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PROPER QUASI-HOMOGENEOUS DOMAINS IN FLAG
MANIFOLDS AND GEOMETRIC STRUCTURES

by Andrew M. ZIMMER (*)

Abstract. — In this paper we study domains in flag manifolds which are
bounded in an affine chart and whose projective automorphism group acts co-
compactly. In contrast to the many examples in real projective space, we will show
that no examples exist in many flag manifolds. Moreover, in the cases where such
domains can exist, we show that they satisfy a natural convexity condition and
have an invariant metric which generalizes the Hilbert metric. As an application
we give some restrictions on the developing map for certain (G, X)-structures.
Résumé. — On étudie dans cet article les domaines dans les variétés de dra-

peaux dont l’image dans une carte affine est bornée et dont l’action du groupe
des automorphismes projectifs est co-compacte. Par contraste avec les nombreux
exemples existant dans l’espace projectif réel, on démontre que de nombreuses va-
riétés de drapeaux ne contiennent pas de tels domaines. On établit en outre que
dans les cas où l’existence de tels domaines n’est pas exclue, ils sont soumis à une
condition de convexité naturelle et possèdent une métrique invariante qui généra-
lise la métrique de Hilbert. Une application de nos résultats fournit des restrictions
sur l’application développante de certaines (G, X)-structures.

1. Introduction

Suppose G is a connected semisimple Lie group with trivial center and
without compact factors. If P 6 G is a parabolic subgroup, then G acts
by diffeomorphisms on the compact manifold G/P . Given an open set Ω ⊂
G/P we define the automorphism group of Ω to be

Aut(Ω) = {g ∈ G : gΩ = Ω}.

Keywords: Real projective structures, (G, X)-structure, Kobayashi metric, Carathéodory
metric, Hilbert metric, projective automorphism group.
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An open set Ω ⊂ G/P is called quasi-homogeneous if Aut(Ω) ·K = Ω for
some compact subset K ⊂ Ω. This paper is concerned with the geometry
and classification of quasi-homogeneous domains.

1.1. Uniformization

One motivation for studying quasi-homogeneous domains comes from
the well known uniformization of Riemann surfaces: any Riemann surface
Σ can be identified with a quotient Γ\Ω where Ω is a domain in the complex
projective plane P(C2) and Γ 6 PGL2(C) is a discrete group which acts
freely and properly discontinuously on Ω.

It seems natural to ask what happens in higher dimensions. In particular
given a closed manifold M , can we identify M with a quotient Γ\Ω where
Ω is a domain in some flag manifold G/P and Γ 6 Aut(Ω)? Since M is
compact, in this case the domain Ω will be quasi-homogeneous.

1.2. (G,X)-structures

Another (related) motivation for studying quasi-homogeneous domains
comes from the theory of geometric structures on compact manifolds.

Suppose G is a Lie group acting transitively on a manifold X. A (G,X)-
structure on a manifold M is an open cover M = ∪αUα along with coor-
dinate charts ϕα : Uα → X such that the transition functions ϕα ◦ ϕ−1

β

coincide locally with the restriction of an element in G on ϕβ(Uβ ∩ Uα).
Given a (G,X)-structure on a manifold M , one can “unfold” the struc-

ture to obtain a local diffeomorphism dev : M̃ → X from the univer-
sal cover M̃ of M to X called the developing map and a homomorphism
hol : π1(M,m) → G called the holonomy map. The map dev will be hol-
equivariant and when dev is a diffeomorphism onto its image we can identify
M with Γ\Ω where Γ = hol(π1(M,m)) and Ω = dev(M̃). See e.g. [11] for
more details.
WhenM is closed, the group hol(π1(M,m)) acts co-compactly on dev(M̃)

and thus dev(M̃) is a quasi-homogeneous domain in X. Our results about
quasi-homogeneous domains will imply the following.

Theorem 1.1. — Suppose M is a closed manifold, G is a connected
non-compact simple Lie group with trivial center, and P 6 G is a non-
maximal parabolic subgroup. If {(Uα, ϕα)}α∈A is a (G,G/P )-structure on
M , then the image of the developing map cannot be bounded in an affine
chart.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.1 is an immediate consequence of Theorem 1.5 below.

Theorem 1.2. — Suppose M is a closed manifold, G is a connected
semi-simple Lie group with trivial center and no compact factors, and P 6
G is a parabolic subgroup. If {(Uα, ϕα)}α∈A is a (G,G/P )-structure on M
and the image of the developing map is bounded in an affine chart, then
dev : M̃ → dev(M̃) is a covering map.

In Proposition 7.1 below, we will show that when Ω is bounded in an
affine chart the group Aut(Ω) acts properly on Ω. Using this fact it is
straightforward to establish Theorem 1.2, see Section 8 for details.

1.3. Proper domains

In this paper we will restrict our attention to a particular class of domains
in flag manifolds:

Definition 1.3. — An open set Ω ⊂ G/P is called a proper domain if
it is connected and bounded in an affine chart of G/P .

There are (at least) three reasons for restricting our attention to these
domains:

(1) As mentioned above, every Riemann surface can be identified with
a quotient Γ\Ω where Ω ⊂ P(C2) and Γ 6 Aut(Ω) is a discrete
group. In fact, we can always assume that Ω is either P(C2), an
affine chart in P(C2), or the unit disk in an affine chart of P(C2).
Each of these three cases lead to very different classes of surfaces,
so when seeking higher dimensional analogues of uniformization it
makes sense to try and specialize to one of the three cases.

(2) There is a rich theory of convex divisible domains in real projective
space. A proper convex set Ω ⊂ P(Rd+1) is called divisible when
there exists a discrete group Γ 6 Aut(Ω) which acts co-compactly,
freely, and properly on Ω. The symmetric domain Bd,1 defined in
Example 1.4 below is the fundamental example of a convex divisible
domain but there are many non-homogeneous examples, see the
survey papers by Benoist [5], Marquis [27], and Quint [31]. It seems
very natural to attempt to extend this theory to other flag manifolds
and a key feature of these domains is the fact that they are bounded
in affine charts.

(3) The fact that we restrict our attention to domains which are
bounded in affine charts also allows us to adapt some techniques

TOME 68 (2018), FASCICULE 6



2638 Andrew M. ZIMMER

used in several complex variables to study the bi-holomorphism
group of bounded domains in complex Euclidean space (see the
survey paper [18]).

As the next example shows certain symmetric spaces give rise to homo-
geneous proper domains in certain Grassmanians:

Example 1.4. — Let K be either the real numbers R, the complex num-
bers C, or the quaternions H. If G = PGLd(K) and P 6 PGLd(K) is a
parabolic subgroup, then P is the stabilizer of some K-flag and G/P can
be identified with a flag manifold. In the particular case when P is a max-
imal parabolic subgroup of G, then P is the stabilizer some p-plane in Kd.
Let q = d−p. Then we can identify G/P with Grp(Kp+q) the Grassmanian
of p-planes in Kp+q. Let Mp+q,p(K) be the space of (p + q)-by-p matrices
with entries in K. We can then identify the quotient manifold{

A ∈M(p+q),p(K) : rankA = p
}
/GLp(K)

with Grp(Kp+q) via A→ Im(A). Then

A :=
{[

Idp
X

]
: X ∈Mq,p(K)

}
⊂ Grp(Kp+q)

is an affine chart of Grp(Kp+q) and so the open set

Bp,q :=
{[

Idp
X

]
: ‖X‖ < 1

}
⊂ Grp(Kp+q)

is a proper domain. Next let UK(p, q) 6 GLd(K) be the group which pre-
serves the form

x1y1 + · · ·+ xpyp − xp+1yp+1 − · · · − xp+qyp+q.

Then Aut(Bp,q) coincides with PUK(p,q), the image of UK(p,q) in PGLd(K).
Moreover Aut(Bp,q) acts transitively on Bp,q and the stabilizer of

[
Idp 0

]t
is the group P(UK(p)×UK(q)), so we can identify

Bp,q ∼= PUK(p, q)/P(UK(p)×UK(q)).

In particular, Bp,q is a geometric model of the symmetric space associated
to PUK(p, q). When K = R and q = 1, this is the Klein–Beltrami model of
real hyperbolic p-space.

1.4. Non-maximal parabolic subgroups

In contrast to the above examples, our main rigidity result shows that
many flag manifolds have no quasi-homogenous proper domains:

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.5 (see Section 6 below). — Suppose G is a connected non-
compact simple Lie group with trivial center and P 6 G is a non-maximal
parabolic subgroup. If Ω ⊂ G/P is a proper domain, then Aut(Ω) cannot
act co-compactly on Ω.

Remark 1.6.
(1) The theorem fails for general semi-simple groups. Take for instance

G = PGLp+q(R) × PGLp+q(R) and let P 6 PGLp+q(R) be the
stabilizer of some p-plane. Then we can identify (G × G)/(P × P )
with Grp(Rp+q)×Grp(Rp+q) and

Bp,q ×Bp,q ⊂ Grp(Rp+q)×Grp(Rp+q)

is a proper quasi-homogeneous domain. Notice that the parabolic
subgroup P ×P is non-maximal: it is contained in PGLp+q(R)×P
and P ×PGLp+q(R). The semisimple case will be explored in more
detail in Theorem 1.7 below.

(2) There are examples of non-proper quasi-homogeneous domains: sup-
pose G = PGLp+q(R) and P 6 G is the stabilizer of a p-plane in
Kp+q. Then, by Example 1.4, there exists a proper homogeneous
domain Ω ⊂ G/P . Now consider a parabolic subgroup P ′ � P and
the natural projection map π : G/P ′ → G/P . Then π−1(Ω) is a ho-
mogeneous domain in G/P ′ which is not proper (see Proposition 4.5
below).

(3) We should also mention recent constructions [14, 15, 16, 22, 21, 23]
of open domains Ω in certain flag manifolds where there exists a
discrete group Γ 6 Aut(Ω) which acts properly, freely, and cocom-
pactly on Ω. These constructions use the theory of Anosov repre-
sentations and (to the best of our knowledge) never produce proper
domains.

1.5. The general semisimple case

Suppose G is a connected semisimple Lie group with trivial center and
no compact factors. Then there exists G1, . . . , Gr non-compact simple Lie
groups each with trivial centers such that

G ∼=
r∏
i=1

Gi.

Now if P 6 G is a parabolic subgroup we can find subgroups Pi 6 Gi such
that P ∼=

∏r
i=1 Pi. Moreover, either Pi = Gi or Pi 6 Gi is a parabolic

TOME 68 (2018), FASCICULE 6



2640 Andrew M. ZIMMER

subgroup. Since we are interested in the flag manifold G/P , we further
assume that Pi 6= Gi for all 1 6 i 6 r.

Theorem 1.7 (see Section 7 below). — With the notation above, sup-
pose Ω ⊂ G/P is a proper quasi-homogeneous domain. Then for 1 6 i 6 r
there exists a proper quasi-homogeneous domain Ωi ⊂ Gi/Pi such that

Ω =
r∏
i=1

Ωi.

In particular, each Pi is a maximal parabolic subgroup of Gi.

This theorem reduces the study of quasi-homogeneous domains to the
case when G is simple.

1.6. The geometry of quasi-homogeneous domains

Kobayashi proved the following theorem connecting symmetry with con-
vexity for domains in real projective space.

Theorem 1.8 ([24]). — If Ω ⊂ P(Rd+1) is a quasi-homogeneous proper
domain, then Ω is convex.

In real projective space, one usually defines convexity using projective
lines: a domain is convex if its intersection with every projective line is
connected. However there is a dual definition: a connected open set Ω is
convex if and only if for every x ∈ ∂Ω there exists a hyperplane H such
that x ∈ H and H ∩ Ω = ∅.

This dual definition generalizes in a natural way to flag manifolds. Sup-
pose G is a connected non-compact simple Lie group with trivial center
and P 6 G is a parabolic subgroup. Fix a parabolic subgroup Q opposite
to P . Then for ξ = hQ ∈ G/Q define the subset Zξ ⊂ G/P by

Zξ := {gP ∈ G/P : gPg−1 is not transverse to hQh−1}.

Remark 1.9.
(1) This definition does not depend on the choice of Q: if Q1, Q2 6 G

are parabolic subgroups both opposite to a parabolic subgroup P 6
G, then Q1 and Q2 are conjugate. In particular, for any ξ1 ∈ G/Q1
there exists ξ2 ∈ G/Q2 such that Zξ1 = Zξ2 .

(2) Notice that G/P −Zξ is an affine chart of G/P , see Subsection 4.2.

ANNALES DE L’INSTITUT FOURIER
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Example 1.10. — Again let K be either the real numbers R, the complex
numbers C, or the quaternions H. Let e1, . . . , ed be the standard basis of Kd

and let P 6 PGLd(K) be the stabilizer of the line K e1. Then P 6 PGLd(R)
is parabolic and G/P can be identified with P(Kd). If Q 6 PGLd(R) is the
stabilizer of SpanK(e2, . . . , ed), then Q is a parabolic subgroup opposite to
P . Moreover we can identify G/Q with Grd−1(Kd). With these identifi-
cations, if ξ ∈ Grd−1(Kd) then Zξ is the image of the hypersurface ξ in
P(Kd).

Motivated by the hyperplane definition of convexity in real projective
space we make the following definition.

Definition 1.11. — Suppose G is a connected non-compact simple Lie
group with trivial center and P 6 G is a parabolic subgroup. An open
connected set Ω ⊂ G/P is called dual convex if for each x ∈ ∂Ω there
exists a parabolic subgroup Q opposite to P and some ξ ∈ G/Q such that
x ∈ Zξ and Zξ ∩ Ω = ∅.

We will then prove the following generalization of Kobayashi’s theorem.

Theorem 1.12 (see Corollary 9.3 below). — Suppose G is a connected
non-compact simple Lie group with trivial center and P 6 G is a parabolic
subgroup. If Ω ⊂ G/P is a quasi-homogeneous proper domain, then Ω is
dual convex.

Remark 1.13. — Example 1.10 shows that for open connected sets in real
projective space, dual convexity is equivalent to the standard definition of
convexity. Dual convexity also generalizes a notion of convexity from several
complex variables. In particular, an open set Ω ⊂ Cd is often called weakly
linearly convex if for each point x ∈ ∂Ω there exists a complex hyperplane
H such that x ∈ H andH∩Ω = ∅. Surprisingly, this weak form of convexity
has strong analytic implications. See [1, 17] for more details.

1.7. An invariant metric

Every proper convex set Ω ⊂ P(Rd+1) has a metric HΩ called the Hilbert
metric which is complete, geodesic, and Aut(Ω)-invariant. This metric is
a useful tool understanding the geometry of domains with large projective
symmetry groups.
We will show that a proper dual convex domain in a flag manifold always

has an complete Aut(Ω)-invariant metric which is a natural analogue of the
Hilbert metric.

TOME 68 (2018), FASCICULE 6



2642 Andrew M. ZIMMER

Theorem 1.14. — Suppose G is a connected non-compact simple Lie
group with trivial center and P 6 G is a parabolic subgroup. If Ω ⊂ G/P is
a proper dual convex domain, then there exists an explicit Aut(Ω)-invariant
complete metric CΩ which generates the standard topology on Ω.

Remark 1.15.
(1) The metric CΩ can also be seen as a natural analogue of the Cara-

théodory metric from several complex variables.
(2) For “linearly convex” domains in complex projective space, CΩ was

introduced by Dubois [8] and used in [35] to provide several char-
acterizations of the unit ball.

2. Examples and rigidity of proper quasi-homogeneous
domains

In this section we describe some examples of proper quasi-homogeneous
domains.

2.1. The symmetric case

The Borel embedding shows that every non-compact Hermitian sym-
metric space X embeds as a domain ΩX into a flag manifold G/P (and
this flag manifold can be identified with the compact dual of X) such that
Aut(ΩX) = Isom0(X). The image of this embedding is a proper domain.
More generally, Nagano [29, Theorem 6.1] has characterized all the non-

compact symmetric spaces X whose compact dual X∗ can be identified
with a flag manifold G/P and X embeds as a domain ΩX into G/P such
that Aut(ΩX) = Isom0(X). In all these examples the images are proper
domains [29, Theorem 6.2]
There also exists examples of symmetric spaces which embed into real

projective space as a proper domain. In particular, the symmetric spaces
associated to SLd(R), SLd(C), SLd(H), and E6(−26) can all be realized as
a proper homogeneous domains in a real projective space. For instance,
consider the convex set

P = {[X] ∈ P(Sd,d) : X is positive definite}

where Sd,d is the vector space of real symmetric d-by-d matrices. Then the
group SLd(R) acts transitively on P by g · [X] = [gXgt] and the stabilizer

ANNALES DE L’INSTITUT FOURIER
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of a point is SO(d). So we have an identification

P = SLd(R)/ SO(d).

There does not appear to be a general classification of embeddings of
symmetric spaces into flag manifolds.

Problem. — Characterize the symmetric spaces X which embed as a
proper domain ΩX into a flag manifold where Isom0(X) = Aut(ΩX).

2.2. Real projective space

Beyond the examples mentioned in the subsection above, there are a rich
class of proper domains Ω ⊂ P(Rd) where Aut(Ω) contains a discrete group
Γ which acts cocompactly on Ω. By a result of Kobayashi (Theorem 1.8
above) these examples will alway be convex and are often called convex
divisible domains. Here are some examples:

(1) Let B ⊆ P(Rd+1) be the Klein–Beltrami model of HdR. Results of
Johnson–Millson [19] and Koszul [26] imply that the domain B can
be deformed to a divisible convex domain Ω where Aut(Ω) is discrete
(see [3, Section 1.3] for d > 2 and [12] for d = 2).

(2) For every d > 4, Kapovich [20] has constructed divisible convex
domains Ω ⊂ P(Rd+1) such that Aut(Ω) is discrete, Gromov hyper-
bolic, and not quasi-isometric to any symmetric space,.

(3) Benoist [4] and Ballas, Danciger, and Lee [2] have constructed di-
visible convex domains Ω ⊂ P(R4) such that Aut(Ω) is discrete,
not Gromov hyperbolic, and not quasi-isometric to any symmetric
space.

More background can be found in the survey papers by Benoist [5], Mar-
quis [27], and Quint [31].

2.3. Complex projective space

As Example 1.4 shows, there exists a proper homogeneous domain B ⊂
P(Cd) (which is a model of complex hyperbolic space, see e.g. [28, Chap-
ter 19]).
In P(C2) there do exist non-homogeneous proper domains which admit a

co-compact action by a discrete group in Aut(Ω). However if ∂Ω has weak
regularity then a result of Bowen implies that Ω must be a symmetric
domain:

TOME 68 (2018), FASCICULE 6
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Theorem 2.1 ([6]). — Suppose Ω ⊂ P(C2) is a proper domain and ∂Ω
is a Jordan curve with Hausdorff dimension one. If there exists a discrete
group Γ 6 Aut(Ω) which acts co-compactly on Ω, then Ω is projectively
isomorphic to B.

In P(C3) the co-compact case is even more rigid and recent work of Cano
and Seade implies the following:

Theorem 2.2 ([7]). — Suppose Ω ⊂ P(C3) is a proper domain and
Γ 6 Aut(Ω) is a discrete group which acts co-compactly on Ω. Then Ω is
projectively isomorphic to B.

It is worth noting that Cano and Seade’s proof relies on Kobayashi and
Ochiai’s [25] classification of compact complex surfaces with a projective
structure. In particular, it is unclear if Cano and Seade’s result should
extend to higher dimensions. However, it is known that every proper quasi-
homogeneous domain with C1 boundary is symmetric.

Theorem 2.3 ([35]). — Suppose Ω ⊂ P(Cd+1) is a proper quasi-homo-
geneous domain. If ∂Ω is C1, then Ω is projectively isomorphic to B.

2.4. Rigidity and convexity

The embeddings of symmetric spaces mentioned in Subsection 2.1 are
always convex in some affine chart, see e.g. [29, Theorem 6.2]. Thus it
seems natural to consider proper quasi-homogeneous domains which are
convex in some affine chart. In particular, we say a domain Ω ⊂ G/P is a
convex divisible domain if Ω is a bounded open convex set of some affine
chart and there exists a discrete group Γ 6 Aut(Ω) which acts properly
discontinuously, freely, and co-compactly on Ω.

For some flag manifolds there are no non-homogeneous convex divisible
domains. In particular, Frankel proved the following:

Theorem 2.4 ([10]). — Suppose Ω ⊂ Cd is a bounded convex open set
and there exists a discrete group Γ of bi-holomorphic maps of Ω which
acts properly discontinuously, freely, and co-compactly on Ω. Then Ω is a
bounded symmetric domain.

Thus if G/P has a complex structure such that G acts on G/P ho-
momorphically we see that the only convex divisible domains in G/P are
homogeneous. Frankel’s proof uses many techniques from several complex
variables and does not extend to domains in a general flag manifold. How-
ever in the special case of Grp(R2p) the following is known.

ANNALES DE L’INSTITUT FOURIER
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Theorem 2.5 ([33]). — Suppose p > 1 and Ω ⊂ Grp(R2p) is a convex
divisible domain. Then Ω is projectively isomorphic to Bp,p.

Based on these examples we conjecture (also see Conjecture 1.7 in [33]):

Conjecture 2.6. — Suppose G is a connected non-compact simple Lie
group with trivial center and P 6 G is a parabolic subgroup. If G/P is not
isomorphic to a real projective space, then every convex divisible domain
in G/P is homogeneous.

3. The automorphism group is closed

It will be useful in what follows to know the automorphism group of an
open domain is always closed.

Proposition 3.1. — Suppose G is a connected semisimple Lie group
with finite center. If P 6 G is a parabolic subgroup and Ω ⊂ G/P is an
open set, then Aut(Ω) 6 G is closed.

Proof. — Fix a distance d on G/P which is induced by a Riemannian
metric. Suppose that a sequence ϕn ∈ Aut(Ω) converges to some ϕ ∈ G.
Now since

{ϕn : n ∈ N} ⊂ G

is relatively compact, there exists some K > 1 such that
1
K
d(x, y) 6 d(ϕnx, ϕny) 6 Kd(x, y)

for all x, y ∈ G/P and n ∈ N.
Next define the function δΩ : Ω→ R>0 by

δΩ(x) = inf{d(x, y) : y ∈ G/P − Ω}.

Now fix x ∈ Ω, then δΩ(ϕnx) > 1
K δΩ(x) for all n ∈ N. Since d(ϕx, ϕnx) <

1
K δΩ(x) for n large, we see that ϕx ∈ Ω. Since x ∈ Ω was arbitrary we see
that ϕ(Ω) ⊂ Ω. Applying the same argument to the sequence ϕ−1

n → ϕ−1

we see that ϕ−1(Ω) ⊂ Ω. Thus ϕ(Ω) = Ω and so ϕ ∈ Aut(Ω). �

4. Parabolic subgroups

For the rest of this section suppose that G is a connected semisimple
Lie group without compact factors and with trivial center. Let K 6 G

TOME 68 (2018), FASCICULE 6
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be a maximal compact subgroup. Then the manifold X = G/K has a G-
invariant non-positively curved Riemannian metric g and (X, g) is a sym-
metric space.
Let X(∞) be the ideal boundary of X. For a geodesic γ : R→ X let

γ(∞) = lim
t→∞

γ(t) ∈ X(∞)

and

γ(−∞) = lim
t→−∞

γ(t) ∈ X(∞).

Definition 4.1.
(1) A subgroup P 6 G is called parabolic if P is the stabilizer in G of

some point x ∈ X(∞).
(2) Two parabolic subgroups P,Q 6 G are said to be opposite if there

exists a geodesic γ : R → X such that P is the stabilizer of γ(∞)
and Q is the stabilizer of γ(−∞).

In this section we recall the basic properties of parabolic subgroups. We
will mostly rely on the exposition in Eberlein’s book on symmetric spaces [9]
and Warner’s book on harmonic analysis on semisimple groups [34].

Theorem 4.2. — With the notation above:
(1) There are only finitely many conjugacy classes of parabolic sub-

groups.
(2) Suppose P,Q1, Q2 6 G are parabolic subgroups. If Q1, Q2 are both

opposite to P , then there exists some p ∈ P such that pQ1p
−1 = Q2.

Proof. — For the first assertion see Corollary 2.17.23 in [9]. The idea is:
fix a maximal flat F in X, then given a geodesic γ : X → R there exists
g ∈ G such that gγ ⊂ F . Then using the root space decomposition of g,
the Lie algebra of G, associated to F one shows that only finitely many
different groups arise as stabilizers of points x ∈ F (∞).
Next suppose that Q1, Q2 are both opposite to P . For i ∈ {1, 2}, let

γi : R→ X be a geodesic where P is the stabilizer of γi(∞) and Qi is the
stabilizer of γi(−∞). Since P acts transitively on X (see Proposition 2.17.1
in [9]), there exists p ∈ P such that pγ1(0) = γ2(0). Then pQ1p

−1 is
the stabilizer of pγ1(−∞). Now since P is the stabilizer of pγ1(∞) and
γ2(∞), Proposition 2.17.15 in [9] implies that d(p)γ′1(0) and γ′2(0) are in
the same Weyl ChamberW in Sγ2(0)X (the unit tangent sphere of X above
γ2(0)). Finally, since −W ⊂ Sγ2(0)X is also a Weyl chamber we see that
−d(p)γ′1(0) and −γ′2(0) are also in the same Weyl chamber. So appealing
to Proposition 2.17.15 in [9] again, we see that pQ1p

−1 = Q2. �
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Corollary 4.3. — Suppose P,Q 6 G are opposite parabolic sub-
groups. Then gPg−1 and hQh−1 are opposite if and only if g−1h ∈ PQ.

Proof. — Clearly gPg−1 and hQh−1 are opposite if and only if P and
(g−1h)Q(g−1h)−1 are opposite. But by Theorem 4.2 this happens if and
only if pg−1hQ(pg−1h)−1 = Q for some p ∈ P . But parabolic subgroups
are their own normalizer, see Proposition 2.17.25 in [9], and so this happens
if and only if g−1h ∈ PQ. �

Since PQ ⊂ G is open and dense (see e.g. [34, Proposition 1.2.4.10]), we
immediately see that:

Corollary 4.4. — Suppose P,Q 6 G are opposite parabolic sub-
groups. Then the set

O :=
{

(gP, hQ) : gPg−1 and hQh−1 are opposite
}
⊂ G/P ×G/Q

is open and dense.

Proposition 4.5. — Suppose P,Q 6 G are opposite parabolic sub-
groups. If P0 	 P is a parabolic subgroup, then there exists a unique
parabolic subgroup Q0 	 Q such that P0 and Q0 are opposite. Moreover:

(1) If gPg−1 and hQh−1 are opposite, then gP0g
−1 and hQ0h

−1 are
opposite.

(2) There exists w ∈ P0 such that wPw−1 and Q are not opposite.

Proof. — Let γ : R → X be a geodesic such that P is the stabilizer of
γ(∞) and Q is the stabilizer of γ(−∞). Let F be a maximal flat containing
γ. Pick x ∈ X(∞) such that P0 is the stabilizer of x ∈ X(∞). Then
x ∈ F (∞) by Proposition 3.6.26 in [9]. Now using Proposition 2.17.13 in [9]
we see that there exists a parabolic subgroup Q0 > Q such that P0 and Q0
are opposite. Moreover, if Q1 > Q is a parabolic subgroup and Q1 is the
stabilizer of y ∈ X(∞) then, by Proposition 3.6.26 in [9] again, y ∈ F (∞).
So using Proposition 2.17.13 in [9] again we see that Q0 is unique.

By Corollary 4.3, if gPg−1 and hQh−1 are opposite, then g−1h ∈ PQ,
then g−1h ∈ P0Q0, then gP0g

−1 and hQ0h
−1 are opposite.

As before let F be a maximal flat containing γ. Then F (∞) decomposes
into Weyl chambers and if Pz is the stabilizer of z ∈ F (∞) then Pz is
opposite to Q if and only if z and γ(∞) are in the same Weyl chamber (by
Proposition 2.17.13 in [9]). Let K be the stabilizer of γ(0) and let

W = {k ∈ K : kF = F}.
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Now by Lemma 1.2.4.6 in [34] there exists w ∈ W ∩ P0 such that wγ(∞)
is not in the same Weyl chamber as γ(∞). Hence wPw−1 is not opposite
to Q. �

4.1. Representations

Using the theory of irreducible representations of reductive groups Guéri-
taud et al. [13, Lemma 4.5, Proposition 4.6] proved the following theorem.

Theorem 4.6. — Suppose P,Q 6 G are opposite parabolic subgroups.
Then there exists an real vector space V , an irreducible representation
τ : G→ PGL(V ), a line ` ⊂ V , and a hyperplane H ⊂ V such that:

(1) `+H = V .
(2) The stabilizer of ` in G is P and the stabilizer of H in G is Q.
(3) gPg−1 and hQh−1 are opposite if and only if τ(g)` and τ(g)H are

transverse.

Now fix P,Q 6 G opposite parabolic subgroups. Let τ : G → PGL(V )
be an irreducible representation, ` ⊂ V a line, and H ⊂ V a hyperplane as
in Theorem 4.6. Fix some x0 ∈ V such that Rx0 = ` and fix some f0 ∈ V ∗
a functional with ker f0 = H. Consider the dual representation τ∗ : G →
PGL(V ∗). Now define the maps ι : G/P → P(V ) and ι∗ : G/Q→ P(V ∗) by

ι(gP ) = [τ(g)x0] and ι∗(gQ) = [τ∗(g)f0].

It will be helpful to observe the following:

Lemma 4.7. — With the notation above, if O ⊂ G/P is any open set,
then there exists x1, . . . , xD ∈ O such that

ι(x1)⊕ · · · ⊕ ι(xD) = V.

Analogously, if O ⊂ G/Q is any open set, then there exists ξ1, . . . , ξD ∈ O
such that

ι∗(ξ1)⊕ · · · ⊕ ι∗(ξD) = V ∗.

Proof. — We can identify V with RD. Consider the map Φ : GD →
∧D RD given by

Φ(g1, . . . , gD) = (τ(g1)x0) ∧ (τ(g2)x0) ∧ · · · ∧ (τ(gD)x0).

Since τ is an irreducible representation there exists (g1, . . . , gD) ∈ GD such
that Φ(g1, . . . , gD) 6= 0. Then since Φ is real analytic for any open set
O ⊂ GD there exists (h1, . . . , hD) ∈ O such that Φ(h1, . . . , hD) 6= 0. This
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implies the first assertion of the Lemma. The second assertion has the exact
same proof. �

Lemma 4.8. — The maps ι : G/P → P(V ) and ι∗ : G/Q → P(V ∗) are
embeddings.

Proof. — The maps are smooth, injective, and have constant rank (due
to the G action). Further G/P and G/Q are compact, so the maps must
be embeddings. �

4.2. Affine charts

Definition 4.9. — Suppose that P 6 G is a parabolic subgroup. Then
a non-empty subset A ⊂ G/P is called an affine chart if there exists a
parabolic subgroup Q 6 G such that

A = {x = gP ∈ G/P : gPg−1 is opposite to Q}.

Let P,Q 6 G be opposite parabolic subgroups. Let N 6 Q be the unipo-
tent radical of Q, then QP = NP by Proposition 2.17.5 and 2.17.13 in [9].
Now suppose A ⊂ G/P is an affine chart and

A = {x = gP ∈ G/P : gPg−1 is opposite to Q′}

for some parabolic subgroup Q′ 6 G. Since A is non-empty, g0P ∈ A
for some g0 ∈ G. So P is opposite to g−1

0 Q′g0. Now by Theorem 4.2,
g−1

0 Q′g0 = pQp−1 for some p ∈ P . Then

A = (gop)−1{gP ∈ G/P : gPg−1 is opposite to Q}

= (gop)−1{gP ∈ G/P : g ∈ QP}

= (g0p)−1NP.

In particular, an affine chart in G/P is a translate of the big Bruhat cell.

5. A Carathéodory type metric

Suppose G is a non-compact connected simple Lie group with trivial
center and P 6 G is a parabolic subgroup. Fix a parabolic subgroup Q 6 G
opposite to P .
Given a set Ω ⊂ G/P define

Ω∗ := {ξ ∈ G/Q : ξ is opposite to every x ∈ Ω}.
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Also given ξ ∈ G/Q define (as before)

Zξ := {x ∈ G/P : x is not opposite to ξ}.

Then ξ ∈ Ω∗ if and only if Zξ ∩ Ω = ∅.

Lemma 5.1.
(1) If Ω is open, then Ω∗ is compact.
(2) Ω is bounded in an affine chart if and only Ω∗ has non-empty inte-

rior.

Proof. — Suppose that Ω is open and ξn is a sequence in Ω∗ converging
to some ξ ∈ G/Q. Suppose for a contradiction that ξ /∈ Ω∗. Then there is
some x ∈ Ω such that x is not opposite to ξ. Since ξn → ξ, we can find
gn ∈ G converging to id ∈ G such that gnξ = ξn. Then ξn is not opposite
to gnx. But since gn → id and Ω is open, we see that gnx ∈ Ω for large n.
So we have a contradiction.
Now suppose that Ω is bounded in some affine chart A ⊂ G/P . Then

A = G/P − Zη for some η ∈ G/Q. Since Ω is bounded in A,

Ω ∩ Zη = ∅.

Suppose for a contradiction that η is not in the interior of Ω∗. Then there
exists ηn ∈ G/Q such that ηn → η and xn ∈ Ω such that xn is not opposite
to ηn. By passing to a subsequence we can suppose that xn → x ∈ Ω.
But then, by Corollary 4.4, we see that x is not opposite to η which is a
contradiction.
Now suppose that η is in the interior of Ω∗. Since η ∈ Ω∗ we see that Ω

is contained in the affine chart A = G/P − Zη. Now fix an neighborhood
U of the identity in G such that Uη ⊂ Ω∗. Then

Ω ∩ (U · Zη) = ∅

and U · Zη is a neighborhood of Zη. Thus Ω is bounded in A. �

Now define maps ι : G/P → P(V ) and ι∗ : G/Q → P(V ∗) as in the
discussion following Theorem 4.6.
Then for a proper domain Ω ⊂ G/P define the function

CΩ : Ω× Ω→ R>0

by

CΩ(x, y) = sup
ξ,η∈Ω∗

log

∣∣∣∣∣∣
ι∗(ξ)

(
ι(x)

)
ι∗(η)

(
ι(y)

)
ι∗(ξ)

(
ι(y)

)
ι∗(η)

(
ι(x)

)
∣∣∣∣∣∣ .

ANNALES DE L’INSTITUT FOURIER



PROPER QUASI-HOMOGENEOUS DOMAINS 2651

Theorem 5.2. — Suppose Ω ⊂ G/P is a proper domain. Then CΩ is a
Aut(Ω)-invariant metric on Ω which generates the standard topology.

Proof of Theorem 5.2. — Since Aut(Ω) preserves Ω∗ we see that CΩ is
Aut(Ω)-invariant.
Fix x, y ∈ Ω distinct. We will show that CΩ(x, y) > 0. Since Ω∗ ⊂

G/Q has non-empty interior, Lemma 4.7 implies that the set ι∗(Ω∗) ⊂
P(V ∗) contains a basis of V ∗. So we can find a basis f1, . . . , fD ∈ V ∗ such
that [f1], . . . , [fD] ∈ ι∗(Ω∗). Now let e1, . . . , ed be the basis of V dual to
f1, . . . , fD, that is

fj(ei) =
{

1 if i = j

0 otherwise.

Then ι(x) = [
∑
xiei] and ι(y) = [

∑
yiei] for some xi, yi ∈ R. Since ι :

G/P → P(V ) is injective there exists i, j such that xi/xj 6= yi/yj . Then

CΩ(x, y) >
∣∣∣∣log

∣∣∣∣fi(ι(x))fj(ι(y))
fi(ι(y))fj(ι(x))

∣∣∣∣∣∣∣∣ =
∣∣∣∣log

∣∣∣∣xiyjxjyi

∣∣∣∣∣∣∣∣ > 0.

Next fix x, y, z ∈ Ω. Since Ω∗ is compact there exists ξ, η ∈ Ω∗ such that

CΩ(x, y) = log

∣∣∣∣∣∣
ι∗(ξ)

(
ι(x)

)
ι∗(η)

(
ι(y)

)
ι∗(ξ)

(
ι(y)

)
ι∗(η)

(
ι(x)

)
∣∣∣∣∣∣ .

Then

CΩ(x, y) = log

∣∣∣∣∣∣
ι∗(ξ)

(
ι(x)

)
ι∗(η)

(
ι(z)

)
ι∗(ξ)

(
ι(z)

)
ι∗(η)

(
ι(x)

)
∣∣∣∣∣∣+ log

∣∣∣∣∣∣
ι∗(ξ)

(
ι(z)

)
ι∗(η)

(
ι(y)

)
ι∗(ξ)

(
ι(y)

)
ι∗(η)

(
ι(z)

)
∣∣∣∣∣∣ .

6 CΩ(x, z) + CΩ(z, y).

So CΩ satisfies the triangle inequality and hence is a metric.
It remains to show that CΩ generates the standard topology. Since Ω∗

is compact, CΩ is continuous with respect to the standard topology on
Ω. Thus to show that CΩ generates the standard topology it is enough to
show: for any x0 ∈ Ω and U ⊂ Ω an open neighborhood of x0 there exists
δ > 0 such that

{y ∈ Ω : CΩ(x0, y) < δ} ⊂ U.

As before fix a basis f1, . . . , fD ∈ V ∗ such that [f1], . . . , [fD] ∈ ι∗(Ω∗).
Then let e1, . . . , eD be the basis of V dual to f1, . . . , fD. Since [f1] ∈ Ω∗,
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ι(x0) has non-zero e1 component. Then

ι(x0) =
[
e1 +

D∑
i=2

xiei

]
for some x2, . . . , xD ∈ R. Since [fi] ∈ Ω∗, xi 6= 0. Then since U is open and
ι : G/P → P(V ) is an embedding, see Lemma 4.8, there exists ε > 0 such
that {[

e1 +
D∑
i=2

yiei

]
: e−ε < |xi/yi| < eε

}
∩ ι(G/P ) ⊂ ι(U).

Moreover, if ι(y) =
[
e1 +

∑D
i=2 yiei

]
then

CΩ(x, y) > max
26i6D

∣∣∣∣log
∣∣∣∣xiyi
∣∣∣∣∣∣∣∣ .

So if δ = ε we see that

{y ∈ Ω : CΩ(x0, y) < δ} ⊂ U.

Thus CΩ generates the standard topology. �

The existence of an invariant metric implies the following:

Corollary 5.3. — Suppose Ω ⊂ G/P is a proper domain. Then the
action of Aut(Ω) on Ω is proper.

The proof of Corollary 5.3 is essentially the proof of [35, Proposition 4.4]
taken verbatim.

Proof. — This argument requires some care because CΩ may not be a
complete metric (see Theorem 9.1). Fix a compact set K ⊂ Ω, we claim
that

{ϕ ∈ Aut(Ω) : ϕK ∩K 6= ∅} ⊂ Aut(Ω)

is compact. So suppose that ϕnkn ∈ K for some sequences ϕn ∈ Aut(Ω)
and kn ∈ K. By passing to a subsequence we can suppose that kn → k∞ ∈
K. Now since CΩ is a locally compact metric (it generates the standard
topology) and K ⊂ Ω is compact there exists some δ > 0 such that the set

K1 = {q ∈ Ω : CΩ(K, q) 6 2δ}

is compact. Next let

K2 = {q ∈ Ω : CΩ(k∞, q) 6 δ}.

Then for large n we have ϕn(K2) ⊂ K1. Since ϕn preserves the metric CΩ
and (K1, CΩ|K1) is a complete metric space we can pass to a subsequence
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and assume that ϕn|K2 converges uniformly to a function f : K2 → K1.
Moreover

CΩ(f(p1), f(p2)) = lim
n→∞

CΩ(ϕnp1, ϕnp2) = CΩ(p1, p2)

for all p1, p2 ∈ K2. Since CΩ is a metric generating the standard topology
on Ω, we see that f induces a homeomorphism K2 → f(K2).
Since G is a simple Lie group with trivial center, the map τ : G →

PGL(V ) is proper. Now fix a norm on V and an associated operator norm
on GL(V ). Next let Tn ∈ GL(V ) be a representative of τ(ϕn) with ‖Tn‖ =
1. Then pass to a subsequence such that Tn → T in End(V ). Now let
Y = (ι)−1(kerT ). Notice: if x ∈ K2 ∩ (Ω \ Y ) then

ι(f(x)) = lim
n→∞

ι(ϕnx) = lim
n→∞

τ(ϕn)ι(x) = T (ι(x)).

Now by Lemma 4.7, Ω \ Y is open and dense in Ω. So K2 ∩ (Ω \ Y ) has
non-empty interior, so

f (K2 ∩ (Ω \ Y ))

has non-empty interior. But then by Lemma 4.7, the image of T contains
a spanning set of V . Thus T ∈ GL(V ). Thus, since τ is a proper map, we
can pass to a subsequence such that ϕn converges to some ϕ in G. Then
since Aut(Ω) is closed we see that ϕ ∈ Aut(Ω).
Thus the set

{ϕ ∈ Aut(Ω) : ϕK ∩K 6= ∅} ⊂ Aut(Ω)

is compact. So Aut(Ω) acts properly on Ω. �

5.1. The Hilbert metric

In this subsection we compare the metric CΩ to the Hilbert metric.

Definition 5.4. — An open set C ⊂ P(Rd) is called properly convex if
for every projective line ` ⊂ P(Rd) the intersection ` ∩ C is connected and
` ∩ C 6= `.

Suppose C is properly convex. Given two points x, y ∈ C let `xy be
a projective line containing x and y. Then the Hilbert distance between
them is defined to be

HC(x, y) = log |y − a| |x− b|
|x− a| |y − b|
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where {a, b} = ∂ C ∩`xy and we have the ordering a, x, y, b along `xy. Now
define

Cdual = {[f ] ∈ P(Rd∗) : f(x) 6= 0 for all x ∈ C}.

By the supporting hyperplane definition of convexity, we see that every
a ∈ ∂ C is contained in the kernel of some f ∈ Cdual. Then it is not hard to
show that

HC(x, y) = sup
f,g∈Cdual

log
∣∣∣∣f(y)g(x)
f(x)g(y)

∣∣∣∣ .
Let e1, . . . , ed be the standard basis of Rd. Let P 6 PGLd(R) be the

stabilizer of the line R e1 andQ 6 PGLd(R) the stabilizer of R e2+· · ·+R ed.
Then P,Q are opposite parabolic subgroups. We can take τ : PGLd(R)→
PGLd(R) to be the identity representation. Then ι identifies G/P with
P(Rd) and ι∗ identifies G/Q with P(Rd∗).

Suppose Ω ⊂ G/P is a proper dual convex domain. Then ι(Ω) ⊂ P(Rd)
is a properly convex set. Moreover,

ι∗(Ω∗) = {f ∈ P(R∗) : f(x) 6= 0 for all x ∈ ι(Ω)} = ι(Ω)dual

Thus

CΩ(x, y) = Hι(Ω)(ι(x), ι(y))

for all x, y ∈ Ω.

5.2. The Carathéodory and Kobayashi metric

For domains O ⊂ P(Rd) which are not convex, Kobayashi [24] con-
structed two invariant metrics using projective maps to and from the unit
interval. Let

I := {[1 : x] : |x| < 1} ⊂ P(R2).

For two open sets Ω1 ⊂ R(Rd1+1) and Ω2 ⊂ P(Rd2+1) let Proj(Ω1,Ω2)
be the space of maps f : Ω1 → Ω2 such that f = T |Ω1 for some T ∈
P(Lin(Rd1+1,Rd2+1)) with kerT ∩ Ω1 = ∅.

For a domain O ⊂ P(Rd) define the two quantities:

cO(x, y) = sup {HI(f(x), f(y)) : f ∈ Proj(Ω, I)} ,

and

LO(x, y) = inf {HI(u,w) : f ∈ Proj(I,Ω) with f(u) = x and f(w) = y} .
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The function cO always satisfies the triangle inequality, but LO may not.
So we introduce:

kO(x, y) = inf
{

N∑
i=0

LO(xi, xi+1) :
N > 0, x0, x1, . . . , xN+1 ∈ O,

x = x0, y = xN+1

}
.

Kobayashi then proved:

Proposition 5.5 ([24]). — Suppose O ⊂ P(Rd+1) is a proper domain.
Then cO and kO are Aut(O)-invariant metrics on O. Moreover, if O is
convex, then cO = kO = HO.

As in Subsection 5.1 let G = PGLd(R), P the stabilizer of R e1, Q the
stabilizer of R e2 + · · ·+R ed, τ : PGLd(R)→ PGLd(R) the identity repre-
sentation, and ι, ι∗ the induced maps.

Proposition 5.6. — With the notation above, suppose Ω ⊂ G/P is a
proper domain. Then CΩ(x, y) = cι(Ω)(ι(x), ι(y)) for all x, y ∈ Ω.

Proof. — View Ω as a subset of P(Rd) and Ω∗ as a subset of P(Rd∗).
Then for ξ1, ξ2 ∈ Ω∗ distinct there is a map T ∈ P(Lin(Rd+1,R2)) with
T−1([1 : −1]) = ker ξ1 and T−1([1 : 1]) = ker ξ2, and T (Ω) ⊂ I. Then
f = T |Ω ∈ Proj(Ω, I) and it is straightforward to show that∣∣∣∣log

∣∣∣∣ξ1(x)ξ2(y)
ξ1(y)ξ2(x)

∣∣∣∣∣∣∣∣ = HI(f(x), f(y)).

Conversely, if f = T |Ω ∈ Proj(Ω, I) then T−1([1 : −1]) = ker ξ1 and
T−1([1 : 1]) = ker ξ2 for some ξ1, ξ2 ∈ Ω∗. Then as before∣∣∣∣log

∣∣∣∣ξ1(x)ξ2(y)
ξ1(y)ξ2(x)

∣∣∣∣∣∣∣∣ = HI(f(x), f(y)). �

This proposition shows that CΩ can be seen as an analogue of the
Carathéodory metric from several complex variables.
For certain flag manifoldsG/P it is also possible to construct an invariant

metric KΩ using projective maps of P(R2) into G/P . See [33, Section 4] for
the case when G/P = Grp(Rp+q).

6. Proof of Theorem 1.5

Assume for a contradiction that there exists G a non-compact connected
simple Lie group with trivial center, P 6 G a non-maximal parabolic sub-
group, and Ω ⊂ G/P a proper quasi-homogeneous domain. Let K ⊂ Ω be
a compact subset such that Aut(Ω) ·K = Ω.
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Fix some parabolic subgroup P0 	 P . Next consider the natural projec-
tion π : G/P → G/P0. Let Ω0 = π(Ω). Since π(gx) = gπ(x) we see that
Aut(Ω) 6 Aut(Ω0) and

Aut(Ω) · π(K) = π(Aut(Ω) ·K) = π(Ω) = Ω0.

Hence Ω0 is quasi-homogeneous.
Next fix a parabolic subgroup Q 6 G opposite to P . By Proposition 4.5

there exists a unique parabolic subgroup Q0 > Q which is opposite to
P0. As in Section 5 we can define domains Ω∗ ⊂ G/Q and Ω∗0 ⊂ G/Q0.
Moreover, if π∗ : G/Q → G/Q0 is the natural projection, we see from
Proposition 4.5 that π∗(Ω∗) ⊂ Ω∗0. Since π∗ is an open map, Ω∗0 has non-
empty interior and thus by Lemma 5.1 we see that Ω0 is a proper domain.
Thus by Corollary 5.3 we see that Aut(Ω) acts properly on Ω0.

Now fix some point gP0 ∈ Ω0 and let

Ωg := π−1
1 (gP0) ∩ Ω = gP0/P ∩ Ω.

By Proposition 4.5(2) the set gP0/P is not contained in any affine chart
of G/P . In particular, Ωg 6= gP0/P . So we can pick zn ∈ Ωg such that
zn → z ∈ ∂Ω. Next pick ϕn ∈ Aut(Ω) such that zn ∈ ϕnK. Since Aut(Ω)
is closed and z ∈ ∂Ω we see that ϕn →∞ in G. Then

ϕ−1
n (gP0) = π(ϕ−1

n zn) ∈ π(K).

Since Aut(Ω) acts properly on Ω0 we have a contradiction.

7. The general semisimple case

For the rest of this section, suppose G is a connected semisimple Lie
group with trivial center and no compact factors, P 6 G is a parabolic
subgroup, and Ω ⊂ G/P is a proper domain.

Then there exists G1, . . . , Gr non-compact simple Lie groups each with
trivial centers such that

G ∼=
r∏
i=1

Gi.

Further, we can find subgroups Pi 6 Gi such that P ∼=
∏r
i=1 Pi. Moreover,

either Pi = Gi or Pi 6 Gi is a parabolic subgroup. As in the statement of
Theorem 1.7 we assume that Pi 6= Gi for all 1 6 i 6 r.
For 1 6 i 6 r let πi : G/P → Gi/Pi and ρi : G → Gi be the natural

projections. Next let Ωi = πi(Ω). Then (by definition) Ωi is a proper do-
main. Moreover, ρi(Aut(Ω)) ⊂ Aut(Ωi) and so Corollary 5.3 implies that
ρi(Aut(Ω)) acts properly on Ωi. Then since Ω is a subset of

∏r
i=1 Ωi:
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Proposition 7.1. — Aut(Ω) acts properly on Ω.

We now prove Theorem 1.7:
Proof of Theorem 1.7. — Let K ⊂ Ω be a compact subset such that

Aut(Ω) ·K = Ω.
Next let

Ω̂ :=
r∏
i=1

Ωi ⊂ G/P.

Since ρi(Aut(Ω)) acts properly on Ωi we see that
r∏
i=1

ρi(Aut(Ω))

acts properly on Ω̂. Then, since

Aut(Ω) 6
r∏
i=1

ρi(Aut(Ω))

we see that Aut(Ω) acts properly on Ω̂.
Now assume that Ω 6= Ω̂. Then there exists some x ∈ ∂Ω∩Ω̂. Pick xn ∈ Ω

such that xn → x. Then there exists ϕn ∈ Aut(Ω) such that xn ∈ ϕnK.
Let K ′ ⊂ Ω̂ be a compact neighborhood of x. Then for n large

ϕnK ∩K ′ 6= ∅.

Then since Aut(Ω) acts properly on Ω̂ we see that the set {ϕn : n ∈
N} ⊂ G is relatively compact. Then, since Aut(Ω) is closed, we can pass
to a subsequence such that ϕn → ϕ ∈ Aut(Ω). Next let kn = ϕ−1

n xn. By
passing to another subsequence we can suppose that kn → k ∈ K. But
then

x = ϕk ∈ Ω

and so we have a contradiction. �

8. Proof of Theorem 1.2

Suppose M is a compact manifold and G is a connected semi-simple Lie
group with trivial center and no compact factors. Let P 6 G be a parabolic
subgroup and let {(Uα, ϕα)}α∈A be a (G,G/P )-structure on M such that
the image of the developing map is bounded in an affine chart.
Now Ω := dev(M̃) is a proper quasi-homogeneous domain. By Propo-

sition 3.1 and Proposition 7.1, Aut(Ω) is a Lie group which acts properly
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on Ω. Now, by a result of Palais [30], there exists a Aut(Ω)-invariant Rie-
mannian metric on Ω.

At this point the rest of the argument follows the proof of Proposi-
tion 3.4.10 in [32] verbatim, but we will provide the details for the reader’s
convenience.

Since the Riemannian metric on Ω is Aut(Ω)-invariant, we can pull it
back to a Riemannian metric M̃ which descends to a Riemannian metric
on M . Then the developing map dev : M̃ → Ω is a local isometry relative
to the Riemannian metrics.
Let B

M̃
(x, r) be the closed metric ball centered at x of radius r in M̃

and let BΩ(y, r) be the closed metric ball centered at y of radius r in Ω
(relative to the Riemannian metrics).
Since M is compact, there exists some ε > 0 such that every metric

ball of radius ε in M̃ is convex (that is, every two points in the metric
ball are joined by a unique geodesic in the metric ball). Since Aut(Ω) acts
co-compactly on Ω, by possibly shrinking ε we can also assume that every
metric ball of radius ε in Ω is convex.

Then for any x ∈ M̃ the developing map restricted to B
M̃

(x, ε) is a
homeomorpism onto its image: if dev(x1) = dev(x2) for some x1, x2 ∈
B
M̃

(x, ε) distinct, then the geodesic joining x1 to x2 in B
M̃

(x, ε) is mapped
to a self intersecting geodesic inBΩ(dev(x), ε) which is a contradiction. This
implies that the developing map induces an isometry between B

M̃
(x, ε) and

BΩ(dev(x), ε).
Now consider y ∈ Ω and x ∈ dev−1(BΩ(y, ε/2)). Then the metric ball

B
M̃

(x, ε) maps isometrically into Ω and hence properly contains a copy
of BΩ(y, ε/2). Thus the entire inverse image dev−1(B(y, ε/2)) is a disjoint
union of such homeomorphic copies. Therefore the developing map is a
covering map.

9. Dual convexity and completeness

Suppose G is a non-compact connected simple Lie group with trivial
center and P 6 G is a parabolic subgroup. Fix a parabolic subgroup Q 6 G
opposite to P .
Let Ω ⊂ G/P be a proper domain and define (as before)

Ω∗ := {ξ ∈ G/Q : ξ is opposite to every x ∈ Ω}.

Also given ξ ∈ G/Q define (as before)

Zξ := {x ∈ G/P : x is not opposite to ξ}.
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Then ξ ∈ Ω∗ if and only if Zξ ∩ Ω = ∅.
Now define maps ι : G/P → P(V ) and ι∗ : G/Q → P(V ∗) as in the dis-

cussion following Theorem 4.6. And let CΩ be the metric on Ω constructed
in Section 5.
We now provide a characterization of the domains where CΩ is complete

using the concept of dual convexity introduced in Definition 1.11.

Theorem 9.1. — With the notation above, (Ω, CΩ) is a complete metric
space if and only if Ω is dual convex.

Proof. — Suppose that (Ω, CΩ) is a complete metric space. Let

Ω̂ = {x ∈ G/P : x /∈ Zξ for all ξ ∈ Ω∗}.

Since Ω∗ is compact, Ω̂ is open and Ω ⊂ Ω̂ by the definition of Ω∗. Moreover
(Ω̂)∗ = Ω∗. Because Ω∗ has non-empty interior, Ω̂ is a bounded open set in
an affine chart. Then the proof of Theorem 5.2 implies that CΩ̂ is a metric
on Ω̂ (notice that Ω̂ may not be connected, but connectivity is not used in
the proof of Theorem 5.2) and

CΩ = CΩ̂|Ω.

We claim that Ω coincides with a connected component of Ω̂ which would
imply that Ω is dual convex. Suppose not, then there exists some x ∈ ∂Ω∩Ω̂.
Pick a sequence xn ∈ Ω such that xn → x. Then

CΩ(xn, xn+m) = CΩ̂(xn, xn+m) 6 CΩ̂(xn, x) + CΩ̂(x, xn+m)

so xn is a Cauchy sequence. But CΩ is a complete metric and so x ∈ Ω
which is a contradiction. Thus Ω is dual convex.

Now suppose that Ω is dual convex. We wish to show that CΩ is a
complete metric on Ω. Suppose that xn is a Cauchy sequence, then by
passing to a subsequence we can suppose that

∞∑
i=1

CΩ(xi, xi+1) = M <∞.

Then

CΩ(xn, x1) 6M

for all n > 0. Since G/P is compact we can pass to a subsequence such that
xn → x ∈ Ω. We claim that x ∈ Ω. Otherwise there exists some ξ ∈ Ω∗
such that x ∈ Zξ. Since Ω is bounded in some affine chart we can find some
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η ∈ Ω∗ such that x /∈ Zη. Then

CΩ(x1, xn) > log

∣∣∣∣∣∣
ι∗(ξ)

(
ι(x1)

)
ι∗(η)

(
ι(xn)

)
ι∗(ξ)

(
ι(xn)

)
ι∗(η)

(
ι(x1)

)
∣∣∣∣∣∣ .

But since x ∈ Zξ the right hand side of the above expression goes to
infinity as n→∞. Thus we have a contradiction and thus x ∈ Ω. So CΩ is
a complete metric on Ω. �

We can now prove Theorem 1.12 from the introduction. The key step is
the following variant of the Hopf–Rinow theorem:

Lemma 9.2. — Suppose (X, d) is a locally compact metric space and
there exists a compact set K ⊂ X such that X = Isom(X, d) · K. Then
(X, d) is a complete metric space.

Proof. — We first claim that there exists δ > 0 such that for any x ∈ X
the set

BX(x; δ) := {y ∈ X : d(x, y) 6 δ}

is compact. Since (X, d) is locally compact, for any k ∈ K there exists
δk > 0 such that BX(k; δk) is compact. Then since

K ⊂ ∪k∈K{y ∈ X : d(k, y) < δk/2}

there exists k1, . . . , kN ∈ K such that

K ⊂ ∪Ni=1{y ∈ X : d(ki, y) < δki/2}.

Then if δ := min{δki
/2} we see that BX(x; δ) is compact for any x ∈ X.

Now suppose that xn is a Cauchy sequence in (X, d). Then there ex-
ists N > 0 such that d(xn, xN ) < δ for n > N . But then there exists a
subsequence xnk

which converges. Thus (X, d) is complete. �

Now Theorem 9.1 and the above lemma imply:

Corollary 9.3. — Suppose G is a connected non-compact simple Lie
group with trivial center, P 6 G is a parabolic subgroup, and Ω ⊂ G/P is
a proper quasi-homogeneous domain. Then Ω is dual convex.
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