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CURVATURE RESTRICTIONS FOR LEVI-FLAT REAL
HYPERSURFACES IN COMPLEX PROJECTIVE

PLANES

by Masanori ADACHI & Judith BRINKSCHULTE (*)

Abstract. — We study curvature restrictions of Levi-flat real hypersurfaces
in complex projective planes, whose existence is in question. We focus on its totally
real Ricci curvature, the Ricci curvature of the real hypersurface in the direction of
the Reeb vector field, and show that it cannot be greater than −4 along a Levi-flat
real hypersurface. We rely on a finiteness theorem for the space of square integrable
holomorphic 2-forms on the complement of the Levi-flat real hypersurface, where
the curvature plays the role of the size of the infinitesimal holonomy of its Levi
foliation.
Résumé. — Nous étudions des restrictions sur une courbure des hypersurfaces

réelles Levi-plates dans des plans projectifs complexes, dont l’existence est en ques-
tion. Nous nous focalisons sur sa courbure de Ricci totalement réelle, c’est-â-dire la
courbure de Ricci de l’hypersurface réelle dans la direction du champ de Reeb, et
nous démontrons qu’elle ne peut pas être supérieure à −4 le long de l’hypersurface
réelle Levi-plate. Nous nous appuyons sur un théorème de finitude pour l’espace
des 2-formes holomorphes de carrés intégrables sur le complément de l’hypersurface
réelle Levi-plate, où la courbure joue le rôle de la taille de l’holonomie infinitésimale
de son feuilletage de Levi.

1. Introduction

The past decades, the non-existence conjecture of a smooth closed Levi-
flat real hypersurface in the complex projective spaces CPn (n > 2) has

Keywords: Levi-flat real hypersurface, totally real Ricci curvature, adjunction formula,
integral formula.
Math. classification: 32V15, 32V40, 53B25, 53C12.
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2548 Masanori ADACHI & Judith BRINKSCHULTE

been intensively investigated by foliators, complex analysts, and differential
geometers. This conjecture first appeared in the papers [4] and [6] devoted
to the study of minimal sets of holomorphic foliations on CPn and has been
affirmatively proved for n > 2 by Lins Neto [16] in the real analytic case
and by Siu [20] in the smooth case. There have been papers that announced
proofs of the non-existence for n = 2, however, they all are considered to
contain serious gaps (cf. [15]) and the case n = 2 remains open.
The following partial result by Bejancu and Deshmukh uses a differential-

geometric approach to restrict a certain curvature of the Levi-flat real hy-
persurface:

Theorem ([3]). — Let M be an oriented C∞-smooth closed Levi-flat
real hypersurface in CPn (n > 2) equipped with the Fubini–Study metric.
Denote by ν the unit normal vector field of M ⊂ CPn and set ξ = −Jν,
where J denotes the complex structure of CPn. Then RicM (ξ, ξ) cannot be
> 0 everywhere on M .

The Ricci curvature RicM (ξ, ξ) is referred to as the totally real Ricci
curvature of the real hypersurface M . The aim of this paper is to improve
the curvature restriction in the theorem of Bejancu and Deshmukh. Also,
our proof is completely complex-analytic.
Our main theorem is stated as follows:

Main Theorem. — Let M be an oriented C2-smooth closed Levi-flat
real hypersurface in CP2 equipped with the Fubini–Study metric. Then, the
totally real Ricci curvature RicM (ξ, ξ) cannot be > −4 everywhere on M .

The idea of the proof is as follows. The key ingredient is a leafwise (1, 0)-
form α on the Levi-flat real hypersurface M , which measures the size of
the infinitesimal holonomy of the Levi foliation of M (See §2.4 for its defi-
nition). We will find out that the restriction on the totally real Ricci cur-
vature is equivalent to an upper bound on the norm of α by observing an
adjunction-type equality (Proposition 3.1). Then, exploiting an integral for-
mula (Theorem 4.1) originating from a paper of Griffiths, we will prove the
finite dimensionality of the space of L2 holomorphic 2-forms on domains
with Levi-flat boundary in CP2 (Corollary 5.2) under the upper bound
on the norm of α. This finite dimensionality is however a contradiction,
because the space should be infinite dimensional (Proposition 6.1).
The organization of this paper is as follows. In §2, we explain the basic

notions and our conventions pertaining to the local geometry of Levi-flat
real hypersurfaces. The form α is defined in this section. The connection
between the form α and the totally real Ricci curvature is explained in §3

ANNALES DE L’INSTITUT FOURIER
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via Gauss’ equation. In §4, we explain and prove some integral formula à la
Griffiths. We exploit this formula in §5 to study the finite dimensionality of
the space of L2 holomorphic sections of negative holomorphic line bundles
OCP2(−m) over domains with Levi-flat boundary in CP2. In §6, we give a
proof of the infinite dimensionality of the L2 canonical sections on pseudo-
convex domains in complex projective spaces and complete the proof of the
Main theorem. In Appendix A, we revisit Takeuchi’s inequality from the
viewpoint of §3 and give a remark on a general restriction on the totally
real Ricci curvature of Levi-flat real hypersurfaces in Kähler surfaces.

2. Preliminaries for local arguments

In this section, we collect basic notions and our conventions pertaining
to the local geometry of Levi-flat real hypersurfaces. We restrict ourselves
to the case of Kähler surfaces.

2.1. Kähler metric and the bisectional curvature

Let (X, JX) be a complex surface. The complex structure JX : TX →
TX allows us to regard the real tangent bundle TX as a C-vector bundle.
We identify TX with the holomorphic tangent bundle T 1,0X as C-vector
bundles by

∂

∂xj
7−→ ∂

∂zj
= 1

2

(
∂

∂xj
− i ∂

∂yj

)
where (z1, z2) denotes a local coordinate and we write zj = xj + iyj .
Let g : TX × TX → R be a JX -invariant Riemannian metric of X.

We consider its sequilinear extension on C ⊗ TX × C ⊗ TX and obtain a
hermitian metric of T 1,0X, namely,

g

(
∂

∂zj
,
∂

∂zk

)
= 1

2

(
g

(
∂

∂xj
,
∂

∂xk

)
+ ig

(
∂

∂xj
,
∂

∂yk

))
.

The metric g is said to be Kähler if its fundamental form

ω = 2i
2∑

j,k=1
g

(
∂

∂zj
,
∂

∂zk

)
dzj ∧ dzk

is a closed form. Our volume form is dVω = ω ∧ ω/8.
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2550 Masanori ADACHI & Judith BRINKSCHULTE

We denote by ∇ the Levi-Civita connection determined by the Riemann-
ian metric g. It is well-known that ∇ coincides with the canonical connec-
tion of the hermitian metric g. Our convention of the curvature tensor of
∇ is

R(v1, v2)v3 := ∇v1(∇
ṽ2
ṽ3)−∇v2(∇

ṽ1
ṽ3)−∇[ṽ1,ṽ2]ṽ3

for vj ∈ TpX where ṽj are extensions of vj to vector fields respectively.
Given two JX -invariant planes σ1, σ2 ⊂ TpX, we define the bisectional
curvature by

H(σ1, σ2) := g(R(v1, Jv1)Jv2, v2)
= g(R(v1, v2)v2, v1) + g(R(v1, Jv2)Jv2, v1)

where vj are unit vectors in σj respectively.
Our main example is the complex projective plane X = CP2 endowed

with the Fubini–Study metric g = gFS , whose fundamental form is given
by

ωFS = i∂∂ log(1 + |z1|2 + |z2|2)
in non-homogeneous coordinate system (z1, z2). Note that ωFS can be re-
garded as the Chern curvature iΘ(O(1)) of the hyperplane line bundle O(1)
with the hermitian metric induced from the standard Euclidean metric of
C3. In our conventions, the bisectional curvature of (CP2, ωFS) is given by
(cf. [10])

H(σ1, σ2) = 2(1 + g(v1, v2)2 + g(v1, Jv2)2).

2.2. Real hypersurfaces and their holomorphic normal bundle

LetM be an oriented C2-smooth closed real hypersurface without bound-
ary in X. A defining function ρ of M is a C2-smooth real-valued function
defined on a neighborhood U of M expressing M = {z ∈ U | ρ(z) = 0} as
the preimage of a regular value 0. We always assume that M is oriented as
the boundary of {z ∈ U | ρ(z) < 0} by reversing the sign of ρ if necessary.
Later in §3, §5 and Appendix A we will choose ρ as the signed boundary
distance function to M with respect to the Riemannian metric g.

Along the real hypersurface M , we consider two smooth JX -invariant
plane fields: σT := TM ∩ JXTM , the unique JX -invariant subbundle of
TM , and σN , the orthonormal complement of σT in TX with respect to
g. Via the C-vector bundle isomorphism TX ' T 1,0X, we identify σT with
the holomorphic tangent bundle of M , T 1,0M := Ker∂ρ ⊂ T 1,0X|M , and
σN with the holomorphic normal bundle ofM , N1,0

M := (T 1,0X|M)/T 1,0M .

ANNALES DE L’INSTITUT FOURIER
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We fix a global orthonormal frame {ξ, ν} of σN with respect to g, so
that ν is an outward normal vector ofM ⊂ X and ν = Jξ. The vector field
ξ, tangent to M , is often referred to as a Reeb vector field. We write the
normal derivative hρ := νρ : M → R>0. Note that h2

ρ defines a C1-smooth
hermitian metric of N1,0

M ; we can measure the squared norm of a vector
v = aξ + bν ∈ σN ' N1,0

M by |v|2ρ := h2
ρ|a+ ib|2.

Remark 2.1. — We are working with a fixed Kähler metric for simplic-
ity, though note that N1,0

M and the hermitian metric induced from h2
ρ are

independent of the choice of the hermitian metric g whereas σN and {ξ, ν}
depend on g.

2.3. Levi-flat and a distinguished parametrization

The Levi-form ofM (with respect to ρ) is the restriction of the quadratic
form obtained by i∂∂ρ to the holomorphic tangent bundle T 1,0M . The
real hypersurface M is said to be Levi-flat if the Levi-form of M vanishes
identically on M . It is easy to see that this definition does not depend on
the choice of ρ.

It follows from Frobenius’ theorem that M is Levi-flat if and only if M
has a foliation by complex hypersurfaces of X. The foliation is called the
Levi foliation F of M . The typical example of Levi-flat real hypersurfaces
is C× R ⊂ C2, where the Levi foliation is given by {C× {t}}t∈R.
It is well-known that any real-analytic Levi-flat real hypersurface is lo-

cally identified with this typical example. For non real-analytic Levi-flat
real hypersurfaces, although its local structure is not unique, still a sort of
normal coordinate system is available. SupposeM is Levi-flat. By standard
arguments (cf. [2]), we can choose a holomorphic chart (z1, z2) of X and a
local parametrization ϕ of F around any point p ∈ M so as to satisfy the
following conditions:

(1) The parametrization ϕ(ζ, t) : C × R ⊃ V → ϕ(V ) ⊂ M is a
C2-smooth orientation-preserving diffeomorphism with ϕ(0, 0) = p

and holomorphic in z. (We always assume these conditions for
parametrizations of Levi foliations.)

(2) The parametrization ϕ is in the form of ϕ(ζ, t) = (ζ, w(ζ, t)) in the
coordinate system (z1, z2).

(3) The parametrization behaves along the leaf passing through p in
such a way that

w(ζ, 0) ≡ 0 and ∂w

∂t
(ζ, 0) ≡ 1,

TOME 65 (2015), FASCICULE 6
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namely,

ϕ∗

(
∂

∂t

)
(ζ,0)

=
(

∂

∂x2

)
(ζ,0)

.

(4) The coordinate system (z1, z2) is normalized at p with respect to g,
namely, its fundamental form ω satisfies ω = i(dz1∧dz1 +dz2∧dz2)
at p.

We refer to such a parametrization ϕ(ζ, t) of M in the coordinate system
(z1, z2) as a distinguished parametrization around p ∈M in this paper.

2.4. The form α

Let us define the key object of this paper.
Suppose M is Levi-flat and a C1-smooth hermitian metric h2 of N1,0

M is
given. Consider a parametrization of the Levi foliation F , not necessarily
a distinguished parametrization, say ϕ(ζ, t) : C × R ⊂ V → M . This
parametrization gives us a local trivialization of N1,0

M over ϕ(V ) since ∂
∂t

induces a local section of N1,0
M . We denote by h2

ϕ the local weight function of
h2 in this local trivialization. Using these notations, we define a continuous
leafwise (1, 0)-form defined on ϕ(V ) by

α := ∂ log hϕ
∂ζ

dζ.

One easily sees that α is well-defined on M . The point is that N1,0
M be-

comes a leafwise flat line bundle, namely all the transition functions are
leafwise constant if we equip N1,0

M with the local trivializations given by
parametrizations of the Levi foliation.

Remark 2.2. — We can associate a transversal measure µ = hdt of F
from the hermitian metric h2 ofN1,0

M . The form αmeasures the infinitesimal
holonomy with respect to this transversal measure µ. In particular, µ is
holonomy invariant measure if and only if α ≡ 0. The form α is essentially
the modular form of µ in the context of foliation, which is useful in the study
of the ∂-Neumann problem on weakly pseudoconvex domains (cf. [21]).

The following Lemma will be used in §5. We can describe α in terms of
defining function of M when the hermitian metric of N1,0

M is induced from
a defining function of M .

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.3. — Suppose M is Levi-flat. Let ρ be a defining function of
M and consider α induced from h2

ρ. Then, α is characterized as a continuous
leafwise (1, 0)-form on M satisfying

∂∂ρ = α ∧ ∂ρ+ ∂ρ ∧ α (mod C0(M)∂ρ ∧ ∂ρ).

Proof. — First see that this equality makes sense modulo ∂ρ ∧ ∂ρ. This
is because a leafwise (1, 0)-form α is a linear functional on T 1,0M = Ker∂ρ
and its extension on T 1,0X is unique modulo ∂ρ.
Now we regard the equality as an equation on α and solve this. Take

a point p ∈ M and a distinguished parametrization ϕ(ζ, t) : V → M in
(z1, z2). Then, we have at p, as an alternating 2-form,

(∂∂ρ)p
(

∂

∂z1
,
∂

∂z2

)
= ∂2ρ

∂z1∂z2
(0, 0)

= i

2
∂2ρ

∂z1∂y2
(0, 0)

= i

2
∂

∂ζ

(
∂ρ

∂y2

)
(0, 0).

Note that ϕ gives the standard embedding C × {0} ∩ V ⊂ C2 and we are
allowed to confuse ζ and z1 on this image. Our local weight function (hρ)ϕ
is just given by ∂ρ

∂y2
, therefore, we have

(∂∂ρ)p
(

∂

∂z1
,
∂

∂z2

)
= i

2
∂(hρ)ϕ
∂ζ

(0, 0).

Similarly,

(α ∧ ∂ρ)p
(

∂

∂z1
,
∂

∂z2

)
= αp

(
∂

∂z1

)
(∂ρ)p

(
∂

∂z2

)
= αp

(
∂

∂z1

)
∂ρ

∂z2
(0, 0)

= αp

(
∂

∂ζ

)
· i2(hρ)ϕ(0, 0).

Hence, α should agree with the one given above.
This α actually gives the solution since we can check the equality by

looking at

(∂∂ρ)p
(

∂

∂z1
,
∂

∂z1

)
= 0, (∂∂ρ)p

(
∂

∂z2
,
∂

∂z1

)
= (∂∂ρ)p

(
∂

∂z1
,
∂

∂z2

)
.

Since we want to compute ∂∂ρ only modulo ∂ρ ∧ ∂ρ, we can ignore the
contribution coming from (∂∂ρ)p

(
∂
∂z2

, ∂
∂z2

)
. �

TOME 65 (2015), FASCICULE 6
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3. An adjunction-type equality

In this section, we relate the totally real Ricci curvature, which we are
going to estimate, with the form α via the Gauss’ equation. Let M be
an oriented C2-smooth Levi-flat real hypersurface without boundary in a
Kähler surface (X, JX , g). We restrict the Riemannian metric g on M and
denote by∇M , RM , RicM its Levi-Civita connection, curvature tenor, Ricci
tensor respectively. We will compare the bisectional curvature of X and the
totally real Ricci curvature ofM and see that their difference is exactly the
squared norm of α induced from the signed boundary distance function.
We consider nearM the signed boundary distance function δ with respect

to the Riemannian metric g, namely,

δ(p) = ± inf
q∈M

distg(p, q)

where we choose the sign so that δ becomes a defining function of M . It is
well-known that δ is actually of C2-smooth near M . Using this particular
defining function δ of M , we induce a hermitian metric, simply denoted
by h2, on the holomorphic normal bundle N1,0

M as described in §2.2, and
consider the form α with respect to this h2.
Under this setting, we compute the difference in terms of α as follows:

Proposition 3.1. — The following equality holds:

H (σT , σN )− RicM (ξ, ξ) = 4iα ∧ α/ω

where ω is the fundamental form of g and the ratio of iα∧α and ω is taken
as quadratic forms on T 1,0M .

The main ingredient of the proof is Gauss’ equation: for any real hyper-
surface M in a Riemannian manifold, we have

g(R(v1, v2)v3, v4)− g(RM (v1, v2)v3, v4)
= g(Av1, v3)g(Av2, v4)− g(Av2, v3)g(Av1, v4)

where vj ∈ TM and A denotes the shape operator of M ⊂ X, namely, for
v ∈ TpM , we let

Av := −∇vν ∈ TpM.

Proof of Proposition 3.1. — Fix a point p ∈M and take a distinguished
parametrization around p, say ϕ(ζ, t) : V →M in (z1, z2). Applying Gauss’
equation at p for

v1 = v4 =
(

∂

∂x1

)
p

, v2 = v3 =
(

∂

∂x2

)
p

= ξp

ANNALES DE L’INSTITUT FOURIER
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and

v1 = v4 =
(

∂

∂y1

)
p

, v2 = v3 =
(

∂

∂x2

)
p

= ξp

respectively and adding resulting two equalities, we have at p

(3.1)

H (σT , σN )−RicM (ξ, ξ)

= g(A ∂

∂x1
, ξ)2 + g(A ∂

∂y1
, ξ)2

− g(Aξ, ξ)
(
g(A ∂

∂x1
,
∂

∂x1
) + g(A ∂

∂y1
,
∂

∂y1
)
)
.

Note that the totally real Ricci curvature at p is by its definition

RicM (ξ, ξ) = g(R
(

∂

∂x1
, ξ

)
ξ,

∂

∂x1
) + g(R

(
∂

∂y1
, ξ

)
ξ,

∂

∂y1
).

We observe that the last term in (3.1) is zero. This is because any complex
submanifold in any Kähler surface is minimal with respect to the Kähler
metric, hence, the trace of the shape operator restricted on the tangent
space of a complex submanifold is always zero. We therefore have

H (σT , σN )− RicM (ξ, ξ) = g(A ∂

∂x1
, ξ)2 + g(A ∂

∂y1
, ξ)2.

The rest of the proof is to show the equality

g(A ∂

∂x1
, ξ)2 + g(A ∂

∂y1
, ξ)2 = 4iα ∧ α/ω

by direct computation. First we compute its first term at p

g(A ∂

∂x1
, ξ) = −g(∇ ∂

∂x1
ν, ξ).

Our normal vector field ν is expressed as

ν =
√

gx1x1

gx1x1gy2y2 − (g2
x1y2

+ g2
y1y2

)

(
∂

∂y2
− gx1y2

gx1x1

∂

∂x1
− gy1y2

gy1y1

∂

∂y1

)
.

on C× {0} ∩ V where we use notations

gxjxk
:= g

(
∂

∂xj
,
∂

∂xk

)
, gxjyk

:= g

(
∂

∂xj
,
∂

∂yk

)
, gyjyk

:= g

(
∂

∂yj
,
∂

∂yk

)

TOME 65 (2015), FASCICULE 6
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for short. Using the explicit expression of the Christoffel symbol of the
Levi-Civita connection and the Kählerity of g, we have at p

g(A ∂

∂x1
, ξ) = −g(∇ ∂

∂x1

∂

∂y2
,
∂

∂x2
)

= −1
2

(
∂

∂x1
gy2x2 + ∂

∂y2
gx1x2 −

∂

∂x2
gx1y2

)
= −1

2

(
∂

∂y2
gx1x2 −

∂

∂x2
gx1y2

)
= −1

2

(
∂

∂y1
gx2x2

)
.

We can compute the second term at p in the same way:

g(A ∂

∂y1
, ξ) = 1

2

(
∂

∂x1
gx2x2

)
.

On the other hand, we have on C× {0} ∩ V ,

(3.2) hϕ = ∂δ

∂y2
= g(ν, ∂

∂y2
) =

√
gx2x2 −

g2
x1y2

+ g2
y1y2

gx1x1

.

and we have at p

iα ∧ α/ω =
∣∣∣∣ ∂∂z1

log hϕ
∣∣∣∣2 = 1

16

((
∂

∂x1
gx2x2

)2
+
(

∂

∂y1
gx2x2

)2
)
.

This completes the proof. �

Corollary 3.2. — Let M be an oriented C2-smooth Levi-flat real hy-
persurface without boundary in a Kähler surface X. Then its totally real
Ricci curvature satisfies

RicM (ξ, ξ) 6 H (σT , σN ) .

In particular, when X is CP2 equipped with the Fubini–Study metric,

RicM (ξ, ξ) 6 2.

Remark 3.3. — The induced metric hϕ in (3.2) is exactly the metric in-
duced from the adjunction formula for Levi-flat real hypersurfaces (cf. [8]),

KX |M ⊗N1,0
M = (T 1,0M)∗.

Here we equip KX |M and (T 1,0M)∗ with the hermitian metrics induced
from the given Kähler metric g. From this viewpoint we will revisit
Takeuchi’s inequality [22] in Appendix A.

ANNALES DE L’INSTITUT FOURIER
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4. An integral formula

In this section, we will prove an estimate for L2-norm of smooth sec-
tions of hermitian holomorphic line bundles over pseudoconcave domains
in Kähler surfaces. This will be used in the next section to show a finiteness
theorem for holomorphic sections of negative holomorphic line bundles over
domains with Levi-flat boundary in CP2.

As in the previous sections, let X be a complex surface equipped with
a Kähler metric g and denote its fundamental form by ω. We consider a
relatively compact domain Ω b X with C2-smooth boundary M . Later we
will assume M to be pseudoconcave in §4.2 or Levi-flat in §5.
Take a defining function ρ ofM that is extended on Ω. We normalize our

defining function so as to satisfy |dρ|g = 1 on M ; this is always possible
replacing ρ by ρ/|dρ|g near M and using a partition of unity argument.
Later in §5 we will choose ρ as the signed boundary distance function to
M . We will denote by dvM the area element of M with respect to the
restriction of the Riemannian metric g on M .

4.1. An integral formula for functions over complex manifolds

The main ingredient of our L2-estimate is an integral formula for func-
tions, which has already appeared in Griffiths’ paper [12].
Choose locally an orthonormal frame ω1, ω2 of (1, 0)-forms with dual

frame L1, L2 of T 1,0X with respect to the hermitian metric g. On M ,
we also require that ω2 =

√
2∂ρ. Then, L1 gives a local trivialization of

the holomorphic tangent bundle T 1,0M and the Levi-form of M can be
identified with a scalar function, say `ρ(p) = ∂∂ρ(p)(L1, L1) for p ∈ M . It
is easily seen that `ρ is independent of the choice of the orthonormal frame.

We now define the nonnegative (1, 1)-form ωρ by

ωρ = 2i∂ρ ∧ ∂ρ.

What is important is that the form ωρ has essentially the same properties
as the form Ωτ in the paper of Griffiths [12] for n = 2. One can then prove
the following integral formula (see also [12, p. 433]):

Theorem 4.1. — For any function g ∈ C∞(Ω) one has∫
Ω

(i∂∂g) ∧ ωρ −
∫

Ω
ig∂∂ωρ =

∫
M

g · `ρ4dvM .
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Proof. — First of all it is easy to check that one has

(4.1) i(∂ − ∂)ωρ |M = 8`ρdvM .

Indeed,

(4.2) i(∂ − ∂)ωρ = −2(∂ − ∂)(∂ρ ∧ ∂ρ) = 2∂∂ρ ∧ (∂ρ− ∂ρ).

On the other hand, we have

(4.3) dvM = ∗dρ |M = 1
4ω1 ∧ ω1 ∧ (∂ρ− ∂ρ).

Since ∂ρ ∧ ∂ρ = 0 on M , (4.2) and (4.3) imply (4.1).
Now (4.1) and Stokes’ theorem imply

(4.4)
∫
M

g · `ρ4dvM = 1
2

∫
M

gi(∂ − ∂)ωρ = 1
2

∫
Ω
d{gi(∂ − ∂)ωρ}.

But for bidegree reasons

d{gi(∂ − ∂)ωρ} = −2gi∂∂ωρ + dg ∧ i(∂ − ∂)ωρ
= −2gi∂∂ωρ + i

(
−∂g ∧ ∂ωρ + ∂g ∧ ∂ωρ

)
= −2gi∂∂ωρ + d

{
i
(
∂g ∧ ωρ − ∂g ∧ ωρ

)}
+ 2i∂∂g ∧ ωρ.

By (4.4) and Stokes’ theorem again (note that ωρ |M = 0), we get∫
M

g · `ρ4dvM =
∫

Ω
i∂∂g ∧ ωρ −

∫
Ω
gi∂∂ωρ.

�

4.2. An estimate for sections over pseudoconcave domains

Let L be a holomorphic line bundle on X with a hermitian metric h. For
an (open or closed) subset W ⊂ X we will use the following notations for
sections over W :

— C∞p (W,L) denotes the space of smooth p-forms with values in L.
— C∞c (W,L) denotes the space of smooth sections of L with compact

support in W .
— L2

p,q(W,L) denotes the Hilbert space of square-integrable (p, q)-
forms with values in L with respect to the L2-norm ‖ · ‖ induced by
g and h.
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The Chern connection D = D′ + D′′ of L is the unique connection
whose (0, 1)-part D′′ coincides with the canonical ∂-operator of L and
which is compatible with the hermitian structure of L; that is for every
s1 ∈ C∞p (X,L), s2 ∈ C∞q (X,L) we have

(4.5) d{s1, s2} = {Ds1, s2}+ (−1)p{s1, Ds2}.

Here the sequilinear map { , } is defined as usual: If e is a local frame of
L, and s1 = f1 ⊗ e, s2 = f2 ⊗ e, then

{s1, s2} = f1 ∧ f2|e|2.

We denote by Θ(L) the curvature of D for given h.
We can now prove the following:

Proposition 4.2. — Assume that M is pseudoconcave, i.e. `ρ 6 0.
Then for any section s ∈ C∞(Ω, L) one has∫

Ω
|s|2

(
−iΘ(L) ∧ ωρ − i∂∂ωρ

)
6 4

∫
Ω

(|∂s|2 · |ωρ|+ |∂s| · |s| · |∂ωρ|)dVω.

Proof. — Let s ∈ C∞(Ω, L). We will apply Theorem 4.1 with g = |s|2.
First recall that in a local holomorphic frame e one has |s|2 = |f |2e−ψ,

D′ = ∂ − ∂ψ ∧ · and iΘ(L) = i∂∂ψ where we denote s = f ⊗ e and
|e|2 = e−ψ.
A straightforward computation shows that

i∂∂|s|2 = i
(
∂f ∧ ∂f +D′f ∧D′f − ∂∂ψ|f |2

)
e−ψ

+ i
(
(∂∂f − ∂ψ ∧ ∂f)f + f(∂∂f − ∂f ∧ ∂ψ)

)
e−ψ.

Hence we obtain

(4.6)

∫
Ω
i∂∂|s|2 ∧ ωρ =

∫
Ω

(i∂s ∧ ∂s+ iD′s ∧D′s− |s|2iΘ(L)) ∧ ωρ

+ 2Re
∫

Ω
i{D′∂s, s} ∧ ωρ

>
∫

Ω
−|s|2iΘ(L) ∧ ωρ + 2Re

∫
Ω
i{D′∂s, s} ∧ ωρ.

Using (4.5) we have

{D′∂s, s} = {D∂s, s} = {∂s,Ds}+ d{∂s, s}.

For bidegree reasons we have {∂s,Ds} ∧ ωρ = {∂s, ∂s} ∧ ωρ. Therefore we
obtain ∫

Ω
i{D′∂s, s} ∧ ωρ =

∫
Ω
i{∂s, ∂s} ∧ ωρ +

∫
Ω
id{∂s, s} ∧ ωρ,
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and the second term is∫
Ω
id{∂s, s} ∧ ωρ =

∫
Ω
id
(
{∂s, s} ∧ ωρ

)
+
∫

Ω
i{∂s, s} ∧ ∂ωρ

=
∫
M

i{∂s, s} ∧ ωρ +
∫

Ω
i{∂s, s} ∧ ∂ωρ

=
∫

Ω
i{∂s, s} ∧ ∂ωρ,

where the last equality holds since ωρ | M = 0. Combining this with (4.6)
we have∫

Ω
i∂∂|s|2 ∧ ωρ

>
∫

Ω
−|s|2iΘ(L) ∧ ωρ − 2Re

∫
Ω

(
i{∂s, ∂s} ∧ ωρ − i{∂s, s} ∧ ∂ωρ

)
>
∫

Ω
−|s|2iΘ(L) ∧ ωρ − 4

∫
Ω
|∂s|2 · |ωρ|dVω − 4

∫
Ω
|∂s| · |s| · |∂ωρ|dVω,

where the last inequality holds since dVω = − 1
2ω

1 ∧ ω1 ∧ ω2 ∧ ω2.
Together with Theorem 4.1 we then get from our assumption `ρ 6 0

0 >
∫
M

|s|2`ρ4dvM

=
∫

Ω
i∂∂|s|2 ∧ ωρ −

∫
Ω
|s|2i∂∂ωρ

>
∫

Ω
−|s|2iΘ(L) ∧ ωρ − 4

∫
Ω
|∂s|2 · |ωρ|dVω

− 4
∫

Ω
|∂s| · |s| · |∂ωρ|dVω −

∫
Ω
|s|2i∂∂ωρ.

This proves the proposition. �

5. Finiteness of the space of holomorphic sections over
Levi-flat domains

In this section, we will apply the estimate of Proposition 4.2 to negative
holomorphic line bundles L = O(−m), m > 0, over a domain Ω with
smooth Levi-flat boundary M in CP2. Here, of course, we equip CP2 with
the Fubini-Study metric gFS and L = O(−m) with the hermitian metric
induced from gFS .
We obtain the following
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Proposition 5.1. — Let Ω ⊂ CP2 be a domain with C2-smooth
Levi-flat boundary M with RicM (ξ, ξ) > 2 − 2m. Then the space
L2

0,0(Ω,O(−m)) ∩Ker∂ is finite dimensional.

Proof. — Choose a defining function ρ of M so that it agrees with the
signed boundary distance function with respect to the Fubini–Study metric
near M . The proof is based on the observation that there exists ε > 0 such
that

(5.1) − iΘ(O(−m)) ∧ ωρ − i∂∂ωρ > εdVωF S

holds on a neighborhood of M if and only if RicM (ξ, ξ) > 2− 2m.
Let us now present the details. First note that the first term is

−iΘ(O(−m)) ∧ ωρ = mωFS ∧ ωρ.

From Lemma 2.3, the second term is

−i∂∂ωρ = −i∂∂(2i∂ρ ∧ ∂ρ)

= 2i∂∂ρ ∧ i∂∂ρ

= 2i(α ∧ ∂ρ+ ∂ρ ∧ α) ∧ i(α ∧ ∂ρ+ ∂ρ ∧ α)
= −2iα ∧ α ∧ ωρ

on the points inM . Hence, it suffices to compare mωFS with 2iα∧α on the
holomorphic tangent space T 1,0M as quadratic forms. Using a distinguished
coordinate ϕ(ζ, t) around a point p ∈M , we have

mωFS

(
∂

∂ζ
,
∂

∂ζ

)
= m

and
2iα ∧ α

(
∂

∂ζ
,
∂

∂ζ

)
= 1

2(2− RicM (ξ, ξ))

from Proposition 3.1 and our normalization of the Fubini–Study metric.
Therefore,

m >
1
2(2− RicM (ξ, ξ)) ⇐⇒ RicM (ξ, ξ) > 2− 2m

confirms the observation (5.1).
From (5.1), Proposition 4.2 implies that if Ω′ is a sufficiently large, rela-

tively open subset of Ω, then for s ∈ C∞c (Ω \ Ω′,O(−m)) we have

ε‖s‖2 6 4
∫

Ω
(|∂s|2 · |ωρ|+ |∂s| · |s| · |∂ωρ|)dVωF S

6 4
∫

Ω
(|∂s|2 · |ωρ|+

δ

2 |s|
2 + 1

2δ |∂s|
2 · |∂ωρ|2)dVωF S
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for all δ > 0. But this immediately implies that there exists a constant
C0 > 0 such that

(5.2) ‖s‖2 6 C0‖∂s‖2 for all s ∈ C∞c (Ω \ Ω′,O(−m)).

The estimate (5.2) implies that that there exists a constant C > 0 such
that

(5.3) ‖s‖2 6 C‖∂s‖2 + C

∫
K

|s|2dVωF S
for all s ∈ C∞c (Ω,O(−m)),

where K ⊂ Ω is any compact containing Ω′ in its interior. Indeed, let χ be
a smooth function on CP2, 0 6 χ 6 1, which vanishes in a neighborhood
of Ω′ and equals 1 in the complement of K. Applying (5.2) to χs we get

‖s‖2 6 2‖χs‖2 + 2‖(1− χ)s‖2

6 2C0‖∂(χs)‖2 + 2
∫
K

|s|2dVωF S

6 4C0‖∂s‖2 + 4C0‖s∂χ‖2 + 2
∫
K

|s|2dVωF S

from which (5.3) follows. It is standard to deduce from estimate (5.3) the
finite dimensionality of L2

0,0(Ω,O(−m)) ∩Ker∂.
�

Considering the canonical bundle L = KCP2 = O(−3), i.e., m = 3, we
have the following finiteness result, which enables us to prove our result in
the next section.

Corollary 5.2. — Let Ω ⊂ CP2 be a domain with C2-smooth Levi-flat
boundary M with RicM (ξ, ξ) > −4. Then the space L2

0,0(Ω,O(−3))∩Ker∂
is finite dimensional.

6. Proof of the main theorem

In this section, we will complete the proof of our Main theorem. The idea
is to combine Corollary 5.2 with the following well known result:

Let X be an n-dimensional Kähler manifold. Assume that X ad-
mits a complete Kähler metric and a bounded plurisubharmonic
function which is strictly plurisubharmonic on a nonempty open
subset of X. Then the space of L2-holomorphic n-forms is infinite
dimensional.
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This result is essentially contained in [14] or [7]. In our paper, we will
need this very general result for the special case of a pseudoconvex domain
in CPn:

Proposition 6.1. — Let Ω ⊂ CPn be a domain with C2-smooth pseu-
doconvex boundary. Then dimL2

0,0(Ω,O(−n− 1)) ∩Ker∂ = +∞.

Note that in CPn, holomorphic n-forms can be identified with holomor-
phic sections of O(−n− 1). To make this paper self-contained, we include
a full proof of this proposition. We will use the L2-estimates for ∂ in the
refined version of Demailly [7]:

Let (X,ω) be a Kähler manifold of dimension n. Assume that X
is weakly pseudoconvex. Let E be a hermitian holomorphic vector
bundle over X, and let ψ ∈ L1

loc be a weight function. Suppose
that

iΘ(E) + i∂∂ψ ⊗ IdE > γω ⊗ IdE
for some continuous positive function γ on X. Then for any (n, q)-
form f with L2

loc coefficients, q > 1, satisfying ∂f = 0 and∫
Ω γ
−1|f |2e−ψdVω < +∞, there exists u ∈ L2

n,q−1(X,E) such
that ∂u = f and∫

Ω
|u|2e−ψdVω 6

1
q

∫
Ω
γ−1|f |2e−ψdVω.

Proof of Proposition 6.1. — It suffices to show that for every k ∈ N we
have dimL2

0,0(Ω,O(−n− 1)) ∩Ker∂ > k.
Choose k distinct points p1, . . . pk ∈ Ω. For each j = 1, . . . , k, we choose

a local holomorphic coordinate system (zj1, . . . , zjn) around pj . In such a
coordinate system, we identify pj with zj = (0, . . . , 0), and we also assume
that Bj4ε = {z | |zj | < 4ε} ⊂ Ω are mutually disjoint by taking enough
small ε > 0. Let us further choose a smooth function ϕ on Ω \

⋃k
j=1{pj}

such that ϕ ≡ 0 outside
⋃k
j=1B

j
ε and ϕ(zj) = n log |zj |2 if |zj | < ε

2 . We
then have i∂∂ϕ > −C1 · ωFS for some constant C1 > 0.
Next, we will use results of Takeuchi [22] and Ohsawa and Sibony [19],

namely if Ω ⊂ CPn is a pseudoconvex domain with C2-smooth boundary,
then there exists some η ∈ (0, 1) such that ψ = −δη is strictly plurisub-
harmonic in Ω; here δ is the (unsigned) boundary distance function with
respect to ωFS . But this implies that for some constant C > 0, we have
i∂∂(ϕ+ Cψ) > 0 in Ω.

Finally, we choose C∞-smooth functions χj , j = 1, . . . , k with compact
support in Ω such that χj(z) = 1 if z ∈ Bjε/2 and χ(z) = 0 if z ∈ Ω \ Bjε .
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Observe that the (0, 1)-forms fj = ∂(χj+
∑
j 6=` χ`z

`
1) have compact support

in
⋃k
j=1B

j
2ε \B

j
ε/2.

Now a (0, 1)-form with values in O(−n − 1) can be naturally identified
with an (n, 1)-form with values in L = ΛnTCPn⊗O(−n−1) ' O(n+ 1)⊗
O(−n− 1) ' C.

From [22] we know that every pseudoconvex domain Ω ⊂ CPn is Stein,
hence (Ω, ωFS) satisfies the assumptions of Demailly’s L2-existence result.
Thus we get functions uj satisfying ∂uj = fj with the property∫

Ω
|uj |2e−(ϕ+Cψ)dVωF S

6
∫

Ω
γ−1|fj |2ωF S

e−(ϕ+Cψ)dVωF S
< +∞,

where γ > 0 is the smallest eigenvalue of i∂∂(ϕ+Cψ) with respect to ωFS .
Notice that e−ϕ = |zj |−2n for all z ∈ Bjε/2 and that e−Cψ is bounded from

above and from below by constants on Ω. Hence we must have that uj(p`) =
0 for ` = 1, . . . , k. Furthermore, we have that hj = χj +

∑
j 6=` χ`z

`
1 − uj

satisfies ∂hj = 0 and ∫
Ω
|hj |2dVωF S

< +∞.

By our construction, hj(pj) = 1− 0 = 1, and for ` 6= j, hj(p`) = 0− 0 = 0.
So in particular, we have hj(p`) = δj`.
Hence dimL2

0,0(Ω,O(−n− 1)) ∩Ker∂ > k. �

We would like to remark that Proposition 6.1 gives an improvement for
the unweighted case of [13, Proposition 4.3].

Proof of the Main theorem. — Assume by contradiction, that M is
an oriented C2-smooth closed Levi-flat real hypersurface in CP2 such that
RicM (ξ, ξ) > −4 everywhere along M . Then M bounds a domain Ω and,
using Corollary 5.2, L2

0,0(Ω,O(−3)) ∩ Ker∂ is finite dimensional. On the
other hand, this space is infinite dimensional according to Proposition 6.1.
This contradiction completes the proof. �

Appendix A. A revisit to Takeuchi’s inequality

In this appendix, we revisit Takeuchi’s inequality in a special case, do-
mains with Levi-flat boundary, and reveal an equality that is hidden behind
Takeuchi’s inequality. Based on this formula, we also observe that recent
studies on the Diederich–Fornaess index [1], [9] involve a general restriction
on the totally real Ricci curvature of Levi-flat real hypersurfaces in Kähler
surfaces.

Let us recall Takeuchi’s inequality with the explicit constant.
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Theorem A.1 ([22], [11]). — Let Ω & CPn (n > 1) be a proper pseu-
doconvex domain. Denote by δ the unsigned boundary distance function to
∂Ω with respect to the Fubini–Study metric ωFS . Then the inequality

i∂∂(− log δ) > 1
3ωFS

holds in Ω in the sense of currents.

When n = 2 and the boundary ∂Ω is a C3-smooth Levi-flat real hyper-
surface M , we can deduce an inequality along M .

Corollary A.2. — Let M be an oriented C3-smooth Levi-flat real hy-
persurface without boundary in CP2. Consider the signed boundary dis-
tance function to M with respect to ωFS and induce from it a hermitian
metric h on the holomorphic normal bundle N1,0

M . Then, the Chern curva-
ture of h along T 1,0M denoted by Θ(N1,0

M ) satisfies the inequality

(A.1) iΘ(N1,0
M ) > 1

3ωFS

as quadratic forms on T 1,0M .

Proof. — By taking a limit of Takeuchi’s inequality toward the tangential
directions of M . See the proof of [2, Proposition 3.3]. �

Remark A.3. — One can see that the constant in (A.1) can be improved
to 1/2 if one looks carefully at the proof of Takeuchi’s inequality. See e.g. [5].

Now we are going to derive an adjunction-type equality hidden in the
inequality (A.1). Let M be an oriented C3-smooth Levi-flat real hypersur-
face without boundary in a Kähler surface (X,JX , g). We restrict g on M
as before and use the same notation as in §2 and §3. We shall consider an
extrinsic curvature of the leaves of the Levi foliation F in M : we define for
p ∈M

GF/M (p) := g(∇M∂
∂x1

ξ,
∂

∂x1
)g(∇M∂

∂y1
ξ,

∂

∂y1
)− g(∇M∂

∂x1
ξ,

∂

∂y1
)2

where z1 = x1 + iy1 is the first coordinate of a distinguished parametriza-
tion around p, say ϕ(ζ, t) : V → M in (z1 = x1 + iy1, z2). This curva-
ture GF/M may be referred to as the Gauss–Kronecker curvature or the
Lipschitz–Killing curvature of the leaves of F . They are usually defined
for real hypersurfaces or real submanifolds in the Euclidean spaces by the
same formula, namely, the determinant of the shape operator.
We used the shape operator of the leaves of F in M to define GF/M .

Instead of it, one may use the shape operator A of M in X because of the

TOME 65 (2015), FASCICULE 6



2566 Masanori ADACHI & Judith BRINKSCHULTE

Kählerity of g: we have at p ∈M

GF/M (p) = g(∇ ∂
∂x1

JXν,
∂

∂x1
)g(∇ ∂

∂y1
JXν,

∂

∂y1
)(A.2)

− g(∇ ∂
∂x1

JXν,
∂

∂y1
)g(∇ ∂

∂y1
JXν,

∂

∂x1
)

= g(∇ ∂
∂x1

ν, JX
∂

∂x1
)g(∇ ∂

∂y1
ν, JX

∂

∂y1
)

− g(∇ ∂
∂x1

ν, JX
∂

∂y1
)g(∇ ∂

∂y1
ν, JX

∂

∂x1
)

= −g(A ∂

∂x1
,
∂

∂y1
)2 + g(A ∂

∂x1
,
∂

∂x1
)g(A ∂

∂y1
,
∂

∂y1
).

Hence GF/M 6 0 because the leaves of F are minimal in X and the trace
of the shape operator A restricted on σT is zero.

Proposition A.4. — The following equality holds on M :

H (σT , σN )− 2GF/M = 4iΘ(N1,0
M )/ω

where the ratio of iΘ(N1,0
M ) and ω is taken as quadratic forms on T 1,0M .

Proof. — We work in the same local situation of Proposition 3.1. We
denote by P = C × {0} ∩ V the plaque of the leaf passing through p and
by RicP its Ricci tensor with respect to the restriction of g on the leaf.
Since (3.2) is equivalent to

g

(
∂

∂z1
,
∂

∂z1

)
h2
ϕ = det

[
g

(
∂

∂zj
,
∂

∂zk

)]
j,k=1,2

,

we have at p

iΘ(N1,0
M )/ω = ∂2

∂z1∂z1
(− log hϕ)

= 1
2

(
Ric( ∂

∂z1
,
∂

∂z1
)− RicP ( ∂

∂z1
,
∂

∂z1
)
)

= 1
4

(
H(σT , σN ) +H(σT , σT )− g(RP ( ∂

∂x1
,
∂

∂y1
) ∂

∂y1
,
∂

∂x1
)
)
.

Repeated use of Gauss’ equation and (A.2) yields

H(σT , σT )− g(RP ( ∂

∂x1
,
∂

∂y1
) ∂

∂y1
,
∂

∂x1
)

= H(σT , σT )− g(RM ( ∂

∂x1
,
∂

∂y1
) ∂

∂y1
,
∂

∂x1
)−GF/M

= −2GF/M
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and this completes the proof. �

Remark A.5. — By exploiting the formula of Matsumoto [17], Oh-
sawa [18] substantially derived this equality when X = C2 and g is the
Euclidean metric. Here we quote the result of Ohsawa:

Let A be a non-singular complex curve in C2 and denote by δA
the Euclidean distance to A. Take z0 ∈ A and a real normal
line ν of A at z0. Consider smooth level sets Mε := δ−1

A (ε) for
0 < ε� 1. Then, i∂∂ log δA(z) evaluated on T 1,0

z MδA(z) tends to
the Lipschitz–Killing curvature of A at z0 in the direction of ν as
z → z0 through the normal line ν.

We conclude this paper with a remark on a general restriction on the to-
tally real Ricci curvature of Levi-flat real hypersurfaces in Kähler surfaces.
In the first part of the proof of the theorem of Bejancu and Deshmukh, the
following rigidity result is used.

Proposition A.6 ([3, Remark in p.272]). — LetM be an oriented C∞-
smooth compact Levi-flat real hypersurface without boundary in a Kähler
manifold of dimension > 2. Suppose that the totally real Ricci curvature
RicM (ξ, ξ) > 0 is non-negative along M . Then RicM (ξ, ξ) = 0 everywhere
on M .

We would now like to point out that a weaker version of this proposition
follows from our adjunction-type equalities, Proposition 3.1 and A.4, and
recent studies on the Diederich–Fornaess index [1], [9].

Corollary A.7. — Let M be an oriented C3-smooth closed Levi-flat
real hypersurface in a Kähler surface (X,JX , g). Suppose that M is a
boundary of a relatively compact domain Ω b X. Then, the totally real
Ricci curvature RicM (ξ, ξ) cannot be > 0 everywhere on M .

Sketch of the proof. — Suppose RicM (ξ, ξ) > 0 on M . Proposition 3.1
and A.4 yield

4iΘ(N1,0
M )/ω = H(σT , σN )− 2GF/M

> H(σT , σN )

= 4iα ∧ α/ω + RicM (ξ, ξ)
> 4iα ∧ α/ω.

We therefore have an inequality iΘ(N1,0
M ) > iα ∧ α as quadratic forms on

T 1,0M .
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Following [2, Theorem 1.1], this inequality implies that the Diederich–
Fornaess exponent in a weak sense of the signed boundary distance function
ρ to M with respect to g is greater than 1/2, namely, −

√
|ρ| is strictly

plurisubharmonic in Ω except a compact subset. This contradicts the global
restriction on the Diederich–Fornaess index of relatively compact domains
with Levi-flat boundary proved in [1] and [9].
More precisely, since our domain Ω need not to be Stein, the global

restriction stated in these papers cannot be applied literally, however, the
argument in [9] still works in the current setting. We leave its detail to the
reader. �
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