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STOCHASTIC ADDING MACHINES
BASED ON BRATTELI DIAGRAMS

by Danilo A. CAPRIO, Ali MESSAOUDI & Glauco VALLE (*)

Abstract. — In this paper, we define some Markov chains associated with Ver-
shik maps on Bratteli diagrams. We study probabilistic and spectral properties of
their transition operators and we prove that the spectra of these operators are
connected to Julia sets in higher dimensions. We also study topological properties
of these spectra.
Résumé. — Dans cet article, nous définissons des chaînes de Markov associées

aux applications de Vershik sur des diagrammes de Bratteli. Nous étudions des pro-
priétés probabilistes et spectrales de leurs opérateurs de transition et nous prouvons
que les spectres de ces opérateurs sont liés à des ensembles de Julia de dimensions
supérieures. Nous étudions également des propriétés topologiques de ces spectres.

1. Introduction

Let g be a holomorphic map on Cd, where d > 1 is an integer. The set
K(g) of z ∈ Cd such that the forward orbit {gn(z) : n ∈ N} is bounded is
called the (d-dimensional) filled Julia set of g. Filled Julia sets and their
boundaries (called Julia sets) were defined independently by Julia and Fa-
tou ([17, 18, 25]).
The study of Julia sets is connected to many areas of mathematics as

dynamical systems, complex analysis, functional analysis and number the-
ory, among others (see for example [8, 10, 11, 13, 14, 12, 16, 19, 22, 26, 28,
29, 34, 38]).
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sition operators, fibered Julia sets.
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There is an important connection between Julia sets and stochastic
adding machines. A first example was given by Killeen and Taylor in [27]
as follows: let n be a positive integer, then it can be written in a unique
way in base 2 as n =

∑k
i=0 εi(n)2i = εk . . . ε0, for some k > 0, where εk = 1

and εi ∈ {0, 1}, for all i ∈ {0, . . . , k − 1}. It is known that the addition of
1 is given by a classical algorithm, namely n+ 1 = εk . . . εl+1(εl + 1)0 . . . 0
where l = min{i > 0 : εi(n) = 0}. Killeen and Taylor defined the stochas-
tic adding machine assuming that each time a carry should be added, it is
added with probability 0 < p < 1 and it is not added with probability 1−p.
Moreover, the algorithm stops when the first carry is not added. So this
random algorithm maps n = εk . . . ε0 to n itself with probability 1− p, to
n+ 1 with probability pl+1 and to m = n− 2r + 1 = εk . . . εd+1 . . . εr0 . . . 0
with probability pr(1 − p). With this they obtained a countable Markov
chain whose associated transition operator S = (pi,j)i,j∈N is a bistochas-
tic infinite matrix whose spectrum is equal to the filled Julia set of the
quadratic map z2−(1−p)

p , z ∈ C.
In [30, 31, 32, 33], stochastic adding machines based on other systems of

numeration have been introduced. They are connected to one-dimensional
fibered Julia sets (see [30]) and also to Julia sets in dimension greater
than one ([9, 31, 32]). A d-dimensional fibered filled Julia set of a sequence
(gj)j>1 of holomorphic maps on Cd is the setK((gj)j>1) of z ∈ Cd such that
the forward orbit {g̃j(z) : j ∈ N} is bounded, where g̃j = gj ◦ gj−1 ◦ · · · ◦ g1
for all j > 1.
In this paper, we introduce stochastic adding machines associated to

Vershik maps on Bratteli diagrams. Bratteli diagrams are important objects
in the theories of operator algebras and dynamical systems. It was originally
defined in 1972 by O. Bratteli [5] for classification of C∗-algebras. Bratteli
diagrams turned out to be a powerful tool in the study of measurable,
Borel, and Cantor dynamics (see [20, 23, 29, 36]). The interest on Bratteli
diagrams is that any aperiodic transformation in measurable, Borel, and
Cantor dynamics can be realized as a Vershik map acting on the path space
of a Bratteli diagram (see [3, 23, 29, 36, 37]).
A particular application arises when we use the Vershik map to embed

Z+ into the set of paths of the associated Bratteli diagram. This embed-
ding allows us to consider the restriction of the Vershik map on that copy
of Z+ as the map n 7→ n+ 1. It also allows a representation of systems of
numeration through Bratteli diagrams, making possible for us to introduce
more general stochastic adding machines. Indeed we are able to define a
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more general Markov process on the set X of infinite paths on the Brat-
teli diagram whose restriction to the copy of Z+ is the stochastic adding
machine, we call this process the “Bratteli–Vershik process” or simply BV
process and the associated stochastic adding machine the Bratteli–Vershik
stochastic adding machine or simply BV stochastic adding machine.
We will give necessary and sufficient conditions that assure transience

or recurrence of the BV stochastic adding machines. We will also prove
that the spectrum of the BV stochastic adding machine transition oper-
ator S (acting on l∞(N)) is related to fibered filled Julia sets in higher
dimension. For example, if the Bratteli diagram is stationary and its in-
cidence matrix is M = ( a bc d ) where a, b, c, d are nonnegative integers,
then the point spectrum of the transition operator of the Bratteli–Vershik
stochastic adding machine associated to M is related to the Julia set
K := {(x, y) ∈ C2 : (gn ◦ · · · ◦ g1(x, y))n>1 is bounded}, where gn(x, y) =(

1
pn+1

xayb − 1−pn+1
pn+1

, 1
pn+1

xcyd − 1−pn+1
pn+1

)
and 0 < pn+1 < 1, for all n > 1.

Just to mention an important connection, the study of these spectra gives
information about the dynamical properties of transition operators acting
on separable Banach spaces (see for instance [2, 21]). For example, if T
is topologically transitive, then any connected component of the spectrum
intersects the unit circle. However, here we do not aim at the study of
the dynamical properties of the transition operators. We will also study
topological properties of this spectrum.

The paper is organized as follows. In Section 2 we give a background
about Bratteli diagrams and we define the Vershik map. In Section 3 we
define the BV processes and the BV stochastic adding machines giving
necessary and sufficient conditions for transience, null recurrence and posi-
tive recurrence. Section 4 is devoted to provide an exact description of the
spectra of the transition operators of BV stochastic machines acting on
l∞(N) in the case of 2× 2 Bratteli diagrams. Furthermore, we prove some
topological properties of this spectrum. Section 5 describes generalization
to l × l, l > 3, Bratteli diagrams.

2. Bratteli diagrams

2.1. Basics on Bratteli diagrams

In this section we introduce the necessary notation on Bratteli diagrams.
Here we follow [15, 24] and we recommend both texts, as well as [4], as
references on Bratteli diagrams for the interested reader.

TOME 70 (2020), FASCICULE 6
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A Bratteli diagram is an infinite directed graph (V,E) such that the
vertex set V =

⋃∞
k=0 V (k) and the edge set E =

⋃∞
k=1 E(k) are partitioned

into finite disjoint subsets V (k) and E(k), where there exist maps s : E →
V and r : E → V such that s restricted to E(k) is a surjective map from
E(k) to V (k − 1) and r restricted to E(k) is a surjective map from E(k)
to V (k) for every k > 1.

For every e ∈ E, s(e) and r(e) are called respectively the source and range
of e. For convenience if #V (k) = l we denote V (k) = {(k, 1), . . . , (k, l)} or
simply V (k) = {1, . . . , l} when there is no possibility of misidentification
of the value of k.

Remark 2.1. — It is usual to define the Bratteli diagrams under the
condition that V (0) is a singleton. We do not impose this condition. Our
definition is more suitable to the understanding of stationarity and is more
appropriate for the discussion of the results in this paper. However we could
also use that condition in the definition without prejudice to the results in
this paper.

It is convenient to give a diagrammatic representation of a Bratteli di-
agram considering V (k) as a “horizontal” level k and the edges in E(k)
heading downwards from vertices at level k − 1 to vertices at level k.
Also, if #V (k − 1) = l(k − 1) and #V (k) = l(k), then E(k) determines a
l(k)× l(k− 1) incidence matrix M(k), where M(k)i,j is the number of the
edges going from vertex j in V (k − 1) to vertex i in V (k). By definition
of Bratteli diagrams, we have that M(k) has non identically zero rows and
columns.
Let k, k̃ ∈ Z+ with k < k̃ and let E(k+1)◦E(k+2)◦· · ·◦E(k̃) denote the

set of paths from V (k) to V (k̃). Specifically, E(k + 1) ◦ · · · ◦ E(k̃) denotes
the following set:

{(ek+1, . . . , ek̃) : ei ∈ E(i), k+16 i6 k̃, r(ei) = s(ei+1), k+16 i6 k̃−1}.

The incidence matrix of E(k+1)◦···◦E(k̃) is the productM(k̃)·...·M(k+1).
We define r(ek+1, . . . , ek̃) := r(ek̃) and s(ek+1, . . . , ek̃) := s(ek+1).
In this paper, we will assume that (V,E) is a simple Bratteli diagram,

i.e. for each nonnegative integer k, there exists an integer k̃ > k such that
the product M(k̃) · . . . ·M(k + 1) have only nonzero entries.

2.2. Ordered Bratteli diagrams

An ordered Bratteli diagram (V,E,>) is a Bratteli diagram (V,E) to-
gether with a partial order > on E such that edges e, e′ ∈ E are comparable
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if and only if r(e) = r(e′), in other words, we have a linear order on the set
r−1({v}) for each v ∈ V \ V (0).

Remark 2.2. — Edges in an ordered Bratteli diagram (V,E,>) are
uniquely determined by a four dimensional vector e = (k, s,m, r), where
k means that e ∈ E(k), s = s(e) and r = r(e) are the source and range
of e as previously defined and m ∈ Z+ is the order index, meaning that
e = em ∈ r−1(r(e)) = {e0 < e1 < · · · < er−1}. Usually we will write
e = ek = (s,m, r) carrying the level index k as a subscript or suppressing
it when there is no doubt about the level.

Note that if (V,E,>) is an ordered Bratteli diagram and k < k̃ in Z+,
then the set E(k + 1) ◦ E(k + 2) ◦ · · · ◦ E(k̃) of paths from V (k) to V (k̃)
may be given an induced order as follows:

(ek+1, ek+2, . . . , ek̃) > (e′k+1, e
′
k+2, . . . , e

′
k̃
)

if and only if for some i with k + 1 6 i 6 k̃, ei > e′i and ej = e′j for
i < j 6 k̃.
A Bratteli diagram (V,E) is stationary if there exists l such that l =

#V (k) for all k, and (by an appropriate relabelling of the vertices if nec-
essary) the incidence matrices between level k and k+ 1 are the same l× l
matrix M for all k > 1. In other words, beyond level 1 the diagram repeats
itself. An ordered Bratteli diagram B = (V,E,>) is stationary if (V,E) is
stationary, and the ordering on the edges with range (k, i) is the same as
the ordering on the edges with range (k̃, i) for k, k̃ > 2 and i = 1, . . . , l, i.e.
beyond level 1 the diagram with the ordering repeats itself. Furthermore,
we say that > is a consecutive ordering if for all edges e 6 f 6 e′ with
s(e) = s(e′) we have s(f) = s(e) = s(e′). To every ordered Bratteli dia-
gram with consecutive ordering B = (V,E,>) we associate a sequence of
matrices (Q(k))k>1 called the ordering matrices such that

(i) Q(k) is a (l(k))× (l(k − 1)) matrix;
(ii) Q(k)i,j = 0 if and only if M(k)i,j = 0;
(iii) The nonzero entries in each row i of Q(k) form a permutation in

#{j : M(k)i,j > 0} letters. So the row i in Q(k) indicates how edges
inciding on vertex i ∈ V (k) are ordered with respect to its sources
in V (k − 1).

The consecutive ordering is said to be canonical if each row of Q(k), k > 1,
the permutation in #{j : M(k)i,j > 0} letters is the identity.

TOME 70 (2020), FASCICULE 6
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For a stationary ordered Bratteli diagram, the consecutive ordering is
also stationary, i.e Q = Q(k) for every k. As an example consider a sta-
tionary ordered Bratteli diagram with l = 2 and incidence matrix

M =
(
a b

c 0

)
,

with abc > 0. We have two possible consecutive orderings relative to the
ordering matrices (

1 2
1 0

)
or

(
2 1
1 0

)
,

where the first one is associated to the canonical consecutive ordering.

2.3. The Vershik map

Let B = (V,E,>) be an ordered Bratteli diagram. Let XB denote the
associated infinite path space, i.e.

XB = {(e1, e2, . . . ) : ei ∈ E(i) and r(ei) = s(ei+1), for all i > 1}.

Under the hypotheses of the definition of a Bratteli diagram, XB is
nonempty. However XB can be a finite set, this only occurs in trivial cases
and do not occur for general classes of Bratteli diagrams as for instance
simple Bratteli diagrams with #E(k) > 1 for infinitely many k > 1. Hence
we require that XB is infinite for all Bratteli diagrams considered here.
We endow XB with a topology such that a basis of open sets is given by

the family of cylinder sets

[e1, e2, . . . , ek]B = {(f1, f2, . . . ) ∈ XB : fi = ei, for all 1 6 i 6 k}.

Each [e1, . . . , ek] is also closed, as is easily seen. Endowed with this topology,
we call XB the Bratteli compactum associated with B = (V,E,>). Let
dB be the distance on XB defined by dB((ej)j , (fj)j) = 1

2k where k =
inf{i > 1 : ei 6= fi}. The topology of the cylinder sets coincides with the
topology induced by dB .
If (V,E) is a simple Bratteli diagram, then XB has no isolated points,

and so is a Cantor space (see [29]).
Two paths in XB are said to be cofinal if they have the same tails, i.e.

the edges agree from a certain level.
Let x = (e1, e2, . . . ) be an element of XB . We will call ek = ek(x) the

k-th label of x. Recall from Remark 2.2 that ek = (sk,mk, rk) such that
rk = sk+1 ∈ V (k) for every k > 1. We let Xmax

B denote those elements x
of XB such that ek(x) is a maximal edge for all k and Xmin

B the analogous
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set for the minimal edges. It is clear that from any vertex at level k there
is an upward maximal path to level 0, using this we have that Xmax

B is
the intersection of nonempty compact sets, so it is nonempty. Analogously
Xmin
B is nonempty.
From now on we denote

X0
B := XB \Xmax

B .

If B = (V,E,>) is an ordered Bratteli diagram then it is easy to check
that every infinite path x ∈ X0

B has an unique successor. Indeed let x =
(e1, e2, . . . ) ∈ X0

B and ζ(x) be the smallest number such that eζ is not a
maximal edge. Let fζ = fζ(x) be the successor of eζ (and so r(eζ) = r(fζ)).
Then the successor of x is VB(x) = y = (f1, . . . , fζ−1, fζ , eζ+1, . . . ), where
(f1, . . . , fζ−1) = (f1(x), . . . , fζ−1(x)) is the minimal path in E(1) ◦ E(2) ◦
· · ·◦E(ζ−1) with range equal to s(fζ), i.e. r(f1, . . . , fζ−1) = s(fζ). Thus, it
is convenient to define the Vershik map VB : X0

B → XB that associates to
each x ∈ X0

B its successor. The resulting pair (XB , VB) is called Bratteli–
Vershik dynamical system.

3. The Bratteli–Vershik process and stochastic machine

Here we will define the BV process but we need to introduce some new
notation before it.

Let B = (V,E,>) be an ordered Bratteli diagram.
Recall the definition of ζ(x), for x ∈ X0

B , from the previous section and
define

A(x) = {1 6 i < ζ(x) : ei(x) is not a minimal edge}.
Put θ(x) = #A(x) and write A(x) = {kx,1, . . . , kx,θ(x)}, where kx,i−1 <

kx,i, for all i ∈ {2, . . . , θ(x)}.
Since for k ∈ A(x) we have that ek(x) is a maximal edge of x which

is not minimal which implies that ek(x) is not the only edge arriving at
r(ek(x)). Thus if #r−1(v) > 1 for every v ∈ V \ {v0} or equivalently the
sum of each row in each incidence matrix is greater than one, then we have
that θ(x) = ζ(x)− 1 and A(x) = {1, . . . , ζ(x)− 1}. So we have

Hypothesis A. — For the ordered Bratteli diagram B = (V,E,>), the
sum of each row in each incidence matrix is greater than one.

For each j ∈ {1, . . . , θ(x)}, let yj(x) ∈ X0
B be defined as

(3.1) yj(x) = (f (j)
1 , . . . , f

(j)
kx,j

, ekx,j+1, ekx,j+2, . . . ),

TOME 70 (2020), FASCICULE 6
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where (f (j)
1 , . . . , f

(j)
kx,j

) is the minimal edge in E(1)◦ · · · ◦E(kx,j) with range
equal to s(ekx,j+1), for each j ∈ {1, . . . , θ(x)}.

First we need to adjust the space where the BV process will be defined.
This is due to the fact that the successor of x ∈ X0

B can be an element of
Xmax
B . To avoid this we define X̂max

B as the set of points x ∈ XB that are
cofinal with a point of Xmax

B . Set

X̂B := XB \ X̂max
B .

Note that if x ∈ X̂B then VB(x) ∈ X̂B . Moreover VB restricted to X̂B is
one to one from X̂B to X̂B \Xmin

B .

Definition 3.1. — Let (pi)i>1 be a sequence of nonnull probabilities
and B = (V,E,>) an ordered Bratteli diagram. The Bratteli–Vershik Pro-
cess is a discrete time-homogeneous Markov Process (Γn)n>0 with state
space X̂B defined as

Γn = V̂
(n)
B (Γ0) ,

where V̂ (n)
B is the n-th iteration of V̂B : X̂B → X̂B called the random

Vershik map and defined as

V̂B(x) =



yj(x), with probability pkx,1 . . . pkx,j (1− pkx,j+1),
for each j ∈ {1, . . . , θ(x)− 1};

yθ(x)(x), with probability pkx,1 . . . pkx,θ(x)(1− pζ(x));
x, with probability 1− pkx,1 ;
VB(x), with probability pkx,1 . . . pkx,θ(x)pζ(x).

Thus the transition probabilities of the BV process are determined by
the random Vershik map. The idea behind the definition is the use of a
basic algorithm to obtain VB(x) from x by recursively choosing the min-
imum path from level 0 to level k for 1 6 k 6 ζ(x) − 1 and then at step
ζ(x) we finally obtain VB(x). Then we impose the rule that step j of the
algorithm is performed with probability pj independently of any other step.
This transition mechanism is connected to the stochastic adding machines
discussed in Section 1 and our next aim is to define the BV stochastic
adding machine.

ANNALES DE L’INSTITUT FOURIER
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Remark 3.2. — Under Hypothesis A we have that

V̂B(x) =


yj(x), with probability p1 . . . pj(1− pj+1),

for each j ∈ {1, . . . , ζ(x)− 1};
x, with probability 1− p1;
VB(x), with probability p1 . . . pζ(x)−1pζ(x).

Take x0 ∈ X̂B ∩ Xmin
B and define X̃x0

B := {x0} ∪ {V (n)
B (x0) : n > 1}.

Clearly we have a bijection between X̃x0
B and the set of nonnegative integers

Z+ where x0 7→ 0 and V
(n)
B (x0) 7→ n for all n > 1. Using the fact that

x0 ∈ Xmin
B , it is also straightforward to verify that for every x ∈ X̃x0

B we
have V̂B(x) ∈ X̃x0

B with probability one.
To simplify the notation, we put xn := V

(n)
B (x0) and then X̃x0

B =
{x0, x1, x2, . . .}.

Definition 3.3. — Let (pi)i>1 be a sequence of nonnull probabilities,
B = (V,E,>) be an ordered Bratteli diagram and x0 ∈ X̂B ∩ Xmin

B . The
Bratteli–Vershik stochastic adding machine associated to them is the dis-
crete time-homogeneous Markov chain (Yn)n>0 on X̃x0

B defined as Yn = Γn
for n > 1 given that Y0 = x0.

Let (Yn)n>0 be a BV stochastic adding machine, we will denote the
transition matrix of (Yn)n>0 by S = (Sm,n)m,n∈N, i.e

(3.2) Sm,n := S(xn, xm) := P (Y1 = xn |Y0 = xm).

WhenXmin
B = {xmin} is a unit set, there is a unique BV stochastic adding

machine associated to B and a given sequence (pi)i>1. This stochastic
machine is the main object of study in this paper. To simplify notation
we write X̃xmin

B = X̃B . The hypothesis Xmin
B = {xmin} is a natural one and

occurs when the level sets Vk are ordered and the order on the edges is
endowed by the order on its source level sets.

Example 3.4 (The Cantor systems of numeration case). — Consider the
ordered Bratteli diagram B represented by the sequence of 1× 1 matrices
Mj = (dj) for a sequence dj > 2 for every j > 1. In this case we have
a unique ordering which is the canonical consecutive ordering. Moreover
Hypothesis A is clearly satisfied. In this case, Xmin

B is a unit set and given
(dj)j>1 and (pj)j>1 there is a unique associated BV stochastic adding ma-
chine. The stochastic adding machines associated to the Cantor systems of
numeration were introduced by Messaoudi and Valle [33].
For instance consider dj = 2j, for all j > 1. Let x = (e1, e2, e3, e4, . . . ) ∈

X̃B , where e1 = (1, 1, 1), e2 = (1, 3, 1) and e3 = (1, 4, 1). A representation

TOME 70 (2020), FASCICULE 6
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of the path (e1, e2, e3) in the diagram is presented in item (a) of Figure 3.2.
Here we have ζ(x) = 3, because e1 and e2 are maximal edges and e3 is
not maximal. Thus VB(x) = (f1, f2, f3, e4, e5, . . . ) where f1 = (1, 0, 1),
f2 = (1, 0, 1) and f3 = (1, 5, 1). (see the item (b) of Figure 3.2). More-
over, we have A(x) = {1, 2} and y1(x) = (f1, e2, e3, e4, . . . ) and y2(x) =
(f1, f2, e3, e4, . . . ) (see the items (c) and (d) of Figure 3.2, respectively). We
have that x transitions to VB(x) with probability p1p2p3, x transitions to
x with probability 1−p1, x transitions to y1(x) with probability p1(1−p2)
and x transitions to y2(x) with probability p1p2(1−p3). The initial parts of
the transition graph and matrix for the chain are represented in Figure 3.1.

Figure 3.1. Initial parts of the transition graph and matrix of the BV
stochastic adding machine with incidence matrices Mj = (dj) where
d1 = 2, d2 = 4 and d3 = 6.

Remark 3.5. — In Example 3.4, if dj = 2 for all j > 1, then we obtain
the stochastic adding machine defined by Killeen and Taylor [27].

Example 3.6. — Consider B as the stationary Bratteli diagram with con-
secutive ordering and incidence matrix M1 = ( 2 1

3 1 ). This diagram satisfies
Hypothesis A.
Let x = (e1, e2, e3, e4, e5, . . . ) ∈ XB be an infinite path, where e1 =

(2, 3, 2), e2 = (2, 2, 1), e3 = (1, 1, 2), e4 = (2, 2, 1) and ej = (1, 0, 1) for
j > 5. The representation of x in the diagram is given by the path in
item (a) of Figure 3.4.
Here we have ζ(x) = 3 and VB(x) = (f1, f2, f3, e4, e5, . . . ) where f1 =

(1, 0, 1), f2 = (1, 0, 1) and f3 = (1, 2, 2). (see item (b) of Figure 3.4).
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0 1

0 1 2 3

E(1)

E(2)

E(3)

a)

0 1 2 3 4 5

0 1

0 1 2 3

b)

0 1 2 3 4 5

0 1

0 1 2 3

c)

0 1 2 3 4 5

0 1

0 1 2 3

d)

0 1 2 3 4 5

Figure 3.2. Representation paths in a Bratteli diagram with incidence
matrices Mj = (dj) where j > 1, d1 = 2, d2 = 4 and d3 = 6.

Moreover, we have A(x) = {1, 2} and y1(x) = ((1, 0, 2), e2, e3, . . . ) and
y2(x) = ((1, 0, 1), (1, 0, 1), e3, e4, . . . ) (see the items (c) and (d) of Fig-
ure 3.4, respectively).
Hence, we have that x is mapped to VB(x) with probability p1p2p3, x is

mapped to x with probability 1−p1, x is mapped to y1(x) with probability
p1(1− p2) and x is mapped to y2(x) with probability p1p2(1− p3).
Thus, its transition graph and transition operator are represented in

Figure 3.3.

Example 3.7 (The Fibonacci case). — Consider the stationary ordered
Bratteli diagram B with the canonical consecutive ordering and incidence
matrix MF = ( 1 1

1 0 ). In this case B does not satisfy Hypothesis A. Again
Xmin
B is unitary and given (pj)j>1 there is a unique associated BV stochastic

adding machine. These stochastic adding machines are associated with the
Fibonacci system of numeration and have been introduced in [31]
Let x = (e1, e2, e3, e4, . . . ) ∈ XB be an infinite path in the Bratteli di-

agram, where e1 = (2, 1, 1), e2 = (1, 0, 2), e3 = (2, 1, 1), and ej = (1, 0, 1)
for all j > 4. The representation of x in the diagram is given by the con-
tinuous path in item (a) of Figure 3.5. We have ζ(x) = 4 and VB(x) =
(f1, f2, f3, f4, e5, . . . ) where f4 = (2, 1, 1) and (f1, f2, f3) is the minimal
path in E(1) ◦ E(2) ◦ E(3) with range equal to s(f4). (see the item (b) of
Figure 3.5).
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Figure 3.3. Initial parts of the transition graph and matrix of the
BV stochastic adding machine associated with a stationary Bratteli
diagram with incidence matrix M1.

0
1

2

0

1

2
3

0
1

2

0

1

2
3

0
1

2

0

1

2
3

E(1)

E(2)

E(3)

a) b) c) d)

0
1

2
1

2
3

E(4)

0

0
1

2

0

1

2
3

0
1

2

0

1

2
3

0
1

2

0

1

2
3

0
1

2
1

2
3

0

0
1

2

0

1

2
3

0
1

2

0

1

2
3

0
1

2

0

1

2
3

0
1

2
1

2
3

0

0
1

2

0

1

2
3

0
1

2

0

1

2
3

0
1

2

0

1

2
3

0
1

2
1

2
3

0

Figure 3.4. Representation of paths in a stationary Bratteli diagram
with incidence matrix M1.

We haveA(x) = {1, 3}= {n1, n2} and yn1(x) = ((1, 0, 1), (1, 0, 2), (2, 1, 1),
e4, . . . ) and yn2(x) = ((1, 0, 1), (1, 0, 1), (1, 0, 1), e4, . . . ) (see the items (c)
and (d) of Figure 3.5, respectively).
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Hence, we have that x transitions to VB(x) with probability p1p3p4,
x transitions to x with probability 1 − p1, x transitions to yn1(x) with
probability p1(1 − p3) and x transitions to yn2(x) with probability
p1p3(1− p4).
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0 1 0
1

E(1)

E(2)

E(3)

a) b) c) d)

E(4)

Figure 3.5. Representation of paths in a stationary Bratteli diagram
with incidence matrix MF .

Remark 3.8. — Two distinct ordered Bratteli diagrams can generate the
same stochastic adding machine. For instance consider two stationary or-
dered Bratteli diagrams with consecutive ordering and incidence matrices
M = (2) and M ′ = ( 1 1

1 1 ). Both diagrams generate a unique BV stochas-
tic adding machine that corresponds to the stochastic machine studied by
Killeen and Taylor in [27].

Before we discuss the probabilistic properties of the BV stochastic adding
machines, we present some basic definitions from the theory of Markov
chains and we recommend [6] to the unfamiliar reader. Let Y = (Yn)n>0
be a Markov Chain on a probability space (Ω,O, P ). We denote by E[ · ]
the expectation with respect to P . We say that Y is irreducible if for any
pair of states i and j there exists m > 1 such that

P (Ym = j |Y0 = i) > 0.

An irreducible Markov chain Y is transient if every state i is transient, i.e.

P (Yn = i for some n |Y0 = i) < 1,
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If an irreducible Markov chain is not transient we say that it is recurrent
and this means that every state i is recurrent, i.e.

P (Yn = i for some n |Y0 = i) = 1.

Furthermore, a recurrent Markov chain is called positive recurrent if for
each state i, the expected return time mi = E[Ri|Y0 = i] < ∞, where
Ri = min{n > 1 : Yn = i}. Otherwise, if mi = +∞, then the Markov chain
is called null recurrent.

Proposition 3.9. — Let (pi)i>1 be a sequence of nonnull probabilities
such that #{i : pi < 1} =∞. Every BV stochastic adding machine associ-
ated to (pi)i>1 is an irreducible Markov chain. Furthermore the stochastic
machine is transient if and only if

∏∞
j=1 pj > 0.

Proof. — Let (Yn)n>0 be a BV stochastic adding machine associated to
(pi)i>1, an ordered Bratteli diagram B = (V,E,>) and x0 ∈ X̂B ∩Xmin

B .
We have some special states xn1 , xn2 ,. . . , which are cofinal to x0 by

hypothesis, determined by the following: ek(xnj ) = ek(x0) for k > j + 1
and (e1(xnj ), . . . , ej(xnj )) is the maximal path in E(1) ◦ · · · ◦ E(j) with
range equal so s(ej+1(x0)).
Concerning irreducibility, we just point out that
(i) for every n the chain can reach xn with positive probability by

making the transitions x0 7→ x1, x0 7→ x1,. . . , xn−1 7→ xn;
(ii) for j + 1 ∈ {i : pi < 1}, we can make the transition xnj 7→ x0 with

probability (1− pj+1)
∏j
i=1 pj > 0.

By (i) and (ii), it is clear that (Yn)n>0 is irreducible.
Now we consider the transience/recurrence of the chain. We rely on some

additional properties of the chain related to the special states xnj , j > 1.
We have

(iii) Once the chain arrives at xnj+1, the successor of xnj , it can only
visit xnj again if it visits x0 first.

(iv) If transition x 7→ x0 is possible with positive probability, then x =
xnj .

(v) Given that a transition from xnj to xnj+1 or x0 occurs, the next
state of the chain is xnj+1 with probability pj+1, i.e

P
(
Yn+1 = xnj+1

∣∣Yn = xnj , Yn+1 ∈ {x0, xnj+1}
)

= pj+1 .

The verification of (iii), (iv), (v) follows directly from the definition of
(Yn)n>0. By the Markov property and properties (i)–(v) above, the prob-
ability that the (Yn)n>0 never returns to x0 coincide with the event that
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(Yn)n>0 reach xnj before it returns to x0 for every j > 1 which has proba-
bility

∏∞
j=1 pj > 0. �

Remark 3.10. — Let (Yn)n>0 be an irreducible BV stochastic adding
machine. If p1 < 1 then clearly (Yn)n>0 is aperiodic since P (Y1 = x0|Y0 =
x0) = 1 − p1 > 0. However, when p1 = 1 the chain can be periodic or
aperiodic depending on the Bratteli diagram.

Proposition 3.11. — Let B be an ordered Bratteli diagram satisfying
Hypothesis A and (pi)i>1 be a sequence of nonnull probabilities such that
#{i : pi < 1} = ∞ and

∏∞
j=1 pj = 0. Then every BV stochastic adding

machine associated to (pi)i>1 is null recurrent.

Proof. — Let (Yn)n>0 be a BV stochastic adding machine associated to
(pi)i>1, an ordered Bratteli diagram B = (V,E,>) and x0 ∈ X̂B ∩Xmin

B .
Suppose that B = (V,E,>) satisfies Hypothesis A, #{i : pi < 1} =∞ and∏∞
j=1 pj = 0. By Proposition 3.9, the chain is irreducible and recurrent.
Put T = inf{n > 1 : Yn = x0}, i.e the first return time to x0. We are

going to show that the expected value of T , E[T ], is infinite and then the
chain is null recurrent.
To compute E[T ] we need to recall the definition of the special states

xnj , j > 1, and their properties from the proof of Proposition 3.9. Also
recall the definition of the transition probabilities under Hypothesis A from
Remark 3.2.

Put xn0 := x0 and consider the following decomposition

T =
∞∑
n=0

TI{YT−1=xnj } ,

where IW is the indicator function of the event W . We obtain that

(3.3) E[T ] =
∞∑
n=0

E[T |I{YT−1=xnj }]P (YT−1 = xnj ) .

Clearly on {YT−1 = xn0} we have T = 1 and P (YT−1 = xn0) = 1 − p1.
Using item (v) in the proof of Proposition 3.9 we get that

(3.4) P (YT−1 = xnj ) =
(

j∏
i=1

pj

)
(1− pj+1) .

We also have that

(3.5) E[T |I{YT−1=xn0}] = 1 .
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Claim. — For every j > 1

E[T |I{YT−1=xnj }] > 1 +
j∑
i=1

(
i∏

r=1
pr

)−1

.

Suppose that the claim holds. Then by (3.3) and (3.4) we have that

E[T ] > (1− p1)(3.6)

+
(

1 + 1
p1

)
p1(1− p2)(3.7)

+
(

1 + 1
p1

+ 1
p1p2

)
p1p2(1− p3) + · · · .(3.8)

Rearranging terms and putting p0 = 1 we obtain

E[T ] >
∞∑
m=0

∞∑
j=1

pm . . . pm+j−1(1− pm+j)(3.9)

=
∞∑
m=0

1−
∏

j>m+1
pj

 =
∞∑
m=0

1 =∞ .(3.10)

Thus the chain is null recurrent.
It remains to prove the claim. We prove it by induction. Suppose the

claim holds for j − 1 (the case j = 0 is (3.5)). Given {YT−1 = xnj} write
T = T1 + T2 where T1 is the time of the first visit of the chain to xnj−1+1
and T2 the time spent on {xnj−1+1, . . . , xnj} until it arrives at x0. By the
induction hypothesis

E[T1|I{YT−1=xnj }] > 1 +
j−1∑
i=1

(
i∏

r=1
pr

)−1

.

It remains to prove that

E[T2|I{YT−1=xnj }] >
(

j∏
r=1

pr

)−1

.

Time T2 is greater or equal to the number of transitions to get to x0 from
xnj , and this is bounded below by the necessary number of trials from
j independent Bernoulli random variables with parameters p1, . . . , pj to
obtain j successes. It is an exercise in probability theory using geometric
random variables to prove that this number of trials have expected value
equal to (

∏j
r=1 pr)−1. �

From the proof of Proposition 3.11 we see that we can drop Hypothesis
A if the sequence (pi)i>1 is constant and the Bratteli diagram is stationary.
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Proposition 3.12. — Let B be a stationary ordered Bratteli diagram.
If pi = p ∈ (0, 1) for every i > 1, then every BV stochastic adding machine
associated to (pi)i>1 is null recurrent.

Although we have Propositions 3.11 and 3.12, a BV stochastic adding
machine associated to (pi)i>1 such that

∏∞
j=1 pj = 0 can be positive recur-

rent. So Hypothesis A is necessary. In Example 3.7 we describe a stationary
BV stochastic adding machine associated to an ordered Bratteli diagram
with consecutive ordering which can be positive recurrent for a sufficiently
fast decreasing sequence (pi)i>1.

4. Stochastic machines of stationary 2× 2 Bratteli
diagrams

Let B = (V,E,>) be a stationary simple ordered Bratteli diagram with
incidence matrix M = ( a bc d ).
Since B is simple, we have necessarily b > 0 and c > 0, moreover either

a > 0 or d > 0. We can change the labels of vertices in B if necessary and
suppose that a > 0. Therefore a+ b > 1 and Hypothesis A is equivalent to
c+ d > 1.

We start with a proposition that gives a condition on 2× 2 Bratteli dia-
grams that allows the existence of positive recurrent BV stochastic adding
machines.

Proposition 4.1. — Let B = (V,E,>) be a 2 × 2 stationary simple
ordered Bratteli diagram with a = c = 1, b > 0 and d = 0. Then the BV
stochastic adding machine associated to (pj)j>1 is positive recurrent if pj
decreases to zero sufficiently fast as j →∞.

Proof. — Recall the definitions from the proof of Proposition 3.11. In
order to prove that the stochastic machine is positive recurrent we have to
show that E[T ] <∞.

We claim that there exists (Cj)j>1 depending on b but not on (pj)j>1
such that

(4.1) E[T ] 6 C1 +
+∞∑
j=1

Cj max{pj−1, pj} .

From the previous inequality, one simply needs to choose pj 6 rj/(Cj +
Cj+1) with

∑+∞
j=1 rj <∞.
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To prove (4.1) we use (3.3) and (3.4). So we need to bound from above
the conditional expectation E[T |I{YT−1=xnj }]. The particular form of xnj
is important here. We have that

xn1 =
(
(2, b, 1), (1, 0, 1), (1, 0, 1), . . .

)
,

thus the time to get to xn1 + 1 from x0 given YT−1 = xnj is equal to one
plus a negative binomial distribution with parameters b and p1 because the
chain uses one unit of time to leave x0 and then spend a geometric time
of parameter p1 on each of the last b edges of E(1) with range 1 ∈ V (1).
Therefore

E[T |I{YT−1=xn1}] = 1 + b

p1
and

E[T |I{YT−1=xn1}]P (YT−1 = xn1) 6 1 + b = C1 .

Before we can use induction on j we still need to deal with E[T |I{YT−1=xn2}]
and we need to compute the mean time to get to xn2 + 1 from xn1 + 1. We
have

xn1 + 1 =
(
(1, 0, 2), (2, 1, 1), (1, 0, 1), (1, 0, 1), . . .

)
,

where the first edge is the unique edge in E(1) with range 2. So from xn1 +1
we only need to change b edges in E(2) to get to xn2 + 1 and on each of
these edges we spend a geometric time of parameter p2. Therefore

E[T |I{YT−1=xn2}] = E[T |I{YT−1=xn1}] + b

p2
= 1 + b

p1
+ b

p2
,

and E[T |I{YT−1=xn2}]P (YT−1 = xn2) is bounded above by

p1p2 + bp2 + bp1 6 (1 + 2b) max{p1, p2} = C2 max{p1, p2} .

Analogous estimates allow us to show that E[T |I{YT−1=xn3}]P (YT−1 = xn3)
is bounded above by

p1p2p3 + p2p3b+ p1p3b+ p2b
2 6 (1 + 2b+ b2) max{p2, p3} .

Now Suppose that

E[T |I{YT−1=xnj }]P (YT−1 = xnj ) 6 Cj max{pj−1, pj} ,

and we are going to estimate E[T |I{YT−1=xnj+2}]. Using the fact that a =
c = 1 to go from xnj+1 +1 to xnj+2 +1 we need to change b edges in E(j+2)
without change the edge (j+ 1, 1, 0, 2) ∈ E(j+ 1) but considering all edges
in E(1) ◦ · · · ◦ E(j) with range 1 ∈ V (j). Thus

E[T |I{YT−1=xnj+2}] 6 E[T |I{YT−1=xnj }] + (E[T |I{YT−1=xnj+2}]− 1) b

pj+2
.
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Thus E[T |I{YT−1=xnj+2}]P (YT−1 = xnj+2) is bounded above by

Cj max{pj−1, pj}pj+2 + Cj max{pj−1, pj}pj+1 6 2Cj max{pj+1, pj+2} .

So we just need to take Cj+2 = 2Cj . �

From the proof of Proposition 4.1 we can also see that it is enough to
have 2−jpj summable to obtain a positive recurrent stochastic machine
from the hypothesis of the proposition.
As a corollary we get the result from [9] about the existence of positive

recurrent Fibonacci stochastic adding machines.

Corollary 4.2. — The Fibonacci stochastic adding machines associ-
ated to (pj)j>1 are positive recurrent if pj decreases to zero sufficiently fast
as j →∞.

To continue the study of BV stochastic machines of 2 × 2 Bratteli dia-
grams, we need to introduce some notation related to systems of numeration
associated to the 2× 2 Bratteli diagrams.

Let us denote Mn by

Mn =
(
an bn
cn dn

)
,

for all n > 0, where M0 = I is the identity matrix. For each n > 0, put

Fn = an + bn , Gn = cn + dn ∀ n > 1 .

This gives F0 = G0 = 1, F1 = a+ b and G1 = c+ d.

Remark 4.3. — For each nonnegative integer n > 1, Fn is the number of
paths from V (0) to the vertex (n, 1) at the Bratteli diagram. Respectively,
Gn is the number of paths from V (0) to the vertex (n, 2).

Lemma 4.4. — We have Fn+1 = (a+d)Fn− (ad− bc)Fn−1 and Gn+1 =
(a+ d)Gn − (ad− bc)Gn−1, for all n > 1.

Proof. — It comes from the fact that ( FnGn ) = Mn( 1
1 ) for all n > 0 and

the characteristic polynomial of M is p(x) = x2 + (a+ d)x− (ad− bc). �

4.1. 2× 2 case under Hypothesis A and consecutive ordering

From now on we assume that abc > 0, c+ d > 1 and that B is endowed
with the consecutive ordering. Thus B is simple and satisfies Hypothesis A.
Moreover Xmin

B = {x0} is a unitary set and for each x ∈ X̃B we have
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A(x) = {1, . . . , ζ(x)− 1}. The aim of this section is the study of the spec-
trum of BV stochastic machines under these conditions.
We first need to establish a proper notation to deal with the possible

transitions of the chain in X̃B = X̃x0
B . Define ~0j as the minimum edge of

E(j) with range 1, i.e. ~0j = (j, 1, 0, 1). For convenience we will sometimes
not write the level index j simply writing ~0 = (1, 0, 1). Let x = (ej)j>1 =
((sj ,mj , rj))j>1 ∈ X̃B . Recall that x0 = (~0j)j>1 and x 6= x0 is cofinal with
x0, thus there exists N ∈ N such that xN = V NB (x0) = x. Put

ξ(x) = min{j > 1 : el = ~0 for all l > j} .

The reader should recall the definition of ζ(x) and note that ζ(x) and ξ(x)
play a different role.

4.2. Numeration systems associated to Bratteli diagrams

Definition 4.5. — Let x ∈ X̃B . For each j ∈ {1, . . . , ξ(x)}, define
δj(x) = δj and γj(x) = γj according to the following four cases:

(1) If sj = 1 and rj = 1 then δj = mj ∈ {0, . . . , a− 1} and γj = 0;
(2) If sj = 2 and rj = 1 then δj = a and γj = mj − a ∈ {0, . . . , b− 1};
(3) If sj = 1 and rj = 2 then δj = mj ∈ {0, . . . , c− 1} and γj = 0;
(4) If sj = 2 and rj = 2 then δj = c and γj = mj − c ∈ {0, . . . , d− 1}.

For xN = V NB (x0) = x we also denote δj = δj(N) and γj = γj(N).

Observe that mj = δj + γj , for all j > 1. Moreover, if d = 0, then
(sj , rj) 6= (2, 2), for all j > 1.

Example 4.6. — Consider the consecutive ordering Bratteli diagram B

represented by the matrix M = ( 1 3
1 4 ). By Lemma 4.4, we have

F0 = 1, F1 = 4, F2 = 19, F3 = 91, . . .

G0 = 1, G1 = 5, G2 = 24, G3 = 115, . . .

Consider x, y ∈B where x= (xj)j>1 = ((2, 3, 2), (2, 4, 2), (2, 2, 1),~0,~0, . . . )
and y = (yj)j>1 = ((2, 2, 1), (1, 0, 2), (2, 3, 1),~0,~0, . . . ). The representation
of x and y in the Bratteli diagram is given respectively in the items (a)
and (b) of Figure 4.1.

By Definition 4.5, we have that
δ1(x) = 1, γ1(x) = 2;
δ2(x) = 1, γ2(x) = 3;
δ3(x) = 1, γ3(x) = 1;
δi(x) = γi(x) = 0, for all i > 4.

and

δ1(y) = 1, γ1(y) = 1;
δ2(y) = 0, γ2(y) = 0;
δ3(y) = 1, γ3(y) = 2;
δi(y) = γi(y) = 0, for all i > 4.
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Figure 4.1. Representation of the paths in the Bratteli diagram de-
scribed in Example 4.6.

Proposition 4.7. — Let N be a nonnegative integer and x ∈ X̃B such
that V NB (x0) = x. Then, N =

∑ξ(x)
j=0 δj+1Fj + γj+1Gj , where δi(N) = δi

and γi(N) = γi are defined in Definition 4.5, for all i > 1.

Proof. — Fix a nonnegative integer N and let x = V NB (x0) = (e1, e2,

e3, . . . ), with ei = (si,mi, ri) for all i > 1.
From Remark 4.3, we have that for each nonnegative integer k > 2

(4.2) V
Fk−1
B (x0) = (~0, . . . ,~0︸ ︷︷ ︸

(k−2) times

, ẽ, f̃ ,~0,~0, . . . )

where either ẽ = ~0 and f̃ = (1, 1, 1) if a > 1 or ẽ = (1, 0, 2) and f̃ = (2, 1, 1)
if a = 1. Thus, since ek = (sk,mk, rk), it follows that if sk = 1 and rk = 1,
then a > 1, mk ∈ {0, . . . , a− 1} and

V
δkFk−1+γkGk−1
B (x0) = V

mkFk−1
B (x0)

= (~0, . . . ,~0︸ ︷︷ ︸
(k−2) times

, ẽ, (1,mk, 1),~0,~0, . . . ) ,(4.3)
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and if sk = 2 and rk = 1, then mk ∈ {a, . . . , a+ b− 1} and

V
δkFk−1+γkGk−1
B (x0) = V

aFk−1+(mk−a)Gk−1
B (x0)

= (~0, . . . ,~0︸ ︷︷ ︸
(k−2) times

, ẽ, (2,mk, 1),~0,~0, . . . ) .(4.4)

Now, consider k = ξ(x) = min{j > 1 : el = ~0 for all l > j} and put
Nk = δkFk−1 + γkGk−1. For each j ∈ {1, . . . , k − 1}, let Nj = δjFj−1 +
γjGj−1 + Nj+1 and x(j + 1) := (~0, . . . ,~0︸ ︷︷ ︸

j−1 times

, ẽ, ej+1, ej+2, . . . , ek,~0,~0, . . . ).

Suppose that V Nj+1
B (x0) = x(j + 1), for some j ∈ {1, . . . , k − 1}.

Here, we need to consider four cases:

(i) sj = 1 and rj = 1; (iii) sj = 1 and rj = 2;
(ii) sj = 2 and rj = 1; (iv) sj = 2 and rj = 2.

For example, in the case (ii) we have ẽ = (1, 0, 1), mj ∈ {a, . . . , a+ b−1}
and

V
Nj
B (x0) = V

aFj−1+(mj−a)Gj−1
B

(
V
Nj+1
B (x0)

)
= V

aFj−1+(mj−a)Gj−1
B (x(j + 1)) = x(j).

In the same way, we can check that V NjB (x0) = x(j) for the other cases.
By induction we have V N1

B (x0) = x(1) = x and since δi = γi = 0, for
all i > k, it follows that N1 =

∑k
i=1(δiFi−1 + γiGi−1) =

∑+∞
i=1 (δiFi−1 +

γiGi−1) = N . �

Remark 4.8. — We believe that the last proposition is another formula-
tion of Lemma 4 in [7], which gives a formula of the first entrance time map.

Remark 4.9. — We call ((δ1, γ1), (δ2, γ2), . . . ) the (F,G)-representation
of N and we put N =

∑ξ(x)
j=0 δj+1Fj +γj+1Gj = ((δ1, γ1), (δ2, γ2), . . . ). The

set of (F,G)-representations is recognized by a finite graph called automa-
ton (see Figure 4.2).

Remark 4.10. — In Example 4.6, it follows by Proposition 4.7 that
L(Nx) = x and L(Ny) = y where Nx = F0 +2G0 +F1 +3G1 +F2 +G2 = 65
and Ny = F0 +G0 + F2 + 2G2 = 69.

Example 4.11. — If M = (d) for d > 2, by Proposition 4.7, we obtain
the numeration in base d, with digits {0, 1, . . . , d− 1}.
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Figure 4.2. Automaton related to the (F,G)-representation of N =
((δ1, γ1), (δ2, γ2), . . . ), where δi ∈ {xa, xc} and γi ∈ {yb, yd}, for all
i > 1 with xa ∈ {0, . . . , a− 1}, xc ∈ {0, . . . , c− 1}, yb ∈ {0, . . . , b− 1}
and yd ∈ {0, . . . , d− 1}.

Remark 4.12. — We can define the sequences (δi(x))i>1 and (γi(x))i>1

for all x ∈ X̃B as done in Definition 4.5, in the case where the Bratteli
diagram does not satisfies Hypothesis A, i.e. the incidence matrix M =
( a b1 0 ), where ab > 0. Furthermore, in this case δi ∈ {0, . . . , a} and γi ∈
{0, . . . , b − 1}, for all i > 1. Moreover, by Lemma 4.4, we have that Gn =
Fn−1, for all n > 1. By Proposition 4.7, the (F,G)-representation of N is
given by the automaton represented in Figure 4.3.

Figure 4.3. Automaton related to the (F,G)-representation, where
xa ∈ {0, . . . , a− 1} and yb ∈ {0, . . . , b− 1}.

Observe in Figure 4.3 that when b = 1, the representation of N is
((δ1, 0)(δ2, 0), . . . ), with δiδi−1 <lex a1, for all i > 2.

4.3. Spectra of the stochastic machines of 2×2 Bratteli diagrams

We are finally in position to compute the spectrum of the transition oper-
ator (acting in l∞(N)) of the BV stochastic adding machines associated to
a 2×2 stationary Bratteli diagram endowed with the consecutive ordering.
We denote the spectrum, point spectrum and approximate point spectrum
of the transition operator S respectively by σ(S), σpt(S) and σa(S). Recall
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that λ belongs to σ(S) (resp. σpt(S)) if S − λI is not bijective (resp. not
one-to-one). Also, λ ∈ σa(S) if there exists a sequence (vn)n>0 such that
‖vn‖ = 1, for all n > 0 and (S − λI)vn converges to 0 when n goes to
infinity.
For each λ ∈ C, let (uFn(λ))n>0 = (uFn)n>0 and (wFn(λ))n>0 = (wFn)n>0

be the sequences defined by uF0 = wF0 = λ−(1−p1)
p1

and for all n > 1.

(4.5)
uFn = 1

pn+1
uaFn−1

wbFn−1
− 1− pn+1

pn+1
,

wFn = 1
pn+1

ucFn−1
wdFn−1

− 1− pn+1

pn+1
.

From this, let (vn)n>1 be the sequence defined by vn =
∏ξ(n)−1
i=0 u

δi+1
Fi

w
γi+1
Fi

,
where δj = δj(n) and γj = γj(n), j ∈ {1, . . . , ξ(n)}, are given in Defini-
tion 4.5. Since vFn = uFn , for all n > 0, we will denote vn by un.

Theorem 4.13. — Let S be the transition operator of a BV stochastic
machine associated to a 2× 2 Bratteli diagram B. Then, acting in l∞(N),
we have that the set of eigenvalues of S is

σpt(S) = {λ ∈ C : (un(λ))n>1 is bounded}.

Remark 4.14. — From Theorem 4.13, we deduce that

σpt(S) ⊂ {λ ∈ C : (uFn(λ))n>0 is bounded}.

Moreover, if detM 6 0, we can show (see Proposition 4.17) that

σpt(S) ⊂ E := {λ ∈ C : (uFn(λ), wFn(λ)) is bounded}.

Since, gn◦· · ·◦g1(uF0 , uF0) = (uFn , wFn), for all n > 1, where gn : C2 → C2

are polynomials defined by

gn(x, y) =
(

1
pn+1

xayb − 1− pn+1

pn+1
,

1
pn+1

xcyd − 1− pn+1

pn+1

)
, for all n > 1,

if follows that σpt(S) is contained in the set {λ ∈ C : (λ−1+p1
p1

, λ−1+p1
p1

) ∈ K}
where

K := {(x, y) ∈ C2 : (gn ◦ · · · ◦ g1(x, y))n>1 is bounded}.

This set is the 2-dimensional fibered filled Julia set associated to (gn)n>1
(for more on fibered Julia sets see [35] and references therein). In particular,
if (pi)i>1 is constant, then K is a 2-dimensional filled Julia set.

For the proof of Theorem 4.13, we need the following lemma.
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Lemma 4.15. — For all z = (zi)i>0 ∈ l∞,

(Sz)N =

 ζN∏
j=1

pj

 zN+1 + (1− p1)zN

+
ζN−1∑
r=1

 r∏
j=1

pj

 (1− pr+1)z
N−
∑r−1

j=0
δj+1Fj+γj+1Gj

,

if ζN > 2 and (Sz)N = p1zN+1 + (1 − p1)zN if ζN = 1, where δi, γi are
given in Definition 4.5, for all i ∈ {1, . . . , ζN}.

Proof. — Let N ∈ N and V NB (x0) = x = (e1, e2, e3, . . . ). All we need to
do is identify SN,Ñ for Ñ ∈ N.
Let ξ(x) = k and ζ(x) = ζN . Thus, x = (e1, . . . , eζN−1, eζN , eζN+1, . . . ,

ek,~0,~0, . . . ) and under Hypothesis A, we have that A(x) = {1, . . . , ζN −1}.
From Definition 3.1 and Remark 3.2, we have that SN,N = 1 − p1,

SN,N+1 =
∏ζN
j=1 pj and SN,Ñ = 0 if Ñ /∈ {N,N + 1} and ζN = 1. Thus, if

ζN = 1, we are done. Suppose that ζN > 2.
For each i ∈ A(x), consider yi(x) defined by relation (3.1). We can check

that

yi(x) = (~0, . . . ,~0︸ ︷︷ ︸
i−1 times

, ẽ, ei+1, ei+2, . . . , eζN−1, eζN , eζN+1, . . . , ek,~0,~0, . . . ),

where ẽ = (1, 0, 1) = ~0 if si+1 = 1 and ẽ = (1, 0, 2) if si+1 = 2.
For each i ∈ A(x), let Ni ∈ N, such that V NiB (x0) = yi(x). Thus, from

Proposition 4.7, we have that Ni = N −
∑i−1
j=0 δj+1Fj + γj+1Gj . Hence,

from Remark 3.2, we have that SN,Ni =
∏i
j=1 pj(1 − pi+1). Furthermore

SN,Ñ = 0 if Ñ /∈ {N,N + 1, Ni, i ∈ A(x)} and the proof is finished. �

Our next step is to prove Theorem 4.13. The proof uses the same idea
of the case M = (d), for d > 2 done in [30]. However, the extension is far
from elementary.

Proof of Theorem 4.13. — Let z = (zN )N>0 be a sequence of complex
numbers such that (Sz)N = λzN for every N > 0. We shall prove that zN =
uNz0 for all N > 1. For this we need to have in mind the representation
of N as a path in X̃B , i.e. x = V N (x0) = (e1, . . . , eξ(x),~0,~0, . . . ) where
ej = (sj ,mj , rj), 1 6 j 6 ξ(x).
The proof is based on the representation of Lemma 4.15. We use induc-

tion on N ∈ N.
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For N = 1 we have by definition that δ1 = 1, γ1 = 0 and δj = γj = 0 for
all j > 2. Furthermore,

λz0 = (1− p1)z0 + p1z1 implies z1 = λ− 1 + p1

p1
z0 = u1z0.

Now fix N = ((δ1, γ1), (δ2, γ2), . . . ) > 1 and suppose that zj = ujz0 for
all j ∈ {1, . . . , N}. Suppose that ζN = 1. Since

zN = z0

ξ(x)−1∏
i=0

u
δi+1
Fi

w
γi+1
Fi

= uδ1
F0
wγ1
F0
z0

ξ(x)−1∏
i=1

u
δi+1
Fi

w
γi+1
Fi

,

(Sz)N = p1zN+1 + (1− p1)zN = λzN and

(4.6) uF0 = wF0 = λ− (1− p1)
p1

,

we have

zN+1 = uF0zN = uδ1+γ1+1
F0

z0

ξ(x)−1∏
i=1

u
δi+1
Fi

w
γi+1
Fi

.

From here, we need to consider two cases:
Case 1. — If s1 = 1, then 0 6 δ1 < a if r1 = 1 and 0 6 δ1 < c if r1 = 2.

Furthermore, γ1 = 0. Thus, N + 1 = ((δ1 + 1, γ1), (δ2, γ2), . . . ) and

uN+1 = uδ1+1
F0

wγ1
F0

ξ(x)−1∏
i=1

u
δi+1
Fi

w
γi+1
Fi

= uδ1+γ1+1
F0

ξ(x)−1∏
i=1

u
δi+1
Fi

w
γi+1
Fi

.

Case 2. — If s1 = 2, then δ1 = a and 0 6 γ1 < b−1 if r1 = 1 and δ1 = c

and 0 6 γ1 < d− 1 if r1 = 2. Thus, N + 1 = ((δ1, γ1 + 1), (δ2, γ2), . . . ) and

uN+1 = uδ1
F0
wγ1+1
F0

ξ(x)−1∏
i=1

u
δi+1
Fi

w
γi+1
Fi

= uδ1+γ1+1
F0

ξ(x)−1∏
i=1

u
δi+1
Fi

w
γi+1
Fi

.

Hence, in both cases we have that zN+1 = uN+1z0.
Now for ζN > 2 we consider separately the cases d > 0 and d = 0.
Case d > 0. — First, suppose that ζN = 2, i.e. e1 = (s1,m1, r1) is a

maximal edge and e2 is not maximal. Thus, by Lemma 4.15 and the fact
that (Sz)N = λzN , we have

zN+1 = 1
p1p2

((λ− (1− p1))zN − p1(1− p2)zN−δ1F0−γ1G0) .

Hence,

zN+1

z0
∏ξ(x)−1
r=2 u

δr+1
Fr

w
γr+1
Fr

=
(λ− (1− p1))uδ1

F0
wγ1
F0
uδ2
F1
wγ2
F1

p1p2
− 1− p2

p2
uδ2
F1
wγ2
F1
.
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Since e1 is a maximal edge, it follows that s1 = 2. If r1 = 1, then δ1 = a

and γ1 = b− 1 and if r1 = 2 then δ1 = c and γ1 = d− 1. Thus,

zN+1

z0
∏ξ(x)−1
r=2 u

δr+1
Fr

w
γr+1
Fr

=


λ−(1−p1)

p1
·
uaF0w

b−1
F0

u
δ2
F1
w
γ2
F1

p2
− 1−p2

p2
uδ2
F1
wγ2
F1
, if r1 = 1,

λ−(1−p1)
p1

·
ucF0w

d−1
F0

u
δ2
F1
w
γ2
F1

p2
− 1−p2

p2
uδ2
F1
wγ2
F1
, if r1 = 2.

By (4.6), we deduce

zN+1

z0
∏ξ(x)−1
r=2 u

δr+1
Fr

w
γr+1
Fr

=


(

1
p2
ua+b
F0
− 1−p2

p2

)
uδ2
F1
wγ2
F1

= uδ2+1
F1

wγ2
F1
, if r1 = 1,(

1
p2
wc+dF0

− 1−p2
p2

)
uδ2
F1
wγ2
F1

= uδ2
F1
wγ2+1
F1

, if r1 = 2,

and so

(4.7) zN+1 =

z0u
δ2+1
F1

wγ2
F1

∏ξ(x)−1
r=2 u

δr+1
Fr

w
γr+1
Fr

if r1 = 1,

z0u
δ2
F1
wγ2+1
F1

∏ξ(x)−1
r=2 u

δr+1
Fr

w
γr+1
Fr

if r1 = 2.

Since

N = ((δ1, γ1)(δ2, γ2) . . . ) =
{

((a, b− 1)(δ2, γ2) . . . ) if r1 = 1,
((c, d− 1)(δ2, γ2) . . . ) if r1 = 2,

it follows that

N + 1 =
{

((0, 0)(δ2 + 1, γ2) . . . ) if r1 = 1,
((0, 0)(δ2, γ2 + 1) . . . ) if r1 = 2,

and from (4.7), we have that zN+1 = uN+1z0.
Finally we have to consider ζN > 3. In this case, since (e1, . . . , eζN−1) is

a maximal element of E(1) ◦ E(2) ◦ · · · ◦ E(ζN − 1) and d > 0, it follows
that sj = rj = 2 for all j ∈ {1, . . . , ζN − 2}. Therefore, mj = c+ d− 1 (i.e
δj = c and γj = d − 1) for all j ∈ {1, . . . , ζN − 2}. Furthermore, we have
two subcases:

(1) if rζN−1 = 1 then mζN−1 = a + b − 1 (i.e δζN−1 = a and γζN−1 =
b− 1),

(2) if rζN−1 = 2 then mζN−1 = c + d − 1 (i.e δζN−1 = c and γζN−1 =
d− 1).
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Thus, by Lemma 4.15 and Definition 4.5, since (Sz)N = λzN , we have that
zN+1

z0
∏ξ(x)−1
r=ζN u

δr+1
Fr

w
γr+1
Fr

(4.8)

=
[λ− (1− p1)]

[∏ζN−3
r=0 ucFrw

d−1
Fr

]
u
δζN−1
FζN−2

w
γζN−1
FζN−2

u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=1 pj
(4.9)

−
(1− p2)

[∏ζN−3
r=1 ucFrw

d−1
Fr

]
u
δζN−1
FζN−2

w
γζN−1
FζN−2

u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=2 pj
− · · ·

−
(1−pζN−1)uδζN−1

FζN−2
w
γζN−1
FζN−2

u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=ζN−1 pj
− 1−pζN

pζN
u
δζN
FζN−1

w
γζN
FζN−1

.

By (4.6), the first term in (4.9) is equal to

wc+dF0

[∏ζN−3
r=1 ucFrw

d−1
Fr

]
u
δζN−1
FζN−2

w
γζN−1
FζN−2

u
δζN
FζN−1w

γζN
FζN−1∏ζN

j=2 pj
.

Summing with the second term, we get

wc+dF0
− (1− p2)
p2

·

[∏ζN−3
r=1 ucFrw

d−1
Fr

]
u
δζN−1
FζN−2

w
γζN−1
FζN−2

u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=3 pj

which is equal to

wF1

[∏ζN−3
r=1 ucFrw

d−1
Fr

]
u
δζN−1
FζN−2

w
γζN−1
FζN−2

u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=3 pj

= ucF1
wdF1

[∏ζN−3
r=2 ucFrw

d−1
Fr

]
u
δζN−1
FζN−2

w
γζN−1
FζN−2

u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=3 pj
.

By induction, we have that the sum of the first ζN − 1 terms in (4.9) is
equal to

u
δζN−1
FζN−2

w
γζN−1+1
FζN−2

u
δζN
FζN−1

w
γζN
FζN−1

pζN
.

Finally, summing the previous expression with the last term in (4.9) we
have that (4.8) is equal to

uaFζN−2
wbFζN−2

−(1−pζN )
pζN

u
δζN
FζN−1

w
γζN
FζN−1

= u
δζN+1
FζN−1

w
γζN
FζN−1

if rζN−1 = 1;
ucFζN−2

wdFζN−2
−(1−pζN )

pζN
u
δζN
FζN−1

w
γζN
FζN−1

= u
δζN
FζN−1

w
γζN+1
FζN−1

if rζN−1 = 2.
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Therefore,

zN+1 =

z0u
δζN+1
FζN−1

w
γζN
FζN−1

∏ξ(x)−1
r=ζN u

δr+1
Fr

w
γr+1
Fr

if rζN−1 = 1

z0u
δζN
FζN−1

w
γζN+1
FζN−1

∏ξ(x)−1
r=ζN u

δr+1
Fr

w
γr+1
Fr

if rζN−1 = 2

= uN+1z0,

where the next equality comes from the fact that δi(N+1) = γi(N+1) = 0,
for all i ∈ {1, . . . , ζN − 1}.

Case d = 0. — Suppose that r1 = 1 and ζN is an odd number (the proof
for the cases r1 = 2 or ζN even can be dealt in the same way).
Thus, since (e1, . . . , eζN−1) is a maximal element of E(1) ◦ E(2) ◦ · · · ◦

E(ζN − 1), we have that r2i−1 = 1, r2i = 2, s2i = 1 and s2i−1 = 2, for
all i ∈ {1, . . . , ζN−1

2 }. Therefore, m2i−1 = a + b − 1 (i.e δ2i−1 = a and
γ2i−1 = b − 1) and m2i = c − 1 (i.e δ2i = c − 1 and γ2i = 0) for all
i ∈ {1, . . . , ζN−1

2 }.
For each i ∈ {0, . . . , ζN − 2}, let Pi be the product defined by Pi :=∏ζN−2
r=i uδr+1

Fr
w
γr+1
Fr

. Thus, we have either Pi = uaFiw
b−1
Fi

Pi+1 if i is an even
number or Pi = uc−1

Fi
Pi+1 if i is an odd number.

By Lemma 4.15, since (Sv)N = λvN , we have that

vN+1

v0
∏ξ(N+1)−1
r=ζN u

δr+1
Fr

w
γr+1
Fr

(4.10)

=
[λ− (1− p1)]P0u

δζN
FζN−1

w
γζN
FζN−1∏ζN

j=1 pj
−

(1− p2)P1u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=2 pj
(4.11)

−
(1−p3)P2u

δζN
FζN−1

w
γζN
FζN−1∏ζN

j=3 pj
−· · ·−

(1−pζN−2)PζN−3u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=ζN−2 pj

−
(1− pζN−1)PζN−2u

δζN
FζN−1

w
γζN
FζN−1∏ζN

j=ζN−1 pj
− 1− pζN

pζN
u
δζN
FζN−1

w
γζN
FζN−1

.

Since uF0 = wF0 = λ−1+p1
p1

, the first term in (4.11) is equal to

uF0P0u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=2 pj
=
ua+b
F0

P1u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=2 pj
.
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Summing with the second term, we get

ua+b
F0
− (1− p2)
p2

P1u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=3 pj
= uF1

P1u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=3 pj

= ucF1

P2u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=3 pj
.

Summing with the third term, we get

ucF1
− (1− p3)
p3

P2u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=4 pj
= wF2

P2u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=4 pj

= uaF2
wbF2

P3u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=4 pj
.

By induction we have that the sum of the first ζN − 1 terms in (4.11) is
equal to

uaFζN−3
wbFζN−3

− (1−pζN−1)
pζN−1

PζN−2u
δζN
FζN−1

w
γζN
FζN−1∏ζN

j=ζN pj
= ucFζN−2

u
δζN
FζN−1

w
γζN
FζN−1

pζN

Finally, summing the previous expression with the last term in (4.11) we
have that (4.10) is equal to

ucFζN−2
− (1− pζN )
pζN

u
δζN
FζN−1

w
γζN
FζN−1

= u
δζN
FζN−1

w
γζN+1
FζN−1

.

Therefore,

vN+1 = v0u
δζN
FζN−1

w
γζN+1
FζN−1

ξ(N+1)−1∏
r=ζN

u
δr+1
Fr

w
γr+1
Fr

= uN+1v0,

where the last equality comes from the fact that δi(N+1) = γi(N+1) = 0,
for all i ∈ {1, . . . , ζN − 1}. �

Proposition 4.16. — Let F := {λ ∈ C : (uFn(λ))n>0 is bounded}.
Then σpt(S) ⊂ F ⊂ σa(S).

Proof. — By Theorem 4.13, σpt(S) ⊂ F and we only have to prove that
F ⊂ σa(S).
Let λ ∈ F and suppose that λ /∈ σpt(S). We will prove that λ ∈ σa(S).

In fact, for each k > 2, consider

x(k) = (x(k)
0 , x

(k)
1 , x

(k)
2 , . . . , x

(k)
k , 0, 0, . . . )

= (1, u1(λ), u2(λ), . . . , uk(λ), 0, 0, . . . ),
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where (un(λ))n>1 = (un)n>1 is the sequence defined in relation (4.5).
Define

y(k) := x(k)

‖x(k)‖∞
.

Claim. — limn→+∞‖(S − λI)y(Fn)‖∞ = 0.

In fact, for all i ∈ {0, . . . , k− 1}, we have ((S−λI)y(k))i = 0 and yi = 0,
for all i > k. Hence, note that

‖(S − λI)y(k)‖∞ = sup
i>0

∣∣∣∣∣
+∞∑
j=0

(S−λI)ijy(k)
j

∣∣∣∣∣ = sup
i>k

{∣∣∑k
j=0(S−λI)ijx(k)

j

∣∣
‖x(k)‖∞

}
.

Let n > 1, k = Fn > 2 and i > k. We consider two cases:
Case a > 1.
• If i = Fn, then since a > 1, by relation (4.2) we have that V FnB (x0) =

(~0, . . . ,~0︸ ︷︷ ︸
n

, (1, 1, 1),~0,~0, . . . ). Since n > 1, it follows that Si,j = 0, for

all j ∈ {0, . . . , Fn − 1} and Si,i = 1 − p1. Therefore,
∣∣∑Fn

j=0(S −
λI)ijx(Fn)

j

∣∣ = |1− p1 − λ||uFn |.
• If Fn < i 6 2Fn − 1, then since a > 1, by the proof of Proposi-
tion 4.7, we have that V iB(x0) = (e1, . . . , en, (1, 1, 1),~0,~0, . . . ). Hence
Si,j = 0, for all j ∈ {0, . . . , Fn−1}. Furthermore, since Si,i = 1−p1
and S is a stochastic matrix, it follows that Si,j 6 p1, for j = Fn.
Therefore,

∣∣∑Fn
j=0(S − λI)ijx(Fn)

j

∣∣ 6 p1|uFn |.
• If i > 2Fn, then V iB(x0) = (e1, . . . , el,~0,~0, . . . ), with el 6= ~0 and
l > n + 1. Since a > 1, we have ml > 0 and so Si,j = 0, for all
j ∈ {1, . . . , Fn}. Furthermore,

p1 > Si,0 =
{
p1 . . . pl(1− pl+1), if (e1, . . . , el) is a maximal path;
0, if is not.

Therefore,
∣∣∑Fn

j=0(S − λI)ijx(Fn)
j

∣∣ 6 p1|x0| = p1.
Case a = 1.
• If i = Fn then Si,j = 0, for all j ∈ {0, . . . , Fn−1}, and Si,i = 1−p1.
Therefore,

∣∣∑Fn
j=0(S − λI)ijx(Fn)

j

∣∣ = |1− p1 − λ||uFn |.
• If Fn < i < Fn+Gn−1 then Si,j = 0, for all j ∈ {0, . . . , Fn−1}, and
Si,j 6 p1, for j = Fn. Therefore,

∣∣∑Fn
j=0(S − λI)ijx(Fn)

j

∣∣ 6 p1|uFn |.
• If i = Fn + Gn − 1 then Si,j = 0, for all j ∈ {1, . . . , Fn − 1},
Si,j 6 p1 for j = Fn, Si,0 6 p1 if b = 1 and Si,0 = 0 if b > 1.
Therefore,

∣∣∑Fn
j=0(S − λI)ijx(Fn)

j

∣∣ 6 p1 + p1|uFn |.
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• If i > Fn +Gn then Si,j = 0, for all j ∈ {1, . . . , Fn}, and Si,j 6 p1,
for j = 0. Therefore,

∣∣∑Fn
j=0(S − λI)ijx(Fn)

j

∣∣ 6 p1.
Hence, from both cases it follows that

(4.12) ‖(S − λI)y(Fn)‖∞ 6
|1− p1 − λ| |uFn |+ p1|uFn |+ p1

‖x(Fn)‖∞
.

Since λ ∈ F and λ /∈ σpt(S), it follows that (uFn)n>0 is a bounded sequence
and (un)n>0 is not. Therefore, we have limn→+∞‖x(Fn)‖∞ = +∞, which
implies from relation (4.12) that limn→+∞‖(S−λI)y(Fn)‖∞ = 0. Therefore,
λ ∈ σa(S) ⊂ σ(S). �

Proposition 4.17. — If detM = ad−bc 6 0, then (uFn)n>0 is bounded
if and only if (wFn)n>0 is bounded.

Proof. — Let Rn = pn+1uFn + 1− pn+1 and Sn = pn+1wFn + 1− pn+1,
for all n > 0. By (4.5), we have that

Rcn+1 = San+1w
bc−ad
Fn

and Sbn+1 = Rdn+1u
bc−ad
Fn

.

Since ad− bc 6 0 and (pn)n>1 is bounded, we obtain the result. �

Question. — If detM>0, is (uFn)n>0 bounded equivalent to (wFn)n>0
bounded?

Remark 4.18. — From Remark 4.14 and Propositions 4.16 and 4.17, we
have that if detM 6 0, then

σpt(S) ⊂ E =
{
λ ∈ C :

(
λ− 1 + p1

p1
,
λ− 1 + p1

p1

)
∈ K

}
⊂ σa(S).

Remark 4.19. — If e := a + b = c + d, then we have Fn = Gn = en,
for all n > 0. In this case, the Vershik map is related to addition of 1 in
base e > 2, see Remark 3.8 and Example 3.4. For this class, it was proved
in [30] that the point spectrum of S is equal to the fibered filled Julia set
of fn(x) = 1

pn+1
xa+b −

( 1
pn+1

− 1
)
. In the next proposition we will prove

the same result cited below.

Proposition 4.20. — If a + b = c + d then σpt(S) = E . Furthermore,
E={λ∈C : (fn ◦ · · · ◦ f1(uF0))n>1 is bounded}, where fn(x) = 1

pn+1
xa+b−( 1

pn+1
− 1
)
, for all n > 1.

Proof. — From Theorem 4.13 and Remark 4.14 we have that σpt(S) ⊂ E .
Let λ ∈ E . Since a+b = c+d, it follows from (4.5) that uFn(λ) = wFn(λ),

for all λ ∈ C and n > 1. Thus, it follows that |uFn(λ)|, |wFn(λ)| 6 1 for all
n > 0, indeed let R > 1 be a real number such that |uFk | = |wFk | > R.
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Since abc > 0 and c + d > 1, it follows that min{a + b, c + d} > 1. Thus,
|uFk+1 | = |wFk+1 | > 1

pk+2
Ra+b − 1−pk+2

pk+2
> Ra+b > R2.

By induction we obtain that |uFk+i | = |wFk+i | > R2i , for all i > 1. Since
R > 1, it follows that (uFn)n>0 and (wFn)n>0 are unbounded and λ /∈ E
which yields a contradiction.
Therefore, if λ ∈ E and then |uFn(λ)|, |wFn(λ)| 6 1 for all n > 0, by (4.5),

we have that |un(λ)| 6 1, for all n > 1, i.e. λ ∈ σpt(S).
To prove that E = {λ ∈ C : (fn ◦ · · · ◦ f1(uF0))n>1 is bounded}, we

just need to observe that fn ◦ · · · ◦ f1(uF0(λ)) = uFn(λ) = wFn(λ), for all
n > 1. �

Remark 4.21. — In Proposition 4.20 we have proved that if min{|uFi |,
|wFi |} > 1 for some integer i, then min{|uFn |, |wFn |} goes to ∞ when n

goes to infinity.

Question. — If detM 6 0, can we prove that σpt(S) = E = σ(S)?

Example 4.22. — Consider the consecutive ordering Bratteli diagram B

represented by the matrix M = ( 3 1
1 2 ). Below, we present some pictures

describing the set E = {λ ∈ C : (uFn(λ), wFN (λ))n>0 is bounded} for some
choices of (pi)i>1.

Example 4.23. — Consider the consecutive ordering Bratteli diagram B

represented by the matrix M = ( 2 1
3 1 ). Below, we present some pictures

describing the set E = F = {λ ∈ C : (uFn(λ))n>0 is bounded} for some
choices of (pi)i>1.
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Example 4.24. — Consider the consecutive ordering Bratteli diagram B

represented by the matrix M = ( 1 5
9 2 ). Below, we present some pictures

describing the set E = F = {λ ∈ C : (uFn(λ))n>0 is bounded} for some
choices of (pi)i>1.

Remark 4.25. — It will be interesting to compute the different parts of
the spectrum of S acting on other Banach spaces like c0, c, lq(N), with q > 1
as done for base 2 in [1] and for Cantor systems of numeration in [33].

4.4. Some topological properties of the set E

Let us suppose for simplicity that pi = p ∈ ]0, 1[, for all i > 1.

Theorem 4.26. — Assume that detM= ad−bc< 0 and bc> (ad−bc)2,
then the set E satisfies the following properties:

(1) C \ E is a connected set.
(2) If p < 1

2 , then E is not connected.

Remark 4.27.
(1) We conjecture that under the hypothesis of the last theorem, there

exists 1
2 < δ < 1 such that E is connected, for all p > δ.

(2) Recall that we are supposing abc > 1, then the last theorem holds
if detM = −1.

Lemma 4.28. — Under the hypothesis of Theorem 4.26, there exists a
sufficiently large constant R = R(p) > 1 such that

E =
+∞⋂
n=0

u−1
Fn
D(0, R), with u−1

Fn+1
D(0, R) ⊂ u−1

Fn
D(0, R), for all n > 0.

Proof. — Let R > 2−p
p > 1 be a constant that later will be chosen

sufficiently large.

Claim 1. — If |uF0 | = |wF0 | > 1 then (uFk)k>0 is not bounded.
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The claim follows directly from (4.5) and we leave the details to the
reader.

Claim 2. — if |uFn(λ)| > R for some integer n > 0, then (uFk)k>0 is not
bounded.

From Claim 1, we have that Claim 2 holds for n = 0.
If |uF1 | > R, then |uF0 |a+b > pR − (1 − p). Thus, |uF0 | > 1 and so

(uFk)k>0 is not bounded. Hence, the claim is true for n = 1.
Assume that the claim is true for all integers k ∈ {0, . . . , n−1}. Suppose

that |uFn | > R. Hence, |wFn | 6 1 since otherwise (uFk)k>0 is unbounded.
Therefore,

pR−(1−p) < |puFn +1−p| = |uaFn−1
wbFn−1

| = |ucFn−1
wdFn−1

| ac |wFn−1 |
bc−ad
c .

Since ucFn−1
wdFn−1

= pwFn + 1− p and |wFn | 6 1, we deduce that

(pR− (1− p))
c

bc−ad < |wFn−1 |.

Thus |wFn−1 | > 1 and hence |uFn−1 | 6 1.
On the other hand,

p(pR− (1− p))
c

bc−ad − (1− p) < |ucFn−2
wdFn−2

|

6 |puFn−1 + 1− p| db |uFn−2 |
bc−ad
b 6 |uFn−2 |

bc−ad
b .

Thus,

|uFn−2 | >
(
p(pR− (1− p))

c
bc−ad − (1− p)

) b
bc−ad > K(p)R

bc
(bc−ad)2 ,

where K(p) is a positive constant.
Since bc > (bc− ad)2, it follows that |uFn−2 | > R, for R sufficiently large

and the proof of Claim 2 is done.
Hence, by the claim, we deduce that E =

⋂+∞
n=0 u

−1
Fn
D(0, R).

Claim 3. — u−1
Fn+1

D(0, R) ⊂ u−1
Fn
D(0, R), for all n > 0.

Indeed, if |uF1 | = | 1pu
a+b
F0
− 1−p

p | 6 R, then

|uF0 | 6 (pR+ 1− p)1/a+b < R,

and the claim holds for n = 0. The case n = 1, can also be proved easily
and is left to the reader.
Assume that the claim holds for all k = 0, . . . , n − 1, n > 2 and that

|uFn+1 | 6 R. Suppose that |uFn | > R, then |wFn | 6 1, since otherwise
|uFn+1 | > R. We deduce as done before that

(pR− (1− p))
c

bc−ad < |wFn−1 |.
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Hence 1
p |uFn−1 |c(pR− (1− p))

dc
bc−ad − 1−p

p 6 |wFn | 6 1. We deduce that

|uFn−1 | < (pR− 1 + p)
−d

bc−ad < 1 < R.

Thus as done before

|uFn−2 | >
(
p(pR− (1− p))

c
bc−ad − (1− p)

) b
bc−ad > K(p)R

bc
(bc−ad)2 > R.

This contradicts the hypothesis of induction for k = n−2 since |uFn−1 | < R

and |uFn−2 | > R.

Hence |uFn | < R and we obtain the claim for k = n. �

Remark 4.29. — Lemma 4.28 is true if we change D(0, R) by D(0, R).

Proof of Theorem 4.26.
(1). — By Lemma 4.28,

C \ E =
∞⋃
n=0

C \ u−1
Fn
D(0, R).

Since C\D(0, R) is connected, it follows from the maximum modulus prin-
ciple that for each holomorphic map uFn , C\u−1

Fn
D(0, R) is connected for all

n > 0. On the other hand, since C \ u−1
Fn
D(0, R) contains a neighbourhood

of infinity for all n > 0, we deduce that C \ E is connected.
(2). — We can show easily by induction on n that 1−p

p is a critical point
of uFn (and also wFn), for all n > 1. Since by Remark 4.18, E ⊂ σa ⊂ σ

and the spectrum σ is contained in D(0, 1), we deduce that if p < 1
2 , then

1−p
p 6∈ E . Therefore, by Lemma 4.28 and Remark 4.29, there exists an

integer N such that
1− p
p
6∈ u−1

Fn
D(0, R), for all n > N.

Hence, by the Riemann–Hurwitz formula, we deduce that u−1
Fn
D(0, R) is

not connected, for all n > N . Thus, by Lemma 4.28 we are done. �

5. Generalization

Now, let B = (V,E,>) be a 2 × 2 simple ordered Bratteli diagram en-
dowed with the consecutive ordering and having incidence matrices Mn =
( an bn
cn dn

). Suppose that anbncn > 0 and that cn + dn > 1, for all n > 1.
Therefore B satisfies Hypothesis A.
Consider (Ak BkCk Dk

) := Mk ·Mk−1 · . . . ·M1, for all k > 1.
Let F0 = G0 = 1 and for each k > 1, let Fk = Ak+Bk and Gk = Ck+Dk.
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As before, we can prove that for all n > 1

Fn+1 =
(
an+1 + bn+1

bn
dn

)
Fn −

(
bn+1

bn
andn − bn+1cn

)
Fn−1

and

Gn+1 =
(
an+1 + bn+1

bn
dn

)
Gn −

(
bn+1

bn
andn − bn+1cn

)
Gn−1 .

Furthermore, for each λ ∈ C, let (un)n>1 and (wFn)n>0 be the sequences
defined like in relation 4.5, changing a and b by an and bn in uFn and
changing c by cn and d by dn in wFn , respectively.

Like in Theorem 4.13, we can prove that

σpt(S) = {λ ∈ C : (un(λ))n>1 is bounded},

where here, the maps gn : C2 → C2 are defined by

gn(x, y) =
(

1
pn+1

xanybn − 1− pn+1

pn+1
,

1
pn+1

xcnydn − 1− pn+1

pn+1

)
,

for all n > 1.
Let B = (V,E,>) be a l × l (l > 3) simple ordered Bratteli diagram

endowed with the consecutive ordering and having incidence matricesMn =
(m(n)

i,j ) with
∑l
j=1 m

(n)
i,j > 1, for all i ∈ {1, . . . , l} and n > 1.

Like before, we can prove that the point spectrum of S is contained
in the fibered Julia set {z ∈ Cl : (ψn(z))n>0 is bounded}, where for all
z = (z1, . . . , zl) ∈ Cl, ψn(z) = gn ◦ · · · ◦ g0(z) and gn : Cl → Cl are maps
defined by

gn(z) =
(

1
pn+1

z
m

(n)
1,1

1 z
m

(n)
1,2

2 . . . z
m

(n)
1,l

l − 1− pn+1

pn+1
, . . . ,

1
pn+1

z
m

(n)
l,1

1 z
m

(n)
l,2

2 . . . z
m

(n)
l,l

l − 1− pn+1

pn+1

)
for all n > 1.
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