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ON HOMOMORPHISMS BETWEEN CREMONA
GROUPS

by Christian URECH (*)

Abstract. — We look at algebraic embeddings of the complex Cremona group
in n variables Crn to the group of birational transformations Bir(M) of an algebraic
variety M . First we study geometrical properties of an example of an embedding of
Cr2 into Cr5 that is due to Gizatullin. In a second part, we give a full classification
of all algebraic embeddings of Cr2 into Bir(M), where M is a variety of dimension 3
and generalize this result partially to algebraic embeddings of Crn into Bir(M),
where the dimension of M is n + 1, for arbitrary n. In particular, this yields a
classification of all algebraic PGLn+1(C)-actions on smooth projective varieties of
dimension n + 1 that can be extended to rational actions of Crn.
Résumé. — On s’intéresse aux plongements algébriques du groupe de Cremona

complexe à n variables Crn dans des groupes de transformations birationnelles
Bir(M) d’une varété algébrique M . D’abord on regarde un plongement de Cr2 dans
Cr5 qui était découvert par Gizatullin. Puis on donne une classification de tous les
plongements algébriques de Cr2 dans Bir(M) pour des variétés M de dimension 3
et on généralise partiellement ce résultat aux plongements algébriques de Crn dans
Bir(M), où la dimension de M est n + 1 (pour tout n). On obtient notamment
une classification de toutes les action régulières de PGLn+1(C) sur des variétés
projectives lisses de dimension n + 1 qui s’étendent vers des actions rationnelles
de Crn.

1. Introduction and statement of the results

1.1. Cremona groups

LetM be a complex algebraic variety and Bir(M) the group of birational
transformations of M . Denote by Pn = PnC the complex projective space of
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54 Christian URECH

dimension n. The group
Crn := Bir(Pn)

is called the Cremona group. In this paper we are interested in group homo-
morphisms from Crn to Bir(M). In particular, we will study an embedding
of Cr2 into Cr5 that was described by Gizatullin [29] and consider the case,
where dim(M) = n+ 1.
A birational transformation A : M 99K N between varieties M and N

induces an isomorphism Bir(M) → Bir(N) by conjugating elements of
Bir(M) with A. A homomorphism Φ: Bir(M) → Bir(N1) and a homo-
morphism Ψ: Bir(M) → Bir(N2) are called conjugate if there exists a
birational transformation A : N1 99K N2 such that Ψ(g) = A ◦ Φ(g) ◦ A−1

for all g ∈ Bir(M).

Example 1.1. — Assume that a variety M is birationally equivalent to
Pn ×N for some variety N . The standard action on the first factor yields
an injective homomorphism of Crn into Bir(Pn × N) and therefore also
into Bir(M). We call embeddings of this type standard embeddings. In
particular, we obtain in that way for all nonnegative integers m a standard
embedding Crn → Bir(Pn × Pm).

Example 1.2. — A variety M is called stably rational if there exists a n
such that M × Pn is rational. There exist varieties of dimension larger
than or equal to 3 that are stably rational but not rational (see [4]).
We will see that two standard embeddings f1 : Crn → Bir(Pn × N) and
f2 : Crn → Bir(Pn ×M) are conjugate if and only if N and M are bira-
tionally equivalent (Lemma 3.3). So every class of birationally equivalent
stably rational varieties of dimension k defines a different conjugacy class
of embeddings Crn → Bir(Pm) for m = n+ k.

If we fix homogeneous coordinates [x0 : · · · : xn] of Pn, every element
f ∈ Crn can be described by homogeneous polynomials of the same degree
f0, . . . , fn ∈ C[x0, . . . , xn] without non-constant common factor, such that

f([x0 : · · · : xn]) = [f0 : · · · : fn] .

The degree of f is the degree of the fi. With respect to affine coordinates
[1 : X1 : · · · : Xn] = (X1, . . . , Xn), we have

f(X1, . . . , Xn) = (F1, . . . , Fn) ,

where the Fi(X1, . . . , Xn) ∈ C(X1, . . . , Xn) are given by the quotients
fi(1, X1, . . . , Xn)/f0(1, X1, . . . , Xn). The subgroup of Crn consisting of el-
ements F such that all the Fi are polynomials as well as all the entries of
F−1, is exactly Aut(An), the group of polynomial automorphisms of the
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affine space An. When we look at Aut(An) as a subgroup of Crn, we will
always consider the embedding given by the affine coordinates x0 6= 0.
An important subgroup of Crn is the automorphism group

Aut(Pn) ' PGLn+1(C) .

The n-dimensional subgroup of Aut(Pn) consisting of diagonal automor-
phisms will be denoted by Dn. It is the maximal torus of Crn in the fol-
lowing sense: all diagonalizable subgroups of Crn are of rank 6 n and all
diagonalizable subgroups of rank n in Crn are conjugate to Dn ([5]).
Let A = (aij) ∈Mn(Z) be a matrix of integers. The matrix A determines

a rational self map of the affine space

fA = (xa11
1 xa12

2 . . . xa1n
n , xa21

1 xa22
2 . . . xa2n

n , . . . , xan1
1 xan2

2 . . . xann
n ) .

We have fA ◦ fB = fAB for A,B ∈ Mn(Z). One observes that fA is a bi-
rational transformation if and only if A ∈ GLn(Z). This yields an injective
homomorphism GLn(Z) → Crn whose image we call the Weyl group and
denote it by Wn. This terminology is justified by the fact that the nor-
malizer of Dn in Crn is the semidirect product NormCrn

(Dn) = Dn oWn.
Note that Dn o Wn is the automorphism group of (C∗)n. Sometimes, Wn

is also called the group of monomial transformations.
The well known theorem of Noether and Castelnuovo (see for example [2])

states that over an algebraically closed field k the Cremona group in two
variables is generated by PGL3(k) and the standard quadratic involution

σ := [x1x2 : x0x2 : x0x1] ∈W2 .

Results of Hudson and Pan ([32], [36]) show that for n > 3 the Cremona
group Crn is not generated by PGLn+1(C) and Wn. Let

Hn := 〈PGLn+1(C),Wn〉 .

Blanc and Hedén studied the subgroup Gn of Crn generated by PGLn+1(C)
and the element σn := [x−1

0 : · · · : x−1
n ] ([11]). In particular, they show that

Gn is a finite index subgroup of Hn and that it is strictly contained in Hn

if and only if n is odd. Further results about the group structure of Gn can
be found in [23].

1.2. The case dim(M) 6 n

Let M be a complex projective variety of dimension n and

ρ : PGLr+1(C)→ Bir(M)
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56 Christian URECH

an embedding. Then n > r and if n = r it follows that M is rational and
that up to a field homomorphism, ρ is the standard embedding (see [16]
and [22]). This implies in particular that there are no embeddings of Crn
into Bir(M) if dim(M) < n. In the Appendix we recall these results and
show that the restriction of an automorphism of Crn to the subgroup Hn

is inner up to a field automorphism.

1.3. Algebraic homomorphisms

We call a group homomorphism Ψ: Crn → Bir(M) algebraic if its re-
striction to PGLn+1(C) is an algebraic morphism. The algebraic structure
of Bir(M) and some properties of algebraic homomorphisms will be dis-
cussed in Section 2. Recall that an element f ∈ Crn is called algebraic, if
the sequence {deg(fn)}n∈Z+ is bounded.

Definition 1.3. — Let M be a variety and ϕM : Crn → Bir(M) a
non-trivial algebraic group homomorphism. We say that ϕM is reducible if
there exists a variety N such that 0 < dim(N) < dim(M) and an algebraic
homomorphism ϕN : Crn → Bir(N) together with a dominant rational map
π : M 99K N that is Crn-equivariant with respect to the rational actions
induced by ϕM and ϕN respectively, i.e. π ◦ ϕM (g) = ϕN (g) ◦ π for all
g ∈ Crn.

Remark 1.4. — In [50], Zhang uses the terminology primitive action for
irreducible actions in the sense of Definition 1.3; in [15], Cantat says that
an action admits a non-trivial factor if it is reducible.

Note that if we look at the induced action of Crn on the function field
C(M) of M , reducibility is equivalent to the existence of a non-trivial
Crn-invariant function field C(N) ⊂ C(M).

1.4. An example by Gizatullin

In [29], Gizatullin looks at the following question: Let ψ : PGL3(C) →
PGLn+1(C) be a linear representation. Does ψ extend to a homomorphism
Ψ: Cr2 → Crn? He shows that the linear representations given by the
action of PGL3(C) on conics, cubics and quartics can be extended to ho-
momorphisms from Cr2 to Cr5, Cr9 and Cr14, respectively. These homo-
morphisms are related to the rational action of Cr2 on moduli spaces of
certain vector bundles on P2 that were discovered by Artamkin ([3]).
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In Section 3 we study in detail some geometrical properties of the homo-
morphism

Φ: Cr2 → Cr5

that was described by Gizatullin; by construction, the restriction of Φ to
PGL3(C) yields the linear representation ϕ : PGL3(C) → PGL6(C) given
by the action of PGL3(C) on plane conics. Among other things, we prove
the following:

Theorem 1.5. — Let Φ: Cr2 → Cr5 be the Gizatullin homomorphism.
Then the following is true:

(1) The group homomorphism Φ is injective and irreducible.
(2) The rational action of Cr2 on P5 that is induced by Φ preserves

the Veronese surface V and its secant variety S ⊂ P5 and induces
rational actions of Cr2 on V and S.

(3) The Veronese embedding v : P2 → P5 is Cr2-equivariant with re-
spect to the standard rational action on P2.

(4) The dominant secant rational map s : P2 × P2 99K S ⊂ P5 (see
Section 3.4) is Cr2-equivariant with respect to the diagonal action
of Cr2 on P2 × P2.

(5) The rational action of Cr2 on P5 preserves a volume form on P5

with poles of order three along the secant variety S.
(6) The group homomorphism Φ sends the group of polynomial auto-

momorphisms Aut(A2) ⊂ Cr2 to Aut(A5).

Note that the injectivity of Φ follows from (3); in Section 3.8 irreducibility
is proved. Part (2)–(4) of Theorem 1.5 will be proved in Section 3.4, part (5)
in Section 3.6 and part (6) in Section 3.7.
The representation ϕ∨ of PGL3(C) into PGL6(C) given by ψ ◦ α, where

α is the algebraic homomorphism g 7→ tg−1, is conjugate in Cr5 to the
representation ϕ. This conjugation yields the embedding Φ∨ : Cr2 → Cr5,
whose image preserves the secant variety S as well and induces a rational
action on it. As the secant variety S is rational, Φ and Φ∨ induce two non-
standard homomorphisms from Cr2 to Cr4, which we denote by Ψ1 and Ψ2
respectively. In Section 3.5 we prove the following:

Proposition 1.6. — The two homomorphisms Ψ1,Ψ2 : Cr2 → Cr4
are not conjugate in Cr4; moreover they are irreducible and therefore not
conjugate to the standard embedding.

Remark 1.7. — The homomorphism Ψ1 is injective, since it restricts
to the standard action on the Veronese surface. However, it seems to be
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unclear, whether Ψ2 is injective as well. Since the restriction of Ψ2 to
PGL3(C) is injective, it seems unlikely that Ψ2 is not injective. But it
is not clear how to prove that.

Since Φ is algebraic, the images of algebraic elements under Φ are al-
gebraic again (see Proposition 2.4). Calculation of the degrees of some
examples suggests that Φ might even preserve the degrees of all elements
in Cr2. However, we were only able to prove the following (Section 3.7):

Theorem 1.8. — Let Φ: Cr2 → Cr5 be the Gizatullin-embedding.
Then

(1) for all elements f ∈ Cr2 we have deg(f) 6 deg(Φ(f)),
(2) for all g ∈ Aut(A2) ⊂ Cr2 we have deg(g) = deg(Φ(g)).

The image of the Weyl group W2 under Φ is not contained in the Weyl
group W5. More generally, it can be shown that there exists no algebraic
homomorphism from Cr2 to Cr5 that preserves automorphisms, diagonal
automorphisms and the Weyl group (see [46]).

1.5. Algebraic embeddings in codimension 1

In Section 4 and Section 5 we look at algebraic homomorphisms Crn →
Bir(M) in the case where M is a smooth projective variety of dimension
n+ 1 for n > 2.

Example 1.9. — For all curves C of genus > 1, the variety Pn×C is not
rational and there exists the standard embedding ΨC : Crn → Bir(Pn×C).

Example 1.10. — Crn acts rationally on the total space of the canonical
bundle of Pn

KPn ' OPn(−(n+ 1)) '
n∧

(TPn)∨

by f(p, ω) = (f(p), ω ◦ (dfp)−1), where p ∈ Pn and ω ∈
∧n(TpPn)∨. More

generally, we obtain a rational action of Crn on the total space of the bundle
K⊗lPn ' OPn(−(n+ 1)l) and on its projective completion

Fl := P(OPn ⊕OPn(−l(n+ 1))

for all l ∈ Z>0. This yields a countable family of injective homomorphisms

Ψl : Crn → Bir(Fl) .

Note that the restriction of this rational action to PGLn(C) is regular,
hence these embeddings are algebraic.
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We can choose affine coordinates (x1, . . . , xn, xn+1) of Fl such that Ψl is
given by

Ψl(f)(x1, . . . , xn, xn+1) = (f(x1, . . . , xn), J(f(x1, . . . , xn))−lxn+1) ,

where, J(f(x1, . . . , xn)) denotes the determinant of the Jacobian of f at
the point (x1, . . . , xn). Observe that Ψ0 is conjugate to the standard em-
bedding.

Example 1.11. — Let P(TP2) be the total space of the fiberwise pro-
jectivisation of the tangent bundle over P2. Then P(TP2) is rational and
there is an injective group homomorphism

ΨB : Cr2 → Bir(P(TP2))

defined by ΨB(f)(p, v) := (f(p),P(dfp)(v)). Here, P(dfp) : PTp → PTf(p)
defines the projectivisation of the differential dfp of f at the point p ∈ P2.

Example 1.12. — The Grassmannian of lines in the projective 3-space
G(1, 3) is a rational variety of dimension 4 with a transitive algebraic
PGL4(C)-action. This action induces an algebraic embedding of PGL4(C)
into Cr4. In Proposition 5.2 we will show that the image of this embed-
ding does not lie in any subgroup isomorphic to Cr3. So no group action
of PGL4(C) on G(1, 3) by automorphisms can be extended to a rational
action of Cr3.

The classification of PGLn+1(C)-actions on smooth projective varieties
of dimension n+1 is well known to the experts; in Section 4 we study their
conjugacy classes. We will see that Examples 1.9 to 1.12 describe up to
birational conjugation and up to algebraic automorphisms of PGLn+1(C)
all possible PGLn+1(C)-actions on smooth projective varieties of dimension
n + 1 and that these actions are not birationally conjugate to each other.
This yields a classification of algebraic homomorphisms of PGLn+1(C) to
Bir(M) up to birational conjugacy, for smooth projective M of dimension
n + 1. We will study in Section 5 how these actions extend to rational
actions of Crn on M . Denote by α : PGLn(C) → PGLn(C) the algebraic
automorphism given by g 7→ t(g−1).

Theorem 1.13. — Let n > 2, let M be a complex projective variety
of dimension n + 1 and let ϕ : PGLn+1(C) → Bir(M) be a non-trivial
algebraic homomorphism. Then

(1) ϕ is conjugate, up to the automorphism α, to exactly one of the
embeddings described in Example 1.9 to 1.12.

TOME 68 (2018), FASCICULE 1



60 Christian URECH

(2) If n = 3 and ϕ is conjugate to the action described in Example 1.12,
then neither ϕ nor ϕ ◦ α can be extended to a homomorphism of
H3 to Bir(M).

(3) If ϕ is conjugate to one of the embeddings described in Example 1.9
to 1.11 then exactly one of the embeddings ϕ or ϕ ◦ α extends to a
homomorphism of Crn to Bir(M).

(4) ϕ extends to Hn if and only if it extends to Crn; moreover, in this
case the extension to Hn is unique.

Theorem 1.13 classifies all group homomorphisms Ψ: Hn → Bir(M)
for projective varieties M of dimension n + 1 such that the restriction
to PGLn+1(C) is an algebraic morphism. By the theorem of Noether and
Castelnuovo, we obtain in particular a full classification of all algebraic
homomorphisms from Cr2 to Bir(M) for projective varieties M of dimen-
sion 3:

Corollary 1.14. — Let M be a projective variety of dimension 3 and
Ψ: Cr2 → Bir(M) a non-trivial algebraic group homomorphism. Then Ψ is
conjugate to exactly one of the homomorphisms described in Example 1.9
to 1.11.

The following observations are now immediate:

Corollary 1.15. — Let M be a projective variety of dimension 3 and
Ψ: Cr2 → Bir(M) a non-trivial algebraic homomorphism. Then

(1) Ψ is injective.
(2) There exists a Cr2-equivariant rational map f : M 99K P2 with re-

spect to the rational action induced by Ψ and the standard action
respectively. In particular, all algebraic homomorphisms from Cr2
to Bir(M) are reducible.

(3) There exists an integer CΨ ∈ Z such that

1/CΨ deg(f) 6 deg(Ψ(f)) 6 CΨ deg(f) .

Note that Part (3) of Corollary 1.15 resembles in some way Theorem 1.8
and leads to the following question:

Question 1.16. — Let Φ: Cr2 → Crn be an algebraic embedding.
Does there always exist a constant C depending only on Φ such that
1/C deg(f) 6 deg(Φ(f)) 6 C deg(f) for all f ∈ Cr2?
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2. Algebraic homomorphisms

In this section we recall some results on the algebraic structure of Bir(M)
and of some of its subgroups and we discuss our notion of algebraic homo-
morphisms.

2.1. The Zariski topology

We can equip Bir(M) with the so-called Zariski topology. Let A be an
algebraic variety and

f : A×M 99K A×M

an A-birational map (i.e. a map of the form (a, x) 799K (a, f(a, x)) that
induces an isomorphism between open subsets U and V of A ×M such
that the projections from U and from V to A are both surjective). For each
a ∈ A we obtain therefore an element of Bir(M) defined by x 7→ p2(f(a, x)),
where p2 is the second projection. Such a map A → Bir(M) is called a
morphism or family of birational transformations parametrized by A.

Definition 2.1. — The Zariski topology on Bir(M) is the finest topol-
ogy such that all morphisms f : A → Bir(M) for all algebraic varieties A
are continuous (with respect to the Zariski topology on A).

The map ι : Bir(M) → Bir(M), x 7→ x−1 is continuous as well as the
maps x 7→ g ◦ x and x 7→ x ◦ g for any g ∈ Bir(M). This follows from
the fact that the inverse of an A-birational map as above is again an A-
birational map as is the right/left-composition with an element of Bir(M).
The Zariski topology was introduced in [20] and [40] and studied in [10].
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2.2. Algebraic subgroups

An algebraic subgroup of Bir(M) is the image of an algebraic group G by
a morphism G → Bir(M) that is also an injective group homomorphism.
It can be shown that algebraic groups are closed in the Zariski topology
and of bounded degree in the case of Bir(M) = Crn. Conversely, closed
subgroups of bounded degree in Crn are always algebraic subgroups with a
unique algebraic group structure that is compatible with the Zariski topol-
ogy (see [10]).
Let N be a smooth projective variety that is birationally equivalent to

M . Let G be an algebraic group acting regularly and faithfully on N . This
yields a morphism G→ Bir(M), so G is an algebraic subgroup of Bir(M).
On the other hand, a theorem by Weil states that all algebraic subgroups
of Bir(M) have this form.

Theorem 2.2 ([42, 47, 49]). — Let G ⊂ Bir(M) be an algebraic sub-
group, where M is a smooth projective variety over C. Then there exists
a smooth projective variety N and a birational map f : M → N that con-
jugates G to a subgroup of Aut(N) such that the induced action on N is
algebraic.

It can be shown (see for example, [10]) that the sets (Crn)6d ⊂ Crn
consisting of all birational transformations of degree 6 d are closed with
respect to the Zariski topology. So the closure of a subgroup of bounded
degree in Crn is an algebraic subgroup and can therefore be regularized in
the sense of the above theorem. We obtain:

Corollary 2.3. — Let G ⊂ Crn be a subgroup that is contained in
some (Crn)6d, then there exists a smooth projective variety N and a bira-
tional transformation f : Pn 99K N such that fGf−1 ⊂ Aut(N).

The maximal algebraic subgroups of Cr2 have been classified together
with the rational surfaces on which they act as automorphisms ([7, 27]).
In dimension 3, a classification for maximal connected algebraic subgroups
exists: [43, 44, 45].

2.3. Algebraic homomorphisms

We defined a group homomorphism from Crn to Bir(M) to be algebraic
if its restriction to PGLn+1(C) is a morphism. Note that this is a priori a
weaker notion than being continuous with respect to the Zariski topology.
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It is not clear, whether algebraic homomorphisms are always continuous.
However, for dimension 2 we have the following partial result, which will
proved in Section 2.5:

Proposition 2.4. — Let Φ: Cr2 → Bir(M) be a homomorphism of
groups. The following are equivalent:

(1) Φ is algebraic.
(2) The restriction of Φ to any algebraic subgroup of Cr2 is algebraic.
(3) The restriction of Φ to one positive dimensional algebraic subgroup

of Cr2 is algebraic.

2.4. One-parameter subgroups

A one-parameter subgroup is a connected linear algebraic group of di-
mension 1. It is well known (see for example [33]) that all one-parameter
subgroups are isomorphic to either C or C∗. The group C is unipotent, the
group C∗ semi-simple.
Proposition 2.5 shows that, up to conjugation by birational maps, there

exists only one birational action of C and only one of C∗ on P2:

Proposition 2.5. — In Cr2 all one-parameter subgroups isomorphic
to C are conjugate and all one-parameter subgroups isomorphic to C∗ are
conjugate.

The first part of Proposition 2.5 follows from results in [9] and [6] (see
also [14]). The second part is a special case of Theorem 2.6. A detailed
explanation of the proof can be found in [46].

Theorem 2.6 ([5, 37]). — In Crn all tori of dimension > n− 2 are con-
jugate to a subtorus of Dn. Moreover, two subtori of Dn are conjugate in
Crn to each other if and only if they are isomorphic.

Let G be a connected linear algebraic group and {Ui}i∈I the set of one-
parameter subgroups of G. Then the subgroup H ⊂ G generated by all
the Ui is closed and connected and there exist one-parameter subgroups
U1, U2, . . . , Un such that U1 · U2 . . . Un = H ([33, Proposition 7.5]). On
the other hand, if g is the Lie algebra of G, then the exponential map
exp: g→ G induces a diffeomorphism from an analytically open set of g to
an analytically open neigborhood V of the identity in G. For all elements
A ∈ g, the closure of the abelian subgroup {exp(tA) | t ∈ C} in G is
connected and therefore contained in H. We obtain that V is contained in

TOME 68 (2018), FASCICULE 1



64 Christian URECH

G and hence that H is open in the analytic topology. This yields H = G

and thus
U1 · U2 . . . Un = G.

The following Lemma is a classical result (see for example [41]):

Lemma 2.7. — Let G be a linear algebraic group and U1, . . . , Un be
algebraic subgroups such that U1·U2 . . . Un = G. LetH be a linear algebraic
group and ϕ : G→ H a homomorphism of abstract groups such that ϕ|Ui

is
a homomorphism of algebraic groups for all i. Then ϕ is a homomorphism
of algebraic groups.

2.5. Algebraic and abstract group homomorphisms

Let G and H be algebraic groups that are isomorphic as abstract groups.
The question whether G and H are also isomorphic as algebraic groups
has been treated in detail in [12] (see also [24] and [21]). We will use the
following result:

Proposition 2.8. — Let G be an algebraic group that is isomorphic to
PGLn(C) as an abstract group. Then G is isomorphic to PGLn(C) as an
algebraic group. Moreover, for every abstract isomorphism

ρ : PGLn(C)→ G

there exists an automorphism of fields τ : C → C such that ρ ◦ τ is an
algebraic isomorphism.

Remark 2.9. — It is well known that the automorphisms of PGLn(C)
as an algebraic group are compositions of inner automorphisms and the
automorphism

α : PGLn(C)→ PGLn(C), g 7→ tg−1.

Proof of Proposition 2.4. — We first show how (1) implies (2). Let G be
an algebraic subgroup of Cr2. We can assume that G is connected. By the
above remark, there exist one parameter subgroups U1, . . . , Uk ⊂ G such
that U1 . . . Uk = G. Since, by Proposition 2.5, the group Ui is conjugate to a
one parameter subgroup of PGL3(C) for all i, we obtain that the restriction
of ϕ to any of the Ui is an algebraic homomorphism of groups and that
ϕ(G) ⊂ Crn is of bounded degree. Then ϕ(G) ⊂ Crn is an algebraic group.
We can now apply Lemma 2.7 and conclude that the restriction of ϕ to G
is a homomorphism of algebraic groups.

ANNALES DE L’INSTITUT FOURIER



ON HOMOMORPHISMS BETWEEN CREMONA GROUPS 65

Statement (3) follows immediately from statement (2), so it only remains
to prove that (3) implies (1). Let ϕ : Cr2 → Bir(M) be a homomorphism
of abstract groups and let G ⊂ Cr2 be a positive dimensional algebraic
subgroup such that the restriction of ϕ to G is a morphism. Since G is
infinite, it contains a one parameter subgroup U ⊂ G.

Let U1, . . . , Un ⊂ PGL3(C) be unipotent one parameter subgroups such
that U1 . . . Un = PGL3(C). If U is unipotent, all the subgroups Ui are
conjugate to U . Hence the restriction of ϕ to Ui is a morphism for all i.
The image ϕ(PGL3(C)) ⊂ Crn is of bounded degree, so ϕ(PGL3(C)) ⊂ Crn
is an algebraic group and with Lemma 2.7 it follows that the restriction of
ϕ to PGL3(C) is a morphism.
Denote by D1 ⊂ PGL3(C) the subgroup given by elements of the form

[cx0 : x1 : x2], c ∈ C∗ and by T ⊂ PGL3(C) the subgroup of all elements
of the form [x0 : x1 + cx0 : x2], c ∈ C; we have D1 ' C∗ and T ' C. If U
is semi-simple, it is, again by Proposition 2.5, conjugate to D1, hence the
restriction of ϕ to D1 is a morphism as well. Note that

T = {[x0 : x1 + cx0 : x2] | c ∈ C} = {dgd−1 | d ∈ D1} ∪ {id}

where g = [x0 : x1 + x0 : x2]. We obtain that ϕ(T ) is of bounded de-
gree and contained in the algebraic group ϕ(T ) ⊂ Crn. As ϕ(T ) con-
sists of two ϕ(D1)-orbits, it is constructible and therefore closed. We ob-
tain that the images of all unipotent subgroups of Cr2 under ϕ are alge-
braic subgroups.The map ϕ(U1) × · · · × ϕ(Un) → Crn is a morphism, so
its image is a constructible set and therefore closed since it is a group.
Hence ϕ(PGL3(C)) = ϕ(U1) . . . ϕ(Un) is an algebraic subgroup. By Propo-
sition 2.8 it is isomorphic as an algebraic group to PGL3(C) and there exists
an automorphism of fields τ : C→ C such that ϕ◦τ : PGL3(C)→ PGL3(C)
is an isomorphism of algebraic groups. But since the restriction of ϕ to T
is already an algebraic homomorphism, it follows that τ is the identity. �

Remark 2.10. — Proposition 2.4 shows in particular that algebraic ho-
momorphisms Φ: Cr2 → Bir(M) send algebraic elements to algebraic el-
ements. This result follows also directly from the fact that a birational
transformation f ∈ Cr2 of degree d can be written as the product of at
most 4d linear maps and 4d times the standard quadratic involution σ (see
for example [2]); we therefore obtain that the sequence {deg(Φ(f)n)} is
bounded if {deg(fn)} is bounded.
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3. An example by Gizatullin

3.1. Projective representations of the projective linear group

The results from representation theory of linear algebraic groups that we
use in this section can be found, for example, in [28, 38].

Proposition 3.1. — There is a bijection between homomorphisms of
algebraic groups from SLn(C) to SLm(C) such that the image of the center
is contained in the center and homomorphisms of algebraic groups from
PGLn(C) to PGLm(C).

From Proposition 3.1 and some elementary representation theory of
SL3(C) it follows that n = 6 is the smallest number such that there ex-
ist non-trivial and non-standard homomorphisms of algebraic groups from
PGL3(C) to PGLn(C). In fact, up to automorphisms of PGL3(C) there are
exactly two non-trivial representations from PGL3(C) to PGL6(C).

The first one is reducible. Let ψ′ : GL3 → GL6 be the linear representa-
tion given by the diagonal action on C3×C3; we denote by ψ : PGL3(C)→
PGL6(C) its projectivisation.
The second one is given by the action of PGL3(C) on the space of conics.

The latter one can be parametrized by the space PM3 of symmetric 3× 3-
matrices up to scalar multiple and is isomorphic to P5. Let g ∈ PGL3(C),
we define ϕ(g) ∈ PGL6(C) by (aij) 7→ g(aij)(tg).

In this section we identify the space of conics with P5 in the following
way:

(aij) 7→ [a00 : a11 : a22 : a12 : a02 : a01]
In other words, the conic C given by the zeroes of the equation

F = a00X
2 + a11Y

2 + a22Z
2 + 2a12Y Z + 2a02XZ + 2a01XY

is identified with the point [a00 : a11 : a22 : a12 : a02 : a01] ∈ P5.

Observe that with our definition, ϕ(g) sends the conic C to the conic
given by the zero set of the polynomial F ◦ (tg).
Let

α : PGL3(C)→ PGL3(C)
be the algebraic automorphism g 7→ (tg)−1. Then ϕ(α(g)) maps the conic
C to g(C), which is the conic given by the zero set of the polynomial
F ◦ g−1. Accordingly, ϕ(α(g)) ∈ PGL6(C) maps the matrix (aij) ∈ M3 to
(tg)−1(aij)g−1.
The action of PGL3(C) on P5 induced by ϕ has exactly three orbits that

are characterized by the rank of the corresponding symmetric matrix inM3.
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Geometrically they correspond to the sets of smooth conics, pairs of distinct
lines and double lines. The set of double lines is a surface isomorphic to
P2 and called the Veronese surface; we denote it by V . The set of singular
conics S is the secant variety of V and has dimension 4.
To describe the PGL3(C)-orbits with respect to the action induced by

ψ, consider a point p = [x0 : x1 : x2 : x3 : x4 : x5] ∈ P5. Then p can
either be mapped by an element of ψ(PGL3(C)) to a point of the form
[a : 0 : 0 : b : 0 : 0], where [a : b] ∈ P1, or to the point [1 : 0 : 0 : 0 : 0 : 1]
and these points are all in different ψ(PGL3(C))-orbits. The stabilizer of
[1 : 0 : 0 : 0 : 0 : 1] in ψ(PGL3(C)) is the subgroup of matrices of the form[

g 0
0 g

]
, where g ∈ PGL3(C) has the form

 1 a 0
0 b 0
0 c 1

.
Therefore, the orbit of [1 : 0 : 0 : 0 : 0 : 1] under ψ(PGL3(C)) has di-
mension 5. The orbit of a point of the form [a : 0 : 0 : b : 0 : 0], on the
other hand, has dimension 2. So we have a family parametrized by P1 of
orbits of dimension 2 and one orbit of dimension 5. In particular, there is
no ψ(PGL3(C))-invariant subset of dimension 4.
The following observation is easy but useful. We leave its proof to the

reader.

Lemma 3.2. — Let X and Y be two projective varieties with biregular
actions of a group G and let f : X 99K Y be a G-equivariant rational
map. Then the indeterminacy locus If ⊂ X and the exceptional locus
Exc(f) ⊂ X are G-invariant sets.

Note that Lemma 3.2 implies in particular that all equivariant ratio-
nal maps with respect to actions without orbits of codimension > 2 are
morphisms.

Lemma 3.3. — Let M and M ′ be irreducible complex projective vari-
eties such that M × Pn et M ′ × Pn are birationally equivalent. Then the
standard embeddings

Ψ: PGLn+1(C)→ Bir(Pn ×M) and Ψ′ : PGLn+1(C)→ Bir(Pn ×M ′)

are conjugate if and only if M and M ′ are birationally equivalent.

Proof. — IfM andM ′ are birationally equivalent it follows directly that
Ψ and Ψ′ are conjugate. On the other hand, assume that there exists a
birational map A : Pn × M 99K Pn × M ′ that conjugates Ψ to Ψ′, i.e.
A◦Ψ(g) = Ψ′(g)◦A for all g ∈ PGLn+1(C). The images Ψ(PGLn+1(C)) and
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Ψ′(PGLn+1(C)) permute the fibers {p}×M , p ∈ Pn and {p}×M ′, p ∈ Pn
respectively. By Lemma 3.2, no fiber is fully contained in the exceptional
locus of A.
The fiber

F := [1 : 1 : · · · : 1]×M ⊂ Pn ×M
consists of all fixed points of the image of the subgroup of coordinate per-
mutations Ψ(Sn+1) and it is isomorphic to M . Correspondingly, the fiber

F ′ := [1 : 1 : · · · : 1]×M ′ ⊂ Pn ×M ′

consists of all fixed points of Ψ′(Sn+1) and is isomorphic to M ′. Hence the
strict transform of F under A is F ′ and we obtain that M and M ′ are
birationally equivalent. �

Proposition 3.4. — Let ϕ,ψ : PGL3(C) → PGL6(C) be the homo-
morphisms defined in Section 3.1. The two subgroups ϕ(PGL3(C)) and
ψ(PGL3(C)) are not conjugate in Cr5.

Proof. — Assume that there is an element f ∈ Cr5 that conjugates
ϕ(PGL3(C)) to ψ(PGL3(C)). Note that P5 has no ψ(PGL3(C))-invariant
subset of dimension 4. Hence, by Lemma 3.2, f must be a birational
morphism and therefore an automorphism. But this isn’t possible since
the action of ϕ(PGL3(C)) has an orbit of dimension 4 and the action of
ψ(PGL3(C)) does not. �

3.2. A rational action on the space of plane conics

Our goal is to extend the group homomorphism ϕ : PGL3(C)→ PGL6(C)
to a group homomorphism

Φ: Cr2 → Cr5 .

A first naive idea is to check whether the map Ψ: {PGL3(C), σ} → Cr5
defined by Ψ(g) = ϕ(g) for g ∈ PGL3(C) and Ψ(σ) = [x−1

0 : x−1
2 : · · · : x−1

5 ]
extends to a group homomorphism Cr2 → Cr5. However, Ψ(σ) and Ψ(h) do
not satisfy relation (3) of Lemma A.4. Let h = [Z −X : Z − Y : Z] ∈ Cr2,
then

([x−1
0 : x−1

1 : · · · : x−1
5 ] ◦ ϕ(h))3 6= id .

In [29], Gizatullin constructs an extension Φ: Cr2 → Cr5 of ϕ, defined
by Φ|PGL3(C) = ϕ and

Φ(σ) = [x1x2 : x0x2 : x0x1 : x3x0 : x4x1 : x5x2] .

He shows the following:
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Proposition 3.5 ([29]). — The map Φ: Cr2 → Cr5 is a group homo-
morphism.

3.3. The dual action

Consider the representation ϕ∨ : PGL3(C)→ PGL6(C) that is defined by

ϕ∨(g) := tϕ(g)−1.

In other words, ϕ∨ = ϕ◦α, where α : PGL3(C)→ PGL3(C) is the algebraic
automorphism g 7→ (tg)−1. Let A = (aij) be a 3 × 3 matrix. The cofactor
matrix C(A) of A is given by

Cij(A) = (−1)i+jAij ,

where Aij is the i, j-minor of A, i.e. the determinant of the 2 × 2-matrix
obtained by removing the i-th row and j-th column of A. We denote by

Ad(A) := tC(A)

the adjugate matrix of A. This is a classical construction and it is well
known that Ad(AB) = Ad(B)Ad(A) and that if A is invertible, then
Ad(A) = det(A)A−1. In particular, Ad : PM3 99K PM3 is a birational map.
The conic corresponding to the symmetric matrix A is the dual of the
conic corresponding to the symmetric matrix A. This is one of the bira-
tional maps that A. R. Williams described in 1938 in his paper “Birational
transformations in 4-space and 5-space” ([48]).

Lemma 3.6. — We identify P5 with the projectivized space of symmetric
3× 3 matrices PM3. The birational transformation Ad ∈ Cr5 is given by

[x1x2−x2
3 : x0x2−x2

4 : x0x1−x2
5 : x4x5−x0x3 : x3x5−x1x4 : x3x4−x2x5] .

Moreover, Ad conjugates ϕ to ϕ∨.

Proof. — It is a straightforward calculation that the rational map Ad

from P5 to itself that corresponds to Ad is given by

[x1x2−x2
3 : x0x2−x2

4 : x0x1−x2
5 : x4x5−x0x3 : x3x5−x1x4 : x3x4−x2x5] .

The actions of PGL3(C) on PM3 induced by ϕ and ϕ∨ are given by
ϕ(g)(X) = gX(tg) and ϕ∨(g)X = t(g−1)Xg−1 respectively, for all X ∈
PM3. We obtain

Ad(ϕ(g)(X)) = Ad(tg)Ad(X)Ad(g) = (tg)−1Ad(X)g−1

= ϕ∨(g)Ad(X) . �
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Remark 3.7. — The blow-up Q of P5 along the Veronese surface is the
so called space of complete conics. Let U ⊂ P5 be the open orbit of the
PGL3(C)-action on P5 given by ϕ, i.e. U = P5\S. Then U can be embedded
into P(C6)×P((C6)∨) by sending a conic C ∈ U to the pair (C,C∨), where
C∨ denotes the dual conic of C. It turns out that Q is isomorphic to the
closure of U in P(C6) × P((C6)∨). Moreover, the PGL3(C)-action on P5

given by ϕ lifts to an algebraic action on Q and the birational map ad

to an automorphism of Q. More details on this subject can be found for
example in [13].

Lemma 3.6 shows that the representations ϕ and ϕ∨ are conjugate to
each other in Cr5 by the birational transformation Ad. By conjugating
Φ(σ) with Ad we can extend ϕ∨ to the dual embedding Φ∨ : Cr2 → Cr5
and obtain

Φ∨(σ) = [p2
0x0 : p2

1x1 : p2
2x2 : p1p2x3 : p0p2x4 : p0p1x5] ,

where p0 = (x1x2 − x2
3), p1 = (x0x2 − x2

4) and p2 = (x0x1 − x2
5).

3.4. Geometry of Φ

The embedding Φ induces a rational action of Cr2 on the space of conics
on P2. The action of Φ(σ) can be seen geometrically as follows (compare
with [29, Introduction]): Let Q0 := [1 : 0 : 0], Q1 := [0 : 1 : 0] and
Q2 := [0 : 0 : 1]. Let C ⊂ P2 be a conic that doesn’t pass through any of
the points Qi. Write

C = {a00X
2 + a11Y

2 + a22Z
2 + 2a12Y Z + 2a02XZ + 2a01XY = 0} ⊂ P2

Denote by Pij , i ∈ {1, 2, 3}, j ∈ {1, 2} the points of intersection of C
with the lines li, where l0 := {X = 0}, l1 := {Y = 0} and l2 := {Z = 0}.
Denote by fij the line passing through Qi and Pij . The images σ(fij) are
again lines passing through the point Qi. Let P ′ij be the intersection of
σ(fij) with li. One checks that the conic D given by the zero set of the
polynomial

a11a22x
2
0 +a00a22x

2
1 +a00a11x

2
2 +2a00a12x1x2 +2a11a02x0x2 +2a22a01x0x2

passes through the points P ′ij . Since no 4 of the 6 points P ′ij lie on the same
line, D is the unique conic through the points P ′ij . We have thus proven
the following:

Proposition 3.8. — For a general conic C ⊂ P2 there exists a unique
conic D through the six points P ′ij and D is the image of C under Φ(σ).
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Notice as well that the indeterminacy points of Φ(σ) in P5 correspond to
the subspace of dimension 2 of conics passing through the points Q1, Q2, Q3
and the subspaces of dimension 2 of conics consisting of one li and any other
line. The three subspaces of dimension 4 of conics passing through one of
the points Qi are contracted by the action of Φ(σ) and form the exceptional
divisor.
In homogeneous coordinates of P5, the four planes of the indeterminacy

locus of Φ(σ) can be described as follows

E0 = {x1 = x2 = x3 = 0} , E1 = {x0 = x2 = x4 = 0} ,
E2 = {x0 = x1 = x5 = 0} , F = {x1 = x2 = x3 = 0} .

The exceptional divisor of Φ(σ) consists of the three hyperplanes

H0 = {x0 = 0} , H1 = {x1 = 0} , H2 = {x2 = 0} ,

The hyperplanes H0, H1 and H2 are contracted by Φ(σ) onto the planes
E0, E1 and E2 respectively. Note as well that E0, E1 and E2 are contained
in the secant variety S ⊂ P5 of the Veronese surface V and that they are
tangent to V .
The geometrical description of the rational action of Φ∨(σ) on the space

of conics is the dual of the construction described above. If C is a conic
not passing through any of the points Q0, Q1, Q2, we get Φ∨(σ)(C) in the
following way: let li,1, li,2 be the tangents of C passing through the point
Qi. Then the images of the li,1 and li,2 under σ are lines again. There exists
a unique conic having all the lines σ(li,1) and σ(li,2) for all i as tangents.
These geometrical constructions show that Φ(Cr2) preserves the space

of conics consisting of double lines and therefore the Veronese surface V in
P5. The injective morphism

v : P2 → P5, [X : Y : Z] 7→ [X2 : Y 2 : Z2 : Y Z : XZ : XY ]

is called the Veronese morphism. It is an isomorphism onto its image, which
is V . It is well known that v is PGL3(C)-equivariant with respect to the
standard action and the action induced by Φ respectively. The restriction
of Φ(σ) to V is a birational transformation. We therefore obtain a rational
action of Cr2 on V ' P2. Since the restriction of this rational action to
PGL3(C) is the standard action, we obtain by Corollary A.3 that v is Cr2-
equivariant.
We observe as well that Φ(Cr2) preserves the secant variety S ⊂ P5 of

V . Note that S is the image of the rational map:

s : P2 × P2 99K S ⊂ P5,
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that maps the point [X : Y : Z], [U : V : W ] ∈ P2 × P2 to the point

[XU : Y V : ZW : 1/2(YW + UZ) : 1/2(XW + ZU) : 1/2(XV + Y U)] .

Note that s is generically 2 : 1. Again, the geometrical construction above
shows that s is Cr2-equivariant with respect to the diagonal action on
P2 × P2 and the action given by Φ on P5 respectively.
We obtain the following sequence of Cr2-equivariant rational maps:

P2 ∆−→ P2 × P2 s
99K P5,

where ∆ is the diagonal embedding. This proves part (2) to (4) of Theo-
rem 1.5.
Let f ∈ Crn be a birational transformation and let l ⊂ Pn be a general

line and H ⊂ P5 a general hyperplane. Then, f−1(H) intersects l in deg(f)
points, which is equivalent to f(l) intersecting H in deg(f) points. More
generally, if C ⊂ Pn is a general curve of degree d, then f(C) intersects
H in d · deg(f) points. If C and H are not in general position, but C is
not contained in the exceptional locus of f and f(C) is not contained in
H, we only have that f(C) and H intersect in 6 d · deg(f) points. With
this and the observation that Φ(Cr2) preserves the Veronese surface and
extends the canonical rational action of Cr2 we are able to prove part (1)
of Theorem 1.8:

Proposition 3.9. — Let f ∈ Cr2. Then deg(f) 6 deg(Φ(f)).

Proof. — Denote by v : P2 → P5 the Veronese embedding. Let C ⊂ P2

be a general conic. The image v(C) ⊂ P5 is a curve of degree 4 given by the
intersection of a hyperplane H ⊂ P5 and the Veronese surface. Let f ∈ Cr2
be a birational transformation of degree d. The strict transform f(C ′) of
a general conic C ′ ⊂ P2 intersects C in 4d different points. By the above
results (namely, (3) in Theorem 1.5) we know that v(f(C ′)) = Φ(f)(v(C ′)).
The curve v(C ′) is a curve of degree 4 and since v(f(C ′)) = Φ(f)(v(C ′))
intersects the hyperplane H in 4d points we obtain by the above remark
that deg(Φ(f)) > d. �

3.5. Two induced homomorphisms from Cr2 into Cr4

The birational map Ad ∈ Cr5 contracts the secant variety S ⊂ P5 onto
the Veronese surface V ⊂ P5. However, the exceptional locus of Ψ∨(σ) =
AdΦ(σ)Ad consists of the three hyperplanes

G0 = {z1z2 − z2
3 = 0} , G1 = {z0z2 − z2

4 = 0} , G2 = {z0z1 − z2
5 = 0} ,
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with respect to homogeneous coordinates [z0 : z1 : z2 : z3 : z4 : z5] of P5.
This implies in particular that the restriction of Φ∨(σ) to S induces a

birational map of S and therefore that any element in Φ∨(Cr2) restricts to
a birational map of S.
Since S is a cubic hypersurface and contains the two disjoint planes

E1 = {z1 = z2 = z3 = 0} , E2 = {z0 = z4 = z5 = 0} ,

it is rational. Explicitely, projection onto E1 and E2 yields the birational
map A : S 99K P2 × P2 defined by

[z0 : z1 : z2 : z3 : z4 : z5] 7→ [z1 : z2 : z3], [z0 : z4 : z5] .

The inverse transformation A−1 is given by

[x0 : x1 : x2], [y0 : y1 : y2] 7→ [p2y0, p1x0, p1x1, p1x2, p2y1, p2y2] ,

where p1 = (x0y
2
1 + x1y

2
2 − 2x2y1y2) and p2 = y0(x0x1 − x2

2).
Let f ∈ Cr2. As seen above, both images Φ(f) and Φ∨(f) restrict to a

birational map of S. So conjugation of Φ and Φ∨ by A yields two embed-
dings from Cr2 into Bir(P2 × P2) ' Cr4, which we denote by Ψ1 and Ψ2
respectively.
Proof of Proposition 1.6. — Irreducibility is proved in Section 3.8.
By Theorem 2.6, all tori D2 ⊂ Cr4 are conjugate to the standard torus

D2 ⊂ Cr4. We calculate the map that conjugates Ψ1(D2) = Ψ2(D2) to
the image of the standard embedding of D2 explicitely. Let ρ : P2 × P2 99K
P2 × P2 be the birational transformation defined by

([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([x2y0 : x0y1 : x2y1], [x0y
2
1 : x1y

2
2 : x2y1y2]) .

The inverse map ρ−1 is given by

([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([x2
1y

2
2 : x2

2y0y1 : x1x2y
2
2 ], [x0y0 : x2y0 : x1y2]) .

One calculates that ρAΨ1([aX : bY : cZ])A−1ρ−1 maps the point ([x0 :
x1 : x2], [y0 : y1 : y2]) to ([ax0 : bx1 : cx2], [y0 : y1 : y2]). Correspondingly,
ρAΨ2([aX : bY : cZ])A−1ρ−1 maps ([x0 : x1 : x2], [y0 : y1 : y2]) to ([a−1x0 :
b−1x1 : c−1x2], [y0 : y1 : y2]). So the second coordinates parametrize the
closures of the D2-orbits. Since W2 normalizes D2, its image preserves the
D2-orbits. We thus obtain two homomorphisms

χ1 : W2 → Cr2, χ2 : W2 → Cr2

by just considering the rational action of W2 on the second coordinate.
Assume that there exists an element A ∈ Bir(P2×P2) that conjugates Ψ

to Ψ∨. As A normalizes Ψ1(D2) = Ψ2(D2), it preserves the Ψ1(D2)-orbits
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as well. Hence by restriction on the second coordinate, it conjugates χ1 to
χ2. It therefore suffices to show that χ1 and χ2 are not conjugate.

In Cr2 we have

f := [XY : Y Z : Z2] = τ1g0σg0σg0τ2 ,

where τ1 = [Z : Y : X], τ2 = [Y : Z : X] and g0 = [Y − X : Y : Z]. By
calculating the corresponding images under Φ we obtain

Φ(f) = Φ(τ1g0σg0σg0τ2) = [x0x1 : x1x2 : x2
2 : x2x3 : −x2x5 + 2x3x4 : x1x4]

and Φ∨(f) = [g0 : g1 : g2 : g3 : g4 : g5], where

g0 = (x0x1 − x2
5)2x0 ,

g1 = x2
0x

2
1x2 − 2x0x1x2x

2
5 − 4x0x1x3x4x5 + 4x0x

2
3x

2
5

+ 4x1x
2
4x

2
5 + x2x

4
5 − 4x3x4x

3
5 ,

g2 = (x0x2 − x2
4)2x1 ,

g3 = (x0x2 − x2
4)(x0x1x3 − 2x1x4x5 + x3x

2
5) ,

g4 = −(x0x2 − x2
4)(x0x1 − x2

5)x5 ,

g5 = (x0x1 − x2
5)(x0x1x4 − 2x0x3x5 + x4x

2
5) .

This yields
χ1(f) = [(y1 − 2y2)2 : y0y1 : −y2(y1 − 2y2)]

and

χ2(f) = [y2
0y1 + 4y0y

2
1 − 6y0y1y2 − 3y1y

2
2 + 4y3

2 : y0(y0 + 2y1 − 3y2)2 :

(2y0y1 − y0y2 − y2
2)(y0 + 2y1 − 3y2)] .

We show that these two transformations are not conjugate in Cr2. With
respect to affine coordinates [y0 : y1 : 1] one calculates

χ1(f)2 =
(
y0y1 − 2y1 + 4

y1 − 2 , y1

)
.

From this we see that the integer sequence deg(χ1(f)n) grows linearly in n
and is, in particular, not bounded.
Let A = [y0 − y2 : y1 − y2 : y2]. Then Aχ2(f)2A−1 is given by

[−y2
0y

2
1(2y1 + y0) : y2

0y
2
1(3y1 + 2y0) : p(y0, y1, y2)(3y1 + 2y0)(2y1 + y0)] ,

where p(y0, y1, y2) = (6y2
1y2 + 7y2y0y1 + 6y0y

2
1 + 2y2

0y2 + 2y2
0y1). We claim

that

fnA = Aχ2(f)2nA−1

= [−y2
0y

2
1(2ny1 + (2n− 1)y0) : y2

0y
2
1((2n+ 1)y1 + 2ny0) : fn] ,
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where fn = (2ny1 + (2n − 1)y0)((2n + 1)y1 + 2ny0)pn(y0, y1, y2) for some
homogeneous pn ∈ C[y0, y1, y2] of degree 3. Note that this claim implies in
particular that deg(χ2(f)n) is bounded for all n and hence that χ1(f) and
χ2(f) are not conjugate.
To prove the claim we proceed by induction. Assume that fnA has the de-

sired form. One calculates that the first coordinate of fn+1
A = Aχ2(f)2A−1◦

fnA is
−ry2

0y
2
1((2n+ 2)y1 + (2n+ 1)y0) ,

the second coordinate is

ry2
0y

2
1((2n+ 3)y1 + (2n+ 1)y0)

and the third coordinate

r((2n+ 2)y1 + (2n+ 1)y0)((2n+ 3)y1 + (2n+ 1)y0)pn+1(x0, x1, x2) ,

where r = y4
0y

4
1(2ny0+(2n−1)y1)2((2n+1)y0+2ny1)2 and pn ∈ C[x0, x1, x2]

is homogeneous of degree 3. This proves the claim. �

3.6. A volume form

Let M be a complex projective variety. It is sometimes interesting to
study subgroups of Bir(M) that preserve a given form. In [8] and [25]
the authors study for example birational maps of surfaces that preserve a
meromorphic symplectic form (see [19] for the 3-dimensional case). In [30]
and [18] Cremona transformations in dimension 3 preserving a contact form
are studied.
Define

F := det

 x0 x5 x4
x5 x1 x3
x4 x3 x2


and let

Ω := x6
5

F 2 · dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 .

Then Ω is a 5-form on P5 with a double pole along the secant variety of
the Veronese surface. Note that the total volume of P5 is infinite.

Proposition 3.10. — All elements in Φ(Cr2) preserve Ω.

Proof. — We show that Φ(PGL3(C)) and Φ(σ) preserve Ω.
Let g = [−X : −Y : Z] ∈ Φ(PGL3(C)). One checks that Φ(g) preserves

Ω. Since Φ(PGL3(C)) preserves F , we have that Φ(fgf−1) preserves Ω as
well. As Φ(PGL3(C)) is simple, the whole group preserves Ω.
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With respect to affine coordinates given by x5 = 1, we have

Φ(σ) = (x1, x0, x0x1x
−1
2 , x0x3x

−1
2 , x1x4x

−1
2 ) .

A direct calculation yields Ω ◦ Φ(σ) = Ω. �

3.7. Polynomial automorphisms

In this section we will prove Claim (6) of Theorem 1.5 as well as Theo-
rem 1.8. Let Aut(A2) ⊂ Cr2 be the subgroup of automorphisms of the affine
plane with respect to the affine coordinates [1 : X : Y ]. By the theorem of
Jung and van der Kulk (see for example [34]), Aut(A2) has the following
amalgamated product structure

Aut(A2) = Aff2 ∗∩J2 ,

where J2 denotes the subgroup of elementary automorphisms, which is the
subgroup of all elements of the form

{(c1X + b, c2Y + p(X)) | c1, c2, b ∈ C, p(X) ∈ C[X]} .

Let f ∈ Aut(A2) and assume that f = a1j1a2j2 . . . jn−1an, where a1, an ∈
Aff2, ai ∈ Aff2 \J2 for 2 6 i 6 n − 1 and ji ∈ J2 \ Aff2. It is well known
that deg(f) = deg(j1) deg(j2) . . . deg(jn−1).
Let Aut(A5) ⊂ Cr5 be given by the affine coordinates [1 : x1 : · · · : x5].

Lemma 3.11 follows from a direct calculation.

Lemma 3.11. — The image Φ(Aff2) is contained in Aff5.

We consider the following elements in J2:

fλn := (X,Y + λXn) ,

where n ∈ Z>0 and λ ∈ C.

Lemma 3.12. — For all n ∈ Z>0 we have

Φ(fλn ) = (x1, x2+λ2xn1 +λx3An−λx4x1An−1, x3+λx1Bn−1, x4+λBn, x5) ,

where

An = 2
bn/2c∑
k=0

(
n

2k + 1

)
xn−2k−1

5 (x2
5 − x1)k

and

Bn =
bn/2c∑
k=0

(
n

2k

)
xn−2k

5 (x2
5 − x1)k .
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Moreover, the following recursive identities hold:

An = 2x5An−1 − x1An−2 ,

Bn = 2x5Bn−1 − x1Bn−2 .

Proof. — For n = 0 and n = 1 the claim follows from a direct calculation.
Let s := (X,XY ) ∈ Cr2. Then we have fλn+1 = sfλns

−1. In Cr2 the iden-
tity s = τ1g0σg0σg0τ2 holds, where τ1 = (XY −1, Y −1), τ2 = (Y −1, XY −1)
and g0 = (X,XY ). Note that τ1 and τ2 are elements of PGL3(C). If we
calculate the corresponding images under Φ we obtain

Φ(s) = Φ(τ1g0σg0σg0τ2) = (x1, x1x2, x1x4, 2x4x5 − x3, x5)

and
Φ(s−1) = (x1, x2x

−1
1 , 2x3x5x

−1
1 − x4, x3x

−1
1 , x5) .

One calculates

sfλns
−1 = (x1, x2 + λ2xn+1

1 + λx3(2x5 − x1)An−1 − λx4x1An,

x3 + λx1Bn, x4 − λ(2x5Bn − x1Bn−1) .

This shows by induction that

Φ(fλn ) = (x1, x2 +λ2xn1 +λx3An−λx4x1An−1, x3 +λx1Bn−1, x4 +λBn, x5),

where

An = 2x5An−1 − x1An−2 , A0 = 0 , A1 = 2 ;
Bn = 2x5Bn−1 − x1Bn−2 , B0 = 1 , B1 = x5 .

These recursive formulas have the following closed form:

An =
(
x5 +

√
x52 − x1

)n − (x5 −
√
x52 − x1

)n
√
x52 − x1

,

Bn = 1
2

(
x5 −

√
x52 − x1

)n
+ 1/2

(
x5 +

√
x52 − x1

)n
.

The claim follows. �

Since Affn together with all the elements fλn , n ∈ Z+, λ 6= 0 generates
Aut(A2), Lemma 3.12 shows that Φ(Aut(A2)) is contained in Aut(A5) and
thus Claim (6) of Theorem 1.5.

Lemma 3.13. — Let n and m be positive integers and An, Bm as in
Lemma 3.12. Then

AnBm−1 −An−1Bm = P (x1, x5) ,

where P ∈ C[x1, x5] is a polynomial of degree < max{m,n}.
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Proof. — If n = 1 or m = 1 the claim is true, since A0 = 0, A1 = 2, B0 =
1, B1 = x5 and deg(Ak) = k − 1,deg(Bk) = k. By the identities from
Lemma 3.12, one obtains

AnBm−1 −An−1Bm = (2x5An−1 − x1An−2)Bm−1

−An−1(2x5Bm−1 − x1Bm−2)
= x1(An−1Bm−2 −An−2Bm−1).

The claim follows by induction on m and n. �

Lemma 3.14. — Let f = fλ1
1 fλ2

2 . . . fλn
n , where λn 6= 0. Then

Φ(f) = (x1, x2 +F, x3 +p3(x1, x5)+λnx1Bn−1, x4 +p4(x1, x5)+λnBn, x5) ,

where F = p2(x1, x5)+x3(λ1A1 + · · ·+λnAn)−x4x1(λ1An−1 + · · ·+λnAn)
and p2, p3, p4 ∈ C[x1, x5] are polynomials of degree 6 n. In particular,
deg(Φ(f)) = deg(f).

Proof. — It is easy to see that the third and fourth coordinate of Φ(f)
have the claimed form. The more difficult part is the second coordinate.
For n = 1 the claim follows directly from Lemma 3.12. We proceed now

by induction. Let λn+1 6= 0 and m be the largest number, such that m 6 n
and n 6= 0. By the induction hypothesis we may assume that the second
coordinate of Φ(fλ1

1 fλ2
2 . . . fλm

m ) has the form

x2 + p2(x1, x5) + x3(λ1A1 + · · ·+ λmAm)− x4x1(λ1A0 + · · ·+ λmAm−1) .

The second coordinate of Φ(fλ1
1 fλ2

2 . . . fλm
m ) ◦ Φ(fλn

n ) is therefore

x2 + p2(x1, x5) + x3(λ1A1 + · · ·+ λmAm + λnAn)

− x4x1(λ1A0 + · · ·+ λmAm−1 + λnAn) + x1

m∑
k=1

λk(AkBn−1 −Ak−1Bn) .

By Lemma 3.13, x1
∑m
k=1 λk(AkBn−1−Ak−1Bn) is a polynomial in x1 and

x5 of degree 6 n. �

Proof of Theorem 1.8. — The first claim was proved in Proposition 3.9.
To prove the second part, we show in a first step that deg(Φ(f)) = deg(f)

for all elements f ∈ J2. Composition with an element in Aff2 doesn’t
change the degree, by Lemma 3.11. So it is enough to consider elements
in J2 of the form f = (X,Y + P (X)), P ∈ C[X]. For suitable λi ∈ C we
have f = fλ1

1 fλ2
2 . . . fλn

n , where λn 6= 0. In Lemma 3.14 we’ve seen that Φ
preserves the degree of these elements.
Let now f ∈ Aut(A2) be an arbitrary automorphism and assume that

f = a1j1a2j2 . . . jn−1an, where a1, an ∈ Aff2, ai ∈ Aff2 \J2 for 2 6 i 6 n−1
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and ji ∈ J2 \Aff2. So deg(f) = deg(j1) deg(j2) . . . deg(jn−1) and

Φ(f) = Φ(a1)Φ(j1)Φ(a2)Φ(j2) . . .Φ(jn−1)Φ(an) .

This implies in particular that

deg(Φ(f)) 6 deg(Φ(a1)) deg(Φ(j1)) . . . deg(Φ(jn−1)) deg(Φ(an)) = deg(f) .

With this and part (1) of Theorem 1.8, part (2) follows. �

3.8. Irreducibility of Φ, Ψ1 and Ψ2

First we show that Φ is irreducible. Assume that there is a rational
dominant map π : P5 99K M to a variety M with an algebraic embedding
ϕM : Cr2 → Bir(M) such that A is Cr2-equivariant. Since ϕM is algebraic,
we may assume that PGL3(C) acts regularly on M . We obtain that the
restriction of A to the open PGL3(C)-invariant subset U ⊂ P5 consisting
of all smooth conics is a PGL3(C)-equivariant morphism, whose image is
an open dense subset of M on which PGL3(C) acts transitively. Note that
this implies dim(M) > 1.

If dimM = 2, we obtain by Theorem A.1 that M ' P2 with the
standard action of PGL3(C). The stabilizer in PGL3(C) of a point in
U ⊂ P5 is isomorphic to SO3(C). On the other hand the stabilizer in
PGL3(C) of a point in P2 is isomorphic to the group of affine transforma-
tions Aff2 = GL2(C) n C2. Since SO3(C) can not be embedded into Aff2,
the case dim(M) = 2 is not possible.

If dim(M) = 3, we find, by Theorem 4.1, a PGL3(C)-equivariant projec-
tion M 99K P2 and are again in the case dim(M) = 2.

If dim(M) = 4, let p ∈M be a general point and Fp := A−1(p) ⊂ P5 the
fiber of A. Let q ∈ Fp be a point that is only contained in one connected
component C of Fp. Again, the stabilizer of q is isomorphic to SO3(C).
This implies that SO3(C) acts regularly on the curve C with a fixpoint.
The neutral comoponent of the group of birational transformations of C is
isomorphic to PGL2(C), is abelian or is finite. In all cases we obtain that
SO3(C) fixes C pointwise. In other words, the group SO3(C) preserves each
conic of the family of conics in P2 parametrized by C. This is not possible.

The proof that Ψ1 and Ψ2 are irreducible is done analogously.
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4. PGLn+1(C)-actions in codimension 1

In this section we look at algebraic embeddings of PGLn+1(C) into
Bir(M) for complex projective varieties M of dimension n + 1. Our aim
is to prove Theorem 4.1.

Theorem 4.1. — Let n > 2 and let M be a smooth projective variety
of dimension n+ 1 with a rational non-trivial PGLn+1(C)-action. Then,
up to birational conjugation and automorphisms of PGLn+1(C), we have
one of the following:

(1) M ' Fl = P(OPn ⊕ OPn(−l(n + 1)) for a unique element l ∈ Z>0
and PGLn+1(C) acts as in Example 1.10.

(2) M ' Pn ×C for a unique smooth curve C and PGLn+1(C) acts on
the first factor as in Example 1.1.

(3) M ' P(TP2) and PGL3(C) acts as in Example 1.11.
(4) M ' G(1, 3) and PGL4(C) acts as in Example 1.12.

Moreover, these actions are not birationally conjugate to each other.

Remark 4.2. — If M is rational and of dimension 2 or 3, this result can
be deduced directly from the classification of maximal algebraic subgroups
of Cr2 and Cr3 by Enriques, Umemura and Blanc ([7, 27, 43, 44, 45]).

4.1. Classification of varieties and groups of automorphisms

With some geometric invariant theory and using results of Freudenthal
about topological ends, the following classification can be made (see [17,
Theorem 4.8] and the references in there):

Theorem 4.3. — Let M be a smooth projective variety of dimension
n+ 1 with a non-trivial regular action of PGLn+1(C), where n > 2. Then
we are in one of the following cases:

(1) M ' P(OPn ⊕OPn(−k)) for some k ∈ Z>0.
(2) M ' Pn × C for a curve C of genus > 1.
(3) M ' P(TP2) ' PGL3(C)/B, where B ⊂ PGL3(C) is a Borel sub-

group.
(4) M ' G(1, 3) ' PGL4(C)/P , where P ⊂ PGL4(C) is the parabolic

subgroup consisting of matrices of the form
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

.
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The neutral components Aut0(M) of the automorphism groups of the
varieties M that appear in Theorem 4.3 are well known. Proofs of the
following Proposition can be found in [1, Proposition 2.4.1, 2.4.2, Exam-
ple 2.4.2, and Theorem 3.3.2].

Proposition 4.4. — We have
• Aut0(P(OPn ⊕OPn(−k)) ' (GLn+1(C)/µk)nC[x0, . . . , xn]k, where

C[x0, . . . , xn]k denotes the additive group of homogeneous polyno-
mials of degree k and µk ⊂ C∗ the group of all elements c ∈ C∗
satisfying ck = 1,

• Aut0(Pn × C) ' PGLn+1(C)×Aut0(C),
• Aut0(P(TP2)) ' PGL3(C),
• Aut0(G(1, 3)) ' PGL4(C).

To describe the PGLn+1(C)-actions on these varieties we recall some
results about group cohomology.

4.2. Group cohomology

Let H be a group that acts by automorphisms on a group N . A cocycle
is a map τ : H → N such that τ(gh) = τ(g)(g · τ(h)) for all g, h ∈ H. Two
cocycles τ and ν are cohomologous if there exists an a ∈ N such that

τ(g) = a−1ν(g)(g · a) for all g ∈ H .

The set of cocycles up to cohomology will be denoted by H1(H,N). If
H acts trivially on N , the set H1(H,N) corresponds to the set of group
homomorphisms H → N up to conjugation. The following lemma is well
known.

Lemma 4.5. — Let G := N oH be a semi direct product of groups and
π : G → H the canonical projection on H. Then there exists a bijection
between H1(H,N) and the sections of π up to conjugation in N .

There always exists the trivial cocycle τ0 : H → N , g 7→ eN . The set
H1(G,N) is therefore a pointed set with basepoint τ0. Assume that G acts
on two groups A and B by automorphisms. A G-homomorphism φ : A→ B

induces a homomorphism of pointed sets

φ∗ : H1(G,A)→ H1(G,B)

given by φ∗(τ) = φ ◦ τ.
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Proposition 4.6 ([39], p. 125, Proposition 1). — Let G be a group
that acts by automorphisms on groups A,B and C. Every exact sequence
of G-homomorphisms

1→ A→ B → C → 1

induces an exact sequence of pointed sets

H1(G,A)→ H1(G,B)→ H1(G,C) .

4.3. Proof of Theorem 4.1

We use the classification of smooth projective varieties of dimension n+1
with a regular PGLn+1(C) action of Theorem 4.3. We have to show that
case (1) appears only if k = l(n+1) for some integer l. Examples 1.9 to 1.12
show that for all the other varieties there exist PGLn+1(C)-actions. So we
have to show that these actions are unique and not birationally conjugate
to each other.
We start by showing that the actions are unique. By Proposition 4.4,

Aut0(P(TP2)) ' PGL3(C) and Aut(G(1, 3)0) ' PGL4(C). The uniqueness
of the embedding is clear in these cases since PGLn+1(C) is a simple group.
If M ' Pn × C uniqueness follows directly from the fact that PGLn+1(C)
does not embed into Aut(C).
Now we show that PGLn+1(C) can be embedded into Aut0(P(OPn ⊕

OPn(−k)) if and only if n | k. Then we show that in this case, up to
conjugation and algebraic automorphisms of PGLn+1(C), the embedding
is unique.

Lemma 4.7. — Let µk = {λ id | λ ∈ C, λk = 1}. There exists a non-
trivial algebraic group homomorphism PGLn(C)→ GLn(C)/µk if and only
if n | k.

Proof. — If n | k, we have

PGLn(C) ' SLn(C)/(µk ∩ SLn(C)) ⊂ GLn(C)/µk .

On the other hand, assume that there exists a non-trivial algebraic ho-
momorphism φ : PGLn(C)→ GLn(C)/µk. Let ξn be a primitive n-th root
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of unity and define

J :=



1 0 0 . . . 0
0 ξn 0 . . . 0
0 0 ξ2

n . . . 0
. . .

0 0 . . . 0 ξn−1
n


∈ PGLn(C) .

Let π : GLn(C)/µk → PGLn(C) be the standard projection and τ ∈
PGLn(C) be the permutation (1, 2, . . . , n). The composition π ◦ φ is con-
jugate to the identity or to the automorphism α : g 7→ tg−1 by Proposi-
tion 2.8. So after conjugation we can assume that π ◦φ|Sn

= idSn
and that

π ◦ φ|Dn is either the identity or given by d 7→ d−1. Hence, we may assume
that φ(τ) is the class [c · τ ] of the class c · τ in the quotient GLn(C)/µk for
some c ∈ C∗. The image φ(J) = [D] can be represented by the matrix

D =


d1 0 0 . . .

0 d2 0 . . .

. . .

0 0 . . . dn

,
where [D]n = [id] and di 6= dj for i 6= j. Observe that τJτ−1 = J in
PGLn(C). So [τDτ−1] = [D] in GLn /µk and therefore there exists an
a ∈ C∗ such that ak = 1 and such that

d1 0 0 . . .

0 d2 0 . . .

. . .

0 0 . . . dn

 =


adn 0 0 . . .

0 ad1 0 . . .

. . .

0 0 . . . adn−1

.
In other words, di+1 = adi for 1 6 i 6 n− 1 and d1 = adn. This implies

dn = adn−1 = a2dn−2 = · · · = an−1d1 = andn. We obtain an = 1 and
al 6= 1 for 1 6 l < n since di 6= dj for i 6= j, hence n | k. �

Let n and k be positive integers such that (n + 1) | k. Denote by
C[x0, . . . , xn]k the vector space of homogeneous polynomials of degree k.
We define

G := C[x0, . . . , xn]k o PGLn+1(C) ,

where the semi direct product is taken with respect to the action g · p =
p ◦ g−1. Here we look at PGLn+1(C) ⊂ GLn+1(C)/µk as described in
Lemma 4.7. Let π : G → PGLn+1(C) be the standard projection and
ι : PGLn+1(C)→ G the standard section of π.
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Lemma 4.8. — Up to conjugation, ι : PGLn+1(C) → G is the unique
section of π.

Proof. — Let ϕ : PGLn+1(C) → G be an arbitrary section of π. We
show that ϕ is conjugate to ι. It is enough to show that ϕ(PGLn+1(C)) =
ι(PGLn+1(C)).
The image ϕ(PGLn+1(C)) acts on C[x0, . . . , xn]k by conjugation. Let

H ⊂ Dn−1 be the subgroup consisting of all elements of order d for
some d large enough and not divisible by k. Then the action of ϕ(H)
on C[x0, . . . , xn]k has a fixed point p. After conjugation, we can assume
that p = 0. Observe that ι(PGLn+1(C)) is the subgroup of G consisting of
all elements that fix 0. Hence we may assume ϕ(H) ⊂ ι(PGLn+1(C)) and
therefore ϕ(H) = ι(H).

The centralizer of H in PGLn+1(C) is the diagonal subgroup Dn. The
centralizer of ι(H) in G is ι(Dn), since, by assumption, d is no multiple
of k. This implies ϕ(Dn) = ι(Dn). The normalizer of Dn in PGLn+1(C) is
Dn o Sn+1 and the normalizer of ι(Dn) in G is ι(Dn o Sn+1). Hence we
obtain ϕ(Dn o Sn+1) = ι(Dn o Sn+1) and since both ι and ϕ are sections,

ϕ|DnoSn+1 = ι|DnoSn+1 .

Let g := (x0 +x1, x1, . . . , xn) ∈ PGLn+1(C). Let E ⊂ Dn be the central-
izer of g in Dn. So E is the subgroup of elements of the form

(c0x0, c0x1, c2x2, . . . , cnxn)

with ci ∈ C∗ such that c20c2c3 . . . cn = 1. Denote ϕ(g) = (v, g), with v ∈
C[x0, . . . , xn]k. Take a d ∈ E. Then ι(d) = (0, d) and (0, d)(v, g)(0, d−1) =
(v ◦d−1, g) yields v ◦d−1 = v. Therefore, all summands of v are of the form
xr0

0 x
r1
1 (x0 . . . xn)s, where r0 + r1 = s. Assume that

v =
∑

s,r0+r1=s
ar0r1sx

r0
0 x

r1
1 (x0 . . . xn)s.

We calculate
(v, g)2 = (v + v ◦ g−1, g2) ,

and

v + v ◦ g−1 =
∑

s,r0+r1=s
ar0r1sx

r0
0 x

r1
1 (x0 . . . xn)s

+
∑

s,r0+r1=s
ar0r1s(x0 − x1)r0xr1

1 ((x0 − x1)x1 . . . xn)s .
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On the other hand, for f = (x0, 1/2x1, 2x2, x3, . . . , xn) we obtain g2 =
f ◦ g ◦ f−1. Hence

(v, g)2 = (0, f)(v, g)(0, f−1) = (v + v ◦ g−1, g2) ,

and therefore

v + v ◦ g−1 =
∑

s,r0+r1=s
2r1ar0r1sx

r0
0 x

r1
1 (x0 . . . xn)s .

This yields ar0r1s = 0 for all r1, r2 and s and thus ϕ(g) ∈ ι(PGLn+1(C)).
Since PGLn+1(C) is generated by Dn o Sn+1 and the element g, this

yields ϕ(PGLn+1(C)) = ι(PGLn+1(C)), which finishes the prove. �

Lemma 4.9. — PGLn+1(C) acts non-trivially on the fibration P(OPn ⊕
OPn(−k)) with basis Pn if and only if k = l(n + 1) for some nonnegative
l. Moreover, in this case the action is unique up to conjugation and up to
algebraic automorphisms of PGLn+1(C).

Proof. — Let φ : PGLn+1(C) → Aut0(P(OPn ⊕ OPn(−k))) be an alge-
braic embedding. By Proposition 4.4, there exists an exact sequence of
algebraic homomorphisms

1→ C[x0, . . . , xn]k → Aut0(P(OPn ⊕OPn(−k)))→ GLn+1(C)/µk → 1 .

If φ is non-trivial, this induces a non-trivial algebraic homomorphism from
PGLn+1(C) into GLn+1(C)/µk and by Lemma 4.7 this is possible if and
only if (n+ 1) | k. So assume that k = l(n+ 1) for an integer l. It remains
to show that in this case φ is unique up to conjugation and up to algebraic
automorphisms of PGLn+1(C). Let

Fl := P(OPn ⊕OPn(−k)) .

We look at Fl as a P1-fibration over the basis Pn. So there is an exact
sequence

1→ Aut0
Pn(Fl)→ Aut0(Fl)

π−→ PGLn(C)→ 1 .
Here, Aut0

Pn(Fl) ' C∗ n C[x0, . . . , xn]k denotes the subgroup of automor-
phisms of Fl that fix the basis Pn pointwise.
LetH := PGLn+1(C). By Lemma 4.5, the sections of π up to conjugation

are in bijection with

H1(H,Aut0
Pn(Fl)) = H1(H,C[x0, . . . , xn]k oC∗/µk) .

By Proposition 4.6, there is an exact sequence of pointed sets

H1(H,C[x0, . . . , xn]k)→ H1(H,AutPn(Fl))→ H1(H,C∗/µk) .

The action of H on C∗/µk is trivial, so H1(H,C∗/µk) is the set of homo-
morphisms H → C∗/µk. Hence H1(H,C∗/µm) = {1}. By Lemma 4.8, we

TOME 68 (2018), FASCICULE 1



86 Christian URECH

obtain H1(H,C[x0, . . . , xn]k) = {1} and thus H1(H,AutPn(Fl)) = {1}. So
all sections of π are conjugate.
Now, since H is simple and not contained in Aut0

Pn(Fl), we obtain π ◦
φ(H) ⊂ H. Both φ and π are algebraic morphisms, so π ◦ φ(H) = H.

Therefore, up to the algebraic automorphism π ◦ φ, the homomorphism φ

is a section of π. �

It remains to show that the actions from Theorem 4.1 are not birationally
conjugate. LetM be a variety of dimension n+1 on which PGLn+1(C) acts
faithfully. If M is not rational, then M is isomorphic to Pn × C for some
smooth curve C. Recall that Pn×C is birationally equivalent to Pn×C ′ for
smooth curves C and C ′ if and only if C and C ′ are birationally equivalent
which again implies that C and C ′ are isomorphic. So if PGLn+1(C) acts
rationally and non trivially on a non rational varietyM of dimension n+1,
then this one is uniquely determined up to algebraic automorphisms of
PGLn+1(C) and up to birational conjugation in Bir(M).

In the case that M is rational, we have to show that the PGLn+1(C)-
actions listed in Theorem 4.1 are not conjugate to each other. For this,
note that none of them has an orbit of codimension > 1. Lemma 3.2 im-
plies therefore that any birational transformation conjugating one action to
another one must be an isomorphism. As the varieties listed in Theorem 4.1
are not isomorphic we conclude that the actions are not conjugate.

5. Extension to Crn and Hn

In this section we study how the PGLn+1(C)-actions described in the
above section extend to rational Crn-actions. Our goal is to prove Theo-
rem 1.13. We proceed case by case.

5.1. The case G(1, 3)

Let

s1 :=

 0 0 1
1 0 0
0 1 0

, and s2 :=

 0 −1 1
0 −1 0
1 −1 0

 ∈ GL3(Z) .

Lemma 5.1. — Let G be a group. There exists no group homomorphism
ρ : GL3(Z)→ G such that ρ(s1) has order 3 and s2 ∈ ker(ρ).
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Proof. — Assume that such a ρ exists. We define the following elements
in GL3(Z):

A :=

 1 0 0
0 1 0
0 −1 1

, B :=

 −1 1 0
0 0 1
1 0 0

, T :=

 1 0 0
0 −1 0
0 0 −1

.
One calculates (A(s2(Bs2B

−1))A−1) = s1T . So s1T is contained in the
kernel of ρ and we get ρ(T ) = ρ(s−1

1 ). But this is a contradiction since the
order of T is 2. �

The following construction comes up in the context of tetrahedral line
complexes (see [26]). Consider the 4 hyperplanes in P3

E0 := {x0 = 0} , E1 := {x1 = 0} , E2 := {x2 = 0} , E3 := {x3 = 0} .

A line l ∈ G(1, 3) that is not contained in any of the Ei, intersects each
plane Ei in one point pi. We thus obtain a rational surjective map

cr : G(1, 3) 99K P1

that is defined by associating to the line l the cross ratio between the
points pi.

The closure cr−1([a : b]) in G(1, 3) is irreducible if and only if [a : b] ∈
P1 \ {[0 : 1], [1 : 0], [1 : 1]}, whereas cr−1([a : b]) consists of two irreducible
components in all the other cases ([26, Chapter 10.3.6]).
Recall that α is the automorphism of PGL4(C) given by g 7→ tg−1.

Proposition 5.2. — There exists no non-trivial group homomorphism

Φ: 〈PGL4(C),W3〉 → Bir(G(1, 3))

such that Φ(PGL4(C)) ⊂ Aut(G(1, 3)).
In particular, neither the action of PGL4(C) on G(1, 3) given by the

embedding ϕG (see Example 1.12) nor the action given by ϕG ◦ α can be
extended to a rational action of Cr4.

Proof. — The proof of Corollary A.2 implies that if PGL4(C) is con-
tained in the kernel of a homomorphism Φ: 〈PGL4(C),W3〉 → Bir(G(1, 3)),
then Φ is trivial. So we may assume that Φ embeds PGL4(C) into the group
Aut0(G(1, 3)). By Theorem 4.1 it is therefore enough to show that ϕG and
ϕG ◦ α do not extend to a homomorphism of 〈PGL4(C),W3〉.
The ϕG(D3)-orbit of a line that is not contained in one of the planes Ei

and that does not pass through any of the coordinate points [1 : 0 : 0 :
0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1], has dimension 3 and these are all
ϕG(D3)-orbits of dimension 3.
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Since ϕG(D3) stabilizes the hyperplanes Ei and since the cross ratio is in-
variant under linear transformations, we obtain that cr is ϕG(D3)-invariant.
By the above remark, the rational map cr therefore parametrizes all but
finitely many ϕG(D3)-orbits of dimension 3 by P1 \ {[0 : 1], [1 : 0], [1 : 1]}.

The image ϕG(S4), where S4 ⊂ PGL4(C) is the subgroup of coordi-
nate permutations, normalizes ϕG(D3) and therefore it permutes its 3-
dimensional orbits. Since S4 permutes the hyperplanes Ei, we can describe
its action on the 3-dimensional ϕG(D3)-orbits by its action on the cross
ratio of the intersection of general lines with the planes Ei.
Let r be the cross ratio between the points p0, p1, p2, p3 on a line. One

calculates that the cross ratio between p3, p1, p2, p0 is again r and that
the cross ratio between the points p2, p0, p1, p3 is 1

1−r . Hence the image of
τ1 := [x3 : x1 : x2 : x0] leaves cr invariant, whereas for the permutation
τ2 := [x2 : x0 : x1 : x3] we have cr ◦ ϕ(τ2) 6= cr and cr ◦ ϕ(τ2)2 6= cr.
Let f : G(1, 3) 99K P4 be a birational transformation and let ϕ′G :=

f ◦ϕG ◦ f−1. The image ϕ′G(D3) ⊂ Cr4 is an algebraic torus of rank 3 and
therefore, by Proposition 2.6, conjugate to the standard subtorus D3 ⊂ D4
of rank 3. In other words, there exists a rational map P4 99K P1 whose fibers
consist of the closure of the ϕ′G(D3)-orbits. The image ϕ′G(S4) permutes
the torus orbits, hence we obtain a homomorphism ρ : S4 → PGL2(C). By
what we observed above, the permutation τ1 is contained in the kernel of ρ,
whereas the image ρ(τ2) has order 3. The matrix representation in GL3(Z)
of τ1 corresponds to s1 and the matrix representation of τ2 corresponds
to s2.

It follows now from Lemma 5.1 that ρ can not be extended to a homo-
morphism from GL3(Z) 'W3 to PGL2(C), which implies that there exists
no homomorphism Φ: 〈PGL4(C),W3〉 → Cr4 such that Φ(PGL4(C)) =
ϕ′G(PGL4(C)), since W3 normalizes the torus and its image would there-
fore permute the torus orbits as well. The statement follows. �

5.2. The case P(TP2)

Recall that matrices of order two in PGL2(C) have the form

(5.1)
[

0 1
a 0

]
, or

[
1 b

c −1

]
, where a ∈ C∗, b, c ∈ C, bc 6= −1 .

Proposition 5.3. — The embedding ϕB : PGL3(C) → Bir(P(TP2))
extends uniquely to an embedding

ΦB : Cr2 → Bir(P(TP2)) .
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Proof. — We show that every extension coincides with the one given in
Example 1.11. For this it is enough to show that the image of σ is uniquely
determined. Assume that there is an extension ψ : Cr2 → Bir(P(TP2)) of
ϕB . Our goal is to show ψ(σ) = ΨB(σ).
Let d ∈ D2, d = (ax1, bx2) with respect to affine coordinates given by

x0 = 1. Then ϕB(d) = (ax1, bx2, (b/a)x3), with respect to suitable local
affine coordinates of P(TP2). Let φ : P(TP2) 99K P2 × P1 be the birational
map given by

φ : (x1, x2, x3) 7→
(
x1, x2,

x1

x2
x3

)
,

with respect to local affine coordinates.
Let ψ1 : Cr2 → Bir(P2 × P1) be the algebraic embedding ψ1 = φ ◦ ψ ◦

φ−1. This gives us a P2-fibration, which we call the horizontal fibration,
and a P1-fibration, which we call the vertical fibration. The image ψ1(D2)
acts canonically on the first factor and leaves the second one invariant.
The horizontal fibers thus consist of the closures of D2-orbits. Since W2
normalizes D2, the image ψ1(W2) permutes the orbits of ψ1(D2). Hence it
preserves the horizontal fibration and we obtain a homomorphism

ρ : W2 ' GL2(Z)→ Bir(P1) = PGL2(C) .

In what follows we identify W2 with GL2(Z).
The images of the three transpositions in S3 = W2 ∩ PGL3(C) under ρ

are:

ρ

(
0 1
1 0

)
=
[

0 1
1 0

]
, ρ

(
1 −1
0 −1

)
=
[

1 −1
0 −1

]
and ρ

(
−1 0
−1 1

)
=
[
−1 0
−1 1

]
.

The image ρ(σ) is either the identity or it has order 2. The elements
of the form (5.1) do not commute with the images of S3 described above.
Since σ is contained in the center of W2, we obtain ρ(σ) = id.
It remains to show that the action of ψ1(σ) on the first factor of P2×P1

is the standard action. Let M = P2 be a horizontal fiber. It is stabilized by
ψ(D2) and ψ(σ), so we obtain a homomorphism

γ : 〈D2, σ〉 → Bir(M) = Cr2 .

Since σdσ−1 = d−1 for all d ∈ D2, there exists a d ∈ D2 such that γ(σ) =
dσ. This is true for all horizontal fibers, so ψ1(σ) induces an automorphism
of U × P1, where

U = {[x0 : x1 : x2] | x0, x1, x2 6= 0} ⊂ P2.
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Let S ' P1 ⊂ U×P1 be a vertical fiber and π : U×P1 → U the projection
onto the first factor. Then π ◦ ψ1(σ)(S) is a regular map from P1 to the
affine set U and is therefore constant. We obtain that ψ1(σ) preserves the
vertical fibration.
The image ψ1(PGL3(C)) preserves the vertical fibration as well and pro-

jection onto P2 yields a homomorphism from PGL3(C) to Cr2 that is the
standard embedding. Hence ψ1(Cr2) preserves the vertical fibration and
we obtain an algebraic homomorphism from Cr2 to Cr2, which is uniquely
determined by its restriction to PGL3(C). So the image ψ1(σ) is uniquely
determined by its restriction to PGL3(C) (see Appendix). �

Proposition 5.4. — There exists no homomorphism Φ: Cr2 → Cr3
such that

Φ|PGL3(C) = ϕB ◦ α,
where ϕB denotes the embedding of PGL3 into Cr3 from Example 1.11 and
α the algebraic automorphism of PGL3 given by g 7→ tg−1.

Proof. — Assume that such an extension Φ: Cr2 → Cr3 of ϕB ◦α exists.
Observe that α(D2) = D2 and that α|S3 = idS3 . Therefore, we can

repeat the same argument as in the proof of Proposition 5.3 to obtain
Ψ(σ) = ΦB(σ). But we have

Ψ(σ)Ψ(g)Ψ(σ)Ψ(g)Ψ(σ)Ψ(g) 6= id

for g = [z − x : z − y : z]. This contradicts the relations in Cr2 (Proposi-
tion A.4). �

5.3. The case P(OPn ⊕OPn(−k(n+ 1)))

Proposition 5.5. — The algebraic homomorphism ϕl : PGLn+1(C)→
Bir(Fl) extends uniquely to the embedding

Ψl : Hn → Bir(Fl) (see Example 1.10) .

Proof. — Suppose that there is an extension ψ : Hn → Bir(Fl) of ϕl. We
will show that ψ is unique and therefore that ψ = Ψl.

Let (x1, . . . , xn−1, w) be local affine coordinates of Fl such that for every
g ∈ PGLn+1(C) the image ϕl(g) acts by

(x1, . . . , xn, w) 7→ (g(x1, . . . , xn), J(g(x1, . . . , xn))−lw) .

In particular, the image under ψ of (d1x1, . . . , dnxn) ∈ Dn acts by

(x1, . . . , xn, w) 7→ (d1x1, . . . , dnxn, (d1 . . . dn)−lw) .
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Define φ : Fl → Pn × P1 by

φ : (x1, . . . , xn, w) 7→ (x1, . . . , xn, (x1 . . . xn)lw)

with respect to local affine coordinates. Let ψ1 : Crn → Bir(Pn × P1) be
the algebraic embedding ψ1 := φ ◦ ψ ◦ φ−1. Then the image ψ1(Dn) acts
canonically on the first factor and leaves the second one invariant. Since Wn

normalises Dn, the image ψ1(Wn) permutes the orbits of ψ1(Dn). Hence
ψ1(Wn) preserves the horizontal fibration. This induces a homomorphism

ρ : Wn ' GLn(Z)→ PGL2(C) .

In what follows, we identify Wn with GLn(Z). Define An+1 ⊂ Sn+1 ⊂
PGLn+1(C) to be the subgroup of coordinate permutations s ∈ Sn+1 such
that J(s) = 1. Hence An+1 ∈ ker(ρ). Note that the fixed point set of
ψ1(An+1) is the vertical fiber

L := [1 : · · · : 1]× P1 ⊂ Pn × P1.

Since σn commutes with An+1, the image ψ1(σn) stabilises L. The group
ψ1(Dn) acts transitively on an open dense subset of vertical fibers that con-
tains L. Since ψ1(σn) normalizes ψ1(Dn), we obtain that ψ1(σn) preserves
the vertical fibration. Therefore 〈PGLn+1(C), σn〉 preserves the vertical fi-
bration. We obtain a homomorphism 〈PGLn+1(C), σn〉 → Crn, which is,
by Corollary A.3 and its proof, the standard embedding.
Let

fA =
(

1
x1
, x2, . . . , xn

)
.

In [11] it is shown that fA is contained in 〈PGLn+1(C), σn〉, which implies
that ψ1(fA) preserves the vertical fibration and that its action on Pn is the
standard action.
Recall that (hfA)3 = id for h = (1− x1, x2, . . . , xn−1) ∈ Crn. The image

ψ1(h) is

ψ1(h) : (x1, . . . , xn, z) 7→ (1− x1, x2, . . . , xn, (−1)lz) .

Denote by A ∈ GLn(Z) the integer matrix corresponding to fA. We have
ρ(A) = id or ρ(A) is of order two, i.e. it has the form (5.1).

Suppose that ρ(A) = id. Then

ψ1(fA) : (x1, . . . xn, z) 7→
(

1
x1
, x2 . . . xn, z

)
.

The relation (hfA)3 = id then implies that l is even.
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Suppose that

ρ(fA) =
[

1 b

c −1

]
, where b, c ∈ C, bc 6= −1 ,

hence

ψ1(fA) : (x1, . . . xn, z) 7→
(

1
x1
, x2 . . . xn,

z + b

cz − 1

)
and therefore

ψ1(hfA) = (x1, . . . xn, z) 7→
(

1− 1
x1
, . . . xn,

(−1)lz + (−1)lb
cz − 1

)
,

One calculates that if l is even, then the relation (hfA)3 = id is not satisfied.
So assume that l is odd. This gives

ψ1(hfA)3 = (x1, . . . xn, z) 7→
(
x1, . . . xn,

a1z + a2

a3z − a4

)
,

where a1 = 3bc−1, a2 = (bc−1)b−2b, a3 = (1− bc)c+2c and a4 = 3bc−1.
So (hfA)3 = id yields either l odd and b = c = 0 or l odd and bc = 3.
However, the latter is not possible. Consider the transformation

τ = (x1, . . . , xn−2, xn, xn−1) ∈ Sn .

We have fAτ = τfA. Note that

ψ1(τ) : (x1, . . . , xn, z) 7→ (x1, . . . , xn−2, xn, xn−1, . . . , xn, (−1)lz)

and this transformation does not commute with
(
x1, . . . xn,

a1z+a2
a3z−a4

)
in the

second case. Hence c = b = 0 and l is odd.
Finally, assume that

ρ(fA) =
[

0 1
a 0

]
, where a ∈ C∗.

This implies

ψ1(fA) : (x1, . . . xn, z) 7→
(

1
x1
, x2 . . . xn,

1
az

)
and hence ψ(hfA)3 6= id.
We conclude that

ρ(fA) =
[

1 0
0 (−1)l

]
and therefore that the action of ψ(fA) is uniquely determined by l. Hence

ψ|〈PGLn(C),σn−1〉 = Ψl|〈PGLn(C),σn−1〉 .
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Let fB , fC , fD and fE ∈ Crn be as in the proof of Corollary A.2. By
Lemma A.5 it remains to show that the image ψ(fB) is uniquely deter-
mined. We use once more the relation

fB = fDfCfEf
−1
D .

Since ρ(CE) = id and since fD has order two, we obtain ρ(B) = id.
Let c ∈ P1 such that the restriction of ψ1(fB) to the hyperplane

{c} × Pn ⊂ P1 × Pn

is a birational map. Then the restriction of ψ1(fB) to {c}×Pn has to fulfill
the relations with the group 〈PGLn+1(C), σn〉. By Corollary A.3 we obtain
that this restriction has to be fB . Hence the image ψ1(fB) is unique. �

Proposition 5.6. — There exists no group homomorphism ψ : Hn →
Bir(Fl) such that ψ|PGLn+1(C) = ϕl ◦ α.

Proof. — Assume that such an extension ψ : Hn → Crn exists. Let φ be
as in Proposition 5.5 and ψ2 : Hn → Bir(P1 × Pn),

ψ2 := φ ◦ ϕl ◦ α ◦ φ−1.

Similarly as in the proof of Proposition 5.5 one can show that ψ2(σn)
preserves the vertical fibration. In that way we obtain an algebraic homo-
morphism

A : 〈PGLn+1(C), σ〉 → Crn
such that A|PGLn+1(C) = α. Such a homomorphism does not exist by Corol-
lary A.3. �

5.4. The case C × Pn

Throughout this section, C denotes a projective curve. For the proof
of Theorem 4.1 it is enough to consider non rational curves, however, the
following propositions hold in the more general case.

Proposition 5.7. — The embedding ϕC : PGLn+1(C)→ Bir(C × Pn)
extends uniquely to the standard embedding

ΦC : Hn → Bir(C × Pn) (see Example 1.9) .

Proof. — Let π : C×Pn → C be the first projection. Suppose that there
is an extension Ψ: Hn → Bir(C×Pn) of ϕC . By definition, Ψ(PGLn+1(C))
fixes the fibers of π. Moreover, each fiber of π is a closure of a Ψ(Dn)-orbit.
Since the elements of Wn commute with Dn, we conclude that Ψ(Wn)
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preserves the fibration given by π. Hence Hn preserves the fibration given
by π and we obtain a homomorphism

ρ : Hn → Bir(C)

such that PGLn+1(C) ⊂ ker(ρ). In the Appendix it is shown that the
normal subgroup generated by PGLn+1(C) in Hn is all of Hn. Hence ρ is
trivial and Ψ(Hn) preserves every fiber of π. The restriction Ψ(Hn)|c×Pn

for any c ∈ C defines a homomorphism from Hn to Crn such that the
restriction to PGLn+1(C) is the standard embedding. By Corollary A.3,
this is the standard embedding. Hence Ψ is unique. �

Proposition 5.8. — There exists no group homomorphism Ψ: Hn →
Bir(C× Pn) such that Ψ|PGLn+1(C) = ϕC ◦ α.

Proof. — Assume there exists such a Ψ. As in the proof of Proposition 5.7
one can show that Ψ(Hn) fixes the horizontal fibration. The restriction
Ψ(Hn)|c×Pn−1 defines for each c ∈ C a homomorphism from Hn to Crn such
that the restriction to PGLn+1(C) is given by g 7→ α(g). By Corollary A.3,
there exists no such homomorphism. �

5.5. Proof of Theorem 1.13

Statement (1) is the content of Theorem 4.1. Statement (2) follows from
Proposition 5.2. Statement (3) and (4) follow from the Propositions 5.3, 5.4,
5.5, 5.6, 5.7 and 5.8. Note that the Propositions 5.2, 5.4, 5.6 and 5.8 show
that the regular actions of PGLn+1(C) that do not extend to a rational
action of Crn also do not extend to a rational action of Hn.

Appendix

Let γ : C → C be a field homomorphism. By acting on the coordinates,
γ induces a bijective map Γ: Pn → Pn. Conjugation with Γ yields a group
homomorphism of Crn that preserves degrees. Observe that we obtain the
image of g ∈ Crn by letting γ operate on the coefficients of g. By abuse of
notation we denote this group homomorphism by γ as well. In [22] Déserti
showed that all automorphisms of Cr2 are inner up to field automorphisms
of that type. A generalization of this result is the following theorem by
Cantat:
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Theorem A.1 ([16]). — Let M be a smooth projective variety of di-
mension n and r ∈ Z+. Let ρ : PGLr+1(C) → Bir(M) be a non-trivial
group homomorphism. Then n > r and if n = r then M is rational and
there exists a homomorphism of fields γ : C→ C such that ρ is up to con-
jugation the standard embedding of PGLn+1(C) into Crn followed by the
group homomorphism γ : Crn → Crn.

The goal of this appendix is to prove the following two corollaries of
Theorem A.1:

Corollary A.2. — Let n > m and let Φ: Crn → Crm be a group ho-
momorphism. Then the normal subgroup of Crn containing Hn is contained
in the kernel of Φ.

No such non-trivial homomorphism is known so far. In fact, it is an open
question, whether Crn is simple for n > 3.
Let α : PGLn+1(C) → PGLn+1(C) be the algebraic automorphism de-

fined by g 7→ tg−1.

Corollary A.3. — Let Ψ: Hn → Crn be a non-trivial group homo-
morphism. Then there exists a homomorphism of fields γ of C and an
element g ∈ Crn such that gΨg−1 is the standard embedding followed by
the group homomorphism γ.

Moreover, the extension of the standard embedding ϕ : PGLn+1(C) →
Crn as well as the extension of the embedding γ ◦ ϕ, to the group Hn is
unique, where γ is any field homomorphism of C. The embedding ϕ ◦ α
does not extend to a homomorphism from Hn to Crn.

By the theorem of Noether and Castelnuovo, Corollary A.3 implies in
particular the theorem of Déserti about automorphisms of Cr2.
We often use the following relations between elements of the Cremona

group:

Lemma A.4. — In Cr2 the following relations hold:
(1) στ(τσ)−1 = id for all τ ∈ S3,
(2) σd = d−1σ for all diagonal maps d ∈ D2 and
(3) (σh)3 = id for h = [x2 − x0 : x2 − x1 : x2].

Proof. — One checks the identities by a direct calculation. �

Denote by Cr0
n ⊂ Crn the subgroup consisting of elements that contract

only rational hypersurfaces. We have Hn ⊂ Cr0
n. On the other hand, it

seems to be an interesting open question, whether there exist elements in
Cr0

n that are not contained in Hn for any n > 3 (cf. [35]).
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Lemma A.5. — The group Hn is generated by the group PGLn+1(C)
and the two birational transformations σn := (x−1

1 , x−1
2 , . . . , x−1

n ) and fB :=
(x1x2, x2, x3, . . . , xn).

Proof. — It is known that GLn(Z) is generated by the subgroup of per-
mutation matrices in GLn(Z) and the two elements

A :=



−1 0 0 . . . 0
0 1 0 . . . 0

. . .

0 0 . . . 1 0
0 0 . . . 0 1


and B :=



1 1 0 . . . 0
0 1 0 . . . 0

. . .

0 0 . . . 1 0
0 0 . . . 0 1


(see for example [31, III.A.2]). Notice that fB is the birational transfor-
mation in Wn corresponding to B. Let fA be the birational transfor-
mation corresponding to A. In [11] it is shown that fA is contained in
〈PGLn+1(C), σn〉. �

Proof of Corollary A.2. — By Lemma A.5 it is enough to show that σn
and fB are contained in the normal subgroup containing PGLn+1(C). Let

gn := [xn − x0 : xn − x1 : · · · : xn − xn−1 : xn] ∈ PGLn+1(C) .

Then σngnσngnσngn = id . In particular, σngn conjugates σn to gn.
Let

C :=



−1 2 0 . . . 0
0 1 0 . . . 0

. . .

0 0 . . . 1 0
0 0 . . . 0 1


, D :=



−1 0 0 . . . 0
−1 1 0 . . . 0

. . .

0 0 . . . 1 0
0 0 . . . 0 1


,

E :=



0 1 0 . . . 0
1 0 . . . 0

. . .

0 0 . . . 1 0
0 0 . . . 0 1


∈ GLn(Z)

and let fC , fD and fE be the corresponding elements in Wn. It is shown
in [11] that fC is contained in 〈PGLn+1(C), σn〉. Moreover, one calculates
that

fB = fDfCfEf
−1
D ,

which implies that fB is conjugate to an element in 〈PGLn+1(C), σn〉. �
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Proof of Corollary A.3. — By Theorem A.1 we may assume that there
exists a field homomorphism γ : C → C, such that, up to conjugation, the
restriction of Ψ to PGLn+1(C) is the standard embedding composed with
γ or the standard embedding composed with γ and the automorphism α

of PGLn+1(C) given by α(g) = tg−1.
Therefore, after conjugation, the restriction of Ψ to D2 is the standard

embedding composed with γ. In particular, Ψ(D2) = γ(D2) is dense in D2
and therefore Ψ(Wn) is contained in Dn o Wn. Assume that Ψ(σn) = dτ

for some d ∈ Dn and τ ∈Wn. The relation Ψ(σn)Ψ(e)Ψ(σn) = Ψ(e)−1 for
all e ∈ Dn implies Ψ(σn)eΨ(σn) = e−1 for all e ∈ D2 and hence τ = σn.
Note that the restriction of Ψ to Sn+1 is the standard embedding. So for
all τ ∈ Sn+1 we obtain

τdσn = dσnτ = dτσn .

The only element in Dn that commutes with Sn+1 is the identity. Hence
Ψ(σn) = σn.
Let gn be as in the proof of Corollary A.2. The relation σngnσngnσngn =

id implies that Ψ|PGLn+1(C) is the standard embedding composed with γ,
since

σnα(gn)σnα(gn)σnα(gn) 6= id .

It remains to show that Ψ(fB) = fB . Let d ∈ Dn, and ρ ∈ Wn such
that Ψ(fB) = dρ. The image Ψ(fB) acts on Ψ(Dn) by conjugation. The
action of Ψ(fB) on Ψ(Dn) is determined by ρ. Since Ψ|Dn

is the standard
embedding composed with γ, we obtain ρ = fB . Let d = (d1x1, . . . , dnxn).
The image Ψ(fB) commutes with σn. We obtain

d−1σnfB = σndfB = dfBσn = dσnfB

and hence di = ±1 for all i.
The image Ψ(fB) commutes with all elements of Sn+1 that fix the coor-

dinates x1 and x2. Similarly as above, this yields that d commutes with all
elements of Sn+1 that fix the coordinates x1 and x2 and we get di = 1 for
i 6= 1 and i 6= 2.
In [11] it is shown that f2

B is contained in 〈PGLn+1(C), σn〉. By what we
proved above, this gives

Ψ(f2
B) = f2

B = dfBdfB = dd′f2
B ,

where d′ = (d1d2x1, d2x2, . . . , dnxn). So dd′ = id, which yields d2
1d2 = 1

and therefore d2 = 1. This means that we have either Ψ(fB) = fB or
Ψ(fB) = dfB with d = (−x1, x2, . . . , xn).
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Let

r1 := [x0 : x1 : · · · : xn−1 : xn + x1] , r2 := [xn : x1 : · · · : xn−1 : x0] ,
r3 := [xn : x0 : x2 : · · · : xn−1 : x1] , t := [xn : x0 : · · · : xn−1] .

We have the relation

(r2tfBt
−1r3)r1(r2tfBt

−1r3) = r1

and therefore

(r2tΨ(fB)t−1r3)r1(r2tΨ(fB)t−1r3) = r1 .

One calculates that, if Ψ(fB) = (−x1, x2, . . . , xn)fB , then this relation is
not satisfied. Hence Ψ(fB) = fB . �
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