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PERMANENCE OF APPROXIMATION PROPERTIES
FOR DISCRETE QUANTUM GROUPS

by Amaury FRESLON

Abstract. — We prove several results on the permanence of weak amenability
and the Haagerup property for discrete quantum groups. In particular, we improve
known facts on free products by allowing amalgamation over a finite quantum
subgroup. We also define a notion of relative amenability for discrete quantum
groups and link it with amenable equivalence of von Neumann algebras, giving
additional permanence properties.
Résumé. — Nous prouvons plusieurs résultats concernant la permanence de la

moyennabilité faible et de la propriété de Haagerup pour les groupes quantiques
discrets. En particulier, nous améliorons des résultats connus sur les produits libres
en autorisant l’amalgamation sur un sous-groupe quantique fini. Nous définissons
également une notion de moyennabilité relative pour les groupes quantiques discrets
et nous la relions à l’équivalence moyennable d’algèbres de von Neumann, ce qui
donne de nouvelles propriétés de permanence.

1. Introduction

A fruitful way of studying compact quantum groups is through their
dual discrete quantum group. Geometric group theory is then a rich source
of inspiration, even though results can seldom be straightforwardly trans-
ferred from the classical to the quantum setting. A very important property
from this point of view is of course amenability, the study of which cul-
minated in R. Tomatsu’s work [34]. However, some important examples of
discrete quantum groups, often called "free quantum groups", are known
not to be amenable by [4, Cor 5]. One should then look for weak versions of
amenability like the Haagerup property or weak amenability. Some of these

Keywords: Quantum groups, approximation properties, relative amenability.
Math. classification: 20G42, 46L65.



1438 Amaury FRESLON

approximation properties were investigated for unimodular discrete quan-
tum groups by J. Kraus and Z.-J. Ruan in [27], but no genuinely quantum
example was found.
There recently was a regain of interest in the subject thanks to M. Bran-

nan’s breakthrough paper [10] proving the Haagerup property for the free
orthogonal and free unitary quantum groups O+

N and U+
N . On the one hand,

his techniques were extended to free wreath products by F. Lemeux in [28]
and to more general classes of unitary easy quantum groups by the author
in [24]. On the other hand, weak amenability was also established for O+

N

and U+
N by the author in [22] and later extended, with K. De Commer and

M. Yamashita in [16] using monoidal equivalence.
At that point, it seemed reasonable to try to establish a general theory of

approximation properties for discrete quantum groups. For the Haagerup
property, this was done by M. Daws, P. Fima, A. Skalski and S. White in
[14] using the more general setting of locally compact quantum groups. For
weak amenability, this was part of the author’s PhD thesis [23]. In particu-
lar, we gave in the latter several permanence properties, i.e. group-theoretic
constructions preserving weak amenability. One of the most important is
the following one : if two discrete quantum groups are weakly amenable
with Cowling-Haagerup constant equal to 1, then their free product is again
weakly amenable with Cowling-Haagerup constant equal to 1, which was
proved in [21].
However, there are several other natural constructions to look at like

direct products or inductive limits. Moreover, the techniques of E. Ricard
and X. Qu [31], which are crucial in the proof of the aforementioned result
on free products, also work for amalgamated free products under certain
assumptions. For discrete groups, it is not very difficult to see that these
assumptions are satisfied as soon as the amalgam is finite. That this also
works for quantum groups will be proved in Section 3. Note that even if
it was certainly known to experts, the result for classical groups did not
appear yet in the literature. Let us also mention that our proofs are based
on multiplier techniques, so that they can also be applied to the Haagerup
property, improving [14, Prop 7.13] by removing the unmodularity assump-
tion.

The last permanence property which we will study is relative amenability.
In fact, this was the first to be used in combination with weak amenability
by M. Cowling and U. Haagerup in [13, Thm 6.4] to prove that lattices in
different symplectic groups yield non-isomorphic von Neumann algebras.
Their proof relied on [13, Prop 6.2] :
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PERMANENCE OF APPROXIMATION PROPERTIES 1439

Theorem (Cowling-Haagerup). — Let G be a locally compact group
and let Γ be a lattice in G. Then, Λcb(Γ) = Λcb(G), where Λcb denotes the
Cowling-Haagerup constant.

The core of the proof is the finite covolume assumption, which is how-
ever too restrictive in our context. In [17], P. Eymard defined a subgroup
H ⊂ G to be co-amenable if there exists a mean on the homogeneous
space G/H (i.e. a state on `∞(G/H)) which is invariant with respect to
the translation action of G (so lattices in locally compact groups are in
particular co-amenable). He investigated this property as a weakening of
the notion of amenability since a group is amenable if and only if all its
subgroups are co-amenable. It was proved in [2, Paragraphe 4.10] that if H
is co-amenable in G, then Λcb(H) = Λcb(G). Since this proof makes use of
the machinery of von Neumann algebras and correspondences, it may be
used as a starting point for a generalization to quantum groups, which will
be done in Section 4.
Let us briefly outline the content of this work. In Section 2, we introduce

the necessary material concerning quantum groups and their actions as
well as approximation properties. In Section 3 we give several permanence
results. The main one is the stability of weak amenability under free prod-
ucts amalgamated over finite quantum subgroups, if the Cowling-Haagerup
constant is equal to 1. Finally, Section 4 deals with relative amenability.
We define it and prove that it is equivalent to amenable equivalence of the
associated von Neumann algebras. We then study the simplest examples,
namely finite index quantum subgroups and eventually prove permanence
properties for relatively amenable discrete quantum groups.
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1440 Amaury FRESLON

2. Preliminaries

In this paper, we will denote by ⊗ the tensor product of Hilbert spaces
and the minimal tensor product of C*-algebras, and by ⊗ the tensor prod-
uct of von Neumann algebras. Once the spaces involved are clear, we will
denote tensor products of elements or maps by ⊗.

2.1. Discrete quantum groups

Discrete quantum groups will be seen as duals of compact quantum
groups in the sense of S.L. Woronowicz. We briefly present this theory as
introduced in [43], i.e. in the C*-algebraic setting. We will then explain how
one passes to the von Neumann algebraic setting, which will prove more
convenient when dealing with relative amenability (see Remark 4.15). In
the sequel, all tensor products of C*-algebras are minimal.

Definition 2.1. — A compact quantum group G is a pair (C(G),∆)
where C(G) is a unital C*-algebra and ∆ : C(G) → C(G) ⊗ C(G) is a
unital ∗-homomorphism such that

(∆⊗ ı) ◦∆ = (ı⊗∆) ◦∆

and both ∆(C(G))(1⊗C(G)) and ∆(C(G))(C(G)⊗1) span dense subspaces
of C(G)⊗ C(G).

The main feature of compact quantum groups is the existence of a Haar
state, which is both left and right invariant (see [43, Thm 1.3]).

Proposition 2.2. — Let G be a compact quantum group. Then, there
exists a unique state h on G, called the Haar state, such that for all a ∈
C(G),

(ı⊗ h) ◦∆(a) = h(a).1
(h⊗ ı) ◦∆(a) = h(a).1

Let (L2(G), ξh) be the associated GNS construction and let Cred(G) be
the image of C(G) under the GNS map, called the reduced form of G. Let
W be the unique (by [43, Thm 4.1]) unitary operator on L2(G) ⊗ L2(G)
satisfying, for all for ξ ∈ L2(G) and a ∈ C(G),

W ∗(ξ ⊗ aξh) = ∆(a)(ξ ⊗ ξh)

ANNALES DE L’INSTITUT FOURIER
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and let Ŵ := ΣW ∗Σ. Then, W is a multiplicative unitary in the sense of
[3], i.e. W12W13W23 = W23W12 and we have the following equalities :

Cred(G) = span(ı⊗ B(L2(G))∗)(W ) and ∆(x) = W ∗(1⊗ x)W

for all x ∈ Cred(G). Moreover, we can define the dual discrete quantum
group Ĝ = (C0(Ĝ), ∆̂) by

C0(Ĝ) = span(B(L2(G))∗ ⊗ ı)(W ) and ∆̂(x) = Ŵ ∗(1⊗ x)Ŵ

for all x ∈ C0(G). The two von Neumann algebras associated to these
quantum groups are

L∞(G) = Cred(G)′′ and `∞(Ĝ) = C0(Ĝ)′′

where the bicommutants are taken in B(L2(G)). The coproducts extend
to normal maps on these von Neumann algebras and one can prove that
W ∈ L∞(G)⊗`∞(Ĝ). Moreover, the Haar state of G extends to a normal
state on L∞(G). In order to give an alternative description of `∞(Ĝ), we
need to define representations of quantum groups.

Definition 2.3. — Let G be a compact quantum group.

• A representation of G on a Hilbert space H is an invertible operator
U ∈ L∞(G)⊗B(H) such that (∆⊗ ı)(U) = U13U23.

• A representation of Ĝ on a Hilbert space H is an invertible operator
U ∈ `∞(Ĝ)⊗B(H) such that (∆̂⊗ ı)(U) = U13U23.

• A representation is said to be unitary if the operator U is unitary.

The linear span of coefficients of unitary representations of G forms a
Hopf-∗-algebra Pol(G) which is dense in C(G). Let Irr(G) be the set of
isomorphism classes of irreducible unitary representations of G (which are
all finite-dimensional by [43, Thm 1.2]). If α ∈ Irr(G), we will denote by
uα a representative of α and by Hα the finite-dimensional Hilbert space on
which it acts. There are ∗-isomorphisms

C0(Ĝ) =
⊕

α∈Irr(G)

B(Hα) and `∞(Ĝ) =
∏

α∈Irr(G)

B(Hα).

The minimal central projection in `∞(Ĝ) corresponding to the identity of
B(Hα) will be denoted by pα and there exist positive matrices (Qα)α∈Irr(G)

TOME 65 (2015), FASCICULE 4



1442 Amaury FRESLON

such that the two normal semi-finite faithful (in short n.s.f.) weights

hL : x 7→
∑

α∈Irr(G)

Tr(Qα) Tr(Qα(xpα))(2.1)

hR : x 7→
∑

α∈Irr(G)

Tr(Q−1
α ) Tr(Q−1

α (xpα))(2.2)

on `∞(Ĝ) are respectively left and right invariant. These so-called Haar
weights are both unique up to multiplication by a scalar.

2.2. Actions on von Neumann algebras

Actions of quantum groups can be defined both on C*-algebras and on
von Neumann algebras. However, only the latter will be used in this paper.
The main feature, which will prove of importance later on, is the existence
of a unitary implementation. The standard reference on this subject is [36].

Definition 2.4. — A (left) action of Ĝ on a von Neumann algebra M
is a unital normal ∗-homomorphism ρ : M → `∞(Ĝ)⊗M such that

(∆̂⊗ ı) ◦ ρ = (ı⊗ ρ) ◦ ρ.

The fixed point algebra of the action ρ is the subalgebra Mρ = {x ∈
M,ρ(x) = 1 ⊗ x}. A subalgebra N of M is said to be stable under the
action if ρ(N) ⊂ `∞(Ĝ)⊗N . In that case, there is a restricted action of Ĝ
on N which will still be denoted by ρ. The crossed-product construction in
this setting generalizes the classical definition.

Definition 2.5. — Let Ĝ be a discrete quantum group acting on a von
Neumann algebra M . The crossed-product Ĝ nρ M is the von Neumann
subalgebra of B(L2(G))⊗M generated by ρ(M) and L∞(G)⊗ 1.

The crossed-product is endowed with a dual action ρ̂ of Gop (i.e. with
respect to the flipped coproduct) defined by{

ρ̂(ρ(m)) = 1⊗ ρ(m)
ρ̂(a⊗ 1) = [(σ ◦∆)(a)]⊗ 1

for all m ∈ M and a ∈ L∞(G). Let Ĝ be a discrete quantum group and
let M be a von Neumann algebra together with a fixed n.s.f. weight θ with
GNS construction (K, ı,Λθ). It is proven in [36] that any action of Ĝ on M
is unitarily implementable, i.e. there exists a unitary

Uρ ∈ `∞(G)⊗B(K)
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which is the adjoint of a representation of Ĝ and such that

ρ(x) = Uρ(1⊗ x)(Uρ)∗

for all x ∈M .

2.3. Quantum subgroups and quotients

Let us give some details concerning the notions of discrete quantum
subgroups and quotients, which will appear in all the constructions of this
work. Let G be a compact quantum group and let H be another compact
quantum group such that C(H) ⊂ C(G) and the coproduct of H is given
by the restriction of the coproduct of G. Then, Ĥ is said to be a discrete
quantum subgroup of Ĝ. The following important fact was proved in [39,
Prop 2.2].

Proposition 2.6 (Vergnioux). — Let Ĝ be a discrete quantum group,
let Ĥ be a discrete quantum subgroup and denote the respective Haar
states of G and H by hG and hH. Then, there exists a faithful conditional
expectation EH : Cred(G)→ Cred(H) such that hH ◦EH = hG. Moreover, EH
extends to a faithful conditional expectation from L∞(G) to L∞(H), still
denoted by EH.

Note that the inclusion C(H) ⊂ C(G) extends to inclusions of matrix
algebras Mn(C(H)) ⊂ Mn(C(G)) so that any finite-dimensional represen-
tation of H can be seen as a finite-dimensional representation of G. This
inclusion obviously preserves intertwiners, so that we have an inclusion
Irr(H) ⊂ Irr(G). Let us define a central projection

pH =
∑

α∈Irr(H)

pα ∈ `∞(Ĝ).

We can use pH to describe the structure of Ĥ from the structure of Ĝ (see
[18, Prop 2.3] for details).

Proposition 2.7. — With the notations above, we have
(1) ∆̂(pH)(pH ⊗ 1) = pH ⊗ pH
(2) `∞(Ĥ) = pH`

∞(Ĝ)
(3) ∆̂H(a) = ∆̂(a)(pH ⊗ pH)
(4) If hL is a left Haar weight for Ĝ, then hL,H : x 7→ hL(xpH) is a left

Haar weight for Ĥ.

TOME 65 (2015), FASCICULE 4



1444 Amaury FRESLON

It is easy to see, using the above statements, that the map a 7→ ∆̂(a)(1⊗
pH) defines a right action (right actions of discrete quantum groups are
defined in the same way as left actions with the obvious modifications) of
Ĥ on `∞(Ĝ). Let `∞(Ĝ/Ĥ) be the fixed point subalgebra for this action.
Using Proposition 2.7 again, we see that the restriction of the coproduct ∆̂
to `∞(Ĝ/Ĥ) yields a left action of Ĝ on this von Neumann algebra which
will be denoted by τ . Let hL be the left-invariant weight of Ĝ defined by
Equation (2.1). It is known from [18, Prop 2.4] that the map

T : x 7→ (ı⊗ hL,H)[∆̂(x)(1⊗ pH)]

is a normal faithful operator-valued weight from `∞(Ĝ) to `∞(Ĝ/Ĥ) and
that there exists a n.s.f. weight θ on `∞(Ĝ/Ĥ) such that hL = θ ◦T . Let U
be the unitary implementation of the action τ with respect to the weight θ.
Then, R = U∗ will be called the quasi-regular representation of Ĝ modulo
Ĥ.

Remark 2.8. — By a straighforward calculation, we see that when both
sides are well-defined,

τ ◦ T (x) = (ı⊗ ı⊗ hL,H)[(∆̂⊗ ı)(∆̂(x)(1⊗ pH))] = (ı⊗ T ) ◦ τ(x).

The weight θ can therefore be interpreted as an almost invariant measure
on the quotient space with respect to the action τ .

2.4. Approximation properties

Two approximation properties will be considered in this paper : weak
amenability and the Haagerup property. They have both been defined in
earlier works and enjoy various characterizations (see for example [27], [21]
and [14]). For our purpose, the point of view ofmultipliers is the best suited.
We refer the reader to [11, Ch 12] for an introduction to approximation
properties for classical groups, which motivates the following definitions.

Definition 2.9. — Let Ĝ be a discrete quantum group and a ∈ `∞(Ĝ).
The left multiplier associated to a is the mapma : Pol(G)→ Pol(G) defined
by

(ma ⊗ ı)(uα) = (1⊗ apα)uα,
for every irreducible representation α of G. A net (at) of elements of `∞(Ĝ)
is said to converge pointwise to a ∈ `∞(Ĝ) if for every irreducible repre-
sentation α of G, atpα → apα in B(Hα). An element a ∈ `∞(Ĝ) is said to
have finite support if apα = 0 for all but finitely many α ∈ Irr(G).

ANNALES DE L’INSTITUT FOURIER



PERMANENCE OF APPROXIMATION PROPERTIES 1445

Definition 2.10. — A discrete quantum group Ĝ is said to be weakly
amenable if there exists a net (at) of elements of `∞(Ĝ) such that

• at has finite support for all t.
• (at) converges pointwise to 1.
• K := lim supt ‖mat‖cb is finite.

The lower bound of the constants K for all nets satisfying these properties
is denoted by Λcb(Ĝ) and called the Cowling-Haagerup constant of Ĝ. By
convention, Λcb(Ĝ) =∞ if Ĝ is not weakly amenable.

Definition 2.11. — A discrete quantum group Ĝ is said to have the
Haagerup property if there exists a net (at) of elements of `∞(Ĝ) such that

• at ∈ C0(Ĝ) for all t.
• (at) converges pointwise to 1.
• mat

is completely positive for all t.

As in the classical case, these properties are connected to correspond-
ing approximation properties for the associated operator algebras (see for
instance [11, Ch 12] for the definitions). However, the link is not fully un-
derstood yet when the quantum group is not unimodular. Let us therefore
only state results in the unimodular case (i.e. when the Haar state is a
trace), which were proved in [27, Thm 5.14].

Theorem 2.12 (Kraus-Ruan). — Let Ĝ be a unimodular discrete quan-
tum group. Then,

• Ĝ has the Haagerup property⇔ Cred(G) has the Haagerup property
relative to h ⇔ L∞(G) has the Haagerup property.

• Λcb(Ĝ) = Λcb(Cred(G)) = Λcb(L∞(G)).

3. Permanence results

This section is divided into two parts. In the first one, we will prove per-
manence of approximation properties under several elementary construc-
tions. In the second part, we will extend the result of [21] to free products
amalgamated over a finite quantum subgroup. The result also holds for the
Haagerup property, thus improving [14, Thm 7.8] by removing the unimod-
ularity assumption.

3.1. First results

We start with the simplest case, namely passing to quantum subgroups.
The permanence of the Haagerup property by passing to discrete quantum

TOME 65 (2015), FASCICULE 4
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subgroups (or more generally to closed quantum subgroups of a locally
compact quantum group) was proved in [14, Prop 5.7]. We therefore only
consider weak amenability.

Proposition 3.1. — Let Ĝ be a weakly amenable discrete quantum
group and let Ĥ be a discrete quantum subgroup of Ĝ. Then, Ĥ is weakly
amenable and Λcb(Ĥ) 6 Λcb(Ĝ).

Proof. — Let ε > 0 and let (at) be a net of finitely supported elements in
`∞(Ĝ) converging pointwise to 1 and such that lim sup ‖mat‖cb 6 Λcb(Ĝ)+
ε. Then, using the notations of Proposition 2.7, (atpH) is a net of finitely
supported elements in `∞(Ĥ) which converges pointwise to 1. Using the
conditional expectation of Proposition 2.6, we see that ‖matpH‖cb = ‖EH ◦
mat
‖cb 6 ‖mat

‖cb. Thus, Λcb(Ĥ) 6 Λcb(Ĝ) + ε. �

It is proved in [42] that if Ĝ and Ĥ are two discrete quantum groups, then
the minimal tensor product C(G) ⊗ C(H) can be turned into a compact
quantum group in a natural way. Its dual discrete quantum group is denoted
by Ĝ× Ĥ and called the direct product of Ĝ and Ĥ.

Proposition 3.2. — Let Ĝ and Ĥ be two discrete quantum groups.
Then, Ĝ × Ĥ is weakly amenable if and only if both Ĝ and Ĥ are weakly
amenable. Moreover,

max(Λcb(Ĝ),Λcb(Ĥ)) 6 Λcb(Ĝ× Ĥ) 6 Λcb(Ĝ)Λcb(Ĥ).

Proof. — The "only if" part is a direct consequence of Proposition 3.1, as
well as the first inequality. To prove the second inequality, let ε > 0 and let
(at) and (bs) be nets of finitely supported elements respectively in `∞(Ĝ)
and in `∞(Ĥ) converging pointwise to 1 and such that lim sup ‖mat

‖cb 6
Λcb(Ĝ) + ε and lim sup ‖mbs

‖cb 6 Λcb(Ĥ) + ε. Set

c(t,s) = at ⊗ bs ∈ `∞(Ĝ× Ĥ).

From the description of the representation theory of direct products given
in [42, Thm 2.11], we see that (c(t,s)) is a net of finitely supported elements
converging pointwise to 1. Moreover, since mc(t,s) = mat ⊗ mbs , we have
Λcb(Ĝ× Ĥ) 6 (Λcb(Ĝ) + ε)(Λcb(Ĥ) + ε), which concludes the proof. �

Remark 3.3. — It is a general fact that for any two C*-algebras A and
B, Λcb(A ⊗ B) = Λcb(A)Λcb(B) (see e.g. [11, Thm 12.3.13]). Hence, we
always have

Λcb(Cred(G⊗H)) = Λcb(Cred(G))Λcb(Cred(H)).

ANNALES DE L’INSTITUT FOURIER
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Moreover, Theorem 2.12 implies that Λcb(Ĝ× Ĥ) = Λcb(Ĝ)Λcb(Ĥ) as soon
as the discrete quantum groups are unimodular. It is very likely that this
equality holds in general but we were not able to prove it.

A similar statement holds for the Haagerup property.

Proposition 3.4. — Let Ĝ and Ĥ be two discrete quantum groups.
Then, Ĝ× Ĥ has the Haagerup property if and only if both Ĝ and Ĥ have
the Haagerup property.

Proof. — The "only if" part comes from stability under passing to quan-
tum subgroups.To prove the "if" part, one can build, as in the proof of
Proposition 3.2, multipliers on Ĝ × Ĥ by tensoring multipliers on the two
quantum groups. To finish the proof, note that a tensor product of unital
completely positive maps is again unital and completely positive and that
the tensor product of two elements in C0(Ĝ) and C0(Ĥ) respectively lies in
C0(Ĝ× Ĥ). �

The third construction we will study is inductive limits of discrete quan-
tum groups, or equivalently inverse limits of compact quantum groups. It
was proved in [41, Prop 3.1] that given a family of discrete quantum groups
(Ĝi)i with connecting maps πij : C(Gi)→ C(Gj) intertwining the coprod-
ucts and satisfying πjk ◦ πij = πik, there is a natural compact quantum
group structure on the inductive limit C*-algebra. Its dual discrete quan-
tum group is called the inductive limit of the system (Ĝi, πij). In order to
study approximation properties, we first need to understand its represen-
tation theory. Since we were not able to find a reference for this, we give a
statement even though it is certainly well-known to experts.

Proposition 3.5. — Let (Ĝi, πij) be an inductive system of discrete
quantum groups with inductive limit Ĝ and assume that all the maps πij
are injective. Then, there is a one-to-one correspondence between the irre-
ducible representations of G and the increasing union of the sets of irre-
ducible representations of the Gi’s.

Proof. — The maps πij being injective, we can identify each Ĝi with a
discrete quantum subgroup of the Ĝj ’s for j > i. This gives inclusions of
the sets of irreducible representations and we denote by S the increasing
union of these sets. We can also identify each C(Gi) with a C*-subalgebra
of C(G) in such a way that⋃

C(Gi) = C(G).

TOME 65 (2015), FASCICULE 4
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Under this identification, the discrete quantum groups Ĝi are quantum
subgroups of Ĝ, hence any irreducible representation of some Gi yields
an irreducible representation of G and we have proved that S ⊂ Irr(G).
Moreover, the algebra

A :=
⋃
i

Pol(Gi)

is a dense Hopf-∗-subalgebra of C(G) spanned by coefficients of irreducible
representations. Because of Schur’s orthogonality relations, the density im-
plies that the coefficients of all irreducible representations of G are in A,
i.e. A = Pol(G). This means that any irreducible representation of G comes
from an element of S and Irr(G) = S. �

We can now prove the permanence of weak amenability under this con-
struction.

Proposition 3.6. — Let (Ĝi, πij) be an inductive system of discrete
quantum groups with inductive limit Ĝ and limit maps πi : C(Gi)→ C(G).
Then, if all the maps πi are injective,

sup
i

Λcb(Ĝi) = Λcb(Ĝ).

In particular, the inductive limit is weakly amenable if and only if the
quantum groups are all weakly amenable with uniformly bounded Cowling-
Haagerup constant.

Proof. — The injectivity of the limit maps ensures that each Ĝi can be
seen as a discrete quantum subgroup of G. Hence, Corollary 3.1 gives the
inequality

sup
i

Λcb(Ĝi) 6 Λcb(Ĝ).

To prove the converse inequality, fix an ε > 0 and let (ait)t be a net of finitely
supported elements in `∞(Ĝi) converging pointwise to 1 and such that
lim sup ‖mai

t
‖cb 6 Λcb(Ĝi) + ε. Using the description of the representation

theory of inductive limits given by Proposition 3.5, we can see (ait)(i,t) as
a net of finitely supported elements of `∞(Ĝ) converging pointwise to 1 by
setting aitpα = 0 for any α /∈ Irr(Gi). The associated multiplier is mai

t
◦EGi

,
so that it has the same completely bounded norm as mai

t
. The conditions

on the completely bounded norms then gives Λcb(Ĝ) 6 supi Λcb(Ĝi)+ε. �

Proposition 3.7. — Let (Ĝi, πij) be an inductive system of discrete
quantum groups with inductive limit Ĝ and limit maps πi : C(Gi)→ C(G).
Then, if all the maps πi are injective, Ĝ has the Haagerup property if and
only if all the quantum groups Gi have the Haagerup property.
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Proof. — The "only if" part comes from stability under passing to quan-
tum subgroups. To prove the "if" part, we simply have to prove that com-
plete positivity is preserved when a multiplier is extended to the inductive
limit. This comes from the fact that the multiplier is equal tomai

t
◦EGi

. �

3.2. Amalgamated free products

Consider two discrete quantum groups Ĝ1 and Ĝ2 together with a com-
mon discrete quantum subgroup Ĥ and let us consider the C*-algebra A
obtained by taking the reduced amalgamated free product Cred(G1)∗Cred(H)
Cred(G2) with respect to the conditional expectations given by 2.6. The co-
products of G1 and G2 induce a map ∆ on A which is shown in [41] to be a
coproduct turning (A,∆) into a compact quantum group. In analogy with
the classical case, the dual of A will be called the free product of Ĝ1 and
Ĝ2 amalgamated over Ĥ.

It is well-known that a free product of amenable groups need not be
amenable. However, it was proved in [14, Thm 7.8] that the Haagerup
property passes to free products of discrete quantum groups and it was
proved in [21] that a free product of discrete quantum groups with Cowling-
Haagerup constant equal to 1 again has Cowling-Haagerup constant equal
to 1. Our goal in this subsection is to extend those two results by allowing
amalgamation over a finite quantum subgroup. Note that such a statement
for the Haagerup property was proved in [14, Prop 7.13] when the quantum
groups are unimodular, using the associated von Neumann algebras. Our
proof does not require unimodularity, but the price to pay is dealing all the
way long with multipliers. For this, we need the following generalization of
Gilbert’s criterion proved in [15, Prop 4.1 and Thm 4.2].

Theorem 3.8 (Daws). — Let Ĝ be a discrete quantum group and let
a ∈ `∞(Ĝ). Then, ma extends to a completely bounded multiplier on
B(L2(G)) if and only if there exists a Hilbert space K and two maps
ξ, η ∈ B(L2(G), L2(G)⊗K) such that ‖ξ‖‖η‖ = ‖ma‖cb and

(3.1) (1⊗ η)∗Ŵ ∗12(1⊗ ξ)Ŵ = a⊗ 1.

Moreover, we then have ma(x) = η∗(x⊗ 1)ξ.

Let us give a proof of the stability of the Haagerup property under free
products in the language of multipliers, in order to make the extension to
the amalgamated case more clear.

TOME 65 (2015), FASCICULE 4



1450 Amaury FRESLON

Proposition 3.9. — Let (Ĝi)i∈I be a family of discrete quantum groups
with the Haagerup property. Then, ∗iĜi has the Haagerup property.

Proof. — It is clearly enough to prove the result for two quantum groups
G1 and G2. First note that according to [15, Thm 5.9], the complete pos-
itivity of a multiplier ma implies that a ∈ C0(Ĝi) can in fact be chosen
to be of the form (ωa ⊗ ı)(Wi) for some state ωa on the envelopping C*-
algebra Cmax(Gi) of Pol(Gi). This means that if we consider two elements
a ∈ C0(Ĝ1) and b ∈ C0(Ĝ2), then the free product ma ∗mb of completely
positive maps coresponds to the multiplier mc with

c = (ωc ⊗ ı)(W ),

where ωc is the free product of the states ωa and ωb. So let us take nets
(ωat⊗ı)(W1) and (ωbt⊗ı)(W2) implementing the Haagerup property for Ĝ1
and Ĝ2 respectively. Using the remark above, we get a net of elements ct =
(ωct
⊗ ı)(W ) converging pointwise to the identity and yielding completely

positive multipliers (because ωct
is again a state). Now, [8, Thm 3.9] asserts

that the free product map mct = mat ∗mbt is L2-compact as soon as mat

and mbt are. If K̂ = Ĝ1 ∗ Ĝ2, we have for any α ∈ Irr(K),

(h⊗ ı)((mct ⊗ ı)(uα)(uα)∗) = (h⊗ ı)((ωct ⊗ ı⊗ ı)(uα13u
α
23)(uα)∗)

= (h⊗ ı)((ωct
⊗ ı⊗ ı)[uα13u

α
23(uα23)∗])

= (h⊗ ı)((ωct
⊗ ı⊗ ı)(uα13))

= ctpα.

This and the fact that mct
is L2-compact prove that ct ∈ C0(Ĝ1 ∗ Ĝ2),

concluding the proof. �

The strategy to handle the amalgamated case is to produce multipliers
which, while implementing the desired approximation property, are the
identity on the amalgam. Here finiteness proves crucial through the next
Lemma. If Ĥ is a finite quantum group, it is unimodular and we will denote
by ĥ the unique Haar weight on `∞(Ĥ) which is both left and right invariant,
i.e. ĥ(a) =

∑
α Tr(apα). We first define the averaging process.

Definition 3.10. — Let Ĝ be a discrete quantum group, Ĥ a finite
quantum subgroup of Ĝ and let a ∈ `∞(Ĝ). The averaging of a over Ĥ is
the element c ∈ `∞(Ĝ) defined by

c = (ĥ⊗ ı)[(pH ⊗ ı)∆̂(a)].

We now prove that this averaging process is well-behaved with respect
to completely bounded norms and that it yields the identity on Ĥ.
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Lemma 3.11. — The averaging of a over Ĥ satisfies the inequality
‖mc‖cb 6 |ĥ(pH)|‖ma‖cb. Moreover, mc is a multiple of the identity on
Cred(H) ⊂ Cred(G).

Proof. — If η, ξ : L2(G)→ L2(G)⊗K are the maps coming from Theo-
rem 3.8, we set

(3.2) ξ′ = (ĥ⊗ ı⊗ ı)[Ŵ ∗12(pH ⊗ ξ)Ŵ ].

Let us make the meaning of this definition clear : if x ∈ `2(G) ⊗ L2(G),
then Ŵx belongs to the same space so that we can apply ξ to its second
leg, yielding an element y ∈ `2(Ĝ) ⊗ L2(G) ⊗ K to which we can apply
Ŵ ∗12. Now, taking pH into account we see that the term inside the brackets
is a linear map from `2(H) ⊗ L2(G) to `2(H) ⊗ L2(G) ⊗ K. Eventually,
applying ĥ to the first leg (note that it is defined on all B(`2(Ĥ)) because
it is finite-dimensional) gives a map from L2(G) to L2(G)⊗K.

We are going to prove that c ⊗ 1 = (1 ⊗ η∗)Ŵ ∗12(1 ⊗ ξ′)Ŵ , which will
imply our claim on the completely bounded norm since ‖ξ′‖ 6 |ĥ(pH)|‖ξ‖.
First note that since

(∆̂⊗ ı)(x) = Ŵ ∗12(1⊗ x)Ŵ12,

we have

∆̂(a)⊗ 1 = Ŵ ∗12(1⊗ 1⊗ η∗)(1⊗ Ŵ ∗12)(1⊗ 1⊗ ξ)(1⊗ Ŵ )Ŵ12

= (1⊗ 1⊗ η∗)(Ŵ ∗12 ⊗ 1)(1⊗ Ŵ ∗12)(Ŵ12 ⊗ 1)

× (1⊗ 1⊗ ξ)Ŵ ∗12Ŵ23Ŵ12

= (1⊗ 1⊗ η∗)(Ŵ ∗23Ŵ
∗
13 ⊗ 1)(1⊗ 1⊗ ξ)Ŵ13Ŵ23

where we used twice the pentagonal equation for Ŵ . Applying ĥ(pH .) to
the first leg yields the result. Now, if α ∈ Irr(H), we get using the invariance
of ĥ,

cpα = (ĥ⊗ ı)[(pH ⊗ ı)∆̂(a)]pα

= (ĥ⊗ ı)[(pH ⊗ pH)∆̂(a)]pα

= (ĥ⊗ ı)[∆̂(pHa)]pα
= ĥ(pHa)pα

and mc = ĥ(pHa) Id on Cred(H). �

Using this averaging technique, we get the result for the Haagerup prop-
erty.
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Theorem 3.12. — Let (Ĝi)i∈I be a family of discrete quantum groups
with the Haagerup property and let Ĥ be a common finite quantum sub-
group. Then, ∗ĤĜi has the Haagerup property.

Proof. — We first prove that completely positive multipliers on Cred(Gi)
can be averaged so that they become the identity on Cred(H). Let us first
recall that by [27, Prop 2.6], if c ∈ `∞(Ĝi) satisfies mc(x) = η∗(x⊗ 1)ξ for
some maps ξ, η ∈ B(L2(Gi), L2(Gi)⊗K), then

m
Ŝ(c)∗(x) = ξ∗(x⊗ 1)η,

where Ŝ denotes the antipode of Ĝi. Let (at) be a net of elements in C0(Ĝi)
converging pointwise to 1 and such that mat

is unital and completely posi-
tive. Let bt be the averaging of at over Ĥ. Average again Ŝ(bt)∗ to produce a
third element b′t. Then, by Lemma 3.11, (b′t) is a net of elements in C0(Ĝi)
converging pointwise to 1 and such that mb′t

is the identity on Cred(H). In
the case of a unital completely positive multiplier, the proof of Theorem 3.8
yields a map ξ : L2(Gi)→ L2(Gi)⊗K such that mat

(x) = ξ∗(x⊗ ı)ξ. This
implies that mb′t

(x) = (ξ′)∗(x ⊗ 1)ξ′ is unital and completely positive.
Moreover, the conditional expectation EH ◦ mb′t

is invariant with respect
to the Haar state, because mb′t

is invariant. Since, by [39, Prop 2.2], EH
is the unique conditional expectation satisfying this invariance, we have
EH ◦mb′t

= EH.
Now that all the multipliers are the identity on Cred(H) and preserve the

conditional expectation EH, their amalgamated free product makes sense
(see for example [11, Thm 4.8.5] for details on the construction of the free
product of u.c.p. maps). We can then follow the proof of Proposition 3.9
to conclude. �

Let us turn to weak amenability, which is more involved, and let us check
that our averaging technique preserves weak amenability.

Lemma 3.13. — Let Ĝ be a discrete quantum group, Ĥ a finite quan-
tum subgroup of Ĝ and let (at) be a net of finitely supported elements in
`∞(Ĝ) converging pointwise to 1. Then, there exists a net (bt) of finite-rank
elements in `∞(Ĝ) converging pointwise to 1, such that

lim sup
t
‖mbt

‖cb 6 lim sup
t
‖mat

‖cb

and mbt is the identity on Cred(H) ⊂ Cred(G).

Proof. — Let ct be the averaging of at over Ĥ and let Supp(at) be the
set of equivalence classes of irreducible representations α of G such that
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atpα 6= 0. Then,

ctpα = (ĥ⊗ ı)
[
(pH ⊗ pα)∆̂(a)

]
= (ĥ⊗ ı)

 ∑
β∈Irr(H)

∑
γ∈Supp(a)

∆̂(pγ)(pβ ⊗ pα)∆̂(a)


By definition, ∆̂(pγ)(pβ ⊗ pα) 6= 0 if and only if γ ⊂ β ⊗ α, which by
Frobenius reciprocity (see e.g. [33, Prop 3.1.11]) is equivalent to α ⊂ γ⊗β.
Hence, ctpα is non-zero only if α belongs to the finite set⋃

β∈Irr(H)

⋃
γ∈Supp(a)

{α ∈ Irr(G), α ⊂ γ ⊗ β}

and ct has finite support. The same holds for

bt = 1
ĥ(pHat)

ct,

which induces multipliers mbt which are the identity on Cred(H).
Assume now that at converges pointwise to 1, and note that the inequal-

ity of the completely bounded norms is obvious from Lemma 3.11. Fix
β ∈ Irr(G), ε > 0 and let D be the (finite) set of γ ∈ Irr(G) which are
contained in α ⊗ β for some α ∈ Irr(H). We denote by pD the sum of the
projections pγ for γ ∈ D. Let t be such that :

• ‖atpD − pD‖ 6
ε

4
• ‖atpH − pH‖ 6

ε

4
• |ĥ(atpH)| > 1

2
Then,

‖btpβ − pβ‖ = ‖|ĥ(atpH)|−1(ĥ⊗ ı)[(pH ⊗ pβ)∆̂(at)]− pβ‖

= |ĥ(atpH)|−1‖(ĥ⊗ ı)[(pH ⊗ pβ)∆̂(at)− (atpH ⊗ pβ)]‖

= |ĥ(atpH)|−1‖(ĥ⊗ ı)[(pH ⊗ pβ)∆̂(atpD)− (atpH ⊗ pβ)]‖

6 |ĥ(atpH)|−1‖(ĥ⊗ ı)[(pH ⊗ pβ)∆̂(atpD − pD)]‖

+ |ĥ(atpH)|−1‖(ĥ⊗ ı)[(pH ⊗ pβ)∆̂(pD)− pH ⊗ pβ ]‖

+ |ĥ(atpH)|−1‖(ĥ⊗ ı)[(pH − atpH)⊗ pβ)]‖

6 |ĥ(atpH)|−1(‖atpD − pD‖+ ‖atpH − pH‖)

6 2
( ε

4 + ε

4

)
= ε
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using the fact that (pH ⊗ pβ)∆̂(pD) = pH ⊗ pβ . �

From this it is easy to prove using the amalgamated version of [31, Thm
4.3] that if the quantum groups Gi are amenable, then the free product
amalgamated over a finite quantum subgroup is weakly amenable with
Cowling-Haagerup constant equal to 1, thus generalizing a result of M.
Bożejko and M.A. Picardello [9] (see [23, Thm 2.3.15] for a proof). When the
quantum groups are not amenable but are weakly amenable with Cowling-
Haagerup constant equal to 1, we need the full power of the work of E.
Ricard and X. Qu. Let us introduce some notations : if A is a C*-algebra
with a conditional expectation E, we denote by L2(A,E) (resp. L2(A,E)op)
the Hilbert module obtained by the GNS constructions using the inner
product 〈a, b〉 = E(ab∗) (resp. 〈a, b〉 = E(a∗b)).

Theorem 3.14 (Ricard, Xu). — Let C be a C*-algebra, let (Bi)i∈I
be unital C*-algebras together with GNS-faithful conditional expectations
EBi

: Bi → C. Let Ai ⊂ Bi be unital C*-subalgebras with GNS-faithful
conditional expectations EAi

: Ai → C which are the restrictions of EBi
.

Assume that for each i, there is a net of finite-rank maps (Vi,j)j on Ai
converging to the identity pointwise, satisfying EAi

◦ Vi,j = EAi
and such

that lim supj ‖Vi,j‖cb = 1. Assume moreover that for each pair (i, j), there is
a completely positive unital map Ui,j : Ai → Bi satisfying EBi

◦Ui,j = EAi

and such that

‖Vi,j − Ui,j‖cb + ‖Vi,j − Ui,j‖B(L2(Ai,EAi
),L2(Bi,EBi

))

+ ‖Vi,j − Ui,j‖B(L2(Ai,EAi
)op,L2(Bi,EBi

)op) →
j

0.

Assume moreover that the maps Vi,j and Ui,j are the identity on C for all
i, j. Then, the reduced amalgamated free product ∗C(Ai,EAi) has Cowling-
Haagerup constant equal to 1.

Remark 3.15. — This statement is the same as [31, Prop 4.11] with
states replaced by conditional expectations. This amalgamated version does
not appear explicitly in [31] but is a straightforward consequence of the
amalgamated version of the Khintchine inequality proved in [31, Sec 5].
The idea of the proof is that the "free product" of the maps Vi,j , which
does not make sense a priori can be defined using the free product of the
u.c.p. maps Ui,j and the approximation assumption. Let us note that it
is necessary to have bigger C*-algebras Bi as ranges for the completely
positive maps Ui,j , otherwise we would be assuming that the C*-algebras
Ai are nuclear.
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Based on the non-amalgamated case [21], one can try the following strat-
egy : if (at) is a net of elements implementing weak amenability, first average
at and then S(at)∗ over Ĥ to produce an element b′t in `∞(Ĝ) and two maps
η′t and ξ′t in B(L2(G), L2(G)⊗K) satisfying

mb′t
(x) = (η′t)∗(x⊗ 1)ξ′t

and such that the multiplier mb′t
is the identity on Cred(H). Then, mim-

icking [21, Lem 4.3], setting γ′t = (η′t + ξ′t)/2 and γ̃′t = γ′t|γ′t|−1, the unital
completely positive approximation we are looking for should be

M
γ̃′t

(x) = (γ̃′t)∗(x⊗ 1)γ̃′t.

Note that ‖1 − (γ′t)∗γ′t‖ 6 ‖mb′t
‖cb − 1 so that (γ′t)∗γ′t is invertible if mb′t

is sufficiently close to the identity in completely bounded norm. The prob-
lem is then to prove that this operator is the identity on Cred(H). We do
not know whether this fact holds or not. However, we can use again an
averaging trick, this time at the level of C*-algebras, to build a new unital
completely positive approximation which will be the identity on Cred(H).
If T : Cred(G)→ B(L2(G)) is a linear map, we define a linear map RĤ(T )
by

RĤ(T ) : x 7→
∫
U(Cred(H))

T (xv∗)vdv,

where the integration is done with respect to the normalized Haar measure
of the compact group U(Cred(H)) (recall that Cred(H) is finite-dimensional).
Similarly, we define a linear map LĤ(T ) by

LĤ(T ) : x 7→
∫
U(Cred(H))

u∗T (ux)du.

Let us give some elementary properties of these two operations.

Lemma 3.16. — If T is completely bounded, then RĤ(T ) (resp. LĤ(T ))
is also completely bounded with ‖RĤ(T )‖cb 6 ‖T‖cb (resp. ‖LĤ(T )‖cb 6
‖T‖cb). Moreover, for any a, b ∈ Cred(H),

(3.3) RĤ ◦ LĤ(T )(axb) = a[RĤ ◦ LĤ(T )(x)]b.
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Proof. — Let us prove the first part for RĤ(T ) (the computation is sim-
ilar for LĤ(T )). For any integer n and any x ∈ Cred(G)⊗Mn(C), we have

‖(RĤ(T )⊗ IdMn(C))(x)‖ 6
∫
U(Cred(H))

‖(T ⊗ IdMn(C))(x(v∗ ⊗ 1))(v ⊗ 1)‖dv

6
∫
U(Cred(H))

‖T‖cb‖x‖dv

= ‖T‖cb‖x‖.

Writing any element in Cred(H) as a linear combination of four unitaries
(up to a scalar), we can restrict ourselves to prove Equation (3.3) when
a and b are unitaries. In that case, the changes of variables u = u′a and
v = v′b yield

RĤ ◦ LĤ(T )(a∗xb) =
∫∫
U(Cred(H))×U(Cred(H))

u∗T (ua∗xbv∗)vdudv

=
∫∫
U(Cred(H))×U(Cred(H))

a∗(u′)∗T (u′x(v′)∗)v′bdu′dv′

= a∗[RĤ ◦ LĤ(T )(x)]b.

�

With this in hand, we will be able to average the completely positive
maps approximating the multipliers. Let us check that this averaging be-
haves nicely on the multipliers mb′(t).

Lemma 3.17. — The maps At = RĤ ◦ LĤ(mb′(t)) have finite rank, con-
verge pointwise to the identity, are equal to the identity on Cred(H) and
satisfy lim supt ‖At‖cb = lim supt ‖mb′(t)‖cb.

Proof. — The pointwise convergence, the identity property and the
bound on the completely bounded norms follow from the construction and
Lemma 3.16. To prove that the rank is finite, first note that if α ∈ Irr(G)
and u, v ∈ Cred(H), then u(uαi,j)v belongs to the linear span of coefficients
of irreducible subrepresentations γ of β1⊗α⊗β2 for β1, β2 ∈ Irr(H). Thus,
by Frobenius reciprocity,

At(uαi,j) =
∫∫
U(Cred(H))×U(Cred(H))

u∗mb′(t)(u(uαi,j)v∗)vdudv

is equal to 0 as soon as α is not in the finite the set⋃
β1,β2∈Irr(H)

⋃
γ∈Supp(b′(t))

{α ∈ Irr(G), α ∈ β2 ⊗ γ ⊗ β1}.

�
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The following theorem is the the best known statement on stability
of weak amenability with respect to free products for discrete quantum
groups. Note that, to our knowledge, it is also new for classical groups,
even though it may be well-known to experts.

Theorem 3.18. — Let (Ĝi)i∈I be a family of weakly amenable discrete
quantum groups such that Λcb(Ĝi) = 1 for every i ∈ I and let Ĥ be a
common finite quantum subgroup. Then,

Λcb(∗ĤĜi) = 1.

Proof. — Using the notations of Theorem 3.14, we set :
• Ai = Cred(Gi)
• Bi = B(L2(Gi))
• C = Cred(H)
• EAi = EH

To define the conditional expectations EBi , first consider the orthogonal
projection

P iH : L2(Gi)→ L2(H).

Then, E′i : x 7→ P iHxP
i
H is a conditional expectation from B(L2(Gi)) to

B(L2(H)) with the property that for any coefficient x of an irreducible rep-
resentation in Irr(Gi) \ Irr(H), E′i(x) = 0. In fact, the restriction of E′i to
Cred(Gi) is precisely the conditional expectation EH of Proposition 2.6. Be-
cause Cred(H) is finite-dimensional, there is also a conditional expectation

E′′i : B(L2(H))→ Cred(H).

We set EBi = E′′i ◦ E′i. Since EAi is the restriction of E′ito Ai it is also the
restriction of EBi

.
Let us fix an index i, let (aj)j be a net of elements in `∞(Gi) implement-

ing weak amenability. Applying the construction of Lemma 3.13 to aj we
get an element bj . Applying it again to S(bj)∗ yields another element b′j
and we can assume that b′j = S(b′j)∗ as in the proof of [21, Thm 4.2]. We
therefore set Vi,j = RĤ ◦ LĤ(mb′

j
). By Lemma 3.17, these maps satisfy all

the required properties. Recall that γ′j = (ξ′j +η′j)/2 and γ̃′j = γ′j |γ′j |−1. Set

ζj =
∫
U(Cred(H))

(1⊗ u∗)γ̃judu

and observe that

RĤ ◦ LĤ(M
γ̃j

) = Mζj
: x 7→ ζ∗j (1⊗ x)ζj
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is a completely positive map which is the identity on Cred(H) by Equation
(3.3). We therefore set Ui,j = Mζj

. Then, Lemma 3.17 yields

‖Vi,j − Ui,j‖cb = ‖RĤ ◦ LĤ(mb′
j
−M

γ̃j
)‖cb 6 ‖mb′

j
−M

γ̃j
‖cb,

so that, by [21, Lem 4.3] the convergence in completely bounded norm
holds. We still have to check the compatibility of the maps with the con-
ditional expectations and the L2-norm convergence.
Let us consider the conditional expectation

E = EBi
◦ Ui,j : Cred(Gi)→ Cred(H).

We claim that E(x) = 0 whenever x is a coefficient of a representation in
Irr(G) \ Irr(H). In fact, it follows directly from the explicit expression of
ξ′j given in Lemma 3.11 that there is a vector vξ′

j
∈ K such that for any

y ∈ Cred(H), ξ′j(y) = y ⊗ vξ′
j
. The same holds for η′j and γ′j (with different

vectors), hence also for γ̃′j . From this, a straightforward calculation yields

(3.4) PHMγ̃′
j

(x)PH = 0.

Since elements in U(Cred(H)) respect the decomposition L2(G) = L2(H)⊕
L2(H)⊥, Equation (3.4) also holds forMζj

, proving the claim. Since E(x) =
x for any x ∈ Cred(H), we see that E = EH. The same argument shows that
EAi
◦ Vi,j = EAi

.
Using this compatibility, the same argument as in [21, Lem 4.5] shows

that M
γ̃′

j

also approximates mb′
j
in both L2-norms (here L2-norms means

norms as operator between the Hilbert modules associated to the condi-
tional expectations). The proof of Lemma 3.16 also works for the L2-norms
so that we can conclude that Ui,j approximates Vi,j in both L2-norms,
concluding the proof. �

In the unimodular case, one can use a free product trick to deduce results
on HNN extensions (as defined in [19]) from what has been done. The
optimal result for unimodular quantum groups, mixing amalgamated free
products and HNN extensions, was stated in the language of graphs of
quantum groups in [20, Thm 4.6].

It is known that Z2 oSL(2,Z) neither has the Haagerup property nor is
weakly amenable, whereas both Z2 and SL(2,Z) do. Thus, these properties
are not preserved under extensions in general. Moreover, recall that since
an extension of amenable groups is again amenable, the groups Z2 oZ/4Z
and Z2 oZ/6Z are amenable. Thus, they have the Haagerup property and
are weakly amenable with Cowling-Haagerup constant equal to 1. However,
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noticing that

Z2 o SL(2,Z) = (Z2 o Z/4Z) ∗
Z2oZ/2Z

(Z2 o Z/6Z),

we see that the finiteness condition in Theorem 3.18 cannot be removed.

4. Relative amenability

We now turn to the study of the notion of relative amenability in the con-
text of discrete quantum groups. The definition is straightforward, recalling
that τ is the action of Ĝ on the quotient.

Definition 4.1. — Let Ĝ be discrete quantum group and let Ĥ be a
discrete quantum subgroup of Ĝ. We say that Ĝ is amenable relative to Ĥ
if the quotient space has an invariant mean for the action τ , i.e. if there
exists a state m on `∞(Ĝ/Ĥ) such that for all x ∈ `∞(Ĝ/Ĥ),

(ı⊗m) ◦ τ(x) = m(x).1

Remark 4.2. — One could define an action of a discrete (or even locally
compact) quantum group on a von Neumann algebra to be amenable if
such an invariant mean exists. This is the notion of "amenable homoge-
neous space" introduced by P. Eymard in [17]. However, there is another
notion of amenable action, due to R.J. Zimmer [45]. This notion was gen-
eralized to locally compact groups acting on von Neumann algebras by C.
Anantharaman-Delaroche in [1] and to Kac algebras by M. Joita and S.
Petrescu in [25]. As one can expect, this notion is dual to ours in the fol-
lowing sense : if G is a Kac algebra together with an amenable action (in
the sense of [25, Def 3.1]) on a von Neumann algebra M and if M admits
an invariant state, then G is amenable (see [25, Thm 3.5] for a proof). Let
us also mention that a C*-algebraic version of amenable actions of discrete
quantum groups in the sense of R.J. Zimmer was introduced by S. Vaes
and R. Vergnioux in [38].

Remark 4.3. — Relative amenability does not pass to subgroups, even
in the classical case. Examples of triples of discrete groups K < H < G

with G amenable relative to K but H not amenable relative to K were
constructed in [29] and [30].

It follows from [7, Thm 7.8] that if the quasi-regular representation of
Ĝ modulo Ĥ weakly contains the trivial one, then it has a left-invariant
mean, implying in turn that Ĝ is amenable relative to Ĥ. In the classical
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case, all three properties are known to be equivalent. Such an equivalence is
not known yet for discrete quantum groups, but a weak converse involving
correspondences will be given in Proposition 4.9.

4.1. Amenable equivalence

We are going to use ideas from the work of C. Anantharaman-Delaroche
on group actions on von Neumann algebras [1] and follow the path of [2]
to prove a general statement on von Neumann algebras associated to rela-
tively amenable discrete quantum groups, involving the notion of amenable
equivalence of von Neumann algebras which was introduced in [2, Def 4.1].
Recall from [32] that two von Neumann algebras M and N are said to be
Morita equivalent if there exists an M −N correspondence H such that M
is isomorphic to LN (H).

Definition 4.4. — Let M and N be two von Neumann algebras. We
say that M is amenably dominated by N if there exists a von Neumann
algebra N1 which is Morita equivalent to N and contains M in such a way
that there is a norm-one projection from N1 toM . We then writeM ≺a N .
We say that M and N are amenably equivalent if M ≺a N and N ≺a M .

The following theorem is a generalization of a classical result (see Para-
graphe 4.10 in [2]).

Theorem 4.5. — Let Ĝ be a discrete quantum group and let Ĥ be a
discrete quantum subgroup such that Ĝ is amenable relative to Ĥ. Then,
L∞(H) is amenably equivalent to L∞(G).

In order to prove this theorem, we have to build a norm-one projection
from a well-chosen von Neumann algebra to L∞(G). We will do this by
adapting some ideas of [1] to the setting of discrete quantum groups.

Lemma 4.6. — Let M1, M2 be von Neumann algebras and let ρ be
an action of a discrete quantum group Ĝ on M2. Assume that we have
a von Neumann subalgebra N2 of M2 which is stable under the action ρ

and a norm-one (non-necessarily normal) equivariant surjective projection
P : M2 → N2 (i.e. ρ ◦ P = (ı ⊗ P ) ◦ ρ). Then, there exists a norm-one
surjective projection Q : M1⊗M2 →M1⊗N2 such that

Q(x1 ⊗ x2) = x1 ⊗ P (x2)

for all x1 ∈ M1 and x2 ∈ M2. Moreover, Q is equivariant with respect to
µ = (σ ⊗ ı) ◦ (ı⊗ ρ).
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Proof. — The existence of the projection Q is proved in [35, Thm 4] (we
thank the referee for pointing out to us this reference). It is proved in [1,
Lem 2.1] that J. Tomiyama’s construction preserves equivariance under a
classical group action and the proof for a quantum group action is exactly
the same. �

Proposition 4.7. — Let Ĝ be a discrete quantum group and let
(M,N,P ) be a triple consisting in a von Neumann algebra M endowed
with an action ρ of Ĝ, a von Neumann subalgebra N of M which is stable
under the action ρ and a norm-one equivariant projection P : M → N .
Then, there exists a norm-one projection Q̃ : Ĝ nM → Ĝ nN .

Proof. — By Lemma 4.6, there exists a norm-one projection

Q : B(L2(G))⊗M → B(L2(G))⊗N

which is equivariant with respect to µ = (σ ⊗ ı) ◦ (ı⊗ ρ) and such that

Q(x1 ⊗ x2) = x1 ⊗ P (x2).

Let us consider the explicit ∗-isomorphisms of [36, Thm 2.6]

ΦM : B(L2(G))⊗M → Gop n (Ĝ nM)
ΦN : B(L2(G))⊗N → Gop n (Ĝ nN)

Since any von Neumann algebra can be recovered in a crossed-product as
the fixed points algebra under the dual action by [36, Thm 2.7], we only
have to prove that the norm-one projection

Q̃ = ΦN ◦Q ◦ Φ−1
M : Gop n (Ĝ nM)→ Gop n (Ĝ nN)

is equivariant with respect to the the bidual action to conclude.
Let us use the notations of [36]. The bidual action ̂̂ρ on the double crossed

product can be transported to B(L2(G))⊗M in the following way : there
is an operator

J : L∞(G)→ L∞(G′ op)
and a map γ = AdΣV ∗Σ⊗1 ◦µ, for some operator V , such that̂̂ρ ◦ Φ = (J ⊗ Φ) ◦ γ.

It is clear that the ̂̂ρ-equivariance of Q̃ is equivalent to the γ-equivariance
of Q. We already know by Lemma 4.6 that

µ ◦Q = (ı⊗Q) ◦ µ

and, using the approximating projections P ′J , we see that ı⊗Q also com-
mutes to AdΣV ∗Σ⊗1. Hence,

γ ◦Q = (ı⊗Q) ◦ γ.
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�

We can now prove our main result.
Proof of Theorem 4.5. — The fact that the mean is invariant precisely

means that m is an equivariant norm-one projection to the von Neu-
mann subalgebra C.1 of M . Consequently, proposition 4.7 applied to the
triple (`∞(Ĝ/Ĥ),C,m) yields a norm-one projection from Ĝn `∞(Ĝ/Ĥ) to
Ĝ n C = L∞(G). Since according e.g. to [37, Rmk 4.3], Ĝ n `∞(Ĝ/Ĥ) is
Morita equivalent to L∞(H), we have proven that L∞(G) ≺a L∞(H). The
conditional expectation from L∞(G) to L∞(H) defined in [39, Prop 2.2]
then gives L∞(H) ≺a L∞(G), concluding the proof. �

Remark 4.8. — The basic construction 〈L∞(G), L∞(H)〉 is naturally
isomorphic to Ĝ n `∞(Ĝ/Ĥ) (see e.g. the beginning of Section 4 of [37]).
This means that if Ĝ is amenable relative to Ĥ, then L∞(G) is amenable
relative to L∞(H) in the sense of [29].

Using the machinery of correspondences, we can also give a partial con-
verse to the fact that if R weakly contains the trivial representations, then
Ĝ is amenable relative to Ĥ.

Proposition 4.9. — Let Ĝ be a discrete quantum group and let Ĥ be
a discrete quantum subgroup of Ĝ such that Ĝ is amenable relative to Ĥ.
Then, the correspondence associated to the quasi-regular representation of
Ĝ modulo Ĥ weakly contains the identity correspondence.

Proof. — Let us denote by H the Hilbert space L2(G) seen as the stan-
dard correspondence between L∞(G) and L∞(H). By Theorem 4.5, H is a
left injective correspondence in the sense of [2, Def 3.1]. By [2, Prop 3.6],
it is also a left amenable correspondence in the sense of [2, Def 2.1], i.e.
the correspondence H ⊗H weakly contains the identity correspondence of
L∞(G). Moreover, H ⊗H is precisely the Hilbert space `2(Ĝ n `∞(Ĝ/Ĥ))
associated to the GNS construction for the dual weight θ̃ on the crossed-
product. Thanks to [36, Prop 3.10], the GNS construction for the dual
weight may be explicitly described. In fact, the map

I : (a⊗ 1)α(x) 7→ a⊗ x

for a ∈ L∞(G) and x ∈ `∞(Ĝ/Ĥ) extends to an isomorphism between
`2(Ĝn `∞(Ĝ/Ĥ)) and L2(G)⊗ `2(Ĝ/Ĥ). Recall that R denotes the adjoint
of the unitary implementation of τ . Let us endow the latter Hilbert space
with the structure of a correspondence from L∞(G) to itself induced by
the quasi-regular representation, i.e. the left action πl and the right action
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πr are given, for every a ∈ L∞(G), by

πl(a) = R∗(a⊗ 1)R and πr(a) = (Ja∗J)⊗ 1.

Then, the previous isomorphism intertwines these actions with the natural
left and right actions of L∞(G) on `2(Ĝ n `∞(Ĝ/Ĥ)) (inherited from its
identification with H ⊗H). Thus, the correspondence associated with the
quasi-regular representation weakly contains the identity correspondence.

�

4.2. Finite index quantum subgroups

The simplest source of examples of relatively amenable discrete quantum
subgroups is of course finite index quantum subgroups.

Definition 4.10. — A discrete quantum subgroup Ĥ of a discrete quan-
tum group Ĝ is said to have finite index if the quotient von Neumann
algebra `∞(Ĝ/Ĥ) is finite-dimensional.

Proposition 4.11. — Let Ĥ be a finite index quantum subgroup of a
discrete quantum group Ĝ. Then, Ĝ is amenable relative to Ĥ.

Proof. — Let us prove that the weight θ yields an invariant state. Indeed,
the operator-valued weight T : `∞(Ĝ)→ `∞(Ĝ/Ĥ) is finite in that case and
we can therefore only consider elements of the form T (x). Using the equality
hL = θ ◦ T , we have

(ı⊗θ)◦τ(T (x)) = (ı⊗(θ◦T ))◦τ(x) = (ı⊗hL)◦∆̂(x) = hL(x).1 = θ(T (x)).1

Thus, θ(1)−1θ is an invariant mean for τ . �

Example 4.12. — Let N ∈ N, let G be the free orthogonal quantum
group O+

N and let u = (uij)16i,j6N be its fundamental representation. If
N = 2, its dual discrete quantum group Ĝ is amenable, hence it is amenable
relative to any quantum subgroup. If N > 3, consider the subalgebra of
L∞(O+

N ) generated by the elements uijukl for all i, j, k, l. This subalgebra is
stable under the coproduct and thus defines a discrete quantum subgroup
Ĥ of Ĝ called its even part. It is clear that under the usual identification
Irr(G) = N, Irr(H) corresponds to the even integers and it is not very
difficult to see that `∞(Ĝ/Ĥ) = C⊕ C. Thus Ĝ is amenable relative to Ĥ.
Note that this quantum group is isomorphic to the quantum automorphism
group of MN (C) (with respect to a suitably chosen trace) according to [5].
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As for classical groups, relative amenability becomes equivalent to finite
index in the presence of Kazhdan’s property (T).

Proposition 4.13. — Let Ĝ be a discrete quantum groups with Kazh-
dan’s property (T) as defined in [18, Def 3.1] and let Ĥ be a discrete quan-
tum subgroup such that Ĝ is amenable relative to Ĥ. Then, Ĥ has finite
index in Ĝ.

Proof. — Recall from Proposition 4.9 that the correspondence associated
with the quasi-regular representation weakly contains the identity corre-
spondence. Since L∞(Ĝ) has property (T) in the sense of [12] by [18, Thm
3.1], it actually contains the identity correspondence. Since any property
(T) discrete quantum group is unimodular by [18, Prop 3.2], we can apply
[26, Lem 7.1] to conclude that R has a fixed vector. This implies by [18,
Lem 2.3] that the quotient `∞(Ĝ/Ĥ) is finite-dimensional. �

4.3. Applications

Theorem 4.5 links relative amenability for discrete quantum groups and
amenable equivalence of von Neumann algebras. We can thus now use the
work of C. Anantharaman-Delaroche [2] on von Neumann algebras to derive
permanence results. However, going back to the quantum group is not
always possible at the present state of our knowledge, hence the restriction
to unimodular quantum groups in the sequel.

Corollary 4.14. — Let Ĝ be a discrete quantum group and let Ĥ
be a discrete quantum subgroup such that Ĝ is amenable relative to Ĥ,
then Λcb(L∞(H)) = Λcb(L∞(G)). If moreover Ĝ (and consequently Ĥ) is
unimodular, then Λcb(Ĝ) = Λcb(Ĥ).

Proof. — It was proved in [2, Thm 4.9] that amenably equivalent von
Neumann algebras have equal Cowling-Haagerup constant. We conclude
by [27, Thm 5.14]. �

Remark 4.15. — Amore direct(and C*-algebraic)proof of Corollary 4.14
for groups is given in [11, Prop 12.3.11]. However, it is quite ill-suited to
the setting of quantum groups since it is based on the use of a section of
the quotient which may fail to exist in a reasonable sense in the quantum
case, for example if the subgroup is not divisible in the sense of [40, Def
4.1].

A similar statement holds for the Haagerup property.
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Corollary 4.16. — Let Ĝ be a unimodular discrete quantum group
and let Ĥ be a discrete quantum subgroup such that Ĝ is amenable relative
to Ĥ. Then, if L∞(H) has the Haagerup property, L∞(G) also has the
Haagerup property.

Proof. — This is a combination of Theorem 4.5 and [6, Thm 5.1]. �

We end with an application to hyperlinearity. A unimodular discrete
quantum group Ĝ is said to be hyperlinear if the von Neumann algebra
L∞(G) tracially embeds into an ultraproduct of the hyperfinite II1 factor.

Corollary 4.17. — Let Ĝ be a unimodular discrete quantum group
and let Ĥ be a discrete quantum subgroup such that Ĝ is amenable relative
to Ĥ. Then, Ĝ is hyperlinear if and only if Ĥ is hyperlinear.

Proof. — This is a direct consequence of [44, Thm 3.1] since, by Re-
mark 4.8, L∞(G) is amenable relative to L∞(H). �
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