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PARTIAL PERIODIC QUOTIENTS OF GROUPS
ACTING ON A HYPERBOLIC SPACE

by Rémi B. COULON (*)

Abstract. — In this article, we construct partial periodic quotients of groups
which have a non-elementary acylindrical action on a hyperbolic space. In partic-
ular, we provide infinite quotients of mapping class groups where a fixed power of
every homeomorphism is identified with a periodic or reducible element.
Résumé. — Dans cet article, nous construisons des quotients partiellement

périodiques de groupes admettant une action acylindrique sur un espace hyperbo-
lique. En particulier, nous produisons des quotients infinis de groupes modulaires
de surfaces, dans lesquelles une puissance fixée de tout homéomorphisme s’identifie
avec un élément réductible ou un élément d’ordre fini.

1. Introduction

A group G is periodic with exponent n if for every g ∈ G, gn = 1.
In 1902, W. Burnside asked whether or not a finitely generated periodic
group was necessarily finite. Despite the simplicity of the statement, this
question remained open for a long time and motivated many developments
in group theory. In 1968, P.S. Novikov and S.I. Adian achieved a break-
through by providing the first examples of infinite finitely generated pe-
riodic groups [31]. See also [32] and [13]. We now know that if G is a
hyperbolic group which is not virtually cyclic then there exists an integer
n such that G has an infinite quotient of exponent n [27]. As opposed to
this situation any finitely generated periodic linear group is finite [36].

Keywords: Small cancellation theory, mapping class groups, hyperbolic spaces, periodic
quotients.
Math. classification: 10X99, 14A12, 11L05.
(*) The author is grateful to T. Delzant who brought the invariant ν to his attention.
He would like also to thank V. Guirardel and L. Funar for related discussions.
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The original motivation for our work was the following question. What
are the finitely generated groups which admit an infinite periodic quotient?
With this level of generality, it is very difficult to understand what could be
the periodic quotients of an arbitrary non-hyperbolic group G. In this arti-
cle we are interested in partial periodic quotients of the form G/Sn where
Sn stands for the normal subgroup generated by the n-th power of every el-
ement in a large subset S of G. Our construction provides various examples
of quotients with exotic properties. Let us mention two applications.

Quotient of amalgamated products. A subgroup H of a group G is
malnormal if for every g ∈ G, gHg−1 ∩ H is trivial provided g does not
belong to H.

Theorem 1.1. — Let A and B be two groups without involution. Let
C be a subgroup of A and B malnormal in A or B. There is an integer
n1 such that for every odd exponent n > n1 there exists a quotient Q of
A ∗C B with the following properties.

(i) The natural projection A ∗C B � Q induces an embedding of A
and B into Q.

(ii) For every g ∈ Q, if g is not a conjugate of an element of A or B
then gn = 1.

(iii) There are infinitely many elements in Q which are not conjugates
of elements of A or B.

A similar statement has been obtained by K. Lossov in his Ph.D. disser-
tation using a diagrammatical version of small cancellation theory. To the
best of our knowledge the proof has never been published though.

Mapping class group. Our next example is new and comes from the
geometry of surfaces. Let Σ be a compact surface of genus g with p bound-
ary components. The mapping class group MCG(Σ) of Σ is the group of
orientation preserving self homeomorphisms of Σ defined up to homotopy.
A mapping class f ∈ MCG(Σ) is periodic if it has finite order; reducible if
it permutes a collection of essential non-peripheral curves (up to isotopy);
pseudo-Anosov if there exists an homotopy in the class of f that preserves
a pair of transverse foliations and rescale these foliations in an appropriate
way. It follows from Thurston’s work that any element of MCG(Σ) falls into
one these three categories [42]. We produce an infinite quotient of MCG(Σ)
where a fixed power of every element “becomes” periodic or reducible.

Theorem 1.2. — Let Σ be a compact surface of genus g with p bound-
ary components such that 3g + p − 3 > 1. There exist integers κ and n0
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such that for every odd exponent n > n0 there is a quotient Q of MCG(Σ)
with the following properties.

(i) If E is a subgroup of MCG(Σ) that does not contain a pseudo-
Anosov element, then the projection MCG(Σ) � Q induces an
isomorphism from E onto its image.

(ii) Let f be a pseudo-Anosov element of MCG(Σ). Either fκn = 1
in Q or there exists a periodic or reducible element u ∈ MCG(Σ)
such that fκ = u in Q. In particular, for every f ∈ MCG(Σ),
there exists a periodic or reducible element u ∈ MCG(Σ) such that
fκn = u in Q.

(iii) There are infinitely many elements in Q which are not the image of
a periodic or reducible element of MCG(Σ).

Remarks. — The question of infinite periodic quotients of mapping class
groups was raised by N.V. Ivanov [26, §13]. Let Σ be a compact of surface of
genus g. Let n be an integer. Using quantum representations, L. Funar and
T. Kohno established that if n is large enough, the quotient of MCG(Σ) by
the subgroup generated by the n-th power of every Dehn-twist is infinite [18,
Corollary 1.2] and contains non-abelian free subgroups [20, Remark 3.13].
In Section 6 we provide an alternative proof of this fact (Theorem 6.17). To
the best of our knowledge, Theorem 1.2 is the first construction of infinite
quotient of higher genus mapping class groups which “neutralizes” a fixed
power of all pseudo-Anosov homeomorphisms. L. Funar provided also some
answers regarding full periodic quotients of mapping class group. If g > 3,
then there exist arbitrarily large integers n such that MCG(Σ) has non-
trivial periodic quotients of exponent n [19, Theorem 1.2]. If g = 2, these
quotients are actually infinite [19, Theorem 1.3].

A ping-pong argument shows that MCG(Σ) contains many free purely
pseudo-Anosov subgroups. By purely pseudo-Anosov subgroup we mean
that any non-trivial element of this subgroup is pseudo-Anosov. Until re-
cently it was an open whether MCG(Σ) had purely pseudo-Anosov normal
subgroups. This question was for instance listed in Kirby’s book as Prob-
lem 2.12(A) [28]. See also [26, Problem 3] and [16, Paragraph 2.4]. In [11],
F. Dahmani, V. Guirardel and D. Osin provide many examples of such
groups. More precisely they prove the following. There exists an integer n
(that only depends on the surface Σ) such that if f ∈ MCG(Σ) is pseudo-
Anosov, then the normal closure of fn is free and purely pseudo-Anosov [11,
Theorem 8.1]. One could ask whether or not there is an integer n such that
the normal subgroup N of MCG(Σ) generated by the n-th power of every
pseudo-Anosov element is purely pseudo-Anosov. However such an integer

TOME 66 (2016), FASCICULE 5



1776 Rémi B. COULON

cannot exist. Indeed one can find a pseudo-Anosov element f and an infi-
nite order reducible element u such that fnu is pseudo-Anosov. If both fn
and (fnu)n belong to N , then the reducible element

un =
(
un−1f−nu−(n−1)

)
· · ·
(
u2f−nu−2) (uf−nu−1) f−n (fnu)n ,

would also belong to N . Nevertheless, if Q stands for the quotient given by
Theorem 1.2, then the kernel K of the projection MCG(Σ) � Q provides
a purely pseudo-Anosov normal subgroup that contains a fixed power of
most of the pseudo-Anosov elements of MCG(Σ). Following [26], we wonder
whether this kernel is a free group.

Corollary 1.3. — Let Σ be a compact surface of genus g with p

boundary components such that 3g + p − 3 > 1. There exist integers κ
and n0 such that for every odd exponent n > n0 there is a subgroup K of
MCG(Σ) with the following properties.

(i) K is normal and purely pseudo-Anosov.
(ii) As a normal subgroup, K is not finitely generated.
(iii) For every f ∈ MCG(Σ) either fκn belongs to K or there exists a

periodic or reducible element u ∈ MCG(Σ) such that fκu belongs
to K.

In his seminal paper M. Gromov introduced the concept of δ-hyperbolic
spaces [23]. Using a simple four point inequality, he captured most of the
large scale features of negative curvature. For a group G, being hyperbolic
means that its Cayley is hyperbolic as a metric space. Generalizing this
idea, M. Gromov also defined the notion of relatively hyperbolic groups.
For many purposes the Cayley graph is not the most appropriate space
to work with. To take advantage of the hyperbolic geometry what really
matters though is to have G acting “nicely” on a hyperbolic space. However
not all actions will do the job. Indeed every group admits a proper action
on a hyperbolic space. To make this idea works the action needs to satisfy
some finiteness condition. For instance a group G is

(i) hyperbolic if and only if it acts properly co-compactly on a hyper-
bolic length space X.

(ii) relatively hyperbolic if and only if it acts properly on a hyperbolic
length spaceX with some finiteness condition for the induced action
of G on the boundary at infinity ∂X of X.

These two classes already cover numerous examples of groups: geometri-
cally finite Kleinian groups, fundamental groups of finite volume manifolds
with pinched sectional curvature, small cancellation groups, amalgamated
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products over finite groups, etc. In this article we focus on a weaker con-
dition: acylindricity. It was first used by Z. Sela for actions on a tree [37].
The following formulation is due to B. Bowditch [3].

Definition 1.4. — The action of a group G on a metric space X is
acylindrical if for every l > 0, there exist d > 0 and N > 0 with the
following property. For every x, x′ ∈ X with |x−x′| > d, the set of elements
u ∈ G satisfying |ux−x| 6 l and |ux′−x′| 6 l contains at most N elements.

Roughly speaking, it means that the stabilizers of long paths are finite
with some uniform bound on their cardinality.

Example 1.5. — Let A and B be two groups. Let C be a subgroup of
A and B which is malnormal in A or B. The action of the amalgamated
product A ∗C B on the corresponding Bass-Serre tree is acylindrincal [37].

Example 1.6. — Let Σ be a compact surface of genus g with p boundary
components. The complex of curves X is a simplicial complex associated
to Σ introduced by W. Harvey [24]. The simplices of X are collections of
homotopy classes of curves of Σ that can be disjointly realized. H. Masur
and Y. Minsky proved that this space is hyperbolic [29]. By construction,X
is endowed with an action by isometries of MCG(Σ). Moreover B. Bowditch
showed that this action is acylindrical [3].

An acylindrical group action on a metric space is non-elementary if its
orbits are neither bounded or quasi-isometric to a line. D. Osin studied the
class of groups that admit a non-elementary acylindrical action on a hy-
perbolic space X. It turns out that this class is very large [34]. Besides the
two examples previously mentioned it also contains hyperbolic groups, rel-
atively hyperbolic groups, outer automorphism groups of free groups, right
angled Artin groups which are not cyclic or split as a direct product, the
Cremona group, etc. More examples are given in the work of A. Minasyan
and D. Osin [30].
Let G be a group acting acylindrically on hyperbolic space X. Just as

with hyperbolic groups, an element g ∈ G is either elliptic (its orbits are
bounded) or loxodromic (given x ∈ X, the map Z → X that sends m
to gmx is a quasi-isometric embedding). Every elementary subgroup E

of G either has bounded orbits or is virtually Z. The number e(G,X) is
the least common multiple of the exponents of the holomorph Hol(F ) =
F o Aut (F ), where F runs over the maximal finite normal subgroup of
all maximal non-elliptic elementary subgroups of G. Provided this number
is odd, our main result explains how to build a quotient Q of G with the

TOME 66 (2016), FASCICULE 5
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following properties. Any elliptic element is not affected; a fixed power of
every loxodromic element is identified with an elliptic one. More precisely
we prove the following statement.

Theorem 1.7. — Let X be a hyperbolic length space. Let G be a group
without involution acting by isometries on X. We assume that the action of
G is acylindrical and non-elementary. Suppose that e(G,X) is odd. There
is a critical exponent n1 such that for every odd integer n > n1 which is
a multiple of e(G,X), there exists a quotient Q of G with the following
properties.

• If E is an elliptic subgroup of G, then the projection G� Q induces
an isomorphism from E onto its image.

• For every element g ∈ Q, either gn = 1 or g is the image an elliptic
element of G.

• There are infinitely many elements in Q which do not belong to the
image of an elliptic subgroup of G.

Theorem 1.7 applied with the amalgamated product A ∗C B of Exam-
ple 1.5 gives Theorem 1.1. The mapping class group MCG(Σ) of a surface
Σ does contain elements of order 2. Therefore we cannot directly apply
Theorem 1.7. However it has a finite index torsion-free normal subgroup
N . A variation on Theorem 1.7 (see Theorem 6.9) leads to Theorem 1.2.
The constant κ in Theorem 1.2 is exactly the least common multiple of
e(N,X) and the index of N in MCG(Σ).
Our theorem actually holds for some group action which are not acylin-

drical (see Theorem 6.9). However the statement requires additional invari-
ants associated to G and X (see Section 3.5). This larger framework allows
in particular the group G to contain parabolic isometries/subgroups which
is never the case for an acylindrical action.
The proof of Theorem 1.7 relies on techniques introduced by T. Delzant

and M. Gromov to study free Burnside groups of odd exponents. Recall that
the free Burnside group Br(n) of rank r and exponent n is the quotient
of the free group Fr of rank r by the normal subgroup Fnr generated the
n-th power of every element. It is the largest group of rank r and exponent
n. In [13], T. Delzant and M. Gromov provide an alternative proof of the
infiniteness of Br(n) for sufficiently large odd integers n. To that end they
construct a sequence of non-elementary hyperbolic groups

Fr = G0 � G1 � G2 � · · ·� Gk � . . .

whose direct limit is Br(n). Each group Gk is obtained by adjoining to
the previous group new relations of the form gn, using a geometric form
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of small cancellation theory. The infiniteness of Br(n) follows from the
hyperbolicity of the approximation groups Gk. For a detailed presentation
of this approach we refer the reader to the notes written by the author [10].
It appears that small cancellation theory can be extended to a larger

class of groups. In the previous process if Gk is a group acting “nicely” on
a hyperbolic space Xk one can construct a hyperbolic space Xk+1 on which
Gk+1 acts with similar properties [8, 11]. The main difficulty is to make
sure that one can indefinitely iterate this construction. In the case of free
Burnside groups of odd exponents T. Delzant and M. Gromov used two
invariants (the injectivity radius and the invariant A, see Definition 3.36
and Definition 3.43) to control the small cancellation parameters during the
process. The other key ingredient involved in their proof is the algebraic
structure of the approximation groups Gk: every elementary subgroup of
Gk is cyclic. This remarkable property explains why the case of odd ex-
ponents is much easier than the even one. If, instead of a free group, we
initiate the construction with a group G acylindrically acting on a hyper-
bolic space, then the algebraic structure of G will never be as simple. Indeed
the elliptic subgroups of G can be anything. To handle this difficulty we
use a new invariant ν(G,X). Formally, it is the smallest integer m with the
following property. Given any two elements g, h ∈ G with h loxodromic, if
g, h−1gh, . . . , h−mghm generate an elliptic subgroup, then g and h gener-
ate an elementary subgroup of G (see Definition 3.40). This new parameter
will allow us to control the structure of elementary subgroups which are
not elliptic.

Outline of the paper. In Section 2 and Section 3 we review some of
the standard facts on hyperbolic spaces and groups acting on a hyperbolic
space. In particular, we define in Section 3.5 all the invariants that are
needed to iterate later the small cancellation process. In Section 4 we recall
the cone-off construction which is one of the key tool in the geometric
approach of small cancellation. Section 5 is dedicated to small cancellation
theory. If G is a group acting on a hyperbolic space X we explain how
to use small cancellation theory to produce a quotient Ḡ with an action
on a hyperbolic space X̄. Moreover we show that the invariants associated
to the action of Ḡ on X̄ can be controlled using the ones describing the
action of G on X. In the beginning of Section 6, we prove a statement
(Proposition 6.1) that will be used as the induction step in the proof of the
main theorem (Theorem 6.9). Finally we discuss some applications of our
results.

TOME 66 (2016), FASCICULE 5
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2. Hyperbolic geometry

In this section we review some of the basic ideas about hyperbolic spaces
in the sense of M. Gromov. For more details we refer the reader to Gromov’s
original paper [23] or [7, 22].

2.1. Definitions

Notations and vocabulary. Let X be a metric length space. Unless
otherwise stated a path is a rectifiable path parametrized by arc length.
Given two points x and x′ of X, we denote by |x−x′|X (or simply |x−x′|)
the distance between them. We write B(x, r) for the open ball of center x
and radius r. The space is said to be proper if every closed bounded subset is
compact. Let Y be a subset of X. We write d(x, Y ) for the distance between
a point x ∈ X and Y . We denote by Y +α, the α-neighborhood of Y , i.e. the
set of points x ∈ X such that d(x, Y ) 6 α. The open α-neighborhood of Y
is the set of points x ∈ X such that d(x, Y ) < α. Let η > 0. A point p of
Y is an η-projection of x ∈ X on Y if |x− p| 6 d(x, Y ) + η. A 0-projection
is simply called a projection.

The four point inequality. The Gromov product of three points
x, y, z ∈ X is defined by

〈x, y〉z = 1
2 {|x− z|+ |y − z| − |x− y|} .

The space X is δ-hyperbolic if for every x, y, z, t ∈ X

(2.1) 〈x, z〉t > min {〈x, y〉t , 〈y, z〉t} − δ,

or equivalently

(2.2) |x− z|+ |y − t| 6 max {|x− y|+ |z − t| , |x− t|+ |y − z|}+ 2δ.

Remarks. — Note that in the definition of hyperbolicity we do not as-
sume that X is geodesic or proper. If X is 0-hyperbolic, then it can be
isometrically embedded in an R-tree, [22, Chapitre 2, Proposition 6]. For
our purpose though, we will always assume that the hyperbolicity constant
δ is positive. It is indeed more convenient to define particular subsets with-
out introducing other auxiliary positive parameters (see Definition 2.17
of a hull or Definition 3.9 of an axis). The hyperbolicity constant of the
hyperbolic plane H will play a particular role. We denote it by δ (bold
delta).

ANNALES DE L’INSTITUT FOURIER
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From now on we assume that X is δ-hyperbolic. It is known that trian-
gles in a geodesic hyperbolic space are thin (every side lies in a uniform
neighborhood of the union of the two other ones). Since our space is not
geodesic, we use instead the following metric inequalities. In this lemma
the Gromov products 〈x, z〉t, 〈x, y〉s and 〈x, y〉t should be thought as very
small quantities.

Lemma 2.1 ([10, Lemma 2.2]). — Let x, y, z, s and t be five points
of X.

(i) 〈x, y〉t 6 max {|x− t| − 〈y, z〉x , 〈x, z〉t}+ δ,

(ii) |s− t| 6 ||x− s| − |x− t||+ 2 max {〈x, y〉s , 〈x, y〉t}+ 2δ,
(iii) The distance |s− t| is bounded above by

max
{
||x− s| − |x− t||+ 2 max {〈x, y〉s , 〈x, z〉t} ,

|x− s|+ |x− t| − 2 〈y, z〉x
}

+ 4δ.

The boundary at infinity. Let x be a base point of X. A sequence (yn)
of points of X converges to infinity if 〈yn, ym〉x tends to infinity as n and m
approach to infinity. The set S of such sequences is endowed with a binary
relation defined as follows. Two sequences (yn) and (zn) are related if

lim
n→+∞

〈yn, zn〉x = +∞.

If follows from (2.1) that this relation is actually an equivalence relation.
The boundary at infinity of X denoted by ∂X is the quotient of S by this
relation. If the sequence (yn) is an element in the class of ξ ∈ ∂X we say
that (yn) converges to ξ and write

lim
n→+∞

yn = ξ.

Note that the definition of ∂X does not depend on the base point x. If Y is
a subset of X, we denote by ∂Y the set of elements of ∂X which are limits
of sequences of points of Y . Since X is not proper, ∂Y might be empty
even though Y is unbounded.
The Gromov product of three points can be extended to the boundary.

Let x ∈ X and y, z ∈ X ∪ ∂X. We define 〈y, z〉x as the infimum of

lim inf
n→+∞

〈yn, zn〉x

where (yn) and (zn) run over all sequences which respectively converge to
y and z. This definition coincides with the original one when y, z ∈ X. Two
points ξ and η of ∂X are equal if and only if 〈ξ, η〉x = +∞. Let x ∈ X. Let

TOME 66 (2016), FASCICULE 5
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(yn) and (zn) be two sequences of points of X respectively converging to y
and z in X ∪ ∂X. It follows from (2.1) that

(2.3) 〈y, z〉x 6 lim inf
n→+∞

〈yn, zn〉x 6 lim sup
n→+∞

〈yn, zn〉x 6 〈y, z〉x + kδ,

where k is the number of points of {y, z} that belong to ∂X. Moreover,
for every t ∈ X, for every x, y, z ∈ X ∪ ∂X, the four point inequality (2.1)
leads to

(2.4) 〈x, z〉t > min {〈x, y〉t , 〈y, z〉t} − δ.

The next lemma is an analog of Lemma 2.1 with one point in the boundary
ofX. It will be used in situations where the Gromov products 〈x, ξ〉s, 〈x, ξ〉t
and 〈y, ξ〉t are very small.

Lemma 2.2. — Let ξ ∈ ∂X. Let x, y, s and t be four points of X. We
have the following inequalities

(i) 〈x, ξ〉t 6 max
{
|x− t| − 〈y, ξ〉x , 〈x, y〉t

}
+ δ,

(ii) |s− t| 6 ||x− s| − |x− t||+ 2 max {〈x, ξ〉s , 〈x, ξ〉t}+ 3δ,
(iii) The distance |s− t| is bounded above by

max
{
〈x, ξ〉s + 〈y, ξ〉t + 2δ, |x− y|+ ||x− s| − |y − t||

+ 2 max{〈x, ξ〉s , 〈y, ξ〉t}
}

+ 2δ.

Proof. — Points (i) and (ii) follow directly from Lemma 2.1 (i) and (ii)
combined with (2.3). Let us focus on Point (iii). By hyperbolicity we have

min {〈x, t〉s , 〈t, ξ〉s} 6 〈x, ξ〉s + δ,(2.5)
min {〈y, s〉t , 〈s, ξ〉t} 6 〈y, ξ〉t + δ.(2.6)

Assume that the minimum in (2.5) is achieved by 〈x, t〉s. It follows that

|s− t| 6 |x− t| − |x− s|+ 2 〈x, ξ〉s + 2δ.

Combined with the triangle inequality we obtain

|s− t| 6 |x− y|+ ||x− s| − |y − t||+ 2 〈x, ξ〉s + 2δ.

The same kind of arguments hold if the minimum in (2.6) is achieved
by 〈y, s〉t. Therefore we can now assume that 〈t, ξ〉s 6 〈x, ξ〉s + δ and
〈s, ξ〉t 6 〈y, ξ〉t + δ. For every z ∈ X, we have |s − t| = 〈s, z〉t + 〈t, z〉s. If
follows from (2.3) that |s− t| 6 〈s, ξ〉t + 〈t, ξ〉s + 2δ. Consequently |s− t| 6
〈x, ξ〉s + 〈y, ξ〉t + 4δ. �

Lemma 2.3. — Let x ∈ X and ξ ∈ ∂X. For every l > 0, for every η > 0,
there exists a point y ∈ X such that |x− y| = l and 〈x, ξ〉y 6 δ + η.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Let l > 0 and η > 0. Let (zn) be a sequence of points of X
which converges to ξ. In particular, there exists N ∈ N such that for all
n,m > N , 〈zn, zm〉x > l. We choose for y a point of X such that |x−y| = l

and 〈x, zN 〉y 6 η. By Lemma 2.1 (i), we get for every n > N ,

〈x, zn〉y 6 max
{
|x− y| − 〈zN , zn〉x , 〈x, zN 〉y

}
+ δ 6 〈x, zN 〉y + δ 6 δ + η.

Consequently 〈x, ξ〉y 6 δ + η. �

2.2. Quasi-geodesics

Definition 2.4. — Let l > 0, k > 1 and L > 0. Let f : X1 → X2 be a
map between two metric spaces X1 and X2. We say that f is a (k, l)-quasi-
isometric embedding if for every x, x′ ∈ X1,

k−1 |f(x)− f(x′)| − l 6 |x− x′| 6 k |f(x)− f(x′)|+ l.

We say that f is an L-local (k, l)-quasi-isometric embedding if its restric-
tion to any subset of diameter at most L is a (k, l)-quasi-isometric embed-
ding. Let I be an interval of R. A path γ : I → X that is a (k, l)-quasi-
isometric embedding is called a (k, l)-quasi-geodesic. Similarly, we define
L-local (k, l)-quasi-geodesics.

Remarks. — We assumed that our paths are rectifiable and parame-
trized by arc length. Thus a (k, l)-quasi-geodesic γ : I → X satisfies a more
accurate property: for every t, t′ ∈ I,

|γ(t)− γ(t′)| 6 |t− t′| 6 k |γ(t)− γ(t′)|+ l.

In particular, if γ is a (1, l)-quasi-geodesic, then for every t, t′, s ∈ I with
t 6 s 6 t′, we have 〈γ(t), γ(t′)〉γ(s) 6 l/2. Since X is a length space for
every x, x′ ∈ X, for every l > 0, there exists a (1, l)-quasi-geodesic joining
x and x′.

Proposition 2.5 ([10, Proposition 2.4]). — Let γ : I → X be a (1, l)-
quasi-geodesic of X.

(i) Let x be a point of X and p an η-projection of x on γ(I). For all
y ∈ γ, 〈x, y〉p 6 l + η + 2δ.

(ii) For every x ∈ X, for every y, y′ ∈ γ, we have d(x, γ) 6 〈y, y′〉x +
l + 3δ.

Let γ : R+ → X be a (k, l)-quasi-geodesic. There exists a point ξ ∈ ∂X
such that for every sequence (tn) diverging to infinity, limn→+∞ γ(tn) = ξ.
In this situation we consider ξ as an endpoint (at infinity) of γ and write
limt→+∞ γ(t) = ξ.
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Stability of quasi-geodesics. One important feature of hyperbolic
spaces is the stability of quasi-geodesic paths recalled below.

Proposition 2.6 (Stability of quasi-geodesics [7, Chapitre 3, Th. 1.2,
1.4 et 3.1]). — Let k > 1, k′ > k and l > 0. There exist L and D which
only depend on δ, k, k′ and l with the following properties

(i) Every L-local (k, l)-quasi-geodesic is a (global) (k′, l)-quasi-geodesic.
(ii) The Hausdorff distance between two L-local (k, l)-quasi-geodesics

joining the same endpoints (possibly in ∂X) is at most D.

In this article we are mostly using L-local (1, l)-quasi-geodesics. For these
paths one can provide a precise value for D (see next corollary). This is not
really necessary but will decrease the number of parameters that we have
to deal with in all the proofs.

Corollary 2.7 ([10, Corollaries 2.6 and 2.7]). — Let l0 > 0. There
exists L = L(l0, δ) which only depends on δ and l0 with the following
properties. Let l ∈ [0 , l0]. Let γ : I → X be an L-local (1, l)-quasi-geodesic.

(i) The path γ is a (global) (2, l)-quasi-geodesic.
(ii) For every t, t′, s ∈ I with t 6 s 6 t′, we have 〈γ(t), γ(t′)〉γ(s) 6

l/2 + 5δ.
(iii) For every x ∈ X, for every y, y′ lying on γ, we have d(x, γ) 6

〈y, y′〉x + l + 8δ.
(iv) The Hausdorff distance between γ and any other L-local (1, l)-quasi-

geodesic joining the same endpoints (possibly in ∂X) is at most
2l + 5δ.

Remark. — Using a rescaling argument, one can see that the best value
for the parameter L = L(l, δ) satisfies the following property: for all l, δ > 0
and λ > 0, L(λl, λδ) = λL(l, δ). This allows us to define a parameter LS
that will be use all the way through.

Definition 2.8. — Let L(l, δ) be the best value for the parameter L =
L(l, δ) given in Corollary 2.7. We denote by LS a number larger than 500
such that L(105δ, δ) 6 LSδ.

Quasi-rays. If X is a proper geodesic space, thanks to the Azerlà-Ascoli
Theorem, any two distinct points in X ∪ ∂X can be joined by a geodesic.
Here, X is not necessarily proper or geodesic. Therefore we substitute this
property for the following lemma.

Lemma 2.9. — Let x ∈ X and ξ ∈ ∂X. For every L > 0, for every l > 0,
there exists an L-local (1, l + 10δ)-quasi-geodesic joining x to ξ.

ANNALES DE L’INSTITUT FOURIER



PARTIAL PERIODIC QUOTIENTS 1785

Proof. — Let L > LSδ and η ∈ (0, δ). According to Lemma 2.3 for
every n ∈ N, there exists a point xn ∈ X such that |x − xn| = nL and
〈x, ξ〉xn 6 η + δ. By construction (xn) converges to ξ. We claim that for
every n ∈ N∗,

|xn − xn−1| > L and 〈xn+1, xn−1〉xn 6 2η + 5δ.

Let n ∈ N∗. First, the triangle inequality gives |xn−xn−1| > L and |xn+1−
xn−1| > 2L. On the other hand, applying Lemma 2.2 (ii) we get |xn −
xn−1| 6 L+ 2η + 5δ. The claim is a consequence of these inequalities. For
every n ∈ N, we choose a (1, η)-quasi-geodesic γn joining xn to xn+1. We
define γ : R+ → X as the concatenation of these paths. It follows from the
previous inequalities that γ is an L-local (1, 8η + 10δ)-quasi-geodesic. By
choice of L, γ is also a (2, 8η + 10δ)-quasi-geodesic (Corollary 2.7), thus it
has an endpoint at infinity. Since (xn) lies on γ, this endpoint is ξ. If η is
chosen sufficiently small, γ is the desired path. �

2.3. Quasi-convex and strongly quasi-convex subsets

Definition 2.10. — Let α > 0. A subset Y of X is α-quasi-convex if
for every x ∈ X, for every y, y′ ∈ Y , d(x, Y ) 6 〈y, y′〉x + α.

Since X is not a geodesic space our definition of quasi-convex slightly dif-
fers from the usual one (every geodesic joining two points of Y remains in
the α-neighborhood of Y ). However ifX is geodesic, an α-quasi-convex sub-
set in the usual sense is (α+ 3δ)-quasi-convex in our sense and conversely.
For instance it follows from the four point inequality (2.2) that any ball
is 2δ-quasi-convex. According to Proposition 2.5 every (1, l)-quasi-geodesic
is (l + 3δ)-quasi-convex. If L is sufficiently large then every L-local (1, l)-
quasi-geodesic is (l+ 8δ)-quasi-convex (Corollary 2.7). For our purpose we
will also need a slightly stronger version of quasi-convexity.

Definition 2.11. — Let α > 0. Let Y be a subset of X connected by
rectifiable paths. The length metric on Y induced by the restriction of | . |X
to Y is denoted by | . |Y . We say that Y is strongly quasi-convex if it is
2δ-quasi-convex and for every y, y′ ∈ Y ,

|y − y′|X 6 |y − y
′|Y 6 |y − y

′|X + 8δ.

Remark. — The first inequality is just a consequence of the definition
of | . |Y . The second one gives a way to compare Y , seen as a length space,
with X.
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Lemma 2.12 ([7, Chapitre 10, Prop. 1.2], [10, Prop. 2.13]). — Let Y be
an α-quasi-convex subset of X. For every A > α, the A-neighborhood of Y
is 2δ-quasi-convex.

Lemma 2.13. — Let Y be an α-quasi-convex subset of X. Let A >

α+ 2δ. The open A-neighborhood of Y is strongly quasi-convex.

Proof. — Let us denote by Z the open A-neighborhood of Y . Let x ∈ X.
Let z1 and z2 be two points of Z. By definition there exist y1, y2 ∈ Y such
that |y1 − z1|, |y2 − z2| < A. It follows from the four point inequality (2.1)
that

min {〈z1, y1〉x , 〈y1, y2〉x , 〈y2, z2〉x} 6 〈z1, z2〉x + 2δ.
Since Y is α-quasi-convex, d(x, Y ) 6 〈y1, y2〉x + α < 〈y1, y2〉x +A. On the
other hand, the triangle inequality gives

〈z1, y1〉x > |x− y1| − |y1 − z1| > d(x, Y )−A.

In the same way 〈z2, y2〉x > d(x, Y )−A. Hence d(x, Y ) < 〈z1, z2〉x+A+2δ.
However X is a length-space. Thus d(x, Z) 6 〈z1, z2〉x + 2δ. Consequently
Z is 2δ-quasi-convex.
Let η > 0 such that |y1−z1|+η < A, |y2−z2|+η < A and A > α+2δ+η.

We denote by γ1 a (1, η)-quasi-geodesic joining y1 to z1. By choice of η,
this path is contained in Z. We denote by x1 a point of γ1 such that
|x1 − y1| = min{A− 2δ− η, |z1 − y1|}. In particular |z1 − x1| 6 2δ + η. We
construct in the same way a (1, η)-quasi-geodesic γ2 joining y2 to z2 and a
point x2 lying on γ2. Let γ be a (1, η)-quasi-geodesic joining x1 to x2. Let
p be a point lying on γ. By hyperbolicity we get

(2.7) min{〈x1, y1〉p , 〈y1, y2〉p , 〈y2, x2〉p} 6 〈x1, x2〉p + 2δ 6 η/2 + 2δ.

Since Y is α-quasi-convex, we have

(2.8) d(p, Y ) 6 〈y1, y2〉p + α 6 〈y1, y2〉p +A− 2δ − η

On the other hand, the triangle inequality yields

(2.9) d(p, Y ) 6 |p− y1| 6 |x1 − y1|+ 〈x1, y1〉p 6 〈x1, y1〉p +A− 2δ − η.

The same inequality holds with 〈x2, y2〉p. Combining (2.7)-(2.9) we get
d(p, Y ) < A. In particular, γ is contained in Z. So are γ1 and γ2. Recall
that |z1 − x1| 6 2δ + η and |z2 − x2| 6 2δ + η. Hence there is a path of
length at most L(γ) + 4δ + 3η joining z1 to z2 and contained in Z. By the
triangle inequality L(γ) 6 |z1 − z2|+ 4δ + 3η. It follows that |z1 − z2|Z 6
|z1 − z2|X + 8δ + 6η. This inequality holds for every sufficiently small η,
hence Z is strongly quasi-convex. �
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Lemma 2.14 (Projection on a quasi-convex [7, Chapitre 10, Prop. 2.1],
[10, Lemma 2.12]). — Let Y be an α-quasi-convex subset of X.

(i) If p is an η-projection of x ∈ X on Y , then for all y ∈ Y , 〈x, y〉p 6
α+ η.

(ii) Let x, x′ ∈ X. If p and p′ are respective η- and η′-projections of x
and x′ on Y , then

|p− p′| 6 max
{
|x− x′| − |x− p| − |x′ − p′|+ 2ε, ε

}
,

where ε = 2α+ η + η′ + δ.

The next two lemmas respectively generalize Lemma 2.12 and
Lemma 2.13 of [10] where they are stated for the intersection of two quasi-
convex subsets. However the proofs work exactly in the same way and are
left to the reader.

Lemma 2.15 ([10, Lemma 2.12]). — Let Y1, . . . , Ym be a collection of
subsets of X such that for every j ∈ {1, . . . ,m}, Yj is αj-quasi-convex. We
denote by Z the intersection

Z = Y +α1+3δ
1 ∩ . . . ∩ Y +αm+3δ

m

It is a 7δ-quasi-convex subset of X.

Lemma 2.16 ([10, Lemma 2.13]). — Let Y1, . . . , Ym be a collection of
subsets of X such that for every j ∈ {1, . . . ,m}, Yj is αj-quasi-convex. For
all A > 0, we have

diam
(
Y +A

1 ∩ . . . ∩ Y +A
m

)
6 diam

(
Y +α1+3δ

1 ∩ . . . ∩ Y +αm+3δ
m

)
+ 2A+ 4δ.

Definition 2.17. — Let Y be a subset of X. The hull of Y , denoted by
hull (Y ), is the union of all (1, δ)-quasi-geodesics joining two points of Y .

Lemma 2.18 ([10, Lemma 2.15]). — Let Y be a subset of X. The hull
of Y is 6δ-quasi-convex.
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3. Group acting on a hyperbolic space

3.1. Classification of the isometries

Let x be a point of X. An isometry g of X is either
• elliptic, i.e. the orbit 〈g〉x is bounded,
• loxodromic, i.e. the map from Z to X that sends m to gmx is a

quasi-isometry,
• or parabolic, i.e. it is neither loxodromic or elliptic.

Note that these definitions do not depend on the point x. In order to
measure the action of g on X, we use two translation lengths. By the
translation length [g]X (or simply [g]) we mean

[g]X = inf
x∈X
|gx− x| .

The asymptotic translation length [g]∞X (or simply [g]∞) is

[g]∞X = lim
n→+∞

1
n
|gnx− x| .

The isometry g is loxodromic if and only if its asymptotic translation length
is positive [7, Chapitre 10, Proposition 6.3]. These two lengths are related
as follows.

Proposition 3.1 ([7, Chapitre 10, Proposition 6.4]). — Let g be an
isometry of X. Its translation lengths satisfy

[g]∞ 6 [g] 6 [g]∞ + 16δ

Lemma 3.2 ([10, Lemma 2.22]). — Let x, x′ and y be three points of
X. Let g be an isometry of X. Then |gy− y| 6 max {|gx− x|, |gx′ − x′|}+
2 〈x, x′〉y + 6δ.

By construction, the group of isometries of X acts on the boundary at
infinity ∂X of X. The different types of isometries of X can be character-
ized in terms of accumulation points in ∂X. Given a group G acting by
isometries on X, we denote by ∂G the set of accumulation points of Gx in
∂X. Note that it does not depend on x ∈ X. It is also G-invariant. If g is
a loxodromic isometry of X then ∂〈g〉 contains exactly two points:

g− = lim
n→−∞

gnx and g+ = lim
n→+∞

gnx

They are the only points of ∂X fixed by g [7, Chapitre 10, Proposition 6.6].
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Definition 3.3. — Let g be an isometry of X. Let l > 0. A path
γ : R → X is called an l-nerve of g if there exists T ∈ R with [g] 6 T 6
[g] + l such that γ is a T -local (1, l)-quasi-geodesic and for every t ∈ R,
γ(t+ T ) = gγ(t). The parameter T is called the fundamental length of γ.

Remark. — For every l > 0, one can construct an l-nerve of g as follows.
Let η > 0. There exists x ∈ X such that |gx−x| < [g]+η. Let γ : [0 , T ]→ X

be a (1, η)-quasi-geodesic joining x to gx. In particular [g] 6 T < [g] + 2η.
We extend γ into a path γ : R→ X in the following way: for every t ∈ [0, T ),
for every m ∈ Z, γ(t + mT ) = gmγ(t). It turns out that γ is a T -local
(1, 2η)-quasi-geodesic. Thus if η is chosen sufficiently small then γ is an
l-nerve.

This kind of path will be used to simplify some proofs. Recall that LS is
the parameter given by the stability of quasi-geodesics (see Definition 2.8).
If [g] > LSδ (in particular g is hyperbolic) and l 6 105δ, by stability of
quasi-geodesics γ is actually (l+ 8δ)-quasi-convex. Moreover it joins g− to
g+. Thus it provides a g-invariant line than can advantageously be used as a
substitution for an axis or a cylinder (see Definition 3.9 and Definition 3.12).
Recall that we did not assume that X was proper. Therefore there might

exist unbounded subsets of Y of X such that ∂Y is empty. However this
pathology does not happen if Y is the orbit of a group G. To prove this
fact we need the following lemma.

Lemma 3.4 ([7, Chapitre 9, Lemme 2.3]). — Let g and h be two isome-
tries of X which are not loxodromic. If there exists a point x ∈ X such
that |gx− x| > 2 〈gx, hx〉x + 6δ and |hx− x| > 2 〈gx, hx〉x + 6δ then g−1h

is loxodromic.

Proposition 3.5. — Let G be a group acting by isometries on X. Ei-
ther one (and thus every) orbit of G is bounded or ∂G is non-empty.

Proof. — Let x be point of X. Assume that, contrary to our claim, G is
unbounded and ∂G is empty. In particular, G cannot contain a loxodromic
element. On the other hand, there exists a sequence (gn) of elements of G
such that limn→+∞ |gnx − x| = +∞ and 〈gnx, gmx〉x, n 6= m is bounded.
It follows from Lemma 3.4 that if n and m are sufficiently large distinct
integers, then g−1

n gm is a loxodromic element of G. Contradiction. �

Proposition 3.6. — Let G be a group acting by isometries on X. If
∂G has at least two points then G contains a loxodromic isometry.
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Proof. — Let us denote by ξ and η two distinct points of ∂G. They
are respectively limits of two sequences (gnx) and (hnx) where gn and hn
belong to G. Thus the following holds.

• lim
n→+∞

|gnx− x| = +∞ and lim
n→+∞

|hnx− x| = +∞,
• lim sup

n→+∞
〈gnx, hnx〉x 6 〈ξ, η〉x + 2δ < +∞.

In particular, there exists n ∈ N such that |gnx − x| > 2 〈gnx, hnx〉x + 6δ
and |hnx−x| > 2 〈gnx, hnx〉x+6δ. If gn and hn are not already loxodromic,
then by Lemma 3.4 g−1

n hn is. �

Corollary 3.7. — An isometry g of X is parabolic if and only if ∂〈g〉
has exactly one point.

Lemma 3.8. — Let G be a group acting by isometries on X. If ∂G has
at least three points then G contains two loxodromic isometries g and h

such that {g−, g+} 6= {h−, h+}.

Proof. — By Proposition 3.6 G contains a loxodromic isometry g. We
denote by g− and g+ the points of ∂X fixed by g. They belong to ∂G.
According to the stability of quasi-geodesics (Corollary 2.7) the Hausdorff
distance between two LSδ-local (1, δ)-quasi-geodesics with the same end-
points is at most 7δ. We denote by Y the union of all LSδ-local (1, δ)-quasi-
geodesics joining g− and g+. This set is non-empty (it contains the nerve
of a sufficiently large power of g). Moreover ∂Y = {g−, g+}. We assume
now that for every u ∈ G, we have u{g−, g+} = {g−, g+}. It follows that Y
is G-invariant. Thus every point of ∂G is the limit of a sequence of points
of Y . In other words ∂G is contained in {g−, g+}. Contradiction. Hence
there exists u ∈ G such that u{g−, g+} 6= {g−, g+}. The isometries g and
h = ugu−1 satisfy the conclusion of the lemma. �

3.2. Axis of an isometry

Definition 3.9. — Let g be an isometry of X. The axis of g denoted
by Ag is the set of points x ∈ X such that |gx− x| < [g] + 8δ.

Remarks. — Note that we do not require g to be loxodromic. This def-
inition works also for parabolic or elliptic isometries. For every l ∈ (0, 4δ),
every l-nerve of g is contained in Ag. On the other hand, for every x ∈ Ag
there is a 8δ-nerve of g going through x.
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Proposition 3.10 ([10, Proposition 2.24]). — Let g be an isometry of
X. Let x be a point of X.

(i) |gx− x| > 2d(x,Ag) + [g]− 6δ,
(ii) if |gx− x| 6 [g] +A, then d(x,Ag) 6 A/2 + 3δ,
(iii) Ag is 10δ-quasi-convex.

Proposition 3.11. — Let g be an isometry of X. Let ξ be a point of
∂X fixed by g. Let x ∈ X. Let l ∈ [0 , 105δ] and γ : R+ → X be an LSδ-
local (1, l)-quasi-geodesic joining x to ξ. There exists t0 ∈ R+ such that for
every t > t0, γ(t) lies in the (l/2 + 31δ)-neighborhood of Ag. In particular
ξ belongs to ∂Ag.

Proof. — Assume that the statement is false. There exists t > 2d(x,Ag)+
2l + 62δ such that the distance between y = γ(t) and Ag is larger than
l/2 + 31δ. In particular |x− y| > d(x,Ag) + l/2 + 31δ (Corollary 2.7). We
are going to prove that under these assumption ξ cannot be a fixed point of
g. Let p and q be respective δ-projections of x and y on Ag. We first claim
that 〈p, x〉y > l/2 + 7δ. By projection on a quasi-convex (Lemma 2.14) we
have

|p− q| 6 max {|x− y| − |x− p| − |y − q|+ 46δ, 23δ} .
Consequently, either 〈x, y〉p 6 23δ or |p− q| 6 23δ. Assume that |p− q| 6
23δ. Then the triangle inequality leads to

〈p, x〉y > |x− y| − |x− p| > |x− y| − |x− q| − 23δ
> |x− y| − d(x,Ag)− 24δ > l/2 + 7δ.

On the other hand if 〈x, y〉p 6 23δ, then we get

〈p, x〉y = |y − p| − 〈x, y〉p > d(y,Ag)− 〈x, y〉p − δ > l/2 + 7δ,

which proves our claim.
Let z be a point of Ag. Recall that γ is an LSδ-local (1, l)-quasi-geodesic

hence 〈ξ, x〉y 6 l/2 + 5δ (Corollary 2.7). Applying the four point inequal-
ity (2.4) twice we get

min
{
〈ξ, z〉y , 〈z, p〉y , 〈p, x〉y

}
6 〈ξ, x〉y + 2δ 6 l/2 + 7δ.

Thanks to our previous claim the minimum cannot be achieved by 〈p, x〉y.
It cannot be achieved by 〈z, p〉y either. Indeed, Ag being 10δ-quasi-convex
this would lead to d(y,Ag) 6 〈z, p〉y + 10δ 6 l/2 + 17δ, which contradicts
our assumption. Thus 〈ξ, z〉y 6 l/2 + 7δ. It follows from (2.3) that

〈y, ξ〉z > |y − z| − 〈ξ, z〉y − 2δ > d(y,Ag)− 〈ξ, z〉y − 2δ > 10δ.
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Hence we proved that for every z ∈ Ag, 〈y, ξ〉z > 10δ. In particular,
〈y, ξ〉p > 10δ and 〈gy, gξ〉p > 10δ. By Proposition 3.10 we get

|gy − y| > 2d(y,Ag) + [g]− 6δ > 2 |y − p|+ |gp− p| − 16δ.

Thus 〈gy, y〉p 6 8δ. Applying again the four point inequality (2.4) we obtain

min
{
〈gy, gξ〉p , 〈gξ, ξ〉p , 〈ξ, y〉p

}
6 〈gy, y〉p + 2δ 6 10δ.

However we proved before that the minimum cannot be achieved by
〈gy, gξ〉p or 〈ξ, y〉p. Hence 〈gξ, ξ〉p 6 10δ. Consequently g does not fix ξ,
which contradicts our original assumption. �

Definition 3.12. — Let g be a loxodromic isometry of X. We denote
by Γg the union of all LSδ-local (1, δ)-quasi-geodesics joining g− to g+.
The cylinder of g, denoted by Yg, is the open 20δ-neighborhood of Γg.

Lemma 3.13. — Let g be a loxodromic isometry of X. The cylinder of
g is strongly quasi-convex.

Proof. — According to Lemma 2.13, it is sufficient to prove that the
union Γg of all LSδ-local (1, δ)-quasi-geodesics joining g− to g+ is 16δ-
quasi-convex. Let y, y′ ∈ Γg and x ∈ X. By definition there exist γ and
γ′ two LSδ-local (1, δ)-quasi-geodesics joining g− to g+ such that y and y′
respectively lie on γ and γ′. We denote by p a projection of y′ on γ. By
stability of quasi-geodesic, the Hausdorff distance between γ and γ′ is at
most 7δ (Corollary 2.7). Thus |y′ − p| 6 7δ. As an LSδ-local (1, δ)-quasi-
geodesic γ is 9δ-quasi-convex hence

d(x,Γg) 6 d(x, γ) 6 〈y, p〉x + 9δ 6 〈y, y′〉x + 16δ.

Consequently, Γg is 16δ-quasi-convex. �

Lemma 3.14 ([10, Lemma 2.32]). — Let g be a loxodromic isometry of
X. Let Y be a g-invariant α-quasi-convex subset of X. Then the cylinder
Yg is contained in the (α + 42δ)-neighborhood of Y . In particular Yg is
contained in the 52δ-neighborhood of Ag.

Lemma 3.15 ([10, Lemma 2.33]). — Let g be an isometry of X such
that [g] > LSδ. Let l ∈ [0 , δ]. Let γ be an LSδ-local (1, l)-quasi-geodesic
of X joining g− to g+. Then Ag is contained in the (l + 9δ)-neighborhood
of γ. In particular Ag is contained in Yg.

The next lemma explains the following fact. Let g be a loxodromic isom-
etry of X. A quasi-geodesic contained in the neighborhood of the axis of g
almost behaves like a nerve of g.
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Lemma 3.16 ([10, Lemma 2.34]). — Let g be an isometry of X such
that [g] > LSδ. Let l ∈ [0 , δ] and γ : [a , b] → X be a [g]-local (1, l)-
quasi-geodesic contained in the C-neighborhood of Ag. Then there exists
ε ∈ {±1} such that for every s ∈ [a , b] if s 6 b− [g] then

|gεγ(s)− γ(s+ [g])| 6 4C + 4l + 88δ.

3.3. Weakly properly discontinuous action

From now on we fix a group G acting by isometries of X. Recall that we
do not require X to be proper. Similarly we do not make for the moment
any assumption on the action of G on X. In particular, it is not neces-
sarily proper. Instead we use a weak notion of properness introduced by
M. Bestvina and K. Fujiwara in [2].

Definition 3.17. — A loxodromic element g of G satisfies the weak
proper discontinuity property (WPD property) if for every x ∈ X, for every
l > 0, there exists n ∈ N such that the set of elements u ∈ G satisfying
|ux − x| 6 l and |ugnx − gnx| 6 l is finite. The action of G on X is said
to be weakly properly discontinuous (WPD) if every loxodromic element
of G satisfies the WPD property.

We are interested in situations where X is hyperbolic. In this context
the WPD property follows from a local condition (see Proposition 3.19).
Before proving this statement we start with the following lemma.

Lemma 3.18. — Let g be a loxodromic element of G. Let l > 0. Assume
that there exist y, y′ ∈ Yg such that the set of elements u ∈ G satisfying
|uy − y| 6 l + 110δ and |uy′ − y′| 6 l + 110δ is finite. Then there exists
n0 such that for every x ∈ X, for every n > n0, the set of elements u ∈ G
satisfying |ux− x| 6 l and |ugnx− gnx| 6 l is finite.

Proof. — We write S for the set of elements u ∈ G satisfying |uy − y| 6
l+ 110δ and |uy′− y′| 6 l+ 110δ. Since g is loxodromic, there exists k ∈ N
such that k[g]∞ > LSδ. We denote by γ : R → X a δ-nerve of gk and T
its fundamental length. By stability of quasi-geodesics Yg is contained in
the 27δ-neighborhood of γ (Corollary 2.7). Therefore there exist q = γ(s)
and q′ = γ(s′) such that |y − q| 6 27δ and |y′ − q′| 6 27δ. By swaping if
necessary y and y′, we can assume that s 6 s′. We choose for n0 an integer
such that n0[g]∞ > |s′ − s|+ T + 73δ.

Let x be a point of X and n > n0 an integer. We denote by p and r

respective projections of x and gnx on γ. Without loss of generality we can
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assume that p = γ(0). We write r = γ(t). Let r′ be a projection of gnp on
γ (see Figure 3.1). By stability of quasi-geodesics, the Hausdorff distance

x gnx

g�mky g�mky0
gnp

g�mkq g�mkq0p r r0
�

Figure 3.1. Projections on the δ-nerve γ

between γ and gnγ is at most 7δ, thus |gnp − r′| 6 7δ (Corollary 2.7).
Moreover r′ is a 14δ-projection of gnx on γ. It follows from the projection
on quasi-convex subsets that |r − r′| 6 66δ. Consequently,

|t− 0| > |r − p| > |gnp− p| − 73δ > n[g]∞ − 73δ > |s′ − s|+ T.

In particular there exists m ∈ Z such that s−mT and s′−mT are between
0 and t. Recall that γ is a δ-nerve of gk, hence g−mkq = γ(s −mT ) and
g−mkq′ = γ(s′−mT ) are two points lying on γ between p and r. Using the
projection on a quasi-convex combined with Corollary 2.7 we get

〈x, gnx〉g−mkq 6 25δ and 〈x, gnx〉g−mkq′ 6 25δ.

Let u ∈ G such that |ux−x| 6 l and |ugnx−gnx| 6 l. Lemma 3.2 yields
|ug−mkq − g−mkq| 6 l + 56δ. Consequently |ug−mky − g−mky| 6 l + 110δ.
Similarly we get |ug−mky′ − g−mky′| 6 l + 110δ. In other words ug−mk
belongs to S. Thus there are only finitely many u ∈ G such that |ux−x| 6 l
and |ugnx− gnx| 6 l. �

Proposition 3.19. — Let g be a loxodromic element of G. The isom-
etry g satisfies the WPD property if and only if there exist y, y′ ∈ Yg
such that the set of elements u ∈ G satisfying |uy − y| 6 486δ and
|uy′ − y′| 6 486δ is finite.

Remark. — It follows in particular that a loxodromic element g satisfies
the WPD property if and only if for every n ∈ N∗, so does gn. The proof
follows the idea provided by F. Dahmani, V. Guirardel and D. Osin in [11]
for the case of an acylindrical action.

Proof. — Assume first that g satisfies the WPD property. Fix a point
y in Yg. By assumption there exists n ∈ N such that the set of elements
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u ∈ G satisfying |uy − y| 6 486δ and |ugny − gny| 6 486δ is finite. Since
Yg is g-invariant y′ = gny is a point of Yg. Consequently y and y′ satisfy
the the statement of the proposition.
Assume now that there exist y, y′ ∈ Yg such that the set of elements

u ∈ G satisfying |uy − y| 6 486δ and |uy′ − y′| 6 486δ is finite. Let x ∈ X
and l > 0. The element g being loxodromic there exists k ∈ N such that
k[g]∞ > max{LSδ, l+37δ}. Let γ be a δ-nerve of gk and T its fundamental
length. We denote by p a projection of x on γ. For simplicity, we let q = gkp

(which also lies on γ). According to Lemma 3.18, there exists n0 ∈ N∗
such that for every integer n > n0 the set of elements u ∈ G satisfying
|uq − q| 6 376δ and |ugnkq − gnkq| 6 376δ is finite. We put m = n0k and
n = (n0 + 2)k.
We denote by S the set of elements u ∈ G such that |ux − x| 6 l and

|ugnx−gnx| 6 l. We want to prove that S is finite. Let N = d(|x−q|+l)/δe.
For every integer i ∈ {0, . . . , N}, we denote by xi a point of X such that
|x− xi| = iδ and 〈x, gnx〉xi 6 δ (see Figure 3.2). Such points exist because

x gnx

ux
ugnx

q gmq
p gnp

�

uq

Legend: x0, . . . , xN

Figure 3.2. The points x0, . . . , xN

|gnx− x| > |x− q|+ l. Let u ∈ S. It follows from the projection on quasi-
convex that 〈x, gnx〉q 6 25δ and 〈q, gnx〉gmq 6 15δ whereas |x − q| and
|gnx− q| are at least l + 28δ. By hyperbolicity, we have

min
{
〈ux, x〉uq , 〈x, g

nx〉uq , 〈g
nx, ugnx〉uq

}
6 〈ux, ugnx〉uq + 2δ 6 27δ.

However 〈ux, x〉uq > |x− q| − |x− ux| > 27δ. Hence the minimum cannot
be achieved by 〈ux, x〉uq. With a similar argument we see that it can-
not be achieved by 〈gnx, ugnx〉uq either. Therefore 〈x, gnx〉uq 6 27δ. By
Lemma 2.1 (ii), |uq − xi| 6 ||x − uq| − iδ| + 56δ. However, by triangle in-
equality |x− uq| 6 |x− q|+ l 6 Nδ. Thus there exists i ∈ {0, . . . , N} such
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that |uq − xi| 6 57δ. Consequently there is i ∈ {0, . . . , N} and a subset Si
of S such that for every u ∈ Si, |uq − xi| 6 57δ and #S 6 (N + 1)#Si
(where #S denotes the cardinality, possibly infinite, of S).

Fix now u0 ∈ Si. Let v ∈ u−1
0 Si. By construction |vq − q| 6 114δ and

|vgnx− gnx| 6 2l. It follows from the triangle inequality that

〈q, vgnx〉vgmq 6 〈vq, vg
nx〉vgmq + |vq − q| = 〈q, gnx〉gmq + |vq − q| 6 129δ.

Applying Lemma 2.1 (iii) in the “triangle” [q, gnx, vgnx] we obtain |vgmq−
gmq| 6 376δ. Consequently for every v ∈ u−1

0 Si, |vq − q| 6 114δ and
|vgmq − gmq| 6 376δ. It follows from the definition of m that Si is finite.
However Si has been built in such a way that #S 6 (N + 1)#Si, therefore
S is finite as well, which completes the proof. �

From now on we assume that the action of G on X is WPD.

Lemma 3.20. — Let g be a loxodromic element of G. Let x ∈ X and
l > 0. The set of elements u ∈ G satisfying |ux − x| 6 l and ug+ = g+ is
finite.

Proof. — Without loss of generality we can assume that [g] > LSδ. We
denote by γ a δ-nerve of g. Let p be a projection of x on γ. By definition of
WPD property, there exists n ∈ N such that the set S of elements u ∈ G
satisfying |up−p| 6 l+34δ and |ugnp−gnp| 6 l+34δ is finite. By projection
on a quasi-convex (Lemma 2.14) we have 〈x, g+〉p 6 9δ. Since γ is a δ-nerve
of g, gnp lies on γ between p and g+. It follows that 〈x, g+〉gnp 6 15δ.
Let u be an element of G such that |ux − x| 6 l and ug+ = g+.

The estimates of the previous Gromov products give 〈ux, g+〉up 6 9δ and
〈ux, g+〉ugnp 6 15δ. Applying Lemma 2.2 (iii) we obtain

|up− p| 6 |ux− x|+ 22δ 6 l + 22δ
and |ugnp− gnp| 6 |ux− x|+ 34δ 6 l + 34δ.

Consequently u belongs to the finite set S. �

Definition 3.21. — A subgroup H of G is called elementary if ∂H
contains at most two points. Otherwise it is said non-elementary.

Remark. — Note that this notion implicitly depends on the action of
G on X. For instance a free group acting trivially on a hyperbolic space
is not considered in this sense as a non-elementary groups. In the next
lemmas we briefly recall how a free group quasi-isometrically embeds into
any non-elementary subgroup of G.

Proposition 3.22. — Let g and h be two loxodromic elements of G.
Then {g−, g+} and {h−, h+} are either disjoint or equal.
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Proof. — By replacing if necessary g and h by some powers we can
assume that [g] > LSδ and [h] > LSδ. We suppose that {g−, g+} and
{h−, h+} have one common point that we denote ξ. Let γg (respectively
γh) be a δ-nerve of g (respectively h). We denote by T the fundamental
length of γh. We fix a point x of γh and y a projection of x on γg. Since γg
is 9δ-quasi-convex we have 〈ξ, x〉y 6 9δ. In particular there exists a point
z on γh such that |y − z| 6 19δ. Up to reparametrizing γh we can assume
that z = γh(0).
Let p ∈ N. By replacing if necessary g by its inverse we can assume that

gpy is a point of γg between y and ξ. In particular, 〈ξ, z〉gpy 6 〈ξ, y〉gpy +
|y− z| 6 25δ. The path γh being 9δ-quasi-convex, there exists a point s on
γh such that |gpy − s| 6 35δ. We can write s = γh(r − qT ) where q ∈ Z
and r ∈ [−T/2, T/2]. It follows from the triangle inequality that

|hqgpy − y| 6 |gpy − s|+ |γh(r)− γh(0)|+ |z − y| 6 T/2 + 54δ.

The isometries g and h also fix the point ξ. According to Lemma 3.20 there
exists a finite subset S of G with the following property. For every p ∈ N,
there is q ∈ Z such that hqgp belongs S. Consequently there exist p, q ∈ Z∗
such that gp = hq. It implies that {g−, g+} = {h−, h+}. �

Lemma 3.23 ([12, Lemmes 1.1 and 1.2] or [22, Chapitre 5, Thm. 16]).
Let k > 0. Let g1, . . . , gr be a collection of isometries of X. Let x ∈ X. We
assume that for every i, j ∈ {1, . . . , r}, for every ε ∈ {±1}, if g−εi gj is not
trivial then

2 〈gεix, gjx〉x < min{|gix− x| , |gj − x|} − 2δ.

Then g1, . . . , gr generate a free group Fr of rank r. Moreover the map
Fr → X which send g ∈ Fr to gx is a quasi-isometric embedding.

Remark. — Combined with Proposition 3.22 one consequence of this
lemma is the following. A subgroup H of G is non-elementary if and only
if it contains a copy of F2 such that for some (and thus every) x ∈ X, the
map F2 → X that sends g to gx is a quasi-isometric embedding. Given two
elements u and v of G we now state a sufficient condition under which they
generate a non-elementary subgroup. Note that the assumptions allow u

and v to be elliptic.

Lemma 3.24. — Let A > 0. Let u, v ∈ G and x ∈ X. We assume that
(i) 2

〈
u±1x, v±1x

〉
x
< min{|ux− x|, |vx− x|} −A− 8δ,

(ii) 2
〈
ux, u−1x

〉
x
< |ux− x|+A,

(iii) 2
〈
vx, v−1x

〉
x
< |vx− x|+A.
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Then the subgroup of G generated by u and v is non-elementary.

Proof. — Put g1 = uv and g2 = vu. We are going to prove that g1 and
g2 satisfy the assumptions of Lemma 3.23. First note that |g1x − x| =
|ux− x|+ |vx− x| − 2

〈
u−1x, vx

〉
x
. In particular

|g1x− x| > max {|ux− x| , |vx− x|}+A+ 8δ.

The same inequality holds for g2. On the other hand, the four point in-
equality (2.1) gives

min
{
〈vx, g2x〉x ,

〈
g2x, g

−1
1 x

〉
x
,
〈
g−1

1 x, v−1x
〉
x

}
6
〈
vx, v−1x

〉
x

+ 2δ,

which leads to

min
{
〈x, ux〉v−1x ,

〈
g2x, g

−1
1 x

〉
x
,
〈
u−1x, x

〉
vx

}
<

1
2 |vx− x|+

1
2A+ 2δ.

Note that the minimum on the left hand side cannot be achieved by
〈x, ux〉v−1x. If it was the case we would have indeed

1
2 |vx− x|+

1
2A+ 4δ < |vx− x| −

〈
v−1x, ux

〉
x

= 〈x, ux〉v−1x

<
1
2 |vx− x|+

1
2A+ 2δ.

Similarly it cannot be achieved by
〈
u−1x, x

〉
vx
. Thus we get〈

g2x, g
−1
1 x

〉
x
<

1
2 |vx− x|+

1
2A+ 2δ < 1

2 min {|g1x− x| , |g2x− x|} − 2δ

With similar arguments we obtain the upper bound for the other Gromov
products which are required to apply Lemma 3.23. Thus the subgroup
of 〈u, v〉 generated by g1 and g2 is a free group of rank 2 which quasi-
isometrically embeds into X. Therefore 〈u, v〉 is not elementary. �

3.4. Elementary subgroups

For some of the results in this section, the cited reference only provides
a proof for the case of geodesic metric spaces. However, by relaxing if
necessary some constants, which we do here, the same proof works in the
more general context of length spaces.

Following the classification of isometries, we sort the elementary sub-
groups of G into three categories. A subgroup H of G is

(i) elliptic if its orbits are bounded;
(ii) parabolic if ∂H contains exactly one point;
(iii) loxodromic if ∂H contains exactly two points.
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In this section we give a brief exposition of the properties of these sub-
groups. We still assume that the action of G on X is WPD.
Lemma 3.25. — Let E be a subgroup of G and g an element of E.

Assume that 〈g〉 is a finite index subgroup of E. Then E is elementary.
Moreover E is elliptic (respectively parabolic, loxodromic) if and only if g
is elliptic (respectively parabolic, loxodromic).
Proof. — Let x be a point of X. Since 〈g〉 is a finite index subgroup of E,

the Hausdorff distance between the orbits 〈g〉x and Ex is finite. Therefore
∂E = ∂〈g〉. The lemma follows from this equality. �

Elliptic subgroups.

Definition 3.26. — Let H be an elliptic subgroup of G. The charac-
teristic set associated to H is the following subset of X.

CH = {x ∈ X|∀h ∈ H, |hx− x| 6 11δ} ,
Proposition 3.27 ([10, Corollaries 2.37 and 2.38]). — The subset CH is

9δ-quasi-convex. Let Y be a non-empty H-invariant α-quasi-convex subset
of X. For every A > α, the A-neighborhood of Y contains a point of CH .

Loxodromic subgroups. Let H be a loxodromic subgroup of G. Ac-
cording to Proposition 3.6, H contains a loxodromic isometry g. In partic-
ular, g− and g+ are exactly the two points of ∂H. Moreover H stabilizes
∂H. There exists a subgroup H+ of H of index at most 2 which pointwise
fixes ∂H. If H+ 6= H the subgroup H is said to be of dihedral type.
Lemma 3.28. — Let g be a loxodromic element of G. Let E be the

subgroup of G stabilizing {g−, g+}. Then E is a loxodromic subgroup of
G. Moreover every elementary subgroup of G containing g lies in E.
Proof. — By definition g belongs to E therefore ∂E contains {g−, g+}. If

∂E has an other point, then by Lemma 3.8 it contains an other loxodromic
isometry h such that {h−, h+} 6= {g−, g+}. As an element of E, h2 fixes
g− and g+. On the other hand, since h is loxodromic the only points of
∂X fixed by h2 are h− and h+. Contradiction. Therefore E is a loxodromic
subgroup.
Let H be an elementary subgroup of G containing g. In particular g−

and g+ belong to ∂H. Since H is elementary, there is no other point in ∂H.
As we noticed H stabilizes ∂H, thus H is contained in E. �

Proposition 3.29. — Let g ∈ G be a loxodromic isometry and E the
subgroup of G which stabilizes {g−, g+}. Then 〈g〉 is a finite index subgroup
of E.
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Proof. — Note that it is sufficient to prove that 〈g〉 has finite index
in E+ – the subgroup of E fixing pointwise {g+, g−}. The isometry g is
loxodromic. Thus, by replacing if necessary g by a power of g, we can assume
that [g] > LSδ. Let γ : R → X be a δ-nerve of g and T its fundamental
length. The point x stands for γ(0).
Let u be an element of E+. By definition of E+, uγ is a T -local (1, δ)-

quasi-geodesic joining g− to g+. According to the stability of quasi-geodesics
(Corollary 2.7), there exists a point p on γ such that |ux− p| 6 7δ. We can
write p = γ(r−mT ) where m ∈ Z and r ∈ [−T/2, T/2]. It follows from the
triangle inequality that

|gmux− x| 6 |ux− p|+ |γ(r)− γ(0)| 6 T/2 + 7δ.

The isometries u and g also fix the point g+. By Lemma 3.20 there exists
a finite subset S of G with the following property. For every u ∈ E+, there
is m ∈ Z such that gmu belongs to S. Thus 〈g〉 is a finite index subgroup
of E+. �

The next corollary is a well-known consequence of the previous proposi-
tion and a Schur Theorem [35, Theorem 5.32].

Corollary 3.30. — Let H be a loxodromic subgroup of G. The set F
of all elements of finite order of H+ is a finite normal subgroup of H. More-
over there exists a loxodromic element g ∈ H+ such that H+ is isomorphic
to F oZ where Z is the subgroup generated by g acting by conjugacy on F .

Remark. — The subgroup F is the unique maximal finite subgroup of
H+. In addition, if H is of dihedral type then H is isomorphic to F oD∞
where D∞ stands for the infinite dihedral group D∞ = Z/2Z ∗ Z/2Z. In
particular F is the unique maximal normal finite subgroup of H.

Definition 3.31. — Let g be a loxodromic element of G. Let E be
the subgroup of G stabilizing {g−, g+} and F its maximal normal finite
subgroup. We say that g is primitive if its image in E+/F ≡ Z is −1 or 1.

Corollary 3.32. — Let A and B be two elementary subgroups of G
which are not loxodromic. If A and B generate a loxodromic subgroup then
it is necessarily of dihedral type.

Proof. — Assume that the subgroup H generated by A and B is not of
dihedral type. It follows from our previous discussion that H is isomorphic
to the semi-direct product FoZ where F is a finite group and Z is generated
by a loxodromic element g acting by conjugacy on F . Every element h of H
can be written h = gmu with m ∈ Z and u ∈ F . Moreover h is loxodromic
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if and only if m 6= 0. Consequently every elliptic or parabolic element of H
belongs to F (and thus has finite order). In particular, A and B are both
contained in F . Therefore they cannot generate a loxodromic subgroup.
Contradiction. �

Lemma 3.33 ([10, Lemma 2.39]). — Let g be a hyperbolic element of
G and H a subgroup of G fixing pointwise {g−, g+}. Let F be the max-
imal finite subgroup of H. The cylinder Yg of g is contained in the 51δ-
neighborhood of CF .

Parabolic subgroups.

Lemma 3.34. — Let H be a parabolic subgroup of G. Let E be the
subgroup of G fixing ∂H. Then ∂E = ∂H. In particular E is parabolic.

Proof. — By construction E containsH. Therefore ∂H is a subset of ∂E.
Assume now that ∂E has at least two points. By Proposition 3.6, E contains
a loxodromic element g. This element fixes exactly two points of ∂X, g− and
g+, one of them being the unique point of ∂H. Without loss of generality
we can assume that ∂H = {g+}. Let u be an element of H. The conjugate
ugu−1 is a loxodromic element of E such that (ugu−1)+ = g+. According
to Proposition 3.22, (ugu−1)− = g−. Hence u fixes pointwise {g−, g+}. By
Proposition 3.29 the stabilizer of {g−, g+} contains a finite subgroup F such
that every non-loxodromic element fixing pointwise {g−, g+} belongs to F .
In particularH lies in F , which contradicts the fact thatH is parabolic. �
To every elliptic subgroup F of G we associated a characteristic subset

CF . We would like to have an analogue of such a set for a parabolic group
H. By definition, there is no point x ∈ X which is moved by a small
distance by all the elements of H. However this fact remains true for any
finite subset of H. Let ξ be the unique point of ∂H. Given any finite subset
S of H one can find indeed a sufficiently small horoball around ξ whose
points are hardly moved by the elements of S. For our purpose we do not
need to use horoball. The following statement will be sufficient.

Lemma 3.35. — Let H be a parabolic subgroup of G and ξ the unique
point of ∂H. Let l ∈ [0 , 105δ]. Let γ : R+ → X be an LSδ-local (1, l)-quasi-
geodesic such that limt→+∞ γ(t) = ξ. Let S be a finite subset of Stab(ξ).
There exists t0 > 0 such that for every t > t0, |gγ(t)− γ(t)| 6 l + 86δ.

Proof. — Note that it is sufficient to prove the lemma for a set S with a
single element. Let us call it g. According to Proposition 3.11 there exists
t0 ∈ R+ such that for every t > t0, γ(t) lies in the (l/2+31δ)-neighborhood
of Ag. Let t > t0 and y = γ(t). Since g belongs to a parabolic subgroup it
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cannot be loxodromic. Hence [g] 6 16δ (Proposition 3.1). It follows from
the triangle inequality that |gy − y| < 2d(y,Ag) + [g] + 8δ 6 l + 86δ. �

3.5. Group invariants

We now introduce several invariants associated to the action of G on X.
During the final induction they will be useful to ensure that the set of
relations we are looking at satisfies a small cancellation assumption. In all
this section we assume that the action of G on X is WPD.

Definition 3.36. — The injectivity radius of G on X, denoted by
rinj (G,X) is

rinj (G,X) = inf {[g]∞ | g ∈ G, g loxodromic} .

Let F be a finite group. Its holomorph, denoted by Hol(F ), is the semi-
direct product F o Aut (F ), where Aut (F ) stands for the automorphism
group of F . The exponent of Hol(F ) is the smallest integer n such that for
every g ∈ Hol(F ), gn = 1.

Definition 3.37. — The integer e(G,X) is the least common multiple
of the exponents of Hol(F ), where F runs over the maximal finite normal
subgroups of all maximal loxodromic subgroups of G.

Remark. — If the loxodromic subgroups of G are all cyclic (for instance
if G is torsion-free) then e(G,X) = 1.

Lemma 3.38 (Compare [27, Lemma 19]). — Let n be an integer multiple
of e(G,X). Let E be a loxodromic subgroup of G and F its maximal finite
normal subgroup. For every loxodromic element g ∈ E, for every u ∈ F ,
we have the following identities

(ug)n = gn and ugnu−1 = gn.

Proof. — Without loss of generality we can assume that E is a maximal
loxodromic subgroup of G. Let g be a loxodromic element of E and u an
element of F . Recall that g acts by conjugacy on F . We denote by ψ the
corresponding automorphism of F . The first identity is a consequence of
the following observations.

(ug)n = u
(
gug−1) (g2ug−2) . . .(gn−1ug−(n−1)

)
gn

= uψ(u)ψ2(u) . . . ψn−1(u)gn.
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However in Hol(F ) we have(
uψ(u)ψ2(u) . . . ψn−1(u), 1

)
= (u, ψ)n(1, ψ)−n = 1.

Thus (ug)n = gn. Since F is a normal subgroup of F , gu−1g−1 also belongs
to F . The previous identity yields

ugnu−1 =
(
ugu−1)n =

[
(ugu−1g−1)g

]n = gn. �

Proposition 3.39. — Let n be an integer multiple of e(G,X). Let g
and h be two loxodromic elements of G which are primitive. Either g and
h generate a non-elementary subgroup or 〈gn〉 = 〈hn〉.

Proof. — Let E be the subgroup of G stabilizing {g−, g+}. We write F
for its maximal finite normal subgroup. Since g is primitive (see Defini-
tion 3.31), E+ is isomorphic to the semi-direct product F o Z where Z
is the subgroup generated by g acting by conjugacy on F . Assume that
g and h generate an elementary subgroup. In particular h belongs to E
and {h−, h+} = {g−, g+}. However being loxodromic, h fixes pointwise
{g−, g+} thus h belongs to E+. The element h is also primitive, thus
there exists u ∈ F such that g = uh±1. It follows from Lemma 3.38 that
gn = h±n, hence 〈gn〉 = 〈hn〉. �

Definition 3.40. — The invariant ν(G,X) (or simply ν) is the smallest
positive integer m satisfying the following property. Let g and h be two
isometries of G with h loxodromic. If g, h−1gh,..., h−mghm generate an
elementary subgroup which is not loxodromic then g and h generate an
elementary subgroup of G.

Example. — If G acts properly co-compactly on a hyperbolic space
X, then ν(G,X) is finite. Moreover if every elementary subgroup of G is
cyclic then ν(G,X) = 1 [13, Lemme 2.4.2]. Other examples are given in
Section 6.3.

Proposition 3.41. — Let g and h be two elements of G with h lox-
odromic. Let m be an integer such that g, h−1gh,..., h−mghm generate
an elementary (possibly loxodromic) subgroup of G. We assume that m >
ν(G,X) and G has no involution. Then g and h generate an elementary
subgroup of G.

Proof. — We write H for the subgroup of G generated by g, h−1gh,...,
h−mghm. We first assume that g is not loxodromic. We denote by p the
largest integer such that g, h−1gh,..., h−pghp generate an elementary sub-
group which is not loxodromic, that we denote E. If p > ν(G,X), then
by definition g and h generate an elementary subgroup. Therefore we can
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assume that p 6 ν(G,X) − 1 6 m − 1. Since p is maximal E and hEh−1

generate a loxodromic subgroup of H. According to Corollary 3.32, this lox-
odromic subgroup is of dihedral type. This is not possible since G has no
involution. Consequently, we can assume that g is loxodromic. In particular,
∂H contains exactly two points g− and g+ which are also the accumulation
points of h−1gh. It follows that h stabilizes {g−, g+}. Consequently, g and
h are contained in the elementary subgroup of G which stabilizes {g−, g+}
(Lemma 3.28). �

Notation 3.42. — If g0, . . . , gm are m elements of G we denote by
A(g0, . . . , gm) the quantity

A(g0, . . . , gm) = diam
(
A+13δ
g0

∩ . . . ∩A+13δ
gm

)
.

Recall that the parameter LS is the constant given by the stability of quasi-
geodesics (Definition 2.8).

Definition 3.43. — Assume that ν = ν(G,X) is finite. We denote
by A the set of (ν + 1)-uples (g0, . . . , gν) such that g0, . . . , gν generate a
non-elementary subgroup of G and for all j ∈ {0, . . . , ν}, [gj ] 6 LSδ. The
parameter A(G,X) is given by

A(G,X) = sup
(g0,...,gν)∈A

A (g0, . . . , gν) .

Proposition 3.44. — Let g and h be two elements of G which generate
a non-elementary subgroup.

(i) If [g] 6 LSδ, then A(g, h) 6 ν[h] +A(G,X) + 154δ.
(ii) Without assumption on g we have,

A(g, h) 6 [g] + [h] + νmax{[g], [h]}+A(G,X) + 680δ.

Remark. — If g is a loxodromic element such that [g] 6 LSδ, the same
proof shows that

A(g, h) 6 [h] +A(G,X) + 154δ.

Proof. — We prove Point (i) by contradiction. Assume that

A(g, h) > ν[h] +A(G,X) + 154δ.

Let η ∈ (0, δ) such that

A(g, h) > ν([h] + η) +A(G,X) + 4η + 154δ.

By definition of A(G,X) we have [h] > LSδ, otherwise g and h would
generate an elementary subgroup. We denote by γ : R→ X an η-nerve of h
and by T its fundamental length. In particular, T 6 [h]+η. By Lemma 3.15,
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its (η+ 9δ)-neighborhood contains Ag, therefore applying Lemma 2.16, we
get

diam
(
A+13δ
g ∩ γ+12δ) > ν([h] + η) +A(G,X) + 2η + 106δ.

In particular, there exist x = γ(s) and x′ = γ(s′) two points of γ which
also belong to the 25δ-neighborhood of Ag and such that

(3.1) |x− x′| > ν([h]+η)+A(G,X)+2η+82δ > νT+A(G,X)+2η+82δ.

By replacing if necessary h by h−1 we can assume that s 6 s′. By stability
of quasi-geodesics, for all t ∈ [s , s′], 〈x, x′〉γ(t) 6 η/2 + 5δ (Corollary 2.7).
The 25δ-neighborhood of Ag is 2δ-quasi-convex (Lemma 2.12). It follows
that γ(t) lies in the (η/2 + 32δ)-neighborhood of Ag. Thus |gγ(t)− γ(t)| 6
[g] + η + 72δ.
According to (3.1) there exists t ∈ [s , s′] such that |x−γ(t)| = A(G,X)+

2η + 82δ. We let y = γ(t). Note that

|s′ − t| > |x′ − y| > |x− x′| − |x− y| > νT.

Let m ∈ {0, . . . , ν}. By construction hmx = γ(s + mT ) and hmy = γ(t +
mT ). Using our previous remark s+mT and t+mT belong to [s , s′]. Hence

max {|ghmx− hmx| , |ghmy − hmy|} 6
[
hmgh−m

]
+ η + 72δ.

It follows from Proposition 3.10, that x and y belong to the (η/2 + 39δ)-
neighborhood of hmAg. This holds for every m ∈ {0, . . . , ν}. Consequently
x and y are two points of

A+η/2+39δ
g ∩ . . . ∩ hνA+η/2+39δ

g .

Applying Lemma 2.16, we obtain

A
(
g, hgh−1, . . . , hνgh−ν

)
> |x− y| − η − 82δ > A(G,X).

Moreover, for every m ∈ {0, . . . , ν}, we have [hmgh−m] = [g] 6 LSδ. By
definition of A(G,X) the isometries g, hgh−1, . . . , hνgh−ν generate an
elementary subgroup. It follows from Proposition 3.41 that g and h also
generate an elementary subgroup. Contradiction.
We now prove Point (ii). According to the previous point we can assume

that [g] > LSδ and [h] > LSδ. Without loss of generality we can suppose
[h] > [g]. Assume that contrary to our claim

A(g, h) > [g] + (ν + 1)[h] +A(G,X) + 680δ.

Let η ∈ (0, δ) such that

A(g, h) > [g] + (ν + 1)[h] +A(G,X) + 15η + 680δ.
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We denote by γ an η-nerve of h and by T its fundamental length. Its
(η + 9δ)-neighborhood contains Ah thus

diam
(
γ+12δ ∩A+13δ

g

)
> [g] + (ν + 1)[h] +A(G,X) + 13η + 632δ.

In particular there exist x = γ(s), x′ = γ(s′) lying in the 25δ-neighborhood
of Ag such that

|x− x′| > [g] + (ν + 1)[h] +A(G,X) + 13η + 608δ.

Without loss of generality we can assume that s 6 s′. As previously, the
restriction of γ to [s , s′] is contained in the (η/2+32δ)-neighborhood of Ag.
According to Lemma 3.16 by replacing if necessary g by g−1 the following
holds. For every t ∈ [s , s′] if t 6 s′ − [g] then

|gγ(t)− γ(t+ [g])| 6 6η + 222δ.

Consequently, for every t ∈ [s , s′] such that t 6 s′ − [g]− T , we have

|ghγ(t)− hgγ(t)| 6 |gγ(t+ T )− hγ(t+ [g])|+ 6η + 222δ 6 12η + 444δ.

It follows that the translation length of the isometry u = h−1g−1hg is
at most LSδ and for all t ∈ [s , s′], if t 6 s′ − [g] − T , then γ(t) is in the
(6η+225δ)-neighborhood of Au. Let y = γ(t) be a point such that t ∈ [s , s′]
and |x′ − y| = [g] + T . In particular,

|x− y| > |x− x′| − |x′ − y| > ν[h] +A(G,X) + 12η + 608δ.

Moreover x and y belong to the (6η + 225δ)-neighborhood of Au and Ah.
Therefore

A(g, u) > |x− y| − 12η − 454δ > ν[h] +A(G,X) + 154δ.

It follows from the previous point that h and u generate an elementary
subgroup. Hence so do h and g−1hg. However h is a loxodromic isometry.
Consequently g and h generate an elementary subgroup. Contradiction. �

Corollary 3.45. — Let m be an integer such that m 6 ν(G,X). Let
g0, . . . , gm be m+ 1 elements of G. If they do not generate an elementary
subgroup, then

A (g0, . . . , gm) 6 (ν + 2) sup
06i6m

[gi] +A(G,X) + 680δ.

Proof. — We distinguish two cases. If for every i ∈ {0, . . . ,m} we have
[gi] 6 LSδ, then it follows from the definition of A(G,X) that
A (g0, . . . , gm) 6 A(G,X). Assume now that there exists i ∈ {0, . . . ,m}
such that [gi] > LSδ. In particular gi is loxodromic. Suppose that the
corollary is false. Then by Proposition 3.44, for every j ∈ {0, . . . ,m} the el-
ements gi and gj generate an elementary subgroup. Therefore gj belongs to
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the maximal elementary subgroup containing gi. Consequently g0, . . . , gm
cannot generate a non-elementary subgroup. Contradiction. �

4. Cone-off over a metric space

In this section we recall the so called cone-off construction. The goal is
to build a metric space Ẋ obtained by attaching a family of cones on a
base space X. In particular, we need to understand its curvature. Most of
the results of this section follow from the general exposition given by the
author in [10].
Let ρ be a positive number. Its value will be made precise later. It should

be thought as a very large parameter.

4.1. Cone over a metric space

Definition 4.1. — Let Y be a metric space. The cone of radius ρ over
Y , denoted by Zρ(Y ) or simply Z(Y ), is the quotient of Y × [0, ρ] by the
equivalence relation that identifies all the points of the form (y, 0).

The equivalence class of (y, 0), denoted by v, is called the apex of the
cone. By abuse of notation we still write (y, r) for the equivalence class of
(y, r). The cone over Y is endowed with a metric characterized as follows [5,
Chapter I.5, Proposition 5.9]. Let x = (y, r) and x′ = (y′, r′) be two points
of Z(Y ) then

cosh |x− x′| = cosh r cosh r′ − sinh r sinh r′ cos θ (y, y′) ,

where θ(y, y′) is the angle at the apex defined by θ(y, y′) =
min{π,|y−y′|/sinh ρ}. If Y is a length space, then so is Z(Y ). This metric
is modeled on the one of the hyperbolic place H (see [10] for the geometric
interpretation). In particular the cone Z(Y ) is 2δ-hyperbolic, where δ is
the hyperbolicity constant of H [10, Proposition 4.6].
In order to compare the cone Z(Y ) and its base Y we introduce a map

ι : Y → Z(Y ) which sends y to (y, ρ). It follows from the definition of the
metric on Z(Y ) that for all y, y′ ∈ Y ,

|ι(y)− ι(y′)|Z(Y ) = µ (|y − y′|Y ) ,

where µ : R+ → R+ is the map characterized as follows. For every t > 0,

coshµ(t) = cosh2 ρ− sinh2 ρ cos
(

min
{
π,

t

sinh ρ

})
.
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In addition, the map µ satisfies the following proposition whose proof is
Calculus exercise.

Proposition 4.2. — The map µ is continuous, concave, non-decreasing.
Moreover, we have the followings.

(i) For all t > 0, t− 1
24

(
1 + 1

sinh2 ρ

)
t3 6 µ(t) 6 t.

(ii) For all t ∈ [0 , π sinh ρ], t 6 π sinh(µ(t)/2).

Lemma 4.3. — Let r ∈ [0 , ρ]. The map from Y to Z(Y ) which sends y
to (y, r) is κ-Lipschtiz, with κ = sinh r/ sinh ρ. In particular, if γ : I → Y

is a rectifiable path then the path γ̃ : I → Z(Y ) defined by γ̃(t) = (γ(t), r)
is rectifiable and L(γ̃) 6 κL(γ).

Proof. — Let y and y′ be two points of Y . We let x = (y, r) and x′ =
(y′, r). Assume first that that |y−y′| 6 π sinh ρ. By definition of the metric
on Z(Y ) we have

cosh (|x− x′|) = 1+sinh2 r

[
1− cos

(
|y − y′|
sinh ρ

)]
6 1+ 1

2 ·
sinh2 r

sinh2 ρ
|y − y′| 2.

It follows that |x − x′| 6 κ|y − y′|, where κ = sinh r/ sinh ρ. The same
inequality holds if |y − y′| > π sinh ρ. Thus the map Y → Z(Y ) which
sends y to (y, r) is κ-Lipschitz. The property about the path γ̃ follows from
this fact. �

Group action on a cone. Let Y be a metric space endowed with an
action by isometries of a group H. This action naturally extends to an
action by isometries on Z(Y ) in the following way. For every point x = (y, r)
of Z(Y ), for every h ∈ H, we let h · x = (hy, r).

Lemma 4.4 ([10, Lemma 4.7]). — Let Y be a metric space and H a
group acting by isometries on Y . Assume that for every h ∈ H \ {1},
[h] > π sinh ρ. Then for every point x ∈ Z(Y ), for every h ∈ H \ {1},
|hx− x| = 2|x− v|.

Note that H fixes the apex v of the cone. Therefore this action is not
necessarily proper (even if the one of H on Y is). One should think of H as
a rotation group with center v. Nevertheless if H acts properly on Y , then
the metric on Z(Y ) induces a distance on Z(Y )/H. Moreover the spaces
Z(Y )/H and Z(Y/H) are isometric. For every point x in Z(Y ), we denote
by x̄ its image in Z(Y )/H.
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Lemma 4.5 ([10, Lemma 4.8]). — Let l > 2π sinh ρ. We assume that for
every h ∈ H \ {1}, [h] > l. Let x = (y, r) and x′ = (y′, r′) be two points of
Z(Y ). If |y − y′|Y 6 l − π sinh ρ then |x̄− x̄′| = |x− x′|.

4.2. The cone-off construction. Definition and curvature

We now explain how the cones introduced in the previous section can
be attached on a metric space. Let X be a δ-hyperbolic length space. We
consider a collection Y of strongly quasi-convex subsets of X. Let Y ∈ Y.
We denote by | . |Y the length metric on Y induced by the restriction of
| . |X to Y . We write Z(Y ) for the cone of radius ρ over (Y, | . |Y ). Its comes
with a natural map ι : Y ↪→ Z(Y ) as defined in Section 4.1.

Definition 4.6. — The cone-off of radius ρ over X relative to Y de-
noted by Ẋρ(Y) (or simply Ẋ) is obtained by attaching for every Y ∈ Y,
the cone Z(Y ) on X along Y according to ι.

In other words the space Ẋ is the quotient of the disjoint union of X and
all the Z(Y ) by the equivalence relation which identifies every point y ∈ Y
with its image ι(y) ∈ Z(Y ). By abuse of notation, we use the same letter
to designate a point of this disjoint union and its image in Ẋ.

Metric on the cone-off. For the moment Ẋ is just a set of points. We
now define a metric on Ẋ and recall its main properties. Note that we did
not require the attachment maps ι to be isometries. We endow the disjoint
union of X and all the Z(Y ) (where Y ∈ Y) with the distance induced
by | . |X and | . |Z(Y ). This metric is not finite: the distance between two
points in distinct components is infinite. Let x and x′ be two points of Ẋ.
We define ‖x−x′‖ to be the infimum over the distances between two points
in the previous disjoint union whose images in Ẋ are respectively x and x′.

(i) Let Y ∈ Y. If x ∈ Z(Y )\ ι(Y ) and x′ /∈ Z(Y ), then ‖x−x′‖ = +∞.
In particular, ‖ . ‖ is not a distance on Ẋ (it does not satisfy the
triangle inequality).

(ii) Let x and x′ be two points of X. Using the properties of µ (Propo-
sition 4.2) we get

µ (|x− x′|X) 6 ‖x− x′‖ 6 |x− x′|X .

Let x and x′ be two points of Ẋ. A chain between x and x′ is a finite
sequence C = (z1, . . . , zm) of points of Ẋ such that z1 = x and zm = x′.
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Its length, denoted by l(C), is

l(C) =
m−1∑
j=1
‖zj+1 − zj‖ .

The following map endows Ẋ with a length metric [10, Proposition 5.10].
Ẋ × Ẋ → R+
(x, x′) → |x− x′|Ẋ = inf {l(C)|C chain between x and x′} .

For every Y ∈ Y, the natural map Z(Y ) → Ẋ is a 1-Lipschitz embed-
ding. The same holds for the map X → Ẋ. The next lemmas detail the
relationship between the metric of these spaces.

Lemma 4.7 ([10, Lemma 5.8]). — For every x, x′ ∈ X, µ (|x− x′|X) 6
|x− x′|Ẋ 6 |x− x′|X .

Lemma 4.8 ([10, Lemma 5.7]). — Let Y ∈ Y. Let x ∈ Z(Y ) \ ι(Y ).
Let d(x, Y ) be the distance between x and ι(Y ) computed with | . |Z(Y ).
For all x′ ∈ Ẋ, if |x − x′|Ẋ < d(x, Y ) then x′ belongs to Z(Y ). Moreover
|x− x′|Ẋ = |x− x′|Z(Y ).

Remark. — If v stands for the apex of the cone Z(Y ), then the previous
lemma implies that Z(Y ) \ ι(Y ) is exactly the ball of Ẋ of center v and
radius ρ.

Large scale geometry of the cone-off. In [14] C. Drutu and M. Sapir
introduced the notion of tree-graded spaces. IfX is tree-graded with respect
to Y, then Ẋ has a very precise geometry: it is tree-graded with respect to
{Z(Y ) |Y ∈ Y} and 2δ-hyperbolic. From a qualitative point of view some
of the metric features of Ẋ(Y) still hold after a small “perturbation” of
the geometry of X. To make this statement precise we need to introduce a
parameter that controls the overlap between two elements of Y. We let

∆(Y) = sup
Y1 6=Y2∈Y

diam
(
Y +5δ

1 ∩ Y +5δ
2

)
.

Theorem 4.9 ([10, Proposition 6.4]). — There exist positive numbers
δ0, ∆0 and ρ0 > 1020δ with the following property. Let X be a δ-hyperbolic
length space with δ 6 δ0. Let Y be a family of strongly quasi-convex subsets
of X with ∆(Y) 6 ∆0. Let ρ > ρ0. Then the cone-off Ẋρ(Y) of radius ρ
over X relative to Y is δ̇-hyperbolic with δ̇ 6 900δ.

Remark. — It is important to note that in this statement the constants
δ0, ∆0 and ρ0 do not depend on X or Y. Moreover δ0 and ∆0 (respectively
ρ0) can be chosen arbitrarily small (respectively large).
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4.3. Group action on the cone-off

In this section ρ is a real number, X a δ-hyperbolic length space and Y
a collection of strongly quasi-convex subsets of X. We assume that δ 6 δ0,
∆(Y) 6 ∆0 and ρ > ρ0 where δ0, ∆0 and ρ0 are the constants given by
Theorem 4.9. In particular, Ẋ is δ̇-hyperbolic with δ̇ 6 900δ.
Let G be a group acting by isometries on X. We assume that G acts by

left translation on Y. The action ofG onX can be extended by homogeneity
into an action on Ẋ as follows. Let Y ∈ Y and x = (y, r) be a point of
the cone Z(Y ). Let g be an element of G. Then gx is the point of the cone
Z(gY ) defined by gx = (gy, r). It follows from the definition of the metric
on Ẋ that G acts by isometries on Ẋ.

Recall that the map X → Ẋ is 1-Lipschitz. Therefore if an element of
G is elliptic (respectively parabolic) for the action of G on X, then it is
elliptic (respectively parabolic or elliptic) for its action on Ẋ.

Proposition 4.10. — If the action of G on X is WPD, so is the one
on Ẋ.

Proof. — We apply here the criterion provided by Proposition 3.19. Let
g be an element of G which is loxodromic for its action on Ẋ. Its cylinder Yg
in the cone-off Ẋ is unbounded, therefore it contains a point y in X. Being
loxodromic as an isometry of Ẋ, g is also loxodromic as an isometry ofX. In
particular, it satisfies the WPD property. Consequently there exists n ∈ N
such that the set S of elements u ∈ G satisfying |uy − y|X 6 π sinh(243δ̇)
and |ugny − gny|X 6 π sinh(243δ̇) is finite. Note that the point y′ = gny

also belongs to Yg ⊂ Ẋ. Let u ∈ G such that |uy − y|Ẋ 6 486δ̇ and
|uy′ − y′|Ẋ 6 486δ̇. It follows from Lemma 4.7 that

µ (|uy − y|X) 6 |uy − y|Ẋ 6 486δ̇ < 2ρ.

By Proposition 4.2, |uy−y|X 6 π sinh(243δ̇). Similarly we get |uy′−y′|X 6
π sinh(243δ̇). Thus u belongs to the finite set S. By Proposition 3.19, g is
WPD for the action of G on Ẋ. �

For the rest of this section, we assume that the action of G on X (and
thus on Ẋ) is WPD. We now study how the type of an elementary subgroup
of G for its action on X is related to the the type of the same subgroup for
the action of G on Ẋ

Lemma 4.11. — Let H be a subgroup of G. If H is elliptic (respectively
parabolic, loxodromic) for the action on X, then H is elliptic (respectively
parabolic or elliptic, elementary) for the action on Ẋ.
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Proof. — We use one more time the fact that the map X → Ẋ is 1-
Lipschitz. In particular, it directly gives that if H is elliptic for the action
on X so is it for the action on Ẋ. Assume now that H is parabolic for
the action on X. Since ∂H ⊂ ∂X has only one point, H does not contain
a loxodromic element for the action on X, and thus for the action on Ẋ.
According to Proposition 3.6 (applied in Ẋ)H is either parabolic or elliptic.
Assume now thatH is loxodromic for the action onX. By Proposition 3.29,
H contains a loxodromic element g such that 〈g〉 has finite index in H. It
follows from Lemma 3.25 thatH is elementary for the action of G on Ẋ. �

Proposition 4.12. — Let H be a subgroup of G. If H is parabolic for
its action on Ẋ, then so is it for its action on X.

Proof. — We denote by ξ the unique point of ∂H ⊂ ∂Ẋ. According to
Lemma 2.9 there exists an LS δ̇-local (1, 11δ̇)-quasi-geodesic γ : R+ → Ẋ

such that limt→+∞ γ(t) = ξ. Let g ∈ H. By Lemma 3.35 there is t0 such
that for every t > t0, |gγ(t) − γ(t)|Ẋ 6 97δ̇. Since the path γ is infinite
there exists t > t0 such that x = γ(t) lies in X. We obtain

µ (|gx− x|X) 6 |gx− x|Ẋ 6 97δ̇ < 2ρ.

Hence |gx − x|X 6 π sinh(49δ̇) (Proposition 4.2). Consequently, for every
g ∈ H, [g]X 6 π sinh(49δ̇). Therefore H cannot contain a loxodromic ele-
ment for its action onX. By Proposition 3.6,H is either elliptic or parabolic
for this action. It follows from Lemma 4.11 that H is parabolic. �

5. Small cancellation theory

5.1. Small cancellation theorem

In this section X is a δ-hyperbolic length space, endowed with an action
by isometries of a group G. We assume that the action of G on X is WPD
and that G is non-elementary. We consider a family Q of pairs (H,Y )
such that Y is a strongly quasi-convex subset of X and H a subgroup of
the stabilizer Stab(Y ) of Y . We suppose that G acts on Q and Q/G is
finite. The action of G on Q is defined as follows: for every g ∈ G, for
every (H,Y ) ∈ Q, g(H,Y ) = (gHg−1, gY ). We denote by K the (normal)
subgroup of G generated by the subgroups H with (H,Y ) ∈ Q. The goal
is to understand the action of the quotient Ḡ = G/K on an appropriate
space. We use here the small cancellation theory.

ANNALES DE L’INSTITUT FOURIER



PARTIAL PERIODIC QUOTIENTS 1813

In order to control the small cancellation parameters at each step during
the final induction (see Proposition 6.1 and Theorem 6.9) we will not use
the properties of the whole group G but only of a normal subgroup . To
that end, we need additional assumptions on the subgroups H that can be
stated as follows. Let N be a normal subgroup of G without involution. As
a subgroup of G, the action of N on X is WPD. Note that the definition
of a primitive element (Definition 3.31) depends on the ambient group. Let
g be a loxodromic element of N . The maximal elementary subgroup of N
containing g is a priori smaller than the one of G with the same property.
Consequently g might be primitive viewed as an element of N but a proper
power as an element of G. Keeping this subtlety in mind we can now state
our last assumptions. Let n > 100 be an odd integer. We suppose that for
every (H,Y ) ∈ Q, there exists a loxodromic element h ∈ G which is the
n-th power of a primitive element of N such that

(i) H is the cyclic subgroup generated by h,
(ii) Y is the cylinder Yh of h.

By assumption K is contained in N . We denote by N̄ the image N/K of
N in Ḡ.

Remark 5.1. — Let (H,Y ) ∈ Q. By construction Stab(Y ) is a loxo-
dromic subgroup of G. In particular it admits a maximal normal finite
subgroup F (see Corollary 3.30). Every element u ∈ F fixes pointwise ∂Y .
Since N has no involution, every element of Stab(Y )∩N also fixes pointwise
∂Y . In particular it is either elliptic and thus belongs to F or loxodromic.
Said differently, the set of elliptic elements of Stab(Y )∩N is a subgroup of
F . We will very often use this property later. According to Proposition 3.29,
H has finite index in Stab(Y ). Thus Stab(Y )/H is finite.

Note also that for every (H,Y ), Y is strongly quasi-convex (Lemma 3.13).
Therefore we can apply the cone-off construction described in Section 4
with the space X and the collection Y = {Y |(H,Y ) ∈ Q}. Let ρ > 0.
We denote by Ẋ the cone-off of radius ρ over X relative to the collection
Y. As we explained previously, G acts by isometries on Ẋ. The space X̄
is defined to be the quotient of Ẋ by K. It is endowed with an action on
Ḡ. We denote by ζ : Ẋ → X̄ the canonical map from Ẋ to X̄. We write
v(Q) for the subset of Ẋ consisting in all apices of the cones Z(Y ) where
(H,Y ) ∈ Q. Its image in X̄ is denoted by v̄(Q).
To study the action of Ḡ on X̄ we consider two parameters which respec-

tively play the role of the length of the largest piece and the length of the
smallest relation in the usual small cancellation theory. Both quantities are
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measured with the metric of X.

∆(Q) = sup
{

diam
(
Y +5δ

1 ∩ Y +5δ
2

) ∣∣ (H1, Y1) 6= (H2, Y2) ∈ Q
}
,

T (Q) = inf {[h] | h ∈ H, (H,Y ) ∈ Q} .

Theorem 5.2 (Small cancellation theorem [10, Proposition 6.7]). —
There exist positive constants δ0, ∆0 and ρ0 which do not depend on X,
G or Q and satisfying the following property. Assume that δ 6 δ0, ρ > ρ0.
If in addition ∆(Q) 6 ∆0 and T (Q) > 8π sinh ρ then the following holds.

(i) The cone-off Ẋ is a δ̇-hyperbolic length space with δ̇ 6 900δ.
(ii) The space X̄ is a δ̄-hyperbolic length space with δ̄ 6 54.104δ.
(iii) The group Ḡ acts by isometries on X̄.
(iv) For every (H,Y ) ∈ Q, the projection G � Ḡ induces an isomor-

phism from Stab(Y )/H onto its image.

Remarks. — By increasing if necessary δ̄ we can assume that δ̇ 6 δ̄, thus
Ẋ is also δ̄-hyperbolic. This is not really accurate, however it will allow us to
decrease the number of parameters we have to deal with. As in Theorem 4.9,
the constants δ0 and ∆0 (respectively ρ0) can be chosen arbitrarily small
(respectively large). From now on, we will always assume that ρ0 > 1020LSδ

whereas δ0,∆0 < 10−10δ. These estimates are absolutely not optimal. We
chose them very generously to be sure that all the inequalities that we
might need later will be satisfied. What really matters is their orders of
magnitude recalled below.

max {δ0,∆0} � δ � ρ0 � π sinh ρ0.

An other important point to remember is the following. The constants δ0,
∆0 and π sinh ρ0 are used to describe the geometry of X whereas δ and ρ0
refers to the one of Ẋ or X̄. From now on and until the end of Section 5
we assume that X, G and Q are as in Theorem 5.2. In particular Ẋ and
X̄ are δ̄-hyperbolic.

Notation. — In this section we work with three metric spaces namelyX,
its cone-off Ẋ and the quotient X̄. Since the map X ↪→ Ẋ is an embedding
we use the same letter x to designate a point of X and its image in Ẋ. We
write x̄ for its image in X̄. Unless stated otherwise, we keep the notation
| . | (without mentioning the space) for the distances in X or X̄. The metric
on Ẋ will be denoted by | . |Ẋ .
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5.2. The geometry of X̄

In this section we look more closely at the geometric features of the
space X̄.

Quasi-geodesics in X̄. We study here the quasi-geodesics of X̄. We
explain how to build quasi-geodesic paths of X̄ that avoid the set of apices
v̄(Q). In addition, we prove that the set v̄(Q) of apices of X̄ contains at
least 2 elements.

Proposition 5.3 ([10, Corollary 3.12]). — The space Ẋ \ v(Q) is a
covering space of X̄ \ v̄(Q). Let r > 0 and x ∈ Ẋ. If for every v ∈ v(Q),
|v − x|Ẋ > r, then for every g ∈ K \ {1}, |gx− x|Ẋ > min{2r, ρ/5}.

Proposition 5.4 ([10, Proposition 3.15]). — Let r ∈ (0, ρ/20] and x ∈
Ẋ. If for every v ∈ v(Q), |v − x|Ẋ > 2r, then the map ζ : Ẋ → X̄ induces
an isometry from B(x, r) onto B(x̄, r).

Remark. — On important consequence of this proposition is the fol-
lowing. If γ : I → Ẋ is a (1, l)-quasi-geodesic of Ẋ that stays in the
d-neighborhood of X, then for every L < min {ρ− d, ρ/10}, the path
γ̄ : I → X̄ induced by γ is an L-local (1, l)-quasi-geodesic of X̄. In par-
ticular, if d and l are sufficiently small, we can apply the stability of quasi-
geodesics (Corollary 2.7) to the path γ̄.

Lemma 5.5. — Let (H,Y ) ∈ Q and r ∈ (0, ρ). We denote by v the apex
of the cone Z(Y ) and by h a generator of H. Let x̄, x̄′ ∈ X̄ \ {v̄} such that
|x̄ − v̄| 6 r and |x̄′ − v̄| 6 r. There exists a path γ̄ : I → X̄ joining x̄ and
x̄′ such that

(i) for every t ∈ I, 0 < |γ̄(t)− v̄| 6 r,
(ii) γ̄ is rectifiable and its length is at most (sinh r/ sinh ρ)[h].

Proof. — By construction, the ball B(v̄, ρ) is the image of Z(Y )\ ι(Y ) in
X̄. In particular x̄ and x̄′ are the respective images of some points x = (y, s)
and x′ = (y′, s′) of Z(Y ). Without loss of generality we can assume that
0 < s 6 s′ 6 r. The subset Y (which is the cylinder of h) is 27δ-close to
any δ-nerve of h (Corollary 2.7). Therefore, by translating if necessary x′
by h we can always assume that |y − y′| 6 [h]/2 + 55δ. Since Y is strongly
quasi-convex there exists a path γ : I → Y joining y to y′ whose length (as
a path of X) is at most

L(γ) 6 |y − y′|+ 9δ 6 1
2 [h] + 64δ.
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We define the path γ1 : I → Z(Y ) by γ1(t) = (γ(t), s). It joins x to
(y′, s). By Lemma 4.3, the length of γ1 (as a path of Ẋ) is at most
(sinh s/ sinh ρ)([h]/2 + 64δ). Moreover for every t ∈ I, |γ1(t) − v|Ẋ = s.
We write γ2 : [s , s′] → Ẋ for the radial path defined by γ2(t) = (y′, s). It
joins (y′, s) to x′. Its length (as a path of Ẋ) is at most s′ − s 6 r and for
every t ∈ [s , s′], |γ2(t)−v|Ẋ = t. We choose for γ̄ the path of X̄ induced by
the concatenation of γ1 and γ2. Recall that [h] > 8π sinh ρ (Theorem 5.2).
Hence the length of γ̄ is bounded above as follows.

L(γ̄) 6 L(γ1) + L(γ2) 6 sinh s
sinh ρ

(
1
2 [h] + 64δ

)
+ s′ − s

6
sinh r
sinh ρ

(
1
2 [h] + 64δ

)
+ r

6
sinh r
sinh ρ [h].

The other properties of γ̄ follow from the construction of γ1 and γ2. �

Lemma 5.6. — For every x̄, x̄′ ∈ X̄ \ v̄(Q), for every l > 0, there exists a
(1, l)-quasi-geodesic of γ̄ : I → X̄ joining x̄ to x̄′ such that for every t ∈ I,
γ̄(t) does not belong to v̄(Q).

Proof. — By assumption Q/G is finite. Therefore there exists D > 0
such that for every (H,Y ) ∈ Q, if h is a generator of H then [h] 6 D. Let
x̄ and x̄′ be two points of X̄. Two apices of v̄(Q) are at least 2ρ far apart
from each other. Therefore there is only a finite number, say M , of points
v̄ ∈ v̄(Q) such that 〈x̄, x̄′〉v̄ 6 δ̄.

Fix η ∈ (0, 2δ̄) such that M sinh(2η)D/ sinh ρ+ η 6 l. Let γ̄ : [a , b]→ X̄

be a (1, η)-quasi-geodesic joining x̄ to x̄′. For every t ∈ [a , b], 〈x̄, x̄′〉γ̄(t) 6
η/2. Hence by choice of η, there are at mostM distinct points of v̄(Q) lying
on γ̄. We denote them v̄1 = γ̄(t1), . . . , v̄m = γ̄(tm) (with m 6M). Without
loss of generality we can assume that t1 < t2 < · · · < tm. Note that for
every j ∈ {1, . . . ,m− 1}, |tj+1−tj | > 2ρ. Let j ∈ {1, . . . ,m}. The path γ̄ is
not a geodesic, thus it can go through the same apex several times. However
if we let sj = max{tj−2η, a} and s′j = min{tj +2η, b}, then γ̄ restricted to
[a , sj ] or [s′j , b] does not contain v̄j . Moreover, by Lemma 5.5 there exists
a path γ̄j joining γ̄(sj) to γ̄(s′j) whose length is at most sinh(2η)D/ sinh ρ
that does not contain any apex. We now define a new path γ̄′ joining x̄ to
x̄′ as follows. For every j ∈ {1, . . . ,m}, we replace the subpath of γ̄ between
times sj and s′j by the path γ̄j . By construction, γ̄′ does not contain any
apex. Moreover its length is at most

L(γ̄′) 6 L(γ̄) +M sinh(2η)D/ sinh ρ 6 L(γ̄) + l − η.
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Since γ̄ is a (1, η)-quasi-geodesic, γ̄′ is a (1, l)-quasi-geodesic. �

Lemma 5.7. — Let x̄ ∈ X̄ \ v̄(Q) and ξ̄ ∈ ∂X̄. For every L > 0, for
every l > 0, there exists an L-local (1, l + 10δ̄)-quasi-geodesic γ̄ : R+ → X̄

joining x̄ to ξ̄ such that for every t ∈ R+, γ̄(t) does not belong to v̄(Q).

Proof. — The proof works just as the one of Lemma 2.9, using Lemma 5.6
to avoid the apices of X̄. �

Proposition 5.8. — The set v̄(Q) contains at least two distinct apices.

Proof. — Let (H,Y ) ∈ Q. By assumption the action of G on X is non-
elementary. Therefore there exists g ∈G such that Stab(Y ) 6= g Stab(Y )g−1.
In particular (H,Y ) 6= g(H,Y ). In other words Q contains at least two ele-
ments. Let η ∈ (0, δ̇). We now fix two distinct apices v and v′ in v(Q) such
that for every w,w′ ∈ v(Q), |v − v′|Ẋ 6 |w − w′|Ẋ + η. Let γ : [a , b]→ Ẋ

be a (1, η)-quasi-geodesic joining v to v′. Recall that two distinct points of
v(Q) are at least 2ρ far apart from each other. Hence |b− a| > 2ρ. We let
t = a + ρ/4 + η and t′ = b − ρ/4 − η. The points x and x′ respectively
stand for x = γ(t) and x′ = γ(t′). It follows from the triangle inequality
that |x− x′|Ẋ > 3ρ/2− 2η. We claim that γ restricted to [t , t′] lies in the
3ρ/4-neighborhood of X. First, γ being a (1, η)-quasi-geodesic, for every
s ∈ [t , t′], |γ(s) − v|Ẋ > ρ/4 and |γ(s) − v′|Ẋ > ρ/4. We now focus on
the other apices of Ẋ. Let w ∈ v(Q) \ {v, v′}. Assume that w lies in the
ρ/4-neighborhood of γ. It follows that

min {|v − w|Ẋ , |v
′ − w|Ẋ} 6

1
2 |v − v

′|Ẋ + ρ/4 + η.

However two distinct apices of v(Q) are at a distance at least 2ρ apart,
hence

min {|v − w|Ẋ , |v
′ − w|Ẋ} < |v − v

′|Ẋ − η,

which contradicts our choice of v and v′. Consequently γ restricted to [t , t′]
lies in the 3ρ/4-neighborhood of X. Let γ̄ : [t , t′] → X̄ be the path of X̄
induced by the restriction of γ to [t , t′]. According to Proposition 5.4 γ̄
is a ρ/20-local (1, η)-quasi-geodesic (Corollary 2.7). By stability of quasi-
geodesics it is a (global) (2, η)-quasi-geodesic. Consequently,

|x̄− x̄′| > 1
2 |t− t

′| − η

2 >
1
2 |x− x

′|Ẋ −
η

2 >
3ρ
4 −

3η
2 >

ρ

2 + 2η.

It implies that v̄ 6= v̄′. Indeed by construction |x̄ − v̄| 6 ρ/4 + η and
|x̄′ − v̄′| 6 ρ/4 + η. Thus if v̄ and v̄′ were the same apex we would have
|x̄− x̄′| 6 ρ/2 + 2η. �
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Stabilizers of apices. The next results deals with the stabilizers of the
apices in X̄. In particular given an apex v̄ ∈ v̄(Q), we are interested in how
an element ḡ ∈ Stab(v̄) acts on the ball B(v̄, ρ). For the remainder of this
paragraph we fix a pair (H,Y ) ∈ Q. We denote by v the apex of the cone
Z(Y ). We write F for the maximal finite normal subgroup of Stab(Y ). Let
h be a generator of the cyclic subgroup H. By assumption, there exist an
odd integer n > 100 such that h is the n-th power of an element of N .

Proposition 5.9. — Let u ∈ F . Let g ∈ Stab(Y ) such that [h]∞/4 6
[g]∞ 6 3[h]∞/4.

(i) For every x ∈ B(v, ρ), |ux− x|Ẋ 6 δ̄; in particular, |ūx̄− x̄| 6 δ̄.
(ii) For every x̄ ∈ X̄, 〈x̄, ūḡx̄〉v̄ 6 2δ̄.

Proof. — Let CF be the characteristic subgroup of F (Definition 3.26).
According to Lemma 3.33, Y is contained in the 51δ-neighborhood of CF .
Hence u moves the points of Y by a distance at most 113δ. Let x be a
point of B(v, ρ) and x̄ its image in X̄. It can be seen as a point x = (y, r)
of the cone Z(Y ). The map ζ : Ẋ → X̄ shortens the distances. Moreover
Y is strongly quasi-convex. Hence we get

|ūx̄− x̄| 6 |ux− x|Ẋ 6 |uy − y|Y 6 |uy − y|+ 8δ 6 121δ 6 δ̄,

which proves the first point.
Let x̄ be a point of B(v̄, ρ/3) and x = (y, r) a preimage of x̄ in B(v, ρ/3).

Reasoning as previously we see that

|ugy − y| > |gy − y| − 113δ > [g]− 113δ > [h]∞/4− 113δ
> T (Q)/4− 113δ > π sinh ρ.

It follows from Lemma 4.4 that |ugx− x|Z(Y ) = 2r. Recall that the metric
on Z(Y ) and Ẋ coincide on the ball B(v, ρ/3), thus |ugx − x|Ẋ = 2r
(Lemma 4.8). Let k ∈ Z∗. The point y belongs to the cylinder of h and
therefore is contained in the 52δ-neighborhood the axis of g (Lemma 3.14).
Combined with Proposition 3.1 it leads to

|ugy − y| 6 |gy − y|+ 113δ 6 [g] + 225δ

6 3[h]∞/4 + 241δ 6
[
hk
]
− [h]∞/4 + 241δ.

Consequently for every k ∈ Z∗, |ugy − y|Y 6
[
hk
]
− π sinh ρ. According to

Lemma 4.5, |ūḡx̄− x̄| = |ugx−x|Ẋ = 2r. By construction |x̄− v̄| = |ūḡx̄−
v̄| = r, thus 〈x̄, ūḡx̄〉v̄ = 0. Assume now that x̄ is a point of X̄ \B(v̄, ρ/3).
Let z̄ be an δ̄-projection of x̄ on B(v̄, ρ/3). It follows from the four point
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inequality (2.1) combined with the previous observation that

min {〈z̄, x̄〉v̄ , 〈x̄, ūḡx̄〉v̄ , 〈ūḡx̄, ūḡz̄〉v̄} 6 〈z̄, ūḡz̄〉v̄ + 2δ̄ = 2δ̄.

Since x̄ does not belong to B(v, ρ/3), |v̄ − z̄| > ρ/3 − δ̄. By projection on
a quasi-convex we have 〈x̄, v̄〉z̄ 6 2δ̄. Hence the minimum in the previous
inequality cannot be achieved by 〈z̄, x̄〉v̄= |v̄−z̄|−〈x̄, v̄〉z̄. Similarly it cannot
be achieved by 〈ūḡx̄, ūḡz̄〉v̄=〈x̄, z̄〉v̄. Consequently 〈x̄, ūḡx̄〉v̄62δ̄. �

Corollary 5.10. — Let ḡ ∈ Stab(v̄). If ḡ is not the image of an elliptic
element of Stab(Y ) then there exists k ∈ Z such that the axis of ḡk is
contained in the 6δ̄-neighborhood of v̄. In particular, v̄ is the unique apex
of X̄ fixed by ḡ.

Proof. — Let g be a preimage of ḡ in Stab(Y ). By assumption h and g
are loxodromic elements, thus they fix pointwise ∂Y . Let c be a primitive
element of Stab(Y ). Recall that h is the n-th power of an element of G
(possibly not primitive as an element of G). Consequently there is u, u′ ∈ F
and p, q ∈ Z such that h = cnpu and g = cqu′. Since g is not the image
of an elliptic element of Stab(Y ), q 6= 0 mod np. Thus there exist integers
k, l ∈ Z such that m = kq + lnp is between np/4 and 4np/4. Since F is a
normal subgroup of Stab(Y ), there exists f ∈ F such that hlgk = cmf . In
particular ḡk = c̄mf̄ . It follows from Proposition 3.29 that [c]∞ = [h]∞/np.
Hence [h]∞/4 6 [cm]∞ 6 3[h]∞/4. Let x̄ be a point of X̄. According to
Proposition 5.9,

〈
x̄, ḡkx̄

〉
v̄
6 2δ̄. Thus |ḡkx̄− x̄| > 2|v̄− x̄| − 4δ. However ḡ

fixes v̄, thus
[
ḡk
]

= 0. Consequently the points of X̄ which belong to the
axis of ḡk are 6δ̄-close to v̄. �

Corollary 5.11. — There exists ḡ ∈ Stab(v̄) such that for every x̄ ∈
X̄, 〈x̄, ḡx̄〉v̄ 6 2δ̄ and

〈
ḡ−1x̄, ḡx̄

〉
x̄
6 |ḡx̄− x̄|/2 + 4δ̄.

Proof. — By assumption there exists b ∈ N and an odd integer n > 100
such that H is generated by h = bn. Thus there exists an integer m such
that n/4 6 m 6 3m/8. We let ḡ = b̄m. Let x̄ ∈ X̄. By Proposition 5.9 we
get that 〈ḡx̄, x̄〉v̄ 6 2δ̄ and

〈
ḡ−1x̄, ḡx̄

〉
v̄
6 2δ̄. It follows from the triangle

inequality that〈
ḡ−1x̄, ḡx̄

〉
x̄
6 |x̄− v̄|+ 2δ̄ 6 |ḡx̄− x̄| /2 + 4δ̄. �

Lifting figures. The next propositions are two key ingredients for the
coming study of Ḡ. We explain how some figure in X̄ can be lift to a picture
of Ẋ.

Proposition 5.12 ([10, Proposition. 3.21]). — Let α > 0 and d > α.
Let Z̄ be an α-quasi-convex subset of X̄. Let z̄0 be a point of Z̄ and z0

TOME 66 (2016), FASCICULE 5



1820 Rémi B. COULON

a preimage of z̄0 in Ẋ. We assume that for every v̄ ∈ v̄(Q), Z̄ does not
intersect B(v̄, ρ/20 +d+ 10δ̄). Then there exists a subset Z of Ẋ satisfying
the following properties.

(i) The map ζ : Ẋ → X̄ induces an isometry from Z onto Z̄.
(ii) For every ḡ ∈ Ḡ, if ḡZ̄ lies in the d-neighborhood of Z̄ then there

exists a preimage g ∈ G of ḡ such that for every z, z′ ∈ Z, |gz′ −
z|Ẋ = |ḡz̄′ − z̄|.

(iii) The projection π : G → Ḡ induces an isomorphism from Stab(Z)
onto Stab(Z̄)

Let γ̄ : I → X̄ be a quasi-geodesic X̄. If γ̄ stays far away from the apices
(e.g. if it is a small path with endpoints in ζ(X)) Proposition 5.12 provides
a tool to lift it in an appropriate manner as a path γ of Ẋ with the same
length. In particular, if an isometry ḡ ∈ Ḡ moves the endpoints of γ̄ by a
small distance, one can find a preimage g ∈ G of ḡ that moves the endpoints
of γ by a small distance. This property might fail if γ̄ is an arbitrary path
(take a long path with loops around apices). The next proposition explain
how to handle that case.

Proposition 5.13. — Let l ∈ [0 , 105δ̄]. Let x and y be two points of X.
Let γ : [a , b]→ Ẋ be a path joining x to y such that the path γ̄ : [a , b]→ X̄

that it induces is an LS δ̄-local (1, l)-quasi-geodesic. Let S be a subset of G
such that for every g ∈ S, |gx−x|Ẋ 6 ρ/50 and |ḡȳ−ȳ| 6 ρ/50. In addition,
we suppose that S satisfies the following property. Let (H,Y ) ∈ Q. Let v be
the apex of Z(Y ) and F the maximal finite normal subgroup of Stab(Y ). If
γ̄ intersects B(v̄, 9ρ/10), then for every g ∈ S, ḡ is the image of an element
of F . Under these assumptions, for every g ∈ S, |gy − y|Ẋ = |ḡȳ − ȳ|.

Remark. — Let g ∈ S. By assumption γ̄ is a local quasi-geodesic It
follows from Corollary 2.7 and Lemma 3.2 that for every t ∈ [a , b], |ḡγ̄(t)−
γ̄(t)| 6 ρ/50 + l+ 16δ̄. If this path was entirely contained in the neighbor-
hood of ζ(X) we could apply Proposition 5.12 to lift to path Ẋ. However
γ̄ might go through the cones. In this case g will fix the apex of the cone.
The strategy is to subdivide γ̄ into subpaths of two types: the ones which
stay far away from the apices and the ones contained in a cone. Once this
is done, we lift them one after the other.

Proof. — Let v1, . . . , vm be the apices of v(Q) which are 9ρ/10-close to
γ. For every j ∈ {1, . . . ,m}, we denote by γ(cj) a projection of vj on γ.
By reordering the apices we can always assume that c1 6 c2 6 · · · 6 cm.
For simplicity of notation we put c0 = a and cm+1 = b. Let j ∈ {1, . . . ,m}.
Since γ̄ is an LS δ̄-local (1, l)-quasi-geodesic of X̄ so is γ. In particular, it
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is a (global) (2, l)-quasi-geodesic. Hence we can find bj−1 ∈ (cj−1, cj ] and
aj ∈ [cj , cj+1) with the following properties.

(i) |vj − γ(bj−1)| = 9ρ/10 and |vj − γ(aj)| = 9ρ/10,
(ii) γ ∩B(vj , 2ρ/5) is contained in γ((bj−1, aj))

In addition, we let a0 = a, bm = am+1 = b (see Figure 5.1). We claim that

v1

vj vj+1

vm

x y�(c1) �(cj) �(cj+1) �(cm)

�(bj�1) �(aj) �(bj) �(aj+1)

B(vj , ⇢) B(vj+1, ⇢)

�

Figure 5.1. The cones intersecting γ.

for every j ∈ {0, . . . ,m+ 1}, for every g ∈ S, we have

|ḡγ̄(aj)− γ̄(aj)| = |gγ(aj)− γ(aj)|Ẋ .

The proof is by induction on j. If j = 0 then γ(aj) = x. The claim follows
from the fact that the map ζ : Ẋ → X̄ induces an isometry from B(x, ρ/20)
onto B(x̄, ρ/20) (Proposition 5.4). Assume now that our claim is true for
j ∈ {0, . . . ,m}. Since γ is a local quasi-geodesic, aj 6 bj . We denote by γ̄j
the restriction of γ̄ to [aj , bj ]. By construction γ̄j is (l+8δ̄)-quasi-convex and
contained in the 3ρ/5-neighborhood of ζ(X). Applying Proposition 5.12
there exists a continuous path γj : [aj , bj ] → Ẋ starting at γ(aj) and
lifting γ̄j with the following property. Given ḡ ∈ Ḡ, if ḡγ̄j lies in the ρ/10-
neighborhood of γ̄j then there exists g ∈ G such that for every t ∈ [aj , bj ],
|ḡγ̄j(t)− γ̄j(t)| = |gγj(t)− γj(t)|Ẋ . According to Proposition 5.3, Ẋ \ v(Q)
is a covering space of X̄ \ v̄(Q). Thus γj is exactly the restriction of γ to
[aj , bj ].
Take now an element g in S and write ḡ for its image in Ḡ. By assumption

|ḡx̄−x̄| 6 ρ/50 and |ḡȳ−ȳ| 6 ρ/50. It follows from Lemma 3.2 that for every
t ∈ [a , b], |ḡγ̄(t)− γ̄(t)| 6 ρ/50+ l+16δ̄. In particular ḡ moves the points of
γ̄j by a distance at most ρ/10. Using the properties of the lift γj , there exists
u ∈ K such that for every t ∈ [aj , bj ], |ḡγ̄(t) − γ̄(t)| = |guγ(t) − γ(t)|Ẋ .
Thus |ḡγ̄(aj)− γ̄(aj)| = |guγ(aj)− γ(aj)|Ẋ . On the other hand, using the

TOME 66 (2016), FASCICULE 5



1822 Rémi B. COULON

induction assumption |ḡγ̄(aj)− γ̄(aj)| = |gγ(aj)− γ(aj)|Ẋ . It follows from
the triangle inequality that

|uγ(aj)− γ(aj)|Ẋ 6 |guγ(aj)− γ(aj)|Ẋ + |gγ(aj)− γ(aj)|Ẋ
6 2 |ḡγ̄(aj)− γ̄(aj)|

6 ρ/25 + 2l + 32δ̄.

However, K \ {1} moves the points of the ρ/10-neighborhood of X ⊂ Ẋ by
a distance at least ρ/5 (Proposition 5.3). Consequently u = 1. In particular
|gγ(bj) − γ(bj)|Ẋ = |ḡγ̄(bj) − γ̄(bj)| is at most ρ/50 + l + 16δ̄. If j =
m, then am+1 = bm, thus the claim holds for j + 1. Otherwise, |vj+1 −
γ(bj)| = 9ρ/10, thus g necessarily belongs to Stab(vj+1). Moreover by
assumption, ḡ is the image of an element in the maximal normal finite
subgroup Fj+1 of Stab(vj+1). Since g moves the point γ(bj) ∈ B(vj+1, ρ)
by a small distance, g is the elliptic preimage of ḡ. Therefore it moves
all the points of B(vj+1, ρ) by a distance at most δ̄ (Proposition 5.9). In
particular, |gγ(aj+1) − γ(aj+1)|Ẋ 6 δ̄. However, the map ζ : Ẋ → X̄

induces an isometry from the ball B(γ(aj+1), ρ/20) onto its image, hence
|gγ(aj+1) − γ(aj+1)|Ẋ = |ḡγ̄(aj+1) − γ̄(aj+1)|. This proves our claim for
j+1. The statement of the lemma follows from our claim for j = m+1. �

5.3. Elementary subgroups

Proposition 5.14. — The action of Ḡ on X̄ is WPD.

Proof. — Let ḡ be a loxodromic element of Ḡ. We claim that there exist
ȳ and ȳ′ in Yḡ such that the set of elements ū ∈ Ḡ satisfying |ūȳ− ȳ| 6 486δ̄
and |ūȳ′− ȳ′| 6 486δ̄ is finite. According to Proposition 3.19 it is sufficient
to show that ḡ satisfies the WPD property. By replacing if necessary ḡ by a
power of ḡ we can assume that [ḡ] > LS δ̄. Let γ̄ : R→ X̄ be a δ̄-nerve of ḡ
and T its fundamental length. By definition γ̄ is contained in the cylinder
Yḡ of ḡ. We now distinguish two cases.
Assume first that there exists v̄ ∈ v̄(Q) lying in the ρ/10-neighborhood

of γ̄([0 , T ]). There is (H,Y ) ∈ Q such that v̄ is the image in X̄ of the
apex of Z(Y ). Let ȳ = ȳ′ = γ̄(s) be a projection of v̄ on γ̄([0 , T ]). Let ū
be an element of Ḡ such that |ūȳ − ȳ| 6 486δ̄. It follows from the triangle
inequality that

|ūv̄ − v̄| 6 2 |v̄ − ȳ|+ |ūȳ − ȳ| < 2ρ.
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However two distinct apices of X̄ are at a distance at least 2ρ apart. Thus
ūv̄ = v̄. Hence ū belongs to the finite group Stab(v̄) = Stab(Y )/H, which
proves our claim.
Assume now that for every v̄ ∈ v̄(Q), γ̄([0 , T ]) does not intersect

B(v̄, ρ/10). The set v̄(Q) being Ḡ-invariant, for every v̄ ∈ v̄(Q), γ̄ does
not intersect B(v̄, ρ/10). Recall that [ḡ] > LS δ̄ thus γ̄ is a 9δ̄-quasi-convex
subset of X̄. We let ȳ = γ̄(0) and denote by y a preimage of ȳ in Ẋ. Ac-
cording to Proposition 5.12, there exists a map γ : R→ Ẋ and a preimage
g of ḡ with the following properties.

(i) y = γ(0).
(ii) For every t ∈ R, γ(t) is a preimage in Ẋ of γ̄(t).
(iii) For every t ∈ R, γ(t+ T ) = gγ(t).

Recall that the map ζ : Ẋ → X̄ is 1-Lipschitz. Thus ḡ being a loxo-
dromic isometry of X̄, g is a loxodromic isometry of Ẋ. According to
Proposition 4.10, the action of G on Ẋ is WPD. Hence there exists n ∈ N
such that the set S of elements u ∈ G satisfying |uy − y|Ẋ 6 486δ̄ and
|ugny − gny| 6 486δ̄ is finite. We put y′ = gny = γ(nT ). By construction
ȳ′ is a point on γ̄ ⊂ Yḡ. Let ū be an element of Ḡ such that |ūȳ− ȳ| 6 486δ̄
and |ūȳ′− ȳ′| 6 486δ̄. Recall that K acts properly on Ẋ \ v(Q) hence there
exists u ∈ G such that |uy− y|Ẋ = |ūȳ− ȳ| 6 486δ̄. We are going to apply
Proposition 5.13 with the set {u} and the path γ joining y to y′. By con-
struction |uy − y|Ẋ 6 486δ̄ and |ūȳ′ − ȳ′| 6 486δ̄. Being a δ̄-nerve of ḡ, γ̄
is an LS δ̄-local (1, δ̄)-quasi-geodesic. Moreover for every v ∈ v(Q), γ̄ does
not intersect B(v̄, 9ρ/10), hence the last assumption of Proposition 5.13 is
vacuous. It follows that |uy′− y′|Ẋ = |ūȳ′− ȳ′| 6 486δ̄. Hence u belongs to
the finite set S, which proves our claim for the second case. �

Proposition 5.15. — The group Ḡ is non-elementary (for its action
on X̄).

Proof. — The idea of the proof is to exhibit two elements of Ḡ satisfying
the criterion provided by Lemma 3.24. According to Proposition 5.8, v̄(Q)
contains two distinct apices v̄1 and v̄2. By Corollary 5.11, for each j ∈ {1, 2},
there exists ḡj ∈ Stab(v̄j) such that for every x̄ ∈ X̄,

(5.1) 〈ḡj x̄, x̄〉v̄ 6 2δ̄ and 2
〈
ḡ−1
j x̄, ḡj x̄

〉
x̄
6 |ḡj x̄− x̄|+ 8δ̄.

Let x̄ be a δ̄-projection of v̄2 on B(v̄1, ρ). Recall that B(v̄1, ρ) is 2δ̄-quasi-
convex. Thus 〈v̄1, v̄2〉x̄ 6 3δ̄. Applying the four point inequality (2.1) we
get

(5.2) min {〈v̄1, ḡ1x̄〉x̄ , 〈ḡ1x̄, ḡ2x̄〉x̄ , 〈ḡ2x̄, v̄2〉x̄} 6 〈v̄1, v̄2〉x̄ + 2δ̄ 6 5δ̄.
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According to the triangle inequality 〈v̄1, ḡ1x̄〉x̄ > |v̄1 − x̄| − 〈x̄, ḡ1x̄〉v̄1
and

〈ḡ2x̄, v̄2〉x̄ > |v̄2 − x̄| − 〈ḡ2x̄, x̄〉v̄2
. By construction, ρ − δ̄ 6 |v̄1 − x̄| 6 ρ.

Since v̄1 and v̄2 are 2ρ far apart we get |v̄2 − x̄| > ρ. Consequently the
minimum in (5.2) can only be achieved by 〈ḡ1x̄, ḡ2x̄〉x̄. Thus 〈ḡ1x̄, ḡ2x̄〉x̄ 6
5δ̄. Similarly we prove that

〈
ḡ±1

1 x̄, ḡ±1
2 x̄

〉
x̄
6 5δ̄. However by construction

〈ḡ1x̄, x̄〉v̄1
6 2δ̄ and 〈ḡ2x̄, x̄〉v̄2

6 2δ̄. Thus |ḡ1x̄−x̄| > 2|x̄−v̄1|−4δ̄ > 2ρ−6δ̄
and |ḡ2x̄− x̄| > 2ρ− 4δ̄. Consequently,

2
〈
ḡ±1

1 x̄, ḡ±1
2 x̄

〉
x̄
< min {|ḡ1x̄− x̄| , |ḡ2x̄− x̄|} − 16δ̄.

The other inequalities needed to apply Lemma 3.24 are given by (5.1). It
follows that ḡ1 and ḡ2 generate an non-elementary subgroup of Ḡ. �

Proposition 5.16. — The image in Ḡ of an elliptic (respectively par-
abolic, loxodromic) subgroup of G is elliptic (respectively parabolic or el-
liptic, elementary).

Proof. — The map X → X̄ shortens the distance. Hence the proof works
exactly as the one of Lemma 4.11. �

Proposition 5.17. — Let E be a non-loxodromic elementary subgroup
of G. Then the projection π : G� Ḡ induces an isomorphism from E onto
its image.

Proof. — Let g be a non-trivial element of E. Since E is not loxodromic,
g cannot be loxodromic, (Corollary 3.7). In particular [g]∞ = 0, thus [g] 6
16δ (Propositon 3.1). We distinguish two cases. Assume first that g does
not act trivially on X. In particular, there exists a point x ∈ X such that
|gx−x| > 0. Without loss of generality we can assume that |gx−x| 6 17δ.
It follows that

0 < µ (|gx− x|) 6 |gx− x|Ẋ 6 |gx− x| 6 17δ.

However the map ζ : Ẋ → X̄ induces an equivariant isometry from
B(x, ρ/20) onto its image. Therefore |ḡx̄ − x̄| 6= 0, hence ḡ 6= 1. Assume
now that g acts trivially on X. Let (H,Y ) ∈ Q. Then g belongs to the
stabilizer of Y . Moreover, being non-loxodromic g does not belong to H,
thus it induces a non-trivial element of Stab(Y )/H. However we know that
Stab(Y )/H embeds into Ḡ. Therefore ḡ 6= 1. �

From now on we are interested in the elementary subgroups of N̄ . Our
goal is to find a way, to lift any elementary subgroup of N̄ to an elementary
subgroup of N . Recall that we assumed that N is a normal subgroup with-
out involution. Hence for every (H,Y ) ∈ Q, the elements of Stab(Y ) ∩ N
are either loxodromic or in the maximal normal finite subgroup of Stab(Y ).
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On the other hand, the kernel K of the projection G � Ḡ is contained in
N . Thus for every ḡ ∈ N̄ , any preimage g ∈ G of ḡ belongs to N .

Elliptic subgroups. The following result follows the ideas of T. Delzant
and M. Gromov in [13].

Proposition 5.18. — Let Ē be an elliptic subgroup of Ḡ. One of the
following holds.

(i) There is an elliptic subgroup E of G (for its action on X) such that
the projection π : G→ Ḡ induces an isomorphsim from E onto Ē.

(ii) There exists v̄ ∈ v̄(Q) such that Ē is contained in Stab(v̄). Moreover
there exists ḡ ∈ Ē such that Aḡ lies in the 6δ̄-neighborhood of {v̄}.

Proof. — Recall that CĒ is the set of points x̄ ∈ X̄ such that for every ḡ ∈
Ē, |ḡx̄− x̄| 6 11δ̄. It is an Ē-invariant 9δ̄-quasi-convex (Proposition 3.27).
We distinguish two cases. Assume first that CĒ contains a point x̄ in the
50δ̄-neighborhood of ζ(X). We write Z̄ for the hull of the Ē-orbit of x̄
(Definition 2.17). It is an Ē-invariant 6δ̄-quasi-convex contained in the 56δ̄-
neighborhood of ζ(X). By Proposition 5.12, there exists a subset Z of Ẋ
such that the map ζ : Ẋ → X̄ induces an isometry from Z onto Z̄ and the
projection G � Ḡ induces an isomorphism from Stab(Z) onto Stab(Z̄).
In particular Ē is isomorphic to a subgroup E of Stab(Z). Let x be the
preimage of x̄ in Z and y a projection of x on X. Thus |x− y|Ẋ 6 50δ̄. Let
g ∈ E we have then

µ (|gy − y|) 6 |gy − y|Ẋ 6 |gx− x|Ẋ + 100δ̄ = |ḡx̄− x̄|X̄ + 100δ̄

6 111δ̄ < 2ρ.

It follows that |gx − x|X 6 π sinh(56δ̄) (Proposition 4.2). In particular E
has a bounded orbit in X, thus it is an elliptic subgroup of G.
Assume now that CĒ does not contain any point x̄ in the 50δ̄-neighbor-

hood of ζ(X). Since CĒ is 9δ̄-quasi-convex, there is v̄ ∈ v̄(Q) such that
CĒ lies in the ball B(v̄, ρ − 50δ̄). Let x̄ be a point of CĒ . Any element
ḡ of Ē moves x̄ by a distance at most 11δ̄. The triangle inequality yields
|ḡv̄ − v̄| < 2ρ, hence ḡ fixes v̄. Consequently Ē is a subgroup of Stab(v̄).
There exists (H,Y ) ∈ Q such that v̄ is the image of the apex v of the cone
Z(Y ) over Y . We claim that there exists an element ḡ ∈ Ē which is not the
image of an elliptic element of Stab(Y ). Assume on the contrary that our
claim is false. In particular, E = π−1(Ē)∩Stab(Y ) is a subgroup of G that
only contains elliptic elements. Since Stab(Y ) is a loxodromic subgroup,
E is elliptic (Corollary 3.30). Thus there exists x ∈ X such that for every
g ∈ E, |gx−x| 6 11δ (Proposition 3.27). Since the map ζ : X → X̄ reduces
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the distances, it follows that the image x̄ of x in X̄ is moved by a distance
at most 11δ̄ by any element of Ē. However x̄ lies in ζ(X). It contradicts
the fact that CĒ does not contain any point x̄ in the 50δ̄-neighborhood of
ζ(X). According to Corollary 5.10 there exists k ∈ Z such that the axis of
ḡk is contained in the 6δ̄-neighborhood of v̄. �

Corollary 5.19. — The subgroup N̄ has no involution.

Proof. — Let ḡ be an element of N̄ and assume that ḡ has order 2. Recall
the kernel K of the projection π : G → Ḡ is contained in N . Hence every
preimage of ḡ is contained in N . According to Proposition 5.18 there are
two cases.

(i) There exists a preimage g ∈ N of ḡ with order 2, which contradicts
the fact that N has no involution.

(ii) There exists v̄ ∈ v̄(Q) such that ḡ belongs to Stab(v̄). There is
(H,Y ) ∈ Q such that v̄ is the image of the apex of the cone Z(Y ).
We write F for the maximal finite normal subgroup of Stab(Y ). By
assumption, there exist an element c ∈ N , which is primitive (as an
element of N) and an odd integer n such that H is generated by
h = cn. It follows that Stab(Y )∩N is isomorphic to the semi-direct
product (F ∩N) o Z where Z the subgroup generated by c acting
by conjugacy on F ∩N . Let g ∈ N be a preimage of ḡ in Stab(Y ).
There exists u, u′ ∈ F ∩ N and m ∈ Z such that g = cmu and
g2 = c2mu′. We noticed that Stab(v̄) is isomorphic to Stab(Y )/H
(Theorem 5.2). Consequently there exists p ∈ Z such that cpn = g2.
Thus pn = 2m (and u′ = 1). However n is odd, thus n divides m. It
follows ḡ is the image of u. Restricted to F the projection G� Ḡ is
one-to-one, hence u has order 2. It contradicts again the fact that
N has no involution.

Thus N̄ cannot contain an involution. �

Proposition 5.20. — Let E be an elliptic subgroup of N (for its action
on X). Let S be a subset of G and y a point of X such that for every u ∈ S,
|uy − y|Ẋ < ρ/100. If the image S̄ of S in Ḡ is contained in Ē, then there
exists g ∈ K such that gSg−1 lies in E.

Proof. — We fix a point x in CE ⊂ X. There exists g ∈ K such that
|gy − x|Ẋ 6 |ȳ − x̄| + δ̄. By Proposition 5.17, the map G → Ḡ induces an
isomorphism from E onto its image. We denote by S′ the preimage of S̄
in E. We claim that z = gy is hardly moved by the elements of S′. Let
γ : I → Ẋ be a (1, δ̄)-quasi-geodesic joining x to z. Let γ̄ : I → X̄ the path
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of X̄ induced by γ. By choice of g the length of γ̄ satisfies

L(γ̄) 6 L(γ) 6 |z − x|Ẋ + δ̄ 6 |z̄ − x̄|+ 2δ̄.

Hence γ̄ is a (1, 2δ̄)-quasi-geodesic of X̄. Let u be an element of S and
u′ the preimage of ū in S′. We are going to apply Proposition 5.13 with
the path γ and the set {u′}. Since u′ belongs to E we have |u′x − x|Ẋ 6
|u′x− x| 6 11δ 6 δ̄. On the other hand g lies in K and ū = ū′ in S̄, thus

|ū′z̄ − z̄| = |ūȳ − ȳ| 6 |uy − y|Ẋ < ρ/100.

Let (H,Y ) ∈ Q. Let v be the apex of Z(Y ). Assume that ū′ belongs
to Stab(v̄). Recall that u′ belongs to E ⊂ N . If ū′ is not the image of
an element in the maximal normal finite subgroup of Stab(Y ), then by
Corollary 5.10, the characteristic subset CĒ lies in the 15δ̄-neighborhood
of v̄. However x̄ is by construction a point of this characteristic subset.
Contradiction. It follows then from Proposition 5.13 that |u′z − z|Ẋ =
|ū′z̄− z̄| 6 ρ/100, which proves our claim. Applying the triangle inequality
we get ∣∣gug−1z − u′z

∣∣
Ẋ
6
∣∣gug−1z − z

∣∣
Ẋ

+ |u′z − z|Ẋ
6 |uy − y|Ẋ + |u′z − z|Ẋ
6 ρ/50.

However ū = ū′, thus u′gu−1g−1 belongs to K. Applying Proposition 5.3,
we get u′ = gug−1. In particular gug−1 belongs to E. �

Corollary 5.21. — Let u and u′ be two elements of N . We assume
that [u] < ρ/100 and u′ is elliptic (for the action on X). If ū = ū′ then u
and u′ are conjugated in G.

Proof. — We apply Proposition 5.20 with the elliptic subgroup E = 〈u′〉
and the set S = {u}. In particular there exists g ∈ K such that gug−1

belongs to E. However by Proposition 5.17, the map G � Ḡ induces an
isomorphism from E onto its image. It follows that gug−1 = u′. �

Corollary 5.22. — Let u and u′ be two elements of N . We assume
that [u] < ρ/100 and u′ is elliptic (for the action on X). If ū and ū′ are
conjugated in Ḡ then u and u′ are conjugated in G.

Proof. — Assume that ū and ū′ are conjugated in Ḡ. In particular there
exists g ∈ G such that ū = ḡū′ḡ−1. However gu′g−1 is also an elliptic
element of N . The corollary follows from Corollary 5.21 applied to u and
gu′g−1. �
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Parabolic subgroups. Proposition 5.18 explains how we can lift an
elliptic subgroup of N̄ to a particular subgroup of N . We need a simi-
lar procedure for the parabolic subgroups of N̄ . This is the purpose of
Proposition 5.23 to Proposition 5.25. Let Ē be a parabolic subgroup of N̄
(for its action on X̄). We denote by ξ̄ the unique point of ∂Ē ⊂ ∂X̄. By
Lemma 3.34, Stab(ξ̄) is a parabolic subgroup of Ḡ. We also fix a point x0 in
X and write x̄0 for its image in X̄. According to Lemma 5.7, there exits an
LS δ̄-local (1, 11δ̄)-quasi-geodesic γ̄ : R+ → X̄ joining x̄0 to ξ̄ and avoiding
the apices of v̄(Q). Recall that Ẋ \ v(Q) is a covering space of X̄ \ v̄(Q)
(Proposition 5.3). Therefore there exists a continuous path γ : R+ → Ẋ

starting at x0 such that for every t ∈ R+, γ(t) is a preimage of γ̄(t). Since
the map Ẋ \ v(Q) → X̄ \ v̄(Q) is a local isometry (Proposition 5.3), γ is
an LS δ̄-local (1, 11δ̄)-quasi-geodesic of Ẋ. In particular it defines a point
ξ = limt→+∞ γ(t) in the boundary at infinity of Ẋ. Our goal is to prove
that Stab(ξ) is a parabolic subgroup of G (for its action on Ẋ and thus on
X) and that the map G � Ḡ induces an isomorphism from Stab(ξ) ∩ N
onto Stab(ξ̄) ∩ N̄ . The next proposition is the key result for our proof.

Proposition 5.23. — Let ḡ ∈ Stab(ξ̄) ∩ N̄ . There exists a preimage
g ∈ N of ḡ and t0 ∈ R+ such that for every t > t0, |gγ(t)− γ(t)|Ẋ 6 114δ̄.
In particular g belongs to Stab(ξ).

Proof. — By Lemma 3.35, there exists t0 ∈ R+ such that for every t > t0,
|ḡγ̄(t)−γ̄(t)| 6 97δ̄. Without loss of generality, we can assume that γ(t0) lies
inX. However the map ζ : Ẋ → X̄ induces an isometry from B(γ(t0), ρ/20)
onto B(γ̄(t0), ρ/20) (Proposition 5.4). Therefore there exists a preimage
g ∈ N of ḡ such that |gγ(t0)− γ(t0)|Ẋ = |ḡγ̄(t0)− γ̄(t0)|. Let t > t0. Since
γ is an infinite continuous path, there exists t1 > t such that γ(t1) belongs
to X. In addition, |ḡγ̄(t1)− γ̄(t1)| 6 97δ̄. Let (H,Y ) ∈ Q. We denote by v
the apex of the cone Z(Y ) and F the maximal normal finite subgroup of
Stab(Y ). Assume γ̄ restricted to [t0 , t1] intersects B(v̄, 9ρ/10). It follows
from the triangle inequality that |ḡv̄ − v̄| < 2ρ, thus ḡ belongs to Stab(v̄).
We claim that ḡ is the image of an element of F . Assume on the contrary
that this is false. Since ḡ belongs to N̄ , ḡ is not the image of an elliptic
element of Stab(Y ). According to Corollary 5.10, there exists k ∈ Z such
that the axis of ḡk is contained in the 6δ̄-neighborhood of v̄. However ḡk is
also an element of Stab(ξ̄). Thus by Lemma 3.35, there exists t2 ∈ R+ such
that for every t > t2, |ḡkγ̄(t)−γ̄(t)| 6 97δ̄, which leads to a contradiction. It
follows then from Proposition 5.13 that |gγ(t1)−γ(t1)|Ẋ = |ḡγ̄(t1)− γ̄(t1)|.
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Applying Lemma 3.2, we get that

|gγ(t)− γ(t)|Ẋ
6 max {|gγ(t0)− γ(t0)|Ẋ , |gγ(t1)− γ(t1)|Ẋ}+ 2 〈γ(t0), γ(t1)〉γ(t) + 6δ̄

6 114δ̄. �

Proposition 5.24. — The subgroup Stab(ξ) is parabolic for the action
of G on X.

Proof. — According to Proposition 4.12 it is sufficient to prove that
Stab(ξ) is parabolic for the action of G on Ẋ. Let ḡ be an element of
the parabolic subgroup Ē. In particular ḡ belongs to Stab(ξ̄) ∩ N̄ . We de-
note by g ∈ Stab(ξ) the preimage of ḡ given by Proposition 5.23. We write
E for the set of all preimages of elements of Ē obtained in this way. It is a
subset of Stab(ξ) ∩N . Since Ē is parabolic the orbit Ēx̄0 is not bounded.
The map ζ : Ẋ → X̄ being 1-Lipschitz Ex0 is unbounded as well (in Ẋ).
Consequently, Stab(ξ) cannot be an elliptic subgroup of G. Therefore it
is sufficient to show that Stab(ξ) does not contain a loxodromic element.
Assume on the contrary that there exists g ∈ Stab(ξ) which is a loxodromic
isometry of Ẋ. By replacing if necessary g by a power of g we can assume
that [g]Ẋ > LS δ̄. As a loxodromic isometry g fixes exactly two points of
∂Ẋ, namely g− and g+. Being an element of Stab(ξ), g also fixes ξ, thus
ξ ∈ {g−, g+}. We denote by σ : R→ Ẋ a δ̄-nerve of g. According to Propo-
sition 3.11, there exists t0 ∈ R+ such that for every t > t0, γ(t) is in the
37δ̄-neighborhood of the axis Ag of g in Ẋ (Lemma 3.14). In particular,
for every t > t0, |gεγ(t) − γ(t)|Ẋ 6 [g]Ẋ + 82δ̄. Since the map ζ : Ẋ → X̄

reduces the distances, for every t > t0, |ḡγ̄(t) − γ̄(t)| 6 [g]Ẋ + 82δ̄. Hence
ḡ belongs to Stab(ξ̄). On the other hand γ̄ is an LS δ̄-local (1, 11δ̄)-quasi-
isometry, hence a (2, 11δ̄)-quasi-geodesic (Corollary 2.7). Thus for every
t > t0,

|ḡγ̄(t)− γ̄(t)| > |γ̄(t+ [g]Ẋ)− γ̄(t)| − 500δ̄ > 1
2 [g]Ẋ − 506δ̄ > 97δ̄.

This last point contradicts Lemma 3.35 applied with the path γ̄ and the
parabolic subgroup Stab(ξ̄). �

Proposition 5.25. — The projection G� Ḡ induces a one-to-one map
from Stab(ξ) into Stab(ξ̄). It sends Stab(ξ) ∩ N onto Stab(ξ̄) ∩ N̄ . The
preimage E of Ē in Stab(ξ)∩N is a parabolic subgroup of G for its action
on X.

Proof. — Let g be an element of Stab(ξ). According to Proposition 5.24
Stab(ξ) is parabolic for the action of G on Ẋ. By Lemma 3.35, there exits
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t0 ∈ R+ such that for every t > t0, |gγ(t) − γ(t)|Ẋ 6 97δ̄. It follows that
for every t > t0, |ḡγ̄(t) − γ̄(t)| 6 97δ̄. In particular ḡ belongs to Stab(ξ̄).
The subgroup Stab(ξ) is elementary and not loxodromic, thus Proposi-
tion 5.17 says that the map G� Ḡ restricted to Stab(ξ) is one-to-one. The
surjectivity follows from Proposition 5.23. According to Proposition 5.24,
E is elementary either elliptic or parabolic. However it cannot be elliptic
otherwise its image Ē in Ḡ would be elliptic too. �

Loxodromic subgroups. We finish this study with the case of loxo-
dromic subgroups.

Proposition 5.26. — Let Ē be a loxodromic subgroup of N̄ (for its
action on X̄). Then Ē is isomorphic to a loxodromic subgroup E of N (for
its action on X). Moreover if Ē is a maximal loxodromic subgroup of N̄ ,
then E is a also a maximal loxodromic subgroup of N .

Proof. — By Corollary 5.19, N̄ has no involution, thus Ē is not of di-
hedral type. We denote by F̄ its maximal normal finite subgroup. There
exists a loxodromic element ḡ ∈ Ē such that Ē is isomorphic to the semi-
direct product F̄ o Z, where Z is the cyclic group generated by ḡ acting
by conjugacy on F̄ . According to Lemma 3.33, the cylinder Yḡ of ḡ is con-
tained in the 51δ̄-neighborhood of CF̄ . Since Yḡ contains bi-infinite local
quasi-geodesics it cannot be a subset of a ball B(v̄, ρ) with v ∈ v(Q).
Therefore we can find a point x̄ in CF̄ which is at the same time in the
51δ̄-neighborhood of ζ(X). Let Z̄ be the hull of F̄ x̄. It is an F̄ -invariant
6δ̄-quasi-convex subset of X̄ contained in the 57δ̄-neighborhood of ζ(X).
It follows from Proposition 5.12 that there exits a subset Z of Ẋ with the
following properties.

(i) The map ζ : Ẋ → X̄ induces an isometry from Z onto Z̄.
(ii) The projection G� Ḡ induces an isomorphism from Stab(Z) onto

Stab(Z̄).
We denote by x the preimage of x̄ in Z and by F the preimage of F̄ in
Stab(Z). In particular, for every u ∈ F , |ux − x|Ẋ 6 11δ̄. There exists a
preimage g ∈ N of ḡ such that |gx− x|Ẋ 6 |ḡx̄− x̄|+ δ̄. As a preimage of
ḡ, g is loxodromic (for its action on Ẋ and thus on X). Let γ : I → Ẋ be
a (1, δ̄)-quasi-geodesic between x and gx. We denote by γ̄ the path of X̄
induced by γ. Its length satisfies the following

L(γ̄) 6 L(γ) 6 |gx− x|Ẋ + δ̄ 6 |ḡx̄− x̄|+ 2δ̄.

Thus γ̄ is a (1, 2δ̄)-quasi-geodesic. Recall that F̄ is a normal subgroup of
Ē, consequently CF̄ is ḡ-invariant. In particular, F is finite and for every
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ū ∈ F̄ , |ūḡx̄ − ḡx̄| 6 11δ̄. We want to apply Proposition 5.13, with the
path γ and the whole group F as the subset S. Let (H,Y ) ∈ Q. Let v be
the apex of the cone Z(Y ) and v̄ its image in X̄. Assume that ḡ intersects
B(v̄, 9ρ/10). We denote by p̄ a projection of v̄ on γ̄. Let u ∈ F and ū its
image in Ḡ. Recall that the endpoints x̄ and ḡx̄ of γ̄ are moved by ū by
at distance at most 11δ̄. It follows from Lemma 3.2 that |ūp̄ − p̄| 6 19δ̄.
Combined with the triangle inequality, we get |ūv̄−v̄| < 2ρ, hence ū belongs
to Stab(v̄). If ū is not the image of an elliptic element of Stab(Y ), then by
Corollary 5.10, then there exists a power of ū whose axis is contained in
the 6δ̄-neighborhood of v̄. In particular, the characteristic subset CF̄ is
contained in the 15δ̄-neighborhood of v̄. This contradicts the fact that x̄
belongs to this characteristic subset. Consequently, by Proposition 5.13 for
every u ∈ F , |ugx− gx|Ẋ = |ūḡx̄− ḡx̄|. Let u be an element of F . Since ḡ
normalizes F̄ , the image of g−1ug in N̄ is an element of F̄ . We denote by
u′ its preimage in F . We claim that g−1ug = u′. Using the conclusions of
Proposition 5.12 and Proposition 5.13 we have the following equalities

|u′x− x|Ẋ =
∣∣ḡ−1ūḡx̄− x̄

∣∣ = |ūḡx̄− ḡx̄|∣∣g−1ugx− x
∣∣
Ẋ

= |ugx− gx|Ẋ = |ūḡx̄− ḡx̄| .

However ḡx̄ belongs to CF̄ . We get from the triangle inequality that

∣∣g−1u−1gu′x− x
∣∣ 6 |u′x− x|+ ∣∣x− g−1ugx

∣∣ = 2 |ūḡx̄− ḡx̄| 6 22δ̄.

Recall that u′ and g−1ug are two preimages of the same element of N̄ .
Hence g−1u−1gu′ belongs to K. By Proposition 5.3, we have g−1ug = u′,
which completes the proof of our claim. Not only g normalizes F but the
projection G� Ḡ identifies the action by conjugacy of g on F and the one
of ḡ on F̄ . Consequently the subgroup E of N generated by g and F is a
loxodromic subgroup isomorphic to Ē.
Assume now that Ē is a maximal loxodromic subgroup of N̄ . Let us de-

note by E′ the maximal loxodromic subgroup of N containing E. According
to Proposition 5.16, the image Ē′ of E′ in Ḡ is an elementary subgroup of
N̄ . By maximality Ē′ = Ē. Let g′ be an element of E′ whose image in Ḡ
is trivial. According to Corollary 3.30 g′ is either elliptic or loxodromic. If
it is loxodromic, then 〈g′〉 has finite index in E′, thus Ē′ is finite, which
is impossible. Hence g′ is elliptic. Applying Propositon 5.17 we get g′ = 1.
In other words, the projection G � Ḡ restricted to E′ is also one-to-one,
which completes the proof of the last assertion. �
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5.4. Invariants of the action on X̄.

In Section 3.5 we associated several invariants to the action of a group
on a hyperbolic space. In this section we explain how the invariants for the
action of N̄ on X̄ are related to the ones for the action of N on X.

Proposition 5.27. — The number e(N̄ , X̄) divides e(N,X).

Proof. — It follows directly from Proposition 5.26 and the definition of
e(N̄ , X̄) (Definition 3.37). �

Proposition 5.28. — The invariant ν(N̄ , X̄) is at most ν(N,X).

Proof. — Let m > ν(N,X) be an integer. Let ḡ and h̄ be two elements of
N̄ with h̄ loxodromic such that ḡ, h̄−1ḡh̄,. . . , h̄−mḡh̄m generate an elemen-
tary subgroup Ē of N̄ which is not loxodromic. For every j ∈ {0, . . . ,m},
we let ḡj = h̄−j ḡh̄j .

Claim 1. — If Ē is elliptic, then for every v̄ ∈ v̄(Q), CĒ is not contained
in B(v̄, ρ− 50δ̄).

Assume on the contrary that Claim 1 is false. Hence Ē is elliptic and
there exists v̄ ∈ v̄(Q) such that CĒ is contained in B(v̄, ρ − 50δ̄). Let
(H,Y ) be a pair of Q such that v̄ is the image in X̄ of the apex v of the
cone Z(Y ). The elements of Ē move the points of CĒ by a distance at most
11δ̄. Thus Ē is contained in Stab(v̄). Since N has no involution, the set
of elliptic elements of Stab(Y ) ∩N forms a subgroup F of Stab(Y ) whose
image in N̄ will be denoted by F̄ (see Remark 5.1). Note that at least one of
the elements ḡ0, . . . , ḡm does not belong to F̄ . Indeed, if it was the case, Ē
would be a subgroup of F̄ and thus by Propsition 5.9, B(v̄, ρ) should lie in
CĒ , which contradicts the assumption of Case 1. Assume that ḡ0 does not
belong to F̄ (the proof works similarly for the other elements). According
to Corollary 5.10, v̄ is the only apex fixed by ḡ0. However ḡ1 = h̄−1ḡ0h̄ also
belongs to Ē and thus Stab(v̄). It follows that h̄v̄ is also an apex fixed by
ḡ0. Hence h̄v̄ = v̄. Consequently ḡ and h̄ belong to Stab(v̄). It contradicts
the fact that h̄ is loxodromic, and completes the proof of Claim 1.

Claim 2. — There exists an elementary subgroup E of N which is not
loxodromic and a point x ∈ X with the following properties.

• The map G� Ḡ induces an isomorphism from E onto Ē.
• For every j ∈ {0, . . . ,m}, the preimage gj of ḡj in E satisfies |gjx−
x|Ẋ = |ḡj x̄− x̄| 6 111δ̄.

Moreover, for every ū ∈ Ē there exists ȳ in ζ(X) such that |ūȳ− ȳ| 6 111δ̄.
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The proof of Claim 2 requires to distinguish two cases.

Case 1: Ē is elliptic. — We claim that there exists a point of ζ(X) lying
in the 50δ̄-neighborhood of CĒ . Assume that it is not the case. According
to Claim 1, CĒ is not contained in a single ball B(v̄, ρ− 50δ̄) for some v̄ ∈
v̄(Q). Consequently there exists two distinct apices v̄ and v̄′ and two points
z̄, z̄′ ∈ CĒ which respectively belong to B(v̄, ρ − 50δ̄) and B(v̄′, ρ − 50δ̄).
Let c̄ be a (1, δ̄)-quasi-geodesic joining z̄ to z̄′. The points z̄ and z̄′ being
in distinct cones, c̄ passes through ζ(X). However CĒ is 9δ̄-quasi-convex.
It follows that any point of γ̄ is 10δ̄-close to CĒ . In particular there exists
a point of ζ(X) that is 10δ̄-close to CĒ , which contradicts our assumption.
Hence there exists a point x̄ ∈ ζ(X) that belongs to the 50δ̄-neighborhood
of CĒ . Let x ∈ X be a preimage of x̄ in Ẋ. Applying Proposition 5.12 with
the hull of Ēx̄ we get that there exists an elliptic subgroup E of N such
that the map G� Ḡ induces an isomorphism from E onto Ē and for every
g ∈ E, |gx − x|Ẋ = |ḡx̄ − x̄| 6 111δ̄. In this case ȳ = x̄ works for all the
elements of Ē.

Case 2: Ē is parabolic. — We denote by ξ̄ the unique point of ∂Ē ⊂ ∂X̄.
Let x0 be a point of X. According to Lemma 5.7 there exits an LS δ̄-local
(1, 11δ̄)-quasi-geodesic c̄ : R+ → X̄ joining x̄0 to ξ̄ and avoiding the points
of v̄(Q). Recall that Ẋ \ v(Q) is a covering space of X̄ \ v̄(Q) (Proposi-
tion 5.3). Therefore the path c̄ lifts to a continuous path c : R+ → Ẋ

starting at x0. Since the map Ẋ \ v(Q) → X̄ \ v̄(Q) is a local isometry
(Proposition 5.4), c is an LS δ̄-local (1, 11δ̄)-quasi-geodesic of Ẋ. In partic-
ular it defines a point ξ = limt→+∞ c(t) in the boundary at infinity of Ẋ.
It follows from Proposition 5.25 that the map G � Ḡ induces an isomor-
phism from Stab(ξ) ∩N onto Stab(ξ̄) ∩ N̄ . We denote by E the preimage
in Stab(ξ) ∩N of Ē. Applying Lemma 3.35, for every u ∈ E, there exists
t0 ∈ R+ such that for every t > t0, |uc(t)− c(t)|Ẋ 6 97δ̄, which completes
the proof of Claim 2.

We are going to apply Proposition 5.13 with the set S = {g0, . . . gm−1}
and a path γ that will be define later. We first check the assumption relative
to the stabilizers of vertices. Let (H,Y ) ∈ Q. We denote by v the apex of
the cone Z(Y ) and F the maximal finite normal subgroup of Stab(Y ).
Let j ∈ {0, . . . ,m− 1}. We claim that if ḡj belongs to Stab(v̄) then ḡj
is the image of an element of F . Assume this is false. The element ḡj
belongs to N̄ , thus it is not the image of an elliptic element of Stab(Y ). By
Corollary 5.10, there exists k ∈ Z such that the axis of ū = ḡkj is contained
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in the 6δ̄-neighborhood of v̄. On the other hand, Claim 2 tells us that there
exists ȳ in ζ(X) such that |ūȳ− ȳ| 6 111δ̄. It contradicts Proposition 3.10.

We now fix a preimage h ∈ N of h̄ such that |hx − x|Ẋ 6 |h̄x̄ − x̄| + δ̄.
Let γ : I → Ẋ be an LS δ̄-local (1, δ̄)-quasi-geodesic joining x to hx. The
path γ̄ : I → X̄ induced by γ is an LS δ̄-local (1, 2δ̄)-quasi-geodesic joining
x̄ to h̄x̄. We can now apply Proposition 5.13 with the path γ and the set
S = {g0, . . . gm−1}. Thus for every j ∈ {0, . . . ,m− 1}, |gjhx − hx|Ẋ =
|ḡj h̄x̄ − h̄x̄|. We denote by g the preimage of ḡ in E (g = g0). Let j ∈
{0, . . . ,m− 1}. We claim that h−1gjh = gj+1. The proof is very similar to
the one of Proposition 5.26. It follows from Claim 2 that∣∣ḡj h̄x̄− h̄x̄∣∣ = |ḡj+1x̄− x̄| = |gj+1x− x|Ẋ 6 111δ̄

By choice of h we have the following equations

|gj+1x− x|Ẋ = |ḡj+1x̄− x̄| =
∣∣ḡj h̄x̄− h̄x̄∣∣∣∣h−1gjhx− x

∣∣
Ẋ

= |gjhx− hx|Ẋ =
∣∣ḡj h̄x̄− h̄x̄∣∣ .

Since x̄ is moved by a small distance by ḡj+1 we get∣∣h−1g−1
j hgj+1x− x

∣∣
Ẋ
6 |gj+1x− x|Ẋ +

∣∣x− h−1gjhx
∣∣
Ẋ

6 2 |ḡj+1x̄− x̄| 6 222δ̄.

However gj+1 and h−1gjh are two preimages of the same element of Ḡ.
Hence h−1g−1

j hgj+1 belongs to K. By Proposition 5.3 we get h−1gjh =
gj+1, which completes the proof of our claim. In particular, for every
j ∈ {0, . . . ,m}, h−jghj = gj belongs to E. Thus g, h−1gh, . . . , h−mghm
generate an elementary subgroup of N which is not loxodromic. However
we assumed that m > ν(N,X). Consequently g and h generate an elemen-
tary subgroup of N . By Proposition 5.16, ḡ and h̄ generate an elementary
subgroup of N̄ .
It follows from our discussion that ν(N̄ , X̄) 6 m. �

Proposition 5.29. — Let m be an integer. Let ḡ0, . . . , ḡm be a collec-
tion elements of Ḡ such that for every j ∈ {0, . . . ,m}, [ḡj ] 6 LS δ̄. One of
the following holds.

(i) There exists v̄ ∈ v̄(Q) such that for every j ∈ {0, . . . ,m}, ḡj belongs
to Stab(v̄).

(ii) There exist preimages g0, . . . , gm in G of ḡ0, . . . , ḡm such that for
every j ∈ {0, . . . ,m}, [gj ] 6 π sinh[(LS + 34)δ̄] and

A(ḡ0, . . . , ḡm) 6 A(g0, . . . , gm) + π sinh
[
(LS + 34) δ̄

]
+ (LS + 45)δ̄.
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Remark. — Recall that A(g0, . . . , gm) stands for

A(g0, . . . , gm) = diam
(
A+13δ
g0

∩ · · · ∩A+13δ
gm

)
In the statement of the proposition all the metric objects are measured
either with the distance of X or X̄, but not with the one of Ẋ.

Proof. — Without loss of generality we can assume that the intersection
of the 13δ̄-neighborhoods of Aḡ0 , . . . , Aḡm is not empty. Let us call Z̄ this
intersection. Assume that there exists v̄ ∈ v̄(Q) and a point z̄ ∈ Z̄ such
that |v̄− z̄| 6 ρ− (LS/2 + 17)δ̄. By definition any ḡj moves z̄ by a distance
smaller than [ḡj ] + 34δ̄ 6 (LS + 34)δ̄. It follows from the triangle inequality
that every ḡj belongs to Stab(v̄), which provides the first case.
We now assume that for every v̄ ∈ v̄(Q), Z̄ does not intersect the ball of

center v̄ and radius ρ−(LS/2+17)δ̄. By Lemma 2.15, Z̄ is 7δ̄-quasi-convex.
Moreover, for every j ∈ {0, . . . ,m}, ḡj moves any point of Z̄ by at most
(LS+34)δ̄. According to Proposition 5.12, there exists a subset Z of Ẋ and
a collection g0, . . . , gm of preimages of ḡ0, . . . , ḡm satisfying the following
properties.

(i) The map ζ : Ẋ → X̄ induces an isometry from Z onto Z̄.
(ii) For every z ∈ Z, for every j ∈ {0, . . . ,m}, we have |gjz − z|Ẋ =
|ḡj z̄ − z̄|.

We now denote by z̄ and z̄′ two points of Z̄ such that

|z̄ − z̄′| > A(ḡ0, . . . , ḡm)− δ̄.

The points z and z′ stand for their preimages in Z. We write x and x′

for respective projections of z and z′ on X. By assumption, Z̄ lies in the
(LS/2+17)δ̄-neighborhood of ζ(X). Thus |x−z|Ẋ , |x′−z′|Ẋ 6 (LS/2+17)δ̄.
In particular for every j ∈ {0, . . . ,m},

µ (|gjx− x|) 6 |gjx− x|Ẋ 6 |gjz − z|Ẋ + (LS + 34)δ̄

6 |ḡj z̄ − z̄|+ (LS + 34)δ̄

6 2(LS + 34)δ̄ < 2ρ.

It follows that |gjx − x| 6 π sinh[(LS + 34)δ̄] (Proposition 4.2). The same
holds for x′. In particular,

[gj ] 6 π sinh
[
(LS + 34) δ̄

]
.

Moreover x and x′ belong to the C-neighborhood of Agj where C =
π sinh[(LS + 34)δ̄]/2 + 3δ̄ (Proposition 3.10). By Lemma 2.16,

|x− x′| 6 A(g0, . . . , gm) + π sinh
[
(LS + 34) δ̄

]
+ 10δ̄
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On the other hand, the map X → Ẋ shorten the distances. Therefore

|x− x′| > |x− x′|Ẋ > |z − z
′|Ẋ − (LS + 34)δ̄ = |z̄ − z̄′| − (LS + 34)δ̄.

However by construction |z̄ − z̄′| > A(ḡ0, . . . , ḡm) − δ̄. The conclusion of
the second case follows from the last two inequalities. �

Corollary 5.30. — The invariant A(N̄ , X̄) satisfies the following in-
equality

A(N̄ , X̄) 6 A(N,X) + (ν + 4)π sinh
(
2LS δ̄

)
,

where ν stands for ν = ν(N,X).

Proof. — Let ν̄ be the invariant ν̄ = ν(N̄ , X̄). We denote by A the
set of (ν̄ + 1)-uples (ḡ0, . . . , ḡν̄) of N̄ such that ḡ0, . . . , ḡν̄ generate a non-
elementary subgroup of N̄ and for every j ∈ {0, . . . , ν̄}, [ḡj ] 6 LS δ̄. Let
(ḡ0, . . . , ḡν̄) ∈ A. Since ḡ0, . . . , ḡν̄ do not generate an elementary subgroup
of Ḡ, there is no apex v̄ ∈ v̄(Q) such that they all belong to Stab(v̄).
According to Proposition 5.29 there exist respective preimages g0, . . . , gν̄
of ḡ0, . . . , ḡν̄ in N such that

(i) for every j ∈ {0, . . . , ν̄}, [gj ] 6 π sinh[(LS + 34)δ̄],
(ii) A(ḡ0, . . . , ḡν̄) 6 A(g0, . . . , gν̄) + π sinh[(LS + 34)δ̄] + (LS + 45)δ̄.

By Proposition 5.16 the subgroup of N generated by g0, . . . , gν̄ is not ele-
mentary. In addition ν̄ 6 ν(N,X) (Proposition 5.28). It follows from Corol-
lary 3.45 that

A(ḡ0, . . . , ḡν̄) 6 A(N,X) + (ν + 3)π sinh
[
(LS + 34) δ̄

]
+ (LS + 725)δ̄

6 A(N,X) + (ν + 4)π sinh
(
2LS δ̄

)
.

This inequality holds for every (ν̄+1)-uple inA, which provides the required
conclusion. �

Proposition 5.31. — We denote by l the infimum over the stable
translation length (in X) of loxodromic elements of N which do not belong
to some Stab(Y ) for (H,Y ) ∈ Q. Let ḡ be an isometry of N̄ which is not
elliptic. If every preimage of ḡ in N is loxodromic then [ḡ]∞ > min

{
κl, δ̄

}
,

where κ = δ̄/π sinh(26δ̄).

Remark. — If every loxodromic element of N is contained in some
Stab(Y ), (H,Y ) ∈ Q then we use the convention l = −∞. However this
situation will never happen. According to Proposition 5.15, the quotient Ḡ
is non-elementary. For our application, N̄ will be a finite index subgroup
of Ḡ. In particular it will be non-elementary. Thus it will be possible a
find a loxodromic element in N which does not belong to some Stab(Y ) for
(H,Y ) ∈ Q.
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Proof. — Recall that for every m ∈ N, we have m[ḡ]∞ > [ḡm] − 16δ̄
(Proposition 3.1). Therefore it suffices to find an integer m such that
[ḡm] > mmin

{
κl, δ̄

}
+ 16δ̄. We denote by m the largest integer satisfying

mmin
{
κl, δ̄

}
6 2δ̄. Assume that [ḡm] is smaller than mmin

{
κl, δ̄

}
+ 16δ̄.

In particular, [ḡm] 6 18δ̄, thus every point in Aḡm is moved by ḡm by a
distance at most 26δ̄. In follows that for every v̄ ∈ v̄(Q), the set Aḡm does
not intersect B(v̄, ρ− 13δ̄). Indeed if it was the case, ḡm would fix v̄ which
contradicts the fact that ḡ is not elliptic. By Proposition 5.12, there exists
a subset A of Ẋ such that the map ζ : Ẋ → X̄ induces an isometry from
A onto Aḡm and the projection π : G � Ḡ induces an isomorphism from
Stab(A) onto Stab(Aḡm). We denote by g the preimage of ḡ in Stab(A).
By assumption g is a loxodromic element of N , therefore [g]∞ > l. Let x̄
be a point of Aḡm , x the preimage of x̄ in A and y a projection of x on X.
Recall that x̄ lies in the 13δ-neighborhood of ζ(X), thus |x − y|Ẋ 6 13δ̄.
Using the triangle inequality we get

µ (|gmy − y|X) 6 |gmy − y|Ẋ 6 |g
mx− x|Ẋ + 26δ̄ = |ḡmx̄− x̄|X̄ + 26δ̄

6 52δ̄ < 2ρ.

By Proposition 4.2,

ml 6 m[g]∞ 6 |gmy − y|X 6 π sinh(26δ̄) = κ−1δ̄,

which contradicts the maximality of m. �

Corollary 5.32. — We denote by l the infimum over the stable trans-
lation length (in X) of loxodromic elements of N which do not belong
to some Stab(Y ) for (H,Y ) ∈ Q. Then rinj

(
N̄ , X̄

)
> min

{
κl, δ̄

}
, where

κ = δ̄/π sinh(26δ̄).

6. Applications

6.1. Partial periodic quotients

The next proposition will play the role of the induction step in the proof
of the main theorem.

Proposition 6.1. — There exist positive constants δ1, LS , A0, r0, α
such that for every positive integer ν0 there is an integer n0 with the fol-
lowing properties. Let G be a group acting by isometries on a δ1-hyperbolic
length space X. We assume that this action is WPD and non-elementary.
Let N be a normal subgroup of G without involutions. Let n1 > n0 and
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n > n1 be an odd integer. We denote by P the set of loxodromic elements h
of N which are primitive as elements of N such that [h] 6 LSδ1. Let K be
the (normal) subgroup of G generated by {hn, h ∈ P} and Ḡ the quotient
of G by K. We make the following assumptions.

(i) e(N,X) divides n.
(ii) ν(N,X) 6 ν0.
(iii) A(N,X) 6 ν0A0.
(iv) rinj (N,X) > r0/

√
n1.

Then there exists a δ1-hyperbolic length space X̄ on which Ḡ acts by isome-
tries. This action is WPD and non-elementary. The image N̄ of N in Ḡ has
no involution. Moreover it satisfies Assumptions (i)-(iv). In addition, the
map G→ Ḡ has the following properties.

• For every g ∈ G, if ḡ stands for its image in Ḡ, we have

[ḡ]∞X̄ 6
α
√
n1

[g]∞X .

• For every non-loxodromic elementary subgroup E of G, the map
G→ Ḡ induces an isomorphism from E onto its image Ē which is
elementary and non-loxodromic.

• Let ḡ be an elliptic (respectively parabolic) element of N̄ . Either
ḡn = 1 or ḡ is the image of an elliptic (respectively parabolic)
element of N .

• Let u, u′ ∈ N such that [u] < LSδ1 and u′ is elliptic. If the respective
images of u and u′ are conjugated in Ḡ then so are u and u′ in G.

Vocabulary. — Let G be a group acting by isometries on a space X and
N a normal subgroup of G. Once ν0, n1 and n have been fixed, if G, N and
X satisfy the assumption of the proposition including Points (i)-(iv), we
will write that (G,N,X) satisfies the induction hypotheses for exponent n.
The proposition says in particular that if (G,N,X) satisfies the induction
hypotheses for exponent n then so does (Ḡ, N̄ , X̄).

Proof. — We start by defining all the constants that appear at the begin-
ning of the proposition. The parameter LS is still the one that comes from
the stability of quasi-geodesics (see Definition 2.8). The parameters ρ0, δ0
and ∆0 are the given by the small cancellation theorem (Theorem 5.2). We
let δ1 = 54.104δ. The constant κ = δ1/π sinh(26δ1) is chosen to apply later
Corollary 5.32. We let

A0 = 6π sinh(2LSδ1), r0 = 2
√
π sinh ρ0κLSδ1, and α = 4

√
π sinh ρ0

κLSδ1
.
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Note that

(6.1) αr0 = 8π sinh ρ0, while ακLSδ1/2 = r0.

Let ν0 > 1 be an integer. We now define the critical exponent n0. To that
end we consider a rescaling parameter λn depending on an integer n

λn = α√
n

= 4
√
π sinh ρ0

nκLSδ1
.

The sequence (λn) converges to 0 as n approaches infinity. Therefore there
exists an integer n0 > 100 such that for every n > n0

λnδ1 6 δ0(6.2)
λn (ν0A0 + 118δ1) 6 min {∆0, π sinh(2LSδ1)}(6.3)

λnκLSδ1/2 6 δ1(6.4)
λnρ0 6 ρ0(6.5)

Let n1 > n0 and n > n1 be an odd integer. For simplicity we denote by
λ the rescaling parameter λ = λn1 . Let G be a group acting by isometries
on a metric space X and N a normal subgroup of G such that (G,N,X)
satisfies the induction hypotheses for exponent n. We denote by P the set of
loxodromic elements h of N which are primitive as elements of N such that
[h] 6 LSδ1. Let K be the normal subgroup of G generated by {hn, h ∈ P}.
Note that P in invariant under conjugacy, thus K is contained in N . We
write Ḡ = G/K for the quotient of G by K and N̄ = N/K for the image
of N in Ḡ. We are going to prove that Ḡ is a small cancellation quotient
of G. To that end we consider the action of G on the rescaled space λX.
In particular it is a δ-hyperbolic space, with δ = λδ1 6 δ0. Unless stated
otherwise, we will always work with the rescaled space λX. We define the
family Q by

Q = { (〈hn〉 , Yh) | h ∈ P} .

Lemma 6.2. — The family Q satisfies the following assumptions:
• ∆ (Q) 6 ∆0
• T (Q) > 8π sinh ρ0.

Proof. — We start with the upper bound of ∆(Q). Let h1 and h2 be two
elements of P such that (〈hn1 〉, Yh1) 6= (〈hn2 〉, Yh2). According to Lemma 3.14,
Yh1 and Yh2 are respectively contained in the 52δ-neighborhood of Ah1 and
Ah2 , thus by Lemma 2.16

diam
(
Y +5δ
h1
∩ Y +5δ

h2

)
6 diam

(
A+13δ
h1

∩A+13δ
h2

)
+ 118δ.
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According to Proposition 3.39, h1 and h2 generate a non-elementary sub-
group of N . On the other hand, their translation lengths in λX are at most
LSδ, thus

diam
(
Y +5δ
h1
∩ Y +5δ

h2

)
6 A(N,λX) + 118δ 6 λA(N,X) + 118λδ1

6 λ(ν0A0 + 118δ1).

Thus by (6.3), ∆(Q) 6 ∆0. Let us focus now on T (Q). Equation (6.1)
allows to bound from below the injectivity radius of N on λX as follows

rinj (N,λX) > λr0√
n1

= αr0

n1
= 8π sinh ρ0

n1
>

8π sinh ρ0

n

In particular, for every h ∈ P we have [hn]∞ = n[h]∞ > 8π sinh ρ0. Hence
T (Q) > 8π sinh ρ0. �

On account of the previous lemma, we can now apply the small can-
cellation theorem (Theorem 5.2) to the action of G on the rescaled space
λX and the family Q. We denote by Ẋ the space obtained by attaching
on λX for every (H,Y ) ∈ Q, a cone of radius ρ0 over the set Y . The
quotient of Ẋ by K is the space X̄. According to Theorem 5.2, X̄ is a
δ1-hyperbolic length space and Ḡ acts by isometries on it. By Proposi-
tion 5.14 and Proposition 5.15 this action is WPD and non-elementary. It
follows from Corollary 5.19 that N̄ has no involution. We now prove that
the action of N̄ on X̄ also satisfies Assumptions (i)-(iv).

Lemma 6.3. — The invariant e(N̄,X̄) and ν(N̄,X̄) satisfy the following:
• e(N̄ , X̄) divides n
• ν(N̄ , X̄) 6 ν0

Proof. — By Proposition 5.27, e(N̄ , X̄) divides e(N,X). Thus the first
point follows from Assumption (i) of the proposition. The second one is a
consequence of Proposition 5.28 and Assumption (ii) �

Lemma 6.4. — The constant A(N̄ , X̄) is bounded above by ν0A0
whereas rinj

(
N̄ , X̄

)
is bounded below by r0/

√
n1.

Proof. — We start with the upper bound of A(N̄ , X̄). According to
Corollary 5.30,

A(N̄ , X̄) 6 A(N,λX) + (ν(N,X) + 4)π sinh (2LSδ1)
6 A(N,λX) + (ν0 + 4)π sinh (2LSδ1) .

However the inequality (6.3) gives

A(N,λX) = λA(N,X) 6 λν0A0 6 π sinh (2LSδ1) .
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Thus A(N̄ , X̄) is bounded above by (ν0 +5)π sinh (2LSδ1). However ν0 > 1,
hence A(N̄ , X̄) 6 ν0A0. We now focus on the injectivity radius of N̄ . Let
g be a loxodromic isometry of N which does not belong to the stabilizer of
Yh for any h ∈ P . Its asymptotic translation length in λX is larger than
λLSδ1/2 (Proposition 3.1). Corollary 5.32 combined with (6.4) and (6.1)
gives

rinj
(
N̄ , X̄

)
> min

{
λκLSδ1

2 , δ1

}
= λκLSδ1

2 = ακLSδ1
2√n1

= r0√
n1
. �

Lemma 6.3 and Lemma 6.4 show that (Ḡ, N̄ , X̄) satisfies the induction
hypotheses for exponent n. To finish the proof we focus on the properties
on the map G→ Ḡ.

Lemma 6.5. — For every g ∈ G, we have

[ḡ]∞X̄ 6
α
√
n1

[g]∞X .

Proof. — Let g ∈ G. The asymptotic translation length of g in the
rescaled space λX is [g]∞λX = λ[g]∞X . On the other hand the map λX → X̄

shortens the distances, thus [ḡ]∞X̄ 6 λ[g]∞X . �

Lemma 6.6. — Let E be a non-loxodromic elementary subgroup of G.
The map G→ Ḡ induces an isomorphism from E onto its image Ē which
is elementary and non-loxodromic.

Proof. — This lemma follows from Propositions 5.16 and 5.17. �

Lemma 6.7. — Let ḡ be an elliptic (respectively parabolic) element of
N̄ . Either ḡn = 1 or ḡ is the image of an elliptic (respectively parabolic)
element of N .

Proof. — If ḡ is parabolic, it follows from Proposition 5.25. Assume now
that ḡ is elliptic. We denote by Ē the subgroup of N̄ generated by ḡ.
According to Proposition 5.18, there are two cases.

(i) In the first case, there exists h ∈ P such that Ē is embedded in
Stab(Yh)/〈hn〉. However e(N,X) divides n. Therefore the order of
any element of N̄ in this group divides n (see Definition 3.37).

(ii) In the second case Ē is isomorphic to an elliptic subgroup E of G.
Hence ḡ has an elliptic preimage in G. �

Lemma 6.8. — Let u, u′ ∈ N such that [u] < LSδ1 and u′ is elliptic.
If the respective images of u and u′ are conjugated (in Ḡ) so are u and u′
in G.
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Proof. — This lemma follows directly from Corollary 5.22. �

These last lemmas complete the proof of Proposition 6.1. �

Theorem 6.9. — Let X be a hyperbolic length space. Let G be a group
acting by isometries on X. We suppose that this action is WPD and non-
elementary. Let N be a normal subgroup of G without involution. In addi-
tion we assume that e(N,X) is odd, ν(N,X) and A(N,X) are finite and
rinj (N,X) is positive. There is a critical exponent n1 such that every odd
integer n > n1 which is a multiple of e(N,X) has the following property.
There exists a normal subgroup K of G contained in N such that

• if E is an elementary subgroup of G which is not loxodromic, then
the projection G � G/K induces an isomorphism from E onto its
image;

• for every element g ∈ N/K, either gn = 1 or g is the image an
elliptic or a parabolic element of N ;

• there are infinitely many elements in N/K which are not the image
of an elliptic or a parabolic element of G;

• every non-trivial element of K is loxodromic;
• As a normal subgroup, K is not finitely generated.

Remark. — For most of our examples we will simply take N = G.
However this more general statement is useful to avoid some problems
coming from the 2-torsion.

Proof. — The main ideas of the proof are the following. Using Proposi-
tion 6.1 we construct by induction a sequence of groups G0 → G1 → G2 →
. . . where Gk+1 is obtained from Gk by adding new relations of the form
hn with h ∈ N . Then we chose for the quotient G/K the direct limit of
these groups. Let us put ν0 = ν(N,X) (which is finite by assumption). The
parameters LS , δ1, A0, r0, α and n0 are the one given by Proposition 6.1.

Critical exponent. The invariant A(N,X) is finite. By rescaling if nec-
essary the space X we can assume that δ 6 δ1 and A(N,X) 6 ν0A0. By
assumption rinj (N,X) > 0. Therefore, there exists an integer n1 > n0 such
that rinj (N,X) > r0/

√
n1. Without loss of generality we can also assume

that α/√n1 < 1. From now on, we fix an odd integer n > n1 which is a
multiple of e(N,X).

Initialization. We let G0 = G, N0 = N and X0 = X. In particular,
(G0, N0, X0) satisfies the induction hypotheses for exponent n.
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Induction. We assume that we already constructed the groups Gk, Nk
and the space Xk such that (Gk, Nk, Xk) satisfies the induction hypotheses
for exponent n. We denote by Pk the set of loxodromic elements h ∈ Nk
such that [h]Xk 6 LSδ1 which are primitive as elements of Nk. Let Kk

be the normal subgroup of Gk generated by {hn, h ∈ Pk}. We write Gk+1
for the quotient of Gk by Kk and Nk+1 for the image of Nk in Gk+1.
In particular Nk+1 is a normal subgroup of Gk+1. By Proposition 6.1,
there exists a metric space Xk+1 such that (Gk+1, Nk+1, Xk+1) satisfies the
induction hypotheses for exponent n. Moreover the projection Gk � Gk+1
fulfills the following properties.

(i) For every g ∈ Gk, if we still denote by g its image in Gk+1 we have
[g]∞Xk+1

6 (α/√n1)[g]∞Xk .
(ii) For every non-loxodromic elementary subgroup E of Gk, the map

Gk � Gk+1 induces an isomorphism from E onto its image which
is elementary and non-loxodromic.

(iii) For every elliptic or parabolic element g ∈ Nk+1, either gn = 1 or
g is the image of an elliptic or a parabolic element of Nk.

(iv) Let u, u′ ∈ Nk such that [u]Xk < LSδ1 and u′ is elliptic. If the
respective images of u and u′ are conjugated in Gk+1 so are u and
u′ in Gk.

Direct limit. The direct limit of the sequence (Gk) is a quotient G/K
of G. We claim that this group satisfies the announced properties. Let g
be an element of G. To shorten the notation we will still denote by g its
images in G, Gk or G/K.

Properties of G/K. Let E be an elementary subgroup of G which is
not loxodromic. A proof by induction on k shows that for every k ∈ N,
the map G� Gk induces an isomorphism from E onto its image which is
an elementary subgroup of Gk either elliptic or parabolic. It follows that
G� G/K induces an isomorphism from E onto its image. This proves the
first point of the theorem.
Let g be a non-trivial element of K. Assume that contrary to our claim g

is not loxodromic. Then 〈g〉 is an elementary subgroup of G either elliptic
or parabolic. Therefore the map G � G/K induces an isomorphism from
〈g〉 onto its image. In particular, g is not trivial in G/K, and thus cannot
belong to K. Contradiction.
A proof by induction on k shows that if g is a element of Nk which

is not loxodromic, then either gn = 1 or g is the image of an elliptic
or a parabolic element of N . Let g be an element of N/K which is not
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the image of an elliptic or a parabolic element of N . We still denote by
g a preimage of g in N . In particular, g is loxodromic. It follows from
the construction of the sequence (Gk) that for every k ∈ N, we have
[g]∞Xk 6 (α/√n1)k[g]∞X . Recall that α/√n1 < 1. Hence, there exists an
integer k such that [g]∞Xk < r0/

√
n1 6 rinj (Nk, Xk). As an element of

Gk the isometry g is not loxodromic. Consequently, as an element of Nk,
gn = 1. The same holds in G/K.

Denote by P for the set of all loxodromic elements of N which are not
identified in G/K with an elliptic or a parabolic element of G. Assume that
the image of P in N/K is finite. In particular there exists a finite subset
S of P such that P lies in S ·K. Using a similar argument as previously
we see that there exists s ∈ N such that every element of S is elliptic or
parabolic in Ns. Fix g ∈ P a preimage in N of an element of Ps (recall
that Ps is the set of elements of Ns whose n-th power is “killed” in Gs+1).
By construction g is loxodromic in Ns with [g]Xs 6 LSδ1 and elliptic in
Ns+1. However P is a subset of S ·K. Therefore there exits t > s such that
g belongs to S as an element of Nt. An induction using the Property (iv)
about conjugates shows that g is actually conjugated to an element of S in
Ns. However in Ns, g is loxodromic whereas all elements of S are elliptic.
Contradiction.
For every k ∈ N, the action of Gk on Xk is non-elementary. It follows

that the sequence (Gk) does not ultimately stabilize. Thus K is infinitely
generated as a normal subgroup. �

6.2. Acylindrical action on a hyperbolic space

Our main source of examples comes from groups acting acylindrically on
a hyperbolic space. We recall and prove here a few properties of this kind
of actions. They will be useful to satisfy the assumptions of Theorem 6.9.
In this section, X is a δ-hyperbolic length space endowed with an action
by isometries of a group G.

Definition 6.10. — The action of G on X is acylindrical if for every
l > 0, there exist d > 0 and N > 0 such that for all x, x′ ∈ X with
|x − x′| > d, there are at most N elements u ∈ G satisfying |ux − x| 6 l

and |ux′ − x′| 6 l.

Note that if a group G acts acylindrically on a hyperbolic space, this
action is also WPD (see Definition 3.17). However the acylindricity condi-
tion is much stronger. In particular the parameters d and N are uniform:
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they only depend on l and not on the points x and x′. As a consequence,
of G acts acylindrically on X then G has no parabolic element (for this
action) [3, Lemma 2.2]. A proper and co-compact action on a hyperbolic
space is acylindrical. An other example is the action of the mapping class
group of a surface on the complex of curves. More examples are detailed in
Section 6.3. From now on, we will assume that G acts acylindrically on X.

Lemma 6.11 (Bowditch [3, Lemma 2.2]). — The injectivity radius
rinj (G,X) is positive.

Lemma 6.12. — The invariant ν(G,X) is finite.

Proof. — By acylindricity, there exist positive constants d and N with
the following property. For every x, x′ ∈ X with |x − x′| > d, there are at
most N elements u ∈ G satisfying |ux − x| 6 97δ and |ux′ − x′| 6 97δ.
Moreover there exists M > 0 such that Mrinj (G,X) > d (Lemma 6.11).
Let m be an integer such that m > N+M . Let g, h ∈ G with h loxodromic.
Assume that g, h−1gh, . . . , h−mghm generate an elementary subgroup of G
which is not loxodromic. According to Proposition 3.27 and Lemma 3.35
there exists a point x ∈ X such that for every j ∈ {0, . . . ,m}, |h−jghjx−
x| 6 97δ. In particular for every j ∈ {0, . . . , N}, we have∣∣h−jghjx− x∣∣ 6 97δ and

∣∣h−jghj(hMx)− hMx
∣∣ 6 97δ.

However by choice of M , |hMx− x| > d. It follows from acylindricity that
the set {

h−jghj
∣∣ 0 6 j 6 N

}
contains at most N elements. Therefore there exists j ∈ {1, . . . , N} such
that h−jghj = g. Hence g stabilizes {h−, h+} where h− and h+ are the
points of the boundary ∂X fixed by h. In particular, g and h generate
an elementary subgroup of G. Consequently, ν(G,X) is bounded above by
N +M . �

We now focus on the invariant A(G,X). Recall first that given (m + 1)
elements g0, . . . , gm of G the quantity A(g0, . . . , gm) is defined by

A(g0, . . . , gm) = diam
(
A+13δ
g0

∩ · · · ∩A+13δ
gm

)
.

Lemma 6.13. — There exist ` ∈ N and C > 0 with the following prop-
erty. Let m ∈ N. Let g0, . . . , gm be (m + 1) elements of G which generate
a non-elementary subgroup. If A(g0, . . . , gm) > C then there exists a loxo-
dromic element which is the product of at most ` elements of {g0, . . . , gm}
and their inverses.
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Proof. — Since G acts acylindrically on X there exist N ∈ N and d > 0
with the following property. For every x, x′ ∈ X with |x−x′| > d, there are
at most N elements u ∈ G such that |ux− x| 6 50δ and |ux′ − x′| 6 50δ.
We let ` = N and C = d+ (50`+ 10)δ. Let g0, . . . , gm be (m+ 1) elements
of G which generate a non-elementary subgroup H of G. Suppose that
A(g0, . . . , gm) > C. We denote by S the set of elements of G that can
be written as a product of at most ` elements of {g0, . . . , gm} and their
inverses. Assume that, contrary to our claim, no element of S is loxodromic.
In particular, g0, . . . , gm are not loxodromic, thus their translation length
it at most 16δ (Proposition 3.1).
Let h ∈ S. Let x be a point in the intersection of the respective 13δ-

neighborhoods of the axis Ag1 , . . . , Agm . For every j ∈ {0, . . . ,m}, |gjx −
x| 6 50δ. It follows from the triangle inequality that |hx − x| 6 50`δ.
According to Proposition 3.10 (ii), x lies in the (25`+ 3)δ-neighborhood of
Ah. It follows that

diam
(⋂
h∈S

A
+(25`+3)δ
h

)
> A(g0, . . . , gm) > C.

Applying Lemma 2.16, we get that

diam
(⋂
h∈S

A+13δ
h

)
> C − (50`+ 10)δ > d.

In particular, there exist two points x, x′ ∈ X with |x−x′| > d such that for
every h ∈ S, x and x′ belong to the 13δ-neighborhood of Ah. By assumption
the elements of S are not loxodromic, thus for every h ∈ S, |hx− x| 6 50δ
and |hx′ − x′| 6 50δ. By choice of N and d, the set S contains at most
N elements. However ` = N . It follows that every element of S which is
exactly the product of ` elements of {g0, . . . , gm} and their inverses can be
written as a shorter product. In particular, any element of the subgroup H
generated by {g0, . . . , gm} can be written as a product of at most N − 1
elements of {g1, . . . , gm} and their inverses. Thus H is finite. It contradicts
the fact that H is non-elementary. �

Lemma 6.14. — The invariant A(G,X) is finite.

Proof. — We first need to define a few parameters. For simplicity we let
ν = ν(G,X) which is finite according to Lemma 6.12. As in Section 3.5, we
denote by A the set of all (ν+1)-uples (g0, . . . , gν) such that g0, . . . , gν gen-
erate a non-elementary subgroup of G and for all j ∈ {0, . . . , ν}, [gj ] 6 LSδ.
According to Lemma 6.13, there exist ` ∈ N and C > 0 with the fol-
lowing property. For every (g0, . . . , gν) ∈ A, if A(g0, . . . , gν) > C then
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there exists a loxodromic element which is the product of at most ` el-
ements of {g0, . . . , gν} and their inverses. By Lemma 6.11, rinj (G,X) is
positive, thus there is an integer m such that mrinj (G,X) > LSδ. Fi-
nally, by acylindricity, there exist N ∈ N and d > 0 such that for every
x, y ∈ X with |x − y| > d, there are at most N elements u ∈ G satisfying
|ux− x| 6 (LS + 74)δ and |uy − y| 6 (LS + 74)δ. We claim that

A(G,X) 6 max{C, d+ (N + 1)m`(LS + 34)δ + (N + 54)δ}.

Assume that our assertion is false. There exists (g0, . . . , gν) ∈ A such that

A(g0, . . . , gν) > max{C, d+ (N + 1)m`(LS + 34)δ + (N + 54)δ}.

In particular, A(g0, . . . , gν) > C. By choice of C and ` there exists a loxo-
dromic element which is the product of at most ` elements of {g1, . . . , gν}
and their inverses. Taking its m-th power we obtain an element h ∈ G with
the following properties.

(i) h is the product of at most m` elements of {g1, . . . , gν} and their
inverses.

(ii) [h] > mrinj (G,X) > LSδ.
Let γ : R → X be a δ-nerve of h and T its fundamental length. Let x be
a point in the intersection of the respective 13δ-neighborhoods of the axis
Ag0 , . . . , Agν . By definition for every j ∈ {0, . . . , ν}, |gjx−x| 6 (LS +34)δ.
It follows from the triangle inequality that |hx−x| 6 m`(LS + 34)δ. Hence

T 6 [h] + δ 6 m`(LS + 34)δ + δ.

Moreover, according to Proposition 3.10 (ii), the distance between x and Ah
is at most m`(LS/2+17)δ+3δ. Since [h] > LSδ, the axis Ah lies in the 10δ-
neighborhood of γ (Lemma 3.15). Thus x belongs to the D-neighborhood
of γ where D = m`(LS/2 + 17)δ + 13δ. In particular

diam
(
γ+D ∩A+13δ

g0
∩ · · · ∩A+13δ

gν

)
= A(g0, . . . , gν).

By Lemma 2.16, we get that for every j ∈ {0, . . . , ν},

diam
(
γ+12δ ∩A+13δ

gj

)
> A(g0, . . . , gν)− 2D − 4δ

> d+Nm`(LS + 34)δ + (N + 24)δ

Let j ∈ {0, . . . , ν}. According to the previous inequality there exists points
x = γ(s) and x′ = γ(s′) in the 25δ-neighborhood of the axis of gj such that

(6.6) |x− x′| > d+Nm`(LS + 34)δ +Nδ > d+NT.

By replacing if necessary h by h−1 we can assume that s 6 s′. By stability of
quasi-geodesics, for all t ∈ [s , s′], 〈x, x′〉γ(t) 6 6δ (Corollary 2.7). Since the
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25δ-neighborhood of Agj is 2δ-quasi-convex (Lemma 2.12), it follows that
γ(t) lies in the 33δ-neighborhood of Agj . Thus |gjγ(t)−γ(t)| 6 (LS + 74)δ.
According to (6.6), there exists t ∈ [s , s′] such that |γ(t) − x| = d. We let
y = γ(t). Note that

|s′ − t| > |y − x′| > |x− x′| − |x− y| > NT.

Let k ∈ {0, . . . , N}. By construction hkx = γ(s+kT ) and hky = γ(t+kT ).
Using our previous remark, we see that s+kT and t+kT belongs to [s , s′].
Thus

max
{∣∣gjhkx− hkx∣∣ , ∣∣gjhky − hky∣∣} 6 (LS + 74)δ.

In other words, for every k ∈ {0, . . . , N}, |h−kgjhkx − x| 6 (LS + 74)δ
and |h−kgjhky − y| 6 (LS + 74)δ. However |x − y| > d. By choice of d
and N , there exists k ∈ {1, . . . , N} such that gj and hk commute. Since h
is loxodromic, gj fixes pointwise {h−, h+} ⊂ ∂X. Hence gj belongs to the
maximal elementary subgroup containing h. This statement holds for every
j ∈ {0, . . . , ν}. Consequently g0, . . . , gν do not generate a non-elementary
subgroup. Contradiction. �

In view of Lemma 6.11, Lemma 6.12 and Lemma 6.14, Theorem 6.9 leads
to the following result.

Theorem 6.15. — Let X be a hyperbolic length space. Let G be a
group acting by isometries on X. We assume that the action of G is acylin-
drical and non-elementary. Let N be a normal subgroup of G without
involution. Assume that e(N,X) is odd. There exists a critical exponent
n1 such that every odd integer n > n1 which is a multiple of e(N,X) has
the following property. There exists a normal subgroup K of G contained
in N such that

• if E is an elementary subgroup of G which is not loxodromic, then
the projection G � G/K induces an isomorphism from E onto its
image;
• for every element g ∈ N/K, either gn = 1 or g is the image an
elliptic element of N ;
• every non-trivial element of K is loxodromic;
• there are infinitely many elements in N/K which are not the image
of an elliptic element of G.
• As a normal subgroup, K is not finitely generated.
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6.3. Examples

Mapping class groups. Let Σ be a compact surface of genus g with
p boundary components. In the rest of this paragraph we assume that its
complexity 3g+p−3 is larger than 1. The mapping class group MCG(Σ) of
Σ is the group of orientation preserving self homeomorphisms of Σ defined
up to homotopy. A mapping class f ∈ MCG(Σ) is

(i) periodic, if it has finite order;
(ii) reducible, if it permutes a collection of essential non-peripheral

curves (up to isotopy);
(iii) pseudo-Anosov, if there exists an homotopy in the class of f that

preserves a pair of transverse foliations and rescale these foliations
in an appropriate way.

It follows from Thurston’s work that any element of MCG(Σ) falls into
one these three categories [42, Theorem 4]. The complex of curves X is a
simplicial complex associated to Σ. It has been first introduced by W. Har-
vey [24]. A k-simplex of X is a collection of k+1 homotopy classes of curves
of Σ that can be disjointly realized. H. Masur and Y. Minsky proved that
this new space is hyperbolic [29]. By construction, X is endowed with an
action by isometries of MCG(Σ). Moreover B. Bowditch showed that this
action is acylindrical [3, Theorem 1.3]. This is an example of a group acting
acylindrically but not properly on a hyperbolic space. Indeed the stabilizer
of a point, i.e. the set of mapping classes preserving a curve, is far from
being finite. This action provides an other characterization of the elements
of MCG(Σ). An element of MCG(Σ) is periodic or reducible (respectively
pseudo-Anosov) if and only it is elliptic (respectively loxodromic) for the
action on the complex of curves [29].

Theorem 6.16. — Let Σ be a compact surface of genus g with p bound-
ary components such that 3g + p − 3 > 1. There exist integers κ and n0
such that for every odd exponent n > n0 there is a quotient Q of MCG(Σ)
with the following properties.

(i) If E is a subgroup of MCG(Σ) that does not contain a pseudo-
Anosov element, then the projection MCG(Σ) � Q induces an
isomorphism from E onto its image.

(ii) Let f be a pseudo-Anosov element of MCG(Σ). Either fκn = 1
in Q or there exists a periodic or reducible element u ∈ MCG(Σ)
such that fκ = u in Q. In particular, for every f ∈ MCG(Σ),
there exists a periodic or reducible element u ∈ MCG(Σ) such that
fκn = u in Q.

TOME 66 (2016), FASCICULE 5



1850 Rémi B. COULON

(iii) There are infinitely many elements in Q which are not the image of
a periodic or reducible element of MCG(Σ).

Proof. — We would like to apply Theorem 6.15 with the mapping class
group MCG(Σ) acting on the complex of curve X of Σ. However MCG(Σ)
does contains elements of order 2. To avoid this difficulty we consider a
torsion-free finite-index normal subgroup N of MCG(Σ) [17, 38]. We write
κ for the index of N in MCG(Σ). This groups acts acylindrically on X

thus rinj (N,X) is positive, ν(N,X) and A(G,X) are finite. Since N has
no torsion, e(N,X) = 1. Note also that for every f ∈ MCG(Σ), fκ belongs
to N . Thus the theorem follows from Theorem 6.15. �

Remark. — Corollary 1.3 is a similar consequence of Theorem 6.15.

Theorem 6.16 studies quotients of mapping class groups of the form
MCG(Σ)/Sn where S consists in a large set of pseudo-Anosov homotopies.
As opposed to this situation we also examples where S only contains Dehn
twists. Let α be a simple close curve of Σ and T a tubular neighborhood of
α homeomorphic to S1×[0 , 1]. A Dehn twist around α is a homeomorphism
f whose restriction to T (identified with S1 × [0 , 1]) is given by f(θ, t) =
(θ+2πt, t) and whose is the identity outside of T . The set of all Dehn-twist
generate MCG(Σ).

Theorem 6.17. — Let Σ a surface of genus g with g > 1. Let S be the
set of all Dehn twists of Σ. There exists an integer n0 such that for every
odd exponent n > n0, the free group F2 embeds into MCG(Σ)/Sn.

Proof. — Every homeomorphism of Σ induces an automorphism of the
fundamental group of Σ which is well defined up to a conjugation. More
precisely MCG(Σ) embeds into Out (π1(Σ)) (as a subgroup of index 2).
For simplicity let us denote by G = π1(Σ) the fundamental group of Σ.
Let n ∈ N. The subgroup Gn is characteristic. It provides a canonical map
Out (G)→ Out (G/Gn). Let α be a simple close curve of Σ and f the Dehn
twist around α. We claim that the image of fn in Out (G/Gn) is trivial.
To that end we distinguish two cases.

• Assume first that α splits the surface into two connected compo-
nents Σ1 and Σ2. We fix a base point x0 ∈ Σ1 for Σ. According to
the van Kampen theorem G is isomorphic to A1 ∗Z A2 where Ai is
the fundamental group of Σ and Z the subgroup generated by α.
The automorphism φ of G ≡ π(Σ, x0) induced by f preserves the
decomposition: for every g ∈ A1, φ(g) = g and for every g ∈ A2,
φ(g) = hgh−1 where h stands for the generator t of Z induced by
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the curve α. In particular for every g ∈ A2, φn(g) = hngh−n which
equals g in G/Gn. Consequently φn induces the identity of G/Gn.

• Assume now that α does not split Σ. Let us fix a base point x0 in
Σ\α. Then G can be seen as an HNN extension A∗Z where A is the
fundamental group of Σ\α. Moreover the automorphism φ induced
by f acts as follows. For every g ∈ A, φ(g) = g. If t stands for the
generator of Z then φ(t) = th where h correspond to the class of α.
In particular, φn(t) = thn which equals t in G/Gn. As previously
φn induces the identity of G/Gn which proves our claim.

It follows from our claim that MCG(Σ) → Out (G) induces a homomor-
phism from MCG(Σ)/Sn into Out (G/Gn). However if n is a sufficiently
large integer, then the image of MCG(Σ) in Out (G/Gn) contains F2 [9,
Corollaire IV.3.4]. Hence so does MCG(Σ)/Sn. �

Remark. — We keep the notations of the previous proof. In particular G
stands for the fundamental group of the surface Σ. In [9, Corollaire IV.3.2]
we also proved the following fact. Given a pseudo-Anosov homeomorphism
f of Σ, there exists an integer n0, such that for every odd exponent n, f in-
duces an infinite order automorphism of G/Gn. In particular f has infinite
order as an element of MCG(Σ)/Sn. From this point of view this second
type of quotient is diametrically opposed to the one given by Theorem 6.16:
it “kills” reducible elements and preserves numerous pseudo-Anosov home-
omorphisms. These results can also be obtained through quantum repre-
sentations of mapping class groups [20, 21].

Amalgamated product. Let G be a group. A subgroup H of G is
malnormal if for every g ∈ G, gHg1 ∩H = {1} unless g belongs to H. The
following theorem is known from specialists in the field. However it has not
be published so far.

Theorem 6.18. — Let A and B be two groups without involution. Let
C be a subgroup of A and B malnormal in A or B. There is an integer
n1 such that for every odd exponent n > n1 there exists a quotient Q of
A ∗C B with the following properties.

(i) The natural projection A ∗C B � Q induces an embedding of A
and B into Q.

(ii) For every g ∈ Q, if g is not a conjugate of an element of A or B
then gn = 1.

(iii) There are infinitely many elements in Q which are not conjugates
of elements of A or B.
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Proof. — We denote by X the Bass-Serre tree associated to the amalga-
mated product G = A ∗C B (see for instance [39]). By construction A ∗C B
acts by isometries on X. An element g ∈ A ∗C B is elliptic for this action
if and only if it is a conjugate of an element of A or B. It is loxodromic
otherwise. In particular A ∗C B does not contain any element of order 2.
Moreover A and B are elliptic subgroups. Since C is malnormal in A or B
the stabilizer of any path of length at least 3 is trivial. It follows that the
action of G on X is acylindrical. On the other hand, any elementary lox-
odromic subgroup is cyclic infinite, hence e(A ∗C B,X) = 1. The theorem
follows from Theorem 6.15. �

Hyperbolic groups. Let G be a group acting properly co-compactly on
a hyperbolic length space. In particular G is a hyperbolic group. Moreover
this action is acylindrical. In this particular case, the invariant e(G,X) can
be characterized algebraically. Indeed the elementary loxodromic subgroups
of G are exactly the ones containing Z as a finite index subgroup. Therefore
we simply write e(G) for e(G,X).

If G is torsion-free, there exists an integer n0 such that for every odd
exponent n > n0 the quotient G/Gn is infinite. This result was first proved
by A.Y. Ol’shanskii [33]. The work of T. Delzant and M. Gromov provides
an alternative prove of the same result [13] (see also [10]). Our study allow
us to add some harmless torsion in the original group G, We recover here
a particular case of a theorem proved by A.Y. Ol’shanskii and S.V. Ivanov
in [27] (their result works for also for hyperbolic groups with 2-torsion).

Theorem 6.19. — Let G be a non-elementary hyperbolic group with-
out involution such that e(G) is odd. There exist integers κ and n1 such
that for every odd integer n > n1, the quotient G/Gκn is infinite.

Proof. — SinceG is hyperbolic, its action on its Cayley graphX is proper
and co-compact. In particular it is acylindrical. Moreover it contains only a
finite number of conjugacy classes of elliptic elements (see [7, Lemme 3.5]).
Since G has no involution, there exists an odd integer κ, multiple of e(G)
such that for every elliptic element u of G, the order of u divides κ. Hence
we can apply Theorem 6.15 with G = N . There exists an integer n1 such
that for every odd exponent n > n1 there exists an infinite quotient Q of
G with the following property. For every element g ∈ Q either gκn = 1 or
there exists an elliptic element u ∈ G such that g = u in Q. However for
every elliptic element u ∈ G, we have uκ = 1. It follows that Q is an infinite
quotient of G/Gκn, hence G/Gκn is infinite. �
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Remark. — One can actually prove that the quotient Q that appears
in the proof is exactly G/Gκn. However this is not needed here.

Relatively hyperbolic groups. The notion of a group being hyper-
bolic relative to a collection of subgroups was introduced by Gromov in [23].
This class extends the one of hyperbolic groups and covers various examples
like fundamental groups a negatively curved manifold with finite volume,
HNN extensions over finite groups, geometrically finite Kleinian groups, etc.
Since Gromov’s original paper, several different definitions have emerged,
see for instance [4, 15]. These definitions have been shown to be almost
equivalent [4, 41, 25]. For our purpose we will use the following one.

Definition 6.20 ([25, Definition 3.3]). — Let G be a group and
{H1, . . . ,Hm} be a collection of subgroups of G. We say that G is hy-
perbolic relative to {H1, . . . ,Hm} if there exists a proper geodesic hyper-
bolic space X and a collection Y of disjoint open horoballs satisfying the
following properties.

(i) G acts properly by isometries on X and Y is G-invariant.
(ii) If U stands for the union of the horoballs of Y then G acts co-

compactly on X \ U .
(iii) {H1, . . . ,Hm} is a set of representatives of the G-orbits of

{Stab(Y ) |Y ∈ Y}.

The action of G on the space X given by Definition 6.20 is not acylindri-
cal. Indeed the subgroups Hj can be parabolic. This cannot happen with
an acylindrical action [3, Lemma 2.2]. More generally, the non-loxodromic
elementary subgroups of G are exactly the finite subgroups of G and the
ones which are conjugated to a subgroup of some Hj . As in the case of hy-
perbolic groups, the invariant e(G,X) can be characterized algebraically.
Indeed a subgroup E of G is loxodromic if and only if Z is a finite-index
subgroup of E and E is not conjugated to a subgroup of some Hj . There-
fore we simply write e(G) for e(G,X). Note that this notation implicitly
depends on the collection {H1, . . . ,Hm} though.
As in the case of groups with an acylindrical action, one can prove that

rinj (G,X) is positive whereas ν(G,X) and A(G,X) are finite. Theorem 6.9
gives the following result.

Theorem 6.21. — Let G be a group without involution and
{H1, . . . ,Hm} be a collection of subgroups of G. Assume that G is hy-
perbolic relatively to {H1, . . . ,Hm} and e(G) is odd. There is a critical
exponent n1 such that every odd integer n > n1 which is a multiple of
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e(G) has the following property. There exists a quotient G/K of G such
that

• if E is a finite subgroup of G or conjugated to some Hj , then the
projection G� G/K induces an isomorphism from E onto its im-
age;

• for every element g ∈ G/K, either gn = 1 or g is the image a
non-loxodromic element of G;

• there are infinitely many elements in G/K which do not belong to
the image of an elementary non-loxodromic subgroup of G.

Other examples. In [34], D. Osin investigates the class of groups that
admit a non-elementary acylindrical action on a hyperbolic space. He called
them acylindrically hyperbolic groups. It turns out that this class is very
large. Here are a few examples in addition to the one we already studied.

(i) If a group G is not virtually cyclic and admits an action on a hy-
perbolic space with at least one loxodromic element satisfying the
WPD property, then G is acylindrically hyperbolic. In particular
for every r > 2, the outer automorphism group Out (Fr) of the free
group Fr of rank r is acylindrically hyperbolic. Indeed given any
automorphism φ ∈ Out (Fr) which is irreducible with irreducible
powers (iwip), M. Bestvina and M. Feighn constructed a hyperbolic
Out (Fr)-complex where φ satisfies the WPD property [1].

(ii) If G contains a proper infinite hyperbolically embedded subgroup
(see [11] for a precise definition) G is acylindrically hyperbolic.
One example is the Cremona group Bir(P 2

C). It is the group of
birationnal transformations of the projective planes. It has been
shown by S. Cantat and S. Lamy that Bir(P 2

C) admits an action
on a hyperbolic space with many loxodromic elements [6]. F. Dah-
mani, V. Guirardel and D. Osin used then these data to prove
that Bir(P 2

C) contains virtually cyclic hyperbolically embedded sub-
groups [11].

(iii) In [40] A. Sisto proved that if G is a group acting properly on a
proper CAT(0) space, then every rank 1 element of G is contained
in a hyperbolically embedded virtually cyclic subgroup. which pro-
vides other examples of acylindrically hyperbolic groups. In partic-
ular every right-angled Artin Group which is not cyclic, or directly
decomposable is acylindrically hyperbolic.
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(iv) In [30], A. Minasyan and D. Osin used actions on trees to pro-
vide other examples of acylindrically hyperbolic group. Among oth-
ers, they gave the following results. For every field k, the group
Aut (k[x, y]) of automorphisms of the polynomial algebra k[x, y] is
acylindrically hyperbolic. Any one relator group with at least three
generators is acylindrically hyperbolic.

For all these examples we can apply Theorem 6.15 provided we can deal
with the even torsion. However we do not necessarily have an intrinsic
characterization for the type (elliptic or loxodromic) of the elements of G
for the corresponding action on X. For instance, it is not known if there
exists an acylindrical action of Out (Fr) on a hyperbolic space such that
the loxodromic elements are exactly the iwip automorphisms of Fr.
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