ANNALES

DE

L'INSTITUT FOURIER

Christian URECH

On homomorphisms between Cremona groups
Tome 68, n 1 (2018), p. 53-100.
http://aif.cedram.org/item?id=AIF_2018__68_1_53_0
© Association des Annales de l'institut Fourier, 2018, Certains droits réservés.
(c) BY-ND Cet article est mis à disposition selon les termes de la licence Creative Commons attribution - pas de modification 3.0 France. http://creativecommons.org/licenses/by-nd/3.0/fr/

L'accès aux articles de la revue «Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/).

cedram

Article mis en ligne dans le cadre du

ON HOMOMORPHISMS BETWEEN CREMONA GROUPS

by Christian URECH (*)

Abstract

We look at algebraic embeddings of the complex Cremona group in n variables Cr_{n} to the group of birational transformations $\operatorname{Bir}(M)$ of an algebraic variety M. First we study geometrical properties of an example of an embedding of Cr_{2} into Cr_{5} that is due to Gizatullin. In a second part, we give a full classification of all algebraic embeddings of Cr_{2} into $\operatorname{Bir}(M)$, where M is a variety of dimension 3 and generalize this result partially to algebraic embeddings of Cr_{n} into $\operatorname{Bir}(M)$, where the dimension of M is $n+1$, for arbitrary n. In particular, this yields a classification of all algebraic $\mathrm{PGL}_{n+1}(\mathbb{C})$-actions on smooth projective varieties of dimension $n+1$ that can be extended to rational actions of Cr_{n}.

Résumé. - On s'intéresse aux plongements algébriques du groupe de Cremona complexe à n variables Cr_{n} dans des groupes de transformations birationnelles $\operatorname{Bir}(M)$ d'une varété algébrique M. D'abord on regarde un plongement de Cr_{2} dans Cr_{5} qui était découvert par Gizatullin. Puis on donne une classification de tous les plongements algébriques de Cr_{2} dans $\operatorname{Bir}(M)$ pour des variétés M de dimension 3 et on généralise partiellement ce résultat aux plongements algébriques de Cr_{n} dans $\operatorname{Bir}(M)$, où la dimension de M est $n+1$ (pour tout n). On obtient notamment une classification de toutes les action régulières de $\mathrm{PGL}_{n+1}(\mathbb{C})$ sur des variétés projectives lisses de dimension $n+1$ qui s'étendent vers des actions rationnelles de Cr_{n}.

1. Introduction and statement of the results

1.1. Cremona groups

Let M be a complex algebraic variety and $\operatorname{Bir}(M)$ the group of birational transformations of M. Denote by $\mathbb{P}^{n}=\mathbb{P}_{\mathbb{C}}^{n}$ the complex projective space of

[^0]dimension n. The group
$$
\mathrm{Cr}_{n}:=\operatorname{Bir}\left(\mathbb{P}^{n}\right)
$$
is called the Cremona group. In this paper we are interested in group homomorphisms from Cr_{n} to $\operatorname{Bir}(M)$. In particular, we will study an embedding of Cr_{2} into Cr_{5} that was described by Gizatullin [29] and consider the case, where $\operatorname{dim}(M)=n+1$.

A birational transformation $A: M \rightarrow N$ between varieties M and N induces an isomorphism $\operatorname{Bir}(M) \rightarrow \operatorname{Bir}(N)$ by conjugating elements of $\operatorname{Bir}(M)$ with A. A homomorphism $\Phi: \operatorname{Bir}(M) \rightarrow \operatorname{Bir}\left(N_{1}\right)$ and a homomorphism $\Psi: \operatorname{Bir}(M) \rightarrow \operatorname{Bir}\left(N_{2}\right)$ are called conjugate if there exists a birational transformation $A: N_{1} \rightarrow N_{2}$ such that $\Psi(g)=A \circ \Phi(g) \circ A^{-1}$ for all $g \in \operatorname{Bir}(M)$.

Example 1.1. - Assume that a variety M is birationally equivalent to $\mathbb{P}^{n} \times N$ for some variety N. The standard action on the first factor yields an injective homomorphism of Cr_{n} into $\operatorname{Bir}\left(\mathbb{P}^{n} \times N\right)$ and therefore also into $\operatorname{Bir}(M)$. We call embeddings of this type standard embeddings. In particular, we obtain in that way for all nonnegative integers m a standard embedding $\mathrm{Cr}_{n} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right)$.

Example 1.2. - A variety M is called stably rational if there exists a n such that $M \times \mathbb{P}^{n}$ is rational. There exist varieties of dimension larger than or equal to 3 that are stably rational but not rational (see [4]). We will see that two standard embeddings $f_{1}: \operatorname{Cr}_{n} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n} \times N\right)$ and $f_{2}: \mathrm{Cr}_{n} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n} \times M\right)$ are conjugate if and only if N and M are birationally equivalent (Lemma 3.3). So every class of birationally equivalent stably rational varieties of dimension k defines a different conjugacy class of embeddings $\mathrm{Cr}_{n} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{m}\right)$ for $m=n+k$.

If we fix homogeneous coordinates $\left[x_{0}: \cdots: x_{n}\right]$ of \mathbb{P}^{n}, every element $f \in \mathrm{Cr}_{n}$ can be described by homogeneous polynomials of the same degree $f_{0}, \ldots, f_{n} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ without non-constant common factor, such that

$$
f\left(\left[x_{0}: \cdots: x_{n}\right]\right)=\left[f_{0}: \cdots: f_{n}\right] .
$$

The degree of f is the degree of the f_{i}. With respect to affine coordinates $\left[1: X_{1}: \cdots: X_{n}\right]=\left(X_{1}, \ldots, X_{n}\right)$, we have

$$
f\left(X_{1}, \ldots, X_{n}\right)=\left(F_{1}, \ldots, F_{n}\right)
$$

where the $F_{i}\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}\left(X_{1}, \ldots, X_{n}\right)$ are given by the quotients $f_{i}\left(1, X_{1}, \ldots, X_{n}\right) / f_{0}\left(1, X_{1}, \ldots, X_{n}\right)$. The subgroup of Cr_{n} consisting of elements F such that all the F_{i} are polynomials as well as all the entries of F^{-1}, is exactly $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$, the group of polynomial automorphisms of the
affine space \mathbb{A}^{n}. When we look at $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$ as a subgroup of Cr_{n}, we will always consider the embedding given by the affine coordinates $x_{0} \neq 0$.

An important subgroup of Cr_{n} is the automorphism group

$$
\operatorname{Aut}\left(\mathbb{P}^{n}\right) \simeq \operatorname{PGL}_{n+1}(\mathbb{C})
$$

The n-dimensional subgroup of $\operatorname{Aut}\left(\mathbb{P}^{n}\right)$ consisting of diagonal automorphisms will be denoted by D_{n}. It is the maximal torus of Cr_{n} in the following sense: all diagonalizable subgroups of Cr_{n} are of rank $\leqslant n$ and all diagonalizable subgroups of rank n in Cr_{n} are conjugate to D_{n} ([5]).

Let $A=\left(a_{i j}\right) \in M_{n}(\mathbb{Z})$ be a matrix of integers. The matrix A determines a rational self map of the affine space

$$
f_{A}=\left(x_{1}^{a_{11}} x_{2}^{a_{12}} \ldots x_{n}^{a_{1 n}}, x_{1}^{a_{21}} x_{2}^{a_{22}} \ldots x_{n}^{a_{2 n}}, \ldots, x_{1}^{a_{n 1}} x_{2}^{a_{n 2}} \ldots x_{n}^{a_{n n}}\right)
$$

We have $f_{A} \circ f_{B}=f_{A B}$ for $A, B \in M_{n}(\mathbb{Z})$. One observes that f_{A} is a birational transformation if and only if $A \in \mathrm{GL}_{n}(\mathbb{Z})$. This yields an injective homomorphism $\mathrm{GL}_{n}(\mathbb{Z}) \rightarrow \mathrm{Cr}_{n}$ whose image we call the Weyl group and denote it by W_{n}. This terminology is justified by the fact that the normalizer of D_{n} in Cr_{n} is the semidirect product $\operatorname{Norm}_{\operatorname{Cr}_{n}}\left(D_{n}\right)=D_{n} \rtimes \mathrm{~W}_{n}$. Note that $D_{n} \rtimes \mathrm{~W}_{n}$ is the automorphism group of $\left(\mathbb{C}^{*}\right)^{n}$. Sometimes, W_{n} is also called the group of monomial transformations.

The well known theorem of Noether and Castelnuovo (see for example [2]) states that over an algebraically closed field k the Cremona group in two variables is generated by $\mathrm{PGL}_{3}(k)$ and the standard quadratic involution

$$
\sigma:=\left[x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}\right] \in \mathrm{W}_{2} .
$$

Results of Hudson and Pan ([32], [36]) show that for $n \geqslant 3$ the Cremona group Cr_{n} is not generated by $\mathrm{PGL}_{n+1}(\mathbb{C})$ and W_{n}. Let

$$
\mathrm{H}_{n}:=\left\langle\mathrm{PGL}_{n+1}(\mathbb{C}), \mathrm{W}_{n}\right\rangle
$$

Blanc and Hedén studied the subgroup G_{n} of Cr_{n} generated by $\mathrm{PGL}_{n+1}(\mathbb{C})$ and the element $\sigma_{n}:=\left[x_{0}^{-1}: \cdots: x_{n}^{-1}\right]$ ([11]). In particular, they show that G_{n} is a finite index subgroup of H_{n} and that it is strictly contained in H_{n} if and only if n is odd. Further results about the group structure of G_{n} can be found in [23].

1.2. The case $\operatorname{dim}(M) \leqslant n$

Let M be a complex projective variety of dimension n and

$$
\rho: \operatorname{PGL}_{r+1}(\mathbb{C}) \rightarrow \operatorname{Bir}(M)
$$

an embedding. Then $n \geqslant r$ and if $n=r$ it follows that M is rational and that up to a field homomorphism, ρ is the standard embedding (see [16] and [22]). This implies in particular that there are no embeddings of Cr_{n} into $\operatorname{Bir}(M)$ if $\operatorname{dim}(M)<n$. In the Appendix we recall these results and show that the restriction of an automorphism of Cr_{n} to the subgroup H_{n} is inner up to a field automorphism.

1.3. Algebraic homomorphisms

We call a group homomorphism $\Psi: \operatorname{Cr}_{n} \rightarrow \operatorname{Bir}(M)$ algebraic if its restriction to $\mathrm{PGL}_{n+1}(\mathbb{C})$ is an algebraic morphism. The algebraic structure of $\operatorname{Bir}(M)$ and some properties of algebraic homomorphisms will be discussed in Section 2. Recall that an element $f \in \operatorname{Cr}_{n}$ is called algebraic, if the sequence $\left\{\operatorname{deg}\left(f^{n}\right)\right\}_{n \in \mathbb{Z}^{+}}$is bounded.

Definition 1.3. - Let M be a variety and $\varphi_{M}: \operatorname{Cr}_{n} \rightarrow \operatorname{Bir}(M)$ a non-trivial algebraic group homomorphism. We say that φ_{M} is reducible if there exists a variety N such that $0<\operatorname{dim}(N)<\operatorname{dim}(M)$ and an algebraic homomorphism $\varphi_{N}: \mathrm{Cr}_{n} \rightarrow \operatorname{Bir}(N)$ together with a dominant rational map $\pi: M \rightarrow N$ that is Cr_{n}-equivariant with respect to the rational actions induced by φ_{M} and φ_{N} respectively, i.e. $\pi \circ \varphi_{M}(g)=\varphi_{N}(g) \circ \pi$ for all $g \in \mathrm{Cr}_{n}$.

Remark 1.4. - In [50], Zhang uses the terminology primitive action for irreducible actions in the sense of Definition 1.3; in [15], Cantat says that an action admits a non-trivial factor if it is reducible.

Note that if we look at the induced action of Cr_{n} on the function field $\mathbb{C}(M)$ of M, reducibility is equivalent to the existence of a non-trivial Cr_{n}-invariant function field $\mathbb{C}(N) \subset \mathbb{C}(M)$.

1.4. An example by Gizatullin

In [29], Gizatullin looks at the following question: Let $\psi: \mathrm{PGL}_{3}(\mathbb{C}) \rightarrow$ $\mathrm{PGL}_{n+1}(\mathbb{C})$ be a linear representation. Does ψ extend to a homomorphism $\Psi: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{n}$? He shows that the linear representations given by the action of $\mathrm{PGL}_{3}(\mathbb{C})$ on conics, cubics and quartics can be extended to homomorphisms from Cr_{2} to $\mathrm{Cr}_{5}, \mathrm{Cr}_{9}$ and Cr_{14}, respectively. These homomorphisms are related to the rational action of Cr_{2} on moduli spaces of certain vector bundles on \mathbb{P}^{2} that were discovered by Artamkin ([3]).

In Section 3 we study in detail some geometrical properties of the homomorphism

$$
\Phi: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{5}
$$

that was described by Gizatullin; by construction, the restriction of Φ to $\mathrm{PGL}_{3}(\mathbb{C})$ yields the linear representation $\varphi: \mathrm{PGL}_{3}(\mathbb{C}) \rightarrow \mathrm{PGL}_{6}(\mathbb{C})$ given by the action of $\mathrm{PGL}_{3}(\mathbb{C})$ on plane conics. Among other things, we prove the following:

Theorem 1.5. - Let $\Phi: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{5}$ be the Gizatullin homomorphism. Then the following is true:
(1) The group homomorphism Φ is injective and irreducible.
(2) The rational action of Cr_{2} on \mathbb{P}^{5} that is induced by Φ preserves the Veronese surface V and its secant variety $S \subset \mathbb{P}^{5}$ and induces rational actions of Cr_{2} on V and S.
(3) The Veronese embedding $v: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ is Cr_{2}-equivariant with respect to the standard rational action on \mathbb{P}^{2}.
(4) The dominant secant rational map $s: \mathbb{P}^{2} \times \mathbb{P}^{2} \rightarrow S \subset \mathbb{P}^{5}$ (see Section 3.4) is Cr_{2}-equivariant with respect to the diagonal action of Cr_{2} on $\mathbb{P}^{2} \times \mathbb{P}^{2}$.
(5) The rational action of Cr_{2} on \mathbb{P}^{5} preserves a volume form on \mathbb{P}^{5} with poles of order three along the secant variety S.
(6) The group homomorphism Φ sends the group of polynomial automomorphisms $\operatorname{Aut}\left(\mathbb{A}^{2}\right) \subset \mathrm{Cr}_{2}$ to $\operatorname{Aut}\left(\mathbb{A}^{5}\right)$.

Note that the injectivity of Φ follows from (3); in Section 3.8 irreducibility is proved. Part (2)-(4) of Theorem 1.5 will be proved in Section 3.4, part (5) in Section 3.6 and part (6) in Section 3.7.

The representation φ^{\vee} of $\mathrm{PGL}_{3}(\mathbb{C})$ into $\mathrm{PGL}_{6}(\mathbb{C})$ given by $\psi \circ \alpha$, where α is the algebraic homomorphism $g \mapsto{ }^{t} g^{-1}$, is conjugate in Cr_{5} to the representation φ. This conjugation yields the embedding $\Phi^{\vee}: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{5}$, whose image preserves the secant variety S as well and induces a rational action on it. As the secant variety S is rational, Φ and Φ^{\vee} induce two nonstandard homomorphisms from Cr_{2} to Cr_{4}, which we denote by Ψ_{1} and Ψ_{2} respectively. In Section 3.5 we prove the following:

Proposition 1.6. - The two homomorphisms $\Psi_{1}, \Psi_{2}: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{4}$ are not conjugate in Cr_{4}; moreover they are irreducible and therefore not conjugate to the standard embedding.

Remark 1.7. - The homomorphism Ψ_{1} is injective, since it restricts to the standard action on the Veronese surface. However, it seems to be
unclear, whether Ψ_{2} is injective as well. Since the restriction of Ψ_{2} to $\mathrm{PGL}_{3}(\mathbb{C})$ is injective, it seems unlikely that Ψ_{2} is not injective. But it is not clear how to prove that.

Since Φ is algebraic, the images of algebraic elements under Φ are algebraic again (see Proposition 2.4). Calculation of the degrees of some examples suggests that Φ might even preserve the degrees of all elements in Cr_{2}. However, we were only able to prove the following (Section 3.7):

Theorem 1.8. - Let $\Phi: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{5}$ be the Gizatullin-embedding. Then
(1) for all elements $f \in \mathrm{Cr}_{2}$ we have $\operatorname{deg}(f) \leqslant \operatorname{deg}(\Phi(f))$,
(2) for all $g \in \operatorname{Aut}\left(\mathbb{A}^{2}\right) \subset \mathrm{Cr}_{2}$ we have $\operatorname{deg}(g)=\operatorname{deg}(\Phi(g))$.

The image of the Weyl group W_{2} under Φ is not contained in the Weyl group W_{5}. More generally, it can be shown that there exists no algebraic homomorphism from Cr_{2} to Cr_{5} that preserves automorphisms, diagonal automorphisms and the Weyl group (see [46]).

1.5. Algebraic embeddings in codimension 1

In Section 4 and Section 5 we look at algebraic homomorphisms $\mathrm{Cr}_{n} \rightarrow$ $\operatorname{Bir}(M)$ in the case where M is a smooth projective variety of dimension $n+1$ for $n \geqslant 2$.

Example 1.9. - For all curves C of genus $\geqslant 1$, the variety $\mathbb{P}^{n} \times C$ is not rational and there exists the standard embedding $\Psi_{C}: \operatorname{Cr}_{n} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n} \times C\right)$.

Example 1.10. - Cr_{n} acts rationally on the total space of the canonical bundle of \mathbb{P}^{n}

$$
K_{\mathbb{P}^{n}} \simeq \mathcal{O}_{\mathbb{P}^{n}}(-(n+1)) \simeq \bigwedge^{n}\left(T \mathbb{P}^{n}\right)^{\vee}
$$

by $f(p, \omega)=\left(f(p), \omega \circ\left(d f_{p}\right)^{-1}\right)$, where $p \in \mathbb{P}^{n}$ and $\omega \in \bigwedge^{n}\left(T_{p} \mathbb{P}^{n}\right)^{\vee}$. More generally, we obtain a rational action of Cr_{n} on the total space of the bundle $K_{\mathbb{P}^{n}}^{\otimes l} \simeq \mathcal{O}_{\mathbb{P}^{n}}(-(n+1) l)$ and on its projective completion

$$
F_{l}:=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-l(n+1))\right.
$$

for all $l \in \mathbb{Z}_{\geqslant 0}$. This yields a countable family of injective homomorphisms

$$
\Psi_{l}: \mathrm{Cr}_{n} \rightarrow \operatorname{Bir}\left(F_{l}\right)
$$

Note that the restriction of this rational action to $\mathrm{PGL}_{n}(\mathbb{C})$ is regular, hence these embeddings are algebraic.

We can choose affine coordinates $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ of F_{l} such that Ψ_{l} is given by

$$
\Psi_{l}(f)\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=\left(f\left(x_{1}, \ldots, x_{n}\right), J\left(f\left(x_{1}, \ldots, x_{n}\right)\right)^{-l} x_{n+1}\right)
$$

where, $J\left(f\left(x_{1}, \ldots, x_{n}\right)\right)$ denotes the determinant of the Jacobian of f at the point $\left(x_{1}, \ldots, x_{n}\right)$. Observe that Ψ_{0} is conjugate to the standard embedding.

Example 1.11. - Let $\mathbb{P}\left(T \mathbb{P}^{2}\right)$ be the total space of the fiberwise projectivisation of the tangent bundle over \mathbb{P}^{2}. Then $\mathbb{P}\left(T \mathbb{P}^{2}\right)$ is rational and there is an injective group homomorphism

$$
\Psi_{B}: \operatorname{Cr}_{2} \rightarrow \operatorname{Bir}\left(\mathbb{P}\left(T \mathbb{P}^{2}\right)\right)
$$

defined by $\Psi_{B}(f)(p, v):=\left(f(p), \mathbb{P}\left(d f_{p}\right)(v)\right)$. Here, $\mathbb{P}\left(d f_{p}\right): \mathbb{P} T_{p} \rightarrow \mathbb{P} T_{f(p)}$ defines the projectivisation of the differential $d f_{p}$ of f at the point $p \in \mathbb{P}^{2}$.

Example 1.12. - The Grassmannian of lines in the projective 3 -space $\mathbb{G}(1,3)$ is a rational variety of dimension 4 with a transitive algebraic $\mathrm{PGL}_{4}(\mathbb{C})$-action. This action induces an algebraic embedding of $\mathrm{PGL}_{4}(\mathbb{C})$ into Cr_{4}. In Proposition 5.2 we will show that the image of this embedding does not lie in any subgroup isomorphic to Cr_{3}. So no group action of $\mathrm{PGL}_{4}(\mathbb{C})$ on $\mathbb{G}(1,3)$ by automorphisms can be extended to a rational action of Cr_{3}.

The classification of $\mathrm{PGL}_{n+1}(\mathbb{C})$-actions on smooth projective varieties of dimension $n+1$ is well known to the experts; in Section 4 we study their conjugacy classes. We will see that Examples 1.9 to 1.12 describe up to birational conjugation and up to algebraic automorphisms of $\mathrm{PGL}_{n+1}(\mathbb{C})$ all possible $\mathrm{PGL}_{n+1}(\mathbb{C})$-actions on smooth projective varieties of dimension $n+1$ and that these actions are not birationally conjugate to each other. This yields a classification of algebraic homomorphisms of $\mathrm{PGL}_{n+1}(\mathbb{C})$ to $\operatorname{Bir}(M)$ up to birational conjugacy, for smooth projective M of dimension $n+1$. We will study in Section 5 how these actions extend to rational actions of Cr_{n} on M. Denote by $\alpha: \mathrm{PGL}_{n}(\mathbb{C}) \rightarrow \mathrm{PGL}_{n}(\mathbb{C})$ the algebraic automorphism given by $g \mapsto{ }^{t}\left(g^{-1}\right)$.

Theorem 1.13. - Let $n \geqslant 2$, let M be a complex projective variety of dimension $n+1$ and let $\varphi: \mathrm{PGL}_{n+1}(\mathbb{C}) \rightarrow \operatorname{Bir}(M)$ be a non-trivial algebraic homomorphism. Then
(1) φ is conjugate, up to the automorphism α, to exactly one of the embeddings described in Example 1.9 to 1.12.
(2) If $n=3$ and φ is conjugate to the action described in Example 1.12, then neither φ nor $\varphi \circ \alpha$ can be extended to a homomorphism of H_{3} to $\operatorname{Bir}(M)$.
(3) If φ is conjugate to one of the embeddings described in Example 1.9 to 1.11 then exactly one of the embeddings φ or $\varphi \circ \alpha$ extends to a homomorphism of Cr_{n} to $\operatorname{Bir}(M)$.
(4) φ extends to H_{n} if and only if it extends to Cr_{n}; moreover, in this case the extension to H_{n} is unique.

Theorem 1.13 classifies all group homomorphisms $\Psi: \mathrm{H}_{n} \rightarrow \operatorname{Bir}(M)$ for projective varieties M of dimension $n+1$ such that the restriction to $\mathrm{PGL}_{n+1}(\mathbb{C})$ is an algebraic morphism. By the theorem of Noether and Castelnuovo, we obtain in particular a full classification of all algebraic homomorphisms from Cr_{2} to $\operatorname{Bir}(M)$ for projective varieties M of dimension 3:

Corollary 1.14. - Let M be a projective variety of dimension 3 and $\Psi: \mathrm{Cr}_{2} \rightarrow \operatorname{Bir}(M)$ a non-trivial algebraic group homomorphism. Then Ψ is conjugate to exactly one of the homomorphisms described in Example 1.9 to 1.11.

The following observations are now immediate:
Corollary 1.15. - Let M be a projective variety of dimension 3 and $\Psi: \mathrm{Cr}_{2} \rightarrow \operatorname{Bir}(M)$ a non-trivial algebraic homomorphism. Then
(1) Ψ is injective.
(2) There exists a Cr_{2}-equivariant rational map $f: M \rightarrow \mathbb{P}^{2}$ with respect to the rational action induced by Ψ and the standard action respectively. In particular, all algebraic homomorphisms from Cr_{2} to $\operatorname{Bir}(M)$ are reducible.
(3) There exists an integer $C_{\Psi} \in \mathbb{Z}$ such that

$$
1 / C_{\Psi} \operatorname{deg}(f) \leqslant \operatorname{deg}(\Psi(f)) \leqslant C_{\Psi} \operatorname{deg}(f)
$$

Note that Part (3) of Corollary 1.15 resembles in some way Theorem 1.8 and leads to the following question:

Question 1.16. - Let $\Phi: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{n}$ be an algebraic embedding. Does there always exist a constant C depending only on Φ such that $1 / C \operatorname{deg}(f) \leqslant \operatorname{deg}(\Phi(f)) \leqslant C \operatorname{deg}(f)$ for all $f \in \operatorname{Cr}_{2}$?

Acknowledgements. I would like to express my warmest thanks to my PhD advisors Jérémy Blanc and Serge Cantat for their constant support, all the interesting discussions and for the helpful remarks on previous versions of this article. I also thank Stéphane Lamy, Federico Lo Bianco and Susanna Zimmermann for interesting discussions as well as Marat Gizatullin for inspiring remarks on this article. A special thank goes also to the anonymous referee for many good suggestions and remarks that helped to improve the exposition of this article.

2. Algebraic homomorphisms

In this section we recall some results on the algebraic structure of $\operatorname{Bir}(M)$ and of some of its subgroups and we discuss our notion of algebraic homomorphisms.

2.1. The Zariski topology

We can equip $\operatorname{Bir}(M)$ with the so-called Zariski topology. Let A be an algebraic variety and

$$
f: A \times M \longrightarrow A \times M
$$

an A-birational map (i.e. a map of the form $(a, x) \longmapsto-(a, f(a, x))$ that induces an isomorphism between open subsets U and V of $A \times M$ such that the projections from U and from V to A are both surjective). For each $a \in A$ we obtain therefore an element of $\operatorname{Bir}(M)$ defined by $x \mapsto p_{2}(f(a, x))$, where p_{2} is the second projection. Such a map $A \rightarrow \operatorname{Bir}(M)$ is called a morphism or family of birational transformations parametrized by A.

Definition 2.1. - The Zariski topology on $\operatorname{Bir}(M)$ is the finest topology such that all morphisms $f: A \rightarrow \operatorname{Bir}(M)$ for all algebraic varieties A are continuous (with respect to the Zariski topology on A).

The map $\iota: \operatorname{Bir}(M) \rightarrow \operatorname{Bir}(M), x \mapsto x^{-1}$ is continuous as well as the maps $x \mapsto g \circ x$ and $x \mapsto x \circ g$ for any $g \in \operatorname{Bir}(M)$. This follows from the fact that the inverse of an A-birational map as above is again an A birational map as is the right/left-composition with an element of $\operatorname{Bir}(M)$. The Zariski topology was introduced in [20] and [40] and studied in [10].

2.2. Algebraic subgroups

An algebraic subgroup of $\operatorname{Bir}(M)$ is the image of an algebraic group G by a morphism $G \rightarrow \operatorname{Bir}(M)$ that is also an injective group homomorphism. It can be shown that algebraic groups are closed in the Zariski topology and of bounded degree in the case of $\operatorname{Bir}(M)=\mathrm{Cr}_{n}$. Conversely, closed subgroups of bounded degree in Cr_{n} are always algebraic subgroups with a unique algebraic group structure that is compatible with the Zariski topology (see [10]).

Let N be a smooth projective variety that is birationally equivalent to M. Let G be an algebraic group acting regularly and faithfully on N. This yields a morphism $G \rightarrow \operatorname{Bir}(M)$, so G is an algebraic subgroup of $\operatorname{Bir}(M)$. On the other hand, a theorem by Weil states that all algebraic subgroups of $\operatorname{Bir}(M)$ have this form.

Theorem 2.2 ([42, 47, 49]). - Let $G \subset \operatorname{Bir}(M)$ be an algebraic subgroup, where M is a smooth projective variety over \mathbb{C}. Then there exists a smooth projective variety N and a birational map $f: M \rightarrow N$ that conjugates G to a subgroup of $\operatorname{Aut}(N)$ such that the induced action on N is algebraic.

It can be shown (see for example, [10]) that the sets $\left(\mathrm{Cr}_{n}\right)_{\leqslant d} \subset \mathrm{Cr}_{n}$ consisting of all birational transformations of degree $\leqslant d$ are closed with respect to the Zariski topology. So the closure of a subgroup of bounded degree in Cr_{n} is an algebraic subgroup and can therefore be regularized in the sense of the above theorem. We obtain:

Corollary 2.3. - Let $G \subset \mathrm{Cr}_{n}$ be a subgroup that is contained in some $\left(\mathrm{Cr}_{n}\right)_{\leqslant d}$, then there exists a smooth projective variety N and a birational transformation $f: \mathbb{P}^{n} \rightarrow N$ such that $f G f^{-1} \subset \operatorname{Aut}(N)$.

The maximal algebraic subgroups of Cr_{2} have been classified together with the rational surfaces on which they act as automorphisms ([7, 27]). In dimension 3, a classification for maximal connected algebraic subgroups exists: [43, 44, 45].

2.3. Algebraic homomorphisms

We defined a group homomorphism from Cr_{n} to $\operatorname{Bir}(M)$ to be algebraic if its restriction to $\mathrm{PGL}_{n+1}(\mathbb{C})$ is a morphism. Note that this is a priori a weaker notion than being continuous with respect to the Zariski topology.

It is not clear, whether algebraic homomorphisms are always continuous. However, for dimension 2 we have the following partial result, which will proved in Section 2.5:

Proposition 2.4. - Let $\Phi: \mathrm{Cr}_{2} \rightarrow \operatorname{Bir}(M)$ be a homomorphism of groups. The following are equivalent:
(1) Φ is algebraic.
(2) The restriction of Φ to any algebraic subgroup of Cr_{2} is algebraic.
(3) The restriction of Φ to one positive dimensional algebraic subgroup of Cr_{2} is algebraic.

2.4. One-parameter subgroups

A one-parameter subgroup is a connected linear algebraic group of dimension 1. It is well known (see for example [33]) that all one-parameter subgroups are isomorphic to either \mathbb{C} or \mathbb{C}^{*}. The group \mathbb{C} is unipotent, the group \mathbb{C}^{*} semi-simple.

Proposition 2.5 shows that, up to conjugation by birational maps, there exists only one birational action of \mathbb{C} and only one of \mathbb{C}^{*} on \mathbb{P}^{2} :

Proposition 2.5. - In Cr_{2} all one-parameter subgroups isomorphic to \mathbb{C} are conjugate and all one-parameter subgroups isomorphic to \mathbb{C}^{*} are conjugate.

The first part of Proposition 2.5 follows from results in [9] and [6] (see also [14]). The second part is a special case of Theorem 2.6. A detailed explanation of the proof can be found in [46].

Theorem 2.6 ([5, 37]). - In Cr_{n} all tori of dimension $\geqslant n-2$ are conjugate to a subtorus of D_{n}. Moreover, two subtori of D_{n} are conjugate in Cr_{n} to each other if and only if they are isomorphic.

Let G be a connected linear algebraic group and $\left\{U_{i}\right\}_{i \in I}$ the set of oneparameter subgroups of G. Then the subgroup $H \subset G$ generated by all the U_{i} is closed and connected and there exist one-parameter subgroups $U_{1}, U_{2}, \ldots, U_{n}$ such that $U_{1} \cdot U_{2} \ldots U_{n}=H$ ([33, Proposition 7.5]). On the other hand, if \mathfrak{g} is the Lie algebra of G, then the exponential map $\exp : \mathfrak{g} \rightarrow G$ induces a diffeomorphism from an analytically open set of \mathfrak{g} to an analytically open neigborhood V of the identity in G. For all elements $A \in \mathfrak{g}$, the closure of the abelian subgroup $\{\exp (t A) \mid t \in \mathbb{C}\}$ in G is connected and therefore contained in H. We obtain that V is contained in
G and hence that H is open in the analytic topology. This yields $H=G$ and thus

$$
U_{1} \cdot U_{2} \ldots U_{n}=G
$$

The following Lemma is a classical result (see for example [41]):
Lemma 2.7. - Let G be a linear algebraic group and U_{1}, \ldots, U_{n} be algebraic subgroups such that $U_{1} \cdot U_{2} \ldots U_{n}=G$. Let H be a linear algebraic group and $\varphi: G \rightarrow H$ a homomorphism of abstract groups such that $\left.\varphi\right|_{U_{i}}$ is a homomorphism of algebraic groups for all i. Then φ is a homomorphism of algebraic groups.

2.5. Algebraic and abstract group homomorphisms

Let G and H be algebraic groups that are isomorphic as abstract groups. The question whether G and H are also isomorphic as algebraic groups has been treated in detail in [12] (see also [24] and [21]). We will use the following result:

Proposition 2.8. - Let G be an algebraic group that is isomorphic to $\mathrm{PGL}_{n}(\mathbb{C})$ as an abstract group. Then G is isomorphic to $\mathrm{PGL}_{n}(\mathbb{C})$ as an algebraic group. Moreover, for every abstract isomorphism

$$
\rho: \operatorname{PGL}_{n}(\mathbb{C}) \rightarrow G
$$

there exists an automorphism of fields $\tau: \mathbb{C} \rightarrow \mathbb{C}$ such that $\rho \circ \tau$ is an algebraic isomorphism.

Remark 2.9. - It is well known that the automorphisms of $\mathrm{PGL}_{n}(\mathbb{C})$ as an algebraic group are compositions of inner automorphisms and the automorphism

$$
\alpha: \mathrm{PGL}_{n}(\mathbb{C}) \rightarrow \mathrm{PGL}_{n}(\mathbb{C}), \quad g \mapsto{ }^{t} g^{-1}
$$

Proof of Proposition 2.4. - We first show how (1) implies (2). Let G be an algebraic subgroup of Cr_{2}. We can assume that G is connected. By the above remark, there exist one parameter subgroups $U_{1}, \ldots, U_{k} \subset G$ such that $U_{1} \ldots U_{k}=G$. Since, by Proposition 2.5 , the group U_{i} is conjugate to a one parameter subgroup of $\mathrm{PGL}_{3}(\mathbb{C})$ for all i, we obtain that the restriction of φ to any of the U_{i} is an algebraic homomorphism of groups and that $\varphi(G) \subset \mathrm{Cr}_{n}$ is of bounded degree. Then $\overline{\varphi(G)} \subset \mathrm{Cr}_{n}$ is an algebraic group. We can now apply Lemma 2.7 and conclude that the restriction of φ to G is a homomorphism of algebraic groups.

Statement (3) follows immediately from statement (2), so it only remains to prove that (3) implies (1). Let $\varphi: \mathrm{Cr}_{2} \rightarrow \operatorname{Bir}(M)$ be a homomorphism of abstract groups and let $G \subset \mathrm{Cr}_{2}$ be a positive dimensional algebraic subgroup such that the restriction of φ to G is a morphism. Since G is infinite, it contains a one parameter subgroup $U \subset G$.

Let $U_{1}, \ldots, U_{n} \subset \mathrm{PGL}_{3}(\mathbb{C})$ be unipotent one parameter subgroups such that $U_{1} \ldots U_{n}=\mathrm{PGL}_{3}(\mathbb{C})$. If U is unipotent, all the subgroups U_{i} are conjugate to U. Hence the restriction of φ to U_{i} is a morphism for all i. The image $\varphi\left(\mathrm{PGL}_{3}(\mathbb{C})\right) \subset \mathrm{Cr}_{n}$ is of bounded degree, so $\left.\overline{\varphi\left(\mathrm{PGL}_{3}(\mathbb{C})\right.}\right) \subset \mathrm{Cr}_{n}$ is an algebraic group and with Lemma 2.7 it follows that the restriction of φ to $\mathrm{PGL}_{3}(\mathbb{C})$ is a morphism.

Denote by $D_{1} \subset \mathrm{PGL}_{3}(\mathbb{C})$ the subgroup given by elements of the form [$\left.c x_{0}: x_{1}: x_{2}\right], c \in \mathbb{C}^{*}$ and by $T \subset \mathrm{PGL}_{3}(\mathbb{C})$ the subgroup of all elements of the form $\left[x_{0}: x_{1}+c x_{0}: x_{2}\right], c \in \mathbb{C}$; we have $D_{1} \simeq \mathbb{C}^{*}$ and $T \simeq \mathbb{C}$. If U is semi-simple, it is, again by Proposition 2.5, conjugate to D_{1}, hence the restriction of φ to D_{1} is a morphism as well. Note that

$$
T=\left\{\left[x_{0}: x_{1}+c x_{0}: x_{2}\right] \mid c \in \mathbb{C}\right\}=\left\{d g d^{-1} \mid d \in D_{1}\right\} \cup\{\mathrm{id}\}
$$

where $g=\left[x_{0}: x_{1}+x_{0}: x_{2}\right]$. We obtain that $\varphi(T)$ is of bounded degree and contained in the algebraic group $\overline{\varphi(T)} \subset \operatorname{Cr}_{n}$. As $\varphi(T)$ consists of two $\varphi\left(D_{1}\right)$-orbits, it is constructible and therefore closed. We obtain that the images of all unipotent subgroups of Cr_{2} under φ are algebraic subgroups. The map $\varphi\left(U_{1}\right) \times \cdots \times \varphi\left(U_{n}\right) \rightarrow \operatorname{Cr}_{n}$ is a morphism, so its image is a constructible set and therefore closed since it is a group. Hence $\varphi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)=\varphi\left(U_{1}\right) \ldots \varphi\left(U_{n}\right)$ is an algebraic subgroup. By Proposition 2.8 it is isomorphic as an algebraic group to $\mathrm{PGL}_{3}(\mathbb{C})$ and there exists an automorphism of fields $\tau: \mathbb{C} \rightarrow \mathbb{C}$ such that $\varphi \circ \tau: \mathrm{PGL}_{3}(\mathbb{C}) \rightarrow \mathrm{PGL}_{3}(\mathbb{C})$ is an isomorphism of algebraic groups. But since the restriction of φ to T is already an algebraic homomorphism, it follows that τ is the identity.

Remark 2.10. - Proposition 2.4 shows in particular that algebraic homomorphisms $\Phi: \mathrm{Cr}_{2} \rightarrow \operatorname{Bir}(M)$ send algebraic elements to algebraic elements. This result follows also directly from the fact that a birational transformation $f \in \mathrm{Cr}_{2}$ of degree d can be written as the product of at most $4 d$ linear maps and $4 d$ times the standard quadratic involution σ (see for example [2]); we therefore obtain that the sequence $\left\{\operatorname{deg}\left(\Phi(f)^{n}\right)\right\}$ is bounded if $\left\{\operatorname{deg}\left(f^{n}\right)\right\}$ is bounded.

3. An example by Gizatullin

3.1. Projective representations of the projective linear group

The results from representation theory of linear algebraic groups that we use in this section can be found, for example, in [28, 38].

Proposition 3.1. - There is a bijection between homomorphisms of algebraic groups from $\mathrm{SL}_{n}(\mathbb{C})$ to $\mathrm{SL}_{m}(\mathbb{C})$ such that the image of the center is contained in the center and homomorphisms of algebraic groups from $\mathrm{PGL}_{n}(\mathbb{C})$ to $\mathrm{PGL}_{m}(\mathbb{C})$.

From Proposition 3.1 and some elementary representation theory of $\mathrm{SL}_{3}(\mathbb{C})$ it follows that $n=6$ is the smallest number such that there exist non-trivial and non-standard homomorphisms of algebraic groups from $\mathrm{PGL}_{3}(\mathbb{C})$ to $\mathrm{PGL}_{n}(\mathbb{C})$. In fact, up to automorphisms of $\mathrm{PGL}_{3}(\mathbb{C})$ there are exactly two non-trivial representations from $\mathrm{PGL}_{3}(\mathbb{C})$ to $\mathrm{PGL}_{6}(\mathbb{C})$.

The first one is reducible. Let $\psi^{\prime}: \mathrm{GL}_{3} \rightarrow \mathrm{GL}_{6}$ be the linear representation given by the diagonal action on $\mathbb{C}^{3} \times \mathbb{C}^{3}$; we denote by $\psi: \mathrm{PGL}_{3}(\mathbb{C}) \rightarrow$ $\mathrm{PGL}_{6}(\mathbb{C})$ its projectivisation.

The second one is given by the action of $\mathrm{PGL}_{3}(\mathbb{C})$ on the space of conics. The latter one can be parametrized by the space $\mathbb{P} M_{3}$ of symmetric 3×3 matrices up to scalar multiple and is isomorphic to \mathbb{P}^{5}. Let $g \in \mathrm{PGL}_{3}(\mathbb{C})$, we define $\varphi(g) \in \mathrm{PGL}_{6}(\mathbb{C})$ by $\left(a_{i j}\right) \mapsto g\left(a_{i j}\right)\left({ }^{t} g\right)$.

In this section we identify the space of conics with \mathbb{P}^{5} in the following way:

$$
\left(a_{i j}\right) \mapsto\left[a_{00}: a_{11}: a_{22}: a_{12}: a_{02}: a_{01}\right]
$$

In other words, the conic C given by the zeroes of the equation

$$
F=a_{00} X^{2}+a_{11} Y^{2}+a_{22} Z^{2}+2 a_{12} Y Z+2 a_{02} X Z+2 a_{01} X Y
$$

is identified with the point $\left[a_{00}: a_{11}: a_{22}: a_{12}: a_{02}: a_{01}\right] \in \mathbb{P}^{5}$.
Observe that with our definition, $\varphi(g)$ sends the conic C to the conic given by the zero set of the polynomial $F \circ\left({ }^{t} g\right)$.

Let

$$
\alpha: \mathrm{PGL}_{3}(\mathbb{C}) \rightarrow \mathrm{PGL}_{3}(\mathbb{C})
$$

be the algebraic automorphism $g \mapsto\left({ }^{t} g\right)^{-1}$. Then $\varphi(\alpha(g))$ maps the conic C to $g(C)$, which is the conic given by the zero set of the polynomial $F \circ g^{-1}$. Accordingly, $\varphi(\alpha(g)) \in \mathrm{PGL}_{6}(\mathbb{C})$ maps the matrix $\left(a_{i j}\right) \in M_{3}$ to $\left.{ }^{t} g\right)^{-1}\left(a_{i j}\right) g^{-1}$.

The action of $\mathrm{PGL}_{3}(\mathbb{C})$ on \mathbb{P}^{5} induced by φ has exactly three orbits that are characterized by the rank of the corresponding symmetric matrix in M_{3}.

Geometrically they correspond to the sets of smooth conics, pairs of distinct lines and double lines. The set of double lines is a surface isomorphic to \mathbb{P}^{2} and called the Veronese surface; we denote it by V. The set of singular conics S is the secant variety of V and has dimension 4.

To describe the $\mathrm{PGL}_{3}(\mathbb{C})$-orbits with respect to the action induced by ψ, consider a point $p=\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right] \in \mathbb{P}^{5}$. Then p can either be mapped by an element of $\psi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ to a point of the form $[a: 0: 0: b: 0: 0]$, where $[a: b] \in \mathbb{P}^{1}$, or to the point $[1: 0: 0: 0: 0: 1]$ and these points are all in different $\psi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$-orbits. The stabilizer of [1:0:0:0:0:1] in $\psi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ is the subgroup of matrices of the form

$$
\left[\begin{array}{ll}
g & 0 \\
0 & g
\end{array}\right] \text {, where } g \in \mathrm{PGL}_{3}(\mathbb{C}) \text { has the form }\left[\begin{array}{lll}
1 & a & 0 \\
0 & b & 0 \\
0 & c & 1
\end{array}\right]
$$

Therefore, the orbit of $[1: 0: 0: 0: 0: 1]$ under $\psi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ has dimension 5 . The orbit of a point of the form $[a: 0: 0: b: 0: 0]$, on the other hand, has dimension 2 . So we have a family parametrized by \mathbb{P}^{1} of orbits of dimension 2 and one orbit of dimension 5 . In particular, there is no $\psi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$-invariant subset of dimension 4 .

The following observation is easy but useful. We leave its proof to the reader.

Lemma 3.2. - Let X and Y be two projective varieties with biregular actions of a group G and let $f: X \rightarrow Y$ be a G-equivariant rational map. Then the indeterminacy locus $I_{f} \subset X$ and the exceptional locus $\operatorname{Exc}(f) \subset X$ are G-invariant sets.

Note that Lemma 3.2 implies in particular that all equivariant rational maps with respect to actions without orbits of codimension $\geqslant 2$ are morphisms.

Lemma 3.3. - Let M and M^{\prime} be irreducible complex projective varieties such that $M \times \mathbb{P}^{n}$ et $M^{\prime} \times \mathbb{P}^{n}$ are birationally equivalent. Then the standard embeddings

$$
\Psi: \mathrm{PGL}_{n+1}(\mathbb{C}) \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n} \times M\right) \text { and } \Psi^{\prime}: \mathrm{PGL}_{n+1}(\mathbb{C}) \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n} \times M^{\prime}\right)
$$

are conjugate if and only if M and M^{\prime} are birationally equivalent.
Proof. - If M and M^{\prime} are birationally equivalent it follows directly that Ψ and Ψ^{\prime} are conjugate. On the other hand, assume that there exists a birational map $A: \mathbb{P}^{n} \times M \rightarrow \mathbb{P}^{n} \times M^{\prime}$ that conjugates Ψ to Ψ^{\prime}, i.e. $A \circ \Psi(g)=\Psi^{\prime}(g) \circ A$ for all $g \in \mathrm{PGL}_{n+1}(\mathbb{C})$. The images $\Psi\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)$ and
$\Psi^{\prime}\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)$ permute the fibers $\{p\} \times M, p \in \mathbb{P}^{n}$ and $\{p\} \times M^{\prime}, p \in \mathbb{P}^{n}$ respectively. By Lemma 3.2, no fiber is fully contained in the exceptional locus of A.

The fiber

$$
F:=[1: 1: \cdots: 1] \times M \subset \mathbb{P}^{n} \times M
$$

consists of all fixed points of the image of the subgroup of coordinate permutations $\Psi\left(\mathcal{S}_{n+1}\right)$ and it is isomorphic to M. Correspondingly, the fiber

$$
F^{\prime}:=[1: 1: \cdots: 1] \times M^{\prime} \subset \mathbb{P}^{n} \times M^{\prime}
$$

consists of all fixed points of $\Psi^{\prime}\left(\mathcal{S}_{n+1}\right)$ and is isomorphic to M^{\prime}. Hence the strict transform of F under A is F^{\prime} and we obtain that M and M^{\prime} are birationally equivalent.

Proposition 3.4. - Let $\varphi, \psi: \mathrm{PGL}_{3}(\mathbb{C}) \rightarrow \mathrm{PGL}_{6}(\mathbb{C})$ be the homomorphisms defined in Section 3.1. The two subgroups $\varphi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ and $\psi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ are not conjugate in Cr_{5}.

Proof. - Assume that there is an element $f \in \mathrm{Cr}_{5}$ that conjugates $\varphi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ to $\psi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$. Note that \mathbb{P}^{5} has no $\psi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$-invariant subset of dimension 4. Hence, by Lemma 3.2, f must be a birational morphism and therefore an automorphism. But this isn't possible since the action of $\varphi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ has an orbit of dimension 4 and the action of $\psi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ does not.

3.2. A rational action on the space of plane conics

Our goal is to extend the group homomorphism $\varphi: \mathrm{PGL}_{3}(\mathbb{C}) \rightarrow \mathrm{PGL}_{6}(\mathbb{C})$ to a group homomorphism

$$
\Phi: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{5}
$$

A first naive idea is to check whether the map $\Psi:\left\{\mathrm{PGL}_{3}(\mathbb{C}), \sigma\right\} \rightarrow \mathrm{Cr}_{5}$ defined by $\Psi(g)=\varphi(g)$ for $g \in \mathrm{PGL}_{3}(\mathbb{C})$ and $\Psi(\sigma)=\left[x_{0}^{-1}: x_{2}^{-1}: \cdots: x_{5}^{-1}\right]$ extends to a group homomorphism $\mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{5}$. However, $\Psi(\sigma)$ and $\Psi(h)$ do not satisfy relation (3) of Lemma A.4. Let $h=[Z-X: Z-Y: Z] \in \mathrm{Cr}_{2}$, then

$$
\left(\left[x_{0}^{-1}: x_{1}^{-1}: \cdots: x_{5}^{-1}\right] \circ \varphi(h)\right)^{3} \neq \mathrm{id} .
$$

In [29], Gizatullin constructs an extension $\Phi: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{5}$ of φ, defined by $\left.\Phi\right|_{\mathrm{PGL}_{3}(\mathbb{C})}=\varphi$ and

$$
\Phi(\sigma)=\left[x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}: x_{3} x_{0}: x_{4} x_{1}: x_{5} x_{2}\right] .
$$

He shows the following:

Proposition 3.5 ([29]). - The map $\Phi: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{5}$ is a group homomorphism.

3.3. The dual action

Consider the representation $\varphi^{\vee}: \mathrm{PGL}_{3}(\mathbb{C}) \rightarrow \mathrm{PGL}_{6}(\mathbb{C})$ that is defined by

$$
\varphi^{\vee}(g):={ }^{t} \varphi(g)^{-1}
$$

In other words, $\varphi^{\vee}=\varphi \circ \alpha$, where $\alpha: \mathrm{PGL}_{3}(\mathbb{C}) \rightarrow \mathrm{PGL}_{3}(\mathbb{C})$ is the algebraic automorphism $g \mapsto\left({ }^{t} g\right)^{-1}$. Let $A=\left(a_{i j}\right)$ be a 3×3 matrix. The cofactor matrix $C(A)$ of A is given by

$$
C_{i j}(A)=(-1)^{i+j} A_{i j}
$$

where $A_{i j}$ is the i, j-minor of A, i.e. the determinant of the 2×2-matrix obtained by removing the i-th row and j-th column of A. We denote by

$$
A d(A):={ }^{t} C(A)
$$

the adjugate matrix of A. This is a classical construction and it is well known that $A d(A B)=A d(B) A d(A)$ and that if A is invertible, then $A d(A)=\operatorname{det}(A) A^{-1}$. In particular, $A d: \mathbb{P} M_{3} \rightarrow \mathbb{P} M_{3}$ is a birational map. The conic corresponding to the symmetric matrix A is the dual of the conic corresponding to the symmetric matrix A. This is one of the birational maps that A. R. Williams described in 1938 in his paper "Birational transformations in 4 -space and 5 -space" ([48]).

Lemma 3.6. - We identify \mathbb{P}^{5} with the projectivized space of symmetric 3×3 matrices $\mathbb{P} M_{3}$. The birational transformation $A d \in \mathrm{Cr}_{5}$ is given by $\left[x_{1} x_{2}-x_{3}^{2}: x_{0} x_{2}-x_{4}^{2}: x_{0} x_{1}-x_{5}^{2}: x_{4} x_{5}-x_{0} x_{3}: x_{3} x_{5}-x_{1} x_{4}: x_{3} x_{4}-x_{2} x_{5}\right]$. Moreover, Ad conjugates φ to φ^{\vee}.

Proof. - It is a straightforward calculation that the rational map $A d$ from \mathbb{P}^{5} to itself that corresponds to $A d$ is given by

$$
\left[x_{1} x_{2}-x_{3}^{2}: x_{0} x_{2}-x_{4}^{2}: x_{0} x_{1}-x_{5}^{2}: x_{4} x_{5}-x_{0} x_{3}: x_{3} x_{5}-x_{1} x_{4}: x_{3} x_{4}-x_{2} x_{5}\right] .
$$

The actions of $\mathrm{PGL}_{3}(\mathbb{C})$ on $\mathbb{P} M_{3}$ induced by φ and φ^{\vee} are given by $\varphi(g)(X)=g X\left({ }^{t} g\right)$ and $\varphi^{\vee}(g) X={ }^{t}\left(g^{-1}\right) X g^{-1}$ respectively, for all $X \in$ $\mathbb{P} M_{3}$. We obtain

$$
\begin{aligned}
\operatorname{Ad}(\varphi(g)(X))=\operatorname{Ad}\left({ }^{t} g\right) \operatorname{Ad}(X) \operatorname{Ad}(g) & =\left({ }^{t} g\right)^{-1} \operatorname{Ad}(X) g^{-1} \\
& =\varphi^{\vee}(g) \operatorname{Ad}(X)
\end{aligned}
$$

Remark 3.7. - The blow-up Q of \mathbb{P}^{5} along the Veronese surface is the so called space of complete conics. Let $U \subset \mathbb{P}^{5}$ be the open orbit of the $\mathrm{PGL}_{3}(\mathbb{C})$-action on \mathbb{P}^{5} given by φ, i.e. $U=\mathbb{P}^{5} \backslash S$. Then U can be embedded into $\mathbb{P}\left(\mathbb{C}^{6}\right) \times \mathbb{P}\left(\left(\mathbb{C}^{6}\right)^{\vee}\right)$ by sending a conic $C \in U$ to the pair $\left(C, C^{\vee}\right)$, where C^{\vee} denotes the dual conic of C. It turns out that Q is isomorphic to the closure of U in $\mathbb{P}\left(\mathbb{C}^{6}\right) \times \mathbb{P}\left(\left(\mathbb{C}^{6}\right)^{\vee}\right)$. Moreover, the $\mathrm{PGL}_{3}(\mathbb{C})$-action on \mathbb{P}^{5} given by φ lifts to an algebraic action on Q and the birational map ad to an automorphism of Q. More details on this subject can be found for example in [13].

Lemma 3.6 shows that the representations φ and φ^{\vee} are conjugate to each other in Cr_{5} by the birational transformation $A d$. By conjugating $\Phi(\sigma)$ with $A d$ we can extend φ^{\vee} to the dual embedding $\Phi^{\vee}: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{5}$ and obtain

$$
\Phi^{\vee}(\sigma)=\left[p_{0}^{2} x_{0}: p_{1}^{2} x_{1}: p_{2}^{2} x_{2}: p_{1} p_{2} x_{3}: p_{0} p_{2} x_{4}: p_{0} p_{1} x_{5}\right]
$$

where $p_{0}=\left(x_{1} x_{2}-x_{3}^{2}\right), p_{1}=\left(x_{0} x_{2}-x_{4}^{2}\right)$ and $p_{2}=\left(x_{0} x_{1}-x_{5}^{2}\right)$.

3.4. Geometry of Φ

The embedding Φ induces a rational action of Cr_{2} on the space of conics on \mathbb{P}^{2}. The action of $\Phi(\sigma)$ can be seen geometrically as follows (compare with [29, Introduction]): Let $Q_{0}:=[1: 0: 0], Q_{1}:=[0: 1: 0]$ and $Q_{2}:=[0: 0: 1]$. Let $C \subset \mathbb{P}^{2}$ be a conic that doesn't pass through any of the points Q_{i}. Write

$$
C=\left\{a_{00} X^{2}+a_{11} Y^{2}+a_{22} Z^{2}+2 a_{12} Y Z+2 a_{02} X Z+2 a_{01} X Y=0\right\} \subset \mathbb{P}^{2}
$$

Denote by $P_{i j}, i \in\{1,2,3\}, j \in\{1,2\}$ the points of intersection of C with the lines l_{i}, where $l_{0}:=\{X=0\}, l_{1}:=\{Y=0\}$ and $l_{2}:=\{Z=0\}$. Denote by $f_{i j}$ the line passing through Q_{i} and $P_{i j}$. The images $\sigma\left(f_{i j}\right)$ are again lines passing through the point Q_{i}. Let $P_{i j}^{\prime}$ be the intersection of $\sigma\left(f_{i j}\right)$ with l_{i}. One checks that the conic D given by the zero set of the polynomial
$a_{11} a_{22} x_{0}^{2}+a_{00} a_{22} x_{1}^{2}+a_{00} a_{11} x_{2}^{2}+2 a_{00} a_{12} x_{1} x_{2}+2 a_{11} a_{02} x_{0} x_{2}+2 a_{22} a_{01} x_{0} x_{2}$ passes through the points $P_{i j}^{\prime}$. Since no 4 of the 6 points $P_{i j}^{\prime}$ lie on the same line, D is the unique conic through the points $P_{i j}^{\prime}$. We have thus proven the following:

Proposition 3.8. - For a general conic $C \subset \mathbb{P}^{2}$ there exists a unique conic D through the six points $P_{i j}^{\prime}$ and D is the image of C under $\Phi(\sigma)$.

Notice as well that the indeterminacy points of $\Phi(\sigma)$ in \mathbb{P}^{5} correspond to the subspace of dimension 2 of conics passing through the points Q_{1}, Q_{2}, Q_{3} and the subspaces of dimension 2 of conics consisting of one l_{i} and any other line. The three subspaces of dimension 4 of conics passing through one of the points Q_{i} are contracted by the action of $\Phi(\sigma)$ and form the exceptional divisor.

In homogeneous coordinates of \mathbb{P}^{5}, the four planes of the indeterminacy locus of $\Phi(\sigma)$ can be described as follows

$$
\begin{array}{lr}
E_{0}=\left\{x_{1}=x_{2}=x_{3}=0\right\}, & E_{1}=\left\{x_{0}=x_{2}=x_{4}=0\right\}, \\
E_{2}=\left\{x_{0}=x_{1}=x_{5}=0\right\}, & F=\left\{x_{1}=x_{2}=x_{3}=0\right\} .
\end{array}
$$

The exceptional divisor of $\Phi(\sigma)$ consists of the three hyperplanes

$$
H_{0}=\left\{x_{0}=0\right\}, \quad H_{1}=\left\{x_{1}=0\right\}, \quad H_{2}=\left\{x_{2}=0\right\},
$$

The hyperplanes H_{0}, H_{1} and H_{2} are contracted by $\Phi(\sigma)$ onto the planes E_{0}, E_{1} and E_{2} respectively. Note as well that E_{0}, E_{1} and E_{2} are contained in the secant variety $S \subset \mathbb{P}^{5}$ of the Veronese surface V and that they are tangent to V.

The geometrical description of the rational action of $\Phi^{\vee}(\sigma)$ on the space of conics is the dual of the construction described above. If C is a conic not passing through any of the points Q_{0}, Q_{1}, Q_{2}, we get $\Phi^{\vee}(\sigma)(C)$ in the following way: let $l_{i, 1}, l_{i, 2}$ be the tangents of C passing through the point Q_{i}. Then the images of the $l_{i, 1}$ and $l_{i, 2}$ under σ are lines again. There exists a unique conic having all the lines $\sigma\left(l_{i, 1}\right)$ and $\sigma\left(l_{i, 2}\right)$ for all i as tangents.

These geometrical constructions show that $\Phi\left(\mathrm{Cr}_{2}\right)$ preserves the space of conics consisting of double lines and therefore the Veronese surface V in \mathbb{P}^{5}. The injective morphism

$$
v: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5},[X: Y: Z] \mapsto\left[X^{2}: Y^{2}: Z^{2}: Y Z: X Z: X Y\right]
$$

is called the Veronese morphism. It is an isomorphism onto its image, which is V. It is well known that v is $\mathrm{PGL}_{3}(\mathbb{C})$-equivariant with respect to the standard action and the action induced by Φ respectively. The restriction of $\Phi(\sigma)$ to V is a birational transformation. We therefore obtain a rational action of Cr_{2} on $V \simeq \mathbb{P}^{2}$. Since the restriction of this rational action to $\mathrm{PGL}_{3}(\mathbb{C})$ is the standard action, we obtain by Corollary A. 3 that v is $\mathrm{Cr}_{2^{-}}$ equivariant.

We observe as well that $\Phi\left(\mathrm{Cr}_{2}\right)$ preserves the secant variety $S \subset \mathbb{P}^{5}$ of V. Note that S is the image of the rational map:

$$
s: \mathbb{P}^{2} \times \mathbb{P}^{2} \rightarrow S \subset \mathbb{P}^{5}
$$

that maps the point $[X: Y: Z],[U: V: W] \in \mathbb{P}^{2} \times \mathbb{P}^{2}$ to the point

$$
[X U: Y V: Z W: 1 / 2(Y W+U Z): 1 / 2(X W+Z U): 1 / 2(X V+Y U)] .
$$

Note that s is generically $2: 1$. Again, the geometrical construction above shows that s is Cr_{2}-equivariant with respect to the diagonal action on $\mathbb{P}^{2} \times \mathbb{P}^{2}$ and the action given by Φ on \mathbb{P}^{5} respectively.

We obtain the following sequence of Cr_{2}-equivariant rational maps:

$$
\mathbb{P}^{2} \xrightarrow{\Delta} \mathbb{P}^{2} \times \mathbb{P}^{2} \xrightarrow{s} \xrightarrow{s} \mathbb{P}^{5},
$$

where Δ is the diagonal embedding. This proves part (2) to (4) of Theorem 1.5.

Let $f \in \mathrm{Cr}_{n}$ be a birational transformation and let $l \subset \mathbb{P}^{n}$ be a general line and $H \subset \mathbb{P}^{5}$ a general hyperplane. Then, $f^{-1}(H)$ intersects l in $\operatorname{deg}(f)$ points, which is equivalent to $f(l)$ intersecting H in $\operatorname{deg}(f)$ points. More generally, if $C \subset \mathbb{P}^{n}$ is a general curve of degree d, then $f(C)$ intersects H in $d \cdot \operatorname{deg}(f)$ points. If C and H are not in general position, but C is not contained in the exceptional locus of f and $f(C)$ is not contained in H, we only have that $f(C)$ and H intersect in $\leqslant d \cdot \operatorname{deg}(f)$ points. With this and the observation that $\Phi\left(\mathrm{Cr}_{2}\right)$ preserves the Veronese surface and extends the canonical rational action of Cr_{2} we are able to prove part (1) of Theorem 1.8:

Proposition 3.9. - Let $f \in \mathrm{Cr}_{2}$. Then $\operatorname{deg}(f) \leqslant \operatorname{deg}(\Phi(f))$.
Proof. - Denote by $v: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ the Veronese embedding. Let $C \subset \mathbb{P}^{2}$ be a general conic. The image $v(C) \subset \mathbb{P}^{5}$ is a curve of degree 4 given by the intersection of a hyperplane $H \subset \mathbb{P}^{5}$ and the Veronese surface. Let $f \in \mathrm{Cr}_{2}$ be a birational transformation of degree d. The strict transform $f\left(C^{\prime}\right)$ of a general conic $C^{\prime} \subset \mathbb{P}^{2}$ intersects C in $4 d$ different points. By the above results (namely, (3) in Theorem 1.5) we know that $v\left(f\left(C^{\prime}\right)\right)=\Phi(f)\left(v\left(C^{\prime}\right)\right)$. The curve $v\left(C^{\prime}\right)$ is a curve of degree 4 and since $v\left(f\left(C^{\prime}\right)\right)=\Phi(f)\left(v\left(C^{\prime}\right)\right)$ intersects the hyperplane H in $4 d$ points we obtain by the above remark that $\operatorname{deg}(\Phi(f)) \geqslant d$.

3.5. Two induced homomorphisms from Cr_{2} into Cr_{4}

The birational map $A d \in \mathrm{Cr}_{5}$ contracts the secant variety $S \subset \mathbb{P}^{5}$ onto the Veronese surface $V \subset \mathbb{P}^{5}$. However, the exceptional locus of $\Psi^{\vee}(\sigma)=$ $A d \Phi(\sigma) A d$ consists of the three hyperplanes

$$
G_{0}=\left\{z_{1} z_{2}-z_{3}^{2}=0\right\}, \quad G_{1}=\left\{z_{0} z_{2}-z_{4}^{2}=0\right\}, \quad G_{2}=\left\{z_{0} z_{1}-z_{5}^{2}=0\right\}
$$

with respect to homogeneous coordinates $\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}: z_{5}\right]$ of \mathbb{P}^{5}.
This implies in particular that the restriction of $\Phi^{\vee}(\sigma)$ to S induces a birational map of S and therefore that any element in $\Phi^{\vee}\left(\mathrm{Cr}_{2}\right)$ restricts to a birational map of S.

Since S is a cubic hypersurface and contains the two disjoint planes

$$
E_{1}=\left\{z_{1}=z_{2}=z_{3}=0\right\}, \quad E_{2}=\left\{z_{0}=z_{4}=z_{5}=0\right\}
$$

it is rational. Explicitely, projection onto E_{1} and E_{2} yields the birational $\operatorname{map} A: S \longrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}: z_{5}\right] \mapsto\left[z_{1}: z_{2}: z_{3}\right],\left[z_{0}: z_{4}: z_{5}\right]
$$

The inverse transformation A^{-1} is given by

$$
\left[x_{0}: x_{1}: x_{2}\right],\left[y_{0}: y_{1}: y_{2}\right] \mapsto\left[p_{2} y_{0}, p_{1} x_{0}, p_{1} x_{1}, p_{1} x_{2}, p_{2} y_{1}, p_{2} y_{2}\right]
$$

where $p_{1}=\left(x_{0} y_{1}^{2}+x_{1} y_{2}^{2}-2 x_{2} y_{1} y_{2}\right)$ and $p_{2}=y_{0}\left(x_{0} x_{1}-x_{2}^{2}\right)$.
Let $f \in \mathrm{Cr}_{2}$. As seen above, both images $\Phi(f)$ and $\Phi^{\vee}(f)$ restrict to a birational map of S. So conjugation of Φ and Φ^{\vee} by A yields two embeddings from Cr_{2} into $\operatorname{Bir}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right) \simeq \mathrm{Cr}_{4}$, which we denote by Ψ_{1} and Ψ_{2} respectively.

Proof of Proposition 1.6. - Irreducibility is proved in Section 3.8.
By Theorem 2.6, all tori $D_{2} \subset \mathrm{Cr}_{4}$ are conjugate to the standard torus $D_{2} \subset \mathrm{Cr}_{4}$. We calculate the map that conjugates $\Psi_{1}\left(D_{2}\right)=\Psi_{2}\left(D_{2}\right)$ to the image of the standard embedding of D_{2} explicitely. Let $\rho: \mathbb{P}^{2} \times \mathbb{P}^{2} \rightarrow$ $\mathbb{P}^{2} \times \mathbb{P}^{2}$ be the birational transformation defined by

$$
\left(\left[x_{0}: x_{1}: x_{2}\right],\left[y_{0}: y_{1}: y_{2}\right]\right) \mapsto\left(\left[x_{2} y_{0}: x_{0} y_{1}: x_{2} y_{1}\right],\left[x_{0} y_{1}^{2}: x_{1} y_{2}^{2}: x_{2} y_{1} y_{2}\right]\right)
$$

The inverse map ρ^{-1} is given by

$$
\left(\left[x_{0}: x_{1}: x_{2}\right],\left[y_{0}: y_{1}: y_{2}\right]\right) \mapsto\left(\left[x_{1}^{2} y_{2}^{2}: x_{2}^{2} y_{0} y_{1}: x_{1} x_{2} y_{2}^{2}\right],\left[x_{0} y_{0}: x_{2} y_{0}: x_{1} y_{2}\right]\right)
$$

One calculates that $\rho A \Psi_{1}([a X: b Y: c Z]) A^{-1} \rho^{-1}$ maps the point $\left(\left[x_{0}:\right.\right.$ $\left.\left.x_{1}: x_{2}\right],\left[y_{0}: y_{1}: y_{2}\right]\right)$ to $\left(\left[a x_{0}: b x_{1}: c x_{2}\right],\left[y_{0}: y_{1}: y_{2}\right]\right)$. Correspondingly, $\rho A \Psi_{2}([a X: b Y: c Z]) A^{-1} \rho^{-1} \operatorname{maps}\left(\left[x_{0}: x_{1}: x_{2}\right],\left[y_{0}: y_{1}: y_{2}\right]\right)$ to $\left(\left[a^{-1} x_{0}:\right.\right.$ $\left.\left.b^{-1} x_{1}: c^{-1} x_{2}\right],\left[y_{0}: y_{1}: y_{2}\right]\right)$. So the second coordinates parametrize the closures of the D_{2}-orbits. Since W_{2} normalizes D_{2}, its image preserves the D_{2}-orbits. We thus obtain two homomorphisms

$$
\chi_{1}: \mathrm{W}_{2} \rightarrow \mathrm{Cr}_{2}, \quad \chi_{2}: \mathrm{W}_{2} \rightarrow \mathrm{Cr}_{2}
$$

by just considering the rational action of W_{2} on the second coordinate.
Assume that there exists an element $A \in \operatorname{Bir}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$ that conjugates Ψ to Ψ^{\vee}. As A normalizes $\Psi_{1}\left(D_{2}\right)=\Psi_{2}\left(D_{2}\right)$, it preserves the $\Psi_{1}\left(D_{2}\right)$-orbits
as well. Hence by restriction on the second coordinate, it conjugates χ_{1} to χ_{2}. It therefore suffices to show that χ_{1} and χ_{2} are not conjugate.

In Cr_{2} we have

$$
f:=\left[X Y: Y Z: Z^{2}\right]=\tau_{1} g_{0} \sigma g_{0} \sigma g_{0} \tau_{2},
$$

where $\tau_{1}=[Z: Y: X], \tau_{2}=[Y: Z: X]$ and $g_{0}=[Y-X: Y: Z]$. By calculating the corresponding images under Φ we obtain
$\Phi(f)=\Phi\left(\tau_{1} g_{0} \sigma g_{0} \sigma g_{0} \tau_{2}\right)=\left[x_{0} x_{1}: x_{1} x_{2}: x_{2}^{2}: x_{2} x_{3}:-x_{2} x_{5}+2 x_{3} x_{4}: x_{1} x_{4}\right]$ and $\Phi^{\vee}(f)=\left[g_{0}: g_{1}: g_{2}: g_{3}: g_{4}: g_{5}\right]$, where

$$
\begin{aligned}
g_{0}= & \left(x_{0} x_{1}-x_{5}^{2}\right)^{2} x_{0}, \\
g_{1}= & x_{0}^{2} x_{1}^{2} x_{2}-2 x_{0} x_{1} x_{2} x_{5}^{2}-4 x_{0} x_{1} x_{3} x_{4} x_{5}+4 x_{0} x_{3}^{2} x_{5}^{2} \\
& \quad+4 x_{1} x_{4}^{2} x_{5}^{2}+x_{2} x_{5}^{4}-4 x_{3} x_{4} x_{5}^{3}, \\
g_{2}= & \left(x_{0} x_{2}-x_{4}^{2}\right)^{2} x_{1}, \\
g_{3}= & \left(x_{0} x_{2}-x_{4}^{2}\right)\left(x_{0} x_{1} x_{3}-2 x_{1} x_{4} x_{5}+x_{3} x_{5}^{2}\right), \\
g_{4}= & -\left(x_{0} x_{2}-x_{4}^{2}\right)\left(x_{0} x_{1}-x_{5}^{2}\right) x_{5}, \\
g_{5}= & \left(x_{0} x_{1}-x_{5}^{2}\right)\left(x_{0} x_{1} x_{4}-2 x_{0} x_{3} x_{5}+x_{4} x_{5}^{2}\right) .
\end{aligned}
$$

This yields

$$
\chi_{1}(f)=\left[\left(y_{1}-2 y_{2}\right)^{2}: y_{0} y_{1}:-y_{2}\left(y_{1}-2 y_{2}\right)\right]
$$

and

$$
\begin{aligned}
& \chi_{2}(f)=\left[y_{0}^{2} y_{1}+4 y_{0} y_{1}^{2}-6 y_{0} y_{1} y_{2}-3 y_{1} y_{2}^{2}+4 y_{2}^{3}: y_{0}\left(y_{0}+2 y_{1}-3 y_{2}\right)^{2}:\right. \\
&\left.\left(2 y_{0} y_{1}-y_{0} y_{2}-y_{2}^{2}\right)\left(y_{0}+2 y_{1}-3 y_{2}\right)\right]
\end{aligned}
$$

We show that these two transformations are not conjugate in Cr_{2}. With respect to affine coordinates $\left[y_{0}: y_{1}: 1\right]$ one calculates

$$
\chi_{1}(f)^{2}=\left(\frac{y_{0} y_{1}-2 y_{1}+4}{y_{1}-2}, y_{1}\right) .
$$

From this we see that the integer sequence $\operatorname{deg}\left(\chi_{1}(f)^{n}\right)$ grows linearly in n and is, in particular, not bounded.

Let $A=\left[y_{0}-y_{2}: y_{1}-y_{2}: y_{2}\right]$. Then $A \chi_{2}(f)^{2} A^{-1}$ is given by

$$
\left[-y_{0}^{2} y_{1}^{2}\left(2 y_{1}+y_{0}\right): y_{0}^{2} y_{1}^{2}\left(3 y_{1}+2 y_{0}\right): p\left(y_{0}, y_{1}, y_{2}\right)\left(3 y_{1}+2 y_{0}\right)\left(2 y_{1}+y_{0}\right)\right]
$$

where $p\left(y_{0}, y_{1}, y_{2}\right)=\left(6 y_{1}^{2} y_{2}+7 y_{2} y_{0} y_{1}+6 y_{0} y_{1}^{2}+2 y_{0}^{2} y_{2}+2 y_{0}^{2} y_{1}\right)$. We claim that

$$
\begin{aligned}
f_{A}^{n} & =A \chi_{2}(f)^{2 n} A^{-1} \\
& =\left[-y_{0}^{2} y_{1}^{2}\left(2 n y_{1}+(2 n-1) y_{0}\right): y_{0}^{2} y_{1}^{2}\left((2 n+1) y_{1}+2 n y_{0}\right): f_{n}\right]
\end{aligned}
$$

where $f_{n}=\left(2 n y_{1}+(2 n-1) y_{0}\right)\left((2 n+1) y_{1}+2 n y_{0}\right) p_{n}\left(y_{0}, y_{1}, y_{2}\right)$ for some homogeneous $p_{n} \in \mathbb{C}\left[y_{0}, y_{1}, y_{2}\right]$ of degree 3 . Note that this claim implies in particular that $\operatorname{deg}\left(\chi_{2}(f)^{n}\right)$ is bounded for all n and hence that $\chi_{1}(f)$ and $\chi_{2}(f)$ are not conjugate.

To prove the claim we proceed by induction. Assume that f_{A}^{n} has the desired form. One calculates that the first coordinate of $f_{A}^{n+1}=A \chi_{2}(f)^{2} A^{-1} \circ$ f_{A}^{n} is

$$
-r y_{0}^{2} y_{1}^{2}\left((2 n+2) y_{1}+(2 n+1) y_{0}\right)
$$

the second coordinate is

$$
r y_{0}^{2} y_{1}^{2}\left((2 n+3) y_{1}+(2 n+1) y_{0}\right)
$$

and the third coordinate

$$
r\left((2 n+2) y_{1}+(2 n+1) y_{0}\right)\left((2 n+3) y_{1}+(2 n+1) y_{0}\right) p_{n+1}\left(x_{0}, x_{1}, x_{2}\right)
$$

where $r=y_{0}^{4} y_{1}^{4}\left(2 n y_{0}+(2 n-1) y_{1}\right)^{2}\left((2 n+1) y_{0}+2 n y_{1}\right)^{2}$ and $p_{n} \in \mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]$ is homogeneous of degree 3 . This proves the claim.

3.6. A volume form

Let M be a complex projective variety. It is sometimes interesting to study subgroups of $\operatorname{Bir}(M)$ that preserve a given form. In [8] and [25] the authors study for example birational maps of surfaces that preserve a meromorphic symplectic form (see [19] for the 3-dimensional case). In [30] and [18] Cremona transformations in dimension 3 preserving a contact form are studied.

Define

$$
F:=\operatorname{det}\left(\begin{array}{lll}
x_{0} & x_{5} & x_{4} \\
x_{5} & x_{1} & x_{3} \\
x_{4} & x_{3} & x_{2}
\end{array}\right)
$$

and let

$$
\Omega:=\frac{x_{5}^{6}}{F^{2}} \cdot d x_{0} \wedge d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4}
$$

Then Ω is a 5 -form on \mathbb{P}^{5} with a double pole along the secant variety of the Veronese surface. Note that the total volume of \mathbb{P}^{5} is infinite.

Proposition 3.10. - All elements in $\Phi\left(\mathrm{Cr}_{2}\right)$ preserve Ω.
Proof. - We show that $\Phi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ and $\Phi(\sigma)$ preserve Ω.
Let $g=[-X:-Y: Z] \in \Phi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$. One checks that $\Phi(g)$ preserves Ω. Since $\Phi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ preserves F, we have that $\Phi\left(f g f^{-1}\right)$ preserves Ω as well. As $\Phi\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ is simple, the whole group preserves Ω.

With respect to affine coordinates given by $x_{5}=1$, we have

$$
\Phi(\sigma)=\left(x_{1}, x_{0}, x_{0} x_{1} x_{2}^{-1}, x_{0} x_{3} x_{2}^{-1}, x_{1} x_{4} x_{2}^{-1}\right)
$$

A direct calculation yields $\Omega \circ \Phi(\sigma)=\Omega$.

3.7. Polynomial automorphisms

In this section we will prove Claim (6) of Theorem 1.5 as well as Theorem 1.8. Let $\operatorname{Aut}\left(\mathbb{A}^{2}\right) \subset \mathrm{Cr}_{2}$ be the subgroup of automorphisms of the affine plane with respect to the affine coordinates $[1: X: Y]$. By the theorem of Jung and van der Kulk (see for example [34]), $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$ has the following amalgamated product structure

$$
\operatorname{Aut}\left(\mathbb{A}^{2}\right)=\operatorname{Aff}_{2} *_{\cap} \mathcal{J}_{2}
$$

where \mathcal{J}_{2} denotes the subgroup of elementary automorphisms, which is the subgroup of all elements of the form

$$
\left\{\left(c_{1} X+b, c_{2} Y+p(X)\right) \mid c_{1}, c_{2}, b \in \mathbb{C}, p(X) \in \mathbb{C}[X]\right\}
$$

Let $f \in \operatorname{Aut}\left(\mathbb{A}^{2}\right)$ and assume that $f=a_{1} j_{1} a_{2} j_{2} \ldots j_{n-1} a_{n}$, where $a_{1}, a_{n} \in$ $\mathrm{Aff}_{2}, a_{i} \in \mathrm{Aff}_{2} \backslash \mathcal{J}_{2}$ for $2 \leqslant i \leqslant n-1$ and $j_{i} \in \mathcal{J}_{2} \backslash \mathrm{Aff}_{2}$. It is well known that $\operatorname{deg}(f)=\operatorname{deg}\left(j_{1}\right) \operatorname{deg}\left(j_{2}\right) \ldots \operatorname{deg}\left(j_{n-1}\right)$.

Let $\operatorname{Aut}\left(\mathbb{A}^{5}\right) \subset \operatorname{Cr}_{5}$ be given by the affine coordinates $\left[1: x_{1}: \cdots: x_{5}\right]$. Lemma 3.11 follows from a direct calculation.

Lemma 3.11. - The image $\Phi\left(\mathrm{Aff}_{2}\right)$ is contained in Aff_{5}.
We consider the following elements in \mathcal{J}_{2} :

$$
f_{n}^{\lambda}:=\left(X, Y+\lambda X^{n}\right),
$$

where $n \in \mathbb{Z}_{\geqslant 0}$ and $\lambda \in \mathbb{C}$.
Lemma 3.12. - For all $n \in \mathbb{Z}_{\geqslant 0}$ we have
$\Phi\left(f_{n}^{\lambda}\right)=\left(x_{1}, x_{2}+\lambda^{2} x_{1}^{n}+\lambda x_{3} A_{n}-\lambda x_{4} x_{1} A_{n-1}, x_{3}+\lambda x_{1} B_{n-1}, x_{4}+\lambda B_{n}, x_{5}\right)$, where

$$
A_{n}=2 \sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k+1} x_{5}^{n-2 k-1}\left(x_{5}^{2}-x_{1}\right)^{k}
$$

and

$$
B_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} x_{5}^{n-2 k}\left(x_{5}^{2}-x_{1}\right)^{k} .
$$

Moreover, the following recursive identities hold:

$$
\begin{aligned}
& A_{n}=2 x_{5} A_{n-1}-x_{1} A_{n-2}, \\
& B_{n}=2 x_{5} B_{n-1}-x_{1} B_{n-2} .
\end{aligned}
$$

Proof. - For $n=0$ and $n=1$ the claim follows from a direct calculation.
Let $s:=(X, X Y) \in \mathrm{Cr}_{2}$. Then we have $f_{n+1}^{\lambda}=s f_{n}^{\lambda} s^{-1}$. $\mathrm{In}_{\mathrm{Cr}}^{2}$ the identity $s=\tau_{1} g_{0} \sigma g_{0} \sigma g_{0} \tau_{2}$ holds, where $\tau_{1}=\left(X Y^{-1}, Y^{-1}\right), \tau_{2}=\left(Y^{-1}, X Y^{-1}\right)$ and $g_{0}=\left(X, X_{Y}\right)$. Note that τ_{1} and τ_{2} are elements of $\mathrm{PGL}_{3}(\mathbb{C})$. If we calculate the corresponding images under Φ we obtain

$$
\Phi(s)=\Phi\left(\tau_{1} g_{0} \sigma g_{0} \sigma g_{0} \tau_{2}\right)=\left(x_{1}, x_{1} x_{2}, x_{1} x_{4}, 2 x_{4} x_{5}-x_{3}, x_{5}\right)
$$

and

$$
\Phi\left(s^{-1}\right)=\left(x_{1}, x_{2} x_{1}^{-1}, 2 x_{3} x_{5} x_{1}^{-1}-x_{4}, x_{3} x_{1}^{-1}, x_{5}\right)
$$

One calculates

$$
\begin{aligned}
s f_{n}^{\lambda} s^{-1}=\left(x_{1}, x_{2}+\lambda^{2} x_{1}^{n+1}+\lambda\right. & x_{3}\left(2 x_{5}-x_{1}\right) A_{n-1}-\lambda x_{4} x_{1} A_{n} \\
& x_{3}+\lambda x_{1} B_{n}, x_{4}-\lambda\left(2 x_{5} B_{n}-x_{1} B_{n-1}\right) .
\end{aligned}
$$

This shows by induction that
$\Phi\left(f_{n}^{\lambda}\right)=\left(x_{1}, x_{2}+\lambda^{2} x_{1}^{n}+\lambda x_{3} A_{n}-\lambda x_{4} x_{1} A_{n-1}, x_{3}+\lambda x_{1} B_{n-1}, x_{4}+\lambda B_{n}, x_{5}\right)$, where

$$
\begin{array}{lll}
A_{n}=2 x_{5} A_{n-1}-x_{1} A_{n-2}, & A_{0}=0, & A_{1}=2 \\
B_{n}=2 x_{5} B_{n-1}-x_{1} B_{n-2}, & B_{0}=1, & B_{1}=x_{5}
\end{array}
$$

These recursive formulas have the following closed form:

$$
\begin{aligned}
& A_{n}=\frac{\left(x_{5}+\sqrt{x_{5}^{2}-x_{1}}\right)^{n}-\left(x_{5}-\sqrt{x_{5}^{2}-x_{1}}\right)^{n}}{\sqrt{x_{5}^{2}-x_{1}}} \\
& B_{n}=\frac{1}{2}\left(x_{5}-\sqrt{x_{5}^{2}-x_{1}}\right)^{n}+1 / 2\left(x_{5}+\sqrt{x_{5}^{2}-x_{1}}\right)^{n} .
\end{aligned}
$$

The claim follows.
Since Aff_{n} together with all the elements $f_{n}^{\lambda}, n \in \mathbb{Z}^{+}, \lambda \neq 0$ generates $\operatorname{Aut}\left(\mathbb{A}^{2}\right)$, Lemma 3.12 shows that $\Phi\left(\operatorname{Aut}\left(\mathbb{A}^{2}\right)\right)$ is contained in $\operatorname{Aut}\left(\mathbb{A}^{5}\right)$ and thus Claim (6) of Theorem 1.5.

Lemma 3.13. - Let n and m be positive integers and A_{n}, B_{m} as in Lemma 3.12. Then

$$
A_{n} B_{m-1}-A_{n-1} B_{m}=P\left(x_{1}, x_{5}\right)
$$

where $P \in \mathbb{C}\left[x_{1}, x_{5}\right]$ is a polynomial of degree $<\max \{m, n\}$.

Proof. - If $n=1$ or $m=1$ the claim is true, since $A_{0}=0, A_{1}=2, B_{0}=$ $1, B_{1}=x_{5}$ and $\operatorname{deg}\left(A_{k}\right)=k-1, \operatorname{deg}\left(B_{k}\right)=k$. By the identities from Lemma 3.12, one obtains

$$
\begin{aligned}
A_{n} B_{m-1}-A_{n-1} B_{m}= & \left(2 x_{5} A_{n-1}-x_{1} A_{n-2}\right) B_{m-1} \\
& -A_{n-1}\left(2 x_{5} B_{m-1}-x_{1} B_{m-2}\right) \\
= & x_{1}\left(A_{n-1} B_{m-2}-A_{n-2} B_{m-1}\right)
\end{aligned}
$$

The claim follows by induction on m and n.
Lemma 3.14. - Let $f=f_{1}^{\lambda_{1}} f_{2}^{\lambda_{2}} \ldots f_{n}^{\lambda_{n}}$, where $\lambda_{n} \neq 0$. Then $\Phi(f)=\left(x_{1}, x_{2}+F, x_{3}+p_{3}\left(x_{1}, x_{5}\right)+\lambda_{n} x_{1} B_{n-1}, x_{4}+p_{4}\left(x_{1}, x_{5}\right)+\lambda_{n} B_{n}, x_{5}\right)$, where $F=p_{2}\left(x_{1}, x_{5}\right)+x_{3}\left(\lambda_{1} A_{1}+\cdots+\lambda_{n} A_{n}\right)-x_{4} x_{1}\left(\lambda_{1} A_{n-1}+\cdots+\lambda_{n} A_{n}\right)$ and $p_{2}, p_{3}, p_{4} \in \mathbb{C}\left[x_{1}, x_{5}\right]$ are polynomials of degree $\leqslant n$. In particular, $\operatorname{deg}(\Phi(f))=\operatorname{deg}(f)$.

Proof. - It is easy to see that the third and fourth coordinate of $\Phi(f)$ have the claimed form. The more difficult part is the second coordinate.

For $n=1$ the claim follows directly from Lemma 3.12. We proceed now by induction. Let $\lambda_{n+1} \neq 0$ and m be the largest number, such that $m \leqslant n$ and $n \neq 0$. By the induction hypothesis we may assume that the second coordinate of $\Phi\left(f_{1}^{\lambda_{1}} f_{2}^{\lambda_{2}} \ldots f_{m}^{\lambda_{m}}\right)$ has the form
$x_{2}+p_{2}\left(x_{1}, x_{5}\right)+x_{3}\left(\lambda_{1} A_{1}+\cdots+\lambda_{m} A_{m}\right)-x_{4} x_{1}\left(\lambda_{1} A_{0}+\cdots+\lambda_{m} A_{m-1}\right)$.
The second coordinate of $\Phi\left(f_{1}^{\lambda_{1}} f_{2}^{\lambda_{2}} \ldots f_{m}^{\lambda_{m}}\right) \circ \Phi\left(f_{n}^{\lambda_{n}}\right)$ is therefore

$$
\begin{aligned}
& x_{2}+p_{2}\left(x_{1}, x_{5}\right)+x_{3}\left(\lambda_{1} A_{1}+\cdots+\lambda_{m} A_{m}+\lambda_{n} A_{n}\right) \\
& \quad-x_{4} x_{1}\left(\lambda_{1} A_{0}+\cdots+\lambda_{m} A_{m-1}+\lambda_{n} A_{n}\right)+x_{1} \sum_{k=1}^{m} \lambda_{k}\left(A_{k} B_{n-1}-A_{k-1} B_{n}\right) .
\end{aligned}
$$

By Lemma 3.13, $x_{1} \sum_{k=1}^{m} \lambda_{k}\left(A_{k} B_{n-1}-A_{k-1} B_{n}\right)$ is a polynomial in x_{1} and x_{5} of degree $\leqslant n$.

Proof of Theorem 1.8. - The first claim was proved in Proposition 3.9.
To prove the second part, we show in a first step that $\operatorname{deg}(\Phi(f))=\operatorname{deg}(f)$ for all elements $f \in \mathcal{J}_{2}$. Composition with an element in Aff ${ }_{2}$ doesn't change the degree, by Lemma 3.11. So it is enough to consider elements in \mathcal{J}_{2} of the form $f=(X, Y+P(X)), P \in \mathbb{C}[X]$. For suitable $\lambda_{i} \in \mathbb{C}$ we have $f=f_{1}^{\lambda_{1}} f_{2}^{\lambda_{2}} \ldots f_{n}^{\lambda_{n}}$, where $\lambda_{n} \neq 0$. In Lemma 3.14 we've seen that Φ preserves the degree of these elements.

Let now $f \in \operatorname{Aut}\left(\mathbb{A}^{2}\right)$ be an arbitrary automorphism and assume that $f=a_{1} j_{1} a_{2} j_{2} \ldots j_{n-1} a_{n}$, where $a_{1}, a_{n} \in \operatorname{Aff}_{2}, a_{i} \in \operatorname{Aff}_{2} \backslash \mathcal{J}_{2}$ for $2 \leqslant i \leqslant n-1$
and $j_{i} \in \mathcal{J}_{2} \backslash \operatorname{Aff}_{2}$. So $\operatorname{deg}(f)=\operatorname{deg}\left(j_{1}\right) \operatorname{deg}\left(j_{2}\right) \ldots \operatorname{deg}\left(j_{n-1}\right)$ and

$$
\Phi(f)=\Phi\left(a_{1}\right) \Phi\left(j_{1}\right) \Phi\left(a_{2}\right) \Phi\left(j_{2}\right) \ldots \Phi\left(j_{n-1}\right) \Phi\left(a_{n}\right)
$$

This implies in particular that
$\operatorname{deg}(\Phi(f)) \leqslant \operatorname{deg}\left(\Phi\left(a_{1}\right)\right) \operatorname{deg}\left(\Phi\left(j_{1}\right)\right) \ldots \operatorname{deg}\left(\Phi\left(j_{n-1}\right)\right) \operatorname{deg}\left(\Phi\left(a_{n}\right)\right)=\operatorname{deg}(f)$.
With this and part (1) of Theorem 1.8, part (2) follows.

3.8. Irreducibility of Φ, Ψ_{1} and Ψ_{2}

First we show that Φ is irreducible. Assume that there is a rational dominant map $\pi: \mathbb{P}^{5} \rightarrow M$ to a variety M with an algebraic embedding $\varphi_{M}: \mathrm{Cr}_{2} \rightarrow \operatorname{Bir}(M)$ such that A is Cr_{2}-equivariant. Since φ_{M} is algebraic, we may assume that $\mathrm{PGL}_{3}(\mathbb{C})$ acts regularly on M. We obtain that the restriction of A to the open $\mathrm{PGL}_{3}(\mathbb{C})$-invariant subset $U \subset \mathbb{P}^{5}$ consisting of all smooth conics is a $\mathrm{PGL}_{3}(\mathbb{C})$-equivariant morphism, whose image is an open dense subset of M on which $\mathrm{PGL}_{3}(\mathbb{C})$ acts transitively. Note that this implies $\operatorname{dim}(M)>1$.

If $\operatorname{dim} M=2$, we obtain by Theorem A. 1 that $M \simeq \mathbb{P}^{2}$ with the standard action of $\mathrm{PGL}_{3}(\mathbb{C})$. The stabilizer in $\mathrm{PGL}_{3}(\mathbb{C})$ of a point in $U \subset \mathbb{P}^{5}$ is isomorphic to $\mathrm{SO}_{3}(\mathbb{C})$. On the other hand the stabilizer in $\mathrm{PGL}_{3}(\mathbb{C})$ of a point in \mathbb{P}^{2} is isomorphic to the group of affine transformations $\mathrm{Aff}_{2}=\mathrm{GL}_{2}(\mathbb{C}) \ltimes \mathbb{C}^{2}$. Since $\mathrm{SO}_{3}(\mathbb{C})$ can not be embedded into Aff_{2}, the case $\operatorname{dim}(M)=2$ is not possible.

If $\operatorname{dim}(M)=3$, we find, by Theorem 4.1, a $\mathrm{PGL}_{3}(\mathbb{C})$-equivariant projection $M \longrightarrow \mathbb{P}^{2}$ and are again in the case $\operatorname{dim}(M)=2$.

If $\operatorname{dim}(M)=4$, let $p \in M$ be a general point and $F_{p}:=A^{-1}(p) \subset \mathbb{P}^{5}$ the fiber of A. Let $q \in F_{p}$ be a point that is only contained in one connected component C of F_{p}. Again, the stabilizer of q is isomorphic to $\mathrm{SO}_{3}(\mathbb{C})$. This implies that $\mathrm{SO}_{3}(\mathbb{C})$ acts regularly on the curve C with a fixpoint. The neutral comoponent of the group of birational transformations of C is isomorphic to $\mathrm{PGL}_{2}(\mathbb{C})$, is abelian or is finite. In all cases we obtain that $\mathrm{SO}_{3}(\mathbb{C})$ fixes C pointwise. In other words, the group $\mathrm{SO}_{3}(\mathbb{C})$ preserves each conic of the family of conics in \mathbb{P}^{2} parametrized by C. This is not possible.

The proof that Ψ_{1} and Ψ_{2} are irreducible is done analogously.

4. $\mathrm{PGL}_{n+1}(\mathbb{C})$-actions in codimension 1

In this section we look at algebraic embeddings of $\mathrm{PGL}_{n+1}(\mathbb{C})$ into $\operatorname{Bir}(M)$ for complex projective varieties M of dimension $n+1$. Our aim is to prove Theorem 4.1.

THEOREM 4.1. - Let $n \geqslant 2$ and let M be a smooth projective variety of dimension $n+1$ with a rational non-trivial $\mathrm{PGL}_{n+1}(\mathbb{C})$-action. Then, up to birational conjugation and automorphisms of $\mathrm{PGL}_{n+1}(\mathbb{C})$, we have one of the following:
(1) $M \simeq F_{l}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-l(n+1))\right.$ for a unique element $l \in \mathbb{Z}_{\geqslant 0}$ and $\mathrm{PGL}_{n+1}(\mathbb{C})$ acts as in Example 1.10.
(2) $M \simeq \mathbb{P}^{n} \times C$ for a unique smooth curve C and $\mathrm{PGL}_{n+1}(\mathbb{C})$ acts on the first factor as in Example 1.1.
(3) $M \simeq \mathbb{P}\left(T \mathbb{P}^{2}\right)$ and $\mathrm{PGL}_{3}(\mathbb{C})$ acts as in Example 1.11.
(4) $M \simeq \mathbb{G}(1,3)$ and $\mathrm{PGL}_{4}(\mathbb{C})$ acts as in Example 1.12.

Moreover, these actions are not birationally conjugate to each other.
Remark 4.2. - If M is rational and of dimension 2 or 3 , this result can be deduced directly from the classification of maximal algebraic subgroups of Cr_{2} and Cr_{3} by Enriques, Umemura and Blanc ([7, 27, 43, 44, 45]).

4.1. Classification of varieties and groups of automorphisms

With some geometric invariant theory and using results of Freudenthal about topological ends, the following classification can be made (see [17, Theorem 4.8] and the references in there):

Theorem 4.3. - Let M be a smooth projective variety of dimension $n+1$ with a non-trivial regular action of $\mathrm{PGL}_{n+1}(\mathbb{C})$, where $n \geqslant 2$. Then we are in one of the following cases:
(1) $M \simeq \mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-k)\right)$ for some $k \in \mathbb{Z}_{\geqslant 0}$.
(2) $M \simeq \mathbb{P}^{n} \times C$ for a curve C of genus $\geqslant 1$.
(3) $M \simeq \mathbb{P}\left(T \mathbb{P}^{2}\right) \simeq \mathrm{PGL}_{3}(\mathbb{C}) / B$, where $B \subset \mathrm{PGL}_{3}(\mathbb{C})$ is a Borel subgroup.
(4) $M \simeq \mathbb{G}(1,3) \simeq \mathrm{PGL}_{4}(\mathbb{C}) / P$, where $P \subset \mathrm{PGL}_{4}(\mathbb{C})$ is the parabolic subgroup consisting of matrices of the form

$$
\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right)
$$

The neutral components $\operatorname{Aut}^{0}(M)$ of the automorphism groups of the varieties M that appear in Theorem 4.3 are well known. Proofs of the following Proposition can be found in [1, Proposition 2.4.1, 2.4.2, Example 2.4.2, and Theorem 3.3.2].

Proposition 4.4. - We have

- $\operatorname{Aut}^{0}\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-k)\right) \simeq\left(\mathrm{GL}_{n+1}(\mathbb{C}) / \mu_{k}\right) \ltimes \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k}\right.$, where $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k}$ denotes the additive group of homogeneous polynomials of degree k and $\mu_{k} \subset \mathbb{C}^{*}$ the group of all elements $c \in \mathbb{C}^{*}$ satisfying $c^{k}=1$,
- $\operatorname{Aut}^{0}\left(\mathbb{P}^{n} \times C\right) \simeq \operatorname{PGL}_{n+1}(\mathbb{C}) \times \operatorname{Aut}^{0}(C)$,
- $\operatorname{Aut}^{0}\left(\mathbb{P}\left(T \mathbb{P}^{2}\right)\right) \simeq \mathrm{PGL}_{3}(\mathbb{C})$,
- $\operatorname{Aut}^{0}(\mathbb{G}(1,3)) \simeq \mathrm{PGL}_{4}(\mathbb{C})$.

To describe the $\mathrm{PGL}_{n+1}(\mathbb{C})$-actions on these varieties we recall some results about group cohomology.

4.2. Group cohomology

Let H be a group that acts by automorphisms on a group N. A cocycle is a map $\tau: H \rightarrow N$ such that $\tau(g h)=\tau(g)(g \cdot \tau(h))$ for all $g, h \in H$. Two cocycles τ and ν are cohomologous if there exists an $a \in N$ such that

$$
\tau(g)=a^{-1} \nu(g)(g \cdot a) \text { for all } g \in H
$$

The set of cocycles up to cohomology will be denoted by $H^{1}(H, N)$. If H acts trivially on N, the set $H^{1}(H, N)$ corresponds to the set of group homomorphisms $H \rightarrow N$ up to conjugation. The following lemma is well known.

Lemma 4.5. - Let $G:=N \rtimes H$ be a semi direct product of groups and $\pi: G \rightarrow H$ the canonical projection on H. Then there exists a bijection between $H^{1}(H, N)$ and the sections of π up to conjugation in N.

There always exists the trivial cocycle $\tau_{0}: H \rightarrow N, g \mapsto e_{N}$. The set $H^{1}(G, N)$ is therefore a pointed set with basepoint τ_{0}. Assume that G acts on two groups A and B by automorphisms. A G-homomorphism $\phi: A \rightarrow B$ induces a homomorphism of pointed sets

$$
\phi_{*}: H^{1}(G, A) \rightarrow H^{1}(G, B)
$$

given by $\phi_{*}(\tau)=\phi \circ \tau$.

Proposition 4.6 ([39], p. 125, Proposition 1). - Let G be a group that acts by automorphisms on groups A, B and C. Every exact sequence of G-homomorphisms

$$
1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1
$$

induces an exact sequence of pointed sets

$$
H^{1}(G, A) \rightarrow H^{1}(G, B) \rightarrow H^{1}(G, C)
$$

4.3. Proof of Theorem 4.1

We use the classification of smooth projective varieties of dimension $n+1$ with a regular $\mathrm{PGL}_{n+1}(\mathbb{C})$ action of Theorem 4.3. We have to show that case (1) appears only if $k=l(n+1)$ for some integer l. Examples 1.9 to 1.12 show that for all the other varieties there exist $\mathrm{PGL}_{n+1}(\mathbb{C})$-actions. So we have to show that these actions are unique and not birationally conjugate to each other.

We start by showing that the actions are unique. By Proposition 4.4, $\operatorname{Aut}^{0}\left(\mathbb{P}\left(T \mathbb{P}^{2}\right)\right) \simeq \mathrm{PGL}_{3}(\mathbb{C})$ and $\operatorname{Aut}\left(\mathbb{G}(1,3)^{0}\right) \simeq \mathrm{PGL}_{4}(\mathbb{C})$. The uniqueness of the embedding is clear in these cases since $\mathrm{PGL}_{n+1}(\mathbb{C})$ is a simple group. If $M \simeq \mathbb{P}^{n} \times C$ uniqueness follows directly from the fact that $\mathrm{PGL}_{n+1}(\mathbb{C})$ does not embed into $\operatorname{Aut}(C)$.

Now we show that $\mathrm{PGL}_{n+1}(\mathbb{C})$ can be embedded into $\operatorname{Aut}^{0}\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n}} \oplus\right.\right.$ $\left.\mathcal{O}_{\mathbb{P}^{n}}(-k)\right)$ if and only if $n \mid k$. Then we show that in this case, up to conjugation and algebraic automorphisms of $\mathrm{PGL}_{n+1}(\mathbb{C})$, the embedding is unique.

Lemma 4.7. - Let $\mu_{k}=\left\{\lambda \mathrm{id} \mid \lambda \in \mathbb{C}, \lambda^{k}=1\right\}$. There exists a nontrivial algebraic group homomorphism $\mathrm{PGL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{n}(\mathbb{C}) / \mu_{k}$ if and only if $n \mid k$.

Proof. - If $n \mid k$, we have

$$
\operatorname{PGL}_{n}(\mathbb{C}) \simeq \mathrm{SL}_{n}(\mathbb{C}) /\left(\mu_{k} \cap \mathrm{SL}_{n}(\mathbb{C})\right) \subset \mathrm{GL}_{n}(\mathbb{C}) / \mu_{k}
$$

On the other hand, assume that there exists a non-trivial algebraic homomorphism $\phi: \operatorname{PGL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{n}(\mathbb{C}) / \mu_{k}$. Let ξ_{n} be a primitive n-th root
of unity and define

$$
J:=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & \xi_{n} & 0 & \cdots & 0 \\
0 & 0 & \xi_{n}^{2} & \cdots & 0 \\
& & \cdots & & \\
0 & 0 & \ldots & 0 & \xi_{n}^{n-1}
\end{array}\right] \in \operatorname{PGL}_{n}(\mathbb{C})
$$

Let $\pi: \mathrm{GL}_{n}(\mathbb{C}) / \mu_{k} \rightarrow \mathrm{PGL}_{n}(\mathbb{C})$ be the standard projection and $\tau \in$ $\mathrm{PGL}_{n}(\mathbb{C})$ be the permutation $(1,2, \ldots, n)$. The composition $\pi \circ \phi$ is conjugate to the identity or to the automorphism $\alpha: g \mapsto{ }^{t} g^{-1}$ by Proposition 2.8. So after conjugation we can assume that $\left.\pi \circ \phi\right|_{\mathcal{S}_{n}}=\mathrm{id}_{\mathcal{S}_{n}}$ and that $\left.\pi \circ \phi\right|_{D_{n}}$ is either the identity or given by $d \mapsto d^{-1}$. Hence, we may assume that $\phi(\tau)$ is the class $[c \cdot \tau]$ of the class $c \cdot \tau$ in the quotient $\mathrm{GL}_{n}(\mathbb{C}) / \mu_{k}$ for some $c \in \mathbb{C}^{*}$. The image $\phi(J)=[D]$ can be represented by the matrix

$$
D=\left[\begin{array}{cccc}
d_{1} & 0 & 0 & \ldots \\
0 & d_{2} & 0 & \ldots \\
& & \ldots & \\
0 & 0 & \ldots & d_{n}
\end{array}\right]
$$

where $[D]^{n}=[\mathrm{id}]$ and $d_{i} \neq d_{j}$ for $i \neq j$. Observe that $\tau J \tau^{-1}=J$ in $\mathrm{PGL}_{n}(\mathbb{C})$. So $\left[\tau D \tau^{-1}\right]=[D]$ in $\mathrm{GL}_{n} / \mu_{k}$ and therefore there exists an $a \in \mathbb{C}^{*}$ such that $a^{k}=1$ and such that

$$
\left[\begin{array}{cccc}
d_{1} & 0 & 0 & \ldots \\
0 & d_{2} & 0 & \ldots \\
& & \ldots & \\
0 & 0 & \ldots & d_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a d_{n} & 0 & 0 & \ldots \\
0 & a d_{1} & 0 & \ldots \\
& & \ldots & \\
0 & 0 & \ldots & a d_{n-1}
\end{array}\right]
$$

In other words, $d_{i+1}=a d_{i}$ for $1 \leqslant i \leqslant n-1$ and $d_{1}=a d_{n}$. This implies $d_{n}=a d_{n-1}=a^{2} d_{n-2}=\cdots=a^{n-1} d_{1}=a^{n} d_{n}$. We obtain $a^{n}=1$ and $a^{l} \neq 1$ for $1 \leqslant l<n$ since $d_{i} \neq d_{j}$ for $i \neq j$, hence $n \mid k$.

Let n and k be positive integers such that $(n+1) \mid k$. Denote by $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k}$ the vector space of homogeneous polynomials of degree k. We define

$$
G:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k} \rtimes \mathrm{PGL}_{n+1}(\mathbb{C})
$$

where the semi direct product is taken with respect to the action $g \cdot p=$ $p \circ g^{-1}$. Here we look at $\mathrm{PGL}_{n+1}(\mathbb{C}) \subset \mathrm{GL}_{n+1}(\mathbb{C}) / \mu_{k}$ as described in Lemma 4.7. Let $\pi: G \rightarrow \mathrm{PGL}_{n+1}(\mathbb{C})$ be the standard projection and $\iota: \mathrm{PGL}_{n+1}(\mathbb{C}) \rightarrow G$ the standard section of π.

Lemma 4.8. - Up to conjugation, $\iota: \mathrm{PGL}_{n+1}(\mathbb{C}) \rightarrow G$ is the unique section of π.

Proof. - Let $\varphi: \mathrm{PGL}_{n+1}(\mathbb{C}) \rightarrow G$ be an arbitrary section of π. We show that φ is conjugate to ι. It is enough to show that $\varphi\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)=$ $\iota\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)$.

The image $\varphi\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)$ acts on $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k}$ by conjugation. Let $H \subset D_{n-1}$ be the subgroup consisting of all elements of order d for some d large enough and not divisible by k. Then the action of $\varphi(H)$ on $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k}$ has a fixed point p. After conjugation, we can assume that $p=0$. Observe that $\iota\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)$ is the subgroup of G consisting of all elements that fix 0 . Hence we may assume $\varphi(H) \subset \iota\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)$ and therefore $\varphi(H)=\iota(H)$.

The centralizer of H in $\mathrm{PGL}_{n+1}(\mathbb{C})$ is the diagonal subgroup D_{n}. The centralizer of $\iota(H)$ in G is $\iota\left(D_{n}\right)$, since, by assumption, d is no multiple of k. This implies $\varphi\left(D_{n}\right)=\iota\left(D_{n}\right)$. The normalizer of D_{n} in $\mathrm{PGL}_{n+1}(\mathbb{C})$ is $D_{n} \rtimes \mathcal{S}_{n+1}$ and the normalizer of $\iota\left(D_{n}\right)$ in G is $\iota\left(D_{n} \rtimes \mathcal{S}_{n+1}\right)$. Hence we obtain $\varphi\left(D_{n} \rtimes \mathcal{S}_{n+1}\right)=\iota\left(D_{n} \rtimes \mathcal{S}_{n+1}\right)$ and since both ι and φ are sections,

$$
\left.\varphi\right|_{D_{n} \rtimes \mathcal{S}_{n+1}}=\left.\iota\right|_{D_{n} \rtimes \mathcal{S}_{n+1}} .
$$

Let $g:=\left(x_{0}+x_{1}, x_{1}, \ldots, x_{n}\right) \in \mathrm{PGL}_{n+1}(\mathbb{C})$. Let $E \subset D_{n}$ be the centralizer of g in D_{n}. So E is the subgroup of elements of the form

$$
\left(c_{0} x_{0}, c_{0} x_{1}, c_{2} x_{2}, \ldots, c_{n} x_{n}\right)
$$

with $c_{i} \in \mathbb{C}^{*}$ such that $c_{0}^{2} c_{2} c_{3} \ldots c_{n}=1$. Denote $\varphi(g)=(v, g)$, with $v \in$ $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k}$. Take a $d \in E$. Then $\iota(d)=(0, d)$ and $(0, d)(v, g)\left(0, d^{-1}\right)=$ $\left(v \circ d^{-1}, g\right)$ yields $v \circ d^{-1}=v$. Therefore, all summands of v are of the form $x_{0}^{r_{0}} x_{1}^{r_{1}}\left(x_{0} \ldots x_{n}\right)^{s}$, where $r_{0}+r_{1}=s$. Assume that

$$
v=\sum_{s, r_{0}+r_{1}=s} a_{r_{0} r_{1} s} x_{0}^{r_{0}} x_{1}^{r_{1}}\left(x_{0} \ldots x_{n}\right)^{s} .
$$

We calculate

$$
(v, g)^{2}=\left(v+v \circ g^{-1}, g^{2}\right),
$$

and

$$
\begin{aligned}
v+v \circ g^{-1}= & \sum_{s, r_{0}+r_{1}=s} a_{r_{0} r_{1} s} x_{0}^{r_{0}} x_{1}^{r_{1}}\left(x_{0} \ldots x_{n}\right)^{s} \\
& +\sum_{s, r_{0}+r_{1}=s} a_{r_{0} r_{1} s}\left(x_{0}-x_{1}\right)^{r_{0}} x_{1}^{r_{1}}\left(\left(x_{0}-x_{1}\right) x_{1} \ldots x_{n}\right)^{s} .
\end{aligned}
$$

On the other hand, for $f=\left(x_{0}, 1 / 2 x_{1}, 2 x_{2}, x_{3}, \ldots, x_{n}\right)$ we obtain $g^{2}=$ $f \circ g \circ f^{-1}$. Hence

$$
(v, g)^{2}=(0, f)(v, g)\left(0, f^{-1}\right)=\left(v+v \circ g^{-1}, g^{2}\right)
$$

and therefore

$$
v+v \circ g^{-1}=\sum_{s, r_{0}+r_{1}=s} 2^{r_{1}} a_{r_{0} r_{1} s} x_{0}^{r_{0}} x_{1}^{r_{1}}\left(x_{0} \ldots x_{n}\right)^{s} .
$$

This yields $a_{r_{0} r_{1} s}=0$ for all r_{1}, r_{2} and s and thus $\varphi(g) \in \iota\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)$.
Since $\mathrm{PGL}_{n+1}(\mathbb{C})$ is generated by $D_{n} \rtimes \mathcal{S}_{n+1}$ and the element g, this yields $\varphi\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)=\iota\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)$, which finishes the prove.

Lemma 4.9. - $\mathrm{PGL}_{n+1}(\mathbb{C})$ acts non-trivially on the fibration $\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n}} \oplus\right.$ $\left.\mathcal{O}_{\mathbb{P}^{n}}(-k)\right)$ with basis \mathbb{P}^{n} if and only if $k=l(n+1)$ for some nonnegative l. Moreover, in this case the action is unique up to conjugation and up to algebraic automorphisms of $\mathrm{PGL}_{n+1}(\mathbb{C})$.

Proof. - Let $\phi: \mathrm{PGL}_{n+1}(\mathbb{C}) \rightarrow \operatorname{Aut}^{0}\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-k)\right)\right)$ be an algebraic embedding. By Proposition 4.4, there exists an exact sequence of algebraic homomorphisms

$$
1 \rightarrow \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k} \rightarrow \operatorname{Aut}^{0}\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-k)\right)\right) \rightarrow \mathrm{GL}_{n+1}(\mathbb{C}) / \mu_{k} \rightarrow 1
$$

If ϕ is non-trivial, this induces a non-trivial algebraic homomorphism from $\mathrm{PGL}_{n+1}(\mathbb{C})$ into $\mathrm{GL}_{n+1}(\mathbb{C}) / \mu_{k}$ and by Lemma 4.7 this is possible if and only if $(n+1) \mid k$. So assume that $k=l(n+1)$ for an integer l. It remains to show that in this case ϕ is unique up to conjugation and up to algebraic automorphisms of $\mathrm{PGL}_{n+1}(\mathbb{C})$. Let

$$
F_{l}:=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-k)\right)
$$

We look at F_{l} as a \mathbb{P}^{1}-fibration over the basis \mathbb{P}^{n}. So there is an exact sequence

$$
1 \rightarrow \operatorname{Aut}_{\mathbb{P}^{n}}^{0}\left(F_{l}\right) \rightarrow \operatorname{Aut}^{0}\left(F_{l}\right) \xrightarrow{\pi} \operatorname{PGL}_{n}(\mathbb{C}) \rightarrow 1
$$

Here, $\operatorname{Aut}_{\mathbb{P}^{n}}^{0}\left(F_{l}\right) \simeq \mathbb{C}^{*} \ltimes \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k}$ denotes the subgroup of automorphisms of F_{l} that fix the basis \mathbb{P}^{n} pointwise.

Let $H:=\mathrm{PGL}_{n+1}(\mathbb{C})$. By Lemma 4.5, the sections of π up to conjugation are in bijection with

$$
H^{1}\left(H, \operatorname{Aut}_{\mathbb{P}^{n}}^{0}\left(F_{l}\right)\right)=H^{1}\left(H, \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k} \rtimes \mathbb{C}^{*} / \mu_{k}\right)
$$

By Proposition 4.6, there is an exact sequence of pointed sets

$$
H^{1}\left(H, \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k}\right) \rightarrow H^{1}\left(H, \operatorname{Aut}_{\mathbb{P}^{n}}\left(F_{l}\right)\right) \rightarrow H^{1}\left(H, \mathbb{C}^{*} / \mu_{k}\right)
$$

The action of H on \mathbb{C}^{*} / μ_{k} is trivial, so $H^{1}\left(H, \mathbb{C}^{*} / \mu_{k}\right)$ is the set of homomorphisms $H \rightarrow \mathbb{C}^{*} / \mu_{k}$. Hence $H^{1}\left(H, \mathbb{C}^{*} / \mu_{m}\right)=\{1\}$. By Lemma 4.8, we
obtain $H^{1}\left(H, \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{k}\right)=\{1\}$ and thus $H^{1}\left(H, \operatorname{Aut}_{\mathbb{P}^{n}}\left(F_{l}\right)\right)=\{1\}$. So all sections of π are conjugate.

Now, since H is simple and not contained in $\operatorname{Aut}_{\mathbb{P}^{n}}^{0}\left(F_{l}\right)$, we obtain $\pi \circ$ $\phi(H) \subset H$. Both ϕ and π are algebraic morphisms, so $\pi \circ \phi(H)=H$. Therefore, up to the algebraic automorphism $\pi \circ \phi$, the homomorphism ϕ is a section of π.

It remains to show that the actions from Theorem 4.1 are not birationally conjugate. Let M be a variety of dimension $n+1$ on which $\mathrm{PGL}_{n+1}(\mathbb{C})$ acts faithfully. If M is not rational, then M is isomorphic to $\mathbb{P}^{n} \times C$ for some smooth curve C. Recall that $\mathbb{P}^{n} \times C$ is birationally equivalent to $\mathbb{P}^{n} \times C^{\prime}$ for smooth curves C and C^{\prime} if and only if C and C^{\prime} are birationally equivalent which again implies that C and C^{\prime} are isomorphic. So if $\mathrm{PGL}_{n+1}(\mathbb{C})$ acts rationally and non trivially on a non rational variety M of dimension $n+1$, then this one is uniquely determined up to algebraic automorphisms of $\mathrm{PGL}_{n+1}(\mathbb{C})$ and up to birational conjugation in $\operatorname{Bir}(M)$.

In the case that M is rational, we have to show that the $\mathrm{PGL}_{n+1}(\mathbb{C})$ actions listed in Theorem 4.1 are not conjugate to each other. For this, note that none of them has an orbit of codimension $\geqslant 1$. Lemma $3.2 \mathrm{im}-$ plies therefore that any birational transformation conjugating one action to another one must be an isomorphism. As the varieties listed in Theorem 4.1 are not isomorphic we conclude that the actions are not conjugate.

5. Extension to Cr_{n} and H_{n}

In this section we study how the $\mathrm{PGL}_{n+1}(\mathbb{C})$-actions described in the above section extend to rational Cr_{n}-actions. Our goal is to prove Theorem 1.13. We proceed case by case.

5.1. The case $\mathbb{G}(1,3)$

Let

$$
s_{1}:=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \text { and } s_{2}:=\left(\begin{array}{ccc}
0 & -1 & 1 \\
0 & -1 & 0 \\
1 & -1 & 0
\end{array}\right) \in \mathrm{GL}_{3}(\mathbb{Z})
$$

Lemma 5.1. - Let G be a group. There exists no group homomorphism $\rho: \operatorname{GL}_{3}(\mathbb{Z}) \rightarrow G$ such that $\rho\left(s_{1}\right)$ has order 3 and $s_{2} \in \operatorname{ker}(\rho)$.

Proof. - Assume that such a ρ exists. We define the following elements in $\mathrm{GL}_{3}(\mathbb{Z})$:

$$
A:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right), B:=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), T:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

One calculates $\left(A\left(s_{2}\left(B s_{2} B^{-1}\right)\right) A^{-1}\right)=s_{1} T$. So $s_{1} T$ is contained in the kernel of ρ and we get $\rho(T)=\rho\left(s_{1}^{-1}\right)$. But this is a contradiction since the order of T is 2 .

The following construction comes up in the context of tetrahedral line complexes (see [26]). Consider the 4 hyperplanes in \mathbb{P}^{3}

$$
E_{0}:=\left\{x_{0}=0\right\}, E_{1}:=\left\{x_{1}=0\right\}, E_{2}:=\left\{x_{2}=0\right\}, E_{3}:=\left\{x_{3}=0\right\}
$$

A line $l \in \mathbb{G}(1,3)$ that is not contained in any of the E_{i}, intersects each plane E_{i} in one point p_{i}. We thus obtain a rational surjective map

$$
c r: \mathbb{G}(1,3) \rightarrow \mathbb{P}^{1}
$$

that is defined by associating to the line l the cross ratio between the points p_{i}.

The closure $\overline{c r^{-1}([a: b])}$ in $\mathbb{G}(1,3)$ is irreducible if and only if $[a: b] \in$ $\mathbb{P}^{1} \backslash\{[0: 1],[1: 0],[1: 1]\}$, whereas $\overline{c r^{-1}([a: b])}$ consists of two irreducible components in all the other cases ([26, Chapter 10.3.6]).

Recall that α is the automorphism of $\mathrm{PGL}_{4}(\mathbb{C})$ given by $g \mapsto{ }^{t} g^{-1}$.
Proposition 5.2. - There exists no non-trivial group homomorphism

$$
\Phi:\left\langle\mathrm{PGL}_{4}(\mathbb{C}), \mathrm{W}_{3}\right\rangle \rightarrow \operatorname{Bir}(\mathbb{G}(1,3))
$$

such that $\Phi\left(\operatorname{PGL}_{4}(\mathbb{C})\right) \subset \operatorname{Aut}(\mathbb{G}(1,3))$.
In particular, neither the action of $\mathrm{PGL}_{4}(\mathbb{C})$ on $\mathbb{G}(1,3)$ given by the embedding φ_{G} (see Example 1.12) nor the action given by $\varphi_{G} \circ \alpha$ can be extended to a rational action of Cr_{4}.

Proof. - The proof of Corollary A. 2 implies that if $\mathrm{PGL}_{4}(\mathbb{C})$ is contained in the kernel of a homomorphism $\Phi:\left\langle\mathrm{PGL}_{4}(\mathbb{C}), \mathrm{W}_{3}\right\rangle \rightarrow \operatorname{Bir}(\mathbb{G}(1,3))$, then Φ is trivial. So we may assume that Φ embeds $\mathrm{PGL}_{4}(\mathbb{C})$ into the group Aut ${ }^{0}(\mathbb{G}(1,3))$. By Theorem 4.1 it is therefore enough to show that φ_{G} and $\varphi_{G} \circ \alpha$ do not extend to a homomorphism of $\left\langle\mathrm{PGL}_{4}(\mathbb{C}), \mathrm{W}_{3}\right\rangle$.

The $\varphi_{G}\left(D_{3}\right)$-orbit of a line that is not contained in one of the planes E_{i} and that does not pass through any of the coordinate points $[1: 0: 0$: $0],[0: 1: 0: 0],[0: 0: 1: 0],[0: 0: 0: 1]$, has dimension 3 and these are all $\varphi_{G}\left(D_{3}\right)$-orbits of dimension 3.

Since $\varphi_{G}\left(D_{3}\right)$ stabilizes the hyperplanes E_{i} and since the cross ratio is invariant under linear transformations, we obtain that $c r$ is $\varphi_{G}\left(D_{3}\right)$-invariant. By the above remark, the rational map cr therefore parametrizes all but finitely many $\varphi_{G}\left(D_{3}\right)$-orbits of dimension 3 by $\mathbb{P}^{1} \backslash\{[0: 1],[1: 0],[1: 1]\}$.

The image $\varphi_{G}\left(\mathcal{S}_{4}\right)$, where $\mathcal{S}_{4} \subset \mathrm{PGL}_{4}(\mathbb{C})$ is the subgroup of coordinate permutations, normalizes $\varphi_{G}\left(D_{3}\right)$ and therefore it permutes its 3 dimensional orbits. Since \mathcal{S}_{4} permutes the hyperplanes E_{i}, we can describe its action on the 3 -dimensional $\varphi_{G}\left(D_{3}\right)$-orbits by its action on the cross ratio of the intersection of general lines with the planes E_{i}.

Let r be the cross ratio between the points $p_{0}, p_{1}, p_{2}, p_{3}$ on a line. One calculates that the cross ratio between $p_{3}, p_{1}, p_{2}, p_{0}$ is again r and that the cross ratio between the points $p_{2}, p_{0}, p_{1}, p_{3}$ is $\frac{1}{1-r}$. Hence the image of $\tau_{1}:=\left[x_{3}: x_{1}: x_{2}: x_{0}\right]$ leaves $c r$ invariant, whereas for the permutation $\tau_{2}:=\left[x_{2}: x_{0}: x_{1}: x_{3}\right]$ we have $c r \circ \varphi\left(\tau_{2}\right) \neq c r$ and $c r \circ \varphi\left(\tau_{2}\right)^{2} \neq c r$.

Let $f: \mathbb{G}(1,3) \rightarrow \mathbb{P}^{4}$ be a birational transformation and let $\varphi_{G}^{\prime}:=$ $f \circ \varphi_{G} \circ f^{-1}$. The image $\varphi_{G}^{\prime}\left(D_{3}\right) \subset \mathrm{Cr}_{4}$ is an algebraic torus of rank 3 and therefore, by Proposition 2.6, conjugate to the standard subtorus $D_{3} \subset D_{4}$ of rank 3 . In other words, there exists a rational map $\mathbb{P}^{4} \rightarrow \mathbb{P}^{1}$ whose fibers consist of the closure of the $\varphi_{G}^{\prime}\left(D_{3}\right)$-orbits. The image $\varphi_{G}^{\prime}\left(\mathcal{S}_{4}\right)$ permutes the torus orbits, hence we obtain a homomorphism $\rho: \mathcal{S}_{4} \rightarrow \mathrm{PGL}_{2}(\mathbb{C})$. By what we observed above, the permutation τ_{1} is contained in the kernel of ρ, whereas the image $\rho\left(\tau_{2}\right)$ has order 3 . The matrix representation in $\mathrm{GL}_{3}(\mathbb{Z})$ of τ_{1} corresponds to s_{1} and the matrix representation of τ_{2} corresponds to s_{2}.

It follows now from Lemma 5.1 that ρ can not be extended to a homomorphism from $\mathrm{GL}_{3}(\mathbb{Z}) \simeq \mathrm{W}_{3}$ to $\mathrm{PGL}_{2}(\mathbb{C})$, which implies that there exists no homomorphism $\Phi:\left\langle\mathrm{PGL}_{4}(\mathbb{C}), \mathrm{W}_{3}\right\rangle \rightarrow \mathrm{Cr}_{4}$ such that $\Phi\left(\mathrm{PGL}_{4}(\mathbb{C})\right)=$ $\varphi_{G}^{\prime}\left(\mathrm{PGL}_{4}(\mathbb{C})\right)$, since W_{3} normalizes the torus and its image would therefore permute the torus orbits as well. The statement follows.

5.2. The case $\mathbb{P}\left(T \mathbb{P}^{2}\right)$

Recall that matrices of order two in $\mathrm{PGL}_{2}(\mathbb{C})$ have the form

$$
\left[\begin{array}{ll}
0 & 1 \tag{5.1}\\
a & 0
\end{array}\right] \text {, or }\left[\begin{array}{cc}
1 & b \\
c & -1
\end{array}\right], \text { where } a \in \mathbb{C}^{*}, b, c \in \mathbb{C}, b c \neq-1
$$

Proposition 5.3. - The embedding $\varphi_{B}: \operatorname{PGL}_{3}(\mathbb{C}) \rightarrow \operatorname{Bir}\left(\mathbb{P}\left(T \mathbb{P}^{2}\right)\right)$ extends uniquely to an embedding

$$
\Phi_{B}: \operatorname{Cr}_{2} \rightarrow \operatorname{Bir}\left(\mathbb{P}\left(T \mathbb{P}^{2}\right)\right)
$$

Proof. - We show that every extension coincides with the one given in Example 1.11. For this it is enough to show that the image of σ is uniquely determined. Assume that there is an extension $\psi: \operatorname{Cr}_{2} \rightarrow \operatorname{Bir}\left(\mathbb{P}\left(T \mathbb{P}^{2}\right)\right)$ of φ_{B}. Our goal is to show $\psi(\sigma)=\Psi_{B}(\sigma)$.

Let $d \in D_{2}, d=\left(a x_{1}, b x_{2}\right)$ with respect to affine coordinates given by $x_{0}=1$. Then $\varphi_{B}(d)=\left(a x_{1}, b x_{2},(b / a) x_{3}\right)$, with respect to suitable local affine coordinates of $\mathbb{P}\left(T \mathbb{P}^{2}\right)$. Let $\phi: \mathbb{P}\left(T \mathbb{P}^{2}\right) \rightarrow \mathbb{P}^{2} \times \mathbb{P}^{1}$ be the birational map given by

$$
\phi:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}, \frac{x_{1}}{x_{2}} x_{3}\right)
$$

with respect to local affine coordinates.
Let $\psi_{1}: \operatorname{Cr}_{2} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{2} \times \mathbb{P}^{1}\right)$ be the algebraic embedding $\psi_{1}=\phi \circ \psi \circ$ ϕ^{-1}. This gives us a \mathbb{P}^{2}-fibration, which we call the horizontal fibration, and a \mathbb{P}^{1}-fibration, which we call the vertical fibration. The image $\psi_{1}\left(D_{2}\right)$ acts canonically on the first factor and leaves the second one invariant. The horizontal fibers thus consist of the closures of D_{2}-orbits. Since W_{2} normalizes D_{2}, the image $\psi_{1}\left(\mathrm{~W}_{2}\right)$ permutes the orbits of $\psi_{1}\left(D_{2}\right)$. Hence it preserves the horizontal fibration and we obtain a homomorphism

$$
\rho: W_{2} \simeq \mathrm{GL}_{2}(\mathbb{Z}) \rightarrow \operatorname{Bir}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}(\mathbb{C}) .
$$

In what follows we identify W_{2} with $\mathrm{GL}_{2}(\mathbb{Z})$.
The images of the three transpositions in $\mathcal{S}_{3}=\mathrm{W}_{2} \cap \mathrm{PGL}_{3}(\mathbb{C})$ under ρ are:

$$
\begin{gathered}
\rho\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \rho\left(\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right)=\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right] \\
\text { and } \rho\left(\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right)=\left[\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right] .
\end{gathered}
$$

The image $\rho(\sigma)$ is either the identity or it has order 2 . The elements of the form (5.1) do not commute with the images of \mathcal{S}_{3} described above. Since σ is contained in the center of W_{2}, we obtain $\rho(\sigma)=\mathrm{id}$.

It remains to show that the action of $\psi_{1}(\sigma)$ on the first factor of $\mathbb{P}^{2} \times \mathbb{P}^{1}$ is the standard action. Let $M=\mathbb{P}^{2}$ be a horizontal fiber. It is stabilized by $\psi\left(D_{2}\right)$ and $\psi(\sigma)$, so we obtain a homomorphism

$$
\gamma:\left\langle D_{2}, \sigma\right\rangle \rightarrow \operatorname{Bir}(M)=\mathrm{Cr}_{2} .
$$

Since $\sigma d \sigma^{-1}=d^{-1}$ for all $d \in D_{2}$, there exists a $d \in D_{2}$ such that $\gamma(\sigma)=$ $d \sigma$. This is true for all horizontal fibers, so $\psi_{1}(\sigma)$ induces an automorphism of $U \times \mathbb{P}^{1}$, where

$$
U=\left\{\left[x_{0}: x_{1}: x_{2}\right] \mid x_{0}, x_{1}, x_{2} \neq 0\right\} \subset \mathbb{P}^{2}
$$

Let $S \simeq \mathbb{P}^{1} \subset U \times \mathbb{P}^{1}$ be a vertical fiber and $\pi: U \times \mathbb{P}^{1} \rightarrow U$ the projection onto the first factor. Then $\pi \circ \psi_{1}(\sigma)(S)$ is a regular map from \mathbb{P}^{1} to the affine set U and is therefore constant. We obtain that $\psi_{1}(\sigma)$ preserves the vertical fibration.

The image $\psi_{1}\left(\mathrm{PGL}_{3}(\mathbb{C})\right)$ preserves the vertical fibration as well and projection onto \mathbb{P}^{2} yields a homomorphism from $\mathrm{PGL}_{3}(\mathbb{C})$ to Cr_{2} that is the standard embedding. Hence $\psi_{1}\left(\mathrm{Cr}_{2}\right)$ preserves the vertical fibration and we obtain an algebraic homomorphism from Cr_{2} to Cr_{2}, which is uniquely determined by its restriction to $\mathrm{PGL}_{3}(\mathbb{C})$. So the image $\psi_{1}(\sigma)$ is uniquely determined by its restriction to $\mathrm{PGL}_{3}(\mathbb{C})$ (see Appendix).

Proposition 5.4. - There exists no homomorphism $\Phi: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{3}$ such that

$$
\left.\Phi\right|_{\mathrm{PGL}_{3}(\mathbb{C})}=\varphi_{B} \circ \alpha,
$$

where φ_{B} denotes the embedding of PGL_{3} into Cr_{3} from Example 1.11 and α the algebraic automorphism of PGL_{3} given by $g \mapsto{ }^{t} g^{-1}$.

Proof. - Assume that such an extension $\Phi: \mathrm{Cr}_{2} \rightarrow \mathrm{Cr}_{3}$ of $\varphi_{B} \circ \alpha$ exists.
Observe that $\alpha\left(D_{2}\right)=D_{2}$ and that $\left.\alpha\right|_{\mathcal{S}_{3}}=\operatorname{id}_{\mathcal{S}_{3}}$. Therefore, we can repeat the same argument as in the proof of Proposition 5.3 to obtain $\Psi(\sigma)=\Phi_{B}(\sigma)$. But we have

$$
\Psi(\sigma) \Psi(g) \Psi(\sigma) \Psi(g) \Psi(\sigma) \Psi(g) \neq \mathrm{id}
$$

for $g=[z-x: z-y: z]$. This contradicts the relations in Cr_{2} (Proposition A.4).

5.3. The case $\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-k(n+1))\right)$

Proposition 5.5. - The algebraic homomorphism $\varphi_{l}: \mathrm{PGL}_{n+1}(\mathbb{C}) \rightarrow$ $\operatorname{Bir}\left(F_{l}\right)$ extends uniquely to the embedding

$$
\Psi_{l}: \mathrm{H}_{n} \rightarrow \operatorname{Bir}\left(F_{l}\right) \quad \text { (see Example 1.10). }
$$

Proof. - Suppose that there is an extension $\psi: \mathrm{H}_{n} \rightarrow \operatorname{Bir}\left(F_{l}\right)$ of φ_{l}. We will show that ψ is unique and therefore that $\psi=\Psi_{l}$.

Let $\left(x_{1}, \ldots, x_{n-1}, w\right)$ be local affine coordinates of F_{l} such that for every $g \in \mathrm{PGL}_{n+1}(\mathbb{C})$ the image $\varphi_{l}(g)$ acts by

$$
\left(x_{1}, \ldots, x_{n}, w\right) \mapsto\left(g\left(x_{1}, \ldots, x_{n}\right), J\left(g\left(x_{1}, \ldots, x_{n}\right)\right)^{-l} w\right)
$$

In particular, the image under ψ of $\left(d_{1} x_{1}, \ldots, d_{n} x_{n}\right) \in D_{n}$ acts by

$$
\left(x_{1}, \ldots, x_{n}, w\right) \mapsto\left(d_{1} x_{1}, \ldots, d_{n} x_{n},\left(d_{1} \ldots d_{n}\right)^{-l} w\right)
$$

Define $\phi: F_{l} \rightarrow \mathbb{P}^{n} \times \mathbb{P}^{1}$ by

$$
\phi:\left(x_{1}, \ldots, x_{n}, w\right) \mapsto\left(x_{1}, \ldots, x_{n},\left(x_{1} \ldots x_{n}\right)^{l} w\right)
$$

with respect to local affine coordinates. Let $\psi_{1}: \operatorname{Cr}_{n} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n} \times \mathbb{P}^{1}\right)$ be the algebraic embedding $\psi_{1}:=\phi \circ \psi \circ \phi^{-1}$. Then the image $\psi_{1}\left(D_{n}\right)$ acts canonically on the first factor and leaves the second one invariant. Since W_{n} normalises D_{n}, the image $\psi_{1}\left(\mathrm{~W}_{n}\right)$ permutes the orbits of $\psi_{1}\left(D_{n}\right)$. Hence $\psi_{1}\left(\mathrm{~W}_{n}\right)$ preserves the horizontal fibration. This induces a homomorphism

$$
\rho: \mathrm{W}_{n} \simeq \mathrm{GL}_{n}(\mathbb{Z}) \rightarrow \mathrm{PGL}_{2}(\mathbb{C})
$$

In what follows, we identify W_{n} with $\mathrm{GL}_{n}(\mathbb{Z})$. Define $\mathcal{A}_{n+1} \subset \mathcal{S}_{n+1} \subset$ $\mathrm{PGL}_{n+1}(\mathbb{C})$ to be the subgroup of coordinate permutations $s \in \mathcal{S}_{n+1}$ such that $J(s)=1$. Hence $\mathcal{A}_{n+1} \in \operatorname{ker}(\rho)$. Note that the fixed point set of $\psi_{1}\left(\mathcal{A}_{n+1}\right)$ is the vertical fiber

$$
L:=[1: \cdots: 1] \times \mathbb{P}^{1} \subset \mathbb{P}^{n} \times \mathbb{P}^{1}
$$

Since σ_{n} commutes with \mathcal{A}_{n+1}, the image $\psi_{1}\left(\sigma_{n}\right)$ stabilises L. The group $\psi_{1}\left(D_{n}\right)$ acts transitively on an open dense subset of vertical fibers that contains L. Since $\psi_{1}\left(\sigma_{n}\right)$ normalizes $\psi_{1}\left(D_{n}\right)$, we obtain that $\psi_{1}\left(\sigma_{n}\right)$ preserves the vertical fibration. Therefore $\left\langle\mathrm{PGL}_{n+1}(\mathbb{C}), \sigma_{n}\right\rangle$ preserves the vertical fibration. We obtain a homomorphism $\left\langle\mathrm{PGL}_{n+1}(\mathbb{C}), \sigma_{n}\right\rangle \rightarrow \mathrm{Cr}_{n}$, which is, by Corollary A. 3 and its proof, the standard embedding.

Let

$$
f_{A}=\left(\frac{1}{x_{1}}, x_{2}, \ldots, x_{n}\right)
$$

In [11] it is shown that f_{A} is contained in $\left\langle\mathrm{PGL}_{n+1}(\mathbb{C}), \sigma_{n}\right\rangle$, which implies that $\psi_{1}\left(f_{A}\right)$ preserves the vertical fibration and that its action on \mathbb{P}^{n} is the standard action.

Recall that $\left(h f_{A}\right)^{3}=\mathrm{id}$ for $h=\left(1-x_{1}, x_{2}, \ldots, x_{n-1}\right) \in \operatorname{Cr}_{n}$. The image $\psi_{1}(h)$ is

$$
\psi_{1}(h):\left(x_{1}, \ldots, x_{n}, z\right) \mapsto\left(1-x_{1}, x_{2}, \ldots, x_{n},(-1)^{l} z\right)
$$

Denote by $A \in \mathrm{GL}_{n}(\mathbb{Z})$ the integer matrix corresponding to f_{A}. We have $\rho(A)=\operatorname{id}$ or $\rho(A)$ is of order two, i.e. it has the form (5.1).

Suppose that $\rho(A)=\mathrm{id}$. Then

$$
\psi_{1}\left(f_{A}\right):\left(x_{1}, \ldots x_{n}, z\right) \mapsto\left(\frac{1}{x_{1}}, x_{2} \ldots x_{n}, z\right)
$$

The relation $\left(h f_{A}\right)^{3}=\mathrm{id}$ then implies that l is even.

Suppose that

$$
\rho\left(f_{A}\right)=\left[\begin{array}{cc}
1 & b \\
c & -1
\end{array}\right], \text { where } b, c \in \mathbb{C}, b c \neq-1
$$

hence

$$
\psi_{1}\left(f_{A}\right):\left(x_{1}, \ldots x_{n}, z\right) \mapsto\left(\frac{1}{x_{1}}, x_{2} \ldots x_{n}, \frac{z+b}{c z-1}\right)
$$

and therefore

$$
\psi_{1}\left(h f_{A}\right)=\left(x_{1}, \ldots x_{n}, z\right) \mapsto\left(1-\frac{1}{x_{1}}, \ldots x_{n}, \frac{(-1)^{l} z+(-1)^{l} b}{c z-1}\right)
$$

One calculates that if l is even, then the relation $\left(h f_{A}\right)^{3}=\mathrm{id}$ is not satisfied. So assume that l is odd. This gives

$$
\psi_{1}\left(h f_{A}\right)^{3}=\left(x_{1}, \ldots x_{n}, z\right) \mapsto\left(x_{1}, \ldots x_{n}, \frac{a_{1} z+a_{2}}{a_{3} z-a_{4}}\right)
$$

where $a_{1}=3 b c-1, a_{2}=(b c-1) b-2 b, a_{3}=(1-b c) c+2 c$ and $a_{4}=3 b c-1$. So $\left(h f_{A}\right)^{3}=\mathrm{id}$ yields either l odd and $b=c=0$ or l odd and $b c=3$. However, the latter is not possible. Consider the transformation

$$
\tau=\left(x_{1}, \ldots, x_{n-2}, x_{n}, x_{n-1}\right) \in \mathcal{S}_{n}
$$

We have $f_{A} \tau=\tau f_{A}$. Note that

$$
\psi_{1}(\tau):\left(x_{1}, \ldots, x_{n}, z\right) \mapsto\left(x_{1}, \ldots, x_{n-2}, x_{n}, x_{n-1}, \ldots, x_{n},(-1)^{l} z\right)
$$

and this transformation does not commute with $\left(x_{1}, \ldots x_{n}, \frac{a_{1} z+a_{2}}{a_{3} z-a_{4}}\right)$ in the second case. Hence $c=b=0$ and l is odd.

Finally, assume that

$$
\rho\left(f_{A}\right)=\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right], \text { where } a \in \mathbb{C}^{*}
$$

This implies

$$
\psi_{1}\left(f_{A}\right):\left(x_{1}, \ldots x_{n}, z\right) \mapsto\left(\frac{1}{x_{1}}, x_{2} \ldots x_{n}, \frac{1}{a z}\right)
$$

and hence $\psi\left(h f_{A}\right)^{3} \neq \mathrm{id}$.
We conclude that

$$
\rho\left(f_{A}\right)=\left[\begin{array}{cc}
1 & 0 \\
0 & (-1)^{l}
\end{array}\right]
$$

and therefore that the action of $\psi\left(f_{A}\right)$ is uniquely determined by l. Hence

$$
\left.\psi\right|_{\left\langle\mathrm{PGL}_{n}(\mathbb{C}), \sigma_{n-1}\right\rangle}=\left.\Psi_{l}\right|_{\left\langle\mathrm{PGL}_{n}(\mathbb{C}), \sigma_{n-1}\right\rangle}
$$

Let f_{B}, f_{C}, f_{D} and $f_{E} \in \mathrm{Cr}_{n}$ be as in the proof of Corollary A.2. By Lemma A. 5 it remains to show that the image $\psi\left(f_{B}\right)$ is uniquely determined. We use once more the relation

$$
f_{B}=f_{D} f_{C} f_{E} f_{D}^{-1}
$$

Since $\rho(C E)=\mathrm{id}$ and since f_{D} has order two, we obtain $\rho(B)=\mathrm{id}$.
Let $c \in \mathbb{P}^{1}$ such that the restriction of $\psi_{1}\left(f_{B}\right)$ to the hyperplane

$$
\{c\} \times \mathbb{P}^{n} \subset \mathbb{P}^{1} \times \mathbb{P}^{n}
$$

is a birational map. Then the restriction of $\psi_{1}\left(f_{B}\right)$ to $\{c\} \times \mathbb{P}^{n}$ has to fulfill the relations with the group $\left\langle\mathrm{PGL}_{n+1}(\mathbb{C}), \sigma_{n}\right\rangle$. By Corollary A. 3 we obtain that this restriction has to be f_{B}. Hence the image $\psi_{1}\left(f_{B}\right)$ is unique.

Proposition 5.6. - There exists no group homomorphism $\psi: \mathrm{H}_{n} \rightarrow$ $\operatorname{Bir}\left(F_{l}\right)$ such that $\left.\psi\right|_{\mathrm{PGL}_{n+1}(\mathbb{C})}=\varphi_{l} \circ \alpha$.

Proof. - Assume that such an extension $\psi: \mathrm{H}_{n} \rightarrow \mathrm{Cr}_{n}$ exists. Let ϕ be as in Proposition 5.5 and $\psi_{2}: \mathrm{H}_{n} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{1} \times \mathbb{P}^{n}\right)$,

$$
\psi_{2}:=\phi \circ \varphi_{l} \circ \alpha \circ \phi^{-1} .
$$

Similarly as in the proof of Proposition 5.5 one can show that $\psi_{2}\left(\sigma_{n}\right)$ preserves the vertical fibration. In that way we obtain an algebraic homomorphism

$$
A:\left\langle\mathrm{PGL}_{n+1}(\mathbb{C}), \sigma\right\rangle \rightarrow \mathrm{Cr}_{n}
$$

such that $\left.A\right|_{\mathrm{PGL}_{n+1}(\mathbb{C})}=\alpha$. Such a homomorphism does not exist by Corollary A.3.

5.4. The case $C \times \mathbb{P}^{n}$

Throughout this section, C denotes a projective curve. For the proof of Theorem 4.1 it is enough to consider non rational curves, however, the following propositions hold in the more general case.

Proposition 5.7. - The embedding $\varphi_{C}: \operatorname{PGL}_{n+1}(\mathbb{C}) \rightarrow \operatorname{Bir}\left(C \times \mathbb{P}^{n}\right)$ extends uniquely to the standard embedding

$$
\Phi_{C}: \mathrm{H}_{n} \rightarrow \operatorname{Bir}\left(C \times \mathbb{P}^{n}\right) \quad(\text { see Example 1.9) }
$$

Proof. - Let $\pi: C \times \mathbb{P}^{n} \rightarrow C$ be the first projection. Suppose that there is an extension $\Psi: \mathrm{H}_{n} \rightarrow \operatorname{Bir}\left(C \times \mathbb{P}^{n}\right)$ of φ_{C}. By definition, $\Psi\left(\mathrm{PGL}_{n+1}(\mathbb{C})\right)$ fixes the fibers of π. Moreover, each fiber of π is a closure of a $\Psi\left(D_{n}\right)$-orbit. Since the elements of W_{n} commute with D_{n}, we conclude that $\Psi\left(\mathrm{W}_{n}\right)$
preserves the fibration given by π. Hence H_{n} preserves the fibration given by π and we obtain a homomorphism

$$
\rho: \mathrm{H}_{n} \rightarrow \operatorname{Bir}(C)
$$

such that $\operatorname{PGL}_{n+1}(\mathbb{C}) \subset \operatorname{ker}(\rho)$. In the Appendix it is shown that the normal subgroup generated by $\mathrm{PGL}_{n+1}(\mathbb{C})$ in H_{n} is all of H_{n}. Hence ρ is trivial and $\Psi\left(\mathrm{H}_{n}\right)$ preserves every fiber of π. The restriction $\left.\Psi\left(\mathrm{H}_{n}\right)\right|_{c \times \mathbb{P}^{n}}$ for any $c \in C$ defines a homomorphism from H_{n} to Cr_{n} such that the restriction to $\mathrm{PGL}_{n+1}(\mathbb{C})$ is the standard embedding. By Corollary A.3, this is the standard embedding. Hence Ψ is unique.

Proposition 5.8. - There exists no group homomorphism $\Psi: \mathrm{H}_{n} \rightarrow$ $\operatorname{Bir}\left(\mathbb{C} \times \mathbb{P}^{n}\right)$ such that $\left.\Psi\right|_{\mathrm{PGL}_{n+1}(\mathbb{C})}=\varphi_{C} \circ \alpha$.

Proof. - Assume there exists such a Ψ. As in the proof of Proposition 5.7 one can show that $\Psi\left(\mathrm{H}_{n}\right)$ fixes the horizontal fibration. The restriction $\left.\Psi\left(\mathrm{H}_{n}\right)\right|_{c \times \mathbb{P}^{n-1}}$ defines for each $c \in C$ a homomorphism from H_{n} to Cr_{n} such that the restriction to $\mathrm{PGL}_{n+1}(\mathbb{C})$ is given by $g \mapsto \alpha(g)$. By Corollary A.3, there exists no such homomorphism.

5.5. Proof of Theorem 1.13

Statement (1) is the content of Theorem 4.1. Statement (2) follows from Proposition 5.2. Statement (3) and (4) follow from the Propositions 5.3, 5.4, $5.5,5.6,5.7$ and 5.8. Note that the Propositions 5.2, 5.4, 5.6 and 5.8 show that the regular actions of $\mathrm{PGL}_{n+1}(\mathbb{C})$ that do not extend to a rational action of Cr_{n} also do not extend to a rational action of H_{n}.

Appendix

Let $\gamma: \mathbb{C} \rightarrow \mathbb{C}$ be a field homomorphism. By acting on the coordinates, γ induces a bijective map $\Gamma: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$. Conjugation with Γ yields a group homomorphism of Cr_{n} that preserves degrees. Observe that we obtain the image of $g \in \mathrm{Cr}_{n}$ by letting γ operate on the coefficients of g. By abuse of notation we denote this group homomorphism by γ as well. In [22] Déserti showed that all automorphisms of Cr_{2} are inner up to field automorphisms of that type. A generalization of this result is the following theorem by Cantat:

Theorem A. 1 ([16]). - Let M be a smooth projective variety of dimension n and $r \in \mathbb{Z}^{+}$. Let $\rho: \mathrm{PGL}_{r+1}(\mathbb{C}) \rightarrow \operatorname{Bir}(M)$ be a non-trivial group homomorphism. Then $n \geqslant r$ and if $n=r$ then M is rational and there exists a homomorphism of fields $\gamma: \mathbb{C} \rightarrow \mathbb{C}$ such that ρ is up to conjugation the standard embedding of $\mathrm{PGL}_{n+1}(\mathbb{C})$ into Cr_{n} followed by the group homomorphism $\gamma: \mathrm{Cr}_{n} \rightarrow \mathrm{Cr}_{n}$.

The goal of this appendix is to prove the following two corollaries of Theorem A.1:

Corollary A.2. - Let $n>m$ and let $\Phi: \mathrm{Cr}_{n} \rightarrow \mathrm{Cr}_{m}$ be a group homomorphism. Then the normal subgroup of Cr_{n} containing H_{n} is contained in the kernel of Φ.

No such non-trivial homomorphism is known so far. In fact, it is an open question, whether Cr_{n} is simple for $n \geqslant 3$.

Let $\alpha: \mathrm{PGL}_{n+1}(\mathbb{C}) \rightarrow \mathrm{PGL}_{n+1}(\mathbb{C})$ be the algebraic automorphism defined by $g \mapsto{ }^{t} g^{-1}$.

Corollary A.3. - Let $\Psi: \mathrm{H}_{n} \rightarrow \mathrm{Cr}_{n}$ be a non-trivial group homomorphism. Then there exists a homomorphism of fields γ of \mathbb{C} and an element $g \in \mathrm{Cr}_{n}$ such that $g \Psi g^{-1}$ is the standard embedding followed by the group homomorphism γ.

Moreover, the extension of the standard embedding φ : $\mathrm{PGL}_{n+1}(\mathbb{C}) \rightarrow$ Cr_{n} as well as the extension of the embedding $\gamma \circ \varphi$, to the group H_{n} is unique, where γ is any field homomorphism of \mathbb{C}. The embedding $\varphi \circ \alpha$ does not extend to a homomorphism from H_{n} to Cr_{n}.

By the theorem of Noether and Castelnuovo, Corollary A. 3 implies in particular the theorem of Déserti about automorphisms of Cr_{2}.

We often use the following relations between elements of the Cremona group:

Lemma A.4. - In Cr_{2} the following relations hold:
(1) $\sigma \tau(\tau \sigma)^{-1}=\mathrm{id}$ for all $\tau \in \mathcal{S}_{3}$,
(2) $\sigma d=d^{-1} \sigma$ for all diagonal maps $d \in D_{2}$ and
(3) $(\sigma h)^{3}=\mathrm{id}$ for $h=\left[x_{2}-x_{0}: x_{2}-x_{1}: x_{2}\right]$.

Proof. - One checks the identities by a direct calculation.
Denote by $\mathrm{Cr}_{n}^{0} \subset \mathrm{Cr}_{n}$ the subgroup consisting of elements that contract only rational hypersurfaces. We have $\mathrm{H}_{n} \subset \mathrm{Cr}_{n}^{0}$. On the other hand, it seems to be an interesting open question, whether there exist elements in Cr_{n}^{0} that are not contained in H_{n} for any $n \geqslant 3$ (cf. [35]).

Lemma A.5. - The group H_{n} is generated by the group $\mathrm{PGL}_{n+1}(\mathbb{C})$ and the two birational transformations $\sigma_{n}:=\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)$ and $f_{B}:=$ $\left(x_{1} x_{2}, x_{2}, x_{3}, \ldots, x_{n}\right)$.

Proof. - It is known that $\mathrm{GL}_{n}(\mathbb{Z})$ is generated by the subgroup of permutation matrices in $\mathrm{GL}_{n}(\mathbb{Z})$ and the two elements

$$
A:=\left(\begin{array}{ccccc}
-1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
& & \ldots & & \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right) \text { and } B:=\left(\begin{array}{ccccc}
1 & 1 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
& & \ldots & & \\
& & & & \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

(see for example [31, III.A.2]). Notice that f_{B} is the birational transformation in W_{n} corresponding to B. Let f_{A} be the birational transformation corresponding to A. In [11] it is shown that f_{A} is contained in $\left\langle\mathrm{PGL}_{n+1}(\mathbb{C}), \sigma_{n}\right\rangle$.

Proof of Corollary A.2. - By Lemma A. 5 it is enough to show that σ_{n} and f_{B} are contained in the normal subgroup containing $\mathrm{PGL}_{n+1}(\mathbb{C})$. Let

$$
g_{n}:=\left[x_{n}-x_{0}: x_{n}-x_{1}: \cdots: x_{n}-x_{n-1}: x_{n}\right] \in \mathrm{PGL}_{n+1}(\mathbb{C})
$$

Then $\sigma_{n} g_{n} \sigma_{n} g_{n} \sigma_{n} g_{n}=\mathrm{id}$. In particular, $\sigma_{n} g_{n}$ conjugates σ_{n} to g_{n}.
Let

$$
\begin{aligned}
C:=\left(\begin{array}{ccccc}
-1 & 2 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
& & \ldots & & \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right), D:=\left(\begin{array}{ccccc}
-1 & 0 & 0 & \ldots & 0 \\
-1 & 1 & 0 & \ldots & 0 \\
& & \ldots & & \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right), \\
E:=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
1 & & 0 & \ldots & 0 \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right),
\end{aligned}
$$

and let f_{C}, f_{D} and f_{E} be the corresponding elements in W_{n}. It is shown in [11] that f_{C} is contained in $\left\langle\mathrm{PGL}_{n+1}(\mathbb{C}), \sigma_{n}\right\rangle$. Moreover, one calculates that

$$
f_{B}=f_{D} f_{C} f_{E} f_{D}^{-1}
$$

which implies that f_{B} is conjugate to an element in $\left\langle\mathrm{PGL}_{n+1}(\mathbb{C}), \sigma_{n}\right\rangle$.

Proof of Corollary A.3. - By Theorem A. 1 we may assume that there exists a field homomorphism $\gamma: \mathbb{C} \rightarrow \mathbb{C}$, such that, up to conjugation, the restriction of Ψ to $\mathrm{PGL}_{n+1}(\mathbb{C})$ is the standard embedding composed with γ or the standard embedding composed with γ and the automorphism α of $\mathrm{PGL}_{n+1}(\mathbb{C})$ given by $\alpha(g)={ }^{t} g^{-1}$.

Therefore, after conjugation, the restriction of Ψ to D_{2} is the standard embedding composed with γ. In particular, $\Psi\left(D_{2}\right)=\gamma\left(D_{2}\right)$ is dense in D_{2} and therefore $\Psi\left(\mathrm{W}_{n}\right)$ is contained in $D_{n} \rtimes \mathrm{~W}_{n}$. Assume that $\Psi\left(\sigma_{n}\right)=d \tau$ for some $d \in D_{n}$ and $\tau \in \mathrm{W}_{n}$. The relation $\Psi\left(\sigma_{n}\right) \Psi(e) \Psi\left(\sigma_{n}\right)=\Psi(e)^{-1}$ for all $e \in D_{n}$ implies $\Psi\left(\sigma_{n}\right) e \Psi\left(\sigma_{n}\right)=e^{-1}$ for all $e \in D_{2}$ and hence $\tau=\sigma_{n}$. Note that the restriction of Ψ to \mathcal{S}_{n+1} is the standard embedding. So for all $\tau \in \mathcal{S}_{n+1}$ we obtain

$$
\tau d \sigma_{n}=d \sigma_{n} \tau=d \tau \sigma_{n}
$$

The only element in D_{n} that commutes with \mathcal{S}_{n+1} is the identity. Hence $\Psi\left(\sigma_{n}\right)=\sigma_{n}$.

Let g_{n} be as in the proof of Corollary A.2. The relation $\sigma_{n} g_{n} \sigma_{n} g_{n} \sigma_{n} g_{n}=$ id implies that $\left.\Psi\right|_{\mathrm{PGL}_{n+1}(\mathbb{C})}$ is the standard embedding composed with γ, since

$$
\sigma_{n} \alpha\left(g_{n}\right) \sigma_{n} \alpha\left(g_{n}\right) \sigma_{n} \alpha\left(g_{n}\right) \neq \mathrm{id}
$$

It remains to show that $\Psi\left(f_{B}\right)=f_{B}$. Let $d \in D_{n}$, and $\rho \in \mathrm{W}_{n}$ such that $\Psi\left(f_{B}\right)=d \rho$. The image $\Psi\left(f_{B}\right)$ acts on $\Psi\left(D_{n}\right)$ by conjugation. The action of $\Psi\left(f_{B}\right)$ on $\Psi\left(D_{n}\right)$ is determined by ρ. Since $\left.\Psi\right|_{D_{n}}$ is the standard embedding composed with γ, we obtain $\rho=f_{B}$. Let $d=\left(d_{1} x_{1}, \ldots, d_{n} x_{n}\right)$. The image $\Psi\left(f_{B}\right)$ commutes with σ_{n}. We obtain

$$
d^{-1} \sigma_{n} f_{B}=\sigma_{n} d f_{B}=d f_{B} \sigma_{n}=d \sigma_{n} f_{B}
$$

and hence $d_{i}= \pm 1$ for all i.
The image $\Psi\left(f_{B}\right)$ commutes with all elements of \mathcal{S}_{n+1} that fix the coordinates x_{1} and x_{2}. Similarly as above, this yields that d commutes with all elements of \mathcal{S}_{n+1} that fix the coordinates x_{1} and x_{2} and we get $d_{i}=1$ for $i \neq 1$ and $i \neq 2$.

In [11] it is shown that f_{B}^{2} is contained in $\left\langle\mathrm{PGL}_{n+1}(\mathbb{C}), \sigma_{n}\right\rangle$. By what we proved above, this gives

$$
\Psi\left(f_{B}^{2}\right)=f_{B}^{2}=d f_{B} d f_{B}=d d^{\prime} f_{B}^{2}
$$

where $d^{\prime}=\left(d_{1} d_{2} x_{1}, d_{2} x_{2}, \ldots, d_{n} x_{n}\right)$. So $d d^{\prime}=\mathrm{id}$, which yields $d_{1}^{2} d_{2}=1$ and therefore $d_{2}=1$. This means that we have either $\Psi\left(f_{B}\right)=f_{B}$ or $\Psi\left(f_{B}\right)=d f_{B}$ with $d=\left(-x_{1}, x_{2}, \ldots, x_{n}\right)$.

Let

$$
\begin{aligned}
r_{1} & :=\left[x_{0}: x_{1}: \cdots: x_{n-1}: x_{n}+x_{1}\right], \quad r_{2}:=\left[x_{n}: x_{1}: \cdots: x_{n-1}: x_{0}\right], \\
r_{3} & :=\left[x_{n}: x_{0}: x_{2}: \cdots: x_{n-1}: x_{1}\right], \quad t:=\left[x_{n}: x_{0}: \cdots: x_{n-1}\right] .
\end{aligned}
$$

We have the relation

$$
\left(r_{2} t f_{B} t^{-1} r_{3}\right) r_{1}\left(r_{2} t f_{B} t^{-1} r_{3}\right)=r_{1}
$$

and therefore

$$
\left(r_{2} t \Psi\left(f_{B}\right) t^{-1} r_{3}\right) r_{1}\left(r_{2} t \Psi\left(f_{B}\right) t^{-1} r_{3}\right)=r_{1}
$$

One calculates that, if $\Psi\left(f_{B}\right)=\left(-x_{1}, x_{2}, \ldots, x_{n}\right) f_{B}$, then this relation is not satisfied. Hence $\Psi\left(f_{B}\right)=f_{B}$.

BIBLIOGRAPHY

[1] D. N. Akhiezer, Lie group actions in complex analysis, Aspects of Mathematics, vol. 27, Friedr. Vieweg \& Sohn, 1995, viii+201 pages.
[2] M. Alberich-Carramiñana, Geometry of the plane Cremona maps, Lecture Notes in Mathematics, vol. 1769, Springer, 2002, xvi +257 pages.
[3] I. V. Artamkin, "Stable bundles with $c_{1}=0$ on rational surfaces", Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 2, p. 227-241.
[4] A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc \& P. Swinnerton-Dyer, "Variétés stablement rationnelles non rationnelles", Ann. Math. 121 (1985), no. 2, p. 283-318.
[5] B. A. BiaŁynicki-Birula, "Remarks on the action of an algebraic torus on k^{n} I", Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 14 (1966), p. 177-181.
[6] J. Blanc, "Conjugacy classes of affine automorphisms of \mathbb{K}^{n} and linear automorphisms of \mathbb{P}^{n} in the Cremona groups", Manuscr. Math. 119 (2006), no. 2, p. 225-241.
[7] , "Sous-groupes algébriques du groupe de Cremona", Transform. Groups 14 (2009), no. 2, p. 249-285.
[8] , "Symplectic birational transformations of the plane", Osaka J. Math. 50 (2013), no. 2, p. 573-590.
[9] J. Blanc \& J. Déserti, "Degree growth of birational maps of the plane", Ann. Sc. Norm. Super. Pisa, Cl. Sci. 14 (2015), no. 2, p. 507-533.
[10] J. Blanc \& J.-P. Furter, "Topologies and structures of the Cremona groups", Ann. Math. 178 (2013), no. 3, p. 1173-1198.
[11] J. Blanc \& I. Hedén, "The group of Cremona transformations generated by linear maps and the standard involution", Ann. Inst. Fourier 65 (2015), no. 6, p. 26412680.
[12] A. Borel \& J. Tits, "Homomorphismes "abstraits" de groupes algébriques simples", Ann. Math. 97 (1973), p. 499-571.
[13] M. Brion, "Spherical Varieties: An Introduction", in Topological methods in algebraic transformation groups, Progress in Mathematics, vol. 80, Springer, 1989, p. 11-26.
[14] M. Brunella, "Feuilletages holomorphes sur les surfaces complexes compactes", Ann. Sci. Éc. Norm. Supér. 30 (1997), no. 5, p. 569-594.
[15] S. Cantat, "Endomorphismes des variétés homogènes", Enseign. Math. 49 (2003), no. 3-4, p. 237-262.
[16] , "Morphisms between Cremona groups, and characterization of rational varieties", Compos. Math. 150 (2014), no. 7, p. 1107-1124.
[17] S. Cantat \& A. Zeghib, "Holomorphic actions, Kummer examples, and Zimmer program", Ann. Sci. Éc. Norm. Supér. 45 (2012), no. 3, p. 447-489.
[18] D. Cerveau \& J. Déserti, "Birational maps preserving the contact structure on $\mathbb{P}_{\mathbb{C}}^{3} "$, http://arxiv.org/abs/1602.08866v1, to appear in J. Math. Soc. Japan, 2016.
[19] A. Corti \& A.-S. Kaloghiros, "The Sarkisov program for Mori fibred Calabi-Yau pairs", Algebr. Geom. 3 (2016), no. 3, p. 370-384.
[20] M. Demazure, "Sous-groupes algébriques de rang maximum du groupe de Cremona", Ann. Sci. Éc. Norm. Supér. 3 (1970), p. 507-588.
[21] J. Déserti, "On the Cremona group: some algebraic and dynamical properties", Theses, Université Rennes 1 (France), 2006, https://tel.archives-ouvertes.fr/ tel-00125492/file/these.pdf.
[22] , "Sur les automorphismes du groupe de Cremona", Compos. Math. 142 (2006), no. 6, p. 1459-1478.
[23] , "Some properties of the group of birational maps generated by the automorphisms of $\mathbb{P}_{\mathbb{C}}^{n}$ and the standard involution", http://arxiv.org/abs/1403.0346v1, 2015.
[24] J. A. Dieudonné, La géométrie des groupes classiques, 3^{e} ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 5, Springer, 1971, viii+129 pages.
[25] J. Diller \& J.-L. Lin, "Rational surface maps with invariant meromorphic twoforms", Math. Ann. 364 (2016), no. 1-2, p. 313-352.
[26] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, 2012, A modern view, xii+639 pages.
[27] F. Enriques, "Sui gruppi continui di trasformazioni cremoniane nel piano", Rend. Accad. Lincei, 1er sem 5 (1893), no. 1, p. 468-473.
[28] W. Fulton \& J. Harris, Representation theory. A first course, Graduate Texts in Mathematics, vol. 129, Springer, 1991, xvi+551 pages.
[29] M. Gizatullin, "On some tensor representations of the Cremona group of the projective plane", in New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., vol. 264, Cambridge University Press, 1999, p. 111150.
[30] , "Klein's conjecture for contact automorphisms of the three-dimensional affine space", Mich. Math. J. 56 (2008), no. 1, p. 89-98.
[31] P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, 2000, vi +310 pages.
[32] H. P. Hudson, Cremona transformation in Plane and Space, Cambridge University Press, 1927.
[33] J. E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, vol. 21, Springer, 1975, xiv+247 pages.
[34] S. Lamy, "Une preuve géométrique du théorème de Jung", Enseign. Math. 48 (2002), no. 3-4, p. 291-315.
[35] , "On the genus of birational maps between threefolds", in Automorphisms in birational and affine geometry, Springer Proceedings in Mathematics \& Statistics, vol. 79, Springer, 2014, p. 141-147.
[36] I. Pan, "Une remarque sur la génération du groupe de Cremona", Bol. Soc. Bras. Mat., Nova Sér. 30 (1999), no. 1, p. 95-98.
[37] V. L. Popov, "Tori in the Cremona groups", Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 4, p. 103-134.
[38] C. Procesi, Lie groups. An approach through invariants and representations, Universitext, Springer, 2007, xxiv+596 pages.
[39] J.-P. Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer, 1979, Translated from the French by Marvin Jay Greenberg, viii+241 pages.
[40] , "Le groupe de Cremona et ses sous-groupes finis", in Séminaire Bourbaki 2008/2009, Astérisque, vol. 332, Société Mathématique de France, 2010, p. 75-100.
[41] I. Stampfli, "A note on automorphisms of the affine Cremona group", Math. Res. Lett. 20 (2013), no. 6, p. 1177-1181.
[42] H. Sumihiro, "Equivariant completion", J. Math. Kyoto Univ. 14 (1974), p. 1-28.
[43] H. Umemura, "Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of exceptional type", Nagoya Math. J. 87 (1982), p. 59-78.
[44] , "On the maximal connected algebraic subgroups of the Cremona group. I", Nagoya Math. J. 88 (1982), p. 213-246.
[45] , "On the maximal connected algebraic subgroups of the Cremona group. II", in Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, p. 349-436.
[46] C. Urech, "Subgroups of Cremona groups", PhD Thesis, University of Basel (Switzerland) / University of Rennes 1 (France), 2017.
[47] A. Weil, "On algebraic groups of transformations", Am. J. Math. 77 (1955), p. 355391.
[48] A. R. Williams, "Birational transformations in 4 -space and 5 -space", Bull. Am. Math. Soc. 44 (1938), no. 4, p. 272-278.
[49] D. Zaitsev, "Regularization of birational group operations in the sense of Weil", J. Lie Theory 5 (1995), no. 2, p. 207-224.
[50] D.-Q. Zhang, "The g-periodic subvarieties for an automorphism g of positive entropy on a compact Kähler manifold", Adv. Math. 223 (2010), no. 2, p. 405-415.

Manuscrit reçu le 25 avril 2016, révisé le 5 décembre 2016, accepté le 24 janvier 2017.

Christian URECH

IRMAR
Université de Rennes 1 35042 Rennes (France) christian.urech@unibas.ch Current address:
DMI, Universität Basel
Spiegelgasse 1
4051 Basel (Switzerland)
christian.urech@gmail.com

[^0]: Keywords: Cremona group, rational group actions, algebraic group actions.
 2010 Mathematics Subject Classification: 14E07, 14L30, 32M05.
 $\left(^{*}\right)$ The author gratefully acknowledges support by the Swiss National Science Foundation Grant "Birational Geometry" PP00P2 128422 /1 as well as by the Geldner-Stiftung, the FAG Basel, the Janggen Pöhn-Stiftung and the State Secretariat for Education, Research and Innovation of Switzerland.

