
ANNALES DE
L’INSTITUT FOURIER

Université Grenoble Alpes

Les Annales de l’institut Fourier sont membres du
Centre Mersenne pour l’édition scienti�que ouverte
www.centre-mersenne.org

Dorothee Schueth
On the corner contributions to the heat coe�cients of geodesic
polygons
Tome 69, no 7 (2019), p. 2827-2855.
<http://aif.centre-mersenne.org/item/AIF_2019__69_7_2827_0>

© Association des Annales de l’institut Fourier, 2019,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/

www.centre-mersenne.org
http://aif.centre-mersenne.org/item/AIF_2019__69_7_2827_0
http://creativecommons.org/licenses/by-nd/3.0/fr/


Ann. Inst. Fourier, Grenoble
69, 7 (2019) 2827-2855

ON THE CORNER CONTRIBUTIONS TO THE
HEAT COEFFICIENTS OF GEODESIC POLYGONS

by Dorothee SCHUETH

This paper is dedicated to the memory of Marcel Berger.

Abstract. — Let O be a compact Riemannian orbisurface. We compute formu-
las for the contribution of cone points of O to the coefficient at t2 of the asymptotic
expansion of the heat trace of O, the contributions at t0 and t1 being known from
the literature. As an application, we compute the coefficient at t2 of the contri-
bution of interior angles of the form γ = π/k in geodesic polygons in surfaces
to the asymptotic expansion of the Dirichlet heat kernel of the polygon, under
a certain symmetry assumption locally near the corresponding corner. The main
novelty here is the determination of the way in which the Laplacian of the Gauss
curvature at the corner point enters into the coefficient at t2. We finish with a con-
jecture concerning the analogous contribution of an arbitrary angle γ in a geodesic
polygon.
Résumé. — Soit O une orbisurface riemannienne compacte. Nous calculons des

formules pour la contribution des singularités coniques de O au coefficient de t2
du développement asymptotique de la trace du noyau de la chaleur de O, les
contributions de t0 et t1 étant connues. Comme application, nous calculons le
coefficient de t2 de la contribution d’un angle intérieur de la forme γ = π/k dans
un polygone géodésique sur une surface au développement asymptotique du noyau
de la chaleur de Dirichlet du polygone, sous une hypothèse locale de symétrie près
du sommet correspondant. La principale nouveauté ici est la détermination de la
façon dont le Laplacien de la courbure de Gauss au sommet en question entre dans
le coefficient de t2. Nous terminons par une conjecture concernant la contribution
analogue d’un angle γ arbitraire dans un polygone géodésique.

1. Introduction

This paper concerns the influence of certain singularities on the heat co-
efficients. The systematic study of heat coefficients in the context of smooth

Keywords: Laplace operator, heat kernel, heat coefficients, orbifolds, cone points, corner
contribution, distance function expansion.
2020 Mathematics Subject Classification: 58J50.
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Riemannian manifolds started in the 1960s. Let (Md, g) be a closed and con-
nected Riemannian manifold, ∆g = − divg ◦ gradg the associated Laplace
operator, and H : (0,∞) ×M ×M → R the corresponding heat kernel.
Minakshisundaram and Pleijel [15] proved that there is an asymptotic ex-
pansion

H(t, p, q) ∼t↘0 (4πt)−d/2e− dist2(p,q)/4t
∞∑
`=0

u`(p, q)t`

for (p, q) in some neighborhood of the diagonal in M ×M , and they gave
recursive formulas for the functions u` . Correspondingly, the heat trace

Z : t 7→
∫
M

H(t, p, p) dvolg(p) =
∞∑
j=0

e−tλj ,

where 0 = λ0 < λ1 6 λ2 6 . . .→∞ is the eigenvalue spectrum of ∆g with
multiplicities, admits the asymptotic expansion

Z(t) ∼t↘0 (4πt)−d/2
∞∑
`=0

a`t
`

with the so-called heat coefficients

a` :=
∫
M

u`(p, p) dvolg(p) .

Each of the coefficients a` in this expansion is a spectral invariant in the
sense that it is determined by the eigenvalue spectrum of ∆g . Here, u0 = 1
and a0 is just the volume of (M, g).
Formulas for a1 and a2 (more precisely, even for u1(p, p) and u2(p, p))

were first given by Marcel Berger in his announcement [2] of 1966. One has

u1(p, p) = 1
6 scalg(p) ,

where scalg denotes the scalar curvature associated with g. Although Berger
called that formula “folklore”, he was the first to publish a proof of it, in
1968, in his paper [3]. In the same paper, he proved the formula

u2(p, p) = 1
360(5 scal2g −2‖ricg‖2 + 2‖Rg‖2 − 12∆g scalg)(p),

where ricg and Rg denote the Ricci and the Riemannian curvature tensor,
respectively. This formula was considerably more intricate to derive than
that for u1(p, p). Berger’s method was a direct calculation in local coor-
dinates, using Minakshisundaram/Pleijel’s recursive formulas for the u` .
Meanwhile, in 1967, McKean and Singer [14] had found a shorter way of
deriving the corresponding formula for a2 . However, this did not provide
an alternative proof of Berger’s full formula for u2(p, p) (which will actually
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be needed in the present paper): Its last term is not visible in a2 since the
integral over ∆g scalg vanishes.
In 1971, Sakai computed a3 using an approach much similar to Berger’s.

Later, Gilkey computed formulas for heat coefficients in more general con-
texts like Schrödinger operators on vector bundles and, together with Bran-
son, for manifolds with smooth boundary (see [6, 10]). For nonempty bound-
ary, also half-powers of t can occur in the asymptotic expansion of the
corresponding heat trace (with, e.g., Dirichlet or Neumann boundary con-
ditions). On the other hand, also surfaces with corners (albeit only in the
case of polygons in euclidean R2) were considered as early as 1966 in Kac’s
famous paper [12], where it was shown that the Dirichlet heat trace satisfies

(1.1) Z(t) = (4πt)−1 vol(M)−(4πt)−1/2·14 vol(∂M)+
N∑
i=1

π2 − γ2
i

24γiπ
+O(t∞)

for t↘ 0, where γ1, . . . , γN are the interior angles of the polygon. Actually,
Kac’s formula for the angle contribution was more complicated; McKean
and Singer brought it into the above form in their paper [14] of 1967, using
an unpublished formula of D. Ray. A full proof of (1.1) was given in 1988
by van den Berg and Srisatkunarajah [1]. In 2005, Watson [19] computed
the heat coefficients for geodesic polygons in the round two-sphere; in 2017,
Uçar [18] achieved the same for the more difficult case of geodesic polygons
in the hyperbolic plane. Here, in contrast to the flat case, the asymptotic
expansion of Z(t) does not break off as in (1.1), and there are infinitely
many coefficients involving contributions from the corners. More precisely,
for a geodesic polygon in a surface of constant curvatureK, the contribution
of an interior angle γ to the small-time asymptotic expansion of Z(t) has
the form

(1.2)
∞∑
`=0

e`(γ)K`t` ;

see [18, Corollary 3.37], including explicit formulas for the e`(γ). As an
application, Uçar proved that for constant K 6= 0, the set of angles of a
geodesic polygons, including multiplicities, is spectrally determined ([18,
Theorem 3.40]).
While (1.2) just turned out from Watson’s and Uçar’s direct computa-

tions, Uçar also gave, in the special case that γ is of the form γ = π/k,
a conceptual proof of the fact that the coefficient at t` must be of the
form e`(γ)K`. Note that this cannot be achieved by just rescaling, since K
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can be either positive or negative. For his reasoning, Uçar used a qualita-
tive description (involving curvature invariants) by Donnelly [8] and Dry-
den et al. [9] concerning the contribution of orbifold singularities to the
heat coefficients of Riemannian orbifolds. He showed that the heat coeffi-
cient contributions of a corner with interior angle γ = π/k in a geodesic
polygon of constant curvature with Dirichlet boundary conditions can be
viewed, in a sense, as the difference between the contributions of an orb-
ifold cone point of order k and a dihedral orbifold singularity with isostropy
group of order 2k; see [18, p. 142–144]. Since those two contributions are,
by Donnelly’s structural theory, known to be determined by γ = π/k and
curvature invariants of appropriate order, and since the only curvature in-
variant of order 2` in the case of constant curvature is K`, this implies that
the coefficients must be of the form e`(γ)K` here.
The present paper constitutes a first step into studying corner contri-

butions in the setting of geodesic polygons in surfaces of nonconstant cur-
vature. Under a certain symmetry assumption around the corresponding
corner p (see (5.1)), we show in our Main Theorem 5.3 that the contribu-
tion of an interior angle of the form γ = π/k to the small-time asymptotic
expansion of the Dirichlet heat trace of the polygon is of the form

∞∑
t=0

c`(γ)t`

with

c0(γ) = π2 − γ2

24γπ , c1(γ) =
(
π4 − γ4

720γ2π
+ π2 − γ2

72γπ

)
K(p),

and

(1.3) c2(γ) =
(
π6 − γ6

5040γ5π
+ π4 − γ4

1440γ3π
+ π2 − γ2

360γπ

)
K(p)2

−
(
π6 − γ6

30240γ5π
+ π4 − γ4

2880γ3π
+ π2 − γ2

360γπ

)
∆gK(p),

with our sign convention ∆g = −divg ◦ gradg . The coefficient c0(γ) is not
new (see [13]); moreover, c1(γ) and the coefficient atK(p)2 in (1.3) coincide,
of course, with Uçar’s corresponding formulas for constant curvature. The
main novelty here is the coefficient at ∆gK(p) in (1.3) which, of course,
did not appear in the constant curvature case. We conjecture that these
formulas generalize to the case of arbitrary γ ∈ (0, 2π] under the assumption
that the Hessian of K at p is a multiple of the metric (Conjecture 5.5).

Our strategy for proving the Main Theorem again uses orbifold theory.
For a cone point p of order k in a closed Riemannian orbisurface (O, g)
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we compute the coefficient a({p̄})
2 at t2 of its contribution to the heat trace

of (O, g) (Theorem 4.1), the coefficients at t0 and t1 being known from
the literature [8], [9] (see Remark 4.2). We then show that under the sym-
metry assumption (5.1) from 5.1, each c`(π/k) is just 1

2 times the cor-
responding a

({p̄})
` (Remark 5.2); this implies our Main Theorem 5.3. In

turn, to prove Theorem 4.1 we first compute the coefficient b2(Φ) at t2
in Donnelly’s asymptotic expansion of the integral of H(t, · ,Φ( · )) over a
small neighborhood of p in a surface (M, g), where Φ is an isometry of a
(slightly bigger) neighborhood whose differential at p is a rotation by an
angle ϕ ∈ (0, π] (Theorem 3.7); we then use a formula from [9] (see (4.1)).
For the computation of b2(Φ), we closely follow Donnelly’s proof of the
existence of the mentioned asymptotic expansion (in a much more general
setting) from [8]. In preparation for that, we have to give expansions for
r ↘ 0 of r 7→ u0(expp(ru),Φ(expp(ru))) (up to order the order of r4) and
of r 7→ u1(expp(ru),Φ(expp(ru)) (up to the order of r2), where u ∈ TpM
is a unit vector (Lemma 3.6). Moreover, we need the expansion of the Rie-
mannian distance dist(expp(ru),Φ(expp(ru))) up to the order of r6 (Corol-
lary 2.4, Lemma 3.4). Since a formula for the sixth order expansion of the
distance funcion did not seem to be available in the literature, we first give
a general formula for the sixth order expansion of dist2(expp(x), expp(y)) in
surfaces, where x, y are tangent vectors at p (Lemma 2.3). For the proof, we
partly follow an approach by Nicolaescu [16] which uses a Hamilton–Jacobi
equation for dist2(q, · ).
This paper is organized as follows: In Section 2, we provide some nota-

tion and technical preparations, among these the sixth order expansion of
the distance function in surfaces (Lemma 2.3 and Corollary 2.4; the proof
of Lemma 2.3 is postponed to the Appendix). In Section 3, we first prove
Lemma 3.6 concerning the mentioned expansions of u0 and u1 ; we then
deduce Theorem 3.7 concerning b2(Φ) by following Donnelly’s approach.
Section 4 is devoted to the computation of a({p̄})

2 for cone points of order k
in orbisurfaces (Theorem 4.1), using Theorem 3.7 and Dryden et al.’s for-
mula (4.1). In Section 5 we prove our Main Theorem 5.3; we conclude with
some remarks and Conjecture 5.5.
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of the inspiration for the results in this article was provided by having a
closer look, for that occasion, at Berger’s seminal early works [2], [3], [4], [5]
in spectral geometry, and also by his fearless use of a bit of “calcul brutal”
when needed (quotation from the first line of p. 923 in [3]).

2. Preliminaries

In this paper, (M, g) will always denote a two-dimensional Riemannian
manifold and K : M → R its Gauss curvature. Let ∆g = −divg ◦ gradg
be the Laplace operator on smooth functions on M . By ∇2K we denote
the Hessian tensor of K; that is, ∇2Kp(x, y) = gp(∇x gradgK, y) for x, y ∈
TpM , where ∇ denotes the Levi-Civita connection. In particular, if {u, ũ}
is an orthonormal basis of TpM then

∆gK(p) = −∇2Kp(u, u)−∇2Kp(ũ, ũ).

Notation and Remarks 2.1. — Let p ∈M and u ∈ TpM with ‖u‖ = 1.
(i) If ũ ∈ TpM is a unit vector with ũ ⊥ u and J the Jacobi field along

the geodesic γu with J(0) = 0, J ′(0) = ũ, then

`u(r) := ‖(d expp)ru(rũ)‖ = ‖J(r)‖

has the following well-known expansion for r ↘ 0:

(2.1) `u(r) = r − 1
6K(p)r3 − 1

12dKp(u)r4

+
(

1
120K(p)2 − 1

40∇
2Kp(u, u)

)
r5 +O(r6).

This follows from the Jacobi equation J ′′ = −(K ◦ γu)J for Jacobi
fields orthogonal to γ̇u .

(ii) For small r > 0, we denote by θu(r) the so-called volume density
or area distortion of expp at ru ∈ TpM . In other words, θu(r) =
(det gij(ru))1/2 in normal coordinates around p. Since expp is a
radial isometry and we are in dimension two, we have

θu(r) = `u(r)/r.

Thus (2.1) implies:

(2.2) θu(r) = 1− 1
6K(p)r2 − 1

12dKp(u)r3

+
(

1
120K(p)2 − 1

40∇
2Kp(u, u)

)
r4 +O(r5).

ANNALES DE L’INSTITUT FOURIER



CORNER CONTRIBUTIONS TO THE HEAT COEFFICIENTS 2833

(iii) For ` ∈ N0, let u` denote the (universal) functions, defined on some
neighborhood of the diagonal in M ×M , which in case of closed
surfaces appear in the asymptotic expansion of the heat kernel of
(M, g):

H(t, p, q) ∼ (4πt)−1 exp(−dist2(p, q)/4t) ·
∞∑
`=0

u`(p, q)t` as t↘ 0,

where dist : M×M → R denotes Riemannian the distance function
of (M, g).

(iv) It is well-known that u0 = θ−1/2 (see [15]); more precisely,

u0(p, expp(ru)) = θu(r)−1/2

for small r > 0. In particular, (2.2) implies

(2.3) u0(p, expp(ru)) = 1 + 1
12K(p)r2 + 1

24dKp(u)r3

+
(

1
160K(p)2 + 1

80∇
2Kp(u, u)

)
r4 +O(r5).

(v) As proved in [3] by Marcel Berger, the restriction of u2 to the
diagonal is given by

u2(p, p) = 1
72 scal2(p)− 1

180‖ricp‖
2 + 1

180‖Rp‖
2 − 1

30∆g scal(p),

where scal, ric, R denote the scalar curvature, the Ricci and the Rie-
mannian curvature tensor, respectively. Recall our choice of sign for
∆g = − divg ◦ gradg . In dimension two, the above formula simplifies
to

(2.4) u2(p, p) = 1
15K(p)2 − 1

15∆gK(p).

Lemma 2.2. — In the notation of 2.1,

(2.5) u1(p, expp(ru)) = 1
3K(p) + 1

6dKp(u)r

+
(

1
30K(p)2 − 1

120∆gK(p) + 1
20∇

2Kp(u, u)
)
r2 +O(r3)

for r ↘ 0.

Proof. — One way to obtain this is specializing Sakai’s formulas (3.7),
(4.3)–(4.5) from [17] (for arbitrary dimension n) to dimension two and
then translating into our notation. An alternative proof which uses the two-
dimensional setting right away is as follows: By Minakshisundaram/Pleijel’s
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recursion formula from [15] for the u` , applied to ` = 1,

(2.6) u1(p, expp(ru))

= −u0(p, exp(ru))
∫ 1

0
u0(p, expp(tru))−1 (∆gu0(p, · )) (expp(tru)) dt.

For small r > 0, the curvature of the distance sphere ∂Br(p) at expp(ru) is

1
r

+ θ′u(r)
θu(r) = 1

r
− 1

3K(p)r +O(r2),

where the latter equation holds by (2.2). Moreover, letting ũ be a unit
vector orthogonal to u and

u(s) := cos(s)u+ sin(s)ũ,

the curve c : t 7→ expp(ru(t/`u(r))) satisfies c(0) = expp(ru), ‖ċ(0)‖ = 1
and 〈

D

dt ċ(0), ċ(0)
〉

= 1
2 ·

d
dt

∣∣∣
t=0

`u(t/`u(r))(r)2/`u(r)2.

Using (2.1), one can check that the latter expression is of order O(r2) for
r ↘ 0. Thus, for any function f near p which is of the form

f(expp(ru)) = α(r)β(u)

with smooth α : [0, ε)→ R and β : S1
p → R, where S1

p ⊂ (TpM, gp) denotes
the unit circle, one has

(2.7) (∆gf)(expp(ru)) = −
[
α′′(r) +

(
1
r
− 1

3K(p)r +O(r2)
)
α′(r)

]
β(u)

− α(r)
(

1
`u(r)2∇

2βu(ũ, ũ) + O(r2)
`u(r) dβu(ũ)

)
,

where ∇2β here denotes the Hessian of β as a function on the circle S1
p .

Viewing u 7→ dKp(u), u 7→ ∇2Kp(u, u) in formula (2.3) as functions on S1
p

(not on TpM), we can apply (2.7) to the three nonconstant terms in (2.3).
Evaluating up to the order of r2 gives

(∆gu0(p, · )) (expp(ru)) = A1 +A2 +A3 +O(r3),
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where

A1 = − 1
12K(p)

(
2 + 2− 2

3K(p)r2
)

= −1
3K(p) + 1

18K(p)2r2,

A2 = − 1
24 (dKp(u)(6r + 3r)− r · dKp(u)) = −1

3dKp(u)r

A3 = −
(

1
160K(p)2 + 1

80∇
2Kp(u, u)

)
(12r2 + 4r2)

− 1
80r

2 (2∇2Kp(ũ, ũ)− 2∇2Kp(u, u)
)

= −
(

1
10K(p)2 + 7

40∇
2Kp(u, u) + 1

40∇
2Kp(ũ, ũ)

)
r2

=
(
− 1

10K(p)2 + 1
40∆gK(p)− 3

20∇
2Kp(u, u)

)
r2.

Thus,

(∆gu0(p, · )) (expp(ru)) = −1
3K(p)− 1

3dKp(u)r

+
(
− 2

45K(p)2 + 1
40∆gK(p)− 3

20∇
2Kp(u, u)

)
r2 +O(r3).

By this and (2.3),

(∆gu0(p, · )/u0(p, · )) (expp(ru)) = −1
3K(p)− 1

3dKp(u)r

+
(
− 1

60K(p)2 + 1
40∆gK(p)− 3

20∇
2Kp(u, u)

)
r2 +O(r3).

The integral in (2.6) thus gives

−1
3K(p)−1

6dKp(u)r+
(
− 1

180K(p)2 + 1
120∆gK(p)− 1

20∇
2Kp(u, u)

)
r2

+O(r3).

Multiplying this by −u0(p, expp(ru)) = −1− 1
12K(p)r2 +O(r3) (see (2.3)),

we obtain the desired formula. �
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Lemma 2.3. — As above, let dist : M ×M → R be the Riemannian
distance function on the surface (M, g). Then for all x, y ∈ TpM ,

(2.8) dist2(expp(x), expp(y)) = ‖x− y‖2 − 1
3K(p)‖x ∧ y‖2

− 1
12dKp(x+ y)‖x ∧ y‖2 − 1

45K(p)2 (‖x‖2 − 4〈x, y〉+ ‖y‖2
)
‖x ∧ y‖2

− 1
60
(
∇2Kp(x, x)+∇2Kp(x, y)+∇2Kp(y, y)

)
‖x∧y‖2+o((‖x‖2+‖y‖2)3).

We postpone the proof of Lemma 2.3 to the Appendix.

Corollary 2.4. — Let u 6= v be vectors in the unit sphere S1
p ⊂ TpM .

Let ϕ := arccos〈u, v〉 ∈ (0, π] denote the angle between u and v. Then,
using the abbreviation C := ‖u− v‖ =

√
2− 2 cosϕ, we have

dist(expp(ru), expp(rv)) = Cr − sin2 ϕ

6C K(p)r3 − sin2 ϕ

24C dKp(u+ v)r4

−
[(

sin4 ϕ

72C3 + sin2 ϕ · (2− 4 cosϕ)
90C

)
K(p)2

+ sin2 ϕ

120C
(
∇2Kp(u, u) +∇2Kp(u, v) +∇2Kp(v, v)

)]
r5

− sin4 ϕ

144C3K(p)dKp(u+ v)r6 +O(r7)

for r ↘ 0.

Proof. — Note that ‖ru ∧ rv‖2 = r4 sin2 ϕ. The claimed formula now
follows directly by applying Lemma 2.3 to x := ru, y := rv and forming
the square root of the resulting power series. �

3. Donnelly’s b2 for rotations in dimension two

Notation and Remarks 3.1. — We continue to use the notation of Sec-
tion 2; in particular, (M, g) is a two-dimensional Riemannian manifold.
Let p ∈ M and ϕ ∈ (0, π]. Equip TpM with an arbitrarily chosen ori-
entation, and let Dϕ : TpM → TpM denote the corresponding euclidean
rotation by the angle ϕ. Let ε1 > 0 such that expp is a diffeomorphism from
Bε1(0p) ⊂ TpM to its image B := Bε1(p) ⊂ M . Choose 0 < ε < ε2 < ε1 ,
and let

V := Bε2(p) ⊂ B and U := Bε(p) ⊂ V.
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Suppose that there exists an isometry

Φ : (B, g)→ (B, g) with Φ(p) = p and dΦp = Dϕ.

A result by Donnelly [8], applied to this special situation, says that

I(t) :=
∫
U

H(t, q,Φ(q)) dvolg(q)

admits an asymptotic expansion of the form

(3.1) I(t) ∼
∞∑
`=0

b`(Φ)t` for t↘ 0,

where H := HV denotes the (Dirichlet) heat kernel of V .

Remark 3.2. — Note that no factor (4πt)−n/2 is visible on the right hand
side of (3.1); this is due to the fact that the dimension n of the fixed point
set {p} of Φ is zero here. In a much more general situation, involving fixed
point sets of arbitrary isometries on manifolds of arbitrary dimension, Don-
nelly proved a structural result for analogous coefficients b` and explicitly
computed b0 and b1 (but not b2). In our above situation, Donnelly’s for-
mulas for b0 and b1 amount to

b0(Φ) = (2− 2 cosϕ)−1 and b1(Φ) = 2K(p)(2− 2 cosϕ)−2

(see also [9] for this in the case ϕ ∈ {2π/k | k ∈ N}). In this section we
will compute b2(Φ); see Theorem 3.7. Our strategy is to follow Donnelly’s
general approach from [8, p. 166–167], in our special setting.

Remark 3.3.
(i) The coefficients in (3.1) will not change if in the definition of I(t) we

replace V by any other open, relatively compact, smoothly bounded
neighborhood of U in M (e.g., M itself in case M is a closed sur-
face). In fact, while the individual values of H(t, q, w) will of course
depend on this choice (and so will I(t)), the coefficients of the small-
time expansion of H(t, q, w) for q, w ∈ U do not depend on it. This
is due to the “Principle of not feeling the boundary”; see, e.g., [11],
[12], or [18, Lemma 3.17].

(ii) The coefficients in (3.1) will not change, either, if in the definition
of I(t) we replace the integral over U by the integral over any smaller
open neighborhood Ũ ⊂ U of p. This is due to the fact that by our
choices of ε and ϕ, the function U \ Ũ : q 7→ dist(q,Φ(q)) ∈ R will
be bounded below by some positive constant, which implies that
the integral of H(t, q,Φ(q)) over U \ Ũ vanishes to infinite order as
t↘ 0.
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Lemma 3.4. — Let the situation be as in 3.1. Then we have dKp = 0.
Moreover, if ϕ ∈ (0, π) then ∇2Kp = − 1

2∆gK(p) · gp . Finally, for every
ϕ ∈ (0, π] and every u ∈ S1

p , the function

du : r 7→ dist(expp(ru), expp(rv)),

where v := Dϕ(u), satisfies

(3.2) du(r) = Cr − sin2 ϕ

6C K(p)r3

−
[(

sin4 ϕ

72C3 + sin2 ϕ · (2−4 cosϕ)
90C

)
K(p)2 − sin2 ϕ · (2+cosϕ)

240C ∆gK(p)
]
r5

+O(r7)

for r ↘ 0, where C =
√

2− 2 cosϕ.

Proof. — The first two statements are clear since dKp and ∇2Kp are
invariant under Dϕ. In particular, in the case ϕ ∈ (0, π) we have

∇2Kp(u, u) +∇2Kp(u, v) +∇2Kp(v, v) = −1
2∆gK(p) · (2 + cosϕ),

so (3.2) follows by Corollary 2.4. In case ϕ = π, (3.2) trivially holds by
du(r) = 2r, C = 2, sinϕ = 0. �

Remark 3.5. — In the following Lemma 3.6 some formulas would become
simpler if we assumed ∇2Kp to be a multiple of gp . This would imply
∇2Kp(u, u) = − 1

2∆gK(p) for all u ∈ S1
p . Recall from Lemma 3.4 that this

is the case anyway if ϕ ∈ (0, π) in 3.1. For ϕ = π, however, the above
assumption on ∇2Kp would unnecessarily make the Lemma less precise.

Lemma 3.6. — In the situation of 3.1, letting C :=
√

2− 2 cosϕ and
v := Dϕu we have

u0(expp(ru), expp(rv)) = 1 + 1
12K(p)du(r)2

+
(

1
24C2∇

2Kp(u, u) + 1
160K(p)2 − 1

120∇
2Kp(u, u)

)
du(r)4

+O(du(r)5),

u1(expp(ru), expp(rv)) = 1
3K(p)

+
(

1
6C2∇

2Kp(u, u) + 1
30K(p)2 − 1

30∇
2Kp(u, u)− 1

120∆gK(p)
)
du(r)2

+O(du(r)3),
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u2(expp(ru), expp(rv)) = 1
15K(p)2 − 1

15∆gK(p) +O(du(r)1).

Proof. — Let q(r) := expp(ru), w(r) := exp(rv). Moreover, for small
r > 0, let Y (r) ∈ Tq(r)M be the vector with expq(r)(Y (r)) = w(r). Then
‖Y (r)‖g = du(r), Y (0) = 0, and the initial covariant derivative of Y is

Y ′(0) = Dϕu− u = (cosϕ− 1)u+ (sinϕ)ũ = −1
2C

2u+ (sinϕ)ũ,

where ũ := Dπ/2u. We apply (2.3) to q(r) instead of p and du(r) instead
of r, and we use dKp = 0 (see Lemma 3.4). Recalling (3.2) and, in partic-
ular, r = O(du(r)) for r ↘ 0 (since C > 0), we obtain

u0(q(r), w(r)) = 1 + 1
12K(q(r))du(r)2 + 1

24dKq(r)(Y (r))du(r)2

+ 1
160K(q(r))2du(r)4 + 1

80∇
2Kq(r)(Y (r), Y (r))du(r)2 +O(du(r)5)

= 1 + 1
12(K(p) + 1

2r
2∇2Kp(u, u))du(r)2 + 1

24r∇
2Kp(u, rY ′(0))du(r)2

+ 1
160K(p)2du(r)4 + 1

80∇
2Kp(rY ′(0), rY ′(0))du(r)2 +O(du(r)5).

We have

r∇2Kp(u, rY ′(0)) = −1
2∇

2Kp(u, u)C2r2,

∇2Kp(rY ′(0), rY ′(0)) = ∇2Kp(u, u)C2r2.
(3.3)

In case π = ϕ this follows from Y ′(0) = − 1
2C

2u + 0 and C = 2; in case
ϕ ∈ (0, π) it follows from the fact that ∇2Kp is a multiple of gp (see
Lemma 3.4) and from ‖Y ′(0)‖2g = C2. The first statement of the lemma
now follows by noting that C2r2 = du(r)2 +O(du(r)4). Analogously, (2.5)
and evaluating up the order of r2 gives, using (3.3) again:

u1(q(r), w(r)) = 1
3K(q(r)) + 1

6dKq(r)(Y (r))

+
(

1
30K(q(r))2 − 1

120∆gK(q(r))
)
du(r)2 + 1

20∇
2Kq(r)(Y (r), Y (r))

+O(du(r)3)

= 1
3

(
K(p) + 1

2r
2∇2Kp(u, u)

)
+ 1

6 ·
(
−1

2∇
2Kp(u, u)C2r2

)
+
(

1
30K(p)2 − 1

120∆gK(p)
)
du(r)2 + 1

20∇
2Kp(u, u)C2r2 +O(du(r)3),

which implies the second formula. The third formula is clear by (2.4). �
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Theorem 3.7. — In the situation of 3.1, and with C :=
√

2− 2 cosϕ,
the coefficient b2(Φ) in (3.1) is given by

b2(Φ) =
(

12
C6 −

2
C4

)
K(p)2 − 2

C6 ∆gK(p).

Proof. — Recall the notation of 3.1. There is a neighborhood Ω ⊂ V ×V
of the diagonal such that for all (q, w) ∈ Ω,

4πt edist2(q,w)/4tH(t, q, w)−
2∑
k=0

uk(q, w)tk ∈ O(t3) as t↘ 0,

and this holds locally uniformly on Ω. By Remark 3.3(ii), we can assume
that ε is so small that (q,Φ(q)) ∈ Ω for all q in the closure U ⊂ V of
U = Bε(p). Using polar coordinates on U and writing

H(t, x, y) := H(t, expp(x), expp(y))

for x, y ∈ Bε2(0p), we have

I(t) =
∫
S1
p

∫ ε

0
H(t, ru, rDϕ(u)) · `u(r) dr du,

where `u is as in 2.1. Note that by our choices of ε and ϕ, the function

S1
p × [0, ε) 3 (u, r) 7→ du(r) := dist(expp(u), expp(rDϕ(u))) ∈ R

is continuous, and it is smooth on S1
p × (0, ε). By Lemma 3.4, for every

u ∈ S1
p the function du has the expansion (3.2) as r ↘ 0. Moreover, the

corresponding remainder terms for du , and also for d′u , can be estimated
in terms of smooth curvature expressions and are thus bounded uniformly
in u ∈ S1

p . In particular, there exists 0 < ε̃ < ε such that du|[0,ε̃] has strictly
positive derivative for each u ∈ S1

p . Thus

η := min{du(ε̃/2) | u ∈ S1
p} > 0

is a regular value of Bε̃(p) 3 q 7→ dist(q,Φ(q)) ∈ R, so

ρ(u) := (du|[0,ε̃])−1(η) ∈ (0, ε̃/2]

depends smoothly on u ∈ S1
p . Let

Ũ := {expp(ru) | u ∈ S1
p , r ∈ [0, ρ(u))}.

Then Ũ ⊂ U is an open neighborhood of p, so by Remark 3.3(ii), I(t) has
the same asymptotic expansion for t↘ 0 as

Ĩ(t) :=
∫
Ũ

H(t, q,Φ(q)) =
∫
S1
p

∫ ρ(u)

0
H(t, ru, rDϕ(u)) · `u(r) dr du.
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Writing d−1
u for the inverse of du|[0,η] and substituting r by = du(r)/

√
t we

obtain

(3.4) Ĩ(t) =
∫
S1
p

∫ η/
√
t

0
H
(
t, d−1

u (z
√
t)u, d−1

u (z
√
t)Dϕ(u)

)
·

·
√
t · `u

(
d−1
u (z
√
t)
)
· (d−1

u )′(z
√
t) dz du.

Note that

dist
(
d−1
u (z
√
t)u, d−1

u (z
√
t)Dϕ(u)

)
= z
√
t.

Thus, H
(
t, d−1

u (z
√
t)u, d−1

u (z
√
t)Dϕ(u)

)
for t ↘ 0 is approximated, uni-

formly in (u, z) ∈ S1
p × [0, η], by

(3.5) (4πt)−1e−z
2/4

( 2∑
i=0

ui(d−1
u (z
√
t)u, d−1

u (z
√
t)Dϕ(u))ti +O(t3)

)
.

By Lemma 3.6,

2∑
i=0

ui

(
d−1
u (z
√
t)u, d−1

u (z
√
t)Dϕ(u)

)
ti = 1 + 1

12K(p)z2t

+
(

1
24C2∇

2Kp(u, u) + 1
160K(p)2 − 1

120∇
2Kp(u, u)

)
z4t2 + 1

3K(p)t

+
(

1
6C2∇

2Kp(u, u) + 1
30K(p)2 − 1

30∇
2Kp(u, u)− 1

120∆gK(p)
)
z2t2

+ 1
15K(p)2t2 − 1

15∆gK(p)t2 +O(t3),

uniformly in (u, z) ∈ S1
p × [0, η]. Moreover, from (3.2) one obtains

d−1
u (s) = 1

C
s+ sin2 ϕ

6C5 K(p)s3 +Bs5 +O(s7)

with

B :=
(

7 sin4 ϕ

72C9 + sin2 ϕ · (2− 4 cosϕ)
90C7

)
K(p)2

− sin2 ϕ · (2 + cosϕ)
240C7 ∆gK(p),
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and

(d−1
u (s))3 = 1

C3 s
3 + sin2 ϕ

2C7 K(p)s5 +O(s7),

(d−1
u (s))5 = 1

C5 s
5 +O(s7),

(d−1
u )′(s) = 1

C
+ sin2 ϕ

2C5 s2 + 5Bs4 +O(s6).

Using this and (2.1), one sees by a straightforward calculation:

√
t · `u(d−1

u (z
√
t)) · (d−1

u )′(z
√
t) = 1

C2 zt+
(

2 sin2 ϕ

3C6 − 1
6C4

)
K(p)z3t2

+
(

2 sin4 ϕ

3C10 − sin2 ϕ

6C8 + sin2 ϕ · (2− 4 cosϕ)
15C8 + 1

120C6

)
K(p)2z5t3

+
(
− sin2 ϕ · (2 + cosϕ)

40C8 ∆gK(p)− 1
40C6∇

2Kp(u, u)
)
z5t3 +O(t4).

By 2− 4 cosϕ = 2C2 − 2, 2 + cosϕ = 3− 1
2C

2, and sin2 ϕ = C2(1− 1
4C

2),
this becomes
√
t · `u(d−1

u (z
√
t)) · (d−1

u )′(z
√
t)

= 1
C2 zt+

(
1

2C4 −
1

6C2

)
K(p)z3t2 +

(
3

8C6 −
1

8C4 + 1
120C2

)
K(p)2z5t3

+
[(
− 3

40C6 + 1
32C4 −

1
320C2

)
∆gK(p)− 1

40C6∇
2Kp(u, u)

]
z5t3 +O(t4).

Multiplying this expression by (3.5), we obtain that the integrand in (3.4)
for t↘ 0 is approximated, uniformly in (u, z) ∈ S1

p × [0, η], by

1
4π e

−z2/4 ·
{

1
C2 z +

[(
1

2C4 −
1

12C2

)
z3 + 1

3C2 z

]
K(p)t

+
[(

3
8C6 −

1
12C4 + 1

1440C2

)
z5 +

(
1

6C4 −
1

45C2

)
z3 + 1

15C2 z

]
K(p)2t2

+
[(
− 3

40C6 + 1
32C4 −

1
320C2

)
z5 − 1

120C2 z
3 − 1

15C2 z

]
∆gK(p)t2

+
[(
− 1

40C6 + 1
24C4 −

1
120C2

)
z5 +

(
1

6C4 −
1

30C2

)
z3
]
∇2Kp(u, u)t2

+O(t3)
}
.

Recall that η > 0, so for any k ∈ N0 we have
∫∞
η/
√
t
e−z

2/4zk ∈ O(t∞) for

t ↘ 0. Therefore, we can replace
∫ η/√t

0 by
∫∞

0 in (3.4) without changing
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the coefficients in its asymptotic expansion for t↘ 0. Moreover,∫ ∞
0

e−z
2/4z2k+1dz = 22k+1k!,

giving 2 for k = 0, 8 for k = 1, and 64 for k = 2. Finally,∫
S1
p

∇2Kp(u, u) du = −1
2

∫
S1
p

∆gK(p) du.

Using all this, we obtain

Ĩ(t) = 2π
4π

{
1
C2 · 2 +

[(
1

2C4 −
1

12C2

)
· 8 + 1

3C2 · 2
]
K(p)t

+
[(

3
8C6 −

1
12C4 + 1

1440C2

)
·64+

(
1

6C4 −
1

45C2

)
·8+ 1

15C2 ·2
]
K(p)2t2

+
[(
− 3

40C6 + 1
32C4 −

1
320C2

)
· 64− 1

120C2 · 8−
1

15C2 · 2
]
∆gK(p)t2

+
[(
− 1

40C6 + 1
24C4 −

1
120C2

)
·64+

(
1

6C4 −
1

30C2

)
·8
]
·
(
−1

2∆gK(p)
)
t2
}

+O(t3)

= 1
C2 + 2

C4K(p)t+
[(

12
C6 −

2
C4

)
K(p)2 − 2

C6 ∆gK(p)
]
t2 +O(t3)

for t ↘ 0, yielding the claimed result for the coefficient b2(Φ) at t2 and,
as an aside, the previously known formulas for b0(Φ) and b1(Φ) (see Re-
mark 3.2). �

4. Contribution of orbisurface cone points to the second
order heat coefficient

We now consider the heat kernel of compact Riemannian orbifolds; see,
e.g., [9] for the general framework in this context. Let (O, g) be a closed
two-dimensional Riemannian orbifold, let HO : (0,∞)×O×O → R denote
the heat kernel associated with the Laplace operator ∆g on C∞(O), and
let

Z(t) :=
∫
O
HO(t, x, x) dx

be the corresponding heat trace. It is well-known that there is an asymptotic
expansion

Z(t) ∼ (4πt)−1
∞∑
i=0

ai/2t
i/2
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for t↘ 0; half powers may occur if O contains mirror lines. More precisely,
the principal (open) stratum contributes (4πt)−1∑∞

`=0 a
(O)
` t` to this expan-

sion (where a(O)
k are the integrals over O of certain curvature invariants,

the same as in the case of manifolds), and any singular stratum N ⊂ O
adds a contribution of the form

(4πt)− dim(N)/2
∞∑
`=0

a
(N)
` t` ;

see [9, Theorem 4.8]. In the case N = {p}, where p ∈ O is a cone point
of order k ∈ N, arising from a rotation Φ with angle ϕ := 2π/k, one has
dim(N) = 0 and

(4.1) a
({p̄})
` = 1

k

k−1∑
j=1

b`(Φj),

where the b` are as in 3.1 (see [9, 4.5–4.8 & Example 5.3]). More precisely,
the role of the manifold M of 3.1 is played here by the domain Ũ of a local
orbifold chart around p, endowed with the pull-back of the Riemannian
metric g (again denoted g), such that (Ũ , g)/{Id,Φ, . . . ,Φk−1} is isometric
to a neighborhood of p in O; the point p of 3.1 is the preimage of p.

Theorem 4.1. — Let p ∈ (O, g) be a cone point of order k ∈ N as
above. Then

a
({p̄})
2 =

[
1

2520

(
k5 − 1

k

)
+ 1

720

(
k3 − 1

k

)
+ 1

180

(
k − 1

k

)]
K(p)2

−
[

1
15120

(
k5 − 1

k

)
+ 1

1440

(
k3 − 1

k

)
+ 1

180

(
k − 1

k

)]
∆gK(p).

Proof. — Let p denote the preimage of p in an orbifold chart (Ũ , g) as
above. Note that with ϕ := 2π/k and C :=

√
2− 2 cosϕ one has

C2 = 4 sin2 ϕ

2 ,

and by [7, p. 148] or, e.g., [18, 3.55],

k−1∑
j=1

1
sin4(j · πk )

= 1
45(k4 − 1) + 2

9(k2 − 1),

k−1∑
j=1

1
sin6(j · πk )

= 2
945(k6 − 1) + 1

45(k4 − 1) + 8
45(k2 − 1).
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Combining this with (4.1) and Theorem 3.7, we obtain

a
({p̄})
2

= 1
k

k−1∑
j=1

[(
12

43 sin6(j · πk )
− 2

42 sin4(j · πk )

)
K(p)2− 2

43 sin6(j · πk )
∆gK(p)

]

= 1
k

{[
12 · 2

64 · 945(k6 − 1) +
(

12 · 1
64 · 45 −

2 · 1
16 · 45

)
(k4 − 1)

+
(

12 · 8
64 · 45 −

2 · 2
16 · 9

)
(k2 − 1)

]
K(p)2

−
[

2 · 2
64 · 945(k6 − 1) + 2 · 1

64 · 45(k4 − 1) + 2 · 8
64 · 45(k2 − 1)

]
∆gK(p)

}
=
[

1
2520

(
k5 − 1

k

)
+ 1

720

(
k3 − 1

k

)
+ 1

180

(
k − 1

k

)]
K(p)2

−
[

1
15120

(
k5 − 1

k

)
+ 1

1440

(
k3 − 1

k

)
+ 1

180

(
k − 1

k

)]
∆gK(p).

Finally, note that by definition of the curvature and the Laplacian on Rie-
mannian orbifolds, K(p) = K(p) and ∆gK(p) = ∆gK(p). The theorem
now follows. �

Remark 4.2. — Analogously, one could derive that

a
({p̄})
0 = 1

12

(
k − 1

k

)
,

a
({p̄})
1 =

[
1

360

(
k3 − 1

k

)
+ 1

36

(
k − 1

k

)]
K(p),

for an orbisurface cone point p ∈ (O, g) of order k, using
k−1∑
j=1

1
sin2(j · π/k)

= 1
3(k2 − 1) and b0(Φ) = 1

C
, b1(Φ) = 2

C2K(p).

Note that the above formulas for a({p̄})
0 and a({p̄})

1 were already computed
in [9, 5.6].

5. Corner contributions to the heat coefficients of geodesic
polygons, up to degree two

In this section we follow ideas from [18, Section 4.3], concerning the
case of interior angles of the form γ = π/k in geodesic polygons. However,
we drop the assumption of constant Gauss curvature which was present
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there and replace it by certain milder symmetricity assumptions (see (5.1)
below).

Notation 5.1. — We consider a two-dimensional Riemannian manifold
(M, g) again. Let P be a compact geodesic polygon in (M, g), and let p ∈M
be one of its corners. Let γ be the interior angle of P at p. (For simplicity we
assume that there is only one interior angle of P at the corner p, although
more general settings as considered in [18] could be treated analogously.)
As in 3.1, choose ε1 > 0 such that expp |Bε1 (0p) is a diffeomorphism onto
its image

B := Bε1(p).

We now also assume that ε1 is so small that B ∩ P is the image, under
expp |Bε1 (0p) , of a circular sector of radius ε1 in TpM . Let E0 , E1 be the
two geodesic segments in B ∩ ∂P which meet at p, and let u0 , u1 ∈ S1

p be
unit vectors pointing into the direction of E0 and E1 , respectively. Choose
the orientation on B such that the rotation Dγ : TpM → TpM maps u0
to u1 . Let S : TpM → TpM denote the reflection across Ru0 . We consider
the diffeomorphisms

σ := expp ◦S ◦
(

expp |Bε1 (0p)

)−1
: B → B,

δγ := expp ◦Dγ ◦
(

expp |Bε1 (0p)

)−1
: B → B.

Denote by G the group of diffeomorphisms of B generated by δγ and σ.
We now assume that γ is of the form

γ = π/k for some k > 2 in N, so G is a dihedral group of order 4k.

Moreover, we assume that, after possibly making ε1 smaller,

(5.1) G = 〈{δγ , σ}〉 ⊂ Isom(B, g).

Note that G consists of the 2k rotations δiγ := (δγ)i with i ∈ {0, . . . , 2k−1}
and the 2k reflections δiγ ◦σ. (A special case in which the above symmetry
assumptions hold is the case of B being a rotational surface with vertex p.)
We choose ε > 0 such that ε2 := 2ε < ε1 and write

V := B2ε(p) ⊂ B, U := Bε(p) ⊂ V,
W2ε := V ∩ P, Wε := U ∩ P.

Finally, we denote by HP , HV , HW2ε the Dirichlet heat kernels of P , V ,
and W2ε , respectively.
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Remark 5.2. — Let the situation be as above in 5.1, and let

ZWε
(t) :=

∫
Wε

HP (t, q, q) dq,

where dq abbreviates dvolg(q). Note that the contribution of the inte-
rior angle at the corner p to the asymptotic expansion of the heat trace
t 7→

∫
P
HP (t, q, q) dq of P is the same as its contribution to the asymptotic

expansion of the function ZWε
as just defined. We will now show, using

the symmetry assumption (5.1), that the contribution of the interior an-
gle γ = π/k at p to the asymptotic expansion of ZWε

(t) equals 1
2 times

the contribution of a cone point p of order k to the heat kernel coefficients
of a Riemannian orbisurface, where p has a neighborhood isometric to B
divided by a group of rotations about p. One could show this by using
arguments analogous to those in [18, p. 142–144]. We choose a related, but
slightly different argument using a little trick (see (5.3) below) involving
rotations, as in the computation in [18, p. 108].
First of all, by the Principle of not feeling the boundary (recall Re-

mark 3.3(i)), we can replace HP (t, q, q) by HW2ε(t, q, q) in the definition
of ZWε

(t) without changing its asymptotic expansion as t ↘ 0. Next, we
describe HW2ε(t, q, q) using Sommerfeld’s method of images (see also [18,
Section 3.4]): For i ∈ {0, . . . , 2k − 1} let

σi := δiγ ◦ σ ◦ δ−iγ ∈ Isom(B, g)

denote the reflection across the geodesic with initial vector (Dγ)i(u0) =
Diγ(u0). Of course, σi = σi+k for i ∈ {0, . . . , k − 1}. Write

Ψi := σi ◦ · · · ◦ σ1 for i ∈ {1, . . . , 2k − 1}, and Ψ0 := IdV .

Then

HW2ε(t, q, q) =
2k−1∑
i=0

(−1)iHV (t, q,Ψi(q))

for all t > 0 and q ∈W . So the small-time asymptotic expansion of ZWε
(t)

is the same as that of

(5.2)
2k−1∑
i=0

(−1)i
∫
Wε

HV (t, q,Ψi(q)) dq.

We now show that sum of those summands which correspond to odd in-
dices i does actually not enter into the corner contribution: Note that
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Ψ2j−1 = σj for j ∈ {1, . . . , k} and thus, using σj = δjγ ◦ σ0 ◦ δ−jγ :

(5.3)
k∑
j=1

∫
Wε

(−1)2j−1HV (t, q,Ψ2j−1(q)) dq

= −
k∑
j=1

∫
Wε

HV (t, δ−jγq, δ−jγσj(q)) dq

= −
k∑
j=1

∫
Wε

HV (t, δ−jγq, σ0(δ−jγ(q)) dq

= −
k∑
j=1

∫
δ−jγ(Wε)

HV (t, q, σ0(q)) dq

= −
∫⋃

j=1,...,k
δ−jγ(Wε)

HV (t, q, σ0(q)) dq

= −
∫
U ′
HV (t, q, σ0(q)) dq,

where U ′ :=
⋃
j=1,...,k δ

−jγ(Wε) is a half-disc; U ′ is that part of U =
Bε(p) that lies on the same side of Lε := expp({ru0 | r ∈ (−ε, ε)}) as
σ0(Wε) = δ−γ(Wε). In particular, U ′ has no corner at p, and the small-
time asymptotic expansion of (5.3) will yield only the contribution of the
straight boundary segment Lε to the Dirichlet heat trace expansion of the
analogous half-disc V ′ ⊂ V .

Write ϕ := 2γ = 2π/k and Φ := δϕ. Then, on the other hand, the sum
of those summands in (5.2) which correspond to even indices i gives, using
Ψ2j = δ2jγ and the symmetry condition (5.1):

k−1∑
j=0

∫
Wε

(−1)2jHV (t, q,Ψ2j(q)) dq = 1
2 · 2

k−1∑
j=0

∫
Wε

HV (t, q, δ2jγ(q)) dq

= 1
2

k−1∑
j=0

∫
Wε∪ δγ(Wε)

HV (t, q, δ2jγ(q)) dq = 1
2k

k−1∑
j=0

∫
U

HV (t, q,Φj(q)) dq.

By (3.1), the asymptotic expansion for t↘ 0 of this sum is

1
2k

k−1∑
j=0

∞∑
`=0

b`(Φj)t` =
∞∑
`=0

α`t
` with α` := 1

2k

k−1∑
j=0

b`(Φj).

By (4.1), we have α` = 1
2a

({p̄})
` , where p is a cone point of order k in

any closed orbisurface O with the property that some neighborhood of p
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is isometric to B/{Φj | j = 0, . . . , k − 1}. We know the values of 1
2a

({p̄})
0 ,

1
2a

({p̄})
1 , 1

2a
({p̄})
2 from Remark 4.2 and Theorem 4.1. Finally, note that

km−1 − 1
k

= πm − γm

γm−1π

since γ = π/k. So we have shown:

Main Theorem 5.3. — In the situation of Notation 5.1, with the sym-
metry assumption (5.1), the contribution of the corner p with interior angle
γ = π/k (where k ∈ N, k > 2) to the asymptotic expansion of the heat
trace associated with the Dirichlet Laplacian of the geodesic polygon P has
the form

∑∞
`=0 c`(γ)t` with the coefficients c`(γ) given by

c`(γ) = 1
2a

({p̄})
` ,

where p is an orbisurface cone point of order k having a neighborhood
isometric to B/{δ2jγ | j = 0, . . . , k − 1}. In particular, by Theorem 4.1,

c0(γ) = π2 − γ2

24γπ ,(5.4)

c1(γ) =
(
π4 − γ4

720γ2π
+ π2 − γ2

72γπ

)
K(p),(5.5)

c2(γ) =
(
π6 − γ6

5040γ5π
+ π4 − γ4

1440γ3π
+ π2 − γ2

360γπ

)
K(p)2(5.6)

−
(
π6 − γ6

30240γ5π
+ π4 − γ4

2880γ3π
+ π2 − γ2

360γπ

)
∆gK(p).

(As always in this article, ∆g here denotes − divg ◦ gradg.)

Remarks 5.4.
(i) Formula (5.4) for c0(γ) seems well-known, even for general γ (not

only those of the form γ = π/k) and without any symmetry as-
sumptions; see, e.g., the discussion in [13]. Of course, in the case of
euclidean polygons this is obvious from the classical formula (1.1)
found by D. Ray and proved by van den Berg and Srisatkunara-
jah [1].

(ii) In the case of constant curvature K = 1, the above formulas (5.4),
(5.5), (5.6) (even for general γ ∈ (0, 2π]) were proved by Wat-
son [19]. In the case of arbitrary constant curvature K ∈ R the
same was proved by Uçar in [18], the main breakthrough there be-
ing the computation of the Green kernel for an arbitrary geodesic
wedge in the hyperbolic plane. Those authors actually computed
c`(γ) for every ` ∈ N0 in the case K = 1, resp. K ∈ R constant. It
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turns out that for constant curvature K, one has c`(γ) = f`(γ) ·K`

for certain rational functions f` . Of course, based on Uçar’s and
Watson’s formulas, the above formula for c1(γ), as well as the coef-
ficient at K(p)2 in c2(γ), was to be expected. However, the constant
curvature case did not provide insight into the way in which ∆gK(p)
(which is, up to linear combinations, the only other curvature in-
variant of order four in dimension two besides K(p)2) might enter
into c2(γ).

(iii) To the author’s best knowledge, formula (5.6) for c2(γ) (with γ ∈
{π/k | k ∈ N} and under the symmetry assumptions (5.1)), espe-
cially its coefficient at ∆gK(p), was not known previously. In par-
ticular, the main theoretic insight that this formula provides is that
here the coefficient at ∆gK(p) is a rational function of γ, and that
it is of a similar structure as the coefficient at K(p)2. We expect
that the formula extends to general γ ∈ (0, 2π]; see Conjecture 5.5.
below.

(iv) Note that the symmetry condition (5.1), which has been necessary
for our approach, implies that the gradient of K at p vanishes.
Therefore, the methods of the present article cannot lead in any
way, in situations where that symmetry condition is absent, to any
knowledge about the possible coefficient of ‖∇K(p)‖2 in c3(γ) (note
that ‖∇K(p)‖2 is one of the curvature invariants of order six). Con-
cerning c2(γ), however, we expect that formula (5.6) from the above
theorem holds more generally, at least if ∇2Kp still is a multiple
of gp . So we conclude this paper with the following conjecture:

Conjecture 5.5. — Let γ ∈ (0, 2π], and let P be a compact geodesic
polygon in a two-dimensional Riemannian manifold (M, g). Let p be a
corner of P with interior angle γ ∈ (0, 2π], and assume that ∇2Kp is a
multiple of gp . Then the coefficient at t2 in the small-time asymptotic
expansion of the Dirichlet heat kernel of P is given by formula (5.6).

Appendix A. Proof of Lemma 2.3

We partly follow Nicolaescu’s approach from [16, Appendix A]. He con-
sidered Riemannian manifolds of arbitrary dimension n and there derived
the expansion of dist(expp(x), expp(y)) up to order four. In dimension
two, his formula corresponds to the first two terms of formula (2.8), with
K(p)‖x ∧ y‖2 replaced by 〈R(x, y)y, x〉. The idea in [16] is to use the fact
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that for any q ∈ M , the function f := dist2(q, · ) : M → R satisfies,
wherever it is smooth (in particular, near q), a so-called Hamilton–Jacobi
equation:

(A.1) ‖df‖2 = 4f.

Here we use ‖ · ‖ to denote the pointwise norm canonically induced by g on
tensor fields, and we will do similarly for 〈 · , · 〉.

Choose a small neighborhood W of 0 ∈ TpM contained in the do-
main of injectivity of expp and such that U := expp(W ) ⊂ M is convex
(meaning that for all q, w ∈ U , there exists a unique geodesic in M with
length dist(q, w), and that geodesic is contained in U). Consider

F : W ×W 3 (x, y) 7→ dist2(expp(x), expp(y)) ∈ R.

We write the Taylor expansion of F at (0, 0) in the form

(T∞(0,0)F )(x, y) = (F0 + F1 + F2 + F3 + . . .)(x, y)
with Fm = Fm,0 + Fm−1,1 + . . .+ F0,m ,

(A.2)

where each Fk,`(x, y) is k-linear in x and `-linear in y. Since F is symmetric,
F`,k is obtained from Fk,` by interchanging x and y. Moreover,

F (x, 0) = ‖x‖2, hence Fk,0 = 0 = F0,k for all k > 2.

Note that by the First Variation Formula we have

d
dt

∣∣∣∣
t=0

F (tx, y) = −2〈x, y〉, hence F1,k = 0 = Fk,1 for all k > 1.

(This was not used in [16].) In particular,

F3 = 0 and F4 = F2,2

(as already known), and what we are actually after are explicit formulas,
in our two-dimensional setting, for

F5 = F3,2 + F2,3 and F6 = F4,2 + F3,3 + F2,4.

For each y ∈W , F y := F ( · , y) : W → R is smooth. Let ĝ be the Riemann-
ian metric (expp |W )∗g on W . Then (A.1) says

4F y = ‖dF y‖2ĝ.

Since we assume dimM = 2, we can express ‖(dF y)x‖2ĝ at each nonzero
x ∈ W as follows: Consider the ĝ-orthonormal basis {x/‖x‖, x̃/‖x̃‖ĝ} of
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TxW , where x̃ ∈ TxW denotes the 90-degree rotation of x with respect to
an arbitrarily chosen orientation on the euclidean plane (TpM, gp). Then

‖(dF y)x‖2ĝ = (dF y)x(x)2/‖x‖2 + (dF y)x(x̃)2/‖x̃‖2ĝ
=
(
(dF y)x(x)2 + (dFy)x(x̃)2) /‖x‖2 − (dF y)x(x̃)2/‖x‖2

+ (dF y)x(x̃)2/‖x̃‖2ĝ
= ‖(dF y)x‖2 + (dF y)x(x̃)2(‖x̃‖−2

ĝ − ‖x‖
−2)

(A.3)

For this, recall that ‖ · ‖ denotes the norm with respect to gp, and for x
viewed as an element of TxW , ‖x‖ĝ = ‖x‖ since expp is a radial isometry.
Using (2.2) for u = x/‖x‖, r = ‖x‖ and noting that

‖(d expp)x(x̃)‖ = θu(r)‖x̃‖ = θu(r)‖x‖,

we have, for x̃ viewed as an element of TxW :

‖x̃‖ĝ = ‖x‖ − 1
6K(p)‖x‖3 − 1

12dKp(x)‖x‖3 + 1
120K(p)2‖x‖5

− 1
40∇

2Kp(x, x)‖x‖3 +O(‖x‖6).

By the resulting expansion of ‖x̃‖−2
ĝ and (A.3), equation (A.1) becomes

4F (x, y) = ‖(dF y)x‖2 + (dF y)x(x̃)2 ·
(

1
3K(p) + 1

6dKp(x)

+ 1
15K(p)2‖x‖2 + 1

20∇
2Kp(x, x) +O(‖x‖3)

)
.

Comparing the terms of total order five in x and y in this equation we get,
writing F ym := Fm( · , y), noting that (dF ym)x is of total order m − 1, and
recalling F0 = 0, F1 = 0, F2(x, y) = ‖x− y‖2, F3 = 0:

4F5(x, y) = 2〈(dF y5 )x, (dF y2 )x〉+ (dF y2 )x(x̃)2 · 1
6dKp(x)

= 4(dF y5 )x(x− y) + 4〈x− y, x̃〉2 · 1
6dKp(x).

In particular, by (dF yk,`)x(x) = kFk,`(x, y) we have

4F3,2(x, y) = 12F3,2(x, y) + 4‖x ∧ y‖2 · 1
6dKp(x),

which gives

F3,2(x, y) = − 1
12dKp(x)‖x ∧ y‖2.
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The claimed form of F5 now follows by symmetry in x and y. Similarly,
taking the well-known formula

F4(x, y) = −1
3K(p)‖x ∧ y‖2

for granted (which could otherwise first been proved analogously), and
using

(dF y2 )x(x̃) = −2〈x̃, y〉,

(dF y4 )x(x̃) = 2
3K(p)〈x, y〉〈x̃, y〉,

〈x̃, y〉2 = ‖x ∧ y‖2,

we obtain
4F6(x, y) = ‖(dF y4 )x‖2 + 2〈(dF y6 )x, (dF y2 )x〉

+ 2(dF y2 )x(x̃)(dF y4 )x(x̃) · 1
3K(p)

+ (dF y2 )x(x̃)2 ·
(

1
15K(p)2‖x‖2 + 1

20∇
2Kp(x, x)

)
= 4

9K(p)2‖x ∧ y‖2‖y‖2 + 4(dF y6 )x(x− y)

− 8
9K(p)2‖x ∧ y‖2〈x, y〉

+ 4‖x ∧ y‖2 ·
(

1
15K(p)2‖x‖2 + 1

20∇
2Kp(x, x)

)
.

In particular,

4F4,2(x, y) = 16F4,2(x, y) + 4‖x ∧ y‖2 ·
(

1
15K(p)2‖x‖2 + 1

20∇
2Kp(x, x)

)
.

Thus,

F4,2(x, y) = ‖x ∧ y‖2 ·
(
− 1

45K(p)2‖x‖2 − 1
60∇

2Kp(x, x)
)
,

and the analogous expression for F2,4(x, y), as claimed. Finally,

4F3,3(x, y) = 4(dF y4,2)x(−y) + 4(dF y3,3)x(x)− 8
9K(p)2‖x ∧ y‖2〈x, y〉

= ‖x ∧ y‖2 ·
(

8
45K(p)2〈x, y〉+ 8

60∇
2Kp(x, y)

)
+ 12F3,3(x, y)

− 8
9K(p)2‖x ∧ y‖2〈x, y〉,
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yielding

F3,3(x, y) = ‖x ∧ y‖2 ·
(

4
45K(p)2〈x, y〉 − 1

60∇
2Kp(x, y)

)
,

as claimed.
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