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COVARIANT BI-DIFFERENTIAL OPERATORS ON
MATRIX SPACE

by Jean-Louis CLERC

Abstract. — A family of bi-differential operators from C∞(Mat(m,R) ×
Mat(m,R)) into C∞(Mat(m,R)) which are covariant for the projective action of
the group SL(2m,R) on Mat(m,R) is constructed, generalizing both the transvec-
tants and the Rankin–Cohen brackets (case m = 1).
Résumé. — On construit une famille d’opérateurs bi-différentiels de

C∞(Mat(m,R) × Mat(m,R)) dans C∞(Mat(m,R)) qui sont covariants pour l’ac-
tion projective du groupe SL(2m,R) sur Mat(m,R). Dans le cas m = 1, cette
construction fournit une nouvelle approche des transvectants et des crochets de
Rankin–Cohen.

Introduction

Let X = Gr(m, 2m,R) the Grassmannian of m-planes in R2m, and con-
sider the projective action of the group G = SL(2m,R) on X, given for
g ∈ G and p ∈ X by g.p = {gv, v ∈ p}. Choose an origin o and let P
be the stabilizer of o in G. The group P is a maximal parabolic subgroup
and X ∼ G/P . The characters χλ,ε of P are indexed by (λ, ε) ∈ C× {±}.
For (λ, ε) ∈ C×{±}, let πλ,ε, be the corresponding representation induced
from P , realized on the space Eλ,ε of smooth sections of the line bundle
Eλ,ε = X ×P, χλ,ε C (degenerate principal series). For the purpose of this
paper, it is more convenient to work with the noncompact realization of
πλ,ε on a space Hλ,ε of smooth functions on V = Mat(m,R).
The Knapp–Stein intertwining operators form a meromorphic family

(in λ) of operators which intertwines πλ,ε and π2m−λ,ε (in our notation).
In the non compact picture, for generic λ, the corresponding operators,

Keywords: Covariant differential operators, Knapp–Stein intertwining operators, Zeta
functional equation, transvectants, Rankin–Cohen brackets.
Math. classification: 22E45, 58J70.



1428 Jean-Louis CLERC

denoted by Jλ,ε are convolution operators on V by certain tempered distri-
butions. The properties of this family of operators are presented in Section 3
and are mostly consequences of the theory of local zeta functions and their
functional equation on (the simple real Jordan algebra) V . Incidentally, the
results for ε = −1 seem to be new, at least in the present form.
Let (λ, ε), (µ, η) ∈ C× {±} and consider the tensor product πλ,ε ⊗ πµ,η,

realized (after completion) on a space H(λ,ε),(µ,η) of smooth functions on
V ×V . Because of the covariance property (see (1.9)) of the kernel k(x, y) =
det(x−y) under the diagonal action of G on V ×V , the multiplicationM by
det(x− y) intertwines πλ,ε⊗πµ,η and πλ−1,−ε⊗πµ−1,−η (Proposition 4.2).
Let (λ, ε), (µ, η) ∈ C× {±} and consider the following diagram

H(λ,ε),(µ,η)
? //

Jλ,ε⊗Jµ,η
��

H(λ+1,−ε),(µ+1,−η)

Jλ+1,−ε⊗ Jµ+1,−η

��
H(2m−λ,ε),(2m−µ,η)

M // H(2m−λ−1,−ε),(2m−µ−1,−η)

The main result of the paper is a (rather explicit) construction of a dif-
ferential operator on V × V which completes the diagram (Theorem 4.1).
The proof uses the Fourier transform on V and some delicate calculation
specific to the matrix space V , based in particular on Bernstein–Sato’s
identities for (detx)s (Section 2). Up to some normalization factors, this
yields a family of differential operators Dλ,µ with polynomial coefficients
on V × V , covariant w.r.t.

(
πλ,ε ⊗ πµ,η, πλ+1,−ε ⊗ πµ+1,−η)

)
. Their expres-

sion does not depend on ε and η, and the family depends holomorphically
on (λ, µ). See also Theorem 4.4 for a formulation of the same result in the
compact picture.
From this result, it is then easy to construct families of projectively

covariant bi-differential operators from C∞(V × V ) into C∞(V ). For any
integer k, define

Bλ,µ ; k = res ◦Dλ+k,µ+k ◦ · · · ◦Dλ+1,µ+1 ◦Dλ,µ

where res is the restriction map from V×V to the diagonal diag(V×V )∼V .
Clearly, Bλ,µ;k is G-covariant w.r.t. (πλ,ε ⊗ πµ,η, πλ+µ+2k,εη). For k fixed,
the family depends holomorphically on λ, µ and is generically non trivial.
For m = 1, there is another classical construction of such projectively

covariant bi-differential operators. The Ω-process, a cornerstone in classical
invariant theory leads to the construction of the transvectants, which are
covariant bi-differential operators for special values of the parameters λ
and µ connected to the finite-dimensional representations of G = SL(2,R).

ANNALES DE L’INSTITUT FOURIER



COVARIANT BI-DIFFERENTIAL OPERATORS 1429

The Rankin–Cohen brackets, much used in the theory of modular forms, are
other examples of such covariant bi-differential operators, for special values
of (λ, µ) connected to the holomorphic discrete series of SL(2,R). There is
a vast literature about Rankin–Cohen brackets, see e.g. [6, 7, 21, 22, 23].
In casem = 1, it has been observed later (see e.g. [16]) that the Ω-process

can be extended to general (λ, µ), yielding both the transvectants and the
Rankin–Cohen brackets as special cases. As computations are easy when
m = 1, the present construction can be shown to coincide with the approach
through the Ω-process, and the operators Bλ,µ;k for special of values of
(λ, µ), essentially coincide with the transvectants or the Rankin–Cohen
brackets. For another related but different point of view see [13] (specially
Section 9) or [12]. The situation where m > 2 is further commented in
Section 6. Although not directly related to the present approach, it might
be worth to mention the papers [17] and [10], for other approaches to
multivariable analogues of Rankin–Cohen brackets.
The striking fact that the operator Dλ,µ, although obtained by compos-

ing non-local operators, is a differential operator (hence local) was already
observed in another geometric context, namely for conformal geometry on
the sphere Sd, d > 3 (see [2, 5]). It seems reasonable to conjecture that
similar results are valid for any (real or complex) simple Jordan algebra
and its conformal group (see [1] for analysis on these spaces).
The author wishes to thank T. Kobayashi for helpful conversations re-

lated to this paper.

1. The degenerate principal series for Gr(m, 2m,R)

Let X = Gr(m, 2m;R) be the Grassmannian of m-dimensional vector
subspaces of R2m. The group G = SL(2m,R) acts transitively on X.

Let (ε1, ε2, . . . , ε2m) be the standard basis of R2m and let

p0 =
2m⊕

j=m+1
Rεj , p∞ =

m⊕
j=1

Rεj .

The stabilizer of p0 in G is the parabolic subgroup P given by

P =
{(

a 0
c d

)
, a, d ∈ GL(m,R), det a det d = 1

}
,

and X ' G/P .
Two subspaces p and q in X are said to be transverse if p ∩ q = {0},

and this relation is denoted by p t q. Let O =
{
p ∈ X, p t p∞

}
. Then

TOME 67 (2017), FASCICULE 4



1430 Jean-Louis CLERC

O is a dense open subset of X. Any subspace p transverse to p∞ can be
realized as the graph of some linear map x : p0 −→ p∞, and vice versa.
More explicitly, any p ∈ O can be realized as

p = px =
{(

xξ

ξ

)
, ξ ∈ Rm

}
,

where ξ is interpreted as a column vector in Rm and x is viewed as an
element of V = Mat(m,R).

Let g ∈ G and x ∈ V . The element g ∈ G is said to be defined at x
if g.px ∈ O and then g(x) is defined by pg(x) = g.px. More explicitly, if

g =
(
a b

c d

)
, then

g.px =
{(

(ax+ b) ξ
(cx+ d) ξ

)
, ξ ∈ Rm

}
,

so that g is defined at x iff (cx+ d) is invertible, and then

g(x) = (ax+ b)(cx+ d)−1 .

Define α : G× V −→ R by

(1.1) g =
(
a b

c d

)
, α(g, x) = det(cx+ d) .

The following elementary calculation is left to the reader.

Lemma 1.1. — Let g, g′ ∈ G and x ∈ V , and assume that g′ is defined
at x and g is defined at g′(x). Then gg′ is defined at x and

(1.2) α(gg′, x) = α
(
g, g′(x)

)
α(g′, x) .

The map x 7−→ px is a homeomorphism of V onto O. The reciprocal of
this map κ : O → V is a local chart, thereafter called the principal chart.
For any g ∈ G, let Og = g−1(O) and κg : Og −→ V defined by κg = κ ◦ g.
Then

(
Og, κg

)
g∈G is an atlas for X.

Let g =
(
a b

c d

)
∈ G. Then

Vg := κ(Og ∩ O) = {x ∈ V,det(cx+ d) 6= 0} ,

and the change of coordinates between the charts O and Og is given by

Vg 3 x 7−→ g(x) = (ax+ b)(cx+ d)−1 .

The group P admits the Langlands decomposition P = LnN , where

L =
{(

a 0
0 d

)
, det a det d = 1

}
, N =

{
tv =

(
1m 0
v 1m

)
, v ∈ V

}
.

ANNALES DE L’INSTITUT FOURIER



COVARIANT BI-DIFFERENTIAL OPERATORS 1431

The group L acts on V by

l =
(
a 0
0 d

)
, l(x) = axd−1 .

Let

N =
{
ny =

(
1m y

0 1m

)
, y ∈ V

}
∼ V

be the opposite unipotent subgroup. The subgroup N acts on V by trans-
lations, i.e. ny(x) = x+ y for y ∈ V .

Let ι =
(

0 1m
−1m 0

)
be the inversion. It is defined on the open set V ×

of invertible matrices and acts by ι(x) = −x−1. Its differential Dι(x) is
given by V 3 u 7−→ Dι(x)u = x−1ux−1.
It is a well-known result that G is generated by L,N and ι (a special case

of a theorem valid for the conformal group of a simple (real or complex)
Jordan algebra).

An element g =
(
a b

c d

)
∈ G belongs to NP iff det d 6= 0 and then the

following Bruhat decomposition holds

(1.3)
(
a b

c d

)
=
(

1m bd−1

0 1m

)(
a− bd−1c 0

c d

)
.

Let χ be the character of P defined by

(1.4) P 3 p =
(
a 0
c d

)
, χ(p) = det a = (det d)−1.

Lemma 1.2. — Let g =
(
a b

c d

)
∈ G, x ∈ V and assume that g is

defined at x.
(1) the differential Dg(x) belongs to L
(2) χ(Dg(x)) = α(g, x)−1

(3) the Jacobian of g at x is equal to

(1.5) j(g, x) = χ
(
Dg(x)

)2m = α(g, x)−2m .

Proof. — By elementary calculation, the statements are verified for el-
ements of N,L and for ι. As these elements generate G, the conclusion
follows by using the cocycle relations satisfied by α(g, x) (see (1.2)) and by
χ(Dg(x) or j(g, x) as consequences of the chain rule. �

TOME 67 (2017), FASCICULE 4



1432 Jean-Louis CLERC

Let λ ∈ C and ε ∈ {±}. For t ∈ R∗ let tλ,ε be defined by

t 7−→

{
|t|λ if ε = +
sgn(t)|t|λ if ε = − .

The map t 7−→ tλ,ε is a smooth character of R∗, and any smooth character
is of this form.
Let χλ,ε be the character of P defined by

χλ,ε(p) = χ(p)λ,ε .

Let Eλ,ε be the line bundle over X = G/P associated to the character
χλ,ε of P . Let Eλ,ε be the space of smooth sections of Eλ,ε. Then G acts
on Eλ,ε by the natural action on the sections of Eλ,ε and gives raise to a
representation πλ,ε of G on Eλ,ε.
A smooth section of Eλ,ε can be realized as a smooth function F on G

which satisfies
F (gp) = χ(p−1)λ,εF (g) .

To each such function F , associate its restriction to N , which can be viewed
as a function f on V defined for y ∈ V by

f(y) = F (ny) = F

((
1m y

0 1m

))
.

Using the Bruhat decomposition (1.3), the function F can be recovered
from f as

F

((
a b

c d

))
= (det d)λ,εf(bd−1) .

The formula is valid for g ∈ NP and extends by continuity to all of G.
This yields the realization of πλ,ε in the noncompact picture, namely for

g ∈ G, such that g−1 =
(
a b

c d

)
πλ,ε(g)f(y) =

(
det(cy + d)−1)λ,εf((ay + b)(cy + d)−1)

= α(g−1, y)−λ,εf(g−1(y)) .

In the noncompact picture, the representation πλ,ε is defined on the
image Hλ,ε of Eλ,ε by the principal chart. The local expression of an el-
ement of Hλ,ε is a function f ∈ C∞(V ). For g ∈ G, the function x 7→(
α(g, x)−1)−λ,ε f(g(x)

)
is a priori defined on the (dense open) subset Og

ANNALES DE L’INSTITUT FOURIER
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of V . Hence a (rather nasty) characterization of the space is as follows : a
smooth function f on V belongs to Hλ,ε if and only if,

(1.6) ∀ g ∈ G, x 7→
(
α(g, x)−1)−λ,ε f(g(x)

)
extends as a C∞ function on V .

Let (λ, ε), (µ, η) ∈ C×{±}, and let πλ,ε�πµ,η be the corresponding product
representation of G×G. The space of the representation E(λ,ε),(µ,η) (after
completion) is the space of smooth sections of the fiber bundle Eλ,ε�Eµ,η
over X ×X. For the non-compact realization, observe that O2 = O×O is
an open dense set in X×X. For any g ∈ G, let O2

g be the image of O2 under
the diagonal action of g−1, i.e. O2

g = {g(x), g(y), x ∈ O, y ∈ O}. Then the
family

(
O2
g , g ∈ G

)
is a covering of X ×X. Using the corresponding atlas,

the local expressions in the principal chart κ⊗κ : O2 → V ×V of E(λ,ε),(µ,η)
is the spaceH(λ,ε),(µ,η) of C∞ functions f on V ×V such that, for any g ∈ G

(1.7) α(g, x)−λ,εf
(
g(x), g(y)

)
α(g, y)−µ,η

extends as a C∞function on V × V .

The group G×G acts on H(λ,ε),(µ,η) by

(1.8) (πλ � πµ)(g1, g2)f(x, y)

= α(g−1
1 , x)−λ,εα(g−1

2 , y)−µ,ηf
(
g−1

1 (x), g−1
2 (y)

)
.

Lemma 1.3. — Let g ∈ G, x, y ∈ V such that g is defined at x and
at y. Then

(1.9) det
(
g(x)− g(y)

)
= α(g, x)−1 det(x− y)α(g, y)−1 .

Proof. — If g ∈ N , g acts by translations on V and hence (1.9) is trivial.

If g =
(
a 0
0 d

)
, then g(x) − g(y) = a(x − y)d−1, α(g, x) = α(g, y) =

det a−1 det d and (1.9) is easily verified. When g = ι, then

det(−x−1 + y−1) = det(x−1(x− y)y−1) = detx−1 det(x− y) det y−1

∀ v ∈ V, Dι(x)v = x−1vx−1, α(ι, x) = detx

and (1.9) follows easily. The cocycle property (1.2) satisfied by α and the
fact that G is generated by N,L and ι imply (1.9) in full generality. �

Proposition 1.4. — The function k(x, y) = det(x − y) belongs to
H(−1,−),(−1,−) and is invariant under the diagonal action of G.

TOME 67 (2017), FASCICULE 4
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Proof. — Let x, y ∈ V and g ∈ G defined at x and y. (1.9) implies

α(g, x)k(g(x), g(y))α(g, y) = k(x, y)

which shows that k belongs to H(−1,−),(1,−) by the criterion (1.7). Further
apply (1.8) for g1 = g2 = g to get the invariance of k under the diagonal
action of G. �

2. Some functional identities in Mat(m,C) and Mat(m,R)

Let
(
E, (. , .)

)
be a complex finite dimensional Hilbert space. To any holo-

morphic polynomial p on E, associate the holomorphic differential operator
p
(
∂
∂z

)
defined by

p

(
∂

∂z

)
e(z,ξ) = p

(
ξ
)
e(z,ξ) .

Let e1, e2, . . . , en is an orthonormal basis, with corresponding coordinates
z1, z2, . . . , zn. For I = (i1, i2, . . . , in) a n-tuple of integers, set

zI = zi11 z
i2
2 . . . zinn ,

(
∂

∂z

)I
=
(

∂

∂z1

)i1 ( ∂

∂z2

)i2
. . .

(
∂

∂zn

)in
.

Let p(z) =
∑
|I|6N aIz

I be a holomorphic polynomial on E. Then

p

(
∂

∂z

)
=
∑
|I|6N

aI

(
∂

∂z

)I
.

Let
(
E, 〈. , .〉

)
be a finite dimensional Euclidean vector space. To any poly-

nomial p on E associate the differential operator p
(
∂
∂x

)
such that

p

(
∂

∂x

)
e〈x,ξ〉 = p(ξ)e〈x,ξ〉.

Lemma 2.1. — Let
(
E, (. , .)

)
be a complex finite dimensional Hilbert

space, and let
(
E, 〈. , .〉

)
be a real form of E such that

∀x, y ∈ E, (x, y) = 〈x, y〉 .

Let p be a holomorphic polynomial on E. Let O be an open subset of E
such that ω = O ∩ E 6= ∅. Let f be a holomorphic function f on O. Then
for x ∈ ω

(2.1) p

(
∂

∂z

)
f(x) = p

(
∂

∂x

)
f|ω(x) .

ANNALES DE L’INSTITUT FOURIER
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Now let E = Mat(m,C) = V with the inner product (z, w) = tr zw∗.
The restriction of this inner product to the real form E = Herm(m,C) is
equal to

〈x, y〉 = trxy∗ = trxy = tr ytxt = tr yx = trxy = trxy∗ = 〈x, y〉

and conditions of Lemma 2.1 are satisfied. Denote by Ωm ⊂ E the open
cone of positive-definite Hermitian matrices.
Let k ∈ {1, 2, . . .m}. For z ∈ V, let ∆k(z) be the principal minor of order

k of the matrix z. Let ∆c
k(z) be the (m−k) anti-principal minor of z. Both

∆k and ∆c
k are holomorphic polynomials on V.

Let V× be the set of invertible matrices in V. Let z0 ∈ V×. Choose a
local determination of ln det z on a neighborhood of z0, and, for s ∈ C
define (det z)s = es ln det z accordingly. Any other local determination of
ln det z is of the form ln det z + 2ikπ for some k ∈ Z, and the associated
local determination of (det z)s is given by e2ikπs(det z)s.
Recall the Pochhammer’s symbol, for s ∈ C, n ∈ N

(s)0 = 1 , (s)1 = s , . . . (s)n = s(s+ 1) . . . (s+ n− 1) .

Proposition 2.2. — For any z ∈ V× and for any local determination
of ln det in a neighborhood of z

(2.2) ∆k

(
∂

∂z

)
(det z)s = (s)k ∆c

k(z) (det z)s−1.

Proof. — Let z0 ∈ V×. Choose an open neighborhood V of z contained
in V× which is simply connected and such that V ∩ Ωm 6= ∅. On Ωm,
detx > 0 so that Ln det z (where Ln is the principal determination of the
logarithm on C \ (−∞, 0]) is an appropriate determination of ln det z in a
neighborhood of Ωm, which can be analytically continued to V and used
for defining (det z)s on V. For x ∈ Ωm, the identity

∆k

(
∂

∂x

)
(detx)s = (s)k ∆c

k(x) (detx)s−1

holds. It is a special case of [8, Proposition VII.1.6] for the simple Euclidean
Jordan algebra Herm(m,C). By Lemma 2.1, (2.2) is satisfied for z ∈ V ∩
Herm(m,C). As both sides of (2.2) are holomorphic functions, (2.2) yields
everywhere on V. But if (2.2) is valid for some local determination of ln det z
it is valid for any local determination. �

There is a real version of these identities.

Proposition 2.3. — The following identity holds for x ∈ V ×

(2.3) ∆k

(
∂

∂x

)
(detx)s,ε = (s)k ∆c

k(x) (detx)s−1,−ε .

TOME 67 (2017), FASCICULE 4
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Proof. — Let x ∈ V × and assume first that detx > 0. In a neighbour-
hood of x in V× choose Ln(det z) as a local determination of ln(det z).
Then (detx)s = |detx|s and hence, using Lemma 2.1 and (2.2)

∆k

(
∂

∂x

) ∣∣detx
∣∣s = (s)k ∆c

k(x)
∣∣detx

∣∣s−1
.

Next assume that detx < 0. In a neighborhood of x in V× choose
Ln(−det z) + iπ as a local determination of ln(det z). Then (detx)s =
eisπ|detx|s, so that, using again Lemma 2.1 and (2.2)

eisπ∆k

(
∂

∂x

) ∣∣detx
∣∣s = ei(s−1)π(s)k∆c

k(x)|detx|s−1 .

The identity (2.3) follows. �

Let a = (aij) be a m ×m matrix with real or complex entries aij . Let
I and J be two subsets of {1, 2, . . . ,m} both of cardinality k, 0 6 k 6 m.
After deleting the m − k rows (resp. the m − k columns) corresponding
to the indices not in I (resp. not in J), the determinant of the k × k

remaining matrix is the minor associated to (I, J) and will be denoted by
∆I,J(a). For k = 0, i.e. I = J = ∅, by convention ∆∅,∅(a) = 1. For k = m,
I = J = {1, 2, . . . ,m}, ∆I,J(a) = det a.

For I = {i1 < i2 < · · · < ik}, let |I| = i1 + i2 + · · · + ik. Also denote
by Ic the complement of I in {1, 2, . . . ,m}, which is a subset of cardinality
m− k. Recall the following elementary result.

Lemma 2.4. — Let I = {i1 < i2 < · · · < ik} be a subset of {1, 2, . . . ,m}
of cardinality k. Let Ic = {i′1 < i′2 < · · · < i′m−k}. The permutation σI
defined by

σI(1) = i1, . . . , σI(k) = ik, σI(k + 1) = i′1, . . . , σI(m) = i′m−k

has signature equal to ε(σI) = (−1)|I|.

The next lemma is a variation on (and a consequence of) the previous
lemma.

Lemma 2.5. — Let I = {i1 < i2 < · · · < ik}, J = {j1 < j2 < · · · <
jk} be two subsets of {1, 2, . . . ,m} both of cardinality k. Let

Ic = {i′1 < i′2 < · · · < i′m−k}, Jc = {j′1 < j′2 < · · · < j′m−k} .

The permutation σ = σI,J given by

σ(i1) = j1, . . . , σ(ik) = jk, σ(i′1) = j′1, . . . , σ(i′m−k) = j′m−k

has signature ε(I, J) := ε(σI,J) = (−1)|I|+|J|.

ANNALES DE L’INSTITUT FOURIER
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A permutation σ such that σ(I) = J can be written in a unique way as
σ = (τ ∨ τc) ◦ σI,J , where τ is a permutation of J and τc is a permutation
of Jc, and τ ∨ τc is the permutation of {1, 2, . . . ,m} which coincides on J
with τ and on Jc with τc.

Proposition 2.6. — Let I, J ⊂ {1, 2, . . . , n} of equal cardinality k.
Then, for x ∈ V×

(2.4) ∂(∆I,J)
(
∆s
)
(x) = ε(I, J)(s)k ∆Ic,Jc(x) ∆(x)s−1 .

Proof. — By permuting raws and columns properly, the minor ∆I,J

becomes the k-th principal minor and ∆Ic,Jc becomes the m − k anti-
principal minor, up to a sign. Hence (2.4) is a consequence of (2.2) and
Lemma 2.4. �

Proposition 2.7. — Let f, g be two smooth functions defined on V.
Then

(2.5) det
(
∂

∂x

)
(fg) =

∑
I,J⊂{1,2,...,m}

#I=#J

ε(I, J)∆I,J

(
∂

∂x

)
f ∆Ic,Jc

(
∂

∂x

)
g

Proof. — For σ ∈ Sm

∂m

∂a1σ(1)∂a2σ(2) . . . ∂amσ(m)
(fg)

=
∑

I⊂{1,2,...,m}

(∏
i∈I

∂

∂aiσ(i)

)
f

(∏
i∈Ic

∂

∂aiσ(i)

)
g .

Now, given I ⊂ {1, 2, . . . ,m},∑
σ∈Sm

=
∑

J⊂{1,2,...,m}
#J=#I

∑
σ∈Sm
σ(I)=J

so that

∂(∆)(fg)

=
∑
σ∈Sm

ε(σ)
∑

I⊂{1,2,...,m}

(∏
i∈I

∂

∂aiσ(i)

)
f

(∏
i∈Ic

∂

∂aiσ(i)

)
g

=
∑

I⊂{1,2,...,m}

∑
J⊂{1,2,...,m}

#I=#J

∑
σ∈Sm
σ(I)=J

ε(σ)
(∏
i∈I

∂

∂aiσ(i)

)
f

(∏
i∈Ic

∂

∂aiσ(i)

)
g .
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Let

I = {i1 < i2 < · · · < ik}, J = {j1 < j2 < · · · < jk}
Ic = {i′1 < i′2, · · · < i′m−k}, Jc = {j′1 < j′2, · · · < j′m−k} .

As noted after the proof of Lemma 2.5, a permutation σ such that σ(I) = J

can be written in a unique way as

σ = (τ ∨ τc) ◦ σI,J

where τ ∈ S(J), τc ∈ S(Jc). Hence

∑
σ∈Sm
σ(I)=J

ε(σ)
(∏
i∈I

∂

∂aiσ(i)

)
f

(∏
i∈Ic

∂

∂aiσ(i)

)
g

= ε(I, J)
∑

τ∈S(J)

∑
τc∈S(Jc)

ε(τ)ε(τc)
∂kf

∂ai1τ(j1) . . . ∂aikτ(jk)

× ∂m−kg

∂ai′1τc(j′1) . . . ∂ai′
m−kτc(j

′
m−k)

= ε(I, J)∆I,J

(
∂

∂x

)
f ∆Ic,Jc

(
∂

∂x

)
g .

Formula (2.5) follows by summing over I and J . �

There is a similar relative result, allowing to compute ∆I,J(fg) for I, J
two subsets of {1, 2, . . . ,m}, both of cardinality k 6 m. Let

I = {i1 < i2 < · · · < ik}, J = {j1 < j2 < · · · < jk} .

A subset P ⊂ I (resp. Q ⊂ J) of cardinality l 6 k can be uniquely written
as

P = {ip1 < ip2 , · · · < ipl}, resp. Q = {jq1 , jq2 , . . . , jql} .
Set

ε(P : I,Q : J) = (−1)p1+p2+···+pl(−1)q1+q2+···+ql .

Proposition 2.8. — Let I, J be two subsets of {1, 2, . . . ,m}, both of
cardinality k 6 m. Let f, g be two smooth functions defined on V. Then

(2.6) ∆I,J

(
∂

∂x

)
(fg)

=
∑
P⊂I
Q⊂J

#P=#Q

ε(P : I,Q : J) ∆P,Q

(
∂

∂x

)
f ∆IrP,JrQ

(
∂

∂x

)
g .
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Proof. — In order to calculate the left hand side of (2.6), it is possible
to “freeze” all variables xij for (i, j) /∈ I × J . For x ∈ V, let

VxI,J =

z =

 zij

 ∈ Mat(m,C), zij = xij for (i, j) /∈ I × J

 .

Then VxI,J ∼ Mat(k,C). Now to compute the left hand side of (2.6) at x,
apply (2.5) to the restrictions of f and g to VxI,J . �

Proposition 2.9. — Let s, t ∈ C. Then, for f ∈ C∞(V×V) and x, y ∈
V, such that x, y − x ∈ V×

(2.7) det
(
∂

∂x

)(
det(x)s det(y − x)tf(x, y)

)
= det(x)s−1 det(y − x)t−1(Es,tf)(x, y)

where Es,t is the differential operator on V× V given by

Es,tf(x, y) =
m∑
k=0

∑
I,J⊂{1,2,...,m}

#I=#J=k

pI,J(x, y; s, t) ∆Ic,Jc

(
∂

∂x

)
f(x, y)

where, for I, J of cardinality k

pI,J(x, y; s, t) =
∑

06l6k
(−1)l(s)(k−l)(t)l

×
∑

P⊂I,Q⊂J
#P=#Q=l

ε(P : I,Q : J) ∆Ic∪P,Jc∪Q(x) ∆P c,Qc(y − x) .

Proof. — Using (2.5), the statement is equivalent to, for any I, J ⊂
{1, 2, . . . , n},#I = #J = k,

ε(I, J) det(x)−s+1 det(y − x)−t+1 ∆I,J

(
∂

∂x

)(
det(x)s det(y − x)t

)
a priori defined for x ∈ V×, y − x ∈ V× extends as a polynomial in (x, y)
equal to pI,J(x, y; s, t).
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Use (2.6) to obtain

∆I,J

(
∂

∂x

)
(detx)s

(
det(y − x)

)t
=

k∑
l=0

∑
P⊂I,Q⊂J
#P=#Q=l

ε(P : I,Q : J) ∆IrP,JrQ

(
∂

∂x

)
(detx)s

×∆P,Q

(
∂

∂x

)(
det(y − x)

)t
.

By (2.4),

det(x)−s+1∆IrP,JrQ

(
∂

∂x

)
(detx)s

= ε(I r P, J rQ) (s)k−l ∆Ic∪P,Jc∪Q(x) .

Moreover, as any constant coefficients differential operator, ∆K,L

(
∂
∂x

)
com-

mutes to translations, so that again by (2.4)

det(y−x)−t+1∆P,Q

(
∂

∂x

)
(det(y−x))t = ε(P,Q)(−1)l (t)l ∆P c,Qc(y−x) .

Next, as |I r P |+ |P | = |I| and |J rQ|+ |Q| = |J |

ε(P,Q)ε(I r P, J rQ) = ε(I, J) .

It remains to gather all formulæ to finish the proof of Proposition 2.9. �
Let p be a polynomial on V, and let q be the polynomial on V×V given

by q(x, y) = p(x−y). Let f be a function on V×V. Let g be the function on
V×V defined by g(u, v) = f(u, v−u) or equivalently g(x, x+ y) = f(x, y).
Then

(2.8)
(
q

(
∂

∂x
,
∂

∂y

)
f

)
(x, y) =

(
p

(
∂

∂u

)
g

)
(x, x+ y) .

In the sequel, for commodity reason, the operator q
(
∂
∂x ,

∂
∂y

)
will be denoted

by p
(
∂
∂x −

∂
∂y

)
Proposition 2.10. — Let s, t ∈ C. For any smooth function on V× V

and for x, y ∈ V×

(2.9) det
(
∂

∂x
− ∂

∂y

)(
(detx)s(det y)tf

)
(x, y)

= (detx)s−1(det y)t−1Fs,tf(x, y)
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where Fs,t is the differential operator on V× V given by

Fs,tf(x, y) =
m∑
k=0

∑
I,J⊂{1,2,...,m}

#I=#J=k

qI,J(x, y; s, t)∆Ic,Jc

(
∂

∂x
− ∂

∂y

)
f(x, y)

where, for I, J of cardinality k

qI,J(x, y; s, t) =
∑

06l6k
(−1)l(s)(k−l) (t)l

×
∑

P⊂I,Q⊂J
#P=#Q=l

ε(P : I,Q : J)∆Ic∪P,Jc∪Q(x) ∆P c,Qc(y) .

Proof. — Apply the change of variable formula (2.8) to p = det. �

There is a real version of these identities and they are obtained by the
same method used to prove the real Bernstein–Sato identities (see the proof
of (2.3)).

Proposition 2.11. — Let s, t ∈ C. For any f ∈ C∞(V ×V ) and x, y ∈
V ×

(2.10)
[
det
(
∂

∂x
− ∂

∂y

)]
(detx)s,ε(det y)t,ηf(x, y)

= (detx)s−1,−ε(det y)t−1,−ηFs,tf(x, y) .

3. Knapp–Stein intertwining operators

The definition and properties of the Knapp–Stein intertwining operators
to be introduced later in this section are based on the study of the two
(families of) distributions (detx)s,ε. In a different terminology, there are
the local Zeta functions on Mat(n,R). Many authors contributed to the
study of these distributions, more generally in the context of simple Jordan
algebras or in the context of prehomogeneous vector spaces (see [3, 4, 9,
14, 18, 19, 20]). For the present situation [1] turned out to be the most
complete and most useful reference.
Let first consider the case where ε = +1, and write |detx|s instead of

(detx)s,+. Use the notation S(V ) (resp. S ′(V )) for the Schwartz space of
smooth rapidly decreasing functions (resp. of tempered distributions) on
V . Also define, for s ∈ C

(3.1) ΓV (s) = Γ
(
s+ 1

2

)
. . .Γ

(
s+m

2

)
.
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Proposition 3.1.
(1) For any ϕ ∈ S(V ) the integral

∫
V
ϕ(x)|det(x)|s dx converges for

<(s) > −1 and defines a tempered distribution Ts,+ on S(V ).
(2) The S ′(V )-valued function s 7→ Ts,+ defined for <(s) > −1 can be

analytically continued as a meromorphic function on C.
(3) The function s 7−→ 1

ΓV (s) Ts,+ extends as an entire function of s
(denoted by T̃s,+) with values in the space of tempered distribu-
tions.

Proof. — See [1], especially Theorem 5.12. A careful examination of the
Γ factors in the normalizing factor ΓV (s) shows that the poles are at s =
−1,−2, . . . if m > 1 and at s = −1,−3, . . . if m = 1. �

For f ∈ S(V ), define the Euclidean Fourier transform Ff by

Ff(x) =
∫
V

e−2iπ〈x,y〉f(y) dy .

The Fourier transform is extended to various functional spaces, and in
particular to the space of tempered distributions S ′(V ). Recall the elemen-
tary formulæ, for p ∈ P(V )

(3.2) F
(
p

(
∂

∂x

)
f

)
= p(2iπ . )Ff, F(p f) = p

(
− 1

2iπ
∂

∂x

)
(Ff) .

Proposition 3.2. — The Fourier transform of the tempered distribu-
tion T̃s,+ is given by

(3.3) F(T̃s,+) = π−
m2

2 −ms T̃−m−s,+

or equivalently

(3.4) F
( 1

ΓV (s) |det( . )|s
)

= π−
m2

2 −ms

ΓV (−s−m) |det( . )|−m−s .

Proof. — See [1, Theorem 4.4 and Theorem 5.12]. �

Now let ε = −1. The corresponding results do not seem to have been
written, although they could be deduced from [4]. In our approach, the
results for (detx)s,+ are used to prove those for (detx)s,−.

Proposition 3.3.
(1) For any ϕ ∈ S(V ) the integral

∫
V
ϕ(x)(detx)s,− dx converges for

<(s) > −1 and defines a tempered distribution Ts,− on S(V ).
(2) The S ′(V )-valued function s 7→ Ts,− defined for <(s) > −1 can be

analytically continued as a meromorphic function on C.
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(3) The function s 7→ 1
sΓV (s−1) Ts,− extends as an entire function of s

(denoted by T̃s,−) with values in S ′(V ).

Proof. — As a special case of (2.3), the following identity holds on V ×

(3.5) det
(
∂

∂x

)
(detx)s+1,+ = (s+ 1)m (detx)s,− .

Next
ΓV (s+ 1)
ΓV (s− 1) =

Γ( s2 + 1) . . .Γ( s+m−1
2 + 1)

Γ( s2 ) . . .Γ( s+m−1
2 )

= 2−m (s)m = 2−m s

s+m
(s+ 1)m .

Rewrite (3.5) as

1
sΓV (s− 1)(detx)s,− = 2−m 1

s+m
det
(
∂

∂x

)( 1
ΓV (s+ 1)(detx)s+1,+

)
.

For <s large enough, both sides extend as continuous functions on V and
hence coincide as distributions. Viewed now as a distribution-valued func-
tion of s, the right hand side extends holomorphically to all of C except
perhaps at s = −m. To get the statements of Proposition 3.3, it suffices to
prove that at s = −m the right hand side can be continued as a holomorphic
function. In turn this is a consequence of the following lemma.

Lemma 3.4.

(3.6) det
(
∂

∂x

)(
T̃−m+1,+

)
= 0 .

Proof. — The Fourier transform of the distribution T̃−m+1,+ is equal (up
to a non vanishing constant) to T̃−1,+ (see (3.3)). Hence the statement of
the lemma is equivalent to

(3.7) (detx) T̃−1,+ = 0 .

But T̃−1,+ (the “first” residue of the meromorphic function s 7→ Ts,+) is
equal (up to a non vanishing constant) to the quasi-invariant measure on
the L-orbit O1 = {x ∈ V, rank(x) = m − 1} (see [1, Theorem 5.12]). As
O1 ⊂ {x ∈ V,detx = 0}, (3.7) follows. �

This finishes the proof of Proposition 3.3. A careful analysis of the nor-
malization factor sΓV (s−1) shows that Ts,− has poles at s = −1,−2,−3, . . .
if m > 1, and at s = −2,−4, . . . if m = 1. �
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Proposition 3.5.

(3.8) F(T̃s,−) = −imπ−m
2

2 −ms T̃−m−s,− .

Proof. — During the proof of Proposition 3.3, it was established that

T̃s,− = 2−m 1
s+m

det
(
∂

∂x

)
Ts+1,+ .

Hence, using (3.4)

F(T̃s,−) = 2−m 1
s+m

π−
m2

2 −m(s+1)(2iπ)m(detx) T̃−s−m−1,+

which, for generic s can be rewritten as

imπ−
m2

2 −ms
1

s+m

1
ΓV (−s−m− 1) (detx)T−s−m−1,+ .

Next, for <(s) large enough, (detx)Ts,+ = Ts+1,−, and by analytic contin-
uation this holds for any s where both sides are defined. Use this result to
obtain (3.8) for generic s, and by continuity for all s. �

For (s, ε) ∈ C× {±}, let

γ(s, ε) =
{

1
ΓV (s) if ε = 1

1
sΓV (s−1) if ε = −1

so that

(3.9) T̃s,ε = γ(s, ε)Ts,ε .

Let

ρ(s, ε) =
{
π−

m2
2 −ms if ε = +1

−imπ−m
2

2 −ms if ε = −1
so that

(3.10) F(T̃s,ε) = ρ(s, ε) T̃−s−m,ε .

The Knapp–Stein intertwining operators play a central role in semi-
simple harmonic analysis (see [11] for general results). The present approach
takes advantage of the specific situation to give more explicit results.

For (λ, ε) ∈ C × {±} consider the following operator (Knapp–Stein in-
tertwining operator) (formally) defined by

(3.11) Jλ,εf(x) =
∫
V

det(x− y)−2m+λ,εf(y) dy .

The operator Jλ,ε verifies the following (formal) intertwining property.

Proposition 3.6. — For any g ∈ G,

Jλ,ε ◦ πλ,ε(g) = π2m−λ,ε(g) ◦ Jλ,ε .
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Proof.
Jλ,ε

(
πλ,ε(g)f

)
(x) =

∫
V

(det(x− y))−2m+λ,ε
α(g−1, y)−λ,εf

(
g−1(y)

)
dy

which, by using (1.9) and the cocycle property of α can be rewritten as

α(g−1, x)−2m+λ,ε
∫
V

det
(
g−1(x)− g−1(y)

)−2m+λ,ε
α(g−1, y)−2m−λ+λ,ε2

dy

and use the change of variable z = g−1(y), dz = |α(g−1, y)|−2m dy to get

Jλ,ε
(
πλ,ε(g)f

)
(x) = α(g−1, x)−(2m−λ),ε

∫
V

det
(
g−1(x)− z

)−2m+λ,ε
f(z) dz

= π2m−λ,ε(g)
(
Jλ,εf

)
(x) . �

To pass from a formal operator to an actual operator, notice that the
Knapp–Stein operator is a convolution operator and hence (3.11) can be
rewritten as

Jλ,εf = T−2m+λ,ε ? f .

The study of the distributions Ts,± strongly suggests to define the normal-
ized intertwining operator J̃λ,ε by

(3.12) J̃λ,εf = T̃−2m+λ,ε ? f

for f ∈ S(V ), or more explicitly

J̃λ,+f(x) = 1
ΓV (−2m+ λ)

∫
V

|det(x− y)|−2m+λf(y) dy ,

J̃λ,−f(x) = 1
(−2m+ λ)ΓV (−2m+ λ− 1)

∫
V

(det(x− y))−2m+λ,−f(y) dy .

The representation πλ,ε is not properly defined on S(V ), but its infinites-
imal version is. In fact, let ϕ ∈ C∞c (V ). For g ∈ G sufficiently close to
the identity, g is defined on the compact Supp(ϕ), so that the following
definition makes sense : for X ∈ g let

dπλ,ε(X)ϕ =
(
d

dt

)
t=0

πλ,ε(exp tX)ϕ .

Moreover, it is well known that the resulting operator dπλ,ε(X) is a dif-
ferential operator of order 1 on V with polynomial coefficients, hence can
be extended as a continuous operator on the Schwartz space S(V ), and by
duality as an operator on S ′(V ). An operator J : S(V )→ S ′(V ) is said to
be an intertwining operator w.r.t. (πλ,ε, π2m−λ,ε) if for any X ∈ g,

J ◦ dπλ,ε(X) = dπ2m−λ,ε(X) ◦ J .
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The next statement is easily obtained by combining the results on the
family of distributions T̃s,ε, (s, ε) ∈ C×{±} (see Propositions 3.1, 3.3), and
the formal intertwining property.

Proposition 3.7.
(1) the operator J̃λ,ε is a continuous operator form S(V ) into S ′(V ).
(2) the operator J̃λ,ε intertwines the representations πλ,ε and π2m−λ,ε

(3) the (operator-valued) function λ 7−→ J̃λ,ε is holomorphic.

4. Construction of the families Dλ,µ and Bλ,µ;k

Recall the differential operator Fs,t on V × V , constructed in Section 2
(Proposition 2.10). Define for s, t ∈ C

(4.1) Hs,t = F−1 ◦ Fs,t ◦ F

As Fs,t is a differential operator with polynomial coefficients, Hs,t is
also a differential operator with polynomial coefficients. To be more ex-
plicit, according to (3.2), the passage from Fs,t to Hs,t consists in chang-
ing p( ∂

∂x ,
∂
∂y ) to multiplication by p(−2iπx,−2iπy)), and multiplication by

p(x, y) to the differential operator p
( 1

2iπ
∂
∂x ,

1
2iπ

∂
∂y

)
. Observe that qI,J is

homogeneous of degree 2m−k and ∆Ic,Jc is homogeneous of degree m−k,
where k = #I = #J . This leads to

(4.2) Hs,t =
(
i

2π

)m m∑
k=0

(−1)k
∑

I,J⊂{1,2,...,m}
#I=#J=k

hI,J

(
∂

∂x
,
∂

∂y
; s, t

)

×
(

∆Ic,Jc(x− y)f(x, y)
)

where the polynomial hI,J(ξ, η; s, t) is given by

hI,J(ξ, η; s, t) =
∑

06l6k
(s)(k−l) (t)l

∑
P⊂I,Q⊂J
#P=#Q=l

ε(P : I,Q : J)

×∆Ic∪P,Jc∪Q(ξ) ∆P c,Qc(η) .

Theorem 4.1. — The operator Hm−λ,m−µ is G-covariant with respect
to (πλ,ε ⊗ πµ,η, πλ+1,−ε ⊗ πµ+1,−η).

The (rather long) proof will be given at the end of this section. The next
results are preparations for the proof.

Let M be the continuous operator on S(V × V ) given by

Mϕ(x, y) = det(x− y)ϕ(x, y) .
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Proposition 4.2. — The operator M intertwines πλ,ε ⊗ πµ,η and
πλ−1,−ε ⊗ πµ−1,−η.

Proof. — Let ϕ ∈ C∞c (V × V ). Let g ∈ G, and assume that g is defined
on Supp(ϕ).(

M ◦
(
πλ,ε(g)⊗ πµ,η(g)

)
ϕ
)

(x, y)

= det(x− y)α(g−1, x)−λ,ε α(g−1, y)−µ,η ϕ
(
g−1(x), g−1(y)

)
whereas((

πλ−1,−ε(g)⊗ πµ−1,−η(g)
)
◦M

)
ϕ(x, y)

= det
(
g−1(x)− g−1(y)

)
α(g−1, x)−λ+1,−εα(g−1, y)−µ+1,−η

× ϕ
(
g−1(x)− g−1(y)

)
.

Use (1.9) to conclude that(
M ◦

(
πλ,ε(g)⊗ πµ,η(g)

)
ϕ =

((
πλ−1,−ε(g)⊗ πµ−1,−η(g)

)
◦M

)
ϕ .

For X ∈ g, and for t small enough, gt = exp tX is defined on Supp(ϕ).
Apply the previous result to gt, differentiate w.r.t. t at t = 0 to get

M ◦
(
d(πλ,ε ⊗ πµ,η)(X)

)
ϕ =

(
d(πλ−1,−ε ⊗ πµ−1,−η)(X)

)
◦Mϕ

for any ϕ ∈ C∞c (V ×V ), and extend this equality to any ϕ in S(V ×V ) by
continuity. �

The next proposition is the key result towards the proof.

Proposition 4.3. — For f ∈ S(V × V )

(4.3) M ◦ (J̃λ,ε ⊗ J̃µ,η)f

= d
(
(λ, ε), (µ, η)

) (
(J̃λ+1,−ε ⊗ J̃µ+1,−η) ◦H−m+2λ,−m+2µ

)
f ,

where d
(
(λ, ε), (µ, η)

)
is equal to

π4m2

(λ−m) . . . (λ− 2m+ 2)(µ−m) . . . (µ− 2m+ 2) ε = +1, η = +1

2−mπ4m2

(λ−m) . . . (λ− 2m+ 2)(µ−m) ε = +1, η = −1

2−mπ4m2

(λ−m)(µ−m) . . . (µ− 2m+ 2) ε = −1, η = +1

2−2mπ4m2

(λ−m)(µ−m) ε = −1, η = −1 .
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Proof. — As the operators J̃λ,ε and J̃µ,η are convolution operators by
a tempered distribution, the left hand side is well defined as a tempered
distribution on V × V , and so is its Fourier transform.

In order to alleviate the proof, c1, . . . , c4 are used during the proof to
mean complex numbers depending on λ, ε, µ, η but neither on f nor on
(x, y) ∈ V ×V . Their actual values are listed at the end of the computation.
By (3.4),

(4.4)
F
(
(J̃λ,ε ⊗ J̃µ,η)f

)
(x, y) = F(T̃−2m+λ,ε)(x)F(T̃−2m+µ,η)(y)Ff(x, y)

= c1T̃m−λ,ε(x)T̃m−µ,η(x)Ff(x, y) .

Next, for p a polynomial on V × V , and Φ ∈ S ′(V ),

F(pΦ)(x, y) = p

(
(−2iπ)−1 ∂

∂x
, (−2iπ)−1 ∂

∂y

)
(FΦ)(x, y) .

Hence

(4.5) F
(
M ◦ (J̃λ,ε ⊗ J̃µ,η)f

)
(x, y)

= c1c2 det
(
∂

∂x
− ∂

∂y

)(
(detx)m−λ,ε(det y)m−µ,ηFf(x, y)

)
.

Assume temporarily that <λ,<µ � 0 so that (detx)m−λ,ε(det y)m−µ,η
is a sufficiently many times differentiable function on V × V . Then, use
Proposition 2.11 to get

(4.6) F
(
M ◦ (J̃λ,ε ⊗ J̃µ,η)f

)
(x, y)

= c1c2(detx)m−(λ+1),−ε)(det y)m−(µ+1),−ηFm−λ,m−µ (Ff) (x, y) ,

the equality being valid a priori on V ××V ×, but thanks to the assumption
on λ and µ it extends to all of V ×V . Next, by the definition of the operator
Hs,t,

(4.7) F(M ◦ (J̃λ,ε ⊗ J̃µ,η)f)(x, y)

= c1c2(detx)m−λ−1,−ε)(det y)m−µ−1,−ηF
(
H−m+2λ,−m+2µf

)
(x, y)

c1c2c3 T̃m−λ−1,−ε(x) T̃m−µ−1,−η(y)F
(
Hm−λ,m−µf

)
(x, y) .

Use inverse Fourier transform and (3.10) to conclude that

(4.8) M ◦ (J̃λ ⊗ J̃µ)f = c1c2c3c4

(
(J̃λ+1,−ε ⊗ J̃µ+1,−η) ◦Hm−λ,m−µ

)
f .
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The values of the constants c1, c2, c3 and c4 are given by

c1 = ρ(−2m+ λ, ε) ρ(−2m+ µ, η)

c2 = (−1)m(2π)−2mγ(m− λ, ε) γ(m− µ, η)

c3 = 1
γ(m− λ− 1,−ε) γ(m− µ− 1,−η)

c4 = 1
γ(λ+ 1,−ε) γ(µ+ 1,−η)

so that c1c2c3c4 is equal to

π4m2

(λ−m) . . . (λ− 2m+ 2)(µ−m) . . . (µ− 2m+ 2) ε = +1, η = +1

2−mπ4m2

(λ−m) . . . (λ− 2m+ 2)(µ−m) ε = +1, η = −1

2−mπ4m2

(λ−m)(µ−m) . . . (µ− 2m+ 2) ε = −1, η = +1

2−2mπ4m2

(λ−m)(µ−m) ε = −1, η = −1 .

By analytic continuation, (4.3) holds for all λ, µ, thus proving Proposi-
tion 4.3. Incidentally, notice that the last step implies the vanishing of(
(J̃λ+1,−ε⊗ J̃µ+1,−η) ◦H−m+2λ,−m+2µ

)
at the poles of d

(
(λ, ε), (µ, η)

)
. �

To finish the proof of Theorem 4.1, note that, by Lemma 4.2 and Propo-
sition 3.7 the operator M ◦ (J̃λ,ε⊗ J̃µ,η) is covariant with respect to (πλ,ε⊗
πµ,η), (π2m−λ−1,−ε ⊗ π2m−µ−1,−η). Using Proposition 4.3, this implies,
generically in (λ, µ) that for any f ∈ C∞c (V × V ) and any g ∈ G which is
defined on Supp(f),(

(J̃λ+1,−ε ⊗ J̃µ+1,−η) ◦ (πλ+1,−ε(g)⊗ πµ+1,−η(g)) ◦H−m+2λ,−m+2µ
)
f

=
(
(J̃λ+1,−ε ⊗ J̃µ+1,−ε) ◦Hm−λ,m−µ ◦ (πλ,ε(g)⊗ πµ,η(g)

)
f .

Generically in (λ, µ), the convolution operator J̃λ+1,−ε⊗J̃µ+1,−η is injective
on C∞c (V ) as can be seen after performing a Fourier transform, so that((

πλ+1,−ε(g)⊗ πµ+1,−η(g)
)
◦Hm−λ,m−µ

)
f

=
(
Hm−λ,m−µ ◦

(
πλ,ε(g)⊗ πµ,η(g)

))
f .

The covariance of Hm−λ,m−µ follows, at least generically in λ, µ and hence
everywhere by analytic continuation. This completes the proof of Theo-
rem 4.1.
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For convenience in the sequel, let shift the parameters in the notation by
setting

Dλ,µ = Hm−λ,m−µ .

Perhaps is it enlightening to state a version of Theorem 4.1 in the compact
picture. Going back to the notation of the Introduction, the (outer) tensor
product Eλ,ε�Eµ,η can be completed to a space E(λ,ε),(µ,η) of smooth sections
of the line bundle Eλ,µ � Eµ,η over X × X. The operator M can also be
transferred as a continuous operator from E(λ,ε),(µ,η) into E(λ−1,−ε),(µ−1,−η).
Denote by Ĩλ,ε : Eλ,ε into E2m−λ,ε the normalized Knapp–Stein operator,
which corresponds to J̃λ,ε in the principal chart. The formulation to be
given below is a consequence of Theorem 4.1, using the well-known fact that
the Knapp–Stein intertwining operators are invertible, at least generically
in λ, the inverse of Ĩλ,ε being equal (up to a scalar) to Ĩ2m−λ,ε.

Theorem 4.4. — The operator D(λ,ε),(µ,η) defined as

D(λ,ε),(µ,η) =
(
Ĩ2m−λ−1,−ε ⊗ Ĩ2m−µ−1,−η

)
◦M ◦

(
Ĩλ,ε ⊗ Ĩµ,η

)
which, by construction intertwines πλ,ε ⊗ πµ,η and πλ+1,−ε ⊗ πµ+1,−η (as
representations of G) is a differential operator on X ×X.

Let res : C∞(V × V ) −→ C∞(V ) be the restriction map defined by

res(ϕ)(x) = ϕ(x, x) .

For any λ, ε and µ, η in C × {±}, the restriction map intertwines the rep-
resentations πλ,ε ⊗ πµ,η and πλ+µ,εη.
Let λ, µ ∈ C, and k ∈ N. Let Bλ,µ,k : C∞(V × V ) −→ C∞(V ) be the

bi-differential operator defined by

Bλ,µ;k = res ◦Dλ+k−1,µ+k−1 ◦ · · · ◦Dλ,µ .

The covariance property of the operators Dλ,µ and of res imply the follow-
ing result.

Theorem 4.5. — Let (λ, ε), (µ, η) be in C× {±}. The operator Bλ,µ;k
is covariant w.r.t. (πλ,ε ⊗ πµ,η, πλ+µ+2k,εη).

A remarkable fact is that whereas the operator Hλ,µ has polynomial
functions as coefficients, the operator Bλ,µ;k has constant coefficients, i.e.
is of the form

ϕ 7−→
∑
α,β

aα,β

(
∂|α|+|β|

∂yα∂zβ
ϕ

)
(x, x)

where aα,β are complex numbers. In fact, this is merely a consequence of
the invariance of the Bλ,µ;k under the action of the translations (action
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of N). More concretely,this is due to the vanishing on the diagonal diag(V )
of many of the coefficients of the operators Hλ,µ. It seems however difficult
to find a closed formula for the coefficients of Bλ,µ;k except if m = 1.

5. The case m = 1 and the Ω-process

For m = 1, a simple calculation yields

Fs,tf = (−tx+ sy)f + xy

(
∂2

∂x∂y

)
f(5.1)

Hs,tf = 1
2iπ

(
−(t− 1) ∂

∂x
f + (s− 1) ∂

∂y
f − (x− y) ∂

2f

∂x∂y

)
(5.2)

Dλ,µ = 1
2iπ

(
µ
∂

∂x
− λ ∂

∂y
− (x− y) ∂2

∂x∂y

)
.(5.3)

There is a relation with the Ω-process, which we now recall following the
classical spirit (see e.g. [15]), but in terms adapted to our situation.
Let (λ, ε) ∈ C×{±} and let Fλ,ε be the space of smooth functions defined

on R2 r {0} which satisfy

∀ t ∈ R∗ F (tx1, tx2) = t−λ,εF (x1, x2) .

To F ∈ Fλ,ε associate the function f given by f(x) = F (x, 1). Then f is
a smooth function on R, and F can be recovered from f by

F (x1, x2) = x−λ,ε2 f(x1

x2
) ,

at least for x2 6= 0 and then extended by continuity.

Let g ∈ SL2(R) and let g−1 =
(
a b

c d

)
. The function F ◦g−1 also belongs

to Fλ,ε, and is explicitly given by

F ◦ g−1(x1, x2) = F (ax1 + bx2, cx1 + dx2) .

Its associated function on R is given by

(F ◦ g−1)(x, 1) = F (ax+ b, cx+ d) = (cx+ d)−λ,εf
(
ax+ b

cx+ d

)
,

so that the natural action ofG = SL(2,R) on Fλ,ε is but another realization
of the representation πλ,ε.
Now let (λ, ε), (µ, η) ∈ C × {±} and consider the space F(λ,ε),(µ,η) of

smooth functions F on R2 r {0} × R2 r {0} which satisfy

∀ t, s ∈ R∗, F (t(x1, x2), s(y1, y2)) = t−λ,εs−µ,ηF
(
(x1, x2), (y1, y2)

)
.
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The group SL2(R) acts naturally (diagonally) on F(λ,ε),(µ,η), and this action
yields a realization of πλ,ε ⊗ πµ,η. More explicitly, let

f(x, y) = F ((x, 1), (y, 1)) .

Then for g ∈ SL2(R) such that g−1 =
(
a b

c d

)
F ◦ g−1((x, 1), (y, 1)) = (cx+ d)−λ,ε(cy + d)−µ,ηf

(
ax+ b

cx+ d
,
ay + b

cy + d

)
.

The polynomial det
(
x1 y1
x2 y2

)
is invariant by the action of SL2(R) and

so is the differential operator

Ω = ∂2

∂x1∂y2
− ∂2

∂x2∂y1
.

The operator Ω maps F(λ,ε),(µ,η) to F(λ+1,−ε),(µ+1,−η) and yields a covariant
differential w.r.t. (πλ,ε ⊗ πµ,η, πλ+1,−ε ⊗ πµ+1,−η).

Let F ∈ F(λ,ε),(µ,η). As above, let f be the function on R×R obtained by
deshomogenization of F i.e. f(x, y) = F

(
(x, 1), (y, 1)

)
. The corresponding

differential operator on R× R is given by

ωλ,µf(x, y)) =
(
ΩF
)(

(x, 1), (y, 1)
)

= −µ∂f
∂x

+ λ
∂f

∂y
+ (x− y) ∂

2f

∂x∂y
,

independently of ε and η, so that Dλ,µ = −2iπωλ,µ.
For k ∈ N, let Rk : C∞(R2 × R2) 7−→ C∞(R2) be the bi-differential

operator given by Rk = res ◦Ωk or more explicitely

(5.4) x ∈ V, RkF (x) = ΩkF (x, x)

The operator Rk commutes to the action of SL(2,R). If F belongs to
F(λ,ε),(µ,η), the function RkF is homogeneous of degree (λ+µ+2k, εη). By
deshomogenization, the corresponding operator is

rλ,µ;k = res ◦ωλ+k−1,µ+k−1 ◦ · · · ◦ ωλ,µ
so that Bλ,µ;k = (−2iπ)krλ,µ:k.
A classical computation in the theory of the Ω-process yields an explicit

expression for rλ,µ,k

(5.5) rλ,µ;k = res ◦

k!
∑
i+j=k

(−1)j
(
−λ− i
j

)(
−µ− j

i

)
∂k

∂xi∂yj

 .

The computation can be found in [16], where the indices λ and µ are sup-
posed to be negative integers, but the computation goes through without
this assumption.
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Two special cases are worth being reported, both corresponding to cases
where the representations πλ,ε, πµ,η are reducible.
Suppose that λ = k ∈ Z. Choose ε = (−1)k, so that for any t ∈ R∗, tλ,ε =

tk. Then for g ∈ G such that g−1 =
(
a b

c d

)

πk,(−1)k(g)f(x) = (cx+ d)−kf
(
ax+ b

cx+ d

)
.

Let first consider the case where λ ∈ −N, say λ = −l, l ∈ N. Then the space
Pl of polynomials of degree less than l is preserved by the representation
π−l,(−1)l Similarly, let µ = −m for some m ∈ N. Let p ∈ Pl, q ∈ Pm. Let P
(resp. Q) be the homogeneous polynomial on R2 obtained by homogeniza-
tion of p (resp.q). For k 6 inf(l,m), the function Rk(P⊗Q) is a polynomial
which is homogeneous of degree l+m−2k and which in the classical theory
of invariants is called the kth transvectant of P and Q usually denoted by
[P,Q]k. So B−l,−m;k just expresses the k-th transvectant at the level of
inhomogeneous polynomials.
Now suppose that λ = l, l ∈ N. Then restrictions of holomorphic func-

tions to R are preserved by the representation πl,(−1)l . Suppose also µ =
m ∈ N. Then the operators Dl,m and Bl,m,k, extended as holomorphic
differential operators are still covariant under the action of G. If f is an
automorphic form of degree l and g of degree m, then the covariance prop-
erty of Bl,m;k implies that Bl,m,k(f ⊗ g) is an automorphic form of degree
l+m+2k. The operators Bl,m;k essentially coincide with the Rankin–Cohen
brackets, as easily deduced from formula (5.5).

6. The general case and some open problems

When m > 2, the Ω-process can be extended along the same lines
(see [16]). Let Fλ,ε be the space of functions F : V × V which are de-
terminantially homogeneous of weight (λ, ε), i.e. satisfying

∀ γ ∈ GL(V ) F (xγ, yγ) = (det γ)−λ,εF (x, y) .

To such a function F , associate the function f on V defined by f(x) =
F (x,1m). Then F can be recovered from f by

(6.1) F (x, y) = (det y)−λ,εf(xy−1) ,

at least when y ∈ V × and everywhere by continuity.
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The group G = SL(2m,R) acts on V × V by left multiplication, i.e. if

g =
(
a b

c d

)
(
g, (x, y)

)
7−→ g

(
x

y

)
=
(
ax+ by

cx+ dy

)
.

The determinantial homogeneity of functions is preserved by this action,
and hence the representation of G on Fλ,ε is but another realization of
πλ,ε as can be seen by transferring the action through the correspondance

F 7→ f given by (6.1). Using this time the polynomial det2m

(
x1 y1
x2 y2

)
, an

operator Ω can be defined along the same line as in the case m = 1. As
the action of G commutes to the action (on the right) of GL(V ), Ω maps
Fλ,ε ⊗ Fµ,η into Fλ+1,−ε ⊗ Fµ+1,−η and is covariant for the action of G.
Again, using the correspondence F 7→ f , Ω lifts to a differential operator
on V × V which is covariant w.r.t. (πλ,ε ⊗ πµ,η, πλ+1,−ε ⊗ πµ+1,−η) and
which can be used for defining the covariant bi-differential operators. It
is not clear wether the two approaches coincide, as computations get very
complicated.
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