

h̃
(
p̃IIP, β

)
= 0 =⇒ ∂β p̃IIP = −

∂β h̃ (p, β)

∂p h̃ (p, β)

����p=p̃IIP .

Since h̃(·, β) is strictly decreasing at p̃IIP, sign
{
∂β p̃IIP

}
= sign

{
∂β h̃

(
p̃IIP, β

)}
. Differentiating

yields

∂µv h̃
(
p̃IIP, µv

)
=

(
p̃IIP − w

)2
> 0,

∂µc h̃
(
p̃IIP, µc

)
=

(
w̄ − p̃IIP

)2
> 0,

∂w̄ h̃
(
p̃IIP, w̄

)
=

1
w̄ − p

[
h̃ (p, w̄) − (µv − p)

(
p − w

)2
+

(
µc − w

)
(w̄ − p)2

] ����p=p̃IIP,

∂w h̃
(
p̃IIP,w

)
=

1
p − w

[
−h̃

(
p,w

)
− (p − µc) (w̄ − p)2 + (w̄ − µv)

(
p − w

)2
] ����p=p̃IIP .

1As with Proposition 15, for the same value of µc − w (resp. w̄ − µv) chosen small enough, p̃IIP strictly decreases
in w̄ (resp. w) over its entire feasible range.
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Inspection of the last two derivatives makes clear how the desired results for w̄ and w hold. As with

Proposition 15, a fixed value of µc − w or w̄ − µv may be chosen to obtain the desired monotonic

behavior of p̃IIP in the entire feasible range of w̄ or w. �
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