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ON A GENERALIZED CANONICAL BUNDLE
FORMULA FOR GENERICALLY FINITE MORPHISMS

by Jingjun HAN & Wenfei LIU (*)

Abstract. — We prove a canonical bundle formula for generically finite mor-
phisms in the setting of generalized pairs (with R-coefficients). This complements
Filipazzi’s canonical bundle formula for morphisms with connected fibres. It is then
applied to obtain a subadjunction formula for log canonical centers of generalized
pairs. As another application, we show that the image of an anti-nef log canonical
generalized pair has the structure of a numerically trivial log canonical generalized
pair. This readily implies a result of Chen–Zhang. Along the way we prove that the
Shokurov type convex sets for anti-nef log canonical divisors are indeed rational
polyhedral sets.
Résumé. — Nous prouvons une formule de fibré canonique pour des morphismes

génériquement finis dans le cadre de paires généralisées (avec R-coefficients). Cela
complète la formule de fibré canonique de Filipazzi pour les morphismes à fibres
connectées. Elle est ensuite appliquée pour obtenir une formule de sous-jonction
pour les centres log canoniques de paires généralisées. Comme une autre appli-
cation, nous montrons que l’image d’une paire généralisée canonique anti-nef log
a la structure d’une paire généralisée canonique log numériquement triviale. Cela
implique un résultat de Chen–Zhang. Au passage, nous prouvons que les ensembles
convexes de type de Shokurov pour les diviseurs log canoniques anti-nef sont en
effet des ensembles polyédriques rationnels.

1. Introduction

To study a projective morphism f : X → Z between normal varieties,
it is crucial to find relations between the canonical divisors KX and KZ .
One prominent example is Kodaira’s canonical bundle formula for elliptic
surfaces ([37]). Nowadays, thanks to the work of several authors ([1, 2, 22,
26, 27, 28, 35, 36, 46]), the canonical bundle formula of Kodaira has a far
reaching extension to higher dimensions and to the log case as follows.
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2048 Jingjun HAN & Wenfei LIU

Theorem 1.1. — Let f : X → Z be a projective surjective morphism
between normal varieties with connected fibres. Suppose that there is an
effective R-divisor B on X such that (X,B) is a projective log canonical
pair and KX + B ∼R,f 0. Then there is an effective R-divisor BZ and an
R-divisor MZ on Z such that

(i) KZ +BZ +MZ is R-Cartier and KX +B ∼R f
∗(KZ +BZ +MZ),

and
(ii) there is a projective birational morphism µ : Z̃ → Z and a nef R-

divisor M
Z̃

such that MZ = µ∗MZ̃
; writing K

Z̃
+ B

Z̃
+ M

Z̃
=

µ∗(KZ +BZ +MZ), (Z̃, B
Z̃

) is a sub-log canonical pair.

Theorem 1.1 allows one to investigate (X,B) in terms of (Z,BZ +MZ)
which typically has lower dimension. If (X,B) has klt singularities then
it is possible to choose MZ such that (Z,BZ + MZ) is still a klt pair ([2,
Theorem 0.2]). However, if (X,B) is only assumed to be log canonical, then
it is not known that (Z,BZ +MZ) can land in the category of log canonical
pairs; it depends on the semiampleness conjecture about the divisor M

Z̃
appearing in (ii) ([47, Conjecture 7.13.1], see also [23, Conjecture 3.9]).
It is the idea of Birkar–Zhang ([9]) that one can view (Z,BZ + MZ)

together with the nef R-divisor M
Z̃
on the higher birational model Z̃ as a

generalized pair and investigate its geometry as for usual pairs. Note that
Z̃ is allowed to be replaced by an even higher birational model and M

Z̃
by its pull-back, but the newly obtained generalized pair is understood to
be the same as the original one. It is thus convenient to treat MZ as the
trace of a b-R-divisor Mf on Z, that is,MZ = Mf, Z (see Definition 2.1 for
b-divisors); then the generalized pair at hand can be formally written as
(Z,BZ+Mf ). Now, by Theorem 1.1(ii), the generalized pair (Z,BZ+Mf )
has log canonical singularities. (We refer to Section 2.2 for the definition
of generalized pairs as well as their singularities.)
Since its inception, the notion of generalized pairs has proven useful in

birational geometry and people are working intensively on the minimal
model program of generalized pairs as well as its implications ([4, 5, 6, 8,
9, 10, 11, 15, 17, 16, 18, 19, 20, 21, 29, 32, 30, 31, 33, 34, 41, 43, 44, 45]).
There are also interesting interactions with other threads of the minimal
model program such as the theory of quasi-log canonical pairs ([25]) and
the [42, Generalized Nonvanishing Conjecture]. We refer the reader to [7]
for an exposition on some of the recent developments and open problems
involving generalized pairs.

This paper treats the canonical bundle formula in the setting of gen-
eralized pairs. Filipazzi proves a canonical bundle formula for morphisms

ANNALES DE L’INSTITUT FOURIER



GENERALIZED CANONICAL BUNDLE FORMULA 2049

with connected fibres from generalized pairs, under the assumption that
the divisors involved have Q-coefficients ([17, Theorem 1.4] and [16, Theo-
rem 6]). In this paper, we generalize his formula to any projective surjective
morphism, at the same time relaxing the condition on the coefficients of
the divisors.

Theorem 1.2. — Let F be either the rational number field Q or the
real number field R. Fix a quasi-projective scheme S. Let f : X → Z be
a surjective morphism of normal varieties, projective over S. Suppose that
there is an F-divisor B and a nef b-F-divisor M such that

• (X/S,B + M) is a generalized pair over S;
• M is an F>0-linear combination of nef/S Q-Cartier b-divisors;
• (X/S,B+ M) has log canonical singularities over the generic point
of Z;

• KX +B + MX ∼F, f 0.
Then there is an F-divisor BZ and a nef b-F-divisor Mf on Z such that
(Z/S,BZ + Mf ) is a generalized pair over S and

KX +B + MX ∼F f
∗ (KZ +BZ + Mf, Z) .

Moreover, if (X/S,B + M) has log canonical (resp. klt) singularities, then
so does (Z/S,BZ + Mf ).

Theorem 1.2 is a combination of the aforementioned result of Filipazzi
with our canonical bundle formula for generically finite morphisms (The-
orem 4.5). We remark that Theorem 4.5 is a generalization of Fujino–
Gongyo’s result [26, Theorem 3.1] for log canonical pairs. Compared to [26,
Theorem 3.1], [17, Theorem 1.4] and [16, Theorem 6], there are two non-
trivial ingredients in the proof of Theorem 1.2. The first ingredient is
to reduce the theorem to the case with Q-coefficients; see Lemma 4.1.
Recall that the nonvanishing conjecture does not hold for generalized pairs
(cf. [34]), so the proof of [26, Theorem 3.1] does not work in our setting.
The second ingredient is the construction of BZ and Mf , which resembles
the proof of [26, Lemma 1.1]; additional work is then done to show that
the b-Q-divisor Mf is nef.

One application of the canonical bundle formula is to establish subad-
junction formulas for log canonical centers of generalized pairs of codimen-
sion larger than one. The subadjunction is proved in [17, Theorems 1.5
and 6.7] when the log canonical center is exceptional or when the underly-
ing variety of the generalized pair is Q-factorial klt. In Section 5 we apply
Theorem 1.2 to obtain a subadjunction formula for general log canonical
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2050 Jingjun HAN & Wenfei LIU

centers; we also prove the main result of [12] in the setting of log canonical
generalized pairs.
Along the way we establish in Section 3 that the Shokurov type convex

set of anti-nef log canonical divisors is a rational polyhedral set. This is of
independent interest.

Notation and Conventions

We work throughout over the complex number field C. A scheme means
a separated scheme of finite type over C. The canonical divisors KX of
normal varieties X are always so taken that f∗KX = KY holds for a proper
birational morphism f : X → Y . For a set A of real numbers, we use
A>0 to denote the subset {a ∈ A | a > 0}; for any b ∈ R, we denote
bA := {ba | a ∈ A}.

Acknowledgements

We would like to thank Vladimir Lazić for asking a question on a pre-
liminary version of the paper and Stefano Filipazzi for sending us his PhD
thesis [16]. Thanks also go to a referee who pointed out a gap in an earlier
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versity in May 2019; the second author would like to thank Professor TEO
Lee-Peng for support and hospitality while teaching at Xiamen University
Malaysia Campus during the 2019/04 semester.

2. Preliminary

2.1. Divisors

We refer to [24] for divisors, Q-divisors, R-divisors and the Kleiman–
Mori cones of curves. We give now the definition of b-divisors, introduced
by Shokurov; a nice discussion about this notion can be found in [13].
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Definition 2.1. — Let X be a normal variety and let DivX be the free
abelian group of Weil divisors on X. A b-divisor on X is an element of the
projective limit

DivX = lim
Y →X

DivY,

where the limit is taken over all the pushforward homomorphisms ρ∗ : DivY
→ DivX induced by proper birational morphisms ρ : Y → X. In other
words, a b-divisor D on X is a collection of Weil divisors DY on higher
models of X that are compatible under pushforward; the divisors DY are
called the traces of D on the birational models Y .

Let F be either the rational number field Q or the real number field R.
Then a b-F-divisor is defined to be an element of (DivX)⊗ZF. The Cartier
closure of an F-Cartier F-divisor D on X is the b-F-divisor D with trace
DY = ρ∗D for any proper birational morphism ρ : Y → X. A b-F-divisor
D on a normal variety X is F-Cartier if D = DY where DY is an F-Cartier
F-divisor on a birational model over X; in this situation, we say D descends
to Y . A b-F-divisor is nef if it descends to a nef F-divisor on a birational
model over X.

2.2. Generalized pairs

Definition 2.2. — Let S be a scheme. A generalized pair over S con-
sists of

• a normal variety X equipped with a projective morphism X → S,
• an R-divisor B, and
• a nef b-R-divisor M on X, which is then the Cartier closure of a

nef R-divisor M̃ on a normal variety X̃ equipped with a projective
birational morphism ρ : X̃ → X,

such that KX + B + M is R-Cartier, where M = ρ∗M̃ . We denote the
generalized pair by (X/S,B + M); if S is a point then we drop S from the
notation.

Remark 2.3. — The R-divisor M appearing in the above definition is
nothing but the trace MX of M on X.

Let (X/S,B + M) be a generalized pair. For any prime divisor E on a
higher birational model X̃, equipped with a proper birational morphism
ρ : X̃ → X, we write ρ∗(KX +B + MX) = K

X̃
+ B̃ + M

X̃
, and define the

discrepancy of E with respect to (X/S,B + M) as

aE (X/S,B + M) = −multEB̃.

TOME 71 (2021), FASCICULE 5
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Then (X/S,B+M) is said to be sub-log canonical (resp. sub-Kawamata
log terminal) if aE(X/S,B + M) > −1 (resp. aE(X/S,B + M) > −1)
for any prime divisor E over X. We omit the prefix “sub” everywhere if
B is effective. Log canonical (resp. Kawamata log terminal) is often ab-
breviated to lc (resp. klt), as usual. If there is a prime divisor E over
X with aE(X/S,B + M) 6 −1 (resp. aE(X/S,B + M) < −1) then its
image in X is called a non-klt center (resp. non-lc center). A non-klt
center that is not a non-lc center is called a lc center. The union of all
the non-klt centers (resp. non-lc centers), denoted by Nklt(X/S,B + M)
(resp. Nlc(X/S,B+ M)), is called the non-klt locus (resp. non-lc locus) of
(X/S,B + M).

Remark 2.4.
(a) Let ρ : X̃ → X be a log resolution such that M descends to X̃ and

Supp(ρ−1
∗ B ∪ Exc(ρ)) is a simple normal crossing divisor. Write

K
X̃

+ B̃ + M
X̃

= ρ∗(KX +B + MX). Then it is enough to look at
the coefficients of B̃ in order to determine the non-klt (resp. non-lc)
locus of (X/S,B+M). As a consequence, the non-klt (resp. non-lc)
locus is a Zariski closed subset of X; see [24, Lemma 2.3.20].

(b) Our definition of non-klt (resp. non-lc) locus is set-theoretic, with-
out taking possible non-reduced scheme structures into account;
compare [24, 2.3.11].

3. Shokurov type anti-nef polytopes

In this section, we prove that the Shokurov type convex set of anti-nef
log canonical divisors is a rational polyhedral set, following the treatment
of [3, Section 3] and [30]; see Proposition 3.5. This is of independent interest
and its corollary will be used in the proof of Theorem 5.2.

Definition 3.1. — Let V be a finite dimensional vector space over R
with a specified basis {vi}i. A subset P ⊂ V is called a polyhedral set if
it is the intersection of finitely many closed halfspaces of V . Note that a
polyhedral set can be empty or unbounded in this paper. The dimension of
a polyhedral set is defined to be the dimension of its affine hull. A face of a
polyhedral set P is the intersection of P with a hyperplane such that P lies
in one of the two closed halfspaces defined by the hyperplane. We use ∂P
to denote the relative boundary of P, which is the union of all proper faces
of P. A polyhedral set is called a polytope if it is bounded and is called
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rational if its defining linear inequalities can be chosen to have rational
coefficients with respect to the given basis {vi}i.

We will stick to the following set-up.

Set-up 3.2. — Let S be a scheme and X a Q-factorial projective/S
normal variety with lc singularities. Let {Bi}i∈ I be a set of finitely many
distinct prime divisors and {Mj}j ∈ J a set of finitely many distinct nef/S
Q-Cartier b-divisors on X. Consider the R-vector space obtained by taking
the outer direct sum

V :=
(⊕
i∈ I

RBi

)⊕⊕
j ∈ J

RMj

 .

The elements of V are written as (∆,N) with ∆ ∈
⊕

iRBi and N ∈⊕
j RMj . One can define a norm ‖ · ‖ on V as follows: for an element

(∆,N) ∈ V with ∆ =
∑
i xiBi and N =

∑
j yjMj , set

‖(∆,N)‖ := max
i, j
{|xi|, |yj |} .

Let

V> 0 =


∑

i

xiBi,
∑
j

yjMj

 ∈ V
∣∣∣∣∣∣xi > 0, yj > 0 for all i, j

 .

Define

L ({Bi}i∈ I , {Mj}j ∈ J)
:= {(∆,N) ∈ V> 0|(X/S,∆ + N) is generalized lc} .

When the sets {Bi}i∈ I , {Mj}j ∈ J are clear from context, we use LIJ to
denote L({Bi}i∈ I , {Mj}j ∈ J) in order to simplify notation.

Note that LIJ is not empty because (0, 0) ∈ LIJ . It is known that LIJ is
a rational polyhedral set with respect to the basis {(Bi, 0)}i ∪ {(0,Mj)}j
of V ([30, Section 3.3]). We refine the description of LIJ as follows.

Lemma 3.3. — Let the notation be as in Set-up 3.2. For any subset
J ′ ⊂ J , possibly empty, let

pJ′ : V →
(⊕
i∈ I

RBi

)⊕⊕
j ∈ J′

RMj

 .

and qj : V → RMj (j ∈ J) be the projections to the direct summands.
Then the following holds.

TOME 71 (2021), FASCICULE 5



2054 Jingjun HAN & Wenfei LIU

(i) The image of LIJ under pJ′ is LIJ′ , where

LIJ′ = L ({Bi}i∈ I , {Mj}j ∈ J′)

by the convention in Set-up 3.2.
(ii) For a given j0 ∈ J , the image qj0(LIJ) is unbounded if and only if

Mj0 descends to X, that is, there is a nef divisor Mj0 on X such
that Mj0 is the Cartier closure Mj0 .

(iii) Let J1 = {j ∈ J | Mj descends to X} and J2 = J\J1. Then the
rational polyhedral set LIJ2 is bounded and

LIJ ∼=

⊕
j ∈ J1

R> 0Mj

⊕LIJ2 .

Proof. — Fix a projective birational morphism ρ : X̃ → X such that all
of the b-divisors Mj , j ∈ J descend to X̃, so the trace M

j, X̃
is a nef/S

divisor and Mj is the Cartier closure of M
j, X̃

. For (∆,N) ∈ V> 0, we can
write

(3.1) ρ∗ (KX + ∆) = K
X̃

+∆̃0 and ρ∗ (KX + ∆ + NX) = K
X̃

+∆̃+N
X̃
.

where ∆̃0 and ∆̃ are uniquely determined R-divisors on X̃ such that

ρ∗∆̃0 = ρ∗∆̃ = ∆.

The element (∆,N) lies in LIJ if and only if (X̃, ∆̃) is sub-lc (see Sec-
tion 2.2).
Since M

j, X̃
is nef over S, by the Negativity Lemma ([40, Lemma 3.39]),

(3.2) ρ∗Mj,X = M
j, X̃

+ Ej

for some effective Q-divisor Ej , exceptional over X. Note that Ej = 0 if
and only if Mj descends to X. Substituting (3.2) into (3.1) we infer that

(3.3) ∆̃ = ∆̃0 +
∑
j ∈ J

yjEj ,

where the yj (j ∈ J) are the (nonnegative) coefficients in the expression
N =

∑
j ∈ J yjMj .

(i) For a subset J ′ ⊂ J and (∆,N) ∈ LIJ with N =
∑
j yjMj , the image

of (∆,N) under pJ′ is (∆,N′) with N′ =
∑
j ∈ J′ yjMj . Write

(3.4) ρ∗ (KX + ∆ + N′) = K
X̃

+ ∆̃′ + N′
X̃
.

Comparing this with (3.1) and (3.2), we obtain

(3.5) ∆̃ = ∆̃′ +
∑

j ∈ J\J′
yjEj .
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Since (X̃, ∆̃) is a sub-lc pair and ∆̃′ 6 ∆̃ by (3.5), we infer that (X̃, ∆̃′)
is sub-lc. It follows that (X/S,∆ + N′) is lc by (3.4), so pJ′(∆,N) ∈ LIJ′ .
On the other hand, any (∆,N′) ∈ LIJ′ can be naturally viewed as an
element of LIJ and it holds pJ′(∆,N′) = (∆,N′). Thus we have proved
that pJ′(LIJ) = LIJ′ .
(ii) Fix j0 ∈ J . Suppose that the image qj0(LIJ) is unbounded, so yj0

is unbounded as (∆,N) ∈ LIJ with N =
∑
j yjMj varies. Since (X̃, ∆̃) is

sub-lc, we have multE∆̃ 6 1 for any component E of ∆̃. In view of (3.3),
this can happen only when Ej0 = 0, so Mj0 descends to X.

In the other direction, suppose that Mj0 descends to X. Then (X/S,∆+
N) is lc if and only if (X/S,∆ + (N + y′j0

Mj0)) is for any nonnegative
number y′j0

. It follows that the coefficient yi0 in N =
∑
j ∈ J yjMj can be

arbitrarily large, whence the unboundedness of qj0(L(B,M)).
(iii) The boundedness of LIJ2 follows from (ii). The direct sum decom-

position of (iii) follows from the observation that, (∆,N) ∈ V> 0 lies in LIJ
if and only if (∆, (N +

∑
j ∈ J1

y′jMj)) lies in LIJ for any nonnegative real
numbers y′j with j ∈ J1. �

A curve Γ on X is called extremal if it generates an extremal ray R of
NE(X/S) and if for some (equivalently, any) ample divisor H, we have H ·
Γ = min{H ·C}, where C ranges over curves generating R. This definition
of extremal curves is slightly different from that in [3, Section 3]; we do not
require the extremal ray to define a contraction.
The following existence of extremal curves as well as the bound on their

lengths is crucial for the proofs of the main results in this section.
Lemma 3.4. — Let S be a scheme. Let (X/S,B+M) be a lc generalized

pair such that X is Q-factorial klt. Then for any (KX +B+ MX)-negative
extremal ray R/S, there exists an extremal curve Γ generating R, and for
any such Γ it holds

− (KX +B + MX) · Γ 6 2 dimX.

Proof. — By [30, Proposition 3.13], there is a curve C generating R such
that (KX + B + MX) · C > −2 dimX. For a given ample Cartier divisor
H, the (nonempty) set {H · C}C , where C ranges over curves generating
R, consists of positive integers. It follows that {H ·C} attains its minimum
as, say, H · Γ. Then Γ is an extremal curve we are looking for. �

Now we can state the main result of this section:
Proposition 3.5. — Let X/S, {Bi}i∈ I , {Mj}j ∈ J , V and LIJ be as in

Set-up 3.2. Assume furthermore that X is klt. Let {Rt}t∈T be a family of
extremal rays of NE(X/S). For any subset P of LIJ , define

TOME 71 (2021), FASCICULE 5



2056 Jingjun HAN & Wenfei LIU

(3.6) AN T (P)
= {(∆,N) ∈ P|− (KX + ∆ + NX) ·Rt > 0 for any t ∈ T} .

Suppose that AN T (LIJ) is nonempty. Then the following holds.
(i) For a given j0 ∈ J , let qj0 : V → RMj0 be the projection to the

direct summand. Then the image qj0(AN T (LIJ)) is unbounded if
and only if Mj0 descends to X and Mj0,X ·Rt = 0 for any t ∈ T .

(ii) Set J ′ = {j ∈ J |Mj descends to X and Mj,X ·Rt = 0 for any t ∈
T} and J ′′ = J\J ′. Then AN T (LIJ′′) is a (nonempty) rational
polytope and

(3.7) AN T (LIJ) ∼=

⊕
j ∈ J′

R> 0Mj

⊕AN T (LIJ′′) .

In particular, AN T (LIJ) is a rational polyhedral set, bounded if
and only if J ′ = ∅.

The proof of Proposition 3.5 will be given in the end of this section after
some preparation. Before that, we draw a consequence.

Corollary 3.6. — Let X/S, {Bi}i∈ I , {Mj}j ∈ J and LIJ be as in Set-
up 3.2. Assume furthermore that X is klt. Suppose that there is an element
(B,M) ∈ LIJ such that −(KX + B + MX) is nef over S. Then there are
finitely many elements (∆(k),N(k)) ∈ LIJ with rational coefficients, and
ck ∈ R>0 with

∑
k ck = 1 such that

(i) KX +B + MX =
∑
k ck(KX + ∆(k) + N(k)

X ), and
(ii) −(KX + ∆(k) + N(k)

X ) is nef for each k.

Proof. — Let {Rt}t∈T be the family of all extremal rays of NE(X/S).
Then AN T (LIJ) contains (B,M), since −(KX+B+MX) is nef over S. By
Proposition 3.5,AN T (LIJ) is a rational polyhedral set. It follows that there
are elements (∆(k),N(k)) ∈ AN T (LIJ) ⊂ LIJ with rational coefficients,
and ck ∈ R>0 such that

∑
k ck = 1, (B,M) =

∑
k ck(∆(k),N(k)). It is then

clear that the (∆(k),N(k)) satisfy (i) and (ii) of the conclusion. �

Now we start the preparation for the proof of Proposition 3.5.

Lemma 3.7. — Let X/S, {Bi}i∈ I , {Mj}j ∈ J and LIJ be as in Set-
up 3.2. Assume furthermore that X is klt. Fix an element (B,M) ∈ LIJ .
Then the following holds.
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(i) There exists a real number α > 0, depending only on (B,M), such
that for any extremal curve Γ with (KX +B+MX) ·Γ < 0 we have
(KX +B + MX) · Γ < −α.

Let P ⊂ LIJ be a rational polyhedral set such that (B,M) is a relative
interior point of P.

(ii) There exists a constant δ > 0, depending only on (B,M), such that
for any extremal curve Γ with (KX +B + MX) ·Γ < 0 and for any
(∆,N) ∈ P with ‖(∆−B,N−M)‖ < δ, we have (KX+∆+NX)·Γ <

0.
(iii) There is a constant β > 0, depending only on (B,M), such that for

any two elements (∆′,N′) 6= (∆′′,N′′) ∈ P and for any extremal
curve Γ with (KX +B + MX) · Γ < 0, we have∣∣∣∣ (∆′ + N′X)− (∆′′ + N′′X)

‖ (∆′ −∆′′,N′ −N′′) ‖ · Γ
∣∣∣∣ < β.

(iv) Let (∆′,N′) ∈ P. Then there is a constant δ′ > 0, depending only
on (∆′,N′) and (B,M), such that for any extremal curve Γ with
(KX + ∆′ + N′X) · Γ < 0 and (KX +B + MX) · Γ < 0, and for any
(∆′′,N′′) ∈ P with ‖(∆′′ − ∆′,N′′ − N′)‖ < δ′, we have (KX +
∆′′ + N′′X) · Γ < 0.

Proof.
(i) By Lemma 3.3, LIJ is a rational polyhedral set, so there exist ele-
ments (∆(1),N(1)), . . . , (∆(r),N(r)) ∈ LIJ with rational coefficients and
real numbers ck (1 6 k 6 r) such that∑

16 k6 r

ck = 1 and KX +B + MX =
∑

16 k6 r

ck

(
KX + ∆(k) + N(k)

X

)
.

Since X is Q-factorial, there is a positive integer N such that N(KX +
∆(k) + N(k)

X ) is Cartier for all 1 6 k 6 r.
Let Γ be an extremal curve such that (KX +B+ MX) ·Γ < 0. Then, for

any 1 6 k0 6 r,

0 > (KX +B + MX) · Γ

=
∑

16 k6 r

ck

(
KX + ∆(k) + N(k)

X

)
· Γ

> −
∑
k 6= k0

ck · 2 dimX + ck0

(
KX + ∆(k0) + N(k0)

X

)
· Γ

> −2 dimX + ck0

(
KX + ∆(k0) + N(k0)

X

)
· Γ.

(3.8)
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where the second inequality follows from Lemma 3.4 and the last inequality
follows from fact that

∑
k 6=k0

ck 6
∑
k ck = 1. By (3.8) and Lemma 3.4 we

obtain

(3.9) − 2ck0 dimX 6 ck0

(
KX + ∆(k0) + N(k0)

X

)
· Γ < 2 dimX.

Since N(KX + ∆(k0) + N(k0)
X ) is Cartier, ck0(KX + ∆(k0) + N(k0)

X ) · Γ is
contained in (ck0/N)Z; combining this fact with (3.9) we infer that there are
only finitely many possibilities for the numbers ck0(KX +∆(k0) +N(k0)

X ) ·Γ,
and hence for (KX +B+ MX) ·Γ. It follows also that there is some α > 0,
which depends only on (B,M), such that (KX +B + MX) · Γ < −α.
(ii) If dimP = 0 then P = {(B,M)} and there is nothing to prove. So

we can assume that dimP > 0. Since (B,M) is a relative interior point of
P, the number

d = min
{

dist ((B,M), ∂P) , 1
}

is positive, where dist((B,M), ∂P) denotes the distance between (B,M)
and the relative boundary ∂P. Let

δ = αd

2 dimX
,

where α is as in (i). Suppose on the contrary that (KX +B + MX) ·Γ < 0
while (KX + ∆ + NX) ·Γ > 0 for some (∆,N) ∈ P with ‖(∆−B,N−M)‖
< δ. Then (∆t,Nt) := (B,M) + t (∆−B,N−M)

‖(∆−B,N−M)‖ is contained in P for −d 6
t 6 ‖(∆−B,N−M)‖. Note that the function ϕ(t) = (KX +∆t+Nt,X) ·Γ
is affine in t and we have

ϕ
(
‖(∆−B,N−M)‖

)
= (KX + ∆ + NX) · Γ > 0

ϕ(0) = (KX +B + MX) · Γ < 0.
(3.10)

It follows that there is some 0 < t0 6 ‖(∆−B,N−M)‖ such that ϕ(t0) = 0.
Therefore,

(KX + ∆−d + N−d,X) · Γ

= ϕ(−d) = d+ t0
t0

ϕ(0) = d+ t0
t0

(KX +B + MX) · Γ

<
d+ δ

δ
(KX +B + MX) · Γ < −

(
1 + 2 dimX

α

)
α < −2 dimX,

where the equalities are by the definition and the affineness of ϕ, the first
inequality is because 0 < t0 < δ and (KX + B + MX) · Γ < 0, and the
second inequality is by the definitions of α and δ. However, the above overall
inequality contradicts Lemma 3.4.
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(iii) Take

β = 4 dimX

δ
,

where δ is as in (ii). First we deal with the special case where (∆′,N′) =
(B,M). For any element (∆′′,N′′) 6= (B,M) ∈ P and for any extremal
curve Γ with (KX +B + MX) · Γ < 0, we have by (ii) that

(3.11)
(
KX +B + MX + δ

2
[(∆′′ + N′′X)− (B + MX)]
‖(∆′′ −B,N′′ −M)‖

)
· Γ < 0.

Plugging the bound on the lengths of extremal curves (KX+B+MX) ·Γ >
−2 dimX of Lemma 3.4 into (3.11), we obtain

(3.12) [(∆′′ + N′′X)− (B + MX)]
‖(∆′′ −B,N′′ −M)‖ · Γ <

4 dimX

δ
= β.

Replacing (∆′′,N′′) in (3.12) with (B,M)− ε((∆′′,N′′)− (B,M)), which
still lies in P for 0 < ε� 1, we obtain

(3.13) − [(∆′′ + N′′X)− (B + MX)]
‖(∆′′ −B,N′′ −M)‖ · Γ < β.

Combining (3.12) and (3.13) we have the required bound on the absolute
value of the intersection number∣∣∣∣ [(∆′′ + N′′X)− (B + MX)]

‖(∆′′ −B,N′′ −M)‖ · Γ
∣∣∣∣ < β.

Now for any two distinct elements (∆′,N′), (∆′′,N′′) ∈ P, since (B,M)
is a relative interior point of P, there exists (∆′′′,N′′′) 6= (B,M) ∈ P such
that

(∆′′′ −B,N′′′ −M) = ε (∆′′ −∆′,N′′ −N′)

for some 0 < ε � 1, so we reduce to the special case which has already
been handled.
(iv) By (i) there is a constant α′ > 0, depending only on (∆′,N′), such

that if (KX + ∆′ + N′X) · Γ < 0 for some extremal curve Γ then (KX +
∆′ + N′X) · Γ < −α′. Now set

δ′ = α′

β
,
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where β is as in (iii). Then for any extremal curve Γ with (KX + ∆′ +
N′X) · Γ < 0 and (KX +B + MX) · Γ < 0, and for any (∆′′,N′′) ∈ P with
‖(∆′′ −∆′,N′ −N′)‖ < δ′, we have

(KX + ∆′′ + N′′X) · Γ
= (KX + ∆′ + N′X) · Γ + [(∆′′ + N′′X)− (∆′ + N′X)] · Γ
6 (KX + ∆′ + N′X) · Γ

+ ‖(∆′′,N′′)− (∆′,N′)‖ ·
∣∣∣∣ [(∆′′ + N′′X)− (∆′ + N′X)]
‖(∆′′,N′′)− (∆′,N′)‖ · Γ

∣∣∣∣
< −α′ + δ′β = 0.

where we use (iii) for the second inequality. �

Lemma 3.8. — Let X/S, {Bi}i∈ I , {Mj}j ∈ J , V and LIJ be as in Set-
up 3.2. Assume furthermore that X is klt. For any family {Rt}t∈T of ex-
tremal rays of NE(X/S) and for any rational polytope P contained in LIJ ,
the subset AN T (P), defined as in Proposition 3.5, is a rational polytope.

Proof. — The proof proceeds by induction on dimP. It is clear if dimP
= 0 or if AN T (P) = ∅. So we assume that dimP > 0 and AN T (P) 6= ∅. By
induction we can assume that AN T (P) is not contained in any proper face
of P, and thus AN T (P) contains a point that is simultaneously a relative
interior point of AN T (P) and of P. We fix this point once and for all, and
denote it by (B,M).

(a) By dropping those t such that AN{t}(P) = P, we may assume
that for each t ∈ T , there is some (∆,N) ∈ P such that (KX + ∆
+ NX) ·Rt > 0.

(b) We claim that for any t ∈ T there is some (∆,N) ∈ P such that

(KX + ∆ + NX) ·Rt < 0.

Otherwise, there is some t0 ∈ T such that (KX +∆+NX) ·Rt0 > 0
for any (∆,N) ∈ P. Then

AN{t0}(P) = {(∆,N) ∈ P|(KX + ∆ + NX) ·Rt0 = 0} .

The inclusion {t0} ⊂ T implies the inclusion in the reversed direc-
tion ANT (P) ⊂ AN{t0}(P). But AN{t0}(P) is a proper face of P
due to the assumption (a) above, contradicting the choice of P.

(c) We claim that, for any t ∈ T ,

(KX +B + MX) ·Rt < 0
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holds. Otherwise we have (KX+B+MX) ·Rt0 = 0 for some t0 ∈ T .
By (b) there is some (∆,N) ∈ P such that (KX+∆+NX)·Rt0 < 0,
and thus

(3.14) (B + MX −∆−NX) ·Rt0 > 0.

Let (∆′,N′) = (B,M)− ε(∆−B,N−M) where ε > 0 is sufficiently small.
Since (B,M) lies in the relative interior of AN T (P), the vector (∆′,N′)
still lies in AN T (P). On the other hand, by (3.14), we have

(KX + ∆′ + N′X) ·Rt0
= (KX +B + MX) ·Rt0 + ε (B + MX −∆−NX) ·Rt0 > 0,

which is a contraction to the fact that (∆′,N′) ∈ AN T (P).
As a consequence of (b), there is an extremal curve Γt generating Rt for

any t ∈ T by Lemma 3.4. By (b) we have (KX + B + MX) · Γt < 0. Now
we can apply Lemma 3.7(iv) to conclude that for each (∆,N) ∈ AN T (P),
there is a constant δ(∆,N) > 0, depending only on (∆,N) and (B,M),
such that for any extremal curve Γt (t ∈ T ) with (KX + ∆ + NX) ·Γt < 0,
and for any (∆′,N′) ∈ P with ‖(∆′ − ∆,N′ − N)‖ < δ(∆,N), we have
(KX + ∆′+ N′X) ·Γt < 0. This yields an open cover of AN T (P) as (∆,N)
varies. Note that, being a closed convex subset of P, AN T (P) is compact.
Thus one can find finitely many elements (∆(1),N(1)), . . . , (∆(n),N(n)) in
AN T (P) and real numbers δ1, . . . , δn > 0 such that the following holds.

(a) AN T (P) is covered by

Bk =
{

(∆,N) ∈ P
∣∣∣∥∥∥(∆−∆(k),N−N(k)

)∥∥∥ < δk

}
.

(b) If (∆,N) ∈ Bk with (KX + ∆ + NX) · Γt > 0 for some t ∈ T , then(
KX + ∆(k) + N(k)

X

)
· Γt = 0.

Let Tk = {t ∈ T | (KX + ∆ + NX) · Γt > 0 for some (∆,N) ∈ Bk}.
(c)

T =
⋃
k

Tk

by the assumption (a) made at the beginning of the proof, so

ANT (P) =
⋂

16 k6n

ANTk(P).

(d) As a consequence of (b), (KX +∆(k) +N(k)
X ) ·Γt = 0 for any t ∈ Tk.
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It suffices to prove that AN Tk(P) is a rational polytope for each k.
Replacing AN T (P) with AN Tk(P), we can assume that there is an element
(∆(0),N(0)) ∈ AN T (P) such that (KX+∆(0) +N(0)

X ) ·Γt = 0 for any t ∈ T .
Note that (∆(0),N(0)) belongs to the following set

P ′ = {(∆,N) ∈ P|(KX + ∆ + NX) · Γt = 0 for any t ∈ T}

which is contained in AN T (P). Although the index set T may be infinite,
by simple linear algebra, P ′ is cut out from P by finitely may affine hy-
perplanes of the form (KX + ∆ + NX) · Γt = 0. Thus P ′ is a (nonempty)
rational polytope and we can find (∆′,N′) ∈ P ′ ⊂ AN T (P) with rational
coefficients such that (KX + ∆′ + N′X) · Γt = 0 holds for any t ∈ T .

Claim 3.9. — AN T (P) is the convex hull of (∆′,N′) and AN T (∂P).

Proof of the Claim. — For any element (∆′′,N′′) 6= (∆′,N′) inAN T (P),
let L be the ray from (∆′,N′) in the direction of (∆′′,N′′) and let (∆′′′,N′′′)
∈ ∂P be the point where L leaves P. Since

(KX + ∆′ + N′X) · Γt = 0 and (KX + ∆′′ + N′′X) · Γt 6 0,

the segment between (∆′,N′) and (∆′′′,N′′′) is contained in AN T (P); of
course, this segment contains the given point (∆′′,N′′). This finishes the
proof the claim. �

Now we write ∂P =
⋃

16 l6 s Pl, where the Pl are the codimension one
faces of P, then

AN T (∂P) =
⋃

16 l6 s

AN T (Pl).

By induction, the AN T (Pl), if nonempty, are rational polytopes. By the
claim above, AN T (P) is a rational polytope. �

Proof of Proposition 3.5.
(i) Suppose that qj0(AN T (LIJ)) ⊂ RMj0 is unbounded. Since AN T (LIJ)
is a subset of LIJ by definition, the image qj0(LIJ) is also unbounded. By
Lemma 3.3(ii), Mj0 descends to a nef divisor, say Mj0 , on X.

Claim 3.10. — Mj0 ·Rt = 0 for any t ∈ T .

Proof of the claim. — OtherwiseMj0 ·Rt0 > 0 for some t0 ∈ T . Since the
image qj0(AN T (LIJ)) ⊂ RMj0 is unbounded, there is an element (∆,N) ∈
AN T (LIJ) such that N =

∑
j yjMj with yj0 > 2r dimX, where r is the

Cartier index of Mj0 . For a one-cycle Γt0 generating Rt0 we have
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0 > (KX + ∆ + NX) · Γt0

=

KX + ∆ +
∑
j 6= j0

yjMj,X

 · Γt0 + yj0Mj0 · Γt0 .

It follows that

(3.15)

KX + ∆ +
∑
j 6= j0

yjMj,X

 · Γt0
6 −yj0Mj0 · Γt0 < − (2r dimX) (Mj0 · Γt0) .

Note that (X,∆+
∑
j 6= j0

yjMj) is lc andRt0 is a (KX+∆+
∑
j 6= j0

yjMj,X)
-negative extremal ray by (3.15). So we can choose Γt0 to be an extremal
curve by Lemma 3.4, but then rMj0 · Γt0 > 1, and (3.15) contradicts the
bound on the lengths of extremal curves in Lemma 3.4. �

For the other direction of implication, suppose that Mj0 descends to X
and Mj0, X · Rt = 0 for any t ∈ T . Then one sees easily that (∆,N) ∈
AN T (LIJ) if and only if (∆,N + y′j0

Mj0) ∈ AN T (LIJ) for any y′j0
> 0.

It follows that the coefficient of Mj0 in the elements of AN T (LIJ) can be
arbitrarily large.
(ii) The boundedness of AN T (LIJ′′) and the decomposition (3.7) follow

easily from (i) and its proof. Since AN T (LIJ′′) is bounded, we can take a
rational polytope P such that AN T (LIJ′′) ⊂ P ⊂ LIJ′′ . Then we have

AN T (LIJ′′) = AN T (AN T (LIJ′′)) ⊂ AN T (P) ⊂ AN T (LIJ′′).

It follows that AN T (LIJ′′) = AN T (P), which is a rational polytope by
Lemma 3.8. �

4. The generalized canonical bundle formula

In this section we first prove a lemma decomposing relatively trivial
log canonical divisors with R-coefficients as the sum of those with Q-
coefficients; this allows us to consider only generalized pairs with Q-coeffi-
cients. The basic idea has been explained in [38, 2.11] and [39, Proposi-
tion 2.21]; our proof follows closely that of [25, Lemma 11.1].

Lemma 4.1. — Let (X/S,B+M) be a generalized pair over a scheme S
such that M is an R> 0-linear combination of nef/S Q-Cartier divisors. Let
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f : X → Z be a projective surjective morphism between normal varieties
over S such that

KX +B + MX ∼R, f 0.

Then for any given ε > 0 there are finitely many positive real numbers
cα satisfying

∑
α cα = 1 and generalized pairs (X/S,B(α) + M(α)) with

Q-coefficients such that KX +B + MX =
∑
α cα(KX +B(α) + M(α)

X ), and
the following holds for each α.

(i) KX +B(α) + M(α)
X ∼Q, f 0;

(ii) |multD(B(α) −B)| is at most ε for any prime divisor D on X, and
is zero if multD(B) is rational;

(iii) B(α) is effective if B is;
(iv) there are equalities:

• Nlc(X/S,B + M) = Nlc(X/S,B(α) + M(α)),
• Nklt(X/S,B + M) = Nklt(X/S,B(α) + M(α)).

In particular, if (X/S,B+M) is lc (resp. klt), then so is (X/S,B(α)+M(α)).

Proof. — By assumption we have

M =
∑

16 j6 r

µjMj

where µj ∈ R> 0 and Mj are nef/S Q-Cartier b-divisors. Let ρ : X̃ → X be
a log resolution such that the b-divisors Mj all descend to X̃, so the traces
satisfy M

X̃
=
∑
j µjMj, X̃

with M
j, X̃

Cartier and nef/S. Write

K
X̃

+ B̃ + M
X̃

= ρ∗ (KX +B + MX) .

The condition KX + B + MX ∼R, f 0 means that there is an R-Cartier
R-divisor D =

∑
16 k6m dkDk on Z such that KX + B + MX ∼R f∗D,

where dk ∈ R and Dk are Cartier divisors for each 1 6 k 6 m. Pulling back
to X̃ by ρ, we obtain K

X̃
+ B̃+ M

X̃
∼R f̃

∗D, where f̃ = f ◦ ρ. Thus there
are al ∈ R and rational functions ϕl on X̃ such that

K
X̃

+ B̃ + M
X̃

+
∑

16 l6 p

al(ϕl) =
∑

16 k6m

dkf̃
∗Dk

where (ϕl) denotes the divisor of ϕl.
Write B̃ =

∑
16i6u biB̃i where the B̃i are distinct prime divisors. We

may assume that bi ∈ R \ Q for 1 6 i 6 q and bi ∈ Q for i > q + 1. Now
consider the following linear map

Φ: Rm+p+q+r → Div(X̃)⊗Z R
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defined by

Φ(x1, . . . , xm+p+q+r) =
∑

16 k6m

xkf̃
∗Dk −

∑
16 l6 p

xm+l(ϕl)

−
∑

16 i6 q

xm+p+iB̃i −
∑

16 j6 r

xm+p+q+jMj, X̃
.

We note that Φ is defined over Q, and thus

A := Φ−1

K
X̃

+
∑
i>q+1

biB̃i

 ,

containing the point P = (d1, . . . , dm, a1, . . . , ap, b1, . . . , bq, µ1, . . . , µr),
is a nonempty affine space defined over Q. Therefore, there exist P1, . . . , Pn
∈ A ∩Qm+p+q+r and c1, . . . , cn ∈ R> 0 such that

(4.1)
∑

16α6n

cα = 1 and
∑

16α6n

cαPα = P.

Moreover, we can choose

Pα =
(
d

(α)
1 , . . . , d(α)

m , a
(α)
1 , . . . , a(α)

p , b
(α)
1 , . . . , b(α)

q , µ
(α)
1 , . . . , µ(α)

r

)
sufficiently close to P , and obtain the corresponding generalized pairs
(X̃, B̃(α) + M(α)) with

B̃(α) =
∑

16 i6 1
b
(α)
i B̃i +

∑
i> q+1

biB̃i and M(α) =
∑

16 j6 r

µ
(α)
j Mj .

By (4.1), we have

B̃ =
∑

16α6n

cαB̃
(α) and M =

∑
16α6n

cαM(α).

The equation Φ(Pα) = K
X̃

+
∑
i> q+1 biB̃i implies that

K
X̃

+ B̃(α) + M(α)
X ∼Q, f̃ 0.

By construction mult
B̃i

(B̃(α)) = mult
B̃i

(B̃) for i > q+ 1. Since the Pα are
sufficiently closed to P , we have

Nlc
(
X̃/S, B̃ + M

)
= Nlc

(
X̃/S, B̃(α) + M(α)

)
,

and

Nklt
(
X̃/S, B̃ + M

)
= Nklt

(
X̃/S, B̃(α) + M(α)

)
.
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Setting B(α) = ρ∗B̃
(α), one readily verifies that (X/S,B(α) + M(α))

are generalized pairs satisfying all the properties in the conclusion of the
Lemma 4.1. �

We need a simultaneous partial resolution of a generically finite mor-
phism.

Lemma 4.2. — Let f : X → Z be a generically finite projective sur-
jective morphism between normal varieties. Then there is a commutative
diagram of projective surjective morphisms between normal varieties

X̃ X

Z̃ Z

ρ

f̃ f

µ

such that the following holds.

(i) The morphisms ρ and µ are birational and f̃ is finite, and
(ii) X̃ and Z̃ have at most quotient singularities.

Proof. — First suppose that X and Z are both complete. Since f : X →
Z is generically finite, we have a finite extension of function fields C(X)/
C(Z). Let L be the Galois closure of C(X) in the algebraic closure C(Z),
and Y the normalization of Z in L. By construction, Y is a projective
normal variety with function field C(Y ) = L, and there is a Galois finite
morphism g : Y → Z with Galois group G = Gal(C(Y )/C(Z)).
By the argument of [14, Theorem 6.1], we can find a G-equivariant res-

olution Ỹ → Y such that the rational map from Ỹ to X induced by the
field extension C(Y )/C(X) is a morphism. Let H = Gal(C(Y )/C(X)) be
the Galois group. Now we simply take X̃ = Ỹ /H and Z̃ = Ỹ /G, and let
f̃ : X̃ → Z̃ be the natural finite morphism.

In general, when Z is not necessarily complete, we can fit the morphism
f : X → Z into the following commutative diagram

X X̄

Z Z̄

ι

f f̄

i

where ι and i are open embeddings into complete normal varieties, and
apply the previous arguments to obtain
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X̃ X̄

Z̃ Z̄

ρ̄

f̃ f̄

µ̄

with ρ̄ and µ̄ satisfying (i) and (ii). Now restricting to Z ⊂ Z̄ and its inverse
images gives us the commutative diagram we wanted. �

Remark 4.3. — By the universal property of fibre products, one sees that
X̃ is isomorphic to the normalization of the main component of X ×Z Z̃.

We prove some compatibility of pullback of divisors under birational
morphisms with pushforward of divisors under generically finite morphisms.

Lemma 4.4. — Let F be either the rational field Q or the real number
field R. Consider a commutative diagram of projective surjective morphisms
between normal varieties

X̂ X̃

Ẑ Z̃

ρ̃

f̂ f̃

µ̃

such that
• ρ̃ and µ̃ are birational morphisms, and
• f̃ is finite, so f̂ is generically finite.

Then for any F-Cartier F-divisor (resp. Cartier) D on X̃, the following
holds.

(i) The pushforward f̃∗D is F-Cartier (resp. Cartier).
(ii) µ̃∗(f̃∗D) = f̂∗(ρ̃∗D) holds.

Proof. — If D is an F-Cartier F-divisor then we can write D =
∑
diDi

with di ∈ F and Di Cartier. Since the assertions are F-linear in Di, by
replacing D with Di, we can assume that D is Cartier. Denote

D
Z̃

= f̃∗D and D
Ẑ

= f̂∗ (ρ̃∗D)

Note that, f̃ is a ramified cover and D
Z̃
is nothing but the norm of D under

f̃ . The assertion (i) (for D Cartier) is already contained in [39, 2.40]; see
also [48, Tag 0BCX]. Let us recall the argument: one can find an open cover
Z̃ = ∪iVi such thatD∩f̃−1(Vi) is a principal divisor of f̃−1(Vi) defined by a
local equation gi = 0, where gi ∈ C(f̃−1(Vi)) = C(X̃) is a rational function.
Then D

Z̃
∩ Vi is a principal divisor of Vi defined by Norm

f̃
(gi) = 0, where

Norm
f̃
(gi) ∈ C(Vi) = C(Z̃)
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is the norm of gi under f̃ .
By Lemma 4.2, there is a commutative diagram of projective surjective

morphisms between normal varieties

(4.2)
X ′ X̂ X̃

Z ′ Ẑ Z̃

ρ̂

f ′ f̂

ρ̃

f̃

µ̂ µ̃

such that the morphisms ρ̂ and µ̂ are birational and f ′ is finite. Set

D′ := (ρ̃ ◦ ρ̂)∗D and DZ′ = f ′∗D
′.

On (f̃ ◦ ρ̃ ◦ ρ̂)−1(Vi), the divisor D′ is principal, defined by g′i = 0, where
g′i = (ρ̃ ◦ ρ̂)∗gi := gi ◦ ρ̃ ◦ ρ̂ is the pull-back of gi. Then, similarly as in
the case of D

Z̃
above, DZ′ ∩ (µ̃ ◦ µ̂)−1(Vi) is defined by Normf ′(g′i) = 0.

The identifications of the rational functions on X ′ and X̃ (resp. Z ′ and Z̃)
via pull-backs are compatible with the operation of taking norms, as the
following commutative diagram shows:

C(X̃) C(X ′)

C(Z̃) C(Z ′)

∼=
(ρ̃◦ρ̂)∗

Norm
f̃ Normf′

∼=
(µ̃◦µ̂)∗

Therefore,

Normf ′(g′i) = Normf ′ ((ρ̃ ◦ ρ̂)∗gi) = (µ̃ ◦ µ̂)∗Norm
f̃
(gi)

that is, the local defining equation of DZ′ is the pullback of the local defin-
ing equation of D

Z̃
. In other words, we have DZ′ = (µ̃ ◦ µ̂)∗D

Z̃
. We do a

simple verification that the two divisors µ̂∗DZ′ and DẐ
are the same:

µ̂∗DZ′ = µ̂∗f
′
∗D
′ = f̂∗ρ̂∗D

′ = f̂∗ρ̂∗(ρ̃ ◦ ρ̂)∗D = f̂∗ρ̃
∗D = D

Ẑ

where we use the commutativity of (4.2) for the second equality, and the
fact that ρ̂∗ρ̂∗ acts as the identity on Cartier divisors for the fourth equality.
In conclusion, we obtain

D
Ẑ

= µ̂∗DZ′ = µ̂∗ (µ̃ ◦ µ̂)∗D
Z̃

= µ̃∗D
Z̃
,

which is what we wanted to prove. �

Theorem 4.5. — Let F be either the rational number field Q or the real
number field R. Let S be a scheme. Let f : X → Z be a generically finite
surjective morphism between normal varieties, projective over S. Suppose
that there are an F-divisor B and a b-F-divisor M on X, such that
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• M is an F> 0-linear combination of nef/S Q-Cartier b-divisors, and
• (X/S,B+M) is a generalized pair such that KX +B+MX ∼F, f 0.

Then there are an F-divisor BZ and a nef/S b-F-divisor Mf on Z such
that the following holds.

(i) Mf is an F>0-linear combination of nef/S Q-Cartier b-divisors.
(ii) BZ is effective if B is.
(iii) (Z/S,BZ + Mf ) is a generalized pair with

KX +B + MX ∼F f
∗ (KZ +BZ + Mf, Z) .

(iv) (Z/S,BZ + Mf ) is sub-lc (resp. sub-klt) if (X/S,B + M) is.
(v) If M is semiample over S, then so is Mf .

Proof. — By Lemma 4.1, we only need to consider the case F = Q.
Let Z◦ be the smooth locus of Z and X◦ = f−1(Z◦) its preimage. Let

f |X◦ : X◦ → Z◦ be the restriction of f . Then we have the Hurwitz formula

(4.3) KX◦ = (f |X◦)∗KZ◦ +R◦,

where R◦ is the (effective) ramification divisor of f |X◦ . Let R be the closure
of R◦ in X. Now we define

(4.4) BZ = 1
deg f f∗(R+B).

One sees immediately that BZ is effective if B is. The b-Q-divisor Mf

is defined by specifying its traces on the higher birational models of Z
as follows: for any proper birational morphism µ : Z ′ → Z, consider the
following commutative diagram

X ′ X

Z ′ Z

ρ

f ′ f

µ

where X ′ is the normalization of the main component of X ×Z Z ′. Define

(4.5) Mf,Z′ = 1
deg f f

′
∗MX′ ,

By the fact that M is a b-Q-divisor, one readily verifies that the traces
{Mf, Z′}Z′→Z are compatible with pushforward, so Mf is indeed a b-Q-
divisor. By (4.3) we have (f |X◦)∗KX◦ = (deg f)KZ◦ + (f |X◦)∗R◦. Since
Z − Z◦ has codimension at least two in Z,

(4.6) f∗KX = (deg f)KZ + f∗R
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also holds. Combining (4.4), (4.5) and (4.6), we obtain

(4.7) KZ +BZ + Mf, Z = 1
deg f f∗ (KX +B + MX) .

By the assumption that KX + B + MX ∼Q, f 0, there is a Q-Cartier Q-
divisor D on Z such that KX +B + MX ∼Q f

∗D. The projection formula
together with (4.7) implies that KZ +BZ + Mf, Z ∼Q D and thus

KX +B + MX ∼Q f
∗ (KZ +BZ + Mf, Z) .

We need to show that Mf is nef/S. Let ρ : X̃ → X be a higher birational
model, to which M descends. By Lemma 4.2, up to replacing X̃ by an
even higher birational model, we can construct the following commutative
diagram

(4.8)
X̃ X

Z̃ Z

ρ

f̃ f

µ

such that µ is birational and f̃ is finite. By Remark 4.3, X̃ is indeed the
normalization of the main component of X ×Z Z̃ and f̃ is induced from f .
Since M

X̃
is nef/S and f̃ is a finite morphism, M

f,Z̃
= (1/ deg f)f̃∗MX̃

is
also nef/S.
Now we show that Mf descends to Z̃. Let µ̂ : Ẑ → Z̃ be a proper bira-

tional morphism. We consider the induced morphism f̂ : X̂ → Ẑ fitting in
the following commutative diagram:

(4.9)
X̂ X̃ X

Ẑ Z̃ Z

ρ̃

f̂

ρ

f̃ f

µ̃ µ

By Lemma 4.4, one has

(4.10) M
f, Ẑ

= µ̃∗M
f, Z̃

,

In other words, Mf descends to Z̃.
Up to now we have shown that (Z/S,BZ + Mf ) is a generalized pair. To

check that it has the right type of singularities, we look at the discrepancy
of an arbitrary prime divisor E over Z. First assume that E is exceptional
over Z. By replacing Z̃ in the diagram (4.8) with a higher birational model
we can assume that E is a divisor on Z̃. Let F ⊂ f̃−1(E) be a prime divisor.
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Near the generic point of F , we compute as in the proof of [40, 5.20]:

K
X̃

= ρ∗ (KX +B + MX) + aF (X/S,B + M)F
∼Q ρ

∗f∗ (KZ +BZ + Mf, Z) + aF (X/S,B + M)F,

K
X̃

= f̃∗K
Z̃

+ (r − 1)F

= f̃∗µ∗ (KZ +BZ + Mf,Z) + raE (Z/S,BZ + Mf )F + (r − 1)F
= ρ∗f∗ (KZ +BZ + Mf, Z) + (raE(Z/S,BZ + Mf ) + (r − 1))F.

where is r 6 deg f is the ramification index of f̃ along F . Now consider the
Stein factorization

X̃
ρ′−→ X ′

f ′−→ Z,

where ρ′ is a birational morphism between normal varieties with connected
fibres and f ′ is finite. Since E is exceptional over Z, so is F over X ′. By the
Negativity Lemma we can compare the coefficients of F above and obtain

aF (X/S,B + M) + 1 = r (aE (Z/S,BZ + Mf ) + 1) .

It follows that aE(Z/S,BZ + Mf ) > −1 (resp. > −1) if and only if the
same inequality holds for aF (X/S,B + M).

Now we assume that E is a component of BZ . Let Bi ⊂ f−1(E) be the
prime divisors of X lying over E and di the degree of the generically finite
morphism f |Bi : Bi → E. Then by (4.4)

aE (Z/S,BZ + Mf ) = −multEBZ = −
∑
i dimultBiB

deg f .

Since
∑
i di 6 deg f , we infer that aE(Z/S,BZ + Mf ) > −1 (resp. > −1)

if multBiB 6 1 (resp. < 1) for each i.
In conclusion, (Z/S,BZ + Mf ) is sub-lc (resp. sub-klt) if (X/S,B + M)

is.
If M is semiample, the divisor M

X̃
is semiample. Because f̃ is a fi-

nite morphism, M
f, Z̃

= (1/ deg f)f̃∗MX̃
is also semiample by Lemma 4.7

below. �

Remark 4.6. — The construction of BZ in the proof of Theorem 4.5 is not
the same as the one for morphisms with connected fibres ([17, Section 4]).

For the lack of reference, we give a proof of the the following lemma.

Lemma 4.7. — Let f : X → Y be a finite morphism between proper
normal varieties. Then, for a semiample R-divisorD onX, the push-forward
f∗D is also semiample.
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Proof. — Since D is a semiample R-divisor, we can write D =
∑
i aiDi,

where ai ∈ R> 0 and each Di is a Cartier divisor such that |Di| is base point
free. It suffices to prove that f∗Di is semiample for each i. In fact, we will
show that |f∗Di| is base point free: let p ∈ Y be an arbitrary point. Since
f is a finite morphism, f−1(p) is a finite set of points. Because |Di| is base
point free, one can find an element D′i ∈ |Di| such that f−1(p) ∩D′i = ∅.
Then Di := f∗D

′
i ∈ |f∗Di| is a divisor such that p 6∈ Supp(Di). It follows

that p is not a base point of |f∗Di|. �

Proof of Theorem 1.2. — By Lemma 4.1, we only need to consider the
case F = Q. Let f : X g−→ Y

h−→ Z be the Stein factorization. By [17]
one can define a generalized pair (Y/S,BY + Mg) such that KX + B +
MX ∼Q g

∗(KY +BY + Mg,Y ). Since KX +B+ MX ∼Q, f 0, it necessarily
holds KY + BY + Mg, Y ∼Q, h 0. By Theorem 4.5 we obtain the required
generalized pair (Z/S,BZ + Mf ) := (Z/S,BZ + Mh). Note that, in both
steps of the construction, the type of singularities is inherited by the new
generalized pairs. �

5. Applications

5.1. Subadjunction

A subadjunction formula for log canonical generalized pairs is proved
in [17, Theorems 1.5 and 6.7] when the lc center is exceptional or when
the underlying variety is Q-factorial klt and the lc center is projective.
It is based on the fact that the morphism from the unique divisor with
discrepancy −1 over an exceptional lc center has connected fibres. Using
Theorem 1.2 we obtain a subadjunction formula with some of the assump-
tions in [17, Theorems 1.5 and 6.7] removed:

Theorem 5.1. — Let F be either the rational number field Q or the real
number field R. Let (X/S,B+ M) be a log canonical generalized pair over
a quasi-projective scheme S such that M is an F>0-linear combination of
nef/S Q-Cartier b-divisors. If W is a log canonical center of (X/S,B+ M)
andW ν its normalization, then there exists an effective R-divisor BW ν and
an F>0-linear combination Mι of nef/S Q-Cartier b-divisors on W ν such
that

(1) (W ν/S,BW ν+Mι) is a lc generalized pair, where ι : W ν →W ↪→ X

is the composite, and
(2) KW ν +BW ν + Mι,W ν ∼F ι

∗(KX +B + MX) holds.
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Moreover, if W is a minimal lc center, then (W ν/S,BW ν + Mι) is klt.

Proof. — By [29, Propostion 1.27] or [30, Proposition 3.9] there is a
Q-factorial dlt modification ρ : X̃ → X of (X/S,B + M), so that (X̃, B̃)
is a Q-factorial dlt pair and every ρ-exceptional divisor has coefficient 1 in
B̃, where B̃ is given by K

X̃
+ B̃ + M

X̃
= ρ∗(KX +B + MX).

Let V be an lc center of (X̃/S,B + M) that is minimal with respect to
inclusion under the condition ρ(V ) = W . Then V is normal, and there is a
morphism f : V →W ν factoring ρ|V : V →W ⊂ X:

(5.1)
V X̃

W ν W X

f ρ

ι

where ι : W ν →W ↪→ X is the composite.
By [29, Lemma 3.2], there is a dlt generalized pair (V/S,BV + M

ι̃
) such

that (
K
X̃

+ B̃ + M
X̃

) ∣∣∣
V
∼F KV +BV + M

ι̃, V
.

By construction, we have KV +BV + M
ι̃, V
∼F ρ

∗(KX +B + MX)|V and
hence KV + BV + M

ι̃, V
∼F, f 0. Now Theorem 1.2 implies that there is

a lc generalized pair (W ν/S,BW ν + Mι) such that Mι is an F>0-linear
combination of nef/S Q-Cartier b-divisors on W ν , and

KV +BV + M
ι̃,V
∼F f

∗ (KW ν +BW ν + Mι,W ν ) .

By construction, we necessarily have

KW ν +BW ν + Mι,W ν ∼F ι
∗ (KX +B + MX) .

If W is a minimal lc center, then (V/S,BV + M̃
ι
) is klt and it follows that

(W ν/S,BW ν + Mι) is also klt by Theorem 1.2. �

5.2. Images of anti-nef lc generalized pairs

As another application of Theorem 1.2, we show that the image of an
anti-nef lc generalized pair has the structure of a numerically trivial lc
generalized pair. This implies [12, Main Theorem] in the setting of lc gen-
eralized pairs (with R-coefficients); see also [17, Corollary 5.3].
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Theorem 5.2. — Let (X/S,B+M) be a log canonical generalized pair
(resp. klt generalized pair) over a quasi-projective scheme S such that M
is an R> 0-linear combination of Q-Cartier b-divisors that are nef over S. If
−(KX + B + MX) is nef/S and there is a projective surjective morphism
f : X → Z onto a normal variety Z over S, then there is a log canonical gen-
eralized pair (resp. klt generalized pair) (Z/S,BZ+Mf ) with Q-coefficients
such that KZ +BZ + Mf, Z ∼Q, S 0. In particular, if Z is Q-Gorestein then
−KZ is pseudo-effective over S.

Proof. — Replacing (X/S,B + M) by its Q-factorial dlt modification,
we may assume that X is Q-factorial klt.
By Corollary 3.6, there exist finitely many real numbers ck ∈ R>0 and

nef/S Cartier divisors N (k) on X such that

− (KX +B + MX) =
∑
k

ckN
(k).

Let N(k) = N (k) be the Cartier closure of N (k) and N = M +
∑
k ckN(k).

Then (X/S,B+ N) is lc and N is an R> 0-linear combination of Q-Cartier
b-divisors that are nef over S. By the construction of N, we have

KX +B + NX = KX +B + MX +
∑
k

ckN
(k) = 0.

By Lemma 4.1 there is a lc generalized pair (X/S,B′ + N′) with Q-
coefficients such that KX +B′ + N′X ∼Q,S 0.
By Theorem 1.2, there is a lc generalized pair (Z/S,BZ + Mf ) with

Q-coefficients such that

0 ∼Q, S KX +B′ + N′X ∼Q f
∗ (KZ +BZ + Mf, Z) .

It follows that KZ + BZ + Mf, Z ∼Q, S 0. If Z is Q-Gorenstein then
−KZ ∼Q, S BZ + Mf, Z is pseudo-effective over S.
Finally, if (X/S,B + M) is klt, then (X/S,B + N) is klt. Consequently,

the generalized pairs (X/S,B′+N′) and (Z/S,BZ+Mf ) can both be made
klt by Lemma 4.1 and Theorem 1.2. �
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