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LOCAL COHOMOLOGY ON A SUBEXCEPTIONAL
SERIES OF REPRESENTATIONS

by András C. LŐRINCZ & Jerzy WEYMAN (*)

Abstract. — We consider a series of four subexceptional representations com-
ing from the third line of the Freudenthal–Tits magic square; using Bourbaki nota-
tion, these are representations (G′, X) corresponding to (C3, ω3), (A5, ω3), (D6, ω5),
and (E7, ω6). In each case X has five G = G′ × C-orbits, displaying some uniform
behavior, e.g. their dimensions or defining ideals. In this paper, we determine some
further invariants and analyze their uniformity within the series. We describe the
category of G-equivariant coherent DX -modules as the category of representations
of a quiver. We construct explicitly the simple equivariant D-modules and describe
their G-structures. We determine the D-module structure of local cohomology mod-
ules supported in orbit closures, and calculate intersection cohomology groups and
Lyubeznik numbers. While our results for (A5, ω3), (D6, ω5), (E7, ω6) are still com-
pletely uniform, the case (C3, ω3) displays a surprisingly different behavior, for
which we give two explanations: the middle orbit is not simply-connected, and its
closure is not Gorenstein.
Résumé. — Nous considérons une série de quatre représentations sous-exceptionnelles

venant de la troisième ligne du carré magique de Freudenthal-Tits: (G′, X) =
(C3, ω3), (A5, ω3), (D6, ω5), ou (E7, ω6), en utilisant la notation de Bourbaki. Dans
chaque cas, X a cinq G = G′ × C-orbites, qui se révèlent avoir un comportement
uniforme, avec par exemple leurs dimensions ou leurs idéaux définissants. Dans
cet article, nous obtenons plus d’invariants et nous étudions leur uniformité dans
cette série des représentations. Nous décrivons la catégorie des DX -modules cohé-
rentes G-équivariantes, et décrivons leurs G-structures. Nous déterminons, pour les
modules de cohomologie locale avec support dans des clôtures d’orbites, leur struc-
ture comme D-module, et calculons des groupes de cohomologie d’intersection et
des nombres de Lyubeznik. Alors que nos résultats pour (A5, ω3), (D6, ω5), (E7, ω6)
sont uniformes, le cas (C3, ω3) fait apparaître un comportement différent et unique,
pour lequel nous donnons deux explications : l’orbite moyenne n’est pas simplement
connexe, et sa clôture n’est pas Gorenstein.
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1. Introduction

The subexceptional series coming the third line of the Freudenthal–Tits
magic square corresponds to the following four Dynkin formats: C3, A5, D6,

and E7 [5, Page 168]. This line stands for the 5-dimensional symplectic
geometries as explained in [5]. The third line of the extended magic square
has the six Dynkin formats [19, Section 6]:

(1.1) A1, A1 ×A1 ×A1, C3, A5, D6, E7.

There are respective parameters

m = −2/3, 0, 1, 2, 4, 8.

For each of the corresponding Lie groups G′, there is a preferred irreducible
representationX [19, Section 6] that displays some uniform behavior within
the series. In all (but the first) cases, G = G′×C∗ acts onX with five orbits,
and dimX = 6m+ 8.
The first, second, and fourth representations from the series (1.1) corre-

spond to the space of binary cubic forms, of 2× 2× 2 hypermatrices and of
alternating senary 3-tensors, respectively. The equivariant D-modules and
local cohomology modules for these representations are studied in detail in
the articles [25], [31] and [23], respectively. In this paper we complete the
analogous study for the rest of the representations within the series (1.1),
emphasizing the uniformity of the methods and results. Further, this com-
pletes a necessary step toward the classification of such objects on irre-
ducible representations of reductive groups with finitely many orbits that
has been initiated through several articles [21, 23, 24, 25, 26, 31, 32, 33, 36],
see also [14] and references therein for their Bernstein–Sato polynomials.
For the Dynkin diagrams C3, D6, E7, we use the following conventions

on the ordering of nodes.

C3 : 1 2 3〈

D6 :
5

1 2 3 4
6

E7 :
7

1 2 3 4 5 6
With the exception of Section 5.2, throughout the article the representa-

tion (G′, X) always denotes either (C3, ω3), (A5, ω3), (D6, ω5) or (E7, ω6),
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LOCAL COHOMOLOGY ON A SERIES 3

which come from the third line of the Freudenthal–Tits magic square. Here
(D6, ω5) corresponds to the (even) half-spin representation. To display the
uniformity of the results better we include (A5, ω3), albeit most results in
this case are worked out in [23].
Throughout S = C[X] is the polynomial ring on X, and D = DX is the

Weyl algebra of differential operators on X with polynomial coefficients.
Let modG(DX) denote the category of G-equivariant coherent D-modules
on X (which are regular and holonomic in our situation). According to
the Riemann–Hilbert correspondence, equivariant D-modules correspond
to equivariant perverse sheaves, and the simple equivariant D-modules cor-
respond to irreducible equivariant local systems on the orbits. However,
their explicit realization is in general a difficult problem (see Open Prob-
lem 3 in [29, Section 6]).
The representations in the subexceptional series have finitely many or-

bits, but are not spherical varieties. For the irreducible representations of
the latter kind, the categories of equivariantD-modules have been described
in [26] and character formulas have been given in [21, 33, 34]. For our four
cases the algebra of covariants SU is still a polynomial ring [4] (here U
denotes a maximal unipotent subgroup of G), and they are some of the few
representations beyond the spherical case where plethysm formulas for SU
are known. We determine the analogous character formulas for all simple
equivariant D-modules, and also provide explicit D-module realizations.
The formulas are written as uniformly as possible within the series.
In the case (C3, ω3) there is an extra simple, as its middle orbit is not

simply connected. Moreover, the fact that there are no (semi)-invariant
sections for the simple D-module corresponding to the trivial local system
on the middle orbit is reflected by the fact that this orbit closure is the
only one that is not Gorenstein. In a more general setting, we establish
a link between the roots of Bernstein–Sato polynomials of semi-invariant
polynomials and the Castelnuovo–Mumford regularity of Gorenstein orbit
closures (Section 5.2).
As the group is acting with finitely many orbits, the category modG(DX)

of equivariant D-modules is equivalent to the category of finite-dimensional
representations of a quiver with relations (see [41] and [26]). We determine
the quiver structure of the category of modG(DX) (see Section 3.3). The
quivers appear also in [23] and [26], and have finitely many indecomposable
representations that are described explicitly [26, Theorem 2.11]. Again, only
the case (C3, ω3) displays exceptional behavior as the equivariant D-module
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4 András C. LŐRINCZ & Jerzy WEYMAN

corresponding to the trivial local system on the middle orbit is disconnected
from the rest.
For any G-stable closed subset Z in X, the local cohomology modules

Hi
Z(S) are G-equivariant coherent D-modules, for all i > 0. While being

objects of great interest, explicit computations of local cohomology modules
are in general difficult. Several results been obtained for representations
with finitely many orbits (see [24, 25, 31, 32, 35, 36, 37]). In spirit of these
results, in Section 4 we determine the explicit D-module structure of local
cohomology modules for our series. The results are uniform with respect to
the parameter m, with some discrepancy in the case (C3, ω3) again.
The article is organized as follows. In Section 2, we introduce the basic

terminology regarding representations of reductive algebraic groups (Sec-
tion 2.1), equivariant D-modules (Section 2.2), representation theory of
quivers (Section 2.3) and the Borel–Weil–Bott theorem (Section 2.4). In
Section 3 we describe explicitly the category equivariant D-modules. We
compute the D-module (Section 3.2) and G-module (Section 3.4 and The-
orem 4.11) structure of the simple objects explicitly, and we determine
the quivers corresponding to the categories (Section 3.3). In Section 4 we
determine all the local cohomology modules with supports given by orbit
closures. As an application of our main results, we calculate the intersection
cohomology groups and Lyubeznik numbers of orbit closures (Section 5.1).
In Section 5.2, we establish a connection in a more general context between
Castelnuovo–Mumford regularity of Gorenstein orbit closures and the roots
of the Bernstein–Sato polynomials of semi-invariant polynomials.

Acknowledgments

We are grateful to Michael Perlman and Claudiu Raicu for helpful con-
versations and suggestions.

2. Preliminaries

Throughout we use the Bourbaki notation for irreducible highest weight
representations. The pair (G′, X) denotes either (C3, ω3), (A5, ω3), (D6, ω5)
or (E7, ω6), and we fix the parameter m = 1, 2, 4, 8 respectively.
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2.1. Representations and Characters

Let Λ be the set of isomorphism classes of finite dimensional irreducible
(rational) representations of the simple, simply connected algebraic group
G′. We identify Λ with the set of dominant integral weights. We put ωi for
the ith fundamental representation of G′, and write (a1, a2, . . . , ak) for the
highest weight of the irreducible G′-module a1ω1 +a2ω2 + · · ·+akωk, where
ai ∈ Z>0 and k is the rank of G′. The Cartan product of two irreducible
G′-modules is Vλ · Vµ := Vλ+µ, where λ, µ ∈ Λ.

We deal mostly with Z-graded G′-modules, that is, representations of
the group G = G′ ×C∗. We keep track of the grading using a parameter t.
A rational G-representation (possibly infinite-dimensional) M admissible,
if each irreducible in Λ appears with finite multiplicity in M (i.e. each
isotypical component is finite-dimensional). Equivalently, any graded piece
Md (d ∈ Z) decomposes as a direct sum of G′-representations along the
isotypical components

Md =
⊕
λ∈Λ

V
⊕mdλ(M)
λ ,

with md
λ(M) ∈ Z>0. Also, we will use the notation

[M ] =
⊕
d∈Z

tdMd.

For λ ∈ Λ we can make sense of admissible G-representations (where 1
denotes the trivial G′-module)

1
1− tVλ

= 1 + tVλ + t2V2λ + · · · .

2.2. Equivariant D-modules

A DX -module M is called (strongly) equivariant if there exists a DG×X -
isomorphism τ : p∗M → m∗M , where p : G×X → X denotes the projec-
tion and m : G × X → X the map defining the action, with τ satisfying
the usual compatibility conditions (see [8, Definition 11.5.2]).
Another characterization of equivariant D-modules is as follows. Let g

denote the Lie algebra of G. Differentiating the G-action on X induces a
map from g to space of vector fields on X, hence a map g→ DX . Then the
D-moduleM is equivariant if and only if it is endowed with an algebraic G-
action, such that differentiating this action we recover the g-action induced
from the map g→ DX .

TOME 0 (0), FASCICULE 0



6 András C. LŐRINCZ & Jerzy WEYMAN

The category modG(DX) of equivariant D-modules is a full subcategory
of the category mod(DX) of all coherent D-modules, and is closed under
taking subquotients. If Z is a G-stable closed subset of X, we denote by
modZG(DX) the full subcategory of modG(DX) of equivariant D-modules
with support contained in Z.
In all our cases G acts on X with finitely many orbits. This implies that

every module in modG(DX) is regular and holonomic [8, Theorem 11.6.1].
The category modG(DX) is equivalent to the category of finite-dimensional
representations of a quiver with relations (see [41, Theorem 4.3] or [26,
Theorem 3.4]; for quivers see Section 2.3). For more details on categories
of equivariant D-modules, cf. [26].

Given an equivariant map between two G-varieties, (derived) pushfor-
ward and pullback of D-modules preserves equivariance. In particular, so
do local cohomology functors Hi

Z(•), for Z an orbit closure in X. Namely,
for each i > 0 and eachM ∈ modG(DX), the i-th local cohomology module
Hi
Z(M) of M with support in Z is an element of modZG(DX).
Since G is reductive, another construction of objects in modG(DX) comes

from considering the (twisted) Fourier transform [26, Section 4.3]. This
functor gives a self-equivalence

F : modG(DX) ∼−→ modG(DX).

For M ∈ modG(DX) we have as G-modules

(2.1) F(M) ∼= M∗ · detX∗.

Throughout we work with the convention that polynomials live in non-
negative degrees, and note that X ∼= X∗ as G′-representations.
For a (rational, finite-dimensional) representation V of G, we denote

by P(V ) := DX ⊗Ug V the induced G-equivariant DX -module (see [26,
Section 2]), which is projective in modG(DX), and

(2.2) HomDX (P(V ),M) = HomG(V,M),

for any M ∈ modG(DX).
The action of G on X extends to an action on S and the character of S

is given by (see [4] or [19, Section 6]):

(2.3) [S] = 1
(1− tX)(1− t2g′)(1− t3X)(1− t4)(1− t4X4) ,

where g′ = 2ω1, ω1 + ω5, ω2, ω1 is the adjoint representation and X4 =
2ω2, ω2 + ω4, ω4, ω5 for (G′, X) = (C3, ω3), (A5, ω3), (D6, ω5), (E7, ω6),
respectively. For the simple D-module E = F(S) with support equal to the
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origin, we have by (2.1):

(2.4) [E] = t−6m−8

(1− t−1X)(1− t−2g′)(1− t−3X)(1− t−4)(1− t−4X4) .

2.3. Quivers

We briefly introduce some basic notions on the representation theory of
quivers, following [1]. A quiver Q is an oriented graph, i.e. a pair Q =
(Q0, Q1) formed by a finite set of vertices Q0 and a finite set of arrows Q1.
An arrow a ∈ Q1 has a head ha and a tail ta which are elements of Q0:

ta
a // ha

A relation in Q is a linear combination of paths of length at least two
that have the same source and target. We define a quiver (with relations)
(Q, I) to be a quiver Q together with a finite collection of relations I.

A representation M of a quiver (Q, I) is a family of (finite-dimensional)
vector spaces {Mx |x ∈ Q0} together with linear maps {M(a) : Mta →
Mha | a ∈ Q1} that satisfy the relations induced by I. A morphism φ :
M → N of two representations M,N of (Q, I) is a set of linear maps
φ = {φ(x) : Mx → Nx |x ∈ Q0}, such that for each a ∈ Q1 we have
φ(ha) ◦M(a) = N(a) ◦ φ(ta). The category rep(Q, I) of finite-dimensional
representations of (Q, I) is Artinian, has enough projectives and injectives,
and contains only finitely many simple objects,that are in bijection with
the vertices. For the projective cover (resp. injective envelope) of the simple
corresponding to a vertex x ∈ Q0, the dimension of its space at y ∈ Q0 is
given by the number of paths from x to y (resp. from y to x), considered
up to the relations in I (see [1, Section III.2]).

2.4. Borel–Weil–Bott theorem

In this section, we present some special cases of the Borel–Weil–Bott
theorem that we use in Section 4.1. For more details, see [44], and espe-
cially [2, Chapters 4,5], as we will use these conventions.

We denote the integral weights of a simple group G with the correspond-
ing root system (which in this paper will be C3, A5, D6 or E7), by labeling
the Dynkin diagram by integers. Dominant weights correspond to labelings
by nonnegative integers. The weight ρ (the half of sum of positive roots)
corresponds to labeling all nodes by 1. The action of the Weyl group on the
integral weights is described in [2, Recipe 4.1.3] which states the following.

TOME 0 (0), FASCICULE 0



8 András C. LŐRINCZ & Jerzy WEYMAN

Proposition 2.1. — The simple reflection σα acts as follows. To com-
pute σα(λ), let c be the coefficient of the node of Xn associated to α. Add
c to the adjacent coefficients, with multiplicity if there is a multiple edge
directed towards the adjacent node, and then replace c by −c.

Example 2.2. — Here we reproduce [2, Example 4.1.4]. In each case we
reflect at the middle node.

a• b• c• =⇒ a+b• −b• b+c•
a• b• 〈

c• =⇒ a+b• −b• 〈
b+c•

a• b• 〉
c• =⇒ a+b• −b• 〉

2b+c•

Next we define the affine action of the Weyl group on weights via

w.λ := w(λ+ ρ)− ρ.

Recall that the weight λ is called singular if there exists a nontrivial
w ∈ W such that w.λ = λ. For a non-singular weight λ there exists a
unique w ∈W such that w.λ is dominant.
Now we are ready to state the Borel–Weil–Bott theorem. Recall that

parabolic subgroups P of G (up to conjugation) correspond to subsets of
simple roots. Let us fix G and P . The weight λ is dominant with respect
to P if it is dominant when restricted to the Levi factor L(P ). This means
that all the labelings of the simple roots that are in L(P ) are nonnegative.
The homogeneous vector bundles on G/P correspond to rational P -

modules. To a P -dominant λ we associate the homogeneous bundle V(λ)
which is irreducible, i.e. the unipotent radical of P acts on it trivially and
with the action of L(P ) it is the dual of the highest weight L(P )-module
coresponding to the restriction of λ. The Borel–Weil–Bott theorem calcu-
lates the sheaf cohomology of such bundles.

Theorem 2.3. — Let G be a simply connected complex semisimple Lie
group, and P ⊂ G a parabolic subgroup. Suppose λ is an integral weight
for G and dominant with respect to P . Consider the homogeneous bundle
V(λ) on G/P . Then

(1) If λ is singular for the affine Weyl group action, then

Hr(G/P,V(λ)) = 0

for all r.
(2) If λ is nonsingular for the affine Weyl group action, then as a rep-

resentation of G,

H l(w)(G/P,V(λ)) = V ∗w.λ,

ANNALES DE L’INSTITUT FOURIER



LOCAL COHOMOLOGY ON A SERIES 9

where w ∈W is the unique element for which w.λ is dominant. All
other cohomology vanishes.

We finish this section with some examples.

Example 2.4. — Let us consider the root system of type C3. We calculate
cohomology of the bundle corresponding to the weight 3ω1 − 3ω3 This
corresponds to the sequence (3, 0,−3), After adding ρ we get the weight
(4, 1,−2). Applying the reflection at the 3-rd vertex we get (4,−3, 2). Next
we apply the reflection on the second vertex to get (1, 3,−1) and then after
applying the reflection at the third vertex, we get (1, 1, 1). Subtracting
ρ we get (0, 0, 0). Hence, the third cohomology of the bundle is a trivial
representation, and zero in all other degrees.

Example 2.5. — Let us consider the root system of typeD6. We calculate
cohomology of the bundle corresponding to the dual of the 9-th symmetric
power of the universal quotient bundle Q1 on the corresponding isotropic
Grassmannian. This corresponds to the weight (−9, 0, 0, 0, 0, 0). Adding
ρ we get (−8, 1, 1, 1, 1, 1). Applying reflections we get: (8,−7, 1, 1, 1, 1),
(1, 7,−6, 1, 1, 1), (1, 1, 6,−5, 1, 1), (1, 1, 1, 5,−4,−4), (1, 1, 1, 1, 4,−4),
(1, 1, 1,−3, 4, 4), (1, 1,−2, 3, 1, 1), (1,−1, 2, 1, 1, 1), (0, 1, 1, 1, 1, 1). There-
fore the weight (−9, 0, 0, 0, 0, 0) is singular, as a zero appears in the algo-
rithm (the corresponding weight is fixed under reflection at the zero node).
This shows that all cohomology groups of our bundle are zero.

Example 2.6. — Let us consider the system of type E7. Consider the
bundle which is the a-th multiple of the dual of the 6-th fundamental rep-
resentation, with a > 10. Our weight is (0, 0, 0, 0, 0,−a, 0) and the above
algorithm shows that the 14-th cohomology of our bundle is the represen-
tation with highest weight (a− 10)ω6 + (a− 10)ω7. All other cohomology
groups are zero.

3. The category of equivariant coherent D-modules

As usual, the pair (G′, X) denotes either (C3, ω3), (A5, ω3), (D6, ω5) or
(E7, ω6), and recall that m = 1, 2, 4, 8, respectively. Whenever possible, we
discuss the properties of the action of G = G′ × C∗ on X in a uniform
matter within these four cases.
We have dimX = 6m+8, and G acts on X with five orbits. Accordingly,

we write X =
⋃4
i=0Oi with Oi−1 ⊂ Oi (where 1 6 i 6 4), where O0 =
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10 András C. LŐRINCZ & Jerzy WEYMAN

{0} and O4 = X. The hypersurface O3 defined by the vanishing of a G′-
invariant polynomial f of degree 4 (unique, up to scalar). The codimensions
of O2 and O1 are m+ 3 and 3m+ 4, and their defining ideals are generated
by X (in degree 3) and g′ (in degree 2) from (2.3), respectively. More details
can be found in [39], [11, Section 7] and [44, Exercise 7.17].
For an orbit O ⊂ X, we denote by O∨ ⊂ X its projective (Pyasetskii)

dual orbit (see [26, Section 4.3]). By [15], we have

(3.1) O∨i = O4−i, for i = 0, . . . , 4.

3.1. Fundamental groups of orbits

Given a G-orbit O ∼= G/H of X, we call the finite group H/H0 the
component group of O (here H0 stands for the connected component of
H containing the identity). If O is simply connected, then its component
group is trivial. The orbits O1, O2, O3 are also G′-orbits. Note that since G′
is simply connected, the fundamental groups ofO1, O2, O3 are isomorphic to
their component groups under the action of G′. We proceed by determining
the fundamental and component groups of all orbits.

Lemma 3.1. — The orbit O1 is simply connected.

Proof. — Since O1 is the orbit of the highest weight vector, this follows
from [26, Lemma 4.13]. Alternatively, this also follows from the explicit
determination of the generic G′-stabilizer of O1 [11, Lemma 16], which is
shown to be connected in ibid., p. 426. �

The following is the first indication that the case (C3, ω3) is somewhat
different from the rest of the cases.

Lemma 3.2. — The orbit O2 is simply connected, except for (G′, X) =
(C3, ω3) when the component group equals π1(O2) = Z/2Z.

Proof. — The claim about the fundamental groups follows from [11,
Lemma 17]. Hence, the component group (under the action of G) can be
either trivial or Z/2Z. To show that the latter holds, one can either fol-
low through the computations in [11, Lemma 17], or use the fact that we
have two non-isomorphic simple equivariant D-modules with support O2,
namely H4

O2
(S) and Df−2/Df−1 (see Theorem 3.9(2) and Section 4). �

Lemma 3.3. — The orbit O3 is simply connected.

Proof. — This follows from [11, Lemma 15]. �

ANNALES DE L’INSTITUT FOURIER
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Lemma 3.4. — The variety O3 is normal with rational singularities.

Proof. — This follows by [38, Theorem 0.4], as the polynomial bf (s)/
(s + 1) has no roots > −1, where bf (s) stands for the b-function of the
invariant f (see Section 3.2). �

Lemma 3.5. — The orbit O4 has component group Z/4Z, and
π1(O4) ∼= Z.

Proof. — This follows by [26, Lemma 4.11 and Remark 4.12] and
Lemma 3.4. �

3.2. Simple equivariant D-modules

We determine the filtrations of the equivariant D-modules Sf and Sf ·
√
f

using the b-function bf (s) of f . From this we obtain the explicit construction
of almost all simple equivariant D-modules.

The roots of bf (s) are (see [14, Section 12]):

(3.2) − 1, r1 := −m+ 3
2 , r2 := −2m+ 3

2 , r3 := −3m+ 4
2 .

The following is the corresponding the holonomy diagram (see [14] for
more details):

(3.3) O4
s+1

O3
s−r1

O2
s−r2

O1
s−r3

O0 .

Lemma 3.6. — Let xg′ denote (up to a non-zero constant) the degree 2
highest weight vector of g′ in S (see (2.3)), and ∂g′ the constant differential
operator of degree −2 of the same highest weight. Then we have

∂g′ · fs+1 = (s+ 1)(s− r1) · xg′fs,

hence the local b-function of f at a point in O2 is (s+ 1)(s− r1).

Proof. — This follows by [22, Theorem 2.5], see also [23, Remark 3.6].
The statement about the local b-function also follows from the holonomy
diagram (3.3). �

According to [8, 11.6.2] and Section 3.1, the simple equivariantD-modules
on X are the following.

Notation 3.7. — For each Oi (with 1 6 i 6 3), we denote the simple
D-module corresponding to the trivial local system on Oi by Li. The D-
modules S (the coordinate ring) and its Fourier transform E (the injective
envelope of the residue field) correspond to the trivial local system on O4
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12 András C. LŐRINCZ & Jerzy WEYMAN

and O0, respectively. Let L′4 and L′2 be the equivariant simple D-modules
corresponding to the non-trivial self-dual local systems on O4 and O2, re-
spectively (the latter only for (G′, X) = (C3, ω3)). The remaining simple
equivariant D-modules with full support will be denoted by L4,1 and L4,3.

Given a coherent D-module M , we write charC(M) for its characteristic
cycle (see [13]), which is a formal linear combination of the irreducible
components of its characteristic variety counted with multiplicities – these
are always closures of conormal bundles to orbits when M is equivariant.
For such an M and an orbit O, write multT∗

O
XM for the multiplicity of

T ∗OX in charC(M). Clearly, charC(S) = [T ∗O0
X] and charC(E) = [T ∗O4

X].
The diagram 3.3 has an edge between two orbits O,O′ if T ∗OX and T ∗O′X
intersect in codimension 1.

Lemma 3.8. — Let M ∈ modG(DX) and V ⊂ M a finite-dimensional
G-submodule such that DX · V = M . Then for any G-orbit O ⊂ X, we
have multT∗

O
XM 6 dimV .

Proof. — As there is a surjective map P(V )→M by (2.2), it is enough
to prove the statement for M = P(V ). Let µ : T ∗X → g∗ denote the
moment map (see [26, Section 3.1]), and µ−1(0) the scheme-theoretic fiber.
Since G acts on X with finitely many orbits, the irreducible components
of µ−1(0) (as a variety) are precisely the closures of conormal bundles
to the orbits. As shown in the proof of [26, Proposition 3.14], we have
multT∗

O
X P(V ) 6 dimV · multT∗

O
X µ
−1(0). By [14], the variety T ∗OiX has

a dense G-orbit, for each i = 0, . . . , 4. Therefore, by [26, Lemma 3.12] we
have multT∗

O
X µ
−1(0) = 1. �

Theorem 3.9. — We have the following explicit construction of simple
equivariant D-modules:

(1) When (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6):
(a) E ∼= Dfr3/Df−1.
(b) L1 ∼= Dfr2/Dfr1 with charC(L1) = [T ∗O1

X] + [T ∗O0
X].

(c) L2 ∼= Dfr1/Dfr1+1 with charC(L2) = [T ∗O2
X].

(d) L3 ∼= Df−1/S with charC(L3) = [T ∗O3
X] + [T ∗O2

X] + [T ∗O1
X].

(e) L′4 ∼= Dfr1+1 with charC(L′4) = [T ∗O4
X] + [T ∗O3

X], and L4,i ∼=
Df i/4 (where i = 1, 3) with charC(L4,i) = [T ∗O4

X] + [T ∗O3
X] +

[T ∗O2
X] + [T ∗O1

X] + [T ∗O0
X].

(2) When (G′, X) is (C3, ω3):
(a) E ∼= Dfr3/Dfr2 .
(b) L1 ∼= Dfr2/Dfr2+1 with charC(L1) = [T ∗O1

X].
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(c) L′2 ∼= Dfr1/Df−1 with charC(L′2) = [T ∗O2
X]+[T ∗O1

X]+[T ∗O0
X],

and L2 ∼= H4
O2

(S) with charC(L2) = [T ∗O2
X].

(d) L3 ∼= Df−1/S with charC(L3) = [T ∗O3
X].

(e) L′4 ∼= Dfr2+1 with charC(L′4) = [T ∗O4
X] + [T ∗O3

X], and L4,i ∼=
Sf ·f i/4 (where i = 1, 3) with charC(L4,i) = [T ∗O4

X]+[T ∗O3
X]+

[T ∗O2
X] + [T ∗O1

X] + [T ∗O0
X].

Proof. — Since part (1) follows as [23, Theorem 3.5], we give a proof for
the case (G′, X) = (C3, ω3) only, when r1 = −2, r2 = −5/2 and r3 = −7/2.
First, by [13, Corollary 6.25] the equivariant D-modules of full support

Df−3/2 and Sf · f i/4 (i = 1, 3) are simple. Having disjoint weights of
G-semi-invariant elements, these D-modules are pairwise non-isomorphic
(alternatively, this also follows by the Riemann–Hilbert correspondence).
Viewed as D-modules on X \ O3, tensoring Sf · f i/4 by itself four times
yields Sf , hence L4,i ∼= Sf · f i/4 and L′4 ∼= Df−3/2.
By [26, Proposition 4.9], we have the following filtrations in Sf and

Sf ·
√
f .

0 ( S ( Df−1 ( Df−2, 0 ( Df−3/2 ( Df−5/2 ( Df−7/2.

Each of the successive quotients of the filtration has a unique simple D-
module quotient, hence we get six non-isomorphic equivariant simple D-
modules S,L−1, L−2,Df−3/2, L−5/2, L−7/2 (see [26, Proposition 4.9] and
notation therein) respectively, all havingG′-invariant sections. On the other
hand, by Lemma 4.9 we see that H4

O2
(S) (and hence L2, which is always

a submodule) has no G′-invariant sections. By Section 3.1 this yields all
simple equivariant D-modules, and shows also that L2 ∼= H4

O2
(S) must be

simple (note that the argument also implies that the component group of
O2 must be indeed Z/2Z, as discussed in Lemma 3.2).
The local cohomology module H1

O3
(S) = Sf/S contains a unique simple

D-module, which is L3. The module Df−1/S is a submodule of H1
O3

(S),
hence has unique simple sub- and quotient modules L3 and L−1, respec-
tively. From S ( Df−1 ( Df−2 we see that f−1 is the only G′-invariant
section of Df−1/S (up to scaling), therefore the only other simple D-
module besides L−1 that could appear as its composition factor is L2.
Hence, L3 ∼= Df−1/S ∼= L−1.
Since E = F(S) has a G′-invariant section of degree −14, we must have

L−7/2 ∼= E by (2.4). Similarly, F(L3) ∼= L−5/2, F(L2) ∼= L2, F(L−2) ∼= L′4
and F(L4,i) ∼= L4,i (with i = 1, 3). In particular, T ∗O0

X is an irreducible
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component of the characteristic variety of L−2, L4,1 and L4,3 (see [26, Sec-
tion 4.3]).
By Lemma 3.8, any equivariant D-module that is generated by a G-semi-

invariant section has a multiplicity-free characteristic cycle (for compari-
son, see end of proof of [23, Theorem 3.5]). Moreover, for any equivari-
ant indecomposable D-module, its characteristic variety should have irre-
ducible components connected via the holonomy diagram 3.3 (see [29, The-
orem 6.7]). We have seen that both T ∗O0

X and T ∗O4
X are components of

charC(Sf · f i/4), for i = 0, 1, 2, 3. In conclusion, we have that charC(Sf ·
f i/4) = [T ∗O4

X] + [T ∗O3
X] + [T ∗O2

X] + [T ∗O1
X] + [T ∗O0

X], for all i = 0, 1, 2, 3.
Since T ∗O0

X is a component of the characteristic variety of L−2 and its
support cannot be O0, T ∗O1

X must also be a component. Since T ∗O3
X is

in charC(L3), by (3.1) T ∗O1
X is a component of the characteristic variety

of F(L3) ∼= L−5/2. From the D-modules L−2, L−5/2, one must be L1 and
the other L′2: if L−2 ∼= L′2, then T ∗O2

X is a component in the characteris-
tic varieties of L−2 and F(L−2) ∼= L′4; on the other hand, if L−5/2 ∼= L′2,
then T ∗O2

X is a component in the characteristic varieties of L−5/2 and
F(L−5/2) ∼= L3. Either way, since [T ∗O2

X] appears in charC(Sf · f i/2) with
multiplicity one (for i = 0, 1), this shows that L2 cannot be a compo-
sition factor of Sf · f i/2. Hence, S,L3, L

−2 (resp. L′4, L−5/2, E) are all
the simples appearing as composition factors in Sf · f (resp. Sf ·

√
f),

and all with multiplicity one. Therefore, we have L−2 ∼= Df−2/Df−1 and
L−5/2 ∼= Df−5/2/Df−3/2.
We are left to show that we have in fact L1 ∼= Df−5/2/Df−3/2 (and

hence L′2 ∼= Df−2/Df−1), for which it is enough to see that the support
of Df−5/2/Df−3/2 is contained in O1. Since g′ (in degree 2) from (2.3)
generates the defining ideal of O1, we conclude by Lemma 3.6. �

3.3. The quiver of modG(DX)

Here we describe the quivers of modG(DX) as discussed in Section 2. The
vertices of the quivers are labeled with the simple equivariant D-modules
that they correspond to.

Theorem 3.10. — There is an equivalence of categories

modG(DX) ∼= rep(Q, I),

where rep(Q, I) is the category of finite-dimensional representations of a
quiver Q with relations I. The vertices L4,i (with i = 1, 3) are isolated,
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while the rest of quiver Q is given as follows (with the relations I given by
all 2-cycles):

(1) When (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6):

S //L3oo //Eoo L′4
//L2oo //L1oo .

(2) When (G′, X) is (C3, ω3):

S //L3oo //L′2oo L′4
//L1oo //Eoo .

and the vertex L2 is isolated.

Proof. — Again, we sketch the proof for case (2) only, otherwise the
result follows as in [23, Section 3]. The modules Sf · f i/4 are injective hulls
in modG(DX) [25, Lemma 2.4]. Using holonomic duality, this shows that
the vertices L4,i (with i = 1, 3) are isolated. The module L2 ∼= H4

O2
(S)

being an injective object in modO2
G (DX) [26, Lemma 3.11], we see that it

must be an isolated vertex by taking Fourier transforms and holonomic
duality.
The filtration of Sf · f (resp. Sf ·

√
f) gives non-split extensions by [26,

Lemma 2.8]. This, arguing by holonomic duality and Fourier transform,
yields all the required arrows of the quiver. The fact that there are no
arrows between L3 and L1 follows since L1 is not a composition factor for
H1
f (S), which is the injective hull of L3 in the category modO3

G (DX) [26,
Lemma 3.11]. Hence, there are no other arrows in the quiver. Due to the
structure of their injective hulls, the 2-cycles at S and L′4 are zero, which
in turn implies that the 2-cycles at L′2 and E are zero as well, by applying
Fourier transforms.
We are left to show that the 2-cycles at L3 and L1 are zero. By The-

orem 3.9, L1 and L3 are generated by G-semi-invariant sections as DX -
modules. Projective objects in modG(DX) that map to these simples and
are generated by G-semi-invariant sections can be constructed via (2.2).
By Lemma 3.8, such projectives must have multiplicity-free characteristic
cycles. In particular, L3 and L1 appear only once in the composition series
of their respective projective covers, which implies that the 2-cycles at L3
and L1 are zero. �

While it fixes all isolated vertices, the Fourier transform also behaves
differently in the two cases above, as seen in the proof of Theorem 3.9:
in (1) it reflects each individual component of the quiver, while in (2) it
reflects one component into the other.
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Note that (each connected component of) this quiver appears also in [23,
26], and (Q, I) has finitely many (isomorphism classes of) indecomposable
representations that can be described explicitly [26, Theorem 2.11].

3.4. Characters of equivariant D-modules

Since G acts on X with finitely many orbits, any equivariant coherent
D-module is admissible as a G-representation by [26, Proposition 3.14].
In this section, we describe explicitly the G-module structure of all the
simple equivariant D-modules. The techniques we use are based on the
those in [23, Section 4].
The characters of S and E are given by (2.3) and (2.4), respectively, and

that of Sf by (see [25, (2.6)] for more details on the notation)

(3.4) [Sf ] = lim
n→∞

[f−n · S] = 1
(1− tX)(1− t2g′)(1− t3X)(1− t4X4) · t

4Z,

where t4Z =
∑
i∈Z t

4i. Clearly, [Sf · f i/4] = [Sf ] · ti, for i = 0, 1, 2, 3. In
particular, we get formulas for [L4,i], for i = 1, 3.
In this section we compute the character [Dfr1+1] in a uniform matter,

and explain how this can be used to compute the characters of all the
other G-equivariant simple D-modules, with the exception of L′2 in the
case (G′, X) = (C3, ω3) which will be considered separately in Section 4.
First, consider the case when (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6).

We readily obtain the character of L3 from [L3] = [Sf ] − [S] − [E]. If we
know [Dfr1+1] = [L′4], from F(L1) ∼= L′4 we have by (2.1) the relation
[L1] = [L′4]∗ · t−6m−8, and also get [L2] = [Sf ·

√
f ]− [L′4]− [L1].

Similarly when (G′, X) = (C3, ω3), given [Dfr1+1] = [Df−1] yields
[L3] = [Df−1] − [S] and [L′2] = [Sf ] − [Df−1]. By Fourier transform, we
get using (2.1) also [L1] and [L′4] from F(L3) ∼= L1 and F(L′2) ∼= L′4.
Recall the notation in (2.3). We have the following formula.

Theorem 3.11. — The G-character of Dfr1+1 is given by

[Dfr1+1] = t4(r1+1)

(1− t−1X)(1−X4)(1− tX)(1− t2g′)(1− t4) .

Proof. — As this follows essentially the same way as [23, Theorem 4.1],
we only sketch the proof to display its uniformity and refer to loc. cit. for
additional details. Put p = −r1 − 1. For k ∈ Z>0, let Ik (resp. Ĩk) be the
following G-equivariant ideal of S (resp. of S/(f)):

Ik = {s ∈ S | s · f−p−k ∈ DXf
−p} and Ĩk = (Ik + (f))/(f).
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Let S∗ ⊂ DX denote the polynomial ring in the partial derivatives. Denote
by ∂1 ∈ S∗ the operator of degree −1 of the same highest weight as X,
and by V the (unique) representation of S∗ isomorphic to g′ in degree −2
(see (2.3)). By Lemma 3.6, the ideal (V ) generated by V annihilates f−p.
We have as a G-module (see [44, Chapter 5, Exercise 8])

[S∗/(V )] = 1
1− t−1X

.

This shows that the ideal Ik is generated by the elements in the irreducible
representation with highest weight vector (∂k1 · f−p) · fp+k, of weight k ·X
in degree 3k. As this vector is not in (f), the ideal Ĩk of S/(f) is generated
by the elements in the (unique) representation of highest weight k · X in
degree 3k. We deduce that the highest weights in Ĩk are of the form

ta+2b+3c+4d · ((a+ c)X + b · g′ + d ·X4) , where a, b > 0, c+ d > k.

As in the proof of [23, Theorem 4.1], we can readily rewrite this in the
desired formula using [23, Lemma 4.2]. �

We are left to determine the character of the D-module L2 ∼= H4
O4

(S)
in the case when (G′, X) = (C3, ω3). The formula (see Theorem 4.11) is
postponed until Section 4.2 as we calculate it using a different approach.

4. Local cohomology

In this section, we determine all the local cohomology modules of the
coordinate ring supported in the orbit closures. The strategies used are
similar to the ones in [23, Section 5].

4.1. Local cohomology of S

The goal in this section is to prove the following theorem.

Theorem 4.1. — The following are all the non-zero local cohomology
modules of S with support in an orbit closure:

(1) When (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6):
(a) H6m+8

O0
(S) = E.

(b) H3m+4
O1

(S) = L1, H4m+5
O1

(S) = E, H5m+5
O1

(S) = E.
(c) 0→ L2 → Hm+3

O2
(S)→ L1 → 0, H2m+3

O2
(S) = L1,

H3m+4
O2

(S) = E.

(d) 0→ L3 → H1
O3

(S)→ E → 0.
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18 András C. LŐRINCZ & Jerzy WEYMAN

(2) When (G′, X) is (C3, ω3):
(a) H6m+8

O0
(S) = E.

(b) 0→ L1 → H3m+4
O1

(S)→ E → 0.
(c) Hm+3

O2
(S) = L2, H3m+4

O2
(S) = E.

(d) 0→ L3 → H1
O3

(S)→ L′2 → 0.

Part (d) follows by Theorem 3.9 since H1
O3

(S) = Sf/S. The non-trivial
parts are (b) and (c).
Since Hm+3

O2
(S) (resp. H3m+4

O1
(S)) is the injective envelope of L2 in

modO2
G (DX) (resp. of L1 in modO1

G (DX)) by [26, Lemma 3.11], the claim
about their structures follows by our description of the quiver of modG(DX)
in Theorem 3.10. In fact, in case (1) (resp. case (2)) we have an isomorphism
Hm+3
O2

(S) ∼= Sf
√
f/Dfr1+1 (resp. H3m+4

O1
(S) ∼= Sf

√
f/Dfr2+1).

We proceed with part (b). Since here we consider local cohomology sup-
ported in the cone over a smooth projective variety, there are several results
available in this direction [6, 7, 28, 30, 40].

Proposition 4.2. — Apart from H3m+4
O1

(S), the only non-zero local
cohomology modules of S with support inO1 areH4m+5

O1
(S) = H5m+5

O1
(S) =

E when (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6).

Proof. — We only need to determine how many copies of E appear in
Hj

O1
(S) for j > 3m + 4, as the latter is always supported on the origin.

Note that the highest weight orbit O1 is the affine cone over some (partial)
flag variety G/P . Hence, it is enough to determine the Betti numbers of
G/P , according to [40, Main Theorem 1.2] (see also [6, Theorem] and [28,
Theorem 3.1]). These numbers are given by the Bruhat decomposition.
The Poincaré polynomials encoding them are known, and can be computed
case-by-case as explained in [9, Sections 1.11 and 3.15] using factorization
methods.
Let us consider first the case (G′, X) = (C3, ω3). By [9, Section 1.11]

(see also the remark in ibid., p. 74), the Poincaré polynomial of G/P can
be written as the quotient of the Poincaré polynomials of G′ = Sp3 and
SL3. The respective degrees of fundamental invariants under the action of
their Weyl groups are 2, 4, 6 and 2, 3. Therefore, by [9, Theorem 3.15] their
respective Poincaré polynomials are

(1− q4)(1− q8)(1− q12)
(1− q2)3 , and (1− q4)(1− q6)

(1− q2)2 .
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Hence, the Poincaré polynomial of G/P is

(4.1) P1(q) = (1 + q6) · 1− q8

1− q2 .

Now let (G′, X) be (A5, ω3), (D6, ω5) or (E7, ω6), when m = 2, 4, 8, re-
spectively. By a similar argument, we obtain that Poincaré polynomial of
G/P is:

Pm(q) = (1 + qm+2)(1 + q22−32/m) · 1− q3m+4

1− q2 . �

We are left with proving both parts (c) of Theorem 4.1, which we devote
the rest of the section to.

The variety O3 is the projective dual of the highest weight orbit, hence
given by a discriminant in the sense of [43]. Thus, it has a desingularization
as the total space Z = Tot(η∗) of a bundle η of 1-jets on G/P , as described
in [43, Section 1]. The space Z is a subbundle of the trivial bundle G/P ×
X, and we denote the first and the second projection (which yields the
desingularization of O3) by

p1 : Z −→ G/P, p2 : Z −→ O3.

We denote by ξ the locally free sheaf on G/P corresponding to the quotient
bundle obtained from the inclusion Z ⊂ G/P × X. Hence, we have the
following exact sequence of locally free sheaves on G/P :

0→ ξ → X ⊗OG/P → η → 0.

We give the following uniform description of the bundles η and µ follow-
ing [43, Section 1] (see also [44, Section 9.3]). The group P is a maximal
parabolic which can be represented by distinguishing the corresponding
node in the Dynkin diagram. We have η = η′(−1) = η′ ⊗ O(1) (here
O(1) ∼= V(X) is the twisting sheaf), where η′ fits in a sequence

(4.2) 0→ ΩG/P → η′ → OG/P → 0.

The cotangent bundle ΩG/P in terms of P -dominant weights can be
described by labeling the distinguished node by −2 and the rest of the
nodes with the number of edges connecting them to the distinguished node:

• (C3, ω3): V(0, 2,−2) = S2R, where the latter is the second sym-
metric power of the 3-dimensional isotropic tautological subbundle
R (see [44, Chapter 4, Exercise 9]);

• (A5, ω3): V(0, 1,−2, 1, 0) = R ⊗ Q∗, where R (resp. Q) is the
tautological subbundle (resp. quotient bundle) (see [44, Proposi-
tion 3.3.5]);
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• (D6, ω5): V(0, 0, 0, 1,−2, 0) =
∧2R, where R is the 6-dimensional

tautological subbundle (see [44, Chapter 4, Exercise 10]);
• (E7, ω6): V(0, 0, 0, 0, 1,−2, 0), induced from the 27-dimensional
representation Vω1 of E6.

Therefore, we can write uniformly ΩG/P = V(X4 − 2 ·X).

Lemma 4.3. — For any d > 0, we have a decomposition of bundles

Symd ΩG/P =
⊕

a,b>0, c>a+b
3c−2b−a=d

V(a · g′ + b ·X4 − 2c ·X).

Proof. — The case (C3, ω3) follows by [44, Proposition 2.3.8], since we
have V(0, 2,−2) = S2R. For the case (A5, ω3), see [23, Section 5.1]. For
(D6, ω5), this follows by [44, Proposition 2.3.8] (since V(0, 0, 0, 1,−2, 0) =∧2R). For (E7, ω6), see [12, Section 4]. �

The next three results are the extensions of [23, Lemma 5.2, Proposi-
tions 5.3 and 5.4].

Lemma 4.4. — We haveH0(G/P, Sym η) = S/(f), Hi(G/P, Sym η) =
0 for i > 0. Moreover, η′ = η⊗O(−1) is characterized as the unique nonsplit
extension (up to isomorphism) in the sequence (4.2).

Proof. — As the proof is analogous to [23, Lemma 5.2], we only sketch
the argument. The first claim follows by Lemma 3.4. The fact that the
sequence (4.2) is non-split follows as in loc. cit. from H1(G/P, Sym2 η) = 0
and H1(G/P, Sym2(ΩG/P ⊗O(1)) 6= 0 (the latter follows by Theorem 2.3
and Lemma 4.3). By Theorem 2.3

Ext1(OG/P , ΩG/P ) = H1(G/P, ΩG/P ) = C,

from which uniqueness follows. �

Denote the open U = p−1
2 (O3) ⊂ Z. Since p2 is G-equivariant and bira-

tional, we have U ∼= O3 as G-varieties.

Proposition 4.5. — We have Z \U = D, where D is a G-stable divisor
on Z. Moreover, the ideal sheaf of D is p∗1(L), where O(1) ∼= L ⊂ Sym3 η.

Proof. — Using Lemma 4.3, we see that L = O(1) ⊂ Sym3(ΩG/P (1)) ⊂
Sym3 η. By adjunction, we get an inclusion p∗1(L) ⊂ OZ , which gives a
G-stable divisor D ⊂ X. As in the proof of [23, Proposition 5.3], we show
that all closed G-stable proper subsets of Z are contained in D. We give a
uniform argument as follows.
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Consider the Levi decomposition P ∼= L n U(P ). Write T ∗(G/P ) =
G×P V , for a P -representation V . We write Z ∼= G×P N , with N fitting
into the exact sequence of P -modules (4.2)

(4.3) 0→ C→ N → V → 0,

where C∗ acts on each space by scaling by the third power. There is a one-
to-one correspondence between the G-stable closed subsets in Z and the
P -stable closed subsets in N , and D corresponds to some P -stable divisor
D′ ⊂ N . We are left to show that all P -stable closed proper subsets in N
are contained in D′.
As L ⊂ Sym3(ΩG/P ⊗ O(1)), there is a corresponding L-semi-invariant

polynomial h on V of degree 3, and D′ is given as the zero-set of N → V
h−→

C. As L-modules, we have N ∼= C ⊕ V . Write L = L′ × C∗ according to
G = G′×C∗. As the L′-module V can be obtained using a construction due
to Vinberg through a grading of g′ corresponding to the distinguished node
(the node that we associated to ΩG/P ), it has finitely many L′-orbits [42]
(in fact, due to the multiplicity-free decomposition in Lemma 4.3, V is
a spherical representation, i.e. already a Borel subgroup of L′ acts with
finitely many orbits; alternatively, see the classification [39, Section 8]).
Denote the orbits by O′1, . . . , O

′
n, with O′n = V . From the classification

in [39, Section 7], we see that the prehomogeneous space (L′, V ) is regular,
i.e. we have X \On = h−1(0). Hence, N has 2n orbits under the action of
L, given by (0, O′i) and (C∗, O′i), i = 1, . . . , n, and the only orbit closures
not contained in D′ are (C∗,O′n) = N and (0, O′n). But the latter is not
P -stable, otherwise the sequence (4.3) would split, and thus contradict
Lemma 4.4. �

The inclusion p∗1(L) ⊂ OZ of line bundles gives a sequence of inclusions
OZ ⊂ p∗1(L−1) ⊂ p∗1(L−2) ⊂ . . . . Applying p1∗ we get inclusions Sym η ⊂
L−1 ⊗ Sym η ⊂ L−2 ⊗ Sym η ⊂ . . . . The next result follows essentially in
the same way as [23, Proposition 5.4].

Proposition 4.6. — For each i > 2, we have an isomorphism of G-
modules

Hi
O2

(S/(f)) ∼= lim−→
k

Hi−1(G/P, L−k ⊗ Sym η).

We estimate cohomology by working first with the associated graded of η:

(4.4) gr η = (ΩG/P ⊕OG/P )⊗O(1).
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We have the following (multiplicity-free) decomposition in degree d− 3k
by Lemma 4.3:

(4.5) L−k ⊗ Symd(gr η) =
⊕

a,b>0, c>a+b
3c−2b−a6d

V(a · g′ + b ·X4 + (d− 2c− k) ·X).

Now we analyze the limit maps in Proposition 4.6 above.

Lemma 4.7. — For any representation λ of G, the map

Hi(G/P, L−k ⊗ Sym η)→ Hi(G/P, L−k−1 ⊗ Sym η)

is an isomorphism on the level of λ-isotypical components for k � 0.

Proof. — By the Borel–Weil–Bott theorem 2.3, there exists only finitely
(isomorphism classes) of irreducible G-bundles on G/P that yield the rep-
resentation λ in some cohomological degree. The multiplicity for each of
these bundles stabilizes in L−k ⊗ Sym(gr η) for k � 0, since by (4.5)
L−k ⊗ Symd(gr η) has a multiplicity-free decomposition into G-bundles (in
fact, admissibility suffices). Write

(4.6) 0→ L−k ⊗ Sym η → L−k−1 ⊗ Sym η → B → 0.

Consider the associated graded of these bundles. The argument above shows
that for k � 0 the bundle grB contains no irreducible summands that
yield λ in some cohomological degree. This implies that the λ-isotypical
component of Hi(G/P, B) is zero, for all i > 0. The conclusion follows now
by taking the long exact sequence in cohomology associated to (4.6). �

The following exact sequence of G-equivariant S-modules

0→ S(−4) f−−→ S −→ S/(f)→ 0

gives a long exact sequence in local cohomology modules

(4.7) · · · → Hi
O2

(S)(−4) f−−→ Hi
O2

(S)→ Hi
O2

(S/(f))

→ Hi+1
O2

(S)(−4)→ · · · .

To finish part (c) of Theorem 4.1, we pursue a reasoning similar to the
one in [23, Section 5].

4.2. Local cohomology supported in O2 for (C3, ω3)

Throughout this section (G′, X) = (C3, ω3).
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Lemma 4.8. — For all k � 0, the space of G′-invariants

Hi(G/P,L−k ⊗ Sym(gr η))G
′

is nonzero if and only if i = 0, 1, 5, 6. Among these for i = 5, 6, the invariant
spaces of C∗-degree −6 are zero, and the space of C∗-degree −10 is one-
dimensional for i = 5 and zero for i = 6.

Proof. — We start with the decomposition (4.5). We apply Theorem 2.3
to a summand of type V(2a, 2b,−x) with a, b, x > 0, to see when it gives
the trivial G′-representation (0, 0, 0). Clearly, (2a + 1, 2b + 1,−x + 1) is
(1, 1, 1) for a = b = x = 0, giving the trivial representation for the i = 0
cohomology. Otherwise, in order to continue we must have x > 1 and
reflecting at the third node gives V(2a + 1, 2b − 2x + 3, x − 1). This gives
(1, 1, 1) for a = 0, b = 1, x = 2. Otherwise, we must have 2x − 2b + 3 < 0
and we proceed likewise to i = 2. At the next step i = 3, we can potentially
reflect at either the first or third node. All in all, we can encounter the
following weights for i = 2, 3, 3, 4 respectively:

(4.8)

(2a+2b+4−2x, 2x−2b−3, 2b+2−x),
(2x−2a−2b−4, 2a+1, 2b+2−x),
(2a+2b+4−2x, 2b+1, x−2b−2),
(2x−2a−2b−4, 2a+4b+5−2x, x−2b−2).

Due to parity reasons, we can not get the trivial representation for i =
2, 3, 4. After i = 5 steps, we arrive at the weight (with x > a+ 2b+ 3):

(2b+ 1, 2x− 2a− 4b− 5, 2a+ 2b+ 3− x).

This gives (1, 1, 1) for a = 1, b = 0, x = 4. Otherwise, we must have x >
2a+2b+3 and reflecting at the third node yields (2b+1, 2a+1, x−2a−2b−3).
This gives (1, 1, 1) for a = 0, b = 0, x = 4 at i = 6, and we stop since all
entries of the weight vector are non-negative.
In other words, the only possible summands that can yield the trivial

G′-representation (0, 0, 0) are

V(0, 0, 0), V(0, 2,−2), V(2, 0,−4), V(0, 0,−4),

when i = 0, 1, 5, 6, respectively. Now when the degree is d − 3k = −6,
we see by inspection that there are no summands V(2, 0,−4) or V(0, 0,−4)
in (4.5). If d−3k = −10 then V(0, 0,−4) is not a summand, but V(2, 0,−4)
is a summand in (4.5) with a = 1, b = 0, c = k − 3, for k > 4. �
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Lemma 4.9. — Each G′-module in the decomposition of H4
O2

(S) is of
the form (2p + 1)ω1 + 2qω2 + rω3, for some p, q, r ∈ Z>0. In particular,
H4
O2

(S) has no non-zero G′-invariant sections.

Proof. — By Proposition 4.6, any G-representation in H3
O2

(S/(f)) must
appear in H2(G/P,L−k⊗Sym(gr η)) for k � 0. We see from (4.8) with i =
2 that the only possible G′-representations in H2(G/P,L−k ⊗ Sym(gr η))
are of the form (2p + 1)ω1 + 2qω2 + rω3, for some p, q, r ∈ Z>0. The long
exact sequence (4.7) gives an exact sequence

0→ H3
O2

(S/(f))→ H4
O2

(S)(−4) f−−→ H4
O2

(S).

Since any element of H4
O2

(S) is annihilated by a power of the G′-invariant
f , this proves the claim. �

We now finish the proof of Theorem 4.1(2)(c).

Proposition 4.10. — We have Hi
O2

(S) = 0 for i > 4, i 6= 7 and
H7
O2

(S) = E.

Proof. — The modules Hi
O2

(S) = 0 for i > 4 have support contained in
O1. Hence, by the description of the category in Theorem 3.10(2), they must
be direct sums of modules of type L1, E,M,N , whereM = Df−7/2/Df−3/2

andN = DN is the holonomic dual toN . There is a nonsplit exact sequence

0→ E → N → L1 → 0.

The modules L1,M (resp. E,N) have G-semi-invariant elements of degree
−10 (resp. −14) that are annihilated by f (see Theorem 3.9). Since E
does not have a semi-invariant of degree −6, we see that N also has a
semi-invariant element of degree −10 annihilated by f . In particular, any
non-trivial local cohomology module Hi

O2
(S) (for i > 4) has a non-zero

G′-invariant element in degree −10 or −14 annihilated by f .
Thus, by taking G′-invariants in degrees −6 and −10 in the long exact

sequence (4.7), we see by Proposition 4.6, Lemma 4.7 and Lemma 4.8 that
the only non-zero local cohomology (when i > 4) is H7

O2
(S) = E. �

We now proceed determining the G-character of the simple equivariant
D-module L2.

Theorem 4.11. — When (G′, X) = (C3, ω3), the G-character of L2 is
given by

[L2] = t−7ω1

(1− t−2g′)(1− t−1X)(1−X4)(1− tX)(1− t2g′) .

ANNALES DE L’INSTITUT FOURIER



LOCAL COHOMOLOGY ON A SERIES 25

Proof. — By Proposition 4.10, the long exact sequence (4.7) gives the
exact sequence

(4.9) 0→ H3
O2

(S/(f))→ L2(−4) f−−→ L2 → H4
O2

(S/(f))→ 0.

For any representation λ of G′, this gives the formula (we use the notation
as in Section 2.1)

(4.10) md−4
λ (L2)−md

λ(L2) = md
λ(H3(S/(f)))−md

λ(H4(S/(f))),
for any d ∈ Z.

By Lemma 4.9, we can assume that λ = (2p+ 1)ω1 + 2qω2 + rω3, for some
p, q, r ∈ Z>0. We now proceed to compute the right-hand side of (4.10).
For simplicity, put Ni = Hi(G/P,L−k⊗Sym(gr η)) (k � 0) and consider

again the decomposition (4.5). Due to parity reasons, the only cohomology
groups that yield a representation of the form λ via the Borel–Weil–Bott
theorem occur in steps i = 2, 3, 4 for weights of the form (4.8). More pre-
cisely, the calculation shows that the representation λ = (2p+1)ω1+2qω2+
rω3 occurs in Ni in C∗-degree d ∈ Z if and only if d+ r is odd and we are
in the following situation:

(4.11)


d 6 2p+ r − 3, when i = 2;
d 6 2p− r − 5 or d 6 −2p+ r − 7, when i = 3;
d 6 −2p− r − 9, when i = 4.

Moreover, md
λ(Ni) is equal to the number of the corresponding inequalities

satisfied above. Since H5
O2

(S/(f)) = 0, by Proposition 4.6 and Lemma 4.7
the representations in N4 must cancel out completely via representations
in N3 in the spectral sequence corresponding to (4.4). Hence, we have

md
λ(H3(S/(f)))−md

λ(H4(S/(f))) = md
λ(N2)−md

λ(N3) +md
λ(N4).

Together with (4.10) and (4.11), this yields the recursive formula in d (when
d+ r is odd):

(4.12) md−4
λ (L2)−md

λ(L2)

=



0 if d > 2p+ r − 3;
1 if d 6 2p+ r − 3 and d > max{2p− r − 5,−2p+ r − 7};
0 if min{2p− r− 5,−2p+ r− 7}<d 6max{2p− r− 5,−2p+ r− 7};
−1 if d 6 min{2p− r − 5,−2p+ r − 7} and d > −2p− r − 9;
0 if d 6 −2p− r − 9.
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We now show the initial condition md
λ(L2) = 0, whenever d > 2p + r − 7.

Assume by contradiction that this is not the case, hence there exists a non-
zero highest weight vector v ∈ L2 of weight λ with deg v > 2p + r − 7.
Since the support of L2 is O2, there exist a minimal integer l > 1 with
f l · v = 0. Then the element w = f l−1 · v 6= 0 has highest weight λ with
degw > 2p+ r− 7. By the sequence (4.9), this gives a non-zero element in
H3
O2

(S/(f)) of highest weight λ with degree > 2p+r−3. By Proposition 4.6,
this contradicts (4.11), showing that md

λ(L2) = 0, whenever d > 2p+ r−7.
This initial condition together with the recursive formula (4.12) determines
the character of L2. To see that this matches the rational expression claimed
in the statement of the theorem (denoted [M ] =

⊕
d∈Z t

dMd), it is enough
to show that the latter satisfies the same initial condition and recursive
formula (4.12).
It is easy to see that if λ is a representation that appears in someMd, then

it must be of the form λ = (2p+ 1)ω1 + 2qω2 + rω3, for some p, q, r ∈ Z>0.
By inspection, the Z[t, t−1]-coefficient of such λ in [M ] is

c(t) = t−7 · (t2p + t2p−4 + · · ·+ t4−2p + t−2p) · (tr + tr−2 + · · ·+ t2−r + t−r).

As the highest power of t in c(t) with non-zero coefficient is 2p+ r− 7, the
initial condition is satisfied. We are left to show that the coefficients of c(t)
satisfy the recursive formula (4.12). We have

t4 · c(t)− c(t) = (t2p−3 − t−2p−7)(tr + tr−2 + · · ·+ t2−r + t−r) =

= t2p+r−3 + · · ·+ ta − tb − · · · − t−2p−r−7,

where a = max{2p−r−3,−2p+r−5} and b = min{2p−r−5,−2p+r−7},
which agrees with (4.12). �

Remark 4.12. — We can give an explicit D-module presentation for L2 as
follows. From Theorem 4.11 we see that for λ = ω1 we have m−7

λ (L2) = 1,
and from Section 3.4 that m−7

λ (M) = 0 for any other simple equivariant
D-module M . Denote by V the irreducible G-representation corresponding
to λ with C∗-degree −7. Using (2.2), we see that the D-module P(V ) is
the projective cover of L2 in modG(DX). By Theorem 3.10, in fact we have
P(V ) ∼= L2. Now P(V ) can be given an explicit presentation as explained
in [26, p. 435].

4.3. Local cohomology supported in O2 for the other cases

In this section (G′, X) is one of the cases (A5, ω3), (D6, ω5) or (E7, ω6).
We adhere to uniformity as much as possible (for the case (A5, ω3), see [23]).
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Lemma 4.13. — Let (G′, X) be either . Then for all k � 0, the space
of G′-invariants

Hi(G/P,L−k ⊗ Sym(gr η))G
′

is nonzero if and only if i = 0, 1,m+1,m+2, 2m+1, 2m+2, 3m+2, 3m+3.
Among these, the spaces of C∗-degree −4m − 2 are one-dimensional for
i = 0, 1,m+1,m+2, 2m+1 and zero otherwise, and of C∗-degree −6m−4
are one-dimensional for i = 0, 1,m+ 1,m+ 2, 2m+ 1, 2m+ 2, 3m+ 2 and
zero for i = 3m+ 3.

Proof. — First, we consider the case (G′, X) = (D6, ω5). We apply
Theorem 2.3 to a summand of type V(0, a, 0, b,−x, 0) with a, b, x > 0
in (4.5). Computing as in Lemma 4.8 we see that we obtain the trivial
G′-representation only for the following types:

V(0, 0, 0, 0, 0, 0), V(0, 0, 0, 1,−2, 0), V(0, 2, 0, 1,−6, 0), V(0, 3, 0, 0,−6, 0),

V(0, 0, 0, 3,−10, 0),V(0, 1, 0, 2,−10, 0),V(0, 1, 0, 0,−10, 0),V(0,0,0,0,−10,0),

when i = 0, 1, 5, 6, 9, 10, 14, 15, respectively. Assuming k � 0, we see by
inspection that the corresponding summands appear in the decomposi-
tion (4.5) for degree d−3k = −18 only when i = 0, 1, 5, 6, 9, and for degree
d− 3k = −28 all but the last summand V(0, 0, 0, 0,−10, 0) appear.
Next, consider the case (G′, X) = (E7, ω6). We apply Theorem 2.3 to a

summand of type V(a, 0, 0, 0, b,−x, 0) with a, b, x > 0 in (4.5). Computing
as above we see that we obtain the trivial G′-representation only for the
following types:

V(0, 0, 0, 0, 0, 0, 0), V(0, 0, 0, 0, 1,−2, 0), V(4, 0, 0, 0, 1,−10, 0),

V(5, 0, 0, 0, 0,−10, 0), V(0, 0, 0, 0, 5,−18, 0), V(1, 0, 0, 0, 4,−18, 0),

V(1, 0, 0, 0, 0,−18, 0), V(0, 0, 0, 0, 0,−18, 0),

when i = 0, 1, 9, 10, 17, 18, 26, 27, respectively. The rest of the proof follows
similarly to the previous case. �

The following completes the proof of Theorem 4.1(1)(c) (cf. [23, Sec-
tion 5.1]).

Proposition 4.14. — The only non-zero modulesHi
O2

(S) for i > m+3
are H2m+3

O2
(S) = L1, H

3m+4
O2

(S) = E.

TOME 0 (0), FASCICULE 0



28 András C. LŐRINCZ & Jerzy WEYMAN

Proof. — The modules Hi
O2

(S) = 0 for i > m+3 have support contained
in O1. Hence, by the description of the category in Theorem 3.10(1), they
must be direct sums of modules of type L1 and E.
The modules L1 (resp. E) have G-semi-invariant elements of degree

−4m−6 (resp. −6m−8) that are annihilated by f (see Theorem 3.9). More-
over, multiplication by f is surjective both on LG′1 and on EG′ (see The-
orem 3.9) and also on the G′-invariant space of Hm+3

O2
(S) ∼= Sf

√
f/Dfr1+1.

By the long exact sequence (4.7) together with Proposition 4.6 and
Lemma 4.13, we conclude that L1 (resp. E) can only appear in the local
cohomology modules Hi

O2
(S) for i = m+ 4, 2m+ 3 (resp. i = m+ 4, 2m+

3, 2m+ 4, 3m+ 4). Since there are no cancelations possible for i = 2m+ 3
(resp. i = 3m + 4) in the spectral sequence when passing from the asso-
ciated graded gr η to η (4.4), we see that L1 is a summand of H2m+3

O2
(S)

(resp. H3m+4
O2

(S) = E). We will now show that the rest of the terms must
cancel out in the spectral sequence.
We observe that Hm+3

O2
(S) = Sf

√
f/Dfr1+1 has no G-semi-invariant of

degree −4m − 2 (resp. −6m − 4) that is annihilated by f . Together with
the sequence (4.7), Proposition 4.6 and Lemma 4.7, this implies that for
i = m + 1,m + 2 the semi-invariants in degree −4m − 2 (resp. −6m − 4)
from Lemma 4.13 must cancel each other out in the spectral sequence.
We are left to show that the semi-invariants in Lemma 4.13 in degree

−6m − 4 between i = 2m + 1, 2m + 2 cancel each other out in the spec-
tral sequence. This can be seen as in the proof of [23, Proposition 5.9], by
comparing the relevant connecting homomorphism between them to an-
other one in a different degree. We sketch the argument as follows. The
sequence (4.2) induces the following short exact sequences:

0→ Symd ΩG/P ⊗O(d) → Symd η → Symd−1 η ⊗O(1)→ 0
0→ Symd−1ΩG/P ⊗O(d) → Symd−1 η ⊗O(1)→ Symd−2 η ⊗O(2)→ 0

...
...

...
0→ ΩG/P ⊗O(d) → η ⊗O(d− 1) → O(d) → 0

We tensor these sequences by L−k. From the proof of Lemma 4.13, we
need to track the two irreducible bundles in L−k ⊗ Sym(gr η) yielding a
G′-invariant in degree −6m − 4 in cohomological degrees i = 2m + 1 and
2m+2. Putting d = 3k−6m−4 with k � 0, we get that the only potentially
non-zero connecting homomorphism on the level of G′-invariants (between
1-dimensional spaces) is induced by the (m + 1)th exact sequence from
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above (recall that L ∼= O(1); below cohomology is taken on G/P ):

(4.13)

0→H2m+1(Symd−mη ⊗O(m−k))G
′

→H2m+1(Symd−m−1η ⊗O(m+1−k))G
′

→ H2m+2(Symd−mΩG/P ⊗O(d−k))G
′

→H2m+2(Symd−mη ⊗O(m−k))G
′
→0

Now put k → k − 2 and d → d − 2. Then repeating the discussion
above gives a G′-invariant in degree d − 3k = −6m and in cohomological
degrees 2m+ 1 and 2m+ 2 again. The relevant connecting homomorphism
comes from the (m−1)th exact sequence from above, and it is precisely the
same as the connecting homomorphism in (4.13) (ignoring the C∗-action).
Since EG′ and LG′1 have no elements in degrees −6m and −6m− 4, we see
from (4.7) that H2m+2

O2
(S/(f))G′ and H2m+3

O2
(S/(f))G′ have no elements

in degree −6m. By Proposition 4.6 and Lemma 4.7, this implies that the
connecting homomorphism (4.13) must be non-trivial. �

5. Other invariants

5.1. Lyubeznik numbers and intersection cohomology groups of
orbit closures

In this section, we determine some local cohomology groups of equivari-
ant D-modules with support in the origin. We then use these computations
to determine the Lyubeznik numbers (for the (A5, ω3) case see [23, Sec-
tion 5]) and the (middle perversity) intersection cohomology groups of the
orbit closures O1, O2, O3.

We start with an observation relating the intersection cohomology groups
to the local cohomology groups.

Proposition 5.1. — Let p ∈ {1, 2, 3} and cp = codimX Op. For all
i ∈ Z, we have

H
i+cp

{0} (F(Lp)) = E⊕ dim IHi(Op)
.

Proof. — By the Riemann–Hilbert correspondence (especially [8, Theo-
rem 7.1.1]), the intersection cohomology groups IHi(Op) can be computed
as the (derived) pushforward of the module Lp to a point. The latter is
equivalent to the restriction of the Fourier transform F(Lp) to a point [8,
Proposition 3.2.6]. By [8, Proposition 1.7.1], this can be computed as local
cohomology supported at the origin. �
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Lemma 5.2. — The module Hi
{0}(L1) is non-zero (in which case it is

isomorphic to E) if and only if:
(1) When (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6) : i = m + 2, 2m +

2, 3m+ 4;
(2) When (G′, X) = (C3, ω3) : i = 1, 3m+ 4.

Proof. — The result follows readily by considering the spectral sequence
Hi
{0}(H

j

O1
(S)) ⇒ Hi+j

{0} (S) together with Theorem 4.1. We give more de-
tails for part (2). In this case, the latter spectral sequence degenerates
already on the second page, so that we have H3m+4

{0} (H3m+4
O1

(S)) = E, and
Hi
{0}(H

3m+4
O1

(S)) = 0 for i 6= 3m + 4. The claim now follows by using the
long the exact sequence associated to 0→ L1 → H3m+4

O1
(S)→ E → 0. �

Lemma 5.3. — The module Hi
{0}(L2) is non-zero (in which case it is

isomorphic to E) if and only if:
(1) When (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6): i = m + 3, 2m +

3, 3m+ 3, 3m+ 5, 4m+ 5, 5m+ 5;
(2) When (G′, X) = (C3, ω3): i = m+ 3, 5m+ 5.

Proof. — We consider the spectral sequence Hi
{0}(H

j

O2
(S)) ⇒ Hi+j

{0} (S)
together with Theorem 4.1. Part (2) follows easily. For part (1) assuming
that Hi

{0}(H
m+3
O2

(S)) = 0 for i < 3m + 3, it follows from the spectral
sequence (using Lemma 5.2) that

Hi
{0}(H

m+3
O2

(S)) = E, for i = 3m+ 3, 4m+ 5, 5m+ 5,

and it is zero for all other i. By the exact sequence 0→ L2 → Hm+3
O2

(S)→
L1 → 0 the claim follows.
We are left to show the vanishing of Hi

{0}(H
m+3
O2

(S)) for i < 3m+3. Note
thatHm+3

O2
(S)) ∼= H1

O3
(L′4), and alsoHi

{0}(H1
O3

(L′4)) = Hi+1
{0} (L′4), since the

corresponding spectral sequence degenerates. Hence, we are left to show
that Hi

{0}(L′4) = 0, for i < 3m + 4. Since F(L′4) = L1, by Proposition 5.1
the latter follows since codimX Op = 3m+ 4. �

Lemma 5.4. — The module Hi
{0}(L3) is non-zero (in which case it is

isomorphic to E) if and only if:
(1) When (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6): i = 1, 6m+ 7;
(2) When (G′, X) = (C3, ω3): i = 3m+ 4, 6m+ 7.

Proof. — For part (1) we have Hi
{0}(H1

O3
(S)) = Hi+1

{0} (S), since the cor-
responding spectral sequence degenerates. Hence, the claim follows readily
by Theorem 4.1.
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For part (2), since F(L3) = L1 it is enough to compute IHi(O1) by
Proposition 5.1. Because O1 is the affine cone over G/P , the latter can
be computed as explained in [3, Section I.5]. Using the Poincaré polyno-
mial (4.1) we get that dim IHi(O1) = 1 for i = 0, 6 and it is 0 otherwise. �

Our results above determine also the Lyubeznik numbers λi,j(Rp)
(see [27]) of the orbit closures Op for p = 1, 2, 3, where Rp := C[Op]m is the
localization of the coordinate ring of Op at the maximal homogeneous ideal
m. Since λi,j(Rp) equals the multiplicity of E in Hi

{0}(H
dimX−j
Op

(S)), we
obtain the following by our previous calculations in this section together
with Theorem 4.1.

Corollary 5.5. — For p ∈ {1, 2, 3} the following are the only non-zero
Lyubeznik numbers λi,j(Rp) (in which case they are equal to 1):

(1) If (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6):
(a) When p = 1 : (i, j) = (0,m + 3), (0, 2m + 3), (m + 2, 3m +

4), (2m+ 2, 3m+ 4), (3m+ 4, 3m+ 4);
(b) When p = 2 : (i, j) = (0, 3m + 4), (m + 2, 4m + 5), (2m +

2, 4m+ 5), (3m+ 4, 4m+ 5), (3m+ 3, 5m+ 5), (4m+ 5, 5m+
5), (5m+ 5, 5m+ 5);

(c) When p = 3 : (i, j) = (6m+ 7, 6m+ 7).
(2) If (G′, X) is (C3, ω3):

(a) When p = 1 : (i, j) = (3m+ 4, 3m+ 4);
(b) When p = 2 : (i, j) = (0, 3m + 4), (2m + 2, 5m + 5), (5m +

5, 5m+ 5);
(c) When p = 3 : (i, j) = (6m+ 7, 6m+ 7).

Finally, we give a list of the intersection cohomology groups of the orbit
closures. These follow by our previous calculations together with Proposi-
tion 5.1.

Corollary 5.6. — For p ∈ {1, 2, 3} the following are the only non-
zero intersection cohomology groups IHi(Op) (in which case they are 1-
dimensional):

(1) If (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6):
(a) When p = 1, then i = 0, m+ 2, 2m+ 2;
(b) When p = 2, then i = 0, m, 2m, 2m+ 2, 3m+ 2, 4m+ 2;
(c) When p = 3, then i = 0, 6m+ 6.

(2) If (G′, X) is (C3, ω3):
• When p = 1, 2, 3, then i = 0, 4m+ 2.
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5.2. Gorenstein property and Castelnuovo–Mumford regularity

In the last section, we establish some results for Gorenstein varieties
based on observations that we extracted from the previous sections.

Throughout this sectionG = G′×C∗ denotes a linearly reductive complex
connected algebraic group, and X is a finite-dimensional rational represen-
tation of G. Here the factor C∗ of G acts on X by the usual scaling.
We start with a result describing the elements of a local cohomology

module that are annihilated by its supporting ideal, which is relevant even
in the case when G′ = {1}.

Lemma 5.7. — Let Z be a Gorenstein G-stable closed subvariety of X
with c = codimX Z > 0, and I the defining ideal of Z. Then there is a
G-equivariant isomorphism of S-modules

HomS(S/I, Hc
Z(S) ) ∼= S/I ⊗ χ ,

for some character χ : G → C∗. In particular, the module Hc
Z (S) has a

unique (up to scalar) G-semi-invariant section h of degree − reg(I)−c with
AnnS(h) = I (here reg(I) is the Castelnuovo–Mumford regularity of I).

Proof. — We follow the proof of [10, Proposition 3.1(1)] while keeping
track of equivariance. First, HomS(S/I, M) ∼= HomS(S/I, H0

Z(M)), for
any S-module M . Hence, we have a spectral sequence

ExtiS(S/I, Hj
Z(S)) =⇒ Exti+jS (S/I, S).

This yields a G-equivariant isomorphism

HomS(S/I, Hc
Z(S) ) ∼= ExtcS(S/I, S).

As Z is Gorenstein, we have a G-equivariant isomorphism ExtcS(S/I, S) ∼=
S/I ⊗ χ for a character χ. �

The result above provides an interesting technique for proving that a
variety is not Gorenstein. For example, by Lemma 4.9 we obtain that
for (G′, X) = (C3, ω3) the variety O2 is not Gorenstein. Similarly, [25,
Lemma 3.4] implies the (well-known) result that the affine cone over the
twisted cubic curve is not Gorenstein.
Since the DX -module Hc

Z(S) has a unique simple submodule L (corre-
sponding to the intersection cohomology sheaf of the trivial local system
on Zreg), it is interesting to see when the element h as above lies in L.
While this happens frequently (e.g., for our subexceptional series), it is not
always the case as can be seen already when Z is a hypersurface (e.g., the
discriminant of cubics [25]).
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In [20, Conjecture 5.17], a conjecture has been made for the existence of
(semi)-invariant sections for some D-modules. The conjecture has been dis-
proved precisely for orbit closures that are not Gorenstein (see [34] and [26,
Proposition 5.8]). On the other hand, from [17], [18] and [16], we see that
indeed all orbit closures in our exceptional series (G′, X) are Gorenstein,
with the only exception for O2 when (G′, X) = (C3, ω3) due to the reason
mentioned above (nevertheless, its regularity is obtained in [17, page 38]).
In conclusion, when the group G is large enough, the existence of a semi-
invariant section as in Lemma 5.7 gives strong evidence for the Gorenstein
property of a G-stable subvariety Z.

Proposition 5.8. — Consider Z as in Lemma 5.7. Assume C[X]G′ =
C[f ], and that there is a surjective map of D-modules π : Dfα � Hc

Z (S) ,
for some α ∈ Q. Let r ∈ α+ N be maximal with the property π(fr) 6= 0.
Then r is a root of the Bernstein–Sato polynomial of f and reg(I) =

− r · deg f − c.

Proof. — The existence of the map π implies that we have f ∈ I. In
particular, this shows the existence of r ∈ α+ N. By [26, Proposition 4.9],
r is a root of the Bernstein–Sato polynomial of f .

Since C[X]G′ = C[f ], the only semi-invariants (up to constant) in Dfα
are powers of f . Hence, the only semi-invariant in Hc

Z (S) that is annihi-
lated by f is π(fr). By Lemma 5.7, Hc

Z (S) has a semi-invariant section h
annihilated by I. Since h is annihilated by f , this shows that h = π(fr)
(up to non-zero constant). �

Remark 5.9. — The existence of a map π can often be seen directly from
the quiver of modG(DX). Namely, the module Sf ·fα (for α such that this is
G-equivariant) is an injective object in modG(DX), and the module Hc

O(S)
is an injective object in modOG(DX) for an orbit O (see [25, Lemma 2.4],
[26, Lemma 3.11]).

We established a fundamental link between the roots of the Bernstein–
Sato polynomial of f and Castelnuovo–Mumford regularity of Gorenstein
varieties that appear in the localizations at powers of f as above. The
assumption for the existence of π as above is satisfied frequently for preho-
mogeneous vector spaces with semi-invariants. It is satisfied for our subex-
ceptional series for all (Gorenstein) orbit closures. Using Remark 5.9, it is
not difficult to see that in all the cases encountered in [25], [31] and [26, Sec-
tion 5], the map π exists for Gorenstein orbit closures with only one excep-
tion from [26, Section 5.5]:
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Example 5.10. — Consider G′ = Spin(9) and let X be its 16-dimensional
spin representation. The group G acts on X with 4 orbits O0, O1, O2, O3 of
codimensions 16, 5, 1, 0, respectively. Then C[X]G′ = C[f ], with deg f = 2.
The roots of the Bernstein–Sato polynomial of f are −1, −8. It follows
from [17, Section 5.1] that O1 is Gorenstein with reg(O1) = 3. SinceH5

O1
(S)

is a simple D-module that corresponds to an isolated vertex of the quiver of
modG(DX) (see [26, Section 5.5]), it is not a composition factor of Sf · fα,
for any α ∈ Q. For O0, O2 the map π exists, and we have 1 = reg(O2) =
−(−1) · 2− 1 and 0 = reg(O0) = −(−8) · 2− 16.

The exceptional behavior of O1 can be also seen from the fact that it is
a self-dual highest weight orbit closure [15]. Moreover, both of the simple
equivariant D-modules corresponding to O2 and O1 (by Lemma 5.7) have
G′-invariant elements in degree −8. This also demonstrates the sharpness
of [26, Corollary 3.23], as X is a spherical G-variety that is not of Capelli
type.

Finally, we apply the results above to our subexceptional series again.

Corollary 5.11. — For p ∈ {1, 2} the Castelnuovo–Mumford regular-
ity reg(Ip) of the defining ideal Ip of Op is:

(1) If (G′, X) is (A5, ω3), (D6, ω5) or (E7, ω6) : reg(I1) = m+ 2,
reg(I2) = m+ 3;

(2) If (G′, X) is (C3, ω3) : reg(I1) = reg(I2) = m+ 2.
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