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TORIC ORBIFOLDS ASSOCIATED TO CARTAN
MATRICES

by Mark BLUME (*)

Abstract. — We investigate moduli stacks of pointed chains of P1 related to
the Losev-Manin moduli spaces and show that these moduli stacks coincide with
certain toric stacks which can be described in terms of the Cartan matrices of root
systems of type A. We also consider variants of these stacks related to root systems
of type B and C.
Résumé. — Nous étudions les champs de modules des chaînes de P1 mar-

quées, reliés aux espaces de modules de Losev-Manin, et montrons que ces champs
de modules coïncident avec certains champs toriques qui peuvent être décrits en
termes de matrices de Cartan de systèmes de racines de type A. Nous considérons
également les variantes de ces champs liés aux systèmes de racines de type B et C.

Introduction

The Losev-Manin moduli spaces Ln, introduced in [16], parametrise iso-
morphism classes of stable n-pointed chains of P1. The space Ln forms
a compactification of the torus (Gm)n/Gm that parametrises n points
s1, . . . , sn in P1 \ {0,∞} = Gm up to automorphisms of P1 fixing the
two points 0,∞. It is a smooth projective toric variety isomorphic to the
toric variety X(An−1) associated with the root system An−1, see [2].

In the present paper we are concerned with a variant of the Losev-Manin
moduli spaces which arises as a compactification of the moduli space of n
indistinguishable points in P1\{0,∞}, or equivalently, finite subschemes of
degree n in P1\{0,∞}. Isomorphism classes of such subschemes correspond
to polynomials of the form yn+an−1y

n−1+. . .+a1y+1 up to multiplication

Keywords: Losev-Manin moduli spaces, toric stacks, root systems, Cartan matrices,
permutohedron.
Math. classification: 14M25, 14D23, 14H10.
(*) Supported by DFG-Schwerpunkt 1388 Darstellungstheorie.
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of the variable y by an n-th root of unity. The torus (Gm)n−1, parametrising
polynomials with non-zero coefficients a1, . . . , an−1, is compactified by the
moduli stack of chains of P1 with finite subschemes of degree n. On the
boundary both the coefficients of the polynomials may become zero and the
curve may become a reducible chain of P1. The category of these pointed
curves, which we call degree-n-pointed chains of P1, forms an orbifold Ln.

The orbifold Ln is related to the Losev-Manin moduli space Ln by an
Sn-equivariant morphism Ln → Ln, Ln with the operation of the symmet-
ric group Sn that permutes the n sections and Ln with trivial operation,
which is given by mapping an n-pointed chain of P1 to the corresponding
degree-n-pointed chain by forgetting the labels of the sections. The moduli
stack Ln is defined such that the morphism Ln → Ln is closely related to
morphisms of the form Cn0 → Cn0 /Sn = C

(n)
0 = DivnC0/Y from the n-fold

product over Y to the scheme of relative effective Cartier divisors of degree
n for C0 → Y a relative smooth curve over Y , here a chain of P1 over Y
without the poles of the components of the fibres. Therefore the morphism
Ln → Ln inherits properties like being faithfully flat and finite of degree
n! and being ramified exactly in the points corresponding to curves with
coinciding marked points, see proposition 1.5. The stack Ln differs from the
quotient stack [Ln/Sn], it has the same points but different automorphism
groups. The coarse moduli space of Ln coincides with the quotient Ln/Sn.

A main result of this paper, theorem 3.1, is an explicit description of
the structure of the stacks Ln: we show that Ln is a toric orbifold and we
determine the associated combinatorial data.

Toric Deligne-Mumford stacks over fields of characteristic 0 were intro-
duced in [4] and constructed from combinatorial data called (simplicial)
stacky fans, consisting of a simplicial fan and some extra data, as quotient
stacks [U/T ] of an open subscheme U of some affine space by a diagonal-
isable group scheme G, generalising the quotient construction of a smooth
toric variety described in [6]. Over more general base schemes in the same
way these data give rise to toric stacks which are not necessarily Deligne-
Mumford stacks but tame stacks in the sense of [1]. As our moduli problem
results in stacks which are orbifolds, in this paper we are mainly concerned
with toric orbifolds, i.e. toric tame stacks with trivial generic stabiliser. We
will work with toric orbifolds over the integers, considering the fact that
our moduli problem is naturally defined over the integers.

It turns out that the moduli stacks Ln can be described in terms of the
Cartan matrices of root systems of type A, more precisely, Ln is isomorphic
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to the toric orbifold Y(An−1) which corresponds to the stacky fan Υ(An−1)
defined in section 2 using the Cartan matrix of the root system An−1. For
the proof of the isomorphism Ln ∼= Y(An−1) we make use of a generalisation
of the description of the functor of toric varieties [5] for toric stacks, which
allows to characterise Y(An−1) as a stack CΥ(An−1) of Υ(An−1)-collections,
i.e. collections of pairs of a line bundle with a section and additional data.

We also characterise the morphism Ln → Ln, determined by forgetting
the labels of the n sections, in terms of the combinatorial data by spec-
ifying the Υ(An−1)-collection on X(An−1) ∼= Ln corresponding to this
morphism, see theorem 4.14. In doing this, in section 4 we compare the
description of the functor of the toric varieties X(An−1) associated with
root systems of type A after Cox [5] in terms of Σ(An−1)-collections to two
other descriptions: the description of [2] in terms of An−1-data and a new
description involving Sn-invariant line bundles on X(An−1). Both of these
are related to Minkowski sum decompositions of the permutohedron: the
first is a decomposition into line segments and the second corresponds to
an embedding X(An−1)→

∏n−1
j=1 P

(nj)−1 and expresses the permutohedron
as sum of Sn-symmetric polytopes.

Generalisations of the Losev-Manin moduli spaces were investigated in
[3]. We considered (2n+1)-pointed and 2n-pointed chains of P1 with in-
volution and showed that the moduli spaces L0,±

n and L±n of these objects
coincide with the toric varieties X(Bn) and X(Cn) associated with the root
systems Bn and Cn, see [3, Thm. 4.1 and 6.15].

In the present setting it makes sense to investigate similar generalisations
of the moduli stacks Ln and to relate these to the toric orbifolds Y(R) for
root systems R belonging to other classical families as well as to the moduli
spaces L0,±

n
∼= X(Bn) and L±n ∼= X(Cn). In section 5 we consider moduli

stacks of stable degree -(2n+1)-pointed and degree-2n-pointed chains of P1

with involution, L0,±
n and L±n . We show that L±n has a main component

L±n,+ isomorphic to Y(Cn) and that L0,±
n is isomorphic to Y(Bn)can, the

canonical stack associated to Y(Bn) (see [7]). We have morphisms L0,±
n →

L0,±
n and L±n → L

±
n,+, defined by forgetting the labels of the sections, which

are equivariant under the Weyl group.

Acknowledgements. Thanks to Victor Batyrev.
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1. Moduli stacks of degree-n-pointed chains

We define moduli stacks of stable degree-n-pointed chains of P1. Com-
pared to the Losev-Manin moduli spaces considered in [16], [2], we replace
the n marked points s1, . . . , sn of an n-pointed chain of P1 by a finite closed
subscheme S of degree n.

Definition 1.1. — A stable degree-n-pointed chain of P1 over an alge-
braically closed field K is a tuple (C, s−, s+, S), where C is a chain of P1

over K with two distinct closed points s−, s+ on the outer components such
that on each component the number of intersection points together with
s−, s+ adds up to 2 (cf. [2, Def. 3.1]), and S ⊂ C a finite closed subscheme of
degree n that does neither meet the intersection points of components nor
s−, s+, but that does meet every component of C. We define the category
Ln of stable degree-n-pointed chains of P1 over the category of schemes.
The objects over a scheme Y are stable degree-n-pointed chains of P1 over
Y , i.e. tupels C = (C → Y, s−, s+, S), where C → Y is a locally finitely
presented, flat, proper morphism of schemes, s−, s+ : Y → C are sections
and S ⊂ C is a subscheme finite flat over Y , such that the geometric fi-
bres are stable degree-n-pointed chains of P1. We have the natural notion
of isomorphism of degree-n-pointed chains of P1 over the same scheme Y
and of pullback of an object over a scheme Y with respect to a morphism
f : Y ′ → Y . A morphism in Ln over a morphism f : Y ′ → Y is a cartesian
diagram of stable degree-n-pointed chains of P1 over f .

Remark 1.2. — (1) For a chain of P1 (C, s−, s+) over a field K

any component is isomorphic to P1
K since it contains a point with

residue field K.
(2) As the morphisms C → Y are locally finitely presented, by [9, IV,
(8.9.1)] we can use some results which originally require some noetherian
hypothesis.

Remark 1.3. — The automorphism group of a chain of P1 (C, s−, s+)
of length l over a field K is a torus (Gm)lK . A stable degree-n-pointed
chain of P1 (C, s−, s+, S) of length l over K has a finite automorphism
group scheme which is a subgroup scheme of (Gm)lK . There are objects
(C, s−, s+, S) having nontrivial automorphisms: consider for example P1

K

with homogeneous coordinates z0, z1, two poles s− = (1 : 0), s+ = (0 : 1)
and a subscheme S of degree k given by the equation zk0 − zk1 = 0; in this
example we have an automorphism group scheme isomorphic to µk.

ANNALES DE L’INSTITUT FOURIER
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Proposition 1.4. — The category Ln is a category fibred in groupoids
over the category of schemes. It forms a stack over the fpqc site of schemes
with representable, finite diagonal. Over fields of characteristic 0 the diag-
onal is unramified.

Proof. — The category Ln together with the natural functor to the cat-
egory of schemes is a fibred category, the cartesian arrows being cartesian
diagrams of degree-n-pointed chains, and moreover the fibres Ln(Y ) over
schemes Y form a groupoid.
The fibred category Ln is a prestack in the fpqc topology, i.e. descent

data for morphisms are effective, see for example [18, Prop. 4.31]. To show
that Ln is a stack, it remains to show that descent data for objects are
effective. Let (π : C → Y, s−, s+, S) be a stable degree-n-pointed chain of
P1 over a scheme Y . The subscheme S ⊂ C is an effective Cartier divi-
sor in C because this is true on the fibres, see [13, Lemma 9.3.4], and so
its ideal sheaf I ⊂ OC is a line bundle. The line bundle OC(S) = I −1

is relatively ample with respect to π since it is ample on the fibres, see
[9, III, (4.7.1)], [9, IV, (9.6.5)]. In fact, OC(S) defines a closed embed-
ding in the projective bundle PY (π∗OC(S)), see proposition 3.4. Given a
morphism F : (C ′ → Y ′, s′−, s

′
+, S

′) → (C → Y, s−, s+, S) of two degree-
n-pointed chains over a morphism f : Y ′ → Y forming a cartesian dia-
gram, we have a natural isomorphism F ∗OC(S) ∼= OC′(S′), and further,
given morphisms F and G over f : Y ′ → Y and g : Y ′′ → Y ′, after iden-
tifying (FG)∗OC(S) with G∗F ∗OC(S) the isomorphisms (FG)∗OC(S) →
OC′′(S′′) and G∗F ∗OC(S) → G∗OC′(S′) → OC′′(S′′) coincide. Then, by
descent theory of flat proper morphisms of schemes with a relatively am-
ple invertible sheaf, see [18, Thm. 4.38], descent data for objects of Ln are
effective.
We show that the diagonal Ln → Ln×Ln is representable and finite. For

a scheme Y and a morphism Y → Ln × Ln given by two objects C ,C ′ ∈
Ln(Y ), the category Y ×Ln×Ln Ln fibred over the category of Y -schemes
is isomorphic to the functor on Y -schemes Isom(C ,C ′)(f : Z → Y ) =
MorLn(Z)(f

∗C , f∗C ′). Using the embedding via OC(S) into PY (π∗OC(S))
described in proposition 3.4 we see that Isom(C ,C ′) is a finite closed sub-
group scheme of the open dense torus of PY (π∗OC(S)). In characteristic 0
it is unramified over Y , because then the fibres are reduced. �

The stack Ln is related to the Losev-Manin moduli space Ln by a mor-
phism Ln → Ln that arises by considering the n sections of an n-pointed
chain over Y as a relative effective Cartier divisor of degree n over Y .

TOME 65 (2015), FASCICULE 2
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Proposition 1.5. — The morphism Ln → Ln is faithfully flat and
finite of degree n!. It is ramified exactly in the points of Ln corresponding
to n-pointed chains with some coinciding marked points.

Proof. — Note that the morphism is representable, since Ln has repre-
sentable diagonal. We show that for any morphism Y → Ln, Y a scheme,
the morphism of schemes Y ×Ln Ln → Y has the properties in question.
The morphism Y → Ln corresponds to an object C = (C→ Y, s−, s+, S)
over Y and the functor Y ×Ln Ln maps a scheme T to the set {(f : T →
Y, (C ′→T, s−, s+, s1, . . . , sn), α)|α : f∗C → (C ′→T, s−, s+, s1 +. . .+sn)},
where s1 + . . .+ sn denotes the divisor of degree n associated to the n sec-
tions and α is a morphism in Ln(T ). We denote by C0 the open subscheme
of C obtained by excluding the poles and intersection points of components
on the fibres. Then C0 is a quasi-projective curve over Y , which is smooth
over Y since it is flat with smooth fibres (see [9, IV, (17.5.1)]). We may,
for any T , identify the chains C ′ over T occurring in the above sets with
C ×Y T via the specified isomorphisms. The additional data given by the
subscheme S ⊂ C0 are equivalent to a section s : Y → DivnC0/Y = C

(n)
0 of

the scheme of relative effective divisors of degree n, which coincides with
the n-fold symmetric product of C0 over Y , see [10, Exposé XVII, 6.3.9, p.
186]. Likewise, the data given by the sections s1, . . . , sn are equivalent to
a section s′ : T → (Cn0 )T of the n-fold product such that its composition
with (Cn0 )T → (C(n)

0 )T is the base extension sT of s, or equivalently, to a
morphism s′ : T → Cn0 whose composition with Cn0 → C

(n)
0 coincides with

s◦f . Thus the functor Y ×Ln Ln is isomorphic to the functor of the scheme
Y ×

C
(n)
0
Cn0 , and this concludes the proof because the morphism Cn0 → C

(n)
0

has the required properties. �

Remark 1.6. — With proposition 1.5 and some general theory we can
derive some properties of the stack Ln: by [15, Thm. 10.1], making use of
the proposition, Ln is an algebraic stack (Artin stack); in characteristic
0, by [15, Thm. 8.1] and the fact that it has unramified diagonal, it is a
Deligne-Mumford stack. However, the result will follow independently later
in section 3 together with a more detailed description of the structure of Ln.

On the Losev-Manin moduli space Ln we have an operation of the sym-
metric group Sn permuting the n sections. Any Sn-equivariant morphism
Ln → Z, Z a scheme with trivial Sn-action, factors through Ln → Ln.
This implies that the quotient morphism Ln → Ln/Sn factors as

Ln → Ln → Ln/Sn,

ANNALES DE L’INSTITUT FOURIER
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and moreover, as Ln → Ln is an epimorphism, Ln → Ln/Sn forms the
coarse moduli space of Ln.

Remark 1.7. — There is the quotient stack [Ln/Sn], which has the same
geometric points as Ln. However, the automorphism groups of objects of
[Ln/Sn] differ from those of Ln which are always abelian.

In the case of the Losev-Manin moduli spaces, the boundary divisors
arise as images of closed embeddings Lm×Ln → Lm+n. For the stacks Ln
we also have embeddings Lm×Ln → Lm+n, defined as in the Losev-Manin
case by concatenation of chains, and the diagrams

Lm × Ln −→ Lm+n
↓ ↓

Lm × Ln −→ Lm+n

(1.1)

are commutative.
The morphism Ln → Ln maps the open dense torus of Ln = X(An−1),

the moduli space of irreducible n-pointed chains, onto the moduli stack of
irreducible degree-n-pointed chains. This open substack of Ln parametrises
subschemes S of degree n in P1\{0,∞}modulo automorphisms of P1 fixing
0 and∞. An object over an algebraically closed field K can described by a
monic polynomial

∏n
i=1(y−si) of degree n with s1, . . . , sn ∈ K∗ determined

up to scaling by a common factor λ ∈ K∗ and permutations. We can write
this polynomial as

yn − (s1 + . . .+ sn)yn−1 + . . . . . . + (−)ns1 · · · sn
where the coefficients are the symmetric polynomials in s1, . . . , sn. Assum-
ing s1 · · · sn = (−1)n, we have a polynomial of the form

yn + a1y
n−1 + a2y

n−2 + . . . . . . + an−1y + 1

with coefficients a1, . . . , an−1 ∈ K. The isomorphism class of the object de-
termines these coefficients up to the equivalence (a1, . . . , an−1) ∼ (ξn−1a1,

. . . , ξan−1), ξ an n-th root of unity. The moduli stack of such objects is
the quotient stack [An−1/µn], where the group scheme µn of n-th roots of
unity acts with weights (n−1, . . . , 1).
It contains an (n−1)-dimensional algebraic torus T parametrising classes

of polynomials with non-zero coefficients. A K-valued point of T is given
by an (n−1)-tuple

b1 = a2
a2

1
, b2 = a1a3

a2
2
, . . . , bk= ak−1ak+1

a2
k

, . . . , bn−2 = an−3an−1
a2
n−2

, bn−1 = an−2
a2
n−1

of elements bi ∈ K∗. These expressions in the ai form a set of gener-
ators of µn-invariants in the coordinate ring of the torus (Gm)n−1 ⊂

TOME 65 (2015), FASCICULE 2
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An−1. Equivalently, we can express a K-valued point of T as a collection
(a1, . . . , an−1, b1, . . . , bn−1) ∈ (K∗)2n−2 up to the equivalence

(a1, . . . , an−1, b1, . . . , bn−1) ∼ (κ1a1, . . . , κn−1an−1, λ1b1, . . . , λn−1bn−1)

for κi ∈ K∗ and λi = κ2
i /(κi−1κi+1), putting κ0 = κn = 1. Then (1, . . . , 1,

b1, . . . , bn−1) ∼ (a1, . . . , an−1, 1, . . . , 1) if ai, bi satisfy the above equations.

Allowing certain subsets of the coordinates ai, bi to become zero, we
obtain a toric tame stack which compactifies the moduli stack [An−1/µn]
of irreducible chains. Its definition and properties are contained in section
2 and we will show in section 3 that it coincides with the moduli stack
Ln. In particular, degenerating some of the bi to zero can be interpreted as
degenerating P1 to a reducible chain of P1. These additional divisors arise
as in diagram (1.1).

Example 1.8. — We illustrate some results of this paper in the case
n = 2 (see also examples 2.2, 3.8, 4.16). There is a natural embedding
of degree-2-pointed chains (C, s−, s+, S) into P2 determined by the line
bundle OC(S) (for arbitrary n see section 3): in P2 = P(H0(C,OC(S)))
we can choose homogeneous coordinates y0, y1, y2 such that C is given by
an equation y0y2 = b1y

2
1 , the subscheme S ⊂ C by an additional equation

y0 + a1y1 + y2 = 0, and the two sections s−, s+ are (1 : 0 : 0), (0 : 0 : 1).
Over an algebraically closed field K, data (a1, b1) ∈ K2 \ {(0, 0)} up to
the equivalence (a1, b1) ∼ (κ1a1, λ1b1) for κ2

1 = λ1 ∈ K∗ correspond to
isomorphism classes of degree-2-pointed chains over K.

The moduli stack L2 is isomorphic to the quotient stack
[(A2 \ {(0, 0)})/Gm] for the operation with weights (1, 2), i.e. the weighted
projective line P(1, 2) (which coincides with the toric orbifold Y(An−1) for
n = 2 defined in section 2). The open substack parametrising irreducible
curves, the locus where b1 6= 0, is the quotient stack [A1/µ2] with coordi-
nate a1 on A1. The open substack parametrising objects without isomor-
phisms, the locus where a1 6=0, is isomorphic to A1 with coordinate b1.

L2
a1 = 0

�
μ2

y
2

=
0

y0
=

0

y
1 =

0

y0+y2=0
.

........

........

........

..

........
........
........

.........
.........
....

.........
.........
..

..........
........

...........
.....

..............
..

................. .................. .................. .................... .......................
.........................

. ............... ............. ........... ..........
..........
.........
...

........
......

C

s−

s+
S

a1, b1 �= 0

y
2
=

0

y0
=

0

y
1 =

0

y0+a1y1+y2=0
.

........

........

........

..

........

........

........

........
.........
.....

.........
.........
..

..........
........

..........
......

............
...

............... ................ ................. ................... .....................
........................

..........................

. ............... ............. ........... ..........
..........
.........
...

........

......

C

s−

s+
S

b1 = 0

y
2

=
0

y0
=

0

y
1 =

0

y0+a1y1+y2=0

C

s−

s+
S
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The morphism L2 → L2 is faithfully flat and finite of degree 2. We
introduce homogeneous coordinates z−, z+ of L2 = P1 that measure the
position of one of the marked points of a 2-pointed chain with respect to the
other marked point at (1 :1) of its component isomorphic to P1, such that
the two points (0 : 1), (1 : 0) correspond to reducible chains (cf. [2]). Then
the point (1 : -1) corresponds to a 2-pointed curve P1 with marked points
(1 : 1), (1 : -1) giving rise to a degree-2-pointed curve with automorphism
group µ2. The point (1 :1) corresponds to the point of L2 with nonreduced
S, the morphism is ramified here and étale elsewhere.

L2 = P1

L2 = P(1, 2)

......................................................................................................................................................................................................................................................................................................................................................................
.........
...
.........
.
.........
.
.........
...
........ .......... ........ ........ .......... ............ ............. .................. ................ ........................................ ........................................... ............................................. ............................................................... ...............................................................

. ................ ................. .......... ............ .............. ......... ....... .......... ........
.........
...
.........
.
.........
.
.........
...

..........................................................................................................................................................................
...........

............
..........
........
.............

............

............

.............
........
..........
............
...........

................. ................. ................ ................

(1:1)(1: -1)

(1:0)

(0:1)

a1=0

nontrivial
automorphism

�
μ2

nonreduced S
ramification

b1 =0

reducible chain

We will see in section 4 that the morphism L2 → L2 is given as

(z−+ z+ : z−z+) : P1 → P(1, 2).

2. The toric orbifolds Y(An)

In this section we will consider a family of toric orbifolds associated to
the Cartan matrices of root systems of type A, but also comment on some
generalities on toric stacks.

We use the definitions and notations of [4]. A stacky fan Σ = (N,Σ, β)
defining a toric orbifold has the property that the abelian group N is free;
it consists of the data of a simplicial fan Σ in the lattice N and elements
n% ∈ % ∩ N for the one-dimensional cones % ∈ Σ(1). Here we assume them
to span the ambient space NQ. The homomorphism β : ZΣ(1) → N maps
the elements of the standard basis to the elements n%. Dually we have the
exact sequence

0 −→M=HomZ(N,Z) β∗−→ ZΣ(1) β∨−→ DG(β) −→ 0

giving rise, as sequence of character groups, to the exact sequence of diag-
onalisable group schemes

1 −→ G −→ TΣ(1) −→ TM −→ 1.

TOME 65 (2015), FASCICULE 2
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The toric orbifold XΣ is defined as the quotient stack [U/G] with U ⊆ AΣ(1)

the open subset defined by the information which of the one-dimensional
cones form higher dimensional cones of Σ. The constructions make sense
over the integers, however, working with G-torsors, in general one may
have to choose an appropriate Grothendieck topology on the base category
possibly finer than the étale topology (see also remark 2.8). The resulting
algebraic stacks XΣ are tame stacks in the sense of [1].

Definition 2.1. — We define the toric orbifold Y(An) associated to the
Cartan matrix of the root system An in terms of the stacky fan Υ(An) =
(N,Υ(An), β): let N = Zn and let the linear map β : Z2n → N be given
by the n× 2n matrix

-2 1 0 · · · 1 0 0 · · ·
1 -2 1 · · · 0 1 0 · · ·
0 1 -2 · · · 0 0 1 · · ·
...

...
...

. . .
...

...
...

. . .


i.e. the matrix consisting of two blocks (-C(An) In), where C(An) is the
Cartan matrix of the root system An and In the n × n identity matrix.
The fan Υ(An) has the 2n one-dimensional cones %1, . . . , %n, τ1, . . . , τn gen-
erated by the columns of the above matrix. A subset of one-dimensional
cones generates a higher dimensional cone of Υ(An) if it does not contain
one of the sets {%1, τ1}, . . . , {%n, τn}. This defines a fan containing 2n
n-dimensional cones σI generated by sets {%i : i 6∈ I} ∪ {τi : i ∈ I} for
subsets I ⊆ {1, . . . , n}.

For the stacky fan Υ(An) the map β : Z2n → N gives rise to the exact
sequence of lattices

0 −→M∼=Zn
( -C
In

)
−→ Z2n ( In C )−→ DG(β)∼=Zn −→ 0

where C = C(An)> = C(An) is (the transpose of) the Cartan matrix, and
the exact sequence of tori

1 −→ G∼=(Gm)n −→ (Gm)2n −→ TN ∼=(Gm)n −→ 1

where G∼=(Gm)n −→ (Gm)2n, (κ1, . . . , κn) 7→ (κ1, . . . , κn, λ1, . . . , λn) with
λi = κ2

i /(κi−1κi+1) setting κ0 = κn+1 = 1 (cf. last section). Note that the
toric orbifold Y(An) arises as quotient [U/G] by a torus G.

Example 2.2. — The toric orbifold Y(A1) is isomorphic to the weighted
projective line P(1, 2): we have the matrix ( -2 1 ) and the stacky fan looks
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as follows:

Υ(A1)
0

�
τ1

�
�1

Example 2.3. — The toric orbifold Y(A2) arises from the matrix(
-2 1 1 0
1 -2 0 1

)
. We have the stacky fan

Υ(A2) � τ1

�

τ2
�
�1

�
�2

σ{1,2}σ{2}

σ{1}σ∅

The description of the functor of a smooth toric variety given by Cox
[5] in terms of collections of line bundles with sections determined by the
combinatorial data has been extended to toric Deligne-Mumford stacks by
Iwanari [11] and Perroni [17]. For the stacky fan Υ(An) we have:

Definition 2.4. — A Υ(An)-collection on a scheme Y is a collection

L = ((L%i , ai)i=1,...,n, (Lτi , bi)i=1,...,n, (ci)i=1,...,n)

where (L%i , ai) and (Lτi , bi) are line bundles with a section and

c1 : Lτ1⊗L ⊗ -2
%1
⊗L%2 → OY , c2 : Lτ2⊗L%1⊗L ⊗ -2

%2
⊗L%3 → OY , . . . . . .

cn−1 : Lτn−1⊗L%n−2⊗L ⊗ -2
%n−1
⊗L%n→ OY , cn : Lτn⊗L%n−1⊗L ⊗ -2

%n → OY

are isomorphisms. These data are subject to the nondegeneracy condition
that for every point y ∈ Y and i = 1, . . . , n not both ai(y) = 0 and
bi(y) = 0.
A morphism L ′ → L between two Υ(An)-collections L = ((L%i , ai)i,

(Lτi , bi)i, (ci)i) on Y and L ′ = ((L ′%i , a
′
i)i, (L ′τi , b

′
i)i, (c′i)i) on Y ′ over a

morphism of schemes f : Y ′ → Y is a collection ((ri)i=1,...,n, (ti)i=1,...,n)
consisting of isomorphisms of line bundles ri : f∗L%i → L ′%i , ti : f

∗Lτi →
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L ′τi such that ri(f∗ai) = a′i, ti(f∗bi) = b′i and the diagrams

f∗Lτi⊗f∗L%i−1⊗f∗L ⊗ -2
%i ⊗f

∗L%i+1

f∗ci−→ f∗OY
↓ ↓

L ′τi ⊗L ′%i−1
⊗L ′%i

⊗ -2 ⊗L ′%i+1

c′i−→ OY ′
(2.1)

(i = 1, . . . , n; for i = 1, n omit the factors indexed by %0, %n+1) commute.
We denote the fibred category of Υ(An)-collections over the category

of schemes by CΥ(An). It comes with the cleavage given by pull-back of
line bundles: for f : Y ′ → Y we have an arrow f∗L → L in CΥ(An). The
definition describes a morphism L ′ → L in CΥ(An) as composition of a
morphism L ′ → f∗L over idY ′ with f∗L → L over f : Y ′ → Y .

Remark 2.5. — A morphism of Υ(An)-collections L ′ → L over idY
Zariski-locally for some open Y ′ ⊆ Y , after fixing isomorphisms of the line
bundles with the structure sheaf such that the isomorphisms ci become
idOY ′ , corresponds to a collection κ1, . . . , κn, λ1, . . . , λn ∈ O∗Y ′(Y ′) such
that the isomorphisms OY ′∼=L%i |Y ′ → L ′%i |Y ′∼=OY ′ and OY ′∼=Lτi |Y ′ →
L ′τi |Y ′ ∼=OY ′ are given by multiplication by κi and λi. The condition ex-
pressed in diagram (2.1) translates into the equations λi = κ2

i /(κi−1κi+1),
putting κ0 = κn+1 = 1.

The category of Σ-collections CΣ for a stacky fan Σ is a category fibred in
groupoids (CFG) over the base category of schemes. By descent theory for
quasi-coherent sheaves the CFG CΣ forms a stack in the fpqc topology, see
[18, Thm. 4.23]. By Iwanari [11, Thm. 1.4] (for toric orbifolds) and Perroni
[17, Thm. 2.6] (for toric Deligne-Mumford stacks) over fields of character-
istic 0, working with the étale topology, there is an isomorphism of stacks
XΣ ∼= CΣ. Also over more general base schemes we have an isomorphism
XΣ ∼= CΣ; we make some comments on this issue.

Construction 2.6. — Explicitely, one can construct an isomorphism
XΣ ∼= CΣ as follows, here for simplicity we stick to the orbifold case and
assume that the one-dimensional cones generate the ambient space NQ.
Note that we have a natural G-equivariant Σ-collection ((OU ⊗V%, x%)%,

(id)m) on U , where V% is the one-dimensional representation such that the
coordinate x% of U ⊂ AΣ(1) is an invariant section of OU ⊗ V% (in the case
of smooth toric varieties as considered in [6] this G-equivariant collection
descents to the universal collection on the toric variety).
Starting with an object of XΣ over Y , that is a G-torsor p : E → Y

together with a G-equivariant morphism t : E → U , the pull-back t∗((OU⊗
V%, x%)%, (id)m) is a G-equivariant Σ-collection on E and gives rise to the
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Σ-collection pG∗ t
∗((OU ⊗ V%, x%)%, (id)m) on Y (the functor pG∗ takes the

G-invariant part of the push-forward).
On the other hand, for a given Σ-collection ((L%, u%)%, (cm)m) on a

scheme Y we construct a G-torsor with a G-equivariant morphism to U .
Let E be the contravariant functor on the category of Y -schemes

E : (q : Y ′ → Y ) 7→


Σ-collections ((OY ′ ⊗ V%, u′%), (id)m) on Y ′

with an isomorphism of Σ-collections
q∗((L%, u%)%, (cm)m) ∼= ((OY ′ ⊗ V%, u′%)%, (id)m)


where V%, the one-dimensional representation as above, is used to define
an operation of G on this functor. Then one can show that the functor E
with this G-action is represented by a G-torsor p : E → Y together with
a universal isomorphism p∗((L%, u%)%, (cm)m) ∼= ((OE ⊗ V%, u

E
% )%, (id)m)

of G-equivariant Σ-collections, provided that the original Σ-collection is
locally trivial in the sense that there is a covering f : Y ′ → Y such that
f∗((L%, u%)%, (cm)m) is isomorphic to a collection of the form ((OY ′ , u′%)%,
(id)m); collections of this form correspond to trivial G-torsors. We will
assume that the topology on the base category is such that any Σ-collection
has this property, see also the following remarks. The sections (uE% )% of the
universal Σ-collection on E then define a G-equivariant morphism E →
U ⊂ AΣ(1).
Making use of the fact that for a G-torsor p : E → Y we have the equiv-

alence QCoh(Y ) ↔ QCohG(E) given by the functors p∗ and pG∗ , one can
show that these constructions define functors XΣ ↔ CΣ whose compositions
are isomorphic to the identity functors.

Remark 2.7. — Zariski-locally we can interpret the construction of the
G-torsor as the coboundary homomorphism d in the exact sequence (see
[8, Ch. III, §3])

0 −→ H0(Y,G) −→ H0(Y, TΣ(1)) −→ H0(Y, TM ) d−→ H1(Y,G)

where elements of H1(Y,G) are isomorphism classes of G-torsors over Y :
given a Σ-collection ((OY , u%)%, (cm)m) on Y , the automorphisms (cm)m of
the structure sheaf can be interpreted as a morphism Y → TM or section
of TM × Y → Y , and fitting in the cartesian diagram

E −→ TΣ(1)
↓ ↓
Y −→ TM

we obtain a G-torsor E → Y which is trivial if and only if (cm)m ∈
H0(Y, TM ) comes from an element of H0(Y, TΣ(1)).
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Remark 2.8. — Working with G-torsors, we usually assume that the
Grothendieck topology on the base category is fine enough in the sense
that we have the same G-torsors as we have with respect to the canoni-
cal topology. We have seen that this assumption was necessary to derive
the isomorphism XΣ ∼= CΣ: whereas the notion of G-torsor depends on
the topology, this is not the case for the notion of Σ-collections. For Σ-
collections we have the corresponding assumption that Σ-collections are
locally trivial with respect to the topology (in the sense of construction
2.6). In characteristic 0 this is always true for the étale topology. In general
we may have to take a finer topology, for example the fppf topology.

In the case of the stacky fan Υ(An) the lattice M is a direct summand
of ZΣ(1) and the group scheme G a torus, so the following result also holds
in weaker topologies like étale or Zariski.

Corollary 2.9. — There is an isomorphism of stacks Y(An) ∼= CΥ(An).

In particular, a K-valued point of Y(An) corresponds to (a1, . . . , an,

b1, . . . , bn) ∈ K2n such that for any i not both ai = 0 and bi = 0, up to
the equivalence relation given by multiplication by a collection (κ1, . . . , κn,

λ1, . . . , λn) ∈ (K∗)2n as in remark 2.5.

3. Y(An−1) as moduli stack of degree-n-pointed chains

In this section we will prove the following theorem.

Theorem 3.1. — There is an isomorphism of stacks Ln ∼= Y(An−1).

We will relate families of pointed chains to Υ(An−1)-collections and
prove an equivalence of fibred categories Ln ∼= CΥ(An−1).

Let (C, s−, s+, S) be a degree-n-pointed chain of P1 over a field K. We
look at the closed embedding C → PK(H0(C,OC(S))) ∼= PnK determined
by OC(S).

First assume that C is irreducible, that is C ∼= P1
K . The vector space

H0(C,OC(S)) is (n + 1)-dimensional and we have a basis y0, . . . , yn such
that the divisor of yi satisfies div(yi) = is− + (n − i)s+. The ideal sheaf
I = OC(−S) → OC defining S is a line bundle. Tensored with OC(S)
we have an inclusion OC → OC(S) with cokernel OS , and the image of
the 1-section of OC is a global section

∑n
i=0 aiyi ∈ H0(C,OC(S)). The

subscheme S ⊂ C is given by the equation
∑n
i=0 aiyi = 0, where a0, an 6= 0

as S does not meet s−, s+. We can choose the basis y0, . . . , yn such that
a0 = an = 1.
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The embedding defined by OC(S), the n-fold Veronese embedding or
n-uple embedding, gives an isomorphism of C onto the subscheme in PnK
determined by the equations

yiyj+1 = bi+1 · · · bjyi+1yj

for 0 6 i < j < n and certain numbers b1, . . . , bn−1 ∈ K∗. These equations
express the condition that the rank of the matrix(

y0 b1y1 . . . b1 · · · bn−1yn−1
y1 y2 . . . yn

)
is less than 2. The subscheme S in the embedded curve is given by the
additional linear equation

yn + an−1yn−1 + . . . + a1y1 + y0 = 0.

Similarly, we have a natural embedding of reducible degree-n-pointed
chains of P1 into PnK .

Proposition 3.2. — Let (C, s−, s+, S) be a degree-n-pointed chain of
P1 over a field K. It decomposes into irreducible components C1, . . . , Cm ∼=
P1
K with poles (p−1 , p

+
1 ), . . . , (p−m, p+

m) such that s− = p−1 , s+ = p+
m and Ci

intersects Ci+1 in p+
i = p−i+1. Let n1, . . . , nm be the degrees of S on the

components C1, . . . , Cm and Nk =
∑k
i=1 ni. Then there is a basis y0, . . . , yn

of H0(C,OC(S)) characterised up to nonzero scalars by the following con-
ditions: yi is nonzero only on the components Ck satisfying Nk−1 6 i 6 Nk
and in this case div(yi)|Ck = (i − Nk−1)p−k + (Nk − i)p+

k . We scale y0, yn
such that the image of the 1-section under the inclusion OC → OC(S) is∑n
i=0 aiyi ∈ H0(C,OC(S)) with a0 = an = 1, that is, S is given by an

equation
yn + an−1yn−1 + . . . + a1y1 + y0 = 0 (3.1)

for some a1, . . . , an−1 ∈ K. These sections y0, . . . , yn satisfy the equations

yiyj+1 = bi+1 · · · bjyi+1yj (3.2)

for 0 6 i < j < n and certain numbers b1, . . . , bn−1 ∈ K such that bj = 0
exactly if j ∈ {N1, . . . , Nm−1}.
The curve C embeds into PK(H0(C,OC(S))), the image being the sub-

scheme defined by the equations (3.2). The subscheme S of the embedded
curve is given by the additional equation (3.1). The sections s−, s+ are
(1 :0 : . . . :0), (0 : . . . :0 :1).
The numbers a1, . . . , an−1 and b1, . . . , bn−1 in (3.1) and (3.2) have the

property that not both aj = 0 and bj = 0.

We will not work out the proof in detail, but add some remarks.
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Remark 3.3. — The component Ck is embedded into the projective sub-
space of PK(H0(C,OC(S))) spanned by the coordinates yNk−1 , . . . , yNk via
a Veronese embedding, the image is given by the equations corresponding
to the condition that the rank of the matrix(

yNk−1 bNk−1+1yNk−1+1 . . . bNk−1+1 · · · bNk−1yNk−1
yNk−1+1 yNk−1+2 . . . yNk

)
is less than 2. The equation (3.1) reduces on Ck to aNkyNk + . . .

+ aNk−1yNk−1 = 0 which defines a finite subscheme Sk of degree nk in
Ck ⊆ PnkK . A subscheme Sk of this form does not meet the poles of Ck
provided that aNk , aNk−1 6= 0.

We generalise this to degree-n-pointed chains over schemes.

Proposition 3.4. — Let (π : C → Y, s−, s+, S) be a degree-n-pointed
chain of P1 over a scheme Y . For any y ∈ Y there is an open affine
neighbourhood Y ′ ⊆ Y such that there is a decomposition π∗OC(S)|Y ′ ∼=⊕n

i=0OY ′yi characterised on the fibres by the properties of proposition 3.2.
The generators y0, . . . , yn ∈ H0(Y ′, π∗OC(S)) of the individual summands,
after possibly rescaling by a global section of O∗Y ′ , satisfy:
(i) The image of the 1-section under the inclusion OC → OC(S) is of the
form

yn + an−1yn−1 + . . . + a1y1 + y0.

over Y ′ for some a1, . . . , an−1 ∈ OY ′(Y ′).
(ii) The kernel of the homomorphism of algebras Sym π∗(OC(S)) →⊕∞

k=0 π∗OC(kS) is over Y ′ generated by the equations

yiyj+1 = bi+1 · · · bjyi+1yj

for 0 6 i < j < n and some b1, . . . , bn−1 ∈ OY ′(Y ′).
The line bundle OC(S) determines a closed embedding C → C ′ ⊂

PY (π∗(OC(S))) over Y . Over Y ′ in the coordinates y0, . . . , yn the embed-
ded curve C ′Y ′ ⊂ PY ′(π∗(OC(S))|Y ′) ∼= PnY ′ is defined by the equations
in (ii), the image of SY ′ in C ′Y ′ by the additional equation in (i), and the
sections s−, s+ are (1 :0 : . . . :0), (0 : . . . :0 :1).

Proof. — The decomposition of the fibre Cy over a point y ∈ Y into irre-
ducible components Cy = C1∪ . . .∪Cm determines over an open affine sub-
scheme Y ′ ⊆ Y containing y a decomposition of S into divisors S1, . . . , Sm
which are disjoint and such that Sk only meets one component on each
fibre and the component Ck over y. Each Sk determines a morphism onto
a P1-bundle over Y ′, which on the fibres is an isomorphism on the com-
ponent containing Sk and contracts the other components (similar to the
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contraction morphisms in [14], cf. also [2, 3.3]). After possibly shrinking Y ′,
we have global sections y(k)

0 , . . . , y
(k)
n of OP1

Y ′
(Sk) that satisfy div(y(k)

i ) =
(i−Nk−1)s−+ (Nk − i)s+ for Nk−1 6 i 6 Nk, div(y(k)

i ) = (Nk −Nk−1)s+

for i < Nk−1 and div(y(k)
i ) = (Nk − Nk−1)s− for i > Nk (using the no-

tation Sk, s−, s+ also for their images in P1
Y ′). Using the pull-backs of

these sections to CY ′ denoted by the same symbols, let yi = y
(1)
i · · · y

(m)
i ∈

H0(CY ′ ,OC(S)) = H0(CY ′ ,OCY ′ (S1) ⊗ . . . ⊗ OCY ′ (Sm)). Over the open
affine neighbourhood Y ′ of y the sections y0, . . . , yn define a decomposition
of π∗OC(S) with the required properties.

The image of the 1-section under the inclusion OC → OC(S) gives a
global section of OC(S) which over Y ′ is of the form

∑n
i=0 aiyi with ai ∈

OY ′(Y ′). Since a0, an ∈ O∗Y ′(Y ′) we can assume that a0, an = 1.
Using what is known about the fibres and results from [9, III] (cf. also

[14]), we derive that π∗(OC(kS)) for k > 0 is locally free of rank kn + 1,
further that the homomorphism π∗π∗OC(S) → OC(S) is surjective and
defines a closed embedding C → PY (π∗OC(S)).
The embedding C → PnY corresponds to the surjection of graded algebras

Sym π∗(OC(S))→
⊕∞

k=0 π∗OC(kS). Its kernel I is the graded ideal that
defines the embedded curve C ′ ⊂ PnY . Each part Ik of I is locally free,
being the kernel of a surjective homomorphism of locally free sheaves. The
graded ideal I is generated in degree 2 since this is the case on the fibres
I ⊗ κ(y) for each point y ∈ Y . The part I2 of degree 2 is a vector bundle
of rank 1

2n(n− 1).
Working over Y ′, for i < j the subsheaves 〈yi+1yj , yiyj+1〉 and 〈yi+1yj〉 of

π∗OC(S)|Y ′ , i.e. the subsheaves generated by the respective sections, co-
incide as this is true on the fibres. Considering the case j = i + 1, the
kernel of the surjective homomorphism Sym2 π∗(OC(S))|Y ′ ⊃ OY ′y2

i+1 ⊕
OY ′yiyi+2 →

〈
y2
i+1, yiyi+2

〉
⊂ π∗OC(2S)|Y ′ is generated by an element

yiyi+2−bi+1y
2
i+1 for some bi+1 ∈ OY ′(Y ′). For general i < j we have as ker-

nel yiyj+1 − bi+1,jyi+1yj for some bi+1,j ∈ OY ′(Y ′) and from the equation
(yi+2· · · yj)bi+1,jyi+1yj = (yi+2· · · yj)yiyj+1 = (bi+1· · · bj)(yi+2· · · yj)yi+1yj
in π∗OC(S)|Y ′ we conclude that bi+1,j = bi+1 · · · bj . �

We define morphisms of fibred categories Φ: Ln → CΥ(An−1) and
Ψ: CΥ(An−1) → Ln.

Construction 3.5. — Let C = (C → Y, s−, s+, S) be a degree-n-
pointed chain of P1 over a scheme Y . For any point y ∈ Y we have an open
neighbourhood U ⊆ Y over which we have a decomposition π∗OC(S)|U ∼=
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O⊕n+1
U and a basis y0, . . . , yn as in proposition 3.4, and we obtain func-

tions a1, . . . , an−1, b1, . . . , bn−1 ∈ OU (U). We define (L%i , ai) := (OU , ai),
(Lτi , bi) := (OU , bi) and have the isomorphisms ci : Lτi⊗L%i−1⊗L ⊗ -2

%i ⊗
L%i+1 → OU (omit L%0 , L%n) given by the identities on OU . These data
form a Υ(An−1)-collection over U , the nondegeneracy condition that not
both ai = 0 and bi = 0 in each point is satisfied by construction and
proposition 3.2.
Different choices of bases y0, . . . , yn and y′0, . . . , y′n over U and U ′ as above

are related over U ′′ = U ∩ U ′ by yi = κ′iy
′
i for some κ′i ∈ O∗U ′′(U ′′), where

κ′0 = κ′n. Let κi = κ′i/κ
′
0. There is an isomorphism between the correspond-

ing Υ(An−1)-collections over U ′′ that, with respect to the given trivialisa-
tions, is given by the collection κ1, . . . , κn−1, λ1, . . . , λn−1 ∈ O∗U ′′(U ′′) as in
remark 2.5.
We cover Y by open subschemes U as above, obtain Υ(An−1)-collections

on this covering and glue them to a Υ(An−1)-collection ΦC on Y .
For a morphism C ′ → C of degree-n-pointed chains over f : Y ′ → Y ,

i.e. a cartesian diagram consisting of f , a morphism F : C ′ → C that
maps s′−, s′+, S′ to s−, s+, S and π : C → Y , π′ : C ′ → Y ′, we have a
morphism of Υ(An−1)-collections L ′ = ΦC ′ → L = ΦC over f : Y ′ → Y .
Locally over U ′′ = f−1(U)∩U ′, where U ′ and U are elements of the chosen
open coverings of Y ′ and Y , we have chosen local bases f∗y0, . . . , f

∗yn and
y′0, . . . , y

′
n of f∗π∗OC(S) ∼= π′∗F

∗OC(S) ∼= π′∗OC′(S′). Comparing these
bases gives rise to isomorphisms f∗L%i |U ′′ → L ′%i |U ′′ , f

∗Lτi |U ′′ → L ′τi |U ′′
as above, and these can be glued to a morphism L ′ → L .
One checks that this defines a functor Φ: Ln → CΥ(An−1). The functor

Φ is base-preserving and sends cartesian arrows to cartesian arrows.

Construction 3.6. — Let L = ((L%i , ai)i, (Lτi , bi)i, (ci)i) be a
Υ(An−1)-collection on a scheme Y . For any point y ∈ Y we have an open
neighbourhood U ⊆ Y over which we can choose trivialisations L%i |U ,
Lτi |U ∼= OU such that the isomorphisms ci : (Lτi⊗L%i−1⊗L ⊗ -2

%i ⊗L%i+1)|U
→ OU for i = 1, . . . , n − 1 (omit L%0 ,L%n) are the identities on OU .
Let C be the closed subscheme of PnU given by the equations yiyj+1 =
bi+1 · · · bjyi+1yj for 0 6 i < j 6 n − 1, where y0, . . . , yn are homogeneous
coordinates of PnU and b1, . . . , bn−1 are considered as regular functions on U
via the isomorphisms Lτi |U ∼= OU , and let π : C → U be induced by PnU →
U . By construction, the subscheme C ⊆ PnU is isomorphic to ProjU S where
S is the graded algebra OU [y0, . . . , yn] / 〈yiyj+1 = bi+1 · · · bjyi+1yj ; i < j〉.
The morphism π : C → U is flat since each graded piece of S is locally
free ([9, III, (7.9.14)]). Indeed, we have Sk

∼= O⊕kn+1
U with basis ykn and
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yk−li yli+1 for i = 0, . . . , n−1 and l = 0, . . . , k−1. Let s−, s+ be the sec-
tions (1 : 0 : . . . : 0), (0 : . . . : 0 : 1) with respect to the coordinates
y0, . . . , yn and let S ⊂ C be the subscheme given by the additional equation
yn+an−1yn−1+. . .+a1y1+y0 = 0, where again a1, . . . , an−1 are considered
as regular functions via L%i |U ∼= OU . This defines a degree-n-pointed chain
(C → U, s−, s+, S) over U .
Different choices of local trivialisations of the line bundles L%i over U,U ′

are related by multiplication by some κi ∈ O∗U ′′(U ′′) over U ′′ = U ∩ U ′.
The corresponding degree-n-pointed chains in PnU ′′ are connected by the
automorphism of PnU ′′ given by multiplying the homogeneous coordinates
with κ0, . . . , κn (set κ0 = κn = 1).

We cover Y by open subschemes U as above, obtain degree-n-pointed
chains over this covering and glue them to a degree-n-pointed chain ΨL

over Y .
For a morphism L ′ → L of Υ(An−1)-collections over f : Y ′ → Y , i.e.

a collection of isomorphisms of line bundles with sections (f∗L%i , f
∗ai)→

(L ′%i , a
′
i), (f∗Lτi , f

∗bi) → (L ′τi , b
′
i), we have a morphism C ′ = ΨL ′ →

C = ΨL of degree-n-pointed chains over f : Y ′ → Y : locally on U ′′ =
f−1(U) ∩ U ′, where U ′ and U are elements of the chosen open coverings
of Y ′ and Y , using the given trivialisations L ′%i |U ′ ∼= OU ′ and f

∗L%i |U ∼=
f∗OU = Of−1(U), the isomorphisms f∗L%i → L ′%i are given by multipli-
cation with elements κi ∈ O∗U ′′(U ′′), and the automorphism of PnU ′′ such
that the coordinates y′i and f∗yi are related by multiplication by κi (set
κ0 = κn = 1) induces an isomorphism of the embedded degree-n-pointed
chains over U ′′. By glueing we obtain an isomorphism C ′ → f∗C .

This defines a functor Ψ: CΥ(An−1) → Ln which is base-preserving and
sends cartesian arrows to cartesian arrows.

These two functors give the equivalence of fibred categories stated in the
theorem.

Proof of theorem 3.1. — We show that the fibred categories Ln and
CΥ(An−1) are equivalent using the functors Ψ: CΥ(An−1) → Ln and Φ: Ln →
CΥ(An−1).
For an object C = (C → Y, s−, s+, S) in Ln, after choice of a suit-

able open covering, the data ΦC is given locally by (L%i |U = OU , ai),
(Lτi |U = OU , bi) and locally C is isomorphic to the embedded object in
PnU defined by the functions ai, bi with respect to coordinates y0, . . . , yn
of PnU , see construction 3.5. Applying the functor Ψ, we choose a covering
and isomorphisms L%i |U ′ ,Lτi |U ′ → OU ′ as in construction 3.6 giving rise
to functions ãi, b̃i, and these define the object ΨΦC locally embedded in
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PnU ′ with homogeneous coordinates ỹi. Comparing the two isomorphisms
L%i |U ′′ → OU ′′ over open subschemes U ′′ = U ∩ U ′, we obtain an isomor-
phism ΨΦC → C locally over U ′′ using the two local embeddings of ΨΦC

and C in PnU ′′ . One checks that these isomorphisms form an isomorphism
of functors Ψ ◦ Φ ∼= Id.

Starting with a Υ(An−1)-collection L on Y , after choice of a cover-
ing and isomorphisms L |U ∼= ((OU , ai)i, (OU , bi)i, (id)i)), we construct
an object ΨL = (π : C → Y, s−, s+, S), locally embedded in PnU with
homogeneous coordinates y0, . . . , yn using the functions ai, bi ∈ OU (U).
From ΨL we extract data ΦΨL after choice of a suitable covering and
local bases ỹ0, . . . , ỹn of π∗(OC(S)), locally given by (L̃%i |U ′ = OU ′ , ãi),
(L̃τi |U ′ = OU ′ , b̃i) for elements U ′ of the covering. Comparing the two
collections of homogeneous coordinates, satisfying the conditions of propo-
sition 3.4, of PnU ×U U ′′

∼→ PU ′′(π̄∗OPn
U

(S̄)|U ′′) ∼= PU ′′(π∗OC(S)|U ′′) where
S̄ ⊂ PnU is the hyperplane determined by the equation

∑
i aiyi = 0 (set

a0, an+1 = 1) and π̄ : PnU → U , and thus the two ways the object C

is locally embedded in PnU ′′ for open sets U ′′ = U ∩ U ′, we obtain an
isomorphism of Υ(An−1)-collections ΦΨL → L locally given by some
κ1, . . . , κn−1, λ1, . . . , λn−1 ∈ O∗U ′′(U ′′) as in remark 2.5. One verifies that
this gives an isomorphism of functors Φ ◦Ψ ∼= Id. �

Corollary 3.7. — The coarse moduli space of Ln, which coincides
with the quotient Ln/Sn, is isomorphic to the toric variety Y (An−1) corre-
sponding to the simplicial fan Υ(An−1) underlying the stacky fan Υ(An−1).

Example 3.8. — In the case n = 2 we have the isomorphism L2 ∼=
Y(A1). The stacky fan of Y(A1) was pictured in example 2.2. We have the
following types of pointed chains over L2 ∼= Y(A1) (cf. also example 1.8):

L2
a1 = 0

�1

�
μ2

a1, b1 �= 0 b1 = 0

τ1

�
�

Example 3.9. — In the case n = 3 we have the isomorphism L3 ∼=
Y(A2). The stacky fan of Y(A2) appeared in example 2.3. Here we picture
the types of pointed chains over the torus invariant divisors of the moduli
stack L3.
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b1, b2 = 0

σ{1,2}
b2, a1 = 0

σ{2}
a1, a2 = 0

σ∅
a2, b1 = 0

σ{1}
b1, b2 = 0

σ{1,2}
b2 = 0

τ2

a1 = 0

�1

a2 = 0

�2
b1 = 0

τ1

�
μ2 �

μ3 �
μ2

�
�

�

�

�

�
�

4. The functor of X(An−1), Losev-Manin moduli spaces
and the morphism to Ln

We start by comparing three descriptions of the functor of the toric
variety associated with root systems of type A. We use notations as in [2,
Section 2.1], in particular we have the lattice M(An−1) = 〈ui − uj : i, j ∈
{1, . . . , n}〉 ⊂

⊕n
i=1Zui, generated by the roots βij = ui − uj and forming

the character lattice for the toric variety X(An−1). Its dual N(An−1) =⊕n
i=1Zvi/

∑
i vi, where (ui)i and (vi)i are dual bases, is the lattice for the

fan Σ(An−1) of X(An−1).

The functor of the toric variety X(An−1) was described in [2] in terms of
An−1-data, i.e. families (L{±βij}, {tβij , t−βij}){±βij} of line bundles with
two generating sections that satisfy tαtβt−γ = t−αt−βtγ if γ = α + β, up
to isomorphism of line bundles with a pair of sections. With pull-back of
line bundles and its sections we have the functor FAn−1 of An−1-data, see
[2, Def. 1.17].
On X(An−1) we have the universal An−1-data, which can be defined us-

ing the morphisms ϕ{±βij} : X(An−1) → P1 induced by pairs of opposite
roots {±βij} in An−1 (see [2, Ex. 1.5 and 1.13]). We have homogeneous co-
ordinates zβij , z−βij ∈H0(P1,OP1(1)) such that xβij =ϕ∗{±βij}(zβij/z−βij ),
where xu for u ∈M(An−1) is the rational function corresponding to an el-
ement of the root lattice. Let L{±βij} = ϕ∗{±βij}OP1(1) and tβij , t−βij be
the pull-back of zβij , z−βij .

By [2, Thm. 1.20] the toric variety X(An−1) together with the universal
An−1-data represents the functor FAn−1 .

We can also apply the description of the functor of a smooth toric va-
riety of Cox [5] to X(An−1). The fan Σ(An−1) gives rise to the notion
of a Σ(An−1)-collection ((LI , wI)I , (cij)ij) on a scheme Y , consisting of
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line bundles on Y with a global section (LI , wI) for ∅ 6= I ( {1, . . . , n}
and isomorphisms cij :

(⊗
i∈I,j 6∈I LI

)
⊗
(⊗

i 6∈I,j∈I L ⊗-1
I

)
→ OY for i, j ∈

{1, . . . , n}, i 6= j, such that identifications of the form cij ⊗ cjk = cik hold.
These data have to satisfy the nondegeneracy condition that for any point
y ∈ Y there are sets I1 ⊂ . . . ⊂ In−1 ⊂ {1, . . . , n} with |Ii| = i such that
wI(y) 6= 0 if I 6= I1, . . . , In−1. We denote the functor of Σ(An−1)-collections
by CΣ(An−1).

On X(An−1) we have the universal Σ(An−1)-collection given by the line
bundles LI = OX(An−1)(DI), where DI is the torus invariant prime divisor
corresponding to the ray generated by

∑
i∈I vi, with the section wI aris-

ing as the image of the 1-section under the natural inclusion OX(An−1) →
OX(An−1)(DI) and the isomorphisms cij : OX(An−1)(

∑
i∈I,j 6∈I DI

−
∑
i 6∈I,j∈I DI) → OX(An−1) induced by multiplication with the rational

functions xβij on X(An−1).
By [5] the toric variety X(An−1) together with the universal

Σ(An−1)-collection ((OX(An−1)(DI), wI)I , (cij)ij) represents the functor
CΣ(An−1).

As both functors CΣ(An−1) and FAn−1 are isomorphic to the functor of
the toric variety X(An−1), we have an isomorphism of functors CΣ(An−1) →
FAn−1 , which we describe explicitely.

Proposition 4.1. — By the following procedure we can construct
An−1-data (L{±βij}, {tβij , t−βij}){±βij} out of a Σ(An−1)-collection
((LI , wI)I , (cij)ij) over a scheme Y : for a pair of opposite roots ±βij in
An−1 we have isomorphisms

⊗
i∈I, j 6∈I LI

∼←→
⊗

i6∈I, j∈I LI of line bun-
dles on Y defined by cij , cji inverse to each other, and we let L{±βij} be
a line bundles in the same isomorphism class, with the sections tβij , t−βij
defined as the images of

∏
i∈I,j 6∈I wI ,

∏
i 6∈I,j∈I wI in L{±βij} under iso-

morphisms compatible with the above. This construction defines an iso-
morphism of functors CΣ(An−1) → FAn−1 , mapping the universal Σ(An−1)-
collection to the universal An−1-data.

Proof. — This construction defines a morphism of functors CΣ(An−1) →
FAn−1 , in particular the requirement that the two sections t±βij as defined
in the construction generate the line bundle L{±βij} follows from the non-
degeneracy condition of Σ(An−1)-data. One can show that this morphism
of functors is an isomorphism by showing that it coincides with the com-
position of isomorphisms CΣ(An−1) → Mor( · , X(An−1)) → FAn−1 . This
follows from the fact that the universal Σ(An−1)-collection is mapped to
the universal An−1-data, which is easy to verify. �
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Considering the universal data on X(An−1), we have isomorphisms⊗
i∈I LI

∼→
⊗

j∈I LI via multiplication by the rational function xβij .
For any chosen j ∈ {1, . . . , n} we may define x1, . . . , xn ∈ H0(X(An−1),⊗

j∈I LI) as images of the sections
∏

1∈I wI , . . . ,
∏
n∈I wI under these iso-

morphisms. We then have xβij = xi/xj .

Definition 4.2. — Given an ordering i1, . . . , in of the set {1, . . . , n},
we define line bundles L1, . . . ,Ln−1 on X(An−1) and sections xJ of L|J|.
Let

Lj =
⊗

I L
⊗(|{i1,...,ij}∩I|−max{0,|I|+j−n})
I

be defined in terms of the universal Σ(An−1)-collection. The line bundles⊗
I L

⊗(|J∩I|−max{0,|I|+j−n})
I for any J ⊂ {1, . . . , n} of cardinality j are

isomorphic to Lj via multiplication by
∏
i∈J xi/

∏j
k=1 xik (can also be

expressed in terms of the isomorphisms cij being part of the universal
Σ(An−1)-collection). We define xJ ∈ H0(X(An−1),Lj) as the image of∏
I w
|J∩I|−max{0,|I|+j−n}
I under this isomorphism.

For these sections xJ ∈ H0(X(An−1),L|J|) we have equations of rational
functions∏

j∈J xj/
∏
j∈J′ xj = xJ/xJ′ =

∏
j∈J′ x{1,...,n}\{j}/

∏
j∈J x{1,...,n}\{j}.

Remark 4.3. — The line bundle Lj was defined as OX(An−1)(D) in
terms of the divisor D =

∑
I dIDi, where dI = |{i1, . . . , ij} ∩ I| −max{0,

|I|+ j − n}, which corresponds to the lattice polytope

∆j(An−1) =
⋂
I{u ∈M(An−1)Q :

∑
i∈I vi(u) > −dI }

= conv {
∑
i∈J ui −

∑j
k=1 uik : |J | = j }

inM(An−1)Q; the elements xJ ∈ H0(X(An−1),Lj) for |J | = j form a basis
of global sections. Different choices of the ordering fixed in the definition
give rise to translated polytopes.

The line bundle L1 with its basis of global sections x1, . . . , xn defines
a morphism X(An−1) → Pn−1. This morphism is a composition of toric
blow-ups as described in [12, (4.3.13)]. It maps the divisorsD{i} ofX(An−1)
to the torus invariant prime divisor Di = {xi = 0} of Pn−1, and more gen-
erally DI to

⋂
i∈I Di. Similarly, we have a morphism X(An−1)→ Pn−1 de-

fined by the line bundle Ln−1 mapping the divisorD{1,...,n}\{i} ofX(An−1)
to the torus invariant prime divisor D∗i = {x{1,...,n}\{i} = 0} of Pn−1, and
more generally D{1,...,n}\I to

⋂
i∈I D

∗
i , see also [12, (4.3.14)]. We also con-

sider the morphisms defined by the other line bundles Lj :
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Proposition 4.4. — The line bundle Lj is generated by the basis of
global sections (xJ)|J|=j , it determines a projective toric morphism

X(An−1) → P(〈xJ : |J | = j〉) ∼= P(nj)−1

which is birational onto its image. Together, these morphisms form a closed
embedding

X(An−1) →
∏n−1
j=1 P(〈xJ : |J | = j〉) ∼=

∏n−1
j=1 P

(nj)−1. (4.1)

The subscheme X(An−1) in this product is defined by homogeneous equa-
tions ∏l

i=1 xJi =
∏l
i=1 xJ′i (4.2)

where ∅ 6= Ji, J
′
i ( {1, . . . , n} such that |Ji| = |J ′i | and the equation for the

characteristic functions
∑
i χJi =

∑
i χJ′i is satisfied.

Proof. — That Lj is generated by global sections (xJ)|J|=j and deter-
mines a projective toric morphism follows from the fact that Lj can be re-
constructed from the polytope ∆j(An−1), see remark 4.3. This morphism is
birational onto its image since the polytope is full-dimensional. We describe
these morphisms in terms of the corresponding maps of fans.
For the toric variety P(〈xJ : |J | = j〉) we have the character lattice

M(An−1)j ⊂
⊕
|J|=j ZuJ generated by differences uJ − uJ′ and the dual

lattice N(An−1)j = (
⊕
|J|=j ZvJ)/(

∑
J vJ). The fan of P(〈xJ : |J | =

j〉) has the one-dimensional cones generated by the vJ . The morphism
X(An−1) → P(〈xJ : |J | = j〉) is determined by the map of lattices
M(An−1)j → M(An−1), uJ 7→

∑
i∈J ui, or dually N(An−1)→ N(An−1)j ,

vi 7→
∑
i∈J vJ , which defines a map of fans.

The product of these morphisms is given by the map of lattices⊕n
j=1M(An−1)j → M(An−1) with kernel generated by elements of the

form
∑
i nJi −

∑
i nJ′i such that |Ji| = |J ′i | and

∑
i χJi =

∑
i χJ′i . This

gives rise to the homogeneous equations.
The maximal cones of the fan of P(〈xJ : |J | = j〉) are the cones σJ

generated by {vJ′ |J ′ 6= J, |J ′| = j}. For an ordering i1, . . . , in of {1, . . . , n}
the preimage of the maximal cone σ{in} × σ{in,in−1} × . . . × σ{in,...,i2} of
the product fan is the maximal cone of Σ(An−1) generated by vi1 , vi1 +
vi2 , . . . , vi1+ . . .+vin−1 , thus the open sets corresponding to maximal cones
of this form cover the image of X(An−1). The corresponding maps of coor-
dinate algebras are surjective, so the morphism is a closed embedding. �

Remark 4.5. — The (n−1)-dimensional permutohedron, usually defined
in an n-dimensional vector space as convex hull of the orbit of (n, n−1,
. . . , 1) under the action of the symmetric group Sn permuting the given
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basis (cf. for example [12, (4.3.10)]), can be considered as a lattice polytope
in M(An−1)Q ⊂ Qn after a translation moving one of its vertices, specified
by fixing an ordering i1, . . . , in of the set {1, . . . , n}, to the origin:

∆(An−1) = conv
{∑n−1

k=1(n− k)uσ(k) −
∑n−1
k=1(n− k)uik : σ ∈ Sn

}
.

We have Minkowski sum decompositions of the permutohedron, first

∆(An−1) =
∑
k<j lijik

into line segments lij = {r · βij | 0 6 r 6 1} corresponding to the
line bundles L{±βij} forming the universal An−1-data (choosing
OX(An−1)(

∑
ik∈I,ij 6∈I DI) in the isomorphism class of L{±βijik} if k < j),

and second

∆(An−1) = ∆1(An−1) + . . .+ ∆n−1(An−1)

into the polytopes corresponding to the line bundles Lj .

Remark 4.6. — The closed embedding (4.1) together with the func-
tor of projective spaces gives another description of the functor of the
toric variety X(An−1). We have a contravariant functor on the category
of schemes: its data on a scheme Y are line bundles with generating sec-
tions (Lj , (xJ)|J|=j)j=1,...,n−1 up to isomorphism such that the sections
satisfy the relations (4.2), and for morphisms of schemes we have the pull-
back of line bundles with sections. We call the data on X(An−1) intro-
duced in definition 4.2 the universal data on X(An−1). Then, the toric
variety X(An−1) together with the universal data represents this functor.
Further, the method of definition 4.2 applied to Σ(An−1)-data over arbi-
trary schemes gives a morphism from CΣ(An−1) to this functor, mapping
the universal Σ(An−1)-collection to the universal data. As in the proof of
proposition 4.1 this implies that we have an isomorphism of functors.

The following observation can be directly calculated from the definition
of the line bundles Lj .

Lemma 4.7. — We have isomorphisms

L ⊗ -1
j−1 ⊗L ⊗2

j ⊗L ⊗ -1
j+1

∼=
⊗
|J|=n−j LJ (4.3)

where we set L0 = Ln = OX(An−1).

Definition 4.8. — We define the divisors C1, . . . , Cn−1 and
D1, . . . , Dn−1 on X(An−1). Let Dj =

∑
|J|=n−j DJ and let Cj be the zero

divisor of the section
∑
|J|=j xJ of the line bundle Lj .
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Remark 4.9. — We may write the isomorphism (4.3) as linear equiva-
lence of divisors

2Cj − Cj−1 − Cj+1 ∼ Dj .

The rational function
(
∑
|I|=j−1 xI)(

∑
|I|=j+1 xI)

(
∑
|I|=j xI)2 (4.4)

has divisor Dj + Cj−1 + Cj+1 − 2Cj .

Lemma 4.10. — For j = 1, . . . , n−1 we have Cj ∩Dj = ∅.

Proof. — Can easily be checked locally using the covering of the following
remark. �

Remark 4.11. — Given a Σ(An−1)-collection ((LI , wI)I , (cij)ij) on
a scheme Y , by nondegeneracy we have the following covering of Y
by open subschemes: for a permutation σ ∈ Sn set Iσ =

{
{σ(n)},

{σ(n), σ(n−1)}, . . . , {σ(n), . . . , σ(2)}
}
and let Wσ be the open subscheme

of Y where wI 6= 0 for I 6∈ Iσ.
In the case of the universal Σ(An−1)-collection on X(An−1) the sub-

schemeWσ ⊂ X(An−1) corresponds to the maximal cone 〈vσ(n), . . . , vσ(n)+
. . . + vσ(2)〉 ⊂ N(An−1)Q dual to the cone generated by the simple roots
uσ(n) − uσ(n−1), . . . , uσ(2) − uσ(1) and has as coordinate algebra the poly-
nomial ring generated by xσ(n)

xσ(n−1)
, . . . ,

xσ(2)
xσ(1)

.

By [2, Thm. 3.19] there is an isomorphism between the func-
tor FAn−1 and the moduli functor of n-pointed chains of P1 Ln
mapping the universal An−1-data to the universal n-pointed chain
(X(An)→ X(An−1), s−, s+, s1, . . . , sn) defined in [2, Con. 3.6]. This means
that the toric variety X(An−1) coincides with the Losev-Manin moduli
space Ln (we use the same symbol for the functor and the moduli space).
The construction uses an embedding of n-pointed chains into (P1)n.

This also implies that there is an isomorphism between the functor
CΣ(An−1) and the moduli functor Ln compatible with the other isomor-
phisms of functors. We make this isomorphism explicit using an embedding
of n-pointed chains into Pn.

Construction 4.12. — Let ((LI , wI)I , (cij)ij) be a Σ(An−1)-collec-
tion over a scheme Y . We construct an n-pointed chain of P1 (C →
Y, s−, s+, s1, . . . , sn) using the covering of Y by (Wσ)σ∈Sn (see remark
4.11).
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For σ∈Sn the restricted Σ(An−1)-collection ((LI |Wσ
, wI |Wσ

)I , (cij |Wσ
)ij)

is isomorphic to a Σ(An−1)-collection ((L σ
I , w

σ
I )I , (cσij)ij) on Wσ with the

property (L σ
I , w

σ
I ) = (OWσ , 1) for I 6∈ Iσ, and for i = 1, . . . , n− 1 we have

isomorphisms cσσ(i+1),σ(i) : L σ
{σ(n),...,σ(i+1)} → OWσ

. Let wσi ∈ OWσ
(Wσ)

be the image of w{σ(n),...,σ(i+1)}. Equivalently, we can use the restricted
original data ((LI |Wσ

, wI |Wσ
)I , (cij |Wσ

)ij) and the image of the respective
product of the restricted wI ’s under cσ(i+1),σ(i)|Wσ .
>From these functions wσ1 , . . . , wσn−1 we construct an n-pointed chain

over Wσ embedded in the projective space PnWσ
with homogeneous coordi-

nates y0, . . . , yn. Let Cσ be the subscheme of PnWσ
defined by the equations

yiyj+1 = wσi+1 · · ·wσj yi+1yj for 0 6 i < j < n (cf. construction 3.6), the
sections sσσ(i) defined by the additional equation yi−1 = yi 6= 0, and let
sσ−, s

σ
+ be the sections (1 :0 : . . . :0), (0 : . . . :0 :1).

These n-pointed chains (Cσ →Wσ, s
σ
−, s

σ
+, s

σ
1 , . . . , s

σ
n) can be glued to an

n-pointed chain (C → Y, s−, s+, s1, . . . , sn) over Y .

Proposition 4.13. — Construction 4.12 is valid and defines an isomor-
phism between the functor CΣ(An−1) and the moduli functor of n-pointed
chains of P1 mapping the universal Σ(An−1)-collection ((OX(An−1)(DI),
wI)I , (cij)ij) to the universal n-pointed chain (X(An)→ X(An−1), s−, s+,

s1, . . . , sn).

Proof. — Given Σ(An−1)-data over a scheme Y , it is easy to show that
construction 4.12 locally over the open subschemes Wσ ⊆ Y defines n-
pointed chains of P1 (compare also to construction 3.6).
We show that, applying the isomorphism of functors Ln → FAn−1 to

these objects over Wσ, we obtain An−1-data which coincide with the data
we get by applying the functor CΣ(An−1) → FAn−1 to the restricted data.
According to [2, Section 3.3] we extract An−1-data from an n-pointed
chain (Cσ → Wσ, s

σ
−, s

σ
+, s

σ
1 , . . . , s

σ
n) via projections to P1

Wσ
such that

sσ−, s
σ
+ become the (1 : 0), (0 : 1)-section and a given section sσi becomes

the section (1 : 1). In the present case for i = 1, . . . , n the morphism
determined by the rational functions 1, yi/yi−1 restricted to the compo-
nent of Cσ containing sσσ(i) after contracting the other components trans-
forms the sections sσ−, sσ+, sσσ(i) into the (1 : 0), (0 : 1), (1 : 1)-sections. For
n = 1, . . . , n−1 the section sσσ(i+1) becomes the section (wσi : 1), and this
gives (t−βσ(i),σ(i+1) : tβσ(i),σ(i+1)) = (wσi : 1) which coincides with the data
obtained via proposition 4.1.
Thus, the chains over the open subschemes Wσ can be glued to an n-

pointed chain over the scheme Y and construction 4.12 defines a morphism
of functors CΣ(An−1) → Ln, such that its composition with Ln → FAn−1
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coincides with the isomorphism of functors CΣ(An−1) → FAn−1 defined in
proposition 4.1. Since the other morphisms of functors are isomorphisms
and map the given universal objects to the given universal objects, this is
also true for CΣ(An−1) → Ln. �

Theorem 4.14. — The morphism Ln → Ln that arises by forgetting
the labels of the n sections is given by the following Υ(An−1)-collection on
Ln = X(An−1): for i = 1, . . . , n−1 let L%i = OLn(Ci) and Lτi = OLn(Di),
let

ci : LτiL%i−1L
⊗ -2
%i L%i+1 = OLn(Di + Ci−1− 2Ci + Ci+1) → OLn

be given by multiplication by the rational function (4.4), and let the sections
ai, bi be defined as the images of the 1-sections under the inclusions OLn →
L%i , OLn → Lτi .

Proof. — The data defined form a Υ(An−1)-collection, nondegeneracy
follows from Ci ∩Di = ∅, see lemma 4.10.

We use the covering by Wσ, σ ∈ Sn (see remark 4.11). We have an iso-
morphism ((L%i , ai)i, (Lτi , bi)i, (ci)i)|Wσ

→ ((OWσ
, aσi )i, (OWσ

, bσi )i, (id)i)
of Υ(An−1)-collections on Wσ consisting of isomorphisms Lτi |Wσ

→ OWσ

given by multiplication with xσ(i+1)/xσ(i) (compare to construction 4.12)
and L%i |Wσ → OWσ by multiplication with (

∑
|I|=i xI)/x{σ(1),...,σ(i)}.

We show that the degree-n-pointed chain constructed from these data
coincides with the degree-n-pointed chain that arises by forgetting the la-
bels of the universal n-pointed chain coming from the universal Σ(An−1)-
collection by proposition 4.13.
Applying construction 3.6 to these data, we get a chain of P1 C ⊂ PnWσ

defined by the functions bσi = xσ(i+1)/xσ(i) and a subscheme S ⊂ C finite of
degree n over Wσ defined by the functions aσi = (

∑
|I|=i xI)/x{σ(1),...,σ(i)}.

Applying construction 4.12 to the universal Σ(An−1)-collection on
X(An−1), locally over Wσ ⊂ X(An−1) again we get the chain of P1 C ⊂
PnWσ

defined by the functions bσi = xσ(i+1)/xσ(i). The n sections are

sσ(i) = ( . . . : x2
σ(i)

xσ(i−2)xσ(i−1)
: xσ(i)
xσ(i−1)

: 1 : 1 : xσ(i+1)
xσ(i)

: xσ(i+1)xσ(i+2)
x2
σ(i)

: . . . )

in terms the coordinates y0, . . . , yn of PnWσ
, that is, we have yi−1(sσ(i)) =

yi(sσ(i)) which we may set to 1, and then yk(sσ(i)) = xi−kσ(i)
xσ(1)···xσ(k)
xσ(1)···xσ(i)

. The
sections are contained in the hyperplane defined by

∑n
k=0(−)kaσkyk = 0

(set aσ0 = aσn = 1):
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∑n
k=0(−)kaσkyk(sσ(i)) = xiσ(i)

xσ(1)···xσ(i)

∑n
k=0(−)k

∑
|I|=k

xI xσ(1)···xσ(k)
x{σ(1),...,σ(k)}x

k
σ(i)

= xiσ(i)
xσ(1)···xσ(i)

∑n
k=0(−)k

( ∑
|I|=k
σ(i)6∈I

xI xσ(1)···xσ(k)
x{σ(1),...,σ(k)}x

k
σ(i)

+
∑
|I|=k
σ(i)∈I

xI xσ(1)···xσ(k)
x{σ(1),...,σ(k)}x

k
σ(i)

)
= xiσ(i)

xσ(1)···xσ(i)

∑n
k=0

(
(−)k

∑
|I|=k
σ(i) 6∈I

xI xσ(1)···xσ(k)
x{σ(1),...,σ(k)}x

k
σ(i)
−

(−)k−1 ∑
|I|=k−1
σ(i) 6∈I

xI xσ(1)···xσ(k−1)

x{σ(1),...,σ(k−1)}x
k−1
σ(i)

)
= 0

The relative effective divisors
∑
i si and S in C over Wσ coincide since

they coincide over the open dense subscheme of Ln parametrising chains
with distinct sections. �

Remark 4.15. — The results of this section imply a construction of
a morphism of fibred categories from the functor of Σ(An−1)-collections,
considering the Sn-operation on this functor, to the category of Υ(An−1)-
collections such that the diagram

CΣ(An−1)
∼←→ Ln

↓ ↓
CΥ(An−1)

∼←→ Ln
commutes.

Example 4.16. — In the case n = 2 the functor FA1
∼= CΣ(A1) → CΥ(A1)

maps an object (L{±β12}, {tβ12 , t−β12}) of FA1 over a scheme Y to the object

((OY (C1), a1), (OY (D1), b1), c1 : OY (D1)⊗OY (C1)⊗ -2 ∼→ OY ) ∼=
((L{±β12}, tβ12 + t−β12), (L ⊗2

{±β12}, tβ12t−β12),L ⊗2
{±β12} ⊗L ⊗ -2

{±β12}
∼→ OY )

of CΥ(A1), cf. example 1.8.

5. Pointed chains with involution and Cartan matrices
of type B and C

As a natural variation of Ln we consider moduli stacks L±n of stable
degree-2n-pointed chains of P1 with an involution.

Definition 5.1. — We define the fibred category L±n of stable degree-
2n-pointed chains of P1 with involution. An object over a scheme Y is
a collection (C → Y, I, s−, s+, S), where (C → Y, s−, s+, S) is a stable
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degree-2n-pointed chain of P1 over Y (definition 1.1), I an automorphism
of C over Y such that I2 = idC and I(s−) = s+, and S is invariant under
I. Morphisms between objects are morphisms of degree-2n-pointed chains
which commute with the involution I.

As in the case of Ln, see proposition 1.4, the fibred category L±n is a
stack in the fpqc topology with representable finite diagonal.

Considering degree-2n-pointed chains of P1 with involution as degree-
2n-pointed chains defines a morphism of stacks L±n → L2n which makes
L±n a subcategory of L2n but in general not a substack, because a stable
degree-2n-pointed chain may have automorphisms not commuting with an
additional involution.

The moduli stack L±n decomposes, unless we are working in characteristic
2, into two components L±n = L±n,+ ∪ L

±
n,−, where the component L±n,+

parametrises isomorphism classes of stable degree-2n-pointed chains with
involution (C, I, s−, s+, S) such that the degree of S in each of the fixed
points under the involution is even. We first consider this main component
L±n,+.

The component L±n,+ is related to the moduli space L±n ∼= X(Cn) of
2n-pointed chains with involution defined in [3, Section 6]. There is a mor-
phism L

±
n → L

±
n,+ forgetting the labels of the sections. This morphism is

equivariant with respect to the natural action of the Weyl group W (Cn) =
(Z/2Z)noSn on L±n , the coarse moduli space of L±n,+ is L±n /W (Cn). Sim-
ilar as in proposition 1.5 one can show that the morphism L

±
n → L

±
n,+ is

faithfully flat and finite of degree |W (Cn)| = 2nn!.

These morphisms together with the morphisms L2n → L2n (see section
1) and L±n → L2n (see [3, Rem. 6.16]) form a commutative diagram

L
±
n −→ L2n
↓ ↓
L±n,+ −→ L2n

where L±n is a component of the fibred product.

The stack L±n,+ compactifies the space of finite subschemes of degree 2n
in P1 \ {0,∞} which are invariant under the involution and of even degree
in each of the fixed points of the involution. Equivalently, this is the space
of polynomials

∑2n
i=0 a

′
iy
i of degree 2n with the symmetry a′2n−i = a′i in the

coefficients, up to change of the variable by multiplication by −1. These
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polynomials can contain y − 1 and y + 1 only with even multiplicity. After
dividing by the coefficient a′2n = a′0, we have a polynomial of the form

y−n + an−1y
−n+1 + . . .+ a1y

−1 + a0 + a1y + . . .+ an−1y
n−1 + yn

determined by the isomorphism class up to multiplication of y with −1
(together with multiplication of the whole expression by (−1)n).

In general, embedding a chain (C, I, s−, s+, S) into the projective space
P2n = P(H0(C,OC(S))), the image of C is given by equations arising from
the 2×2 minors of a matrix of the form (decompose into several matrices if
some of the bi are zero, cf. remark 3.3; symbol

√
b0 introduced for symmetry

reasons) (
· · · y-2 y-1

√
b0y0

√
b0b1y1 · · ·

· · ·
√
b0b1y-1

√
b0y0 y1 y2 · · ·

)
where y-n, . . . , y0, . . . , yn is a basis of H0(C,OC(S)) defined similar as in
proposition 3.2, 3.4 and such that the involution maps y-i ↔ yi. The sec-
tions s−, s+ become the sections (1 : 0 : . . . : 0), (0 : . . . : 0 : 1) and the
subscheme S ⊂ C ⊂ P2n is determined by an equation

y-n + an−1y-(n−1) + . . .+ a1y-1 + a0y0 + a1y1 + . . .+ an−1yn−1 + yn = 0.

For an algebraically closed field K a K-valued point of L±n,+ corresponds
to a collection (an−1, . . . , a0, bn−1, . . . , b0) ∈ K2n up to the equivalence

(an−1, . . . , a0, bn−1, . . . , b0) ∼ (κn−1an−1, . . . , κ0a0, λn−1bn−1, . . . , λ0b0)

with (κn−1, . . . , κ0, λn−1, . . . , λ0) ∈ (K∗)2n satisfying λn−1 = κ2
n−1/κn−2,

λn−2 = κ2
n−2/(κn−3κn−1), . . . , λ1 = κ2

1/(κ0κ2), λ0 = κ2
0/κ

2
1. This gives

rise to a toric orbifold whose exact sequence of tori

1 −→ G∼=(Gm)n −→ (Gm)2n −→ TN ∼=(Gm)n −→ 1

corresponds to the exact sequence of lattices

0 −→M∼=Zn
( -C
In

)
−→ Z2n ( In C )−→ Zn −→ 0

where C = C(Cn)> is the transpose of the Cartan matrix

C(Cn) =



2 -1 0 · · · 0
-1 2

. . . . . .
...

0
. . . . . . -1 0

...
. . . -1 2 -1

0 · · · 0 -2 2


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of the root system Cn.

Definition 5.2. — We define the toric orbifold Y(Cn) associated to the
Cartan matrix of the root system Cn in terms of the stacky fan Υ(Cn) =
(N,Υ(Cn), β), where N = Zn and the linear map β : Z2n → N is given by
the n×2n matrix (-C(Cn) In). The fan Υ(Cn) has the 2n one-dimensional
cones %n−1, . . . , %0, τn−1, . . . , τ0 generated by the columns of the matrix
(-C(Cn) In). A subset of one-dimensional cones generates a higher dimen-
sional cone of Υ(Cn) if it does not contain one of the sets {%0, τ0}, . . . ,
{%n−1, τn−1}. This defines a fan containing 2n n-dimensional cones σI gen-
erated by sets {%i}i6∈I ∪ {τi}i∈I for subsets I ⊆ {0, . . . , n− 1}.

The functor of Υ(Cn)-collections CΥ(Cn) ∼= Y(Cn) has objects of the
form ((L%i , ai)i=0,...,n−1, (Lτi , bi)i=0,...,n−1, (ci)i=0,...,n−1) over a scheme Y ,
where the ci are isomorphisms of line bundles on Y
cn−1 : Lτn−1⊗L ⊗ -2

%n−1
⊗L%n−2 → OY ,

cn−2 : Lτn−2⊗L%n−1⊗L ⊗ -2
%n−2
⊗L%n−3 → OY ,

...
c1 : Lτ1⊗L%2⊗L ⊗ -2

%1
⊗L%0 → OY ,

c0 : Lτ0⊗L ⊗2
%1
⊗L ⊗ -2

%0
→ OY .

We have a morphism of stacks CΥ(Cn) → CΥ(A2n−1) by considering the
collection

((L%n−1 , an−1), . . . , (L%0 , a0), . . . , (L%n−1 , an−1), (Lτn−1 , bn−1),
. . . , (Lτ0 , b0), . . . , (Lτn−1 , bn−1), cn−1, . . . , c0, . . . , cn−1), (5.1)

built out of a Υ(Cn)-collection, as a Υ(A2n−1)-collection. This morphism
can be described by the map of fans Υ(Cn)→ Υ(A2n−1) mapping e′n−1 7→
e2n−1+e1, . . . , e

′
1 7→ en+1+en−1, e

′
0 7→ en, where e′n−1, . . . , e

′
0 are the gener-

ators of τn−1, . . . , τ0 of Υ(Cn) and e2n−1, . . . , e1 are those of τ2n−1, . . . , τ1 of
Υ(A2n−1). It corresponds to a toric morphism Y(Cn)→ Y(A2n−1) making
Y(Cn) a subcategory of Y(A2n−1).

Theorem 5.3. — There is an isomorphism of stacks L±n,+ ∼= Y(Cn).

Proof. — Applying construction 3.5 to a degree-2n-pointed chain with
involution, it is possible to choose y0, . . . , y2n such that the involution maps
yi ↔ y2n−i, and we obtain a Υ(A2n−1)-collection of the form (5.1). Ap-
plying construction 3.6 to a Υ(A2n−1)-collection of the form (5.1), making
symmetric choices, we can introduce an involution on the resulting degree-
2n-pointed chain by yi ↔ y2n−i. A Υ(A2n−1)-collection of the form (5.1)
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is equivalent to a Υ(Cn)-collection, and further, morphisms of the corre-
sponding degree-2n-chains with involution that commute with the involu-
tion are equivalent to morphisms of Υ(Cn)-collections. �

The case of the other component L±n,− is very similar. The stack L±n,−
parametrises isomorphism classes of stable degree-2n-pointed chains with
involution (C, I, s−, s+, S) such that the degree of S in each of the fixed
points of the involution is odd if there are two fixed points, and positive
if there is only one fixed point. It is related to the moduli stack X (Cn−1)
defined in [3, Section 6]: there is a morphism X (Cn−1)→ L±n,− determined
by forgetting the labels of the sections and adding the fixed point subscheme
of the involution as a subscheme of degree 2 to the 2n− 2 sections.

The stack L±n,− compactifies the stack of finite subschemes S of degree
2n in P1\{0,∞} invariant under the involution such that S has odd degree
in (1 : 1) and (1 : -1) (positive degree in (1 : 1) = (1 : -1) in characteristic 2).
Equivalently we may consider polynomials

∑2n
i=0 a

′
iy
i of degree 2n with the

symmetry a′2n−i = −a′i in the coefficients and a′n = 0. We may represent
each isomorphism class by an expression of the form

−y−n − an−1y
−n+1 − . . .− a1y

−1 + 0 + a1y + . . .+ an−1y
n−1 + yn

determined up to multiplication of y with -1 (together with multiplication
of the whole expression by (-1)n). It has a factor (y−1)(y−1 +1), occurring
with odd multiplicity in characteristic 6= 2.

In general, similar as in the case of L±n,+, a not necessarily irreducible
chain can be naturally embedded into P2n = P(H0(C,OC(S))) and de-
scribed by equations arising from the 2× 2 minors of a matrix of the form(

· · · y-2 y-1 y0 b1y1 · · ·
· · · b1y-1 y0 y1 y2 · · ·

)
and the subscheme S ⊂ C ⊂ P2n is given by an equation

−y-n − an−1y-(n−1) − . . .− a1y-1 + a1y1 + . . .+ an−1yn−1 + yn = 0.

Over an algebraically closed field K a K-valued point of L±n,− corresponds
to a collection (an−1, . . . , a1, bn−1, . . . , b1) ∈ K2n−2 up to the equivalence

(an−1, . . . , a1, bn−1, . . . , b1) ∼ (κn−1an−1, . . . , κ1a1, λn−1bn−1, . . . , λ1b1)

with (κn−1, . . . , κ1, λn−1, . . . , λ1) ∈ (K∗)2n−2 satisfying λn−1 =κ2
n−1/κn−2,

λn−2 = κ2
n−2/(κn−3κn−1), . . . , λ2 = κ2

2/(κ1κ3), λ2
1 = κ2

1/κ
2
2.

TOME 65 (2015), FASCICULE 2



896 Mark BLUME

We will see that this stack can be described by a toric stack that differs
from Y(Cn−1) by replacing the matrix (-C(Cn−1) In−1) defining the map
β of the stacky fan Υ(Cn−1) by the matrix -C(Cn−1)

1 0

0
. . . . . .
. . . 1 0

0 2

 .

In the case n = 1 we define it to be Bµ2. This toric stack corresponds to the
category of collections of the form ((L%i , ai)i=1,...,n−1, (Lτi , bi)i=1,...,n−1,

(ci)i=1,...,n−1) over a scheme Y , where the ci are isomorphisms of line bun-
dles
cn−1 : Lτn−1⊗L ⊗ -2

%n−1
⊗L%n−2 → OY ,

cn−2 : Lτn−2⊗L%n−1⊗L ⊗ -2
%n−2
⊗L%n−3 → OY ,

...
c2 : Lτ2⊗L%3⊗L ⊗ -2

%2
⊗L%1 → OY ,

c1 : L ⊗2
τ1
⊗L ⊗2

%2
⊗L ⊗ -2

%1
→ OY .

Proposition 5.4. — The stack L±n,− is isomorphic to the above toric
stack. It can be embedded into L±n,+ as the divisor D%0 corresponding to
the cone %0 and defined by a0 = 0.

Proof. — Similar as in the proof of theorem 5.3 one can show that L±n,−
is isomorphic to the above toric stack by embedding this toric stack as a
subcategory into Y(A2n−1).
An embedding of L±n,− into L±n,+ as divisorD%0 is given by mapping a col-

lection ((L%i , ai)i=1,...,n−1, (Lτi , bi)i=1,...,n−1, (ci)i=1,...,n−1) over a scheme
Y to the collection ((L%i , ai)i=0,...,n−1, (Lτi , bi)i=0,...,n−1, (ci)i=0,...,n−1)
where L%0 = Lτ1 ⊗ L%2 , a0 = 0 and Lτ0 = OY , b0 = 1 and c0 is de-
fined using c1. This corresponds to mapping (C → Y, I, s−, s+, S−) to
(C → Y, I, s−, s+, S+) such that S+ is given by

y-n + an−1y-(n−1) + . . .+ a1y-1 + a1y1 + . . .+ an−1yn−1 + yn

if S− is given by

−y-n − an−1y-(n−1) − . . .− a1y-1 + a1y1 + . . .+ an−1yn−1 + yn.

�

Example 5.5. — The toric orbifold L±1,+ is isomorphic to the weighted
projective line P(1, 2) ∼= Y(C1). Here the inclusion as subcategory L±1,+ →
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L2 is an isomorphism of stacks as any degree-2-pointed chain is isomorphic
to a symmetric object under an involution whose isomorphisms commute
with the involution. So we have the same situation as in examples 1.8, 2.2,
3.8. The component L±1,− is isomorphic to Bµ2.

Example 5.6. — The stacky fan of the toric orbifold L±2,+ ∼= Y(C2) is

given by the matrix
(

-2 1 1 0
2 -2 0 1

)
:

Υ(C2) � τ1

�
τ0

�

�1

�
�0

σ{0,1}

σ{0}

σ{1}σ∅

We picture the types of pointed chains over the torus invariant divisors of
the moduli stack L±2,+.

.
..................................................

................................................. ............................................... .................................................
.................................................. .

..................................................
................................................. ............................................... .................................................

.................................................. .
..................................................

................................................. ............................................... .................................................
.................................................. .

..................................................
................................................. ............................................... .................................................

................................................... ............. .......... ....... .... ...................................

b0, b1 = 0

σ{0,1}
b0, a1 = 0

σ{0}

�
μ2

a0, a1 = 0

σ∅

�
μ2

a0, b1 = 0

σ{1}

�
μ2

b0, b1 = 0

σ{0,1}
b0 = 0

τ0
a1 = 0

�1

�
μ2

a0 = 0

�0
b1 = 0

τ1

�
�

�
�

�
�

�
�

�
�

�
�

�
�
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The toric orbifold L±2,−∼= P1/µ2 corresponds to the stacky fan given by the
matrix ( -2 2 ). We have the following types of pointed chains over L±2,−:

L±
2,− a1 = 0

�1

�μ2

a1, b1 �= 0 b1 = 0

τ1

�μ2

�
�

�

�

�
�

One also may consider chains with involution and a subscheme of odd
degree.

Definition 5.7. — Let the fibred category L0,±
n of stable degree-

(2n+ 1)-pointed chains of P1 with involution be defined analogously to
definition 5.1.

The fibred category L0,±
n is a stack in the fpqc topology with repre-

sentable finite diagonal.

The moduli stack L0,±
n forms a subcategory of L2n+1. It is related to

the moduli space L0,±
n
∼= X(Bn) of (2n+1)-pointed chains with involution

defined in [3, Section 1]. We have a morphism L
0,±
n → L0,±

n forgetting
the labels of the sections, which is equivariant with respect to the action
of the Weyl group W (Bn) = (Z/2Z)n o Sn on L

0,±
n . The coarse moduli

space of L0,±
n is L0,±

n /W (Bn). As in the C-case the morphism L
0,±
n →

L0,±
n is faithfully flat and finite of degree |W (Bn)| = 2nn!, and we have a

commutative diagram
L

0,±
n −→ L2n+1
↓ ↓
L0,±
n −→ L2n+1

Embedding a degree-(2n+1)-pointed chain with involution (C, I, s−, s+,

S) into the projective space P2n+1 = P(H0(C,OC(S))), the image of C is
given by equations arising from the 2× 2 minors of a matrix of the form(

· · · y-5/2 y-3/2 y-1/2 b1y1/2 b1b2y3/2 · · ·
· · · b1b2y-3/2 b1y-1/2 y1/2 y3/2 y5/2 · · ·

)
and the subscheme S by

y-(2n+1)/2+any-(2n−1)/2+. . .+a1y-1/2+a1y1/2+. . .+any(2n−1)/2+y(2n+1)/2.
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where y-(2n+1)/2, . . . , y-3/2, y-1/2, y1/2, y3/2, . . . , y(2n+1)/2 is a basis of
H0(C,OC(S)) defined similar as in proposition 3.2, 3.4 and such that the
involution maps y-i/2 ↔ yi/2.

Definition 5.8. — We define the toric orbifold Y(Bn) in terms of the
stacky fan Υ(Bn) as in definition 5.2 replacing the Cartan matrix C(Cn)
of the root system Cn by the Cartan matrix C(Bn) of the root system Bn.

It turns out that L0,±
n is not quite Y(Bn), but coincides with the under-

lying canonical toric stack Y(Bn)can (as defined in [7]). So instead of the
Cartan matrix of the root system Bn we have the matrix

2 -1 0 · · · · · · 0

-1 2
. . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . 2 -1 0
...

. . . -1 2 -1

0 · · · · · · 0 -1 1


where the rightmost column is half of the column of the Cartan matrix.
The functor of Υ(Bn)can-collections CΥ(Bn)can ∼= Y(Bn)can has objects of
the form ((L%i , ai)i=1,...,n, (Lτi , bi)i=1,...,n, (ci)i=1,...,n) over a scheme Y ,
where the ci are isomorphisms of line bundles
cn : Lτn⊗L ⊗-2

%n ⊗L%n−1→ OY , cn−1 : Lτn−1⊗L%n⊗L ⊗-2
%n−1
⊗L%n−2→ OY ,

. . . , c2 : Lτ2⊗L%3⊗L ⊗-2
%2
⊗L%1 → OY , c1 : Lτ1⊗L%2⊗L ⊗-1

%1
→ OY .

The inclusion as subcategory Y(Bn)can → Y(A2n) can be described as
CΥ(Bn)can → CΥ(A2n) by considering the collection

((L%n , an), . . . , (L%1 , a1), (L%1 , a1), . . . , (L%n , an),
(Lτn , bn), . . . , (Lτ1 , b1), (Lτ1 , b1), . . . , (Lτn , bn), cn, . . . , c1, c1, . . . , cn),

formed out of a Υ(Bn)can-collection, as a Υ(A2n)-collection.

As in the case of degree-2n-pointed chains with involution one can prove:

Theorem 5.9. — There is an isomorphism of stacks L0,±
n
∼= Y(Bn)can.

Example 5.10. — In the case n = 1 we have a scheme L0,±
1
∼= Y(B1)can

isomorphic to P1.

Example 5.11. — The toric orbifold L0,±
2
∼= Y(B2)can is given by the

matrix
(

-2 1 1 0
1 -1 0 1

)
. In the picture of the stacky fan Υ(B2)can the
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dotted arrow corresponds to the generator of the ray %1 determined by the
stacky fan Υ(B2). L±2,−:

Υ(B2)
can � τ2

�
τ1

�
�2

�
�1

�

σ{1,2}
σ{1}

σ{2}σ∅

We picture the types of pointed chains over the torus invariant divisors of
the moduli stack L0,±

2 . L±2,−:

.
..................................................

................................................. ............................................... .................................................
.................................................. .

..................................................
................................................. ............................................... .................................................

.................................................. .
..................................................

................................................. ............................................... .................................................
.................................................. .

..................................................
................................................. ............................................... .................................................

................................................... ............. .......... ....... .... ...................................

b1, b2 = 0

σ{1,2}
b1, a2 = 0

σ{1}

�
μ2

a1, a2 = 0

σ∅
a1, b2 = 0

σ{2}
b1, b2 = 0

σ{1,2}
b1 = 0

τ1
a2 = 0

�2
a1 = 0

�1
b2 = 0

τ2

�
�

�
�
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