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X-RAY TRANSFORM AND BOUNDARY RIGIDITY
FOR ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

by C. Robin GRAHAM, Colin GUILLARMOU,
Plamen STEFANOV & Gunther UHLMANN

Abstract. — We consider the boundary rigidity problem for asymptotically
hyperbolic manifolds. We show injectivity of the X-ray transform in several cases
and consider the non-linear inverse problem which consists of recovering a metric
from boundary measurements for the geodesic flow.
Résumé. — On considère le problème de rigidité du bord pour les variétés

asymptotiquement hyperboliques. Nous montrons l’injectivité de la transformée
en rayons X dans plusieurs cas et considérons le problème inverse non-linéaire qui
consiste en la détermination de la métrique à partir de données au bord sur le flot
géodésique.

1. Introduction

In this work, we consider the problem of the geodesic X-ray transform on
asymptotically hyperbolic manifolds, and some applications to the bound-
ary rigidity problem in that non-compact setting.

Let M be a compact connected smooth manifold-with-boundary of di-
mension n + 1 with n > 1. A smooth metric g on the interior M of M
is said to be asymptotically hyperbolic if g0 := ρ2

0g extends to a smooth
metric onM with |dρ0|g0 = 1 at ∂M , where ρ0 ∈ C∞(M ;R>0) is a smooth
defining function for ∂M , i.e. {ρ0 = 0} = ∂M with dρ0 not vanishing at
∂M . The boundary ∂M equipped with the conformal class of g0|T∂M is
called the conformal boundary, or conformal infinity, of (M, g). It follows
from [16] that for each metric h in the conformal infinity, there exists a
smooth boundary defining function ρ so that |dρ|ρ2g = 1 near ∂M and
ρ2g|T∂M = h; this function is uniquely determined near ∂M by h. Such
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a function ρ is called a geodesic boundary defining function associated to
the conformal representative h. The flow of the gradient of ρ with respect
to the metric g := ρ2g induces a product decomposition (0, ε)ρ × ∂M of a
collar neighborhood Cε near ∂M in which the metric has the form

g = dρ2 + hρ
ρ2 on (0, ε)ρ × ∂M,

with hρ a smooth 1-parameter family of metrics on ∂M which extends
smoothly to ρ ∈ [0, ε) and satisfies h0 = h. For convenience, we can extend
freely ρ as a smooth positive function to M so that ρ > ε in M \ Cε. The
metric g is a complete metric with sectional curvatures tending to −1 at
∂M ; it has infinite volume and all convex co-compact hyperbolic manifolds
are particular cases of asymptotically hyperbolic manifolds. (Recall that a
convex co-compact hyperbolic manifold is a smooth complete Riemannian
manifold with constant curvature −1, finite geometry (finitely many ends),
which is realized as a quotient Γ\Hn+1 of the hyperbolic space by a discrete
group Γ of isometries containing only hyperbolic transformations.) Other
interesting examples are Poincaré–Einstein manifolds, which appear in the
AdS-CFT correspondence and were introduced as a tool to study conformal
geometry; see [13].
Geodesics of g can be viewed as integral curves of the Hamiltonian vec-

tor field X of |ξ|2g/2 on the unit cotangent bundle S∗M := {(x, ξ) ∈
T ∗M ; |ξ|g = 1} of M , projected to M by π : S∗M → M the projec-
tion on the base. Geodesics approach ∂M normally and are determined
by their second order deviation from the normal. In order to encode this,
we introduce an extension S∗M of S∗M to M . Recall, from e.g. [34], that
the b-cotangent bundle bT ∗M is a smooth vector bundle on M isomorphic
to T ∗M over M and with local smooth sections {dρ/ρ, dy1, . . . ,dyn} near
∂M , if (ρ, y1, . . . , yn) are local coordinates near ∂M . The dual metric to g,
viewed as a metric on bT ∗M |M , extends smoothly to M but degenerates
over ∂M . The extension S∗M is defined to be the unit cosphere bundle in
bT ∗M with respect to the quadratic form g. It takes the form

S∗M = S∗M t ∂−S∗M t ∂+S
∗M,

where each of ∂±S∗M is a canonical subset of bT ∗M |∂M independent of
g which can be identified with T ∗∂M upon choosing a metric h in the
conformal infinity of g. Elements of ∂±S∗M correspond by duality using g
to second order tangential deviations from the normal at a boundary point.
∂−S

∗M is regarded as the incoming boundary and ∂+S
∗M as the outgoing
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X-RAY TRANSFORM AND BOUNDARY RIGIDITY 2859

boundary. Each point z± ∈ ∂±S∗M is the limit of a unique integral curve
of X as t→ ±∞.
The trapped set K of the flow ϕt : S∗M → S∗M of X is the set of

points z ∈ S∗M for which the integral curve {ϕt(z); t ∈ R} remains in a
compact set; since the regions {ρ > ε} are strictly convex for small ε, this
can alternatively be defined by (here ρ is lifted to S∗M by π)

K :=
{
z ∈ S∗M ; inf

t∈R
ρ(ϕt(z)) > 0

}
.

This is a compact set that is globally invariant by ϕt. We say that g is non-
trapping if K = ∅. In this work, we will consider either the non-trapping
case or the case where K is a hyperbolic set for the flow in the follow-
ing sense: there is a continuous, flow-invariant splitting of TK(S∗M) :=
T (S∗M)|K of the form

TK(S∗M) = RX ⊕ Es ⊕ Eu

where Es, Eu are subbundles over K satisfying that there is ν > 0 and
C > 0 such that for all z = (x, ξ) ∈ K and

(1.1)
∀ ζ ∈ Es(z), ‖dϕt(z).ζ‖G 6 Ce−νt‖ζ‖G, ∀ t > 0,

∀ ζ ∈ Eu(z), ‖dϕt(z).ζ‖G 6 Ce−ν|t|‖ζ‖G, ∀ t 6 0.

(Here G denotes the Sasaki metric for g, see (2.27).) The incoming and
outgoing trapped sets are defined by

Γ± := {z ∈ S∗M ; inf
t∈R+

ρ(ϕ∓t(z)) > 0},

they correspond to geodesics trapped in the past (+) or in the future
(−). When K is hyperbolic, then Γ± and K have zero Liouville mea-
sure; see (2.12). Each untrapped geodesic γ(t) of g converges to a point
y− ∈ ∂M in the past and y+ ∈ ∂M in the future, and the corresponding
integral curve on S∗M converges to some z− ∈ ∂−S

∗M in the past and
z+ ∈ ∂+S

∗M in the future. The set of untrapped geodesics is parametrized
by ∂−S∗M \Γ−, corresponding to the backward limit of the integral curve.
In the non-trapping case, Γ± are empty.
Our first result concerns the X-ray transform on symmetric m-tensors,

which can be defined as the operator

Im : C∞c (M ;⊗mS T ∗M)→ C∞(∂−S∗M \ Γ−),

Im(f)(z) =
∫
R
f(γz(t))(⊗mγ̇z(t))dt
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2860 C. R. Graham, C. Guillarmou, P. Stefanov & G. Uhlmann

where γz(t) is the geodesic with backward limit z ∈ ∂−S∗M (here ⊗mS T ∗M
denotes the bundle of symmetric tensors of rank m on M). This operator
extends continuously to the space ρ1−mC∞(M ;⊗mS T ∗M); see (3.19).

Theorem 1.1. — Let (M, g) be an asymptotically hyperbolic manifold
such that g has no conjugate points and the trapped set is either empty or
a hyperbolic set. Let f ∈ ρ1−mC∞(M ;⊗mS T ∗M) satisfy Imf = 0.

(1) If m = 0 then f = 0.
(2) If m = 1, there exists q ∈ ρC∞(M) such that f = dq.
(3) Ifm > 1 and if the curvature of g is non-positive, then there exists a

symmetric tensor q ∈ ρ2−mC∞(M,⊗m−1
S T ∗M) such that f = Dq,

where D denotes the symmetrized covariant derivative.

We note that if f is compactly supported, we can find a large convex
region in M that contains the support of f and the problem reduces to the
case of a compact manifold with strictly convex boundary. Known results
resolve the problem in that case; see the discussion of the literature below.

Corollary 1.2. — Let (M, g) be an asymptotically hyperbolic man-
ifold with negative curvature and m > 0. If f ∈ ρ1−mC∞(M ;⊗mS T ∗M)
satisfies Imf = 0, then there exists q ∈ ρ2−mC∞(M,⊗m−1

S T ∗M) such that
f = Dq. (In particular, if m = 0, then f = 0.)

Corollary 1.2 follows from Theorem 1.1 since manifolds with negative
curvature cannot have conjugate points and the trapped set, if nonempty,
is hyperbolic.

The X-ray transform for functions was studied on the hyperbolic space
Hn+1 by Helgason and Berenstein-Casadio Tarabusi: injectivity is proved
in [22] for functions decaying like e−dg(·,o) for o ∈ Hn+1 fixed (this corre-
sponds exactly to the decay condition in Theorem 1.1), and an inversion
formula is given in [3, 21]. For Cartan–Hadamard manifolds, recent work by
Lehtonen [30] shows injectivity of I0 in dimension 2 and then Lehtonen–
Railo–Salo [31] extended the result to higher dimensions and tensors. In
comparison to [30, 31], we allow hyperbolic trapping, we do not require M
to be simply connected, and for m ∈ {0, 1} we allow some positive curva-
ture, but our assumption about the geometry at infinity is stronger. We
have not tried to obtain the sharpest regularity assumptions on f and it
can easily be seen from the proof that the regularity assumptions can be
relaxed (we refer to [31] for sharper regularity conditions).
The study of the geodesic X-ray transform on compact domains has a

long history. Simple metrics are metrics on domains with strictly convex
boundaries for which the exponential map is a diffeomorphism at each
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X-RAY TRANSFORM AND BOUNDARY RIGIDITY 2861

point. Injectivity of the X-ray transform goes back to Mukhometov [38]
for functions, then to Anikonov–Romanov [2] for 1-forms, while Pestov–
Sharafutdinov [42] proved injectivity for all tensors in negative curvature
(see also Paternain–Salo–Uhlmann [41] for more general results on ten-
sors). Similar results for tensors of rank m 6 2 were shown for analytic
simple metrics and for generic simple metrics by Stefanov–Uhlmann [50].
For simple metrics in dimension 2, injectivity for 2-tensors was first shown
by Sharafutdinov [49] and has been proved recently by Paternain–Salo–
Uhlmann [40] for tensor fields of all ranks. For manifolds with strictly
convex foliations, injectivity is shown in Uhlmann–Vasy [57] for functions
and in Stefanov–Uhlmann–Vasy [56] for 2-tensors. Injectivity for all ten-
sors for all metrics with negative curvature and strictly convex boundary
is proved in Guillarmou [18], without simplicity assumptions. Microlocal
analysis of the X-ray transform for some cases with conjugate points was
done in [23, 37, 52, 53] with generic uniqueness and stability results for a
certain class of non-simple metrics in [52].
To prove Theorem 1.1, we need to do a careful analysis of the geodesic

flow near infinity. We show that the X-ray transform determines the func-
tion (or tensor modulo Dq terms) up to O(ρ∞) at the boundary by using
the “short geodesics”, i.e. those geodesics staying in regions {ρ 6 ε} for
small ε > 0. We then conclude by using Pestov identities on large regions
{ρ > ε}, with ε→ 0. We also use the results of [18] to deal with the trapped
case. We observe that our assumptions in (1) and (2) of Theorem 1.1 al-
low conjugate points at infinity, in the sense that there could be Jacobi
fields vanishing at the endpoints y−, y+ at infinity along a non-trapped
geodesic. This is a true generalization: Eptaminitakis–Graham [12] have
constructed examples of non-trapping asymptotically hyperbolic manifolds
with no conjugate points which do have conjugate points at infinity.
The boundary rigidity problem for simple metrics on compact domains

asks if one can recover a simple metric from its boundary distance function
(the set of distances between boundary points). Many results are known on
the boundary and lens rigidity problems in the compact setting, we refer
to the surveys [7, 24, 48, 51] and to the introduction of [55] for references.
Here, we consider an analogue of the boundary rigidity problem for asymp-
totically hyperbolic metrics. First, for each z− ∈ ∂−S∗M , there is a unique
geodesic γz− with backward limit z−. If γz− is not trapped in the future,
we denote its forward limit by z+ ∈ ∂+S

∗M . Thus we can define a map

Sg : ∂−S∗M \ Γ− → ∂+S
∗M \ Γ+, Sg(z−) = z+
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called the scattering map for the geodesic flow. It is a symplectic map
with respect to the canonical symplectic structures on ∂±S∗M induced by
their identifications with T ∗∂M . For such a geodesic γz− , given a defining
function ρ, we define the renormalized length relative to ρ by

Lg(z−) := lim
ε→0

(
`g(γz− ∩ {ρ > ε}) + 2 log ε

)
where `g denotes the length for the metric g. We show that Lg is a well-
defined function on ∂−S

∗M \ Γ− which depends on the choice of ρ in a
simple explicit fashion (see (4.2)). We may also view Lg as determined by
a choice of representative metric h in the conformal infinity by taking ρ to
be the corresponding geodesic defining function. The functions Lg and Sg
are closely related to the sojourn time and scattering relation appearing in
Sa Barreto–Wang [47]. Renormalized volumes, areas and lengths already
appeared quite naturally when analyzing the geometry of asymptotically
hyperbolic Einstein manifolds and in the AdS/CFT correspondence (see
for example [1, 15]). Boundary rigidity and integral geometry appear in
the physics literature concerning the AdS/CFT duality and holography as
well, see [8, 44].
We first show that the renormalized length data determine the metric to

infinite order at the boundary.

Theorem 1.3. — Let M be a compact connected manifold-with-
boundary and let g, g′ be two asymptotically hyperbolic metrics on M .
Suppose for some choices h and h′ of conformal representatives in the con-
formal infinities of g and g′, the renormalized lengths agree for the two
metrics, i.e. Lg = Lg′ . Then there exists a diffeomorphism ψ : M → M

which is the identity on ∂M and such that ψ∗g′ − g = O(ρ∞) at ∂M .

As a consequence of Theorem 1.3, we deduce boundary rigidity for real-
analytic metrics under a topological hypothesis. If M is a real-analytic
manifold-with-boundary, we say that a metric g on M is a real-analytic
asymptotically hyperbolic metric if g is real-analytic, asymptotically hy-
perbolic, and g = ρ2g is real-analytic up to ∂M , where ρ is a real-analytic
defining function for ∂M .

Theorem 1.4. — Let M be a compact connected real-analytic man-
ifold-with-boundary such that π1(M,∂M) = 0. Let g, g′ be two real-
analytic asymptotically hyperbolic metrics on M . If Lg = Lg′ for some
real-analytic metrics h and h′ in the conformal infinities of g and g′, then
there exists a real-analytic diffeomorphism ψ : M → M which is the iden-
tity on ∂M and such that ψ∗g′ = g.

ANNALES DE L’INSTITUT FOURIER
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In Theorems 1.3 and 1.4, we only require that Lg = Lg′ on a neighbor-
hood of infinity in ∂−S∗M , corresponding to short geodesics. We will show
that ∂−S∗M ∩Γ− is a compact set, so the domain of Lg always contains a
full neighborhood of infinity.
In the case of compact simple metrics, the determination of the

metric and the curvature at ∂M was proved by Michel [36], and the re-
sult corresponding to Theorem 1.3 was shown by Lassas–Sharafutdinov–
Uhlmann [29] (see also Stefanov–Uhlmann [52] for non-simple metrics).
A rigidity result for real-analytic metrics on compact manifolds-with-
boundary is proved in [58].
Finally, we prove a deformation rigidity result for the boundary rigid-

ity problem. We define a non-trapping asymptotically hyperbolic manifold
to be simple if it has no conjugate points at infinity in the sense stated
above. This holds in particular for non-trapping metrics when the sectional
curvature is non-positive. This definition of simple in the asymptotically
hyperbolic case is a weaker starting point than the requirement that the
exponential map be a diffeomorphism in the compact case. We show that
if (M, g) is simple, then its geodesic flow is hyperbolic with respect to the
Sasaki metric. This together with a recent result of Knieper [27] giving
sufficient conditions for no conjugate points on a complete non-compact
Riemannian manifold with hyperbolic geodesic flow imply that a simple
asymptotically hyperbolic manifold has no conjugate points. Other conse-
quences of the hyperbolicity of the geodesic flow are that for each pair of
points y− 6= y+ ∈ ∂M , there is a unique geodesic with endpoints y±, and
that the exponential map extends smoothly to the boundary as a diffeo-
morphism in an appropriate sense (Propositions 5.12 and 5.15). The fact
that there is a unique geodesic joining any two boundary points enables us
to define the renormalized boundary distance relative to a defining function
ρ by

dRg : ∂M × ∂M \ diag→ R, dRg (y−, y+) := Lg(z−)

where z− ∈ ∂−S
∗
y−M is defined by the equation Sg(z−) = z+ for some

z+ ∈ ∂+S
∗
y+
M .

Theorem 1.5. — Let M be a compact connected manifold-with-
boundary and suppose that for s ∈ [0, 1], g(s) is a smooth family of non-
trapping asymptotically hyperbolic metrics with non-positive sectional cur-
vature. Assume that for some smooth family h(s) of representatives of the
conformal infinities of g(s), one of the following two conditions holds:

TOME 69 (2019), FASCICULE 7
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(1) The renormalized length functions Lg(s) and scattering maps Sg(s)
are constant in s. (Here Sg(s) is a viewed as a map : T ∗∂M → T ∗∂M

via the identifications induced by h(s)).
(2) The renormalized boundary distance functions dRg(s) are constant

in s.
Then there is a smooth family of diffeomorphisms ψ(s) : M → M for
s ∈ [0, 1] which satisfies ψ(s)∗g(s) = g(0) and ψ(s)|∂M = Id.

To prove Theorem 1.5 under hypothesis (1), we first use Theorem 1.3 to
arrange that the metrics agree to infinite order at the boundary. Then we
use Theorem 1.1 after proving that the linearization of the pair (Lg(s), Sg(s))
reduces to the description of the kernel of the X-ray transform on symmetric
2-tensors. We reduce (2) to (1) by showing in Proposition 5.24 that if two
simple metrics have the same renormalized boundary distance functions,
then they have the same scattering maps and renormalized length functions.
As one of the steps in doing this, we show in Proposition 5.19 that if (M, g)
is simple, then dg(p, q)+log ρ(p)+log ρ(q) extends smoothly toM×M\diag,
where dg(p, q) denotes the distance function in the metric g.
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2. Asymptotically hyperbolic manifolds and their geodesic
flow

For an asymptotically hyperbolic manifold (M, g), the sectional curva-
tures of g tend to −1 uniformly at the boundary, and more precisely the
curvature tensor Rg of g is of the form

(2.1) Rg = −g ◦ g + ρ−3Q
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where ◦ denotes the Kulkarni–Nomizu product and Q ∈ C∞(M ;⊗4T ∗M).
By abuse of notation, we will sometimes write also g and hρ for the

metrics induced by g and hρ on the cotangent bundles T ∗M and T ∗∂M .

2.1. The geodesic flow on the unit cotangent bundle

Let us describe the geodesic flow near the boundary ∂M . We work on
the unit cotangent bundle

S∗M = {(x, ξ) ∈ T ∗M ; |ξ|2g = 1}

and denote by π : S∗M → M the projection to the base. The Liouville
1-form is denoted α and the Hamilton vector field of 1

2 |ξ|
2
g is the genera-

tor X of the geodesic flow ϕt on S∗M . If (ρ, y1, . . . , yn) are local coordi-
nates near ∂M with ρ a defining function for ∂M , we use dual coordinates
(ξ0, η1, . . . , ηn) on T ∗M so that ξ = ξ0dρ+ η.dy. We begin by considering
an extension of the g-cosphere bundle S∗M to M .

Recall that bT ∗M denotes the b-cotangent bundle ofM , a smooth vector
bundle on M . A basis for its fibers near ∂M consists of {ρ−1dρ,dy1, . . . ,

dyn}, and we use dual coordinates (ξ0, η) so that ξ = ξ0ρ
−1dρ+

∑
i ηidyi.

It is easily verified that the function ξ 7→ ξ0 is an invariant on bT ∗M |∂M ,
i.e. it is independent of the choice of coordinates (ρ, y). In particular, the
subsets {ξ0 = ±1} of bT ∗M |∂M are invariantly defined independently of
any choices.
Observe that g defines a smooth quadratic form on bT ∗M all the way up

to ∂M , which however degenerates on ∂M . We denote by S∗M = {(x, ξ) ∈
bT ∗M : |ξ|g = 1} the unit cosphere bundle in bT ∗M with respect to g.
Choose a representative metric h for the conformal structure at infinity
and use the induced product decomposition near ∂M . If y = (y1, . . . , yn)
are local coordinates on ∂M , we obtain coordinates (ρ, y) on M . We have
for x ∈M near ∂M :

S∗xM = {(x, ξ) : ξ0
2 + ρ2|η|2hρ = 1}.

It follows that S∗M is a smooth non-compact submanifold-with-boundary
of bT ∗M which is naturally identified with S∗M over M . We define
∂±S

∗M = {(x, ξ);x ∈ ∂M, ξ0 = ∓1}; as noted above, these subsets of
bT ∗M |∂M are independent of the choice of g and of the local coordinates.
Thus we have

S∗M = S∗M t ∂−S∗M t ∂+S
∗M.

TOME 69 (2019), FASCICULE 7
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Given g and the choice of conformal representative metric h, we can identify
each of ∂±S∗xM with T ∗x∂M via the identifications

(2.2) ∓ ρ−1dρ+
∑
i

ηidyi 7→
∑
i

ηidyi.

We view ∂−S
∗M as the incoming boundary and ∂+S

∗M as the outgoing
boundary. We will denote by ι∂ : ∂−S∗M ∪ ∂+S

∗M → S∗M the smooth
inclusion map. The projection π : S∗M →M extends as a smooth map

π : S∗M →M.

We define the vertical bundle V = ker dπ, a smooth subbundle of TS∗M
of rank n.

Since g degenerates at ∂M as a metric on bT ∗M , it does not induce
an isomorphism between bT ∗M and bTM over ∂M . Instead, it induces an
isomorphism globally with another natural bundle extending the tangent
bundle. Suppose M is a manifold-with-boundary equipped with a line sub-
bundle L ⊂ TM |∂M which is transverse to T∂M . In our setting, L is the
orthogonal complement to T∂M with respect to g = ρ2g. Consider the
space of smooth vector fields LV on M defined by
LV = {V ∈ C∞(M ;TM) : V |∂M = 0 and (ρ−1V )(x) ∈ Lx, x ∈ ∂M}.

In the usual way, LV can be regarded as the space of smooth sections of
a smooth vector bundle LTM on M . If (ρ, y = y1, . . . , yn) are any local
coordinates near a point of ∂M so that L = span{∂ρ}, then {ρ∂ρ, ρ2∂y1 , . . . ,

ρ2∂yn} is a basis for LTxM for any x ∈M near ∂M . For an asymptotically
hyperbolic metric g in normal form, the induced isomorphism T ∗M → TM

maps ξ0ρ
−1dρ+

∑
i ηidyi 7→ ξ0ρ∂ρ +

∑
i,j h

ij
ρ ηiρ

2∂yj , where (hijρ ) denotes
the matrix of the metric induced by hρ on T ∗∂M in the coordinates ηi.
Clearly this isomorphism extends to the boundary as a smooth isomorphism
of vector bundles bT ∗M → LTM which pulls back the degenerate metric
induced by g on LTM to that on bT ∗M . The bundle bT ∗M ∼= LTM is a
natural extension of the (co)tangent bundle for the study of geodesics of an
AH metric. For instance, the tangent vector field of a geodesic γ is a smooth
nonvanishing section of LTM |γ all the way up to the boundary, and, as we
will see, the geodesics emanating from or ending on a boundary point x
are parametrized by the fibers ∂∓S∗xM . As a comparison, recall that the 0-
cotangent bundle is the smooth bundle 0T ∗M overM whose fibers near the
boundary have basis {dρ

ρ ,
dyi
ρ }. The 0-unit cotangent bundle is 0S

∗
M :=

{(x, ξ) ∈ 0T ∗M ; |ξ|g = 1}; this is a compact manifold-with-boundary. The
bundle 0T ∗M is the natural bundle for analysis of differential operators
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defined in terms of an asymptotically hyperbolic metric (see [33]); we will
use it only mildly in Section 3.

Lemma 2.1. — The Hamiltonian vector field X on S∗M has the form
X = ρX, where X is a smooth vector field on S∗M which is transverse to
the boundary ∂S∗M = ∂−S

∗M t ∂+S
∗M .

Proof. — As a vector field on T ∗M , we know that X is tangent to S∗M ,
so it suffices to analyze X in coordinates on bT ∗M . Since H = 1

2ρ
2(ξ2

0 +
|η|2hρ), we have in coordinates (ρ, y, ξ = ξ0dρ+ η.dy)

(2.3) X = ρ2ξ0∂ρ + ρ2
∑
i,j

hijρ ηi∂yj −
[
ρ(ξ2

0 + |η|2hρ) + 1
2ρ

2∂ρ|η|2hρ

]
∂ξ0

− 1
2ρ

2
∑
k

∂yk |η|2hρ∂ηk .

Smooth coordinates (ρ, y, ξ0, η) on bT ∗M are given by

(2.4) ρ = ρ, y = y, ξ0 = ρξ0, η = η.

So
∂ρ = ∂ρ + ξ0∂ξ0

, ∂y = ∂y, ∂ξ0 = ρ∂ξ0
, ∂η = ∂η.

Substituting into (2.3), one finds X = ρX, with

(2.5) X = ξ0∂ρ + ρ
∑
i,j

hijρ ηi∂yj −
[
ρ|η|2hρ + 1

2ρ
2∂ρ|η|2hρ

]
∂ξ0

− 1
2ρ
∑
k

∂yk |η|2hρ∂ηk .

The result is now clear, since ∂S∗M is given by ρ = 0, and ξ0 = ±1 on
∂S∗M . �

We notice that a similar observation was made in [35, Lemma 2.6]. For
simplicity, in what follows we will use the notation (ρ, y, ξ0, η) for the co-
ordinates on bT ∗M , instead of (ρ, y, ξ0, η).

Recall that we identify each of ∂∓S∗M with T ∗∂M via (2.2). This iden-
tification depends on the product decomposition induced by the choice
of conformal representative h. If ĥ = e2uh is another choice, with u ∈
C∞(∂M), and ρ̂, ŷi denote the corresponding coordinates, then ρ̂ = euρ+
O(ρ2), ŷi = yi +O(ρ). An easy calculation shows that

±ρ̂−1dρ̂+
∑
i

η̂idŷi = ±ρ−1dρ+
∑
i

η̂idyi ± du
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as elements of ∂∓S∗M . So the identification (2.2) is determined up to
the map (y, η) 7→ (y, η ∓ du(y)) of T ∗∂M . This is a symplectomorphism
of T ∗∂M for each u, so it follows that each of ∂∓S∗M has a canonical
structure as a symplectic manifold, with symplectic form

∑
i dηi ∧ dyi.

The Liouville 1-form α on T ∗M is given by α = ξ0dρ + η.dy near the
boundary and the symplectic form on T ∗M is dα = dξ0 ∧ dρ + dη ∧ dy.
The form α restricts to S∗M as a contact form, satisfying α(X) = 1 and
ιXdα = 0. The associated volume form is µ = α ∧ (dα)n. We call Liouville
symplectic form on ∂±S

∗M the symplectic form
∑
i dηi ∧ dyi described

in the previous paragraph. We call Liouville volume form on ∂±S∗M the
volume form µ∂ = (

∑
i dηi ∧ dyi)n obtained from the Liouville symplectic

form. The volume forms µ and µ∂ induce densities |µ| and |µ∂ | on S∗M

and ∂±S
∗M called Liouville measures. The flow ϕt : S∗M → S∗M of X

preserves the Liouville measure.

Lemma 2.2. — The Liouville 1-form α on S∗M is such that ρα and
dα extend smoothly to S∗M and ι∗∂(dα) is the symplectic form on ∂S∗M .
The volume form µ = α ∧ (dα)n on S∗M is such that ρµ and ιXµ extend
smoothly to S∗M , and ι∗∂ιXµ is equal to the Liouville volume form µ∂ on
∂S∗M .

Proof. — We work on bT ∗M in the coordinates (ρ, y, ξ0, η). We have

(2.6) α = ξ0dρ+
∑
i

ηidyi = ρ−1ξ0dρ+
∑
i

ηidyi.

Clearly ρα extends smoothly to all of bT ∗M . Now dα = ρ−1dξ0 ∧ dρ +∑
i dηi ∧ dyi. But differentiating ξ0

2 + ρ2|η|2hρ = 1 shows that ξ0dξ0 =
−ρ|η|2hdρ+O(ρ2) on TS∗M . Hence

(2.7) dα =
∑
i

dηi ∧ dyi +O(ρ) on TS∗M.

In particular, dα extends smoothly to S∗M and ι∗∂(dα) =
∑
i dηi ∧ dyi as

claimed. It follows also that ρµ = (ρα)∧(dα)n and ιXµ = α(X)(dα)n+0 =
(dα)n extend smoothly to S∗M , and ι∗∂ιXµ = ι∗∂((dα)n) = (ι∗∂(dα))n =
(
∑
i dηi ∧ dyi)n. �

Observe from (2.6), (2.7) that

ρµ = ξ0dρ ∧
(∑

i

dηi ∧ dyi
)n

+O(ρ).

Since ξ0 = ±1 on ∂∓S∗M , it follows that the orientations induced by ρµ
and (

∑
i dηi ∧ dyi)n agree on ∂+S

∗M , but are opposite on ∂−S∗M .

ANNALES DE L’INSTITUT FOURIER



X-RAY TRANSFORM AND BOUNDARY RIGIDITY 2869

The boundary behavior of the geodesics of a conformally compact metric
was analyzed in [32], where in particular it was proved that the flow ϕt is
complete. The following lemma describing the trajectories of the flow lines
of X near the boundary is essentially contained in [32]. We formulate the
result in terms of S∗M , and for completeness and for use in our intended
applications, we give a proof. Note from (2.3) that Hamilton’s equations
for the integral curves of X on the level set S∗M are given near ∂M by

(2.8)

ρ̇ = ρ2ξ0, ẏj = ρ2
∑
i

hijρ ηi,

ξ̇0 = −1
ρ
− ρ2

2 ∂ρ|η|
2
hρ , η̇j = −ρ

2

2 ∂y
j |η|2hρ .

Lemma 2.3. — There is ε > 0 small enough so that for each (x, ξ) ∈
S∗M with ρ(x) < ε, and ξ = ξ0dρ + η.dy with ξ0 6 0, the flow trajectory
ϕt(x, ξ) converges to a point z+ ∈ ∂+S

∗M with rate O(e−t) as t → +∞
and ρ(ϕt(x, ξ)) 6 ρ(x, ξ) for all t > 0. In addition, if A ⊂ S∗M ∩ {ρ ∈
(0, ε), ξ0 6 0} is a compact set, then the set {ϕt(x, ξ); (x, ξ) ∈ A, t > 0} is
contained in a compact set of S∗M ∩ {ρ ∈ [0, ε), ξ0 6 0}. The same results
hold with ξ0 > 0 and backward time, with limit z− ∈ ∂−S∗M .

Proof. — First note that for any z = (x, ξ) = (ρ, y, ξ0, η) ∈ S∗M ,
the trajectory ϕt(x, ξ) = (ρ(t), y(t), ξ0(t), η(t)) satisfies ρ(t)2ξ0(t)2 +
ρ(t)2|η(t)|2hρ(t) = 1. In particular, ρ(t)|η(t)|hρ(t) is bounded. From (2.8),
we see that if ε > 0 is small enough and ξ0 6 0, ρ 6 ε, then

∀ t > 0, ξ̇0(t) < − 1
4ρ(t) and ρ̇(t) 6 0.

Thus u(t) := ρ(t)−1 satisfies

ü = −ξ̇0 >
1
4u, u(0) > ε−1, u̇(0) > 0.

It follows that u(t) > ε−1 cosh(t/2), so

(2.9) ρ(t) 6 ε

cosh(t/2) .

This preliminary decay estimate will be improved below.
Now, differentiating ξ0(t) := ρ(t)ξ0(t) by using (2.8), we get

˙̄ξ0(t) = ξ0(t)2 − 1 +O(ρ(t)3|η(t)|2hρ(t)
) = (ξ0(t)2 − 1)(1 +O(ρ(t))),

where we used ρ(t)2|η(t)|2hρ(t)
= 1− ξ0(t)2 and the remainder is uniform in

z. Thus there exists C > 0 uniform in (x, ξ) such that

∂t(F (ξ0(t))) 6 −1 + Cρ(t)

TOME 69 (2019), FASCICULE 7



2870 C. R. Graham, C. Guillarmou, P. Stefanov & G. Uhlmann

where F (v) = 1
2 log 1+v

1−v . Now (2.9) shows that
∫∞

0 ρ(t) dt < ∞, so
F (ξ0(t)) 6 −t + C ′. Since v + 1 = 2e2F (v)/

(
e2F (v) + 1

)
, it follows that

there is C > 0 uniform such that for all t > 0

(2.10) 0 6 ξ0(t) + 1 6 Ce−2t.

This implies that ρ(t)|η(t)|hρ(t) = O(e−t) as t → +∞ uniformly in (x, ξ),
thus from (2.8) we have y(t) and η(t) converging exponentially fast to limits
for each (x, ξ) and moreover (y(t), η(t)) stays in a compact set if (x, ξ) is
in a fixed compact set of S∗M ∩ {ρ ∈ (0, ε), ξ0 6 0}. Now we deduce from
this and from (2.10), (2.8) that

(2.11) 0 6 ρ̇/ρ+ 1 6 Ce−2t, ρ(0)e−t 6 ρ(t) 6 Cρ(0)e−t

where C > 0 is uniform with respect to the initial condition (x, ξ). Since all
the bT ∗M -coordinates (ρ(t), y(t), ξ0(t), η(t)) of ϕt(x, ξ) converge exponen-
tially with ρ(t) → 0 and ξ0(t) → −1, it follows that ϕt(x, ξ) converges to
some point z+ ∈ ∂+S

∗M as t→∞. The same argument works in backward
time with initial conditions such that ξ0 > 0. �

We remark that one can give an alternate proof of Lemma 2.3 by analyz-
ing the flow of the vector field X defined in Lemma 2.1, which is smooth up
to ∂S∗M . We will use such an approach in further analysis of the geodesic
flow below.
Lemma 2.3 implies via the duality isomorphism bT ∗M ∼= LTM that the

tangent vector to the geodesic γ(t) = π(ϕt(x, ξ)) has the form ξ0(t)ρ(t)∂ρ+
ρ(t)2∑

ij h
ij
ρ(t)ηi(t)∂yj with ξ0(t) → −1 and ηi(t) convergent as t → ∞.

Also, as a consequence of Lemma 2.3, we see that the regions {ρ > ε} are
strictly convex with respect to the flow for ε > 0 small enough.
We define the incoming (−) and outgoing (+) tails of the flow by

Γ∓ = {(x, ξ) ∈ S∗M ; ρ(ϕt(x, ξ)) 6→ 0 as t→ ±∞}.

These are closed flow-invariant sets in S∗M . By Lemma 2.3, there is ε > 0
such that

Γ− ∩ {ρ < ε, ξ0 6 0} = ∅, Γ+ ∩ {ρ < ε, ξ0 > 0} = ∅.

We define the trapped set of the flow to be the compact flow-invariant set

K := Γ− ∩ Γ+.

Notice that K ∩ {ρ 6 ε} = ∅ for some ε > 0 small enough, by Lemma 2.3.
We say that (M, g) is non-trapping if K = ∅.

Lemma 2.4. — (M, g) is non-trapping if and only if Γ+ = ∅ if and only
if Γ− = ∅.
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Proof. — We show that Γ− 6= ∅ implies K 6= ∅; the argument for Γ+
is the same with the direction of time reversed. If z ∈ Γ−, we can choose
tn → ∞ so that zn := ϕtn(z) → y for some y ∈ S∗M . Then y ∈ Γ− since
Γ− is closed. But we also have y ∈ Γ+, since otherwise by Lemma 2.3 there
would be a small ball B containing y and ε > 0, T > 0 so that ϕ−t(B) ⊂
{ρ < ε} for all t > T . But zn ∈ B for large n, and ϕ−tn(zn) = z /∈ {ρ < ε}
if ε is small enough. Since tn →∞ as n→∞, this is a contradiction. �

Observe that if (M, g) is non-trapping, then M is necessarily simply
connected, as otherwise there would be a closed geodesic, and g would have
a non-empty trapped set. Indeed, M is diffeomorphic to the subset {ρ > ε}
when ε > 0 is small enough, and its closure is a manifold with strictly
convex boundary; if π1(M) is non trivial, we can find a closed geodesic
by in each free-homotopy class by the argument of Lemma 2.2 in [19] (by
minimizing the energy functional).
Later, we will deal with the two cases where either K = ∅, or the trapped

setK is a hyperbolic set in the sense defined in the introduction. It is shown
in Proposition 2.4 of [18] that if K is a hyperbolic set, then for all ε > 0
small, Volµ(Γ± ∩ {ρ > ε}) = 0 (here we can use the results of [18] since
{ρ > ε} is a strictly convex set in S∗M). In particular this implies that

(2.12) Volµ(K) = Volµ(Γ±) = 0

in S∗M . We can also define the dual decomposition

T ∗K(S∗M) = Rα⊕ E∗s ⊕ E∗u
where E∗u(Eu⊕RX) = 0, E∗s (Es⊕RX) = 0, and α is the contact form. As
explained in [18, Section 2.3] (see also [9, Lemma 2.10]), the bundle Es has a
continuous extension to Γ−, denoted E−, and Eu has a continuous extension
to Γ+, denoted E+, in a way that the hyperbolicity estimates (1.1) still hold.
The dual bundles also have extensions E∗− over Γ− and E∗+ over Γ+, and
E∗± are globally invariant by the symplectic flow Φt on T ∗(S∗M). Here Φt
is the symplectic lift of the flow ϕt to T ∗(S∗M) given by

(2.13) Φt(z, ζ) = (ϕt(z), (dϕt(z)−1)T .ζ), ζ ∈ T ∗z (S∗M).

As a consequence of Lemma 2.3, we have the

Corollary 2.5. — The following maps are well-defined and smooth

B± : S∗M \ Γ∓ → ∂±S
∗M, B±(x, ξ) := lim

t→±∞
ϕt(x, ξ).

Moreover, they extend smoothly to S∗M\Γ∓, where Γ∓ denotes the closure
of Γ∓ in S∗M , and B±(z) = z for each z ∈ ∂±S∗M .
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Proof. — If z0 := (x0, ξ0) /∈ Γ−, for ε0 > 0 as in Lemma 2.3, there is
T > 0 large enough so that we have ρ(t) := ρ(ϕt(z0)) < ε0 for all t > T .
There is necessarily an open interval A ⊂ [T,∞) where ρ(t) is decreasing,
thus ξ0(t) < 0 on A = (a, b) and by Lemma 2.3, ρ(t) is actually decreasing
on [a,+∞) and ϕt(z0) converges to a point in ∂+S

∗M as t → +∞; this
point is denoted by B+(z0). Extend ρ from a neighborhood of ∂M to all of
M so that ρ > 0 on M , and write X = ρX as in Lemma 2.1. The flow lines
of X in S∗M are the same as the flow lines of X, only the parametrization
changes: if ϕτ (z) is the flow of X, then

(2.14) ∀ z ∈ S∗M, ϕτ (z) = ϕt(τ,z)(z) with t(τ, z) :=
∫ τ

0

1
ρ(ϕs(z))

ds.

Since X is smooth on S∗M , does not vanish and is transverse to ∂S∗M ,
the implicit function theorem gives that there is a finite time τ+(z) smooth
in z near z0 such that ρ(ϕτ+(z)(z)) = 0 for all z near z0. The map B+(z) is
simply ϕτ+(z)(z) and thus is smooth and extends smoothly to ∂S∗M \ Γ−
with B+(z) = z when z ∈ ∂+S

∗M . The same argument works with B−. �

As in the proof of Corollary 2.5, we will always denote by τ±(z) > 0 the
time so that

ϕ±τ±(z)(z) = B±(z), z /∈ Γ∓.

We also note that the closures can be described by

(2.15) Γ± = Γ± ∪ {z ∈ ∂±S∗M ;ϕτ (z) ∈ Γ±,∀ τ,∓τ > 0}.

We now define the scattering map Sg : ∂−S∗M \ Γ− → ∂+S
∗M \ Γ+ for

the flow by

(2.16) Sg(z) = B+(z) = ϕτ+(z)(z).

Corollary 2.5 shows that Sg is well-defined and smooth.

Proposition 2.6. — The scattering map Sg : ∂−S∗M \Γ− → ∂+S
∗M \

Γ+ is a symplectic map.

Proof. — Recall from Lemma 2.2 that the symplectic form on ∂S∗M is
ι∂(dα). Observe that for each τ , ϕ∗τdα = dα, since LX(dα) = d(ιXdα) = 0
by the fact that ιXdα = ρ−1ιXdα = 0. Now we can write Sg(z) = ϕτ+(z)(z)
for each z ∈ ∂−S∗M \ Γ−. We thus get for each v ∈ Tz(∂−S∗M)

dSg(z).v = dϕτ+(z)(z).v +X(Sg(z))dτ+(z).v.
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Therefore we get for each v, w ∈ Tz(∂−S∗M)

S∗g (dα)z(v, w)
= dαSg(z)(dϕτ+(z)(z).v,dϕτ+(z)(z).w)

+ (dτ+(z).v)dαSg(z)(X(Sg(z)), w) + (dτ+(z).w)dαSg(z)(v,X(Sg(z)))
= dαz(v, w)

since ιXdα = 0 and dαϕτ (z)(dϕτ (z).v,dϕτ (z).w) = dαz(v, w) for each τ 6
τ+(z). �

Recall that a choice of representative metric h in the conformal infinity
of g induces the identifications (2.2) between ∂±S

∗M and T ∗∂M . When
comparing Sg for different metrics, we will view Sg as mapping T ∗∂M

to itself via such identifications. The main reason for this is that then
Sg = Sψ∗g if ψ : M →M is a diffeomorphism restricting to the identity on
the boundary, so long as the identifications between ∂±S∗M and T ∗∂M for
g and ψ∗g are both with respect to the same metric h. Since dψ is generally
nontrivial on ∂±S∗M , it is not typically the case that Sg = Sψ∗g when Sg
and Sψ∗g are viewed as maps from ∂−S

∗M to ∂+S
∗M .

Next we describe the pull-back by the flow.

Lemma 2.7. — Let f ∈ C∞(S∗M), then the function (t, z) 7→ f(ϕt(z))
is a smooth function on R × S∗M which can be written for t > 0 in the
form f(ϕ±t(z)) = F±(e−t, z) for some function F± ∈ C∞

(
[0, 1) × (S∗M \

(∂∓S∗M ∪ Γ∓))
)
satisfying

(2.17) F±(e−t, z) = f(B±(z)) +O(τ±(z)e−t)

and the remainder is uniform for z in compact sets of S∗M \(∂∓S∗M∪Γ∓).

Proof. — The flow ϕτ ofX is a non-complete flow satisfying (2.14). Since
X is smooth down to ρ = 0 and since near each (y0, η0) ∈ ∂+S

∗M we have
X = −∂ρ + ρY in the coordinates (ρ, y, η) for some smooth vector field
Y near (y0, η0), we obtain that ρ(ϕτ (y, η)) for small τ 6 0 is a smooth
function of (τ, y, η) such that

(2.18) ρ(ϕτ (y, η)) = −τ +O(τ2),

with remainder uniform for (y, η) in compact sets. Now take z0 /∈ Γ− ∪
∂−S

∗M , we can write each point z in a small enough neighborhood of z0
in S∗M \ ∂−S∗M as z = ϕ−τ+(z)(B+(z)) with τ+(z) smooth in z and we
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get that for τ ∈ [0, τ+(z)), the function t(τ, z) defined by (2.14) is given by

(2.19) t(τ, z) =
∫ τ−τ+(z)

−τ+(z)

1
ρ(ϕs(B+(z)))ds =

∫ τ+(z)

τ+(z)−τ

1
s

ds+G(τ, z)

= − log
(

1− τ

τ+(z)

)
+G(τ, z)

where G is a smooth function of τ, z, for τ ∈ [0, τ+(z)] and z in a neigh-
borhood of z0 in S∗M \ (∂−S∗M ∪Γ−). This implies in particular that for
t > 0, τ = τ+(z)− e−tτ+(z)H(e−t, z) for some smooth positive function H
on [0, 1)× S∗M \ (∂−S∗M ∪ Γ−), thus for t > 0

(2.20) ϕt(z) = ϕ−e−tτ+(z)H(e−t,z)(B+(z)).

Thus if f ∈ C∞(S∗M), then f(ϕt(z)) is equal to F+(e−t, z) for some
smooth function F+ in [0, 1) × S∗M \ (∂−S∗M ∪ Γ−), satisfying (2.17).
The same argument works with f(ϕ−t(z)) for t > 0. �

2.2. Short geodesics

In asymptotically hyperbolic manifolds, there are geodesics that are ar-
bitrarily small when viewed in the conformally compactified manifold. For
example, in hyperbolic space viewed as the unit ball, half-circles orthogo-
nal to the unit sphere Sn = ∂Hn+1 with endpoints arbitrarily close to one
another are such geodesics. In order to prove the existence of and analyze
these geodesics in general, we introduce two types of local coordinates near
the boundary ∂S∗M and describe the form of X in each of them.

Fix 0 < ε small. We cover the region ρ ∈ [0, ε) of S∗M by the two types
of neighborhoods

U1 :=
{

(ρ, y, ξ0, η) ∈ S∗M ; ρ < ε, ρ|η|hρ <
1
2

}
,

U2 :=
{

(ρ, y, ξ0, η) ∈ S∗M ; ρ < ε, |η|hρ >
1
2

}
,

and we use the coordinates (ρ, y, η) on U1 and (θ, y, η) on U2, where θ ∈
[0, π] is defined by

sin(θ) = ρ|η|hρ , cos(θ) = ξ0.

Notice that U1 has two connected components U±1 corresponding to
sign(ξ0) = ±1. For U2, if ε is small enough, the function ρ → ρ|η|hρ has
positive derivative for ρ < ε so is invertible; the limit ρ → 0 when η is in
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a compact set corresponds to either θ → 0 or θ → π. We can recover the
coordinate ξ0 by the expression ξ0 = |η|hρ cot(θ). A function f : S∗M → R
is smooth if it is smooth on S∗M and if f |U1 viewed in the coordinates
(ρ, y, η) extends as a smooth function to {ρ = 0}, and f |U2 viewed in the
coordinates (θ, y, η) extends as a smooth function down to {θ = 0} and up
to {θ = π}. The vector field X can be written in the coordinates (ρ, y, η)
in U1 as

(2.21) X = sign(ξ0)
√

1− ρ2|η|2hρ∂ρ + ρ
∑
i,j

hijρ ηi∂yj −
1
2ρ
∑
k

∂yk |η|2hρ∂ηk

and in the coordinates (θ, y, η) in U2 as

(2.22) Y := |η|−1
hρ
X = (1 +Q)∂θ

+ sin(θ)
∑
i,j

hijρ ηi

|η|2hρ
∂yj −

1
2 sin(θ)

∑
k

∂yk |η|2hρ
|η|2hρ

∂ηk

with Q := sin θ
2|η|3

hρ

∂ρ|η|2hρ . For instance, to evaluate the coefficient of ∂θ

in (2.22), from θ = cos−1 ξ0 one has ∂ξ0
θ = −(1− ξ0

2)−1/2 = −(ρ|η|hρ)−1,
so from (2.5) there follows

|η|−1
hρ
Xθ = (ρ|η|2hρ)

−1[ρ|η|2hρ + 1
2ρ

2∂ρ|η|2hρ
]

= 1 +Q.

The existence and asymptotics of short geodesics is the content of the
following lemma.

Lemma 2.8. — There exists R0 > 0 so that if z = (y0, η0) ∈ ∂−S∗M
with |η0|h0 > R0, then z /∈ Γ−. If we set R = |η0|h0 > R0 and δ = R−1,
the integral curves (θ(s), y(s), η(s)) of Y have the property that θ, y, and
δη extend smoothly in δ down to δ = 0. Moreover,

τ+(z) = δπ +O(δ2), ρ(ϕτ (z)) = δ sin(αz(τ)) +O(δ2)

where αz : [0, τ+(z)]→ [0, π] is a diffeomorphism depending smoothly on z
and satisfying ∂ταz(τ) = R+O(1).

Proof. — We write X = sin(θ)Y in the region U2 of S∗M , where Y =
|η|−1

hρ
X is given by (2.22) and we recall sin(θ) = ρ|η|hρ . Denote by

(θ(s), y(s), η(s)) the integral curve of Y with initial condition (0, y0, η0)
and set R = |η0|h0 with R > R0. Rescale the integral curve equations: set
δ = R−1, u = (y − y0)/δ, ω = δη. Then ω0 = δη0 has |ω0|h0 = 1 and the
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integral curve equations for Y become

(2.23) dθ
ds = 1 + δQ̃,

dui

ds = sin θ
∑
j h

ij
ρ ωj

|ω|2hρ
,

dωi
ds = −δ sin θ

∂yi |ω|2hρ
2|ω|2hρ

with initial conditions θ(0) = 0, u(0) = 0, ω(0) = ω0, where Q̃ = Q/δ =
sin θ

2|ω|3
hρ

∂ρ|ω|2hρ . Everywhere the argument of hρ and its derivatives is y0 + δu

and ρ is determined implicitly as the solution of ρ|ω|hρ = δ sin θ. The right-
hand sides of these equations are smooth in all arguments (θ, u, ω, y0, δ),
including down to δ = 0. The solution for δ = 0 is

θ = s, ω = ω0, u = (1− cos s)ω]0,

where ω]0 is the dual vector to ω0 using h0(y0). This corresponds to the
geodesic on the hyperbolic space defined by the metric ρ−2(dρ2 + h0(y0)

)
with coefficients frozen at y0. By a standard result [6, Theorem 7.4], there is
a solution smooth in δ > 0 small and for all s up to θ(s) = π, whereupon ρ =
0 (one may continue slightly further by choosing some smooth extension of
hρ to ρ < 0). Hence the geodesic reaches ∂+S

∗M , so z /∈ Γ−. The implicit
function theorem implies that there is a uniquely defined smooth function
s0 for 0 6 δ small for which θ(s0) = π and s0 = π for δ = 0. We view s0(z)
as a function of z = (y0, η0) for R = |η0|h0 large. So s0(z) = π + O(δ).
Since |ω|hρ = 1 for all s when δ = 0, it follows that |ω|hρ = 1 + O(δ) for
s ∈ [0, s0(z)], which becomes in terms of the original variables

(2.24) δ|η|hρ = 1 +O(δ).

We also have ρ/(δ sin θ) = |ω|−1
hρ

= 1+O(δ), so ρ = δ sin θ+O(δ2) uniformly
for s ∈ [0, s0(z)].

Since Y = |η|−1
hρ
X, we also can write the flow ϕτ (z) as a reparametriza-

tion of the flow of Y (just like in (2.14)) and viewing s as a function of
(τ, z) we get s(τ, z) = Rτ +O(τ), τ+(z) = δπ +O(δ2) and

∂τs(τ, z) = |η(s(τ, z))|hρ = R+O(1).

Since θ̇(s) = 1+O(δ), we obtain that αz(τ) := θ(s(τ, z)) satisfies ∂ταz(τ) =
R+O(1) and this achieves the proof. �

2.3. Splitting of TS∗M , Sasaki metric, conjugate points

As we discussed previously, for any Riemannian manifold (M, g), the
cosphere bundle S∗M is a contact manifold with contact splitting TS∗M =
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RX ⊕ kerα. Moreover, we have the further splitting

(2.25) kerα = H⊕ V,

where V := ker dπ is the vertical bundle and H = kerα ∩ kerK is the
horizontal bundle. Here K : TT ∗M → TM is the connection map, defined
by K(ζ) = Dtz(0)], where ζ ∈ T(x,ξ)T

∗M , z(t) is a curve in T ∗M with
z(0) = (x, ξ), ż(0) = ζ,Dt is the covariant derivative along the curve π(z(t))
in M , and ] denotes the canonical isomorphism T ∗M → TM induced by g
(see [39, Chapter 1.3.1] for details about K). If z = (x, ξ) ∈ S∗M , then any
ζ ∈ kerK, a priori only assumed to be in TzT

∗M , is actually already in
TzS

∗M . If Z → S∗M is the bundle whose fibers are Z(x,ξ) = {v ∈ TxM :
ξ(v) = 0}, the maps dπ|H : H → Z and K|V : V → Z are isomorphisms.
We denote by L the isomorphism

(2.26) L : kerα→ Z ⊕Z, L(ζ) =
(
dπ(ζ),K(ζ)

)
.

The Sasaki metric G on S∗M is defined by

(2.27) G(ζ, ζ ′) = g(dπ(ζ),dπ(ζ ′)) + g(K(ζ),K(ζ ′)), ζ, ζ ′ ∈ Tz(S∗M).

If z ∈ S∗M , the space of normal Jacobi fields along the geodesic γz(t) :=
π(ϕt(z)) is isomorphic to kerαz = Hz ⊕ Vz. For ζ = h + v ∈ Hz ⊕ Vz,
the corresponding Jacobi field Y (t) is determined by the initial conditions(
Y (0), DtY (0)

)
= L(ζ) =

(
dπ(h),K(v)

)
. Two points p, q ∈ M are said to

be conjugate points if there exist z ∈ S∗pM and T > 0 so that ϕT (z) ∈ S∗qM
and

(2.28) dϕT (z).V(z) ∩ V(ϕT (z)) 6= {0}.

This is equivalent to the statement that there is a normal Jacobi field along
γ which vanishes at both 0 and T .
Lemma of [17, p. 201] asserts that if p is a point in a simply connected

Riemannian manifold M such that expp is everywhere defined and a local
diffeomorphism, then the exponential map expp : TpM → M is a diffeo-
morphism. Since expp is everywhere defined and a local diffeomorphism for
each p in a complete manifold with no conjugate points, it follows that the
exponential map expp : TpM → M is a diffeomorphism at each point in a
non-trapping asymptotically hyperbolic manifold with no conjugate points.

3. Boundary value problem and X-ray transform

We first consider the non-trapping case, i.e. Γ− ∪ Γ+ = ∅.
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3.1. Resolvent in the non-trapping case

The first boundary value problem we consider is the following:

Lemma 3.1. — For each λ ∈ C, for each f ∈ C∞c (S∗M), there is a
unique u±(λ) ∈ C∞(S∗M) such that

(−X ± λ)u±(λ) = f, with u±(λ) = 0 near ∂±S∗M.

and the operator R±(λ) : C∞c (S∗M) → C∞(SM) defined by R±(λ)f =
u±(λ) is continuous and holomorphic in λ.

Proof. — The operator R±(λ) is simply given by

(3.1)
R+(λ)f(z) =

∫ ∞
0

e−λtf(ϕt(z))dt,

R−(λ)f(z) = −
∫ 0

−∞
eλtf(ϕt(z))dt,

its continuity and uniqueness are clear. �

We want to extend the action of these operators to C∞(S∗M).

Lemma 3.2. — The operators of Lemma 3.1 extend to holomorphic fam-
ilies of operators R±(λ) : C∞(S∗M) → C∞(S∗M) for Re(λ) > 0 with
meromorphic extensions to C with first order poles at −N0. The residue of
R±(λ) at λ = 0 is the operator P± defined by

P±f = ±f ◦B±.

Proof. — We just consider R+(λ) as R−(λ) is similar. First, we notice
that from Lemma 2.3, for z in any compact set B ⊂ S∗M , the curves
(ϕt(z))t∈R,z∈B lie in a compact region of S∗M , thus

R+(λ)f(z) =
∫ ∞

0
e−λtf(ϕt(z))dt

converges uniformly on compact sets of S∗M for Re(λ) > 0; it is smooth
and holomorphic in λ there, and also bounded on A∩S∗M for each compact
set A ⊂ S∗M (by a constant depending on Re(λ)). Next, by Lemma 2.7,
we can write for z in each open set A ⊂ S∗M with compact closure in S∗M

R+(λ)f(z) =
∫ ∞

0
e−λtF+(e−t, z)dt

for some F+ smooth in [0, 1)×S∗M \∂−S∗M with F+(e−t, z) = f(B+(z))+
O(e−tτ+(z)), thus we have by Taylor expansion of F+(u, z) at u = 0 that
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for Re(λ) > 0 and each N ∈ N

R+(λ)f(z) =
N∑
j=0

∫ ∞
0

e−λtF+,j(z)e−jtdt+
∫ ∞

0
e−λte−t(N+1)rN (t, z)dt

=
N∑
j=0

F+,j(z)
λ+ j

+
∫ ∞

0
e−λte−t(N+1)rN (t, z)dt

for some rN bounded in [0,∞) × A. The last integral is holomorphic in
Re(λ) > −N − 1 and the first terms admit a meromorphic extension with
poles at −N0. We notice that the residue at 0 is given by the operator
P+f := f ◦B+. �

We can then define the operators R±(0) := limλ→0+(R±(λ) − λ−1P±)
acting on C∞(S∗M), which by using (2.17) can also be written (for z ∈
S∗M) as the converging integrals

(3.2)
R+(0)f(z) =

∫ ∞
0

(f(ϕt(z))− f(B+(z)))dt,

R−(0)f(z) =
∫ ∞

0
(f(B−(z))− f(ϕ−t(z)))dt.

We define ρC∞(S∗M) to be the subspace of C∞(S∗M) consisting of smooth
functions on S∗M which vanish at ∂S∗M (such functions f can be factor-
ized as f = ρf̃ for some smooth f̃).

Lemma 3.3. — The operators R±(0) defined by (3.2) extend as contin-
uous operators

R±(0) : C∞(S∗M)→ C∞(S∗M \ ∂∓S∗M)

satisfying (R±(0)f)|∂±S∗M = 0 and

(3.3) −XR±(0) = Id∓P±.

If f ∈ C∞(S∗M) vanishes at ∂±S∗M , then u± := R±(0)f is the unique
smooth solution in S∗M \ ∂∓S∗M of the boundary value problem

−Xu± = f, u±|∂±S∗M = 0.

Finally R±(0) extend as continuous operators

(3.4) R±(0) : ρC∞(S∗M)→ C∞(S∗M).

Proof. — From Lemma 2.7 and (2.17), we notice that R±(0)f extend
smoothly to ∂±S∗M and we get near ∂±S∗M (uniformly on compact sets
of S∗M \ ∂−S∗M)

(3.5) R±(0)f(z) = O(τ±(z)),
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thus vanishing at ∂±S∗M . The second statement is clear since the difference
u of two solutions would be constant along flow lines of X, and thus equal
to u◦B± = 0. For the last part, we use (2.14) to get by a change of variable
τ 7→ t(τ, z)

(3.6) R+(0)f(z) =
∫ τ+(z)

0
f(ϕ̄τ (z)) 1

ρ(ϕ̄τ (z))dτ =
∫ τ+(z)

0
f̃(ϕ̄τ (z))dτ

if f = ρf̃ for some smooth f̃ ∈ C∞(S∗M). This proves the last claim of
the Lemma and the same argument works with R−(0). �

3.2. Extension operator and X-ray transform in the
non-trapping case

The next boundary value problem for the flow we consider is the exten-
sion problem. We have the

Lemma 3.4. — For each ω ∈ C∞(∂−S∗M), there is a unique w ∈
C∞(S∗M) such that

Xw = 0, w|∂−S∗M = ω

and it is given by w(z) = ω(B−(z)). Its value at ∂+S
∗M is w|∂+S∗M =

ω ◦ S−1
g where Sg is the scattering map defined by (2.16).

Proof. — The solution w has to satisfy Xw = 0 and w is constant along
flow lines of X, thus w(z) is given by ω(B−(z)). The other part is clear. �
We point out that for compact simple manifolds, Pestov–Uhlmann [43]

gives a characterisation of the initial data of smooth solutions of Xw = 0
on SM in terms of the scattering map. Here, in contrast, the smoothness of
the boundary value w|∂−S∗M is sufficient. This difference is a consequence
of the fact that for us, ∂−S∗M and ∂+S

∗M are disjoint subsets of S∗M ,
whereas they intersect in the tangent directions in the case of compact
simple manifolds.
We define the extension operator using this Lemma by

(3.7) E : C∞(∂−S∗M)→ C∞(S∗M), Eω(z) = ω(B−(z)).

By Lemma 2.3, we also see that E : C∞c (∂−S∗M)→ C∞c (S∗M).
We can now define the X-ray transform operator I by

(3.8) I : ρC∞(S∗M)→ C∞(∂−S∗M), If(z) := (R+(0)f)|∂−S∗M .

We can relate E to the operator I by the
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Lemma 3.5. — The extension operator E defined by (3.7) is the adjoint
of I with respect to the scalar product induced by the Liouville measures
|µ| on S∗M and |µ∂ | on ∂−S∗M .

Proof. — Let f ∈ C∞c (S∗M) and ω ∈ C∞(∂−S∗M), then by using
LXµ = 0, XE(ω) = 0, R+(0)f |∂+S∗M = 0 and Lemma 2.2, we get∫

S∗M

(f · E(ω))|µ|

=
∫
S∗M

−X(R+(0)f · E(ω))µ = −
∫
S∗M

LX(R+(0)f · E(ω)µ)

= −
∫
S∗M

d(R+(0)f · E(ω)ιXµ) =
∫
∂−S∗M

If · ω |µ∂ |

which gives the desired property. The same argument works with ω smooth
compactly supported and f ∈ ρC∞(S∗M). �

In view of this Lemma, we will instead write I∗ instead of E for what
follows when E acts on C∞c (∂−S∗M). Using a similar argument, we also
get a Santaló formula

Lemma 3.6. — Let f ∈ C∞c (S∗M), we have the identity∫
S∗M

f |µ| =
∫
∂−S∗M

If(z)|µ∂(z)|.

Consequently I extends to a bounded operator

I : L1(S∗M, |µ|)→ L1(∂−S∗M, |µ∂ |).

Proof. — We just use Stokes formula like in the proof of Lemma 3.5 to
get ∫

S∗M

fµ = −
∫
S∗M

X(R+(0)f)µ =
∫
∂−S∗M

If |µ∂ |.

The boundedness of I on L1 just follows by density. �

We next relate the operator I∗I to the resolvents R±(0). First, define
the operator

(3.9) Π : C∞(S∗M)→ C∞(S∗M), Π := R+(0)−R−(0).

It satisfies for each f ∈ C∞(S∗M), XΠf = P+f + P−f and thus

XΠf = 0 if f |∂S∗M = 0.

If f ∈ ρC∞(S∗M), we can actually write Πf as the converging integral

(3.10) ∀ z ∈ S∗M, Πf(z) =
∫ ∞
−∞

f(ϕt(z))dt
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(notice from (2.20) that (3.10) also converges if f is any continuous func-
tions on S∗M which is O(1/| log(ρ)|α) for α > 1 near ∂S∗M). Then we
get

Lemma 3.7. — We have that Π = I∗I as operators mapping C∞c (S∗M)
to C∞(S∗M), and this extends to the identity Π = EI as operators mapping
ρC∞(S∗M) to C∞(S∗M).

Proof. — First by (3.2), we have for each f, f ′ ∈ C∞c (S∗M) real valued,

(3.11) 〈R+(0)f, f ′〉 = −〈f,R−(0)f ′〉,

that is R+(0)∗ = −R−(0). If u := R+(0)f , we have u|∂−S∗M = If and by
Stokes formula

〈R+(0)f, f〉 = −
∫
S∗M

Xu.uµ = −1
2

∫
S∗M

X(u2)µ = 1
2

∫
∂−S∗M

(If)2|µ∂ |

which shows Πf = I∗If using (3.11). By Lemma 3.5 and since If ∈
C∞c (∂−S∗M) if f ∈ C∞c (S∗M), we get Π = EI on C∞c (S∗M) and thus
Π = EI on ρC∞(S∗M) by density and boundedness of E on C∞(S∗M). �

We can extend this identity to weighted L2 spaces by using

Lemma 3.8. — For β > 1/2, the operator I : |log ρ|−βL2(S∗M, |µ|) →
L2(∂−S∗M, |µ∂ |) is bounded and we have Π = I∗I as a bounded operator
Π : | log ρ|−βL2(S∗M, |µ|)→ |log ρ|βL2(S∗M, |µ|).

Proof. — Let β > 1. By Lemma 2.8 and a change of variable τ 7→ αz(τ)
(with αz(τ) the function of Lemma 2.8), there is R0 so that for each R > R0
and all z = (y, η) ∈ ∂−S∗M with |η|h = R, there are C,C ′ > 0 so that∫ τ+(z)

0
ρ−1| log ρ|−β(ϕτ (z))dτ

6 CR
∫ τ+(z)

0
sin(αz(τ))−1

∣∣∣∣log sin(αz(τ))
R

∣∣∣∣−β dτ

6 C
∫ π

0
sin(α)−1

∣∣∣∣log sin(α)
R0

∣∣∣∣−β (1 +O(1/R))dα

6 C ′.

If z = (y, η) is such that |η|h 6 R0, the trajectory ϕτ (z) stays in a compact
set of S∗M and using (2.18), one has∫ τ+(z)

0

ρ−1

|log ρ|β (ϕτ (z))dτ 6 C
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for some C uniform in z (depending on R0). We can then write, by using
Lemma 3.6, (3.6) and Cauchy–Schwartz, that for f real-valued and β > 1

‖If‖2L2 6
∫
∂−S∗M

(∫ τ+(z)

0

1
ρ|log ρ|β (ϕτ (z))dτ

×
∫ τ+(z)

0

(
|log ρ|β

ρ
f2
)

(ϕτ (z))dτ
)
|µ∂(z)|

6 C
∫
∂−S∗M

∫ τ+(z)

0
(ρ−1|log ρ|βf2)(ϕτ (z))dτ |µ∂(z)|

6 C‖|log ρ|β/2f‖L2(S∗M,|µ|)

for some C > 0 uniform. This proves the claim. �

Next we relate the X-ray transform to the scattering map.

Lemma 3.9. — Let f ∈ C∞(S∗M), then

IXf = S∗g (f |∂+S∗M )− f |∂−S∗M .

Proof. — We have Xf ∈ ρC∞(S∗M), thus IXf makes sense as an ele-
ment in C∞(∂−S∗M) and by (3.6), we have for z ∈ ∂−S∗M

IXf(z) =
∫ τ+(z)

0
(ρ−1Xf)(ϕτ (z))dτ =

∫ τ+(z)

0
(Xf)(ϕτ (z))dτ

= f(ϕτ+(z)(z))− f(z)

which completes the proof. �

Now we characterize the kernel of I in the following Lemma.

Lemma 3.10. — Let f ∈ ρC∞(S∗M), then If = 0 if and only if there
exists u ∈ ρC∞(S∗M) such that Xu = f .

Proof. — If we set u := −R+(0)f , we have Xu = f and u|∂+S∗M = 0
and u ∈ C∞(S∗M) by (3.4). By definition of If , if If = 0 then u|∂−S∗M =
0. Notice that we also have u = −R−(0)f . The converse follows from
Lemma 3.9. �

3.3. The case with hyperbolic trapping

In this section, we assume that the trapped set K is a hyperbolic set
for the geodesic flow. It has zero Liouville measure and Γ± also have zero
measure by [18, Section 2.4]. The incoming and outgoing resolvents R±(λ)
can be defined like in the non-trapping case by the expression (3.1) for
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Re(λ) > 0. These integrals extend analytically to λ ∈ C continuously as
maps

R±(λ) : C∞c (S∗M)→ C∞(S∗M \ Γ∓).
Since each compact set of S∗M is included in some strictly convex manifold
{z ∈ S∗M ; ρ(z) > ε} with boundary, we can use [18, Propositions 4.2
and 4.3] which say that

(3.12) R±(0) : Hs
comp(S∗M)→ H−sloc (S∗M) ∩ Lploc(S∗M)

for all s > 0 and all p ∈ [1,∞), and the wave-front sets of R±(0)f satisfy

WF(R±(0)f) ⊂ E∗∓
where E∗∓ ⊂ T ∗Γ∓(S∗M) are continuous subbundles over Γ∓ satisfying

E∗−(Es ⊕ RX) = 0, E∗+(Eu ⊕ RX) = 0

on K. Moreover R±(0) satisfy

−XR±(0) = Id

in the distribution sense in S∗M and are given by the expressions

(3.13)
R+(0)f(z) =

∫ τ+(z)

0
f(ϕτ (z)) 1

ρ(ϕτ (z))dτ, ∀ z /∈ Γ−,

R−(0)f(z) = −
∫ 0

−τ−(z)
f(ϕτ (z)) 1

ρ(ϕτ (z))dτ, ∀ z /∈ Γ+.

Proposition 3.11. — If the trapped set K is a hyperbolic set, the
resolvents R±(0) extend as bounded maps

ρC∞(S∗M)→ Lploc(S∗M)

for all p < ∞, R±(0)f extend as functions in C∞(S∗M \ Γ∓) where Γ∓
are given by (2.15), and (R±(0)f)|∂±S∗M = 0. Finally, as distributions on
S∗M , we have

WF(R±(0)f) ⊂ E∗∓.

Proof. — First, the expression (3.13) for the resolvent and the arguments
of Lemma 3.3 show that for f ∈ ρC∞(S∗M), R±(0)f extends as a smooth
function in the subset of S∗M where τ± is smooth, i.e. on S∗M \ Γ∓. In
particular, R±(0)f is smooth near ∂±S∗M and since τ±|∂±S∗M = 0, we get
R±(0)f |∂±S∗M = 0. If in addition supp(f)∩Γ± = ∅, then R±(0)f is easily
seen to be in C∞(S∗M) ([18, Lemma 4.1]). Let us now show that R±(0)f
makes sense as a function in Lploc(S∗M) for all p <∞. We consider R+(0)f ,
as the argument is the same for R−(0)f . In view of (3.12) and the discussion
above, it suffices to consider R+(0)(ρf̃) with f̃ ∈ C∞(S∗M) supported
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in an arbitrarily small open set U contained in a small neighborhood of
Γ+∩{z ∈ S∗M ; ρ(z) 6 ε}. If U is a small enough open set then ϕ−τ0(U) ⊂
{ρ > δ} for some τ0 > 0 and δ > 0. The following formula holds for
f̃ ∈ C∞(U) ∩ C∞(S∗M)

ϕ∗−τ0
R+(0)(ρϕ∗τ0

f̃) = R+(0)(ρf̃)

as functions on S∗M \ Γ−. Now we can use supp(ρϕ∗τ0
f̃) ⊂ {ρ > δ},

and (3.12) shows that ϕ∗−τ0
R+(0)(ρϕ∗τ0

f̃) makes sense as a function in
Lploc(S∗M) for all p < ∞, giving a sense to R+(0)(ρf̃) as an element in
Lploc(S∗M) for all p < ∞. The wave-front set of R+(0)(ρf̃) is the flowout
of the wave-front set R+(0)(ρϕ∗τ0

f̃) by the map Φτ0 := (ϕτ0 , (dϕ−1
τ0

)T ) on
T ∗(S∗M), and is thus contained in E∗− (using that E∗− is invariant by the
flow Φt of (2.13), it is easy to check that Φτ0(E∗−) ∩ T ∗(S∗M) ⊂ E∗−). �

The same argument as Lemma 3.6 shows that for each f ∈ C∞c (S∗M \
(Γ+ ∪ Γ−)), we have the identity

(3.14)
∫
S∗M

f |µ| =
∫
∂−S∗M

∫ τ+(z)

0
f(ϕτ (z)) 1

ρ(ϕτ (z))dτ |µ∂(z)|

and using that S∗M \ (Γ+ ∪Γ−) is an open set of full measure, we can use
a density argument to deduce that Santalo’s formula (3.14) holds for all
f ∈ L1(S∗M, |µ|) and the X-ray transform operator

I : L1(S∗M, |µ|)→ L1(∂−S∗M, |µ∂ |),

If(z) :=
∫ τ+(z)

0
f(ϕτ (z)) 1

ρ(ϕτ (z))dτ

is bounded and can also be considered as a map I : ρC∞(S∗M) →
C∞(∂−S∗M \ Γ−) by setting If = (R+(0)f)|∂−S∗M\Γ− .

We obtain a Livsic type theorem similar to Lemma 3.10.

Lemma 3.12. — Assume that the trapped set K is a hyperbolic set. Let
f ∈ ρC∞(S∗M), then If = 0 on ∂−S

∗M \ Γ− if and only if there exists
u ∈ ρC∞(S∗M) such that Xu = f .

Proof. — By Proposition 3.11, if we set u := −R+(0)f , we have Xu =
f in the distribution sense with u ∈ C∞(S∗M \ Γ−) ∩ Lploc(S∗M) and
u|∂+S∗M = 0. By definition of If , If = 0 implies that

R+(0)f(z) = R−(0)f(z) ∀ z ∈ S∗M \ (Γ− ∪ Γ+)
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but this also implies that u = −R−(0)f = −R+(0)f as functions in
L1

loc(S∗M). Proposition 3.11 shows that u ∈ C∞(S∗M \K), and that

WF(u) ⊂ E∗− ∩ E∗+ = {0}

thus u ∈ C∞(S∗M). We also have u|∂−S∗M = 0 since u = −R−(0)f , thus
u|∂S∗M = 0. That If = 0 if f = Xu with u ∈ ρC∞(S∗M) is straightfor-
ward and goes like in Lemma 3.9. �

3.4. Injectivity of X-ray transform on tensors

The gradient of a function f ∈ C∞(S∗M) with respect to the Sasaki
metric G splits into

∇f = (Xf)X +
v

∇f +
h

∇f, with
v

∇f ∈ C∞(S∗M,V),
h

∇f ∈ C∞(S∗M,H)

where H,V are the horizontal and vertical bundles defined in Section 2.3.

We can then view
v

∇f,
h

∇f as elements in C∞(S∗M ;Z) using dπ and K.
We need to describe the behavior of u = R+(0)f near ∂S∗M when f is

a function vanishing to high order at the boundary, and similarly for its
derivative.

Lemma 3.13. — Assume that g is either non-trapping or the trapped
set K is hyperbolic. Let f ∈ C∞(S∗M) be a function which can be written
as f = ρkf̃ for some f̃ ∈ C∞(S∗M), and some k ∈ (1,∞) and such that

‖f̃‖L∞(S∗M) <∞, ‖∇f̃‖L∞(S∗M) <∞

with respect to the Sasaki metric G. Let ε > 0, the function u± := R±(0)f
is such that there is Ck,ε > 0 such that for all z ∈W ε

± := {ρ 6 ε,±ξ0 6 0}

|u±(z)| 6 Ck,ερ(z)k‖f̃‖L∞ , ‖∇u±(z)‖G 6 Ck,ερ(z)k(‖∇f̃‖L∞ + ‖f̃‖L∞).

More generally, if z := (ρ, y, ξ0, η) are local coordinates near the boundary
of 0S

∗
M with ξ2

0 +
∑
i,j h

ij
ρ ηiηj = 1 and if f ∈ ρ∞C∞(0S

∗
M), for all

multiindices α, all N ∈ N and all z ∈W ε
±

|∂αz u±(z)| 6 CN,αρ(z)N‖ρ−N∂αz f‖L∞(0S∗M).

Proof. — We deal with the case u+ since the u− case is similar. From
(2.11), if ε > 0 is small enough, there is C > 0 such that for all z = (x, ξ) ∈
W ε

+ and all t > 0

(3.15) ρ(ϕt(z)) 6 Cρ(z)e−t
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which implies that for such z

|u+(z)| 6 Ckρ(z)k‖f̃‖L∞
∫ ∞

0
e−ktdt 6 Ckρ(z)k‖f̃‖L∞ .

To estimate ∇u, it suffices to estimate ‖
v

∇u‖G and ‖
h

∇u‖G. Using the de-
composition of dϕt in the splitting (2.25) in terms of Jacobi fields [39,
Lemma 1.40], we have for each V ∈ V of Sasaki norm 1∣∣∣G(

v

∇u+(z), V )
∣∣∣

6 C
∫ ∞

0
ρk(ϕt(z))

(
‖f̃‖L∞

∣∣∣∣dρρ (ϕt(z))
∣∣∣∣
g

+ ‖∇f̃‖L∞
)

(|Yt(z)|g+ |Y ′t (z)|g)dt

where Yt(z) is the Jacobi field solving

Y ′′t (z) +R(Yt(z), ẋ(t))ẋ(t) = 0, Y0(z) = 0, Y ′0(z) = V

if R denotes the Riemann curvature tensor of g and x(t) = π(ϕt(z)).
Since the sectional curvatures at x are uniformly pinched in (−1 − cρ(x),
−1 + cρ(x)) for some c uniform, and since ρ(ϕt(z)) = O(e−t) uniformly in
z, we get R(Yt(z), ẋ(t))ẋ(t) = −Yt(z) + O(e−t|Yt(z)|), and by Gronwall’s
inequality we deduce that there is C > 0 so that for each t and each z ∈W ε

+

|Yt(z)|g + |Y ′t (z)|g 6 Cet.

One has |dρ/ρ|g = 1 in the region ρ 6 ε and using the uniform esti-
mates (3.15) and (2.11), we deduce that there is Ck > 0 such that

‖
v

∇u+(z)‖G 6 Ckρ(z)k(‖f̃‖L∞ + ‖∇f̃‖L∞).

The same argument works with |
h

∇u+(z)|.
To prove the last statement, we first notice that |∂αz ϕt(z)| 6 Cαe

c0|α|.|t|

for some c0 by using Gronwall’s inequality and the fact that the vector field
X has Lipschitz constants uniformly bounded on the compact manifold
0S∗M . Then take k > N + c0|α|, we have

|∂αz u±(z)| 6 Cα
∫ ∞

0
ρN (ϕt(z))‖ρ−N (∂αz f)‖L∞ec0|α|tdt

and the conclusion follows from (3.15). �

We can view a symmetric tensor f ∈ C∞(M ;⊗mS T ∗M) of rank m ∈ N0
as a function on S∗M by the map

π∗m : C∞(M ;⊗mS T ∗M)→ C∞(S∗M), π∗mf(x, ξ) := f(x)(⊗mξ]).

where ξ] is the dual to ξ through the metric, i.e. g(ξ], · ) = ξ. If m = 0,
π∗0 = π∗ is simply the pullback by the base projection π : S∗M → M .
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Notice also that π∗m maps C∞c (M ;⊗mS T ∗M) to C∞c (S∗M). We denote by
D′(S∗M) (resp. D′(M ;⊗mS T ∗M)) the space of distributions on S∗M , i.e.
the dual space to the space C∞c (S∗M) of compactly supported smooth
functions on S∗M (resp. dual space to C∞c (M ;⊗mS T ∗M)).
It is straightforward to see that π∗m maps continuously

π∗m : ρ−mC∞(M ;⊗mS T ∗M)→ C∞(S∗M).

The dual operator defined by

πm∗ : D′(S∗M)→ D′(M,⊗mS T ∗M), 〈π∗mf, f̃〉 = 〈f, πm∗f̃〉

(for each f ∈ C∞c (M ;⊗mS T ∗M), f̃ ∈ C∞c (S∗M)) is also continuous as a
map

(3.16)

πm∗ : C∞(S∗M)→ C∞(M,⊗mS T ∗M),

πm∗ : ρNL∞(S∗M)→ ρN−mL∞(M,⊗mS T ∗M),

πm∗ : ρNC∞(0S
∗
M)→ ρN−mC∞(M,⊗mS T ∗M).

If S denotes the symmetrization operator on tensors, we define the sym-
metrized derivative as

D := S∇
where ∇ : C∞(M ;⊗mS T ∗M) → C∞(M ;T ∗M ⊗ (⊗mS T ∗M)) is the Levi-
Civita connection for g. It is easy to check that for f ∈ C∞(M ;⊗mS T ∗M)

(3.17) π∗m+1Df = Xπ∗mf.

Recall also that for m = 1 and f a smooth 1-form, 2Df = Lf]g where L
is the Lie derivative and f ] is the dual vector field to f through g. For a
tensor f = ρ−mf̃ with f̃ ∈ C∞(M ;⊗mS T ∗M), one has for |ξ|g = 1

(3.18) ‖∇π∗mf(x, ξ)‖G 6 Cm(|∇ḡ f̃(x)|ḡ + |f̃(x)|ḡ)

for some constant Cm > 0 depending on m. We call X-ray transform on
symmetric tensors of rank m the map

(3.19) Im : ρ−m+1C∞(M ;⊗mS T ∗M)→ C∞(∂−S∗M \ Γ−), Im := Iπ∗m.

We want to study the kernel of Im and we follow the presentation of [41,
Section 2] in that aim. The generator X of the flow acts also on smooth
sections of Z by using parallel transport along geodesics: if v ∈ Γ(Z),
v(ϕt(x, ξ)) is a vector field along the geodesic π(ϕt(x, ξ)), and we set

Xv(x, ξ) = ∇∂tv(ϕt(x, ξ))|t=0

(here ∇ is the Levi-Civita connection pulled back to the bundle Z over

S∗M). The adjoints of
v

∇ and
h

∇ acting on compactly supported functions
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are denoted
v

div and
h

div. Finally let Rx,ξ : Zx,ξ → Zx,ξ be the operator
defined by Rx,ξv = R(v, ξ])ξ] where R is the Riemann curvature tensor of
g. By Lemma 2.1 in [41], we have the commutator formulas

(3.20) [X,
v

∇] = −
h

∇, [X,
h

∇] = R
v

∇,
h

div
v

∇−
v

div
h

∇ = −nX

where we view
v

∇u and
h

∇u as sections of the bundle Z for u ∈ C∞(S∗M).
Let us start with a simple

Lemma 3.14. — Let f ∈ ρ−m+1C∞(M ;⊗mS T ∗M) for m ∈ N. Then
there exists a tensor q ∈ ρ−m+2C∞(M ;⊗m−1

S T ∗M) such that ι∂ρ(f−Dq) =
0 near ∂M .

Proof. — We write f as

f =
m∑
j=0
S(fj ⊗ dρm−j)

where fj are tangential symmetric tensors of rank j, i.e. ι∂ρfj = 0 near ∂M ,
and fj ∈ ρ−m+1C∞(M ;⊗jST ∗∂M). First we recall (see [4, Theorem 1.159])
that for g = ḡ/ρ2,

(3.21) ∇gXY = ∇ḡXY −
dρ
ρ

(X)Y − dρ
ρ

(Y )X + ρ−1ḡ(X,Y )∂ρ.

Using this and the Koszul formula, we have

(3.22) ∇gdρ = 1
2∂ρhρ + dρ2

ρ
− hρ

ρ
.

If α is a smooth tangential 1-form in a collar (0, ε)ρ × ∂M near ∂M (that
is ι∂ρα = 0), we have from the Koszul formula that (∇gα)(∂ρ, ∂ρ) = 0 near
∂M . If in addition α is smooth up to ∂M , we also get from (3.21)

(3.23) ∇gα = dρ
ρ
⊗ α+ α⊗ dρ

ρ
+ α′, α′ ∈ C∞(M ;⊗2T ∗M).

We also have for q0 a smooth function near ∂M

D(q0dρm−1)(∂ρ, . . . , ∂ρ) = ∂ρq0 + (m− 1)ρ−1q0.

To eliminate the dρm term in f , we have to solve ∂ρ(ρm−1q0) = ρm−1f0
and, assuming that f0 = O(ρ−m+1), we thus set (for some χ ∈ C∞c ([0, ε))
equal to 1 near 0)

q0(ρ, y) = χ(ρ)ρ−m+1
∫ ρ

0
sm−1f0(s, y)ds ∈ ρ−m+2C∞(M)
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so that (f − D(q0dρm−1))(∂ρ, . . . , ∂ρ) = 0 near ∂M . This means that
f − D(q0dρm−1) =

∑m−1
j=0 S(f̃j ⊗ dρm−1−j) near ∂M for some tensors

f̃j ∈ ρ−m+1C∞(M ;⊗j+1
S T ∗∂M). We can then proceed by induction. For a

tensor qj ∈ C∞((0, ε)× ∂M ;⊗jST ∗∂M), we have from (3.22), (3.23)

D(S(qj ⊗ dρm−1−j))

= S((∂ρqj + (m− 1 + j)ρ−1qj +Aqj)⊗ dρm−j) + T,

where A is a smooth section of End(⊗jST ∗∂M) up to ρ = 0, and T is
a section of S(dρm−j−1 ⊗ (⊗j+1

S T ∗∂M)) ⊕ S(dρm−j−2 ⊗ (⊗j+2
S T ∗∂M)).

Consequently, for rj ∈ C∞((0, ε)× ∂M ;⊗jST ∗∂M), the equation D(S(qj ⊗
dρm−1−j)) = S(rj⊗dρm−j) modulo terms in S(dρm−1−j⊗(⊗j+1

S T ∗∂M))⊕
S(dρm−j−2 ⊗ (⊗j+2

S T ∗∂M)) becomes an ODE of the form

(∂ρ +A)(ρm+j−1qj) = ρm+j−1rj .

If rj ∈ ρ−m+1C∞([0, ε)× ∂M ;⊗jST ∗∂M), there is qj ∈ ρ−m+2C∞([0, ε)×
∂M ;⊗jST ∗∂M) solving this ODE. Therefore, we can inductively construct
q ∈ ρ−m+2C∞(M ;⊗m−1

S T ∗M) which satisfies ι∂ρ(f − Dq) = 0 near
∂M . �

Next we will show the following

Proposition 3.15. — Let (M, g) be an asymptotically hyperbolic man-
ifold and m > 0. Let f ∈ ρ1−mC∞(M ;⊗mS T ∗M) be a tensor satisfying
Imf = 0. Then there exists a tensor q ∈ ρ2−mC∞(M ;⊗m−1

S T ∗M) such
that, for all N ∈ N, f −Dq ∈ ρNC∞(M ;⊗mS T ∗M). (In particular, in the
case m = 0, this states that f ∈ ρ∞C∞(M).)

Proof. — Begin with the case m = 0. We will show that if f = ρkf̃ with
f̃ ∈ C∞(M) and k > 1, for y0 ∈ ∂M fixed we will have f̃(0, y0) = 0 if
I0f = 0. Since this holds for each y0, we deduce that f ∈ ρk+1C∞(M) and
by induction it vanishes to all orders at ∂M .
Let R > R0 be large and set δ = 1/R as in the proof of Lemma 2.8, so

that the geodesics in S∗M with endpoint in the past given by (y0, Rω0)
for ω0 ∈ T ∗y0

∂M fixed with length |ω0|h0 = 1 are contained in a region
ρ 6 Cδ where we can use the coordinates (θ, y, η). The proof of Lemma 2.8
shows that ρ = δ sin θ + O(δ2), y = y0 + δu = y0 + O(δ), and dθ/dt =
(sin θ)(1 + O(δ)) when θ is viewed as a function of t. Now θ : R → (0, π)
is a diffeomorphism for δ small, so we can change variable in the integral
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defining I0f(y0, Rω0):

I0f(y0, Rω0) =
∫ ∞
−∞

(ρkf̃)(π(ϕt(z)))dt

=
∫ π

0
(δ sin θ)kf̃(γ(θ)) dθ

sin θ +O(δk+1)

= δkf̃(0, y0)
∫ π

0
(sin θ)k−1dθ +O(δk+1)

where γ(θ) = (ρ(θ), y(θ)) denotes the θ parametrization of the geodesic
starting at (y0, Rω0), and z is a point on the corresponding integral curve.
Thus if I0f = 0, we get f̃(0, y0) = 0.
Now we show the case m > 1 similarly. We use Lemma 3.14 and since

Im(Dq) = 0, we are reduced to analyze the case where ι∂ρf = 0 near
∂M . We can assume that the tensor f can be written in the decomposition
[0, ε)ρ × ∂M near a point y0 ∈ ∂M as

f(ρ, y) = ρk−mf̃(ρ, y) = ρk−m
∑
J

f̃J(ρ, y)dyJ

for some f̃J ∈ C∞(M) and some k > 1, where dyJ := dyj1 · · · dyjm if
J = (j1, . . . , jm) with 1 6 ji 6 n. Since X = (sin θ)Y , (2.22) shows that

dyj

dt = (sin θ)2
∑
i

hijρ ηi

|η|2hρ
= δ(sin θ)2(ω]0)j +O(δ2)

where ω]0 denotes the dual vector using h0(y0). As before, for each ω0 ∈
T ∗y0

∂M , we have

Imf(y0, Rω0) =
∫ ∞
−∞

(ρk−mf̃)(γ(t))(⊗mẏ(t))dt

= δkf̃(0, y0)(⊗mω]0)
∫ π

0
(sin θ)k+m−1dθ +O(δk+1).

Thus f̃(0, y0) = 0 if Im(f) = 0, which shows by induction on k that f
vanishes to all orders at ∂M . �

Now we prove Theorem 1.1 using Proposition 3.15 and energy identities.
Proof of Theorem 1.1. — First, we use Proposition 3.15. In the casem =

0, f ∈ ρNC∞(M) for all N ∈ N; in the case m > 1, we have f = Dq + f1
with q ∈ ρ2−mC∞(M ;⊗m−1

S T ∗M) and f1 ∈ ρNC∞(M ;⊗mS T ∗M) for all
N ∈ N. Then π∗mf1 ∈ ρ∞C∞(0S

∗
M). Note that Im(Dq) = IXπ∗m−1q = 0

by Lemma 3.9, thus Im(f1) = 0. We can thus replace f by f1 and to avoid
too many notations, we will assume f = f1 for the rest of the proof.
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The Pestov identity in the strictly convex region Wε := {z ∈ S∗M ;
ρ(z) > ε} is proved for instance in [41, Proposition 2] but we also need to
take into account boundary terms. The manifoldWε has boundary denoted
by ∂Wε and the natural volume form on it µε := ι∗ε ιXµ if ιε : Wε → S∗M is
the inclusion map. We write L2 for the space L2(Wε, |µ|), then using (3.20),
we get for each u ∈ C∞(S∗M)

‖
v

∇Xu‖2L2 − ‖X
v

∇u‖2L2

= 〈
v

div
v

∇Xu,Xu〉L2 + 〈X2 v∇u,
v

∇u〉L2 −
∫
∂Wε

〈
v

∇u,X
v

∇u〉µε

= 〈(
v

divX2 v∇−X
v

div
v

∇X)u, u〉L2 −
∫
∂Wε

〈
v

∇u, (X
v

∇−
v

∇X)u〉µε

= 〈(
h

div
v

∇X −
v

divX
h

∇)u, u〉L2 +
∫
∂Wε

〈
v

∇u,
h

∇u〉µε

= 〈(
h

div
v

∇X −
v

div
h

∇X −
v

divR
v

∇)u, u〉L2 +
∫
∂Wε

〈
v

∇u,
h

∇u〉µε

= −〈(nX2 +
v

divR
v

∇)u, u〉L2 +
∫
∂Wε

〈
v

∇u,
h

∇u〉µε

and

‖
v

∇Xu‖2L2 − ‖X
v

∇u‖2L2

= n‖Xu‖2L2 − 〈R
v

∇u,
v

∇u〉L2 +
∫
∂Wε

(〈
v

∇u,
h

∇u〉 − nuXu)µε.

By Lemma 3.10 and Lemma 3.12 we have R+(0)π∗mf = R−(0)π∗mf , which
we denote by −u ∈ ρC∞(S∗M), and which satisfies Xu = π∗mf . By
Lemma 3.13 we have estimates in {ρ 6 ε,±ξ0 6 0} for R±(0)π∗mf and
thus some estimates on u in {ρ 6 ε}: this implies in particular that u can
be extended as a smooth function on 0S

∗
M which vanishes to all orders at

the boundary {ρ = 0}, i.e. u ∈ ρ∞C∞(0S
∗
M). Using also (3.18) we deduce

that u, ‖
v

∇u‖G, ‖
h

∇u‖G are in ρNL∞ ⊂ L2(S∗M) for all N > 0, and the
following functions are also in these spaces

‖
v

∇Xu‖G = ‖
v

∇π∗mf‖G, ‖X
v

∇u‖G 6 ‖
v

∇π∗mf‖G + ‖
h

∇u‖G.

A consequence of this is that we can let ε→ 0 to obtain the Pestov identity

‖
v

∇Xu‖2L2(S∗M) − ‖X
v

∇u‖2L2(S∗M) = n‖Xu‖2L2(S∗M) − 〈R
v

∇u,
v

∇u〉L2(S∗M).

ANNALES DE L’INSTITUT FOURIER



X-RAY TRANSFORM AND BOUNDARY RIGIDITY 2893

If m = 0 or m = 1, we have ‖
v

∇Xu‖2 = m(n− 1 +m)‖Xu‖2 and thus

(3.24) 0 = ‖X
v

∇u‖2L2(S∗M) +n(1−m)‖Xu‖2L2(S∗M)−〈R
v

∇u,
v

∇u〉L2(S∗M).

Let Z ∈ C∞(S∗M ;Z) ∩ ρNL∞ so that |XZ|G ∈ ρNL∞ and |X2Z|G ∈
ρNL∞, and define the quadratic form

A(Z) = ‖XZ‖2L2(S∗M) − 〈RZ,Z〉L2(S∗M).

We first claim that A(Z) > 0 for all such Z. Indeed, let χε(x) = χ(ρ(x)/ε) ∈
C∞c (S∗M) with χ ∈ C∞([0,∞)) equal to 0 in ρ ∈ [0, 1/2] and 1 near ρ = 1;
then suppX(χε) ⊂ {ρ ∈ [ε/2, ε]} and |X(χε)| 6 Cε−1. Write Zε = Zχε,
which is compactly supported. Since

A(Zε) =
∫
S∗M

χε(|XZ|2g − 〈RZ,Z〉g)|µ|

+
∫
S∗M

(|X(χε)Z|2g +X(χ2
ε)〈Z,XZ〉g)|µ|

we deduce that
lim
ε→0

A(Zε) = A(Z).

Now, we can use the fact that g has no conjugate points, thus for each
geodesic γx,ξ with initial condition (x, ξ) ∈ S∗M , the index form satisfies
for each smooth vector field Z in Z along γx,ξ with Z(0) = Z(T ) = 0∫ T

0

(
|∇∂tZ(t)|2g − 〈Rx(t)(Z(t), v(t))v(t), Z(t)〉g

)
dt > 0,

where x(t) = π(ϕt(x, ξ)) and v(t) = ẋ(t). Decomposing A(Zε) along
geodesics using Lemma 3.6 (or (3.14) in case with trapping)

A(Zε)

=
∫
∂−S∗M\Γ−

∫ ∞
0

(
|∇∂tZε(t)|2g − 〈Rx(t)(Zε(t), v(t))v(t), Zε(t)〉g

)
dt|µ∂ |

> 0.

We conclude that A(Z) > 0 as announced.
We next claim that if Z is as in the previous paragraph and A(Z) = 0,

then Z = 0. When restricted to a non-trapped geodesic {ϕt(x, ξ); t ∈ R},
Z is viewed as a vector field Z(t) in Zϕt(x,ξ) along γx,ξ := π({ϕt(x, ξ);
t ∈ R}), and it satisfies |Z| = O(e−N |t|) and |∇∂tZ| = |XZ| = O(e−N |t|)
as t → ±∞ by (2.11). We claim that if A(Z) = 0, then for each geodesic
γx,ξ := π({ϕt(x, ξ); t ∈ R}), we have Z ′′(t) +Rx(t)(Z(t), v(t))v(t) = 0, i.e.
Z is a Jacobi field which in turn vanishes faster than any exponential as
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t → ±∞. Indeed, if A(Z) = 0, since A(Z + sY ) > 0 for all s ∈ R and all
Y ∈ C∞c (S∗M ;Z), we have by differentiating at s = 0 that∫

S∗M

(〈XZ,XY 〉g − 〈RZ, Y 〉g)|µ| = 0

and thus by integrating by parts, X2Z +RZ = 0. Restricting this identity
to the geodesic γx,ξ gives that Z(t) is a Jacobi field vanishing faster than
any exponential at ±∞. Any Jacobi field vanishing faster than e−|t| as
t → ∞ or t → −∞ must vanish identically (see Lemma 5.8), which shows
that Z = 0 on the set of non-trapped geodesics and thus everywhere by
density (recall Vol(Γ±) = 0).

Now, using this with Z =
v

∇u in (3.24), we obtain that π∗0f = Xu = 0
when m = 0, showing (1). When m = 1 we get

v

∇u = 0, which means that
u = π∗0q for q = cnπ0∗u with cn > 0 depending only on n. By (3.16) we
deduce that q ∈ ρ∞C∞(M), which shows (2).

To conclude, we consider the case (3) of a symmetric tensor f in ker Im.
We assume that the curvature is non-positive, so that the flow is 1-controlled
in the sense of [41, Section 4]. We use the proof of [41, Theorem 10.1],
which applies almost verbatim in our case. If u ∈ ρ∞C∞(0S

∗
M) satisfies

Xu = π∗mf (just as above for m = 0, 1), we decompose u into eigen-
modes of the vertical Laplacian

v

∆ :=
v

div
v

∇, u =
∑∞
k=0 uk. We recall

from [41] that these eigenmodes generate subspaces Ωk ⊂ C∞(S∗M), and
the operator X maps Ωk → Ωk−1 ⊕ Ωk+1. Let ũ = u −

∑
k6m−1 uk; then

the same arguments as in the proof of Theorem 10.1 of [41] show that
X(

v

∆ũ + (m(m + 1 + n) + n)ũ) = 0. But
v

∆ũ and ũ decay to all orders
at ∂S∗M , thus

v

∆ũ + (m(m + 1 + n) + n)ũ = 0 and hence ũk = 0 for all
k 6= m + 1. Then Xũ = Xum+1 = X−um+1 with X± : Ωk → Ωk±1 being
the differential operators so that Xw = X+w+X−w for w ∈ Ωk. In partic-
ular we obtain X+um+1 = 0 and that is equivalent to um+1 being the lift
by π∗m+1 of a trace-free conformal Killing tensor. But since um+1 decays to
all orders at ∂S∗M , the conformal Killing tensor vanishes at the boundary
∂M and a standard Weitzenbock formula shows that um+1 = 0 (see for ex-
ample the proof in [20, Proposition 6.6]). By using (3.16), this implies that
u =

∑
k6m−1 uk is of the form π∗m−1q for some q ∈ ρ∞C∞(M ;⊗m−1

S T ∗M),
which satisfies Xu = π∗mf . By (3.17), we have Dq = f . �

Remark 3.16. — The proof above actually shows injectivity of Im on
spaces with weaker regularity and decay. For example for I0, it is only
required that the quantities in the Pestov identity are finite, the boundary
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term at ρ = ε tends to 0 and A(Z) > 0. For Cartan–Hadamard manifolds
(complete simply connected manifolds with non-positive curvature), sharp
conditions on the decay are given in [30] in dimension 2 and in [31] in
dimensions greater than 2.

4. Renormalized length of geodesics

4.1. Renormalized length

First, we define the renormalized length.

Lemma 4.1. — Let (M, g) be an asymptotically hyperbolic manifold
and ρ a geodesic defining function. For each z ∈ ∂−S∗M \Γ−, the function
λ 7→ I0(ρλ)(z) has a meromorphic extension from Re(λ) > 0 to Re(λ) >
−1, with only a simple pole at λ = 0 and residue

Resλ=0 I0(ρλ) = 2.

The regular value Lg(z) := (I0(ρλ)(z)−2/λ)|λ=0 for each z ∈ ∂−S∗M \Γ−
is also given by

(4.1) Lg(z) = lim
ε→0

(
`g(γz ∩ {ρ > ε}) + 2 log ε

)
where γz is the geodesic π(ϕτ (z))τ∈(0,τ+(z)).

Proof. — (3.6) shows that for z ∈ ∂−S∗M \ Γ− and Re(λ) > 0 we can
write

I0(ρλ)(z) =
∫ τ+(z)

0
ρ(ϕτ (z))λ−1dτ =

∫ δ

0
+
∫ τ+(z)−δ

δ

+
∫ τ+(z)

τ+(z)−δ
.

The analogue of (2.18) near ∂−S∗M shows that if δ > 0 is small enough,
then there is f(τ, z) smooth for τ ∈ [0, δ] with |τf(τ, z)| < 1/2 so that
ρ(ϕτ (z)) = τ(1 + τf(τ, z)). Integration by parts shows that∫ δ

0
ρ(ϕτ (z))λ−1dτ =

∫ δ

0
τλ−1(1 + τf(τ, z))λ−1dτ = 1

λ
+ p(λ)

where p(λ) is holomorphic in Re(λ) > −1. Likewise
∫ τ+(z)
τ+(z)−δ ρ(ϕτ (z))λ−1dτ

has the same form. Since
∫ τ+(z)−δ
δ

ρ(ϕτ (z))λ−1dτ is an entire function of
λ, the first statement in the Lemma is proved.
Next, we see that if we set ρ(t) := ρ(ϕt(z0)) for z0 a point on the orbit

{ϕτ (z); τ ∈ (0, τ+(z))}, then for any ε > 0

lim
λ→0

(
I0(ρλ)(z)− 2

λ

)
=
∫
ρ(t)>ε

dt+ lim
λ→0

(∫
ρ(t)<ε

ρ(t)λdt− 2
λ

)
.
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By (2.21), we have for ±t > 0 large enough ∂tρ(t) = X(ρ)(ϕt(z0)) =
∓ρ(t) +O(ρ(t)2), so we can change variable u := ρ(t) and write∫

ρ(t)<ε
ρ(t)λdt = 2

∫ ε

0
uλ

du
u(1 +O(u)) = 2ελ

λ
+
∫ ε

0
uλa(u)du

where a(u) is continuous in [0, 1]. Thus

lim
λ→0

(∫
ρ(t)<ε

ρ(t)λdt− 2
λ

)
= 2 log ε+O(ε)

which completes the proof by letting ε→ 0. �

Definition 4.2. — The function Lg : ∂−S∗M\Γ− defined in Lemma 4.1
is called the renormalized length function associated to ρ.

If ρ̂ is an arbitrary boundary defining function (not necessarily geodesic),
it can be written as ρ̂ = ρeω for some geodesic boundary defining func-
tion ρ, and the same argument as in Lemma 4.1 shows that I0(ρ̂λ) has a
meromorphic extension to Re(λ) > −1 with a pole at λ = 0 and residue
Resλ=0 I0(ρ̂λ) = 2. Moreover, one has[
I0(ρ̂λ)(z)− I0(ρλ)(z)

]∣∣
λ=0 = lim

λ→0
I0(ρλ(eλω − 1))(z) = lim

λ→0
λI0(ρλω)(z)

= Resλ=0 I0(ρλω)(z).

By the same argument as in Lemma 4.1, it is direct to evaluate this residue
to obtain [

I0(ρ̂λ)(z)− I0(ρλ)(z)
]∣∣
λ=0 = ω(π(z)) + ω(π(Sg(z))).

So the renormalized length function associated to any defining function can
be defined as in Lemma 4.1, and it satisfies

(4.2) L̂g(z)− Lg(z) = ω(π(z)) + ω(π(Sg(z))).

Note that two defining functions determine the same Lg if they induce
the same representative for the conformal infinity. In particular, a general
defining function determines the same Lg as the geodesic defining function
inducing the same representative for the conformal infinity.
It is evident that if ψ : M → M is a diffeomorphism which restricts

to the identity on ∂M , then Lg = Lψ∗g, where both renormalized lengths
are calculated with respect to the same representative for the conformal
infinity.
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4.2. Boundary determination

In this section we prove Theorems 1.3 and 1.4. In both proofs we will
use the observation that if g, g′ are two asymptotically hyperbolic metrics
on M and h, h′ are representative metrics for their respective conformal
infinities, there exists a diffeormorphism ψ : M →M equal to the identity
on ∂M so that in the product decomposition [0, ε]ρ× ∂M for g induced by
h, one has

(4.3) g = dρ2 + hρ
ρ2 , ψ∗g′ =

dρ2 + h′ρ
ρ2

where hρ and h′ρ are smooth 1-parameter families of metrics on ∂M with
h0 = h, h′0 = h′. In fact, if χ, χ′ : [0, ε]ρ × ∂M → M are the boundary
identification maps for g, g′ corresponding to h, h′, meaning that

χ∗g = dρ2 + hρ
ρ2 , χ′∗g′ =

dρ2 + h′ρ
ρ2 ,

then one can take ψ to be an extension of χ′ ◦ χ−1 to M . Note that if g
and g′ are real-analytic, then ψ can be taken to be real-analytic near ∂M .
Proof of Theorem 1.3. — Choose ψ as in (4.3); we will show that Lg =

Lg′ implies that hρ = h′ρ to infinite order.
We work with one metric g in normal form and use the short geodesics

derived in Lemma 2.8 to show that Lg determines the Taylor expansion of
hρ at ρ = 0.. Fix y0 ∈ ∂M and consider the renormalized length Lg(y0, η0)
(using ρ) where we write η0 = δ−1ω0 with δ small and 0 6= ω0 ∈ T ∗y0

∂M

fixed, but, at least to start, not necessarily satisfying |ω0|h0 = 1. (2.22)
implies that Xθ = sin θ(1+Q), where Q = sin θ

2|η|3
hρ

∂ρ|η|2hρ . So we can rewrite
the integral (with z any point on the orbit ϕτ (y0, η0)) for Re(λ) > 0∫

R
ρ(π(ϕt(z))λdt =

∫ π

0
(sin θ)λ−1|η|−λhρ

dθ
(1 +Q) .

Since limλ→0
( ∫ π

0 (sin θ)λ−1 dθ − 2/λ
)

= 2 log 2, we have

Lg(y0, δ
−1ω0)

= lim
λ→0

(∫ π

0
(sin θ)λ−1

( |η|−λhρ
1 +Q

)
dθ − 2/λ

)
= lim
λ→0

∫ π

0
(sin θ)λ−1

( |η|−λhρ
1 +Q

− 1
)

dθ + 2 log 2
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= lim
λ→0

[ ∫ π

0

(sin θ)λ−1

1 +Q

(
|η|−λhρ − 1

)
dθ +

∫ π

0
(sin θ)λ−1

(
1

1 +Q
− 1
)

dθ
]

+ 2 log 2

= lim
λ→0

∫ π

0

(sin θ)λ−1

1 +Q

(
|η|−λhρ − 1

)
dθ −

∫ π

0

Q

(sin θ)(1 +Q)dθ + 2 log 2.

If f(λ, θ) is a smooth function satisfying f(0, θ) = 0, then the same argu-
ment as in the proof of Lemma 4.1 shows that

lim
λ→0

∫ π

0
(sin θ)λ−1f(λ, θ) dθ = ∂λf(0, 0) + ∂λf(0, π).

This can be used to evaluate the limit in the last line above, giving

(4.4) Lg(y0, δ
−1ω0)

= − log(|η|hρ)|θ=0 − log(|η|hρ)|θ=π + 2 log 2− δ
∫ π

0

Q̃

(sin θ)(1+δQ̃)
dθ

= 2 log 2δ − log(|ω|hρ)|θ=0 − log(|ω|hρ)|θ=π − δ
∫ π

0

Q̃

(sin θ)(1+δQ̃)
dθ

where Q̃ = Q/δ = sin θ
2|ω|3

hρ

∂ρ|ω|2hρ as in the proof of Lemma 2.8. Thus

Lg(y0, δ
−1ω0) = 2 log 2δ − 2 log |ω0|h0 +O(δ).

Taking δ → 0, this shows that Lg(y0, η0) determines |ω0|h0 , thus the met-
ric h0.
Henceforth assume that |ω0|h0 = 1. (4.4) shows that Lg(y0, δ

−1ω0) de-
termines

(4.5) F (δ) := − log(|ω|hρ)|θ=π −
δ

2

∫ π

0

∂ρ|ω|2hρ
|ω|3hρ

(1 + δQ̃)−1dθ.

Now F (δ) is a smooth function of δ down to δ = 0 which satisfies F (δ) =
O(δ). We show that the Taylor expansion of F at δ = 0 determines the
Taylor expansion of hρ at ρ = 0. Denote ′ = ∂δ|δ=0, write h(ρ, y) = hρ(y),
and recall the solution u(θ) = (1− cos θ)ω]0, ω(θ) = ω0 for δ = 0 derived in
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the proof of Lemma 2.8. Differentiation of (4.5) gives

F ′(0) = −1
2
(
|ω|2hρ |θ=π

)′ − π

2 ∂ρh(0, y0)(ω0, ω0)

= −1
2

(
h(0, y0 + δu(π))(ω(π), ω(π))

)′
− π

2 ∂ρh(0, y0)(ω0, ω0)

= −
∑
k

(ω0)k(∂ykh)(0, y0)(ω0, ω0)− h(0, y0)(ω(π)′, ω0)

− π

2 ∂ρh(0, y0)(ω0, ω0).

It is clear that with the possible exception of ω(π)′, the first two terms are
determined by h0. This is the case for ω(π)′ as well: taking θ as independent
variable, (2.23) becomes

(4.6) dui

dθ = sin θ
∑
j h

ij
ρ ωj

|ω|2hρ
(1+δQ̃)−1,

dωi
dθ = −δ sin θ

∂yi |ω|2hρ
2|ω|2hρ

(1+δQ̃)−1.

The linearization of the second equation about δ = 0 is

dω′i
dθ = −1

2(sin θ)(∂yih)(0, y0)(ω0, ω0),

from which it is clear that ω(π)′ also is determined by h0. Since we have
already determined h0, it follows that F ′(0) determines ∂ρh(0, y0)(ω0, ω0)
for all y0, ω0. Thus Lg determines ∂ρhρ|ρ=0.

We now claim by induction on k that Lg determines ∂kρhρ|ρ=0. Apply
∂kδ |δ=0 to (4.5) and expand using the chain rule (recall that h and its
derivatives are evaluated at (ρ, y0 + δu), and ρ is determined implicitly
as a function of (θ, u, ω, y0, δ) by ρ|ω|hρ = δ sin θ). The derivatives of ω
and u which appear are ∂lδω for 0 6 l 6 k and ∂lδu for 0 6 l 6 k − 1.
Differentiation of (4.6) shows that the pair (∂kδ u|δ=0, ∂

k
δω|δ=0) satisfies an

inhomogeneous system of linear differential equations involving ∂lδu|δ=0 and
∂lδω|δ=0 for 0 6 l 6 k − 1; the equation for ∂kδ u|δ=0 involves ∂lρhρ|ρ=0
for 0 6 l 6 k but the equation for ∂kδω|δ=0 involves only ∂lρhρ|ρ=0 for
0 6 l 6 k− 1 because of the leading factor of δ in the equation for ω. Thus
the derivatives ∂lδω for 0 6 l 6 k and ∂lδu for 0 6 l 6 k−1 which appear in
∂kδF |δ=0 are all determined by ∂lρhρ|ρ=0 for 0 6 l 6 k − 1. The expansion
of ∂kδF |δ=0 via the chain rule also has explicit dependence on derivatives
of hρ. Since ρ = 0 when θ = π, only tangential derivatives of h0 appear
when ∂kδ log(|ω|hρ)|θ=π is expanded. Hence ∂kδ log(|ω|hρ)|θ=π is determined
by ∂lρhρ|ρ=0 for 0 6 l 6 k− 1. On the other hand, since ∂δρ|δ=0 = sin θ, we
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have

∂kδ

(
δ

∫ π

0

∂ρ|ω|2hρ
|ω|3hρ

(1+δQ̃)−1dθ
)

= k∂kρh(0, y0)(ω0, ω0)
∫ π

0
(sin θ)k−1dθ+Rk,

where Rk depends only on ∂lρhρ|ρ=0 for 0 6 l 6 k − 1. Thus it follows
by induction that Lg determines ∂kρh(0, y0)(ω0, ω0) for each y0, ω0, so also
∂kρhρ|ρ=0. �

We remark that the determination of hρ to infinite order in the proof of
Theorem 1.3 above is constructive in the sense that it provides an algorithm
for calculating the Taylor expansion in ρ. We also remark that it follows
from the proof that h = h′ under the hypotheses of Theorem 1.3.

Proof of Theorem 1.4. — Let ψ be a real-analytic diffeomorphism de-
fined in a neighborhood of ∂M , equal to the identity on ∂M , and for
which (4.3) holds. Theorem 1.3 shows that h′ρ − hρ vanishes to infinite
order at ρ = 0. Real-analyticity implies that ψ∗g′ = g near ∂M .
We show that ψ extends to an isometry ψ : M → M . If M is simply

connected, this is the standard result ([28, Corollary 6.4, p. 256]) that a
local isometry between simply connected, complete, real-analytic Riemann-
ian manifolds extends to a global isometry. We claim that since our ψ is
defined in a full neighborhood of ∂M , the same argument applies under the
weaker hypothesis π1(M,∂M) = 0. The argument goes as follows. Choose
a point p ∈ ∂M . If q ∈M , completeness implies that ψ can be extended by
analytic continuation along any curve from p to q. It must be shown that
the continuation in a neighborhood of q is independent of the curve. IfM is
simply connected, any closed curve based at p can be deformed to the con-
stant curve, and the result follows. Under the hypothesis π1(M,∂M) = 0,
the closed curve can only be deformed into a closed curve in ∂M . But
since ψ is already defined in a full neighborhood of ∂M , this is sufficient
to conclude that the analytic continuation is path-independent. ψ is a dif-
feomorphism since ψ−1 extends by the same argument, and the relation
ψ∗g′ = g follows by analytic continuation. �

4.3. Deformation rigidity

In this section we prove Theorem 1.5.
Proof of Theorem 1.5. — First suppose (1) holds. There exists a smooth

family φ(s) : M →M of diffeomorphisms satisfying φ(s)|∂M = Id such that
φ(s)∗g(s) = (dρ2 + hρ(s))/ρ2 in a product decomposition near ∂M , with
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hρ(s) a smooth family of metrics on ∂M satisfying h0(s) = h(s). Thus we
can assume that g(s) is already reduced to that form. By Theorem 1.3,
we also have hρ(s) = hρ(0) + O(ρ∞) uniformly in s, and in particular
h(s) = h(0). Thus the identifications of ∂±S∗M with T ∗∂M agree for all
s, so in the rest of the proof we view the boundary as ∂±S∗M rather than
T ∗∂M .
Fix z ∈ ∂−S∗M ; the geodesics for g(s) with initial value z ∈ ∂−S∗M form

a smooth in s family of curves given by γs(τ, z) := π(ϕτ (s, z)) if ϕτ (s, · )
is the flow of X(s) = ρ−1X(s) associated to g(s). Since Sg(s) = Sg(0) by
assumption, we have z′ := Sg(0)(z) = Sg(s)(z) ∈ ∂+S

∗M . We denote by
τ+(s, z) the time so that ϕτ+(s,z)(s, z) = z′, and we define γs(τ, z′) :=
π(ϕ−τ (s, z′)) for 0 6 τ 6 τ+(s, z). Since X(s) = X(0) + O(sρ∞) when
viewed as smooth vector fields on bT

∗
M , we have for all N ∈ N and τ

small
ϕτ (s, z) = ϕτ (0; z) +O(smax

σ6τ
ρ(γs(σ, z))N ),

ϕ−τ (s, z′) = ϕ−τ (0; z′) +O(smax
σ6τ

ρ(γs(σ, z′))N ),

where here the remainder is uniform in τ (this follows for instance from
the formula in [54, Lemma 2.2] relating two flows in terms of the difference
of their vector fields). We write dot for the τ derivative and prime for the
s derivative at s = 0, and we remove the 0 index when s = 0 (e.g. g(0)
is denoted g, g′(0) is denoted g′, etc). We have from the discussion above
that the vector fields γ′(τ) and γ̇′(τ) satisfy for all N ∈ N

(4.7) γ′(τ, z) = O(τN ), γ̇′(τ, z) = O(τN )

for τ small, and the same holds with z′ replacing z. If g(s) := ρ2g(s), remark
that g(s)γs(τ,z)(γ̇s(τ, z), γ̇s(τ, z)) = 1, thus for ε ∈ (0, τ+(s, z)) small, we get
for Re(λ) > 0

∂s

[ ∫ ε

0
ρλ−1(γs(τ, z))g(s)γs(τ,z)(γ̇s(τ, z), γ̇s(τ, z))dτ

]∣∣∣∣
s=0

=
∫ ε

0
ρλ(γ(τ, z))∂s

[
ρ−1(γs(τ, z))g(γ̇s(τ, z), γ̇s(τ, z))

]∣∣∣
s=0

dτ

+ λ

∫ ε

0
ρλ−2(γ(τ, z))dρ(γ(τ, z)).γ′(τ, z)dτ

+
∫ ε

0
ρλ−1(γ(τ, z))g′(γ̇(τ, z), γ̇(τ, z))dτ.

Due to (4.7) and g′ = O(ρ∞), the three integrals extend holomorphically
near λ = 0 and are uniformly O(εN ) for all N for λ near 0. Now the same
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arguments give the same identity with z replaced by z′. Finally we have

∂s

[ ∫ τ+(s,z)−ε

ε

ρλ−1(γs(τ, z))g(s)γs(τ,z)(γ̇s(τ, z), γ̇s(τ, z))dτ
]∣∣∣∣
s=0

= ∂s

[ ∫ τ+(s,z)−ε

ε

ρλ(γ(τ, z))ρ−1(γs(τ, z))g(γ̇s(τ, z), γ̇s(τ, z))dτ
]∣∣∣∣
s=0

+
∫ τ+(z)−ε

ε

ρλ−1(γ(τ, z))g′(γ̇(τ, z), γ̇(τ, z))dτ

+ λ

∫ τ+(z)−ε

ε

ρλ−2(γ(τ, z))dρ(γ(τ, z)).γ′(τ, z)dτ.

Summing up, and evaluating at λ = 0, we obtain

(4.8) ∂s[Lg(s)(z)]|s=0

=
∫ τ+(z)−ε

ε

ρ−1(γ(τ, z))g′(γ̇(τ, z), γ̇(τ, z))dτ

+ ∂s

[ ∫ τ+(s,z)−ε

ε

ρ−1(γs(τ, z))g(γ̇s(τ, z), γ̇s(τ, z))dτ
]∣∣∣∣
s=0

+O(εN ).

As ε → 0, the first term tends to I2(g′)(z) where I2 is the X-ray
transform on symmetric 2-tensors associated to g = g(0). Let t(τ, z) =∫ τ
ε
ρ−1(γs(σ, z))dσ and make the change of variable τ 7→ t(τ, z) in the sec-

ond integral of (4.8), which becomes

∂s

[ ∫ ts(ε)

0
g(α̇s(t), α̇s(t))dt

]∣∣∣∣
s=0

where αs(t) := γs(τ, z) and ts(ε) := t(τ+(s, z) − ε, z). We recognize the
energy functional of the curve αs(t) for g(0), and since α0(t) is a geodesic
of g(0), we get by [14, Theorem 3.31] and (4.7) that

∂s

[ ∫ ts(ε)

0
g(α̇s(t), α̇s(t))dt

]∣∣∣∣
s=0

= g(γ′(ε, z), α̇0(t0(ε)))− g(γ′(ε, z′), α̇0(0)) = O(εN )

for all N ∈ N. Therefore, by letting ε→ 0 in (4.8), we conclude that

∂s[Lg(s)(z)]|s=0 = I2(g′)(z).

By Theorem 1.1, we deduce that g′ = Dq for some q ∈ ρNL∞ ∩
C∞(M,T ∗M) for all N > 1. (The proof of Theorem 1.1 shows that q
can be chosen to vanish to infinite order if f = g′ does.) The same holds
by linearizing at any s and by duality we obtain a vector field q](s) ∈
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C∞(M,TM) ∩ ρNL∞ so that ∂sg(s) = L 1
2 q
](s)g(s), whose dependence is

smooth in s since q](s) is the dual to q(s) = π1∗(Rs,+(0)∂sg(s)) where
Rs,+(0) is the resolvent of the vector field X(s), which is smooth in s

when acting on π∗2(ρ∞C∞(M,⊗2
ST
∗M)) by the expression (3.1). Integrat-

ing the vector field 1
2q
](s), we obtain a smooth 1-parameter family of

diffeomorphisms ψ(s) : M → M equal to the identity at ∂M so that
ψ(s)∗g(s) = g(0). This concludes the proof under assumption (1).
Proposition 5.24 shows that (2) implies (1), so the result is true under

assumption (2) as well. �

5. Simplicity and renormalized distance

In this section we parametrize geodesics on a non-trapping asymptoti-
cally hyperbolic manifold by their two endpoints instead of their starting
point and direction. To do this, we clearly need assumptions which imply
at least that there is a unique geodesic connecting any two points of the
boundary. The assumption we make is that there are no conjugate points
at infinity, i.e. there are no nonzero Jacobi fields along any geodesic which
decay as t → ∞ and as t → −∞. We will call such asymptotically hyper-
bolic manifolds simple. As we discuss below, this implies that (M, g) has
no conjugate points.
Stable and unstable bundles for the geodesic flow on a complete manifold

(M, g) with no conjugate points are defined in [11, Section 2]. An alternative
statement of the condition that there are no nonzero Jacobi fields decaying
as t → ∞ and as t → −∞ is that the stable and unstable bundles are
everywhere transverse. In [11, Section 3] it is proved that transversality of
the stable and unstable bundles implies that the geodesic flow is Anosov in
the case that the universal cover ofM is compactly homogeneous, i.e. it can
be covered by translates by isometries of a fixed compact set. We first need
to establish the analogous result for non-trapping asymptotically hyper-
bolic manifolds. An easy alternate construction of the stable and unstable
bundles can be given in this setting using elementary ODE theory which
also proves that they are smooth. In terms of this construction, it is not
difficult to establish directly that transversality implies that the geodesic
flow is hyperbolic. We begin this section by presenting these arguments.

Remark 5.1. — We typically use the terminology “Anosov geodesic flow”
in classical settings such as a compact manifold or the universal cover of a
compact manifold, and “hyperbolic geodesic flow” otherwise, for example
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for asymptotically hyperbolic manifolds. But these mean the same thing:
the existence of a splitting (5.3) with uniform contraction/expansion esti-
mates (for some ν > 0) as in Proposition 5.5.

We assume throughout this section that (M, g) is a non-trapping asymp-
totically hyperbolic manifold. Let z0 ∈ S∗M . Locally near z0, choose a
smooth hypersurface S ⊂ S∗M transverse to X with z0 ∈ S. For z ∈ S,
choose an orthonormal basis {wz1 , . . . , wzn} for Zz varying smoothly with
z. For each z and each j, extend wzj to the geodesic γz by parallel trans-
lation. This gives an orthonormal frame field wzj (t) for γ̇z(t)⊥, varying
smoothly with (z, t) ∈ S×R. A normal vector field along γz can be written
Y (t) =

∑n
j=1 y

j(t)wzj (t). The Jacobi equation takes the form

(5.1) ÿ +Rz(t)y = 0 ( ˙ = ∂t),

where y(t) = (y1(t), . . . , yn(t))T and Rz(t) ∈ Rn×n is the matrix of the
linear transformation Y → R(Y, γ̇z(t))γ̇z(t) in the frame (wz1(t), . . . , wzn(t)).
Certainly Rz(t) is smooth in t and z. Using (2.1) and the arguments of the
proof of Lemma 2.7, one sees that Rz(t) has the form

Rz(t) = −I − Sz(t)

where Sz(t) ∈ Rn×n satisfies |∂αz Sz(t)| 6 Cαe−|t|, t ∈ R, with Cα indepen-
dent of z ∈ S near z0. Here ∂z denotes partial differentiation with respect
to some choice of local coordinates on S.
Reduce (5.1) to a first order system in the usual way: introduce

x =
(
y

ẏ

)
, A =

(
0 I

I 0

)
, S̃z(t) =

(
0 0

Sz(t) 0

)
so that (5.1) becomes

(5.2) ẋ =
(
A+ S̃z(t)

)
x.

Let ej , 1 6 j 6 n denote the standard basis for Rn and set

e±j =
(
ej
±ej

)
.

Then {e−j , e
+
j ; 1 6 j 6 n} is an orthogonal basis for R2n satisfying Ae±j =

±e±j .

Proposition 5.2. — For each j, 1 6 j 6 n and each choice of ±, there
is a solution xz±,j of (5.2) satisfying

lim
t→∞

e∓txz±,j(t) = e±j .
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Moreover, xz−,j is uniquely determined by this condition, and xz−,j(t) is C∞
in (z, t).

The existence and uniqueness part of Proposition 5.2 is a special case of
Problem 29 of [6, p. 104], which applies to an ode system of the form (5.2)
with A diagonalizable and S̃z(t) integrable. An argument similar to that
outlined in the solution to this problem in [6] proves smooth dependence
on the parameter z.

Note that {xz±,j} is a basis for the solutions of (5.2). Their first compo-
nents thus form a basis for the solutions of (5.1), and the corresponding
Y z±,j form a basis for the space of normal Jacobi fields with the property
that Y z±,j is asymptotic to e±twzj (t) as t → ∞. Under the isomorphism L
defined in (2.26), the stable bundle corresponds to initial data of the Jacobi
fields which decay like e−t as t→∞:

Definition 5.3. — The stable bundle Es is the subbundle of kerα de-
fined by

L
(
Es(ϕt(z))

)
= span{

(
Y z−,j(t), (Y z−,j)′(t)

)
: 1 6 j 6 n}, t ∈ R.

Here ′ = Dt. When viewed as a function of the point on a geodesic rather
than on the time parameter, the decaying Jacobi fields are independent of
which point is labeled as the initial point. Consequently Es is well-defined
independent of the choice of initial point z on the geodesic. Since the Y z−,j(t)
are smooth functions of (z, t), Es is a smooth subbundle of TS∗M . The
unstable bundle Eu is defined analogously in terms of the initial data of
the Jacobi fields which decay as t → −∞. The bundles Es and Eu are
invariant under the geodesic flow since Jacobi fields along a geodesic in M
correspond to flow-invariant vector fields along the corresponding integral
curve in S∗M .

Definition 5.4. — A non-trapping asymptotically hyperbolic manifold
(M, g) is said to be simple if Es(z) ∩ Eu(z) = {0} for each z ∈ S∗M .

A non-trapping asymptotically hyperbolic manifold with non-positive
curvature is simple. That there are no solutions to (5.1) which decay ex-
ponentially as t → ±∞ follows by taking the inner product with y(t) and
integrating by parts.
When Es(z)∩Eu(z) = {0} for all z ∈ S∗M , we have a hyperbolic splitting

for the flow:

(5.3) T (S∗M) = RX ⊕ Es ⊕ Eu.

The next proposition asserts that the decay estimates are uniform in this
case.
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Proposition 5.5. — Let (M, g) be a simple asymptotically hyperbolic
manifold. Then its geodesic flow is hyperbolic in the following sense: for
any 0 < ν < 1, there exists a constant C > 0 so that:

(1) If z ∈ S∗M and ζ ∈ Es(z), then

‖dϕt(z).ζ‖G 6 Ce−νt‖ζ‖G, t > 0,

and ‖dϕt(z).ζ‖G > C−1e−νt‖ζ‖G, t 6 0.

(2) If z ∈ S∗M and ζ ∈ Eu(z), then

‖dϕt(z).ζ‖G 6 Ceνt‖ζ‖G, t 6 0,

and ‖dϕt(z).ζ‖G > C−1eνt‖ζ‖G, t > 0.

The proof of Proposition 5.5 will be given after Proposition 5.11 below.
We remark that Nikolas Eptaminitakis has shown that Proposition 5.5
holds also with ν = 1.
It is a consequence of Proposition 5.5 and the following result of Gerhard

Knieper that simple asymptotically hyperbolic manifolds have no conjugate
points.

Proposition 5.6 ([27]). — Let (M, g) be a complete connected non-
compact Riemannian manifold with sectional curvature bounded below by
−β2 and with hyperbolic geodesic flow with constants C, ν (as in the
statement of Proposition 5.5). There is a constant σ(β, ν, C) > 0 so that if
(M, g) satisfies the following three conditions:

(1) For any z ∈ S∗M , there is an open neighborhood U ⊂ S∗M of z
such that limt→∞ dg(γ(0), γ(t)) = ∞ uniformly for all geodesics γ
with γ̇(0)[ ∈ U .

(2) There exists a compact set K ⊂ M such that for all p ∈ M \ K
and for all geodesics γ with γ(0) = p, γ(t)|t∈[−1,σ] has no conjugate
points.

(3) (M, g) has at least one geodesic without conjugate points,
then (M, g) has no conjugate points.

It is not hard to verify that (1) and (2) hold for any nontrapping asymp-
totically hyperbolic manifold, using Lemma 2.3 and the fact that there
are no conjugate points on any geodesic segment sufficiently near infinity,
where the curvature is negative. Condition (3) also holds since the short
geodesics described in Lemma 2.8 have no conjugate points.

Proposition 5.6 is not necessary for the purposes of this paper: if pre-
ferred, one can just add the assumption that there are no conjugate points
in the definition of a simple asymptotically hyperbolic manifold.
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We will prove Proposition 5.5 by dividing the set of all orbits of the
geodesic flow (i.e. lifted unparametrized geodesics) into two subsets, one a
compact set of orbits, and the other consisting of orbits, each of whose pro-
jection to M stays in a fixed small neighborhood of ∂M (short geodesics).
A different argument is used to establish the bounds when z lies in either
of the two sets of orbits.
We begin by establishing uniform bounds for any compact set of orbits.

This is done by deriving uniform bounds locally in the set of orbits, and
for this case we obtain the estimates (1), (2) with ν = 1. Unless explicitly
stated otherwise, (M, g) is assumed only to be non-trapping.
Let z0 ∈ S∗M , choose a transverse hypersurface S ⊂ S∗M , and rewrite

the equation for normal Jacobi fields as a R2n-valued first order system via
a choice of parallel orthonormal frame as above. We have the following two
lemmas, the first asserting uniform upper bounds and the second uniform
lower bounds on solutions.

Lemma 5.7. — There is a constant K > 0 independent of z ∈ S near
z0, so that for all t ∈ R and 1 6 j 6 n:

|xz−,j(t)| 6 Ke−t, |xz+,j(t)| 6 Ke|t|.

Lemma 5.8. — There is a constant k independent of z ∈ S near z0 such
that if λ = (λ1, . . . , λn)T ∈ Rn, µ = (µ1, . . . , µn)T ∈ Rn and t ∈ R, then∣∣∣∣∣

n∑
j=1

(
λjx

z
+,j(t) + µjx

z
−,j(t)

) ∣∣∣∣∣ > k|(λ, µ)|e−|t|

and ∣∣∣∣∣
n∑
j=1

λjx
z
+,j(t)

∣∣∣∣∣ > k|λ|et.
If Es(z) ∩ Eu(z) = {0} for z ∈ S near z0, then also

(5.4)

∣∣∣∣∣
n∑
j=1

µjx
z
−,j(t)

∣∣∣∣∣ > k|µ|e−t.
The construction of the solutions xz±,j outlined in [6] gives explicit es-

timates for t large. These estimates can be extended to all t ∈ R using
Gronwall’s inequality. The arguments are standard, so the proofs of Lem-
mas 5.7 and 5.8 are omitted.

Lemma 5.9. — Suppose that Es(z) ∩ Eu(z) = {0} for z ∈ S near z0.
There is a constant C independent of z ∈ S near z0 so that if x(t) =
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∑n
j=1 µjx

z
−,j(t) with µ = (µ1, . . . , µn)T ∈ Rn, then

|x(t+ s)| 6 Ce−t|x(s)|, s, t ∈ R.

Proof. — The first estimate of Lemma 5.7 implies

|x(t)| 6 K
√
n|µ|e−t.

Applying this with t replaced by t+ s and then (5.4) with t replaced by s
gives

|x(t+ s)| 6 K
√
n|µ|e−te−s 6 K

√
n

k
e−t|x(s)|. �

Lemma 5.9 can be reformulated and extended as follows.

Proposition 5.10. — Suppose that Es(z)∩Eu(z) = {0} for z ∈ S∗M .
Let C be a compact set of orbits of the geodesic flow on S∗M . There exists
a constant C > 0 so that if z ∈ o for some o ∈ C and ζ ∈ Es(z), then

‖dϕt(z).ζ‖G 6 Ce−t‖ζ‖G, t > 0.

Recall that each orbit intersects ∂−S∗M exactly once. So we identify the
space of orbits with ∂−S∗M , with the induced topology.

Proof. — First note that Lemma 5.9 gives a uniform bound for all points
in the orbit o through z. Namely, x(0) corresponds to an element of Es(z),
x(s) corresponds to an element ζ ∈ Es(ϕs(z)), and x(t+ s) corresponds to
dϕt(ϕs(z)).ζ. As s varies over R, ϕs(z) varies over all points on o, and as
µ varies over Rn, ζ varies over all elements of Es(ϕs(z)). So, restricting to
t > 0, Lemma 5.9 asserts that there is a uniform upper bound locally in a
neighborhood of any orbit in the space of orbits. Hence there is a uniform
bound on any compact subset of the space of orbits. �

Geodesics which stay in a set where the curvature is negative are hyper-
bolic. The following proposition is a special case of [26, Theorem 3.2.17].

Proposition 5.11. — Suppose (M, g) is asymptotically hyperbolic. Let
0 < ε < 1. If z ∈ S∗M and the geodesic {π

(
ϕt(z)

)
: t ∈ R} is contained in

the set where all sectional curvatures K satisfy

(5.5) − (1 + ε)2 6 K 6 −(1− ε)2,

then
‖dϕt(z).ζ‖G 6 Ce−(1−ε)t‖ζ‖G, t > 0, ζ ∈ Es(z)

with C = 1+ε
1−ε .
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Proof of Proposition 5.5. — Given 0 < ν < 1, set ε = 1− ν. Lemma 2.8
shows that the set of orbits which lie in the region where (5.5) holds is
contained in the complement of a compact set C of orbits. So the inequality
for t > 0 in (1) follows immediately from Propositions 5.10 and 5.11.
The inequality for t 6 0 in (1) follows from the inequality for t > 0 upon

replacing ζ by dϕ−t(ϕt(z)).ζ in the inequality for t > 0, and then replacing
t by −t.
The inequalities in (2) follow from those in (1) upon noting that the

stable and unstable spaces are related by Eu(z) = dS
(
Es(Sz)

)
, where

S : S∗M → S∗M is the involution S(x, ξ) = (x,−ξ). �

Proposition 5.12. — Let (M, g) be a simple asymptotically hyperbolic
manifold. If p, q ∈ M , p 6= q, there is a unique geodesic (viewed as an
unparametrized curve) connecting p and q. In the case that p and/or q is
in ∂M , this is interpreted to mean that the geodesic approaches the point
as t→ ±∞.

Proof. — If both p and q ∈ M , this follows from the fact that the ex-
ponential map is a diffeomorphism at each point. If one or both of p, q is
in ∂M , it follows from results in [10, 25] as follows. First, the conformal
compactificationM agrees with the compactification used in [10, 25] where
the boundary at infinity consists of equivalence classes of geodesics that are
asymptotic; two oriented geodesics γ1 and γ2 are said to be asymptotic if
for any given unit speed parametrization γi(t) of γi there is C > 0 such that
dg(γ1(t), γ2(t)) 6 C for all t > 0. In fact, it is easily seen that this notion
of asymptotic is equivalent to the condition that the two geodesics have
the same endpoint in M as t→∞. The appendix to [25] is formulated for
the universal cover of a compact manifold with Anosov geodesic flow, but
the arguments apply to any complete, simply connected manifold with no
conjugate points for which the geodesic flow is Anosov and for which there
is a uniform lower bound on sectional curvatures. This appendix proves,
first, that any such manifold satisfies the uniform visibility axiom of [10].
Now Proposition 1.5 of [10] asserts that any complete, simply connected
manifold with no conjugate points satisfying the uniform visibility axiom
has the property that there exists a unique geodesic connecting a point of
M and a point of ∂M , and Proposition 1.7 of [10] asserts that there exists a
geodesic connecting any two distinct points of ∂M . Moreover, the appendix
to [25] additionally proves that there exists a unique geodesic connecting
any two distinct points of ∂M . �
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We next study boundary mapping properties of the extended exponential
map for simple asymptotically hyperbolic manifolds. The behavior of Es
and Eu near ∂S∗M plays an important role.

Proposition 5.13. — On a non-trapping asymptotically hyperbolic
manifold, each of the subbundles Es and Eu of TS∗M extends smoothly
to a subbundle of TS∗M . Moreover, the extensions satisfy Vz = Es(z) for
z ∈ ∂+S

∗M and Vz = Eu(z) for z ∈ ∂−S∗M .

Proof. — Let z0 ∈ S∗M and choose a basis {ζj(z); 1 6 j 6 n} for
Es(z) for z near z0, depending smoothly on z. Since Es is invariant under
the geodesic flow, it follows that {dϕt(z).ζj(z); 1 6 j 6 n} is a basis for
Es(ϕt(z)) for all t ∈ R. Now write ϕτ (z) = ϕt(τ,z)(z) as in (2.14). We will
show that dϕt(τ,z)(z).ζj(z), 1 6 j 6 n, extend smoothly up to τ = τ+(z) as
a function of (τ, z) for z near z0, and that they remain linearly independent.
From this it follows that the bundle Es extends smoothly to ∂+S

∗M .
The chain rule gives

dϕt(τ,z)(z).ζ = dϕτ (z).ζ −X(ϕτ (z))dzt(τ, z).ζ

= dϕτ (z).ζ − ρ(ϕτ (z))X(ϕτ (z))dzt(τ, z).ζ.
(5.6)

Certainly dϕτ (z).ζj(z) and X(ϕτ (z)) extend smoothly up to τ = τ+(z).
Differentiation of (2.19) shows that

dzt(τ, z) = η(τ, z)
(
τ − τ+(z)

)−1

where η(τ, z) is smooth up to τ = τ+(z). But ρ(ϕτ (z)) is smooth and
vanishes when τ = τ+(z). Thus ρ(ϕτ (z))dzt(τ, z).ζj(z) is smooth up to
τ = τ+(z), and so also is dϕt(τ,z)(z).ζj(z).
Now dϕτ (z) is an isomorphism up to τ = τ+(z) since ϕτ (z) is a

smooth flow. Since {ζ1(z), . . . , ζn(z), X(z)} is a linearly independent set of
vectors at z, it follows that {dϕτ+(z)(z).ζ1(z), . . . ,dϕτ+(z)(z).ζn(z),
dϕτ+(z)(z).X(z)} is a linearly independent set of vectors at ϕτ+(z)(z). But
dϕτ+(z)(z).X(z) = X(ϕτ+(z)(z)) since ϕτ is the flow of X. Therefore
{dϕτ+(z)(z).ζj(z) + αjX(ϕτ+(z)(z)); 1 6 j 6 n} is linearly independent for
any α1, . . . , αn ∈ R. It thus follows from (5.6) that {dϕt(τ,z)(z).ζj(z); 1 6
j 6 n} remains linearly independent up to τ = τ+(z) as claimed.
The same argument letting τ → −τ−(z) shows that Es extends smoothly

to ∂−S∗M . Then the same argument, taking the ζj(z) to be a basis for
Eu(z), shows that Eu extends smoothly to S∗M .
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Near the boundary, we use the smooth coordinates (2.4) for bT ∗M . So
ζ ∈ T (bT ∗M) can be written

ζ = a0∂ρ +
∑
j

aj∂yj + b0∂ξ0
+
∑
j

bj∂ηj .

The (ρ, yj , ξ0, ηj , a
0, aj , b0, bj) are smooth coordinates for T (bT ∗M) near

ρ = 0. The fiber of TS∗M ⊂ T (bT ∗M) is given by b0 = 0 over ∂S∗M . The
condition α(ζ) = 0 reads ξ0a

0 = −ρ
∑
j ηja

j , so the fiber of the smooth
extension of kerα is given by a0 = 0 over ∂S∗M . The fiber of the vertical
bundle of T (bT ∗M) is given by a0 = 0, aj = 0, and to obtain the fiber of
V ⊂ TS∗M one adds the condition ξ0b0 = −ρ2∑

i,j h
ijηibj of tangency to

S∗M . In particular, the fiber of V over ∂S∗M is given by a0 = 0, aj = 0,
b0 = 0.

To identify the fiber of Es over ∂+S
∗M , we consider the asymptotics

of the Sasaki metric. Let σ(τ) be a smooth curve in S∗M with σ(τ0) ∈
∂+S

∗M such that σ is transverse to ∂+S
∗M at σ(τ0), and let ζ(τ) be a

smooth section of kerα∩TS∗M along σ(τ) with ζ(τ)→ ζ(τ0) ∈ Tσ(τ0)S∗M .
We claim that if ζ(τ0) /∈ Vσ(τ0), then there is C > 0 so that ‖ζ(τ)‖G >
Cρ(σ(τ))−1 for τ sufficiently close to τ0. In fact, the coordinates of ζ(τ0)
must satisfy a0 = b0 = 0 since ζ(τ) ∈ kerα ∩ TS∗M . Since ζ(τ0) /∈ Vσ(τ0),
it must be that aj(τ0) 6= 0 for some j. But

G(ζ, ζ) > g(dπ(ζ),dπ(ζ)) = ρ−2

[
(a0)2 +

∑
i,j

hija
iaj

]
> ρ−2

∑
i,j

hija
iaj ,

so the claimed inequality follows upon taking ζ = ζ(τ) with τ close to τ0.
To apply this observation to Es, choose z ∈ S∗M and take σ(τ) =

ϕτ (z) = ϕt(τ,z)(z), so τ0 = τ+(z). Choose a basis ζj(z), 1 6 j 6 n for
Es(z) and take ζ(τ) = dϕt(τ,z)(z).ζj(z) for some j. (2.11) together with
Lemma 5.7 show that ‖ζ(τ)‖G 6 Ce−t 6 Cρ. The above observation im-
plies that it must be that ζ(τ0) ∈ VB+(z). But the argument earlier in this
proof establishing the smoothness of Es up to the boundary shows that
the ζ(τ+(z)) obtained by varying j form a basis for Es(B+(z)). Thus the
fibers of Es and V coincide on ∂+S

∗M . The same argument applies to Eu
at ∂−S∗M . �

Remark 5.14. — By analyzing the behavior of the connection map K
near ∂S∗M , it can be shown that also the horizontal bundle H extends
smoothly to a subbundle of TS∗M , and Hz = Vz for z ∈ ∂S∗M . The
details are omitted since we will not use this fact.
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Set
T +S∗M = {(τ, z) ∈ R× S∗M : 0 < τ 6 τ+(z)}.

Proposition 5.15. — If (M, g) is simple, then the following map is a
diffeomorphism

Ψ : T +S∗M →M ×M \ diag, Ψ(τ, z) =
(
π(z), π(ϕτ (z))

)
.

Proof. — The bijectivity of Ψ is an immediate consequence of Proposi-
tion 5.12. Namely, given (p, q) ∈ M ×M \ ∆, there is a unique geodesic
connecting p and q; z corresponds to the initial point and direction, and τ
the time when the geodesic is parametrized as τ → π(ϕτ (z)).
The map Ψ is clearly smooth, so it suffices to show that dΨ is injective

at each point. Write

Ψ(τ, z) =
(
Ψ1(τ, z),Ψ2(τ, z)

)
, Ψ1(τ, z) = π(z), Ψ2(τ, z) = π(ϕτ (z))

so that ker dΨ = ker dΨ1 ∩ ker dΨ2 ⊂ R∂τ ⊕ TzS∗M . Clearly ker dΨ1 =
R∂τ ⊕ Vz. For a ∈ R and ζ ∈ TzS∗M , we have

dΨ2(a∂τ + ζ) = dπ
(
dϕτ (z).ζ + aX(ϕτ (z))

)
.

So injectivity of dΨ(τ, z) is equivalent to the statement that if ζ ∈ Vz and
dϕτ (z).ζ ∈ Vϕτ (z) ⊕ RX(ϕτ (z)), then ζ = 0.
If both π(z) and π(ϕτ (z)) are in M , this follows from the fact that there

are no conjugate points: by (5.6), we deduce that dϕt(τ,z)(z).ζ ∈ Vϕτ (z) ⊕
RX(ϕτ (z)). But dϕt(τ,z)(z).ζ is already in kerα, so dϕt(τ,z)(z).ζ ∈ Vϕτ (z)
and (2.28) implies that ζ = 0.
Suppose next that π(z) ∈ ∂M (so z ∈ ∂−S∗M) and π(ϕτ (z)) ∈ M . If

ζ ∈ Vz, then ζ ∈ Eu(z) by Proposition 5.13. Since Eu ⊕ RX is invariant
under the flow ϕτ , it follows that dϕτ (z).ζ ∈ Eu(ϕτ (z)) ⊕ RX(ϕτ (z)).
Proposition 2.11 of [11] implies that if (M, g) is complete with no conjugate
points and sectional curvatures bounded from below, then Eu and Es each
intersect V only in {0}. So if also dϕτ (z).ζ ∈ Vϕτ (z) ⊕ RX(ϕτ (z)), then
dϕτ (z).ζ ∈ RX(ϕτ (z)). Since X is invariant under the flow ϕτ , it follows
that ζ ∈ RX(z)∩Vz = {0}, so ζ = 0 as desired. The argument if π(z) ∈M
and π(ϕτ (z)) ∈ ∂M (so ϕτ (z) ∈ ∂+S

∗M) is similar.
The argument if z ∈ ∂−S

∗M and ϕτ (z) ∈ ∂+S
∗M follows the same

idea. In this case ζ ∈ Eu(z), so dϕτ (z).ζ ∈ Eu(ϕτ (z))⊕RX(ϕτ (z)). If also
dϕτ (z).ζ ∈ Vϕτ (z)⊕RX(ϕτ (z)) = Es(ϕτ (z))⊕RX(ϕτ (z)), then dϕτ (z).ζ ∈
RX(ϕτ (z)) since Eu ∩ Es = {0} (this transversality holds at ∂S∗M too
by Proposition 5.13 and invariance under the geodesic flow). Once again,
translating back to z shows that ζ ∈ RX(z), so ζ = 0. �
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Remark 5.16. — Simplicity is a necessary condition for Ψ to be a lo-
cal diffeomorphism everywhere on T +S∗M . If (M, g) is non-trapping, z ∈
∂−S

∗M , and Es ∩ Eu 6= {0} along the integral curve ϕτ (z), then Ψ is not
a local diffeomorphism near (τ+(z), z). In fact, as the proof above shows,
for any ζ ∈ Es(z) ∩ Eu(z), there is aζ ∈ R so that dΨ(aζ∂τ + ζ) = 0.

Remark 5.17. — The analogue of Proposition 5.15 obtained by replacing
T +S∗M by the set T −S∗M = {(τ, z) ∈ R × S∗M : −τ−(z) 6 τ < 0} is
also true, with the same proof.

Corollary 5.18. — If (M, g) is simple, the following map is a diffeo-
morphism

B : ∂−S∗M → ∂M × ∂M \ diag, B(z) := (π(z), π(Sg(z))).

Proof. — B is the restriction of Ψ to {(τ+(z), z) : z ∈ ∂−S∗M}. �

Let dg : M × M \ diag → (0,∞) denote the distance function in the
metric g. If (M, g) has no conjugate points, then dg is smooth. Let ρ be a
smooth defining function for ∂M , and define

d̃g(p, q) := dg(p, q) + log ρ(p) + log ρ(q).

Proposition 5.19. — If (M, g) is simple, then d̃g extends smoothly to
M ×M \ diag.

Proof. — It suffices to prove the result for geodesic defining functions.
First use Proposition 5.15. Given p, q ∈M , we can uniquely write p = π(z),
q = π(ϕτ (z)) for z ∈ S∗M and 0 < τ < τ+(z). We need to show that
d̃g(p, q) extends smoothly to T +S∗M as a function of (τ, z).
Now dg(p, q) is the elapsed time t(τ, z) for the geodesic segment join-

ing p to q, given by (2.14). As in (2.18), (2.19), for z ∈ S∗M and s near
τ+(z) we have ρ(ϕs(z)) = (τ+(z) − s)A+(s, z) for A+ smooth satisfying
A+(τ+(z), z) = 1, and for z ∈ S∗M and s near −τ−(z) we have ρ(ϕs(z)) =
(s + τ−(z))A−(s, z) for A− smooth satisfying A−(−τ−(z), z) = 1. Conse-
quently

ρ(ϕs(z))−1 =
(
s+ τ−(z)

)−1 +
(
τ+(z)− s

)−1 +B(s, z)

with B(s, z) smooth for z ∈ S∗M , s ∈ [−τ−(z), τ+(z)]. Carrying out the
integration in (2.14), one deduces that t(τ, z) + log(τ+(z)− τ) + log τ−(z)
extends smoothly to T +S∗M . Since log ρ(ϕτ (z)) − log(τ+(z) − τ) and
log ρ(z)−log τ−(z) both extend smoothly to T +S∗M , the result follows. �

Remark 5.20. — Theorem 1.2 of [45] and Theorem 6.4 of [46] assert that
the conclusion of Proposition 5.19 holds under the assumption that (M, g) is
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geodesically convex, which is equivalent to assuming that it is non-trapping
with no conjugate points. However, the proofs appear to be incomplete. Our
proof above uses the additional assumption that there are no conjugate
points at infinity.

Remark 5.21. — A study of dg has been carried out for certain perturba-
tions of hyperbolic space in [35]. This has been extended to non-trapping
asymptotically hyperbolic manifolds in a neighborhood of the boundary di-
agonal by Chen–Hassell [5] and Sá Barreto–Wang [45, 46, 47]: the function
β∗dg+log ρL+log ρR extends to a smooth function on U \diag0, where U is
a neighborhood of the front face in the Mazzeo–Melrose stretched product
spaceM×0M , diag0 denotes the closure of the lift of the interior diagonal,
ρR and ρL are defining functions for the right and left faces in M ×0 M ,
and β denotes the blow-down map. Combining this with Proposition 5.19,
it follows that β∗dg + log ρL + log ρR ∈ C∞(M ×0 M \ diag0) for simple
asymptotically hyperbolic metrics. The analysis in these papers of the short
geodesics is closely related to Lemma 2.8 above.

For a simple asymptotically hyperbolic metric and a choice of defining
function ρ, we define the renormalized boundary distance dRg ∈ C∞(∂M ×
∂M \ diag) by

(5.7) dRg := d̃g|∂M×∂M\diag.

The realization (4.1) of Lg shows that dRg (p, q) = Lg(B−1(p, q)) with B de-
fined in Corollary 5.18. Either using (4.2) or directly from the definition, it
follows that if ρ̂ = ρeω is another choice of boundary defining function (with
ω ∈ C∞(M)), and if d̂Rg (p, q) denotes the renormalized distance associated
to ρ̂, then

d̂Rg (p, q)− dRg (p, q) = ω(p) + ω(q), p, q ∈ ∂M.

The renormalized distance can be defined assuming only that there is a
unique geodesic joining any two points of ∂M . But if (M, g) is not simple,
the map B in Corollary 5.18 is not a local diffeomorphism, and we do not
how to prove Proposition 5.24 below.

Remark 5.22. — Recall that a Busemann function for a point p ∈ ∂M is
defined (typically for a Hadamard manifold) as follows. Choose a geodesic
γ(t) for which limt→∞ γ(t) = p. The Busemann function associated to γ
is the function Bγ : M → R defined by Bγ(q) = limt→∞

(
dg(q, γ(t)) − t

)
.

Observe that it follows from Proposition 5.19 that the function d1
g(p, q) =

dg(p, q) + log ρ(p) = d̃g(p, q)− log ρ(q) extends smoothly to M ×M \ diag.
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If p ∈ ∂M , the function q → d1
g(p, q) on M is a Busemann function for p,

depending on the choice of defining function ρ. In fact, it is clear that if γ is
a geodesic and ρ is any defining function such that limt→∞ ρ(γ(t))/e−t = 1,
then Bγ(q) = d1

g(p, q). In particular, it is a consequence of Proposition 5.19
that on a simple asymptotically hyperbolic manifold, any Busemann func-
tion is in C∞(M).

In the next two propositions we fix a representative h for the confor-
mal infinity of a simple asymptotically hyperbolic manifold (M, g), thus
determining a geodesic defining function ρ. dRg and Lg will denote the
corresponding renormalized boundary distance and renormalized length
function. The product identification associated to h induces the identifi-
cation (2.2) of each of ∂±S∗M with T ∗∂M . We thereby view Lg as defined
on T ∗∂M , and Sg as mapping T ∗∂M to itself.

Proposition 5.23. — Let (M, g) be a simple asymptotically hyperbolic
manifold and let h be a representative metric for the conformal infinity. If
p, q ∈ ∂M , p 6= q, then

Sg
(
p,−dp(dRg (p, q))

)
=
(
q,dq(dRg (p, q))

)
.

Here dRg (p, q) is the renormalized distance function determined by h,
dp(dRg (p, q)) ∈ T ∗p ∂M denotes its exterior derivative with respect to p,
and dq(dRg (p, q)) ∈ T ∗q ∂M its exterior derivative with respect to q.

Proof. — Define d1
g ∈ C∞(M ×M \ diag) by

d1
g(p′, q′) = dg(p′, q′) + log ρ(p′) = − log ρ(q′) + d̃g(p′, q′).

If p′, q′ ∈ M , p′ 6= q′, then gradq′ d1
g(p′, q′) = gradq′ dg(p′, q′) is the unit

tangent vector at q′ to the geodesic joining p′ and q′, oriented to point away
from p′. Here gradq′ denotes the gradient with respect to g in the second
argument. Since (M, g) is simple and d1

g(p′, q′) is smooth in p′ up to ∂M ,
for p ∈ ∂M we can let p′ → p along the geodesic joining p to q′ to deduce
that gradq′ d1

g(p, q′) is the unit tangent vector at q′ to the geodesic joining
p and q′, oriented to point away from p. The corresponding dual element
of S∗q′M is dq′(d1

g(p, q′)).
Now fix p, q ∈ ∂M , p 6= q, and consider the asymptotics of dq′(d1

g(p, q′))
as q′ approaches q along the geodesic joining p to q. Write q′ = (ρ, y) in
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the boundary identification induced by h. Recalling (5.7), we have

dq′(d1
g(p, q′)) = dq′(− log ρ+ d̃g(p, q′))

= −ρ−1dρ+ dρ(d̃g(p, q′)) + dy(d̃g(p, q′))

= −ρ−1dρ+O(1)dρ+ dq(dRg (p, q)) +O(ρ)dy.

According to the identification (2.2), the limiting point in ∂+S
∗M ∼= T ∗∂M

is therefore (q,dq(dRg (p, q))), as claimed.
The same argument interchanging the roles of p and q shows that the

beginning point in ∂−S
∗M ∼= T ∗∂M for the geodesic from p to q is

(p,−dp(dRg (p, q))). �

The relation dRg (p, q) = Lg(B−1(p, q)) and the definition of B in terms
of Sg in Corollary 5.18 show that the pair (Lg, Sg) determines the renor-
malized length dRg . We conclude by showing that the converse is true in the
following sense:

Proposition 5.24. — Let M be a compact connected manifold-with-
boundary and let g1 and g2 be simple asymptotically hyperbolic metrics
on M . Let h1 and h2 be representative metrics in the respective conformal
infinities. If dRg1

= dRg2
, then Lg1 = Lg2 and Sg1 = Sg2 .

Proof. — Given (p, η) ∈ T ∗∂M , let q = π(Sg1(p, η)) be the ending
point of the geodesic for g1 starting from p with initial direction η. By
Proposition 5.12, there is a unique geodesic for g2 starting at p and end-
ing at q. Proposition 5.23 shows that the starting and ending directions
for a geodesic are determined by the endpoints and the renormalized dis-
tance function dRg . Since dRg1

= dRg2
, one concludes that Sg1 = Sg2 . Since

Lg(p, η) = dRg (B(p, η)) and B is determined by Sg, it follows that also
Lg1 = Lg2 . �
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