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TORIC ORBIFOLDS ASSOCIATED TO CARTAN
MATRICES

by Mark BLUME (*)

ABSTRACT. — We investigate moduli stacks of pointed chains of P! related to
the Losev-Manin moduli spaces and show that these moduli stacks coincide with
certain toric stacks which can be described in terms of the Cartan matrices of root
systems of type A. We also consider variants of these stacks related to root systems
of type B and C.

RisUME. —  Nous étudions les champs de modules des chaines de P! mar-
quées, reliés aux espaces de modules de Losev-Manin, et montrons que ces champs
de modules coincident avec certains champs toriques qui peuvent étre décrits en
termes de matrices de Cartan de systémes de racines de type A. Nous considérons
également les variantes de ces champs liés aux systémes de racines de type B et C.

Introduction
The Losev-Manin moduli spaces L,, introduced in [16], parametrise iso-
morphism classes of stable n-pointed chains of P'. The space L, forms
a compactification of the torus (G,,)"/G,, that parametrises n points
81,...,8, in P\ {0,00} = G,, up to automorphisms of P! fixing the
two points 0, co. It is a smooth projective toric variety isomorphic to the
toric variety X (A,_1) associated with the root system A, _1, see [2].

In the present paper we are concerned with a variant of the Losev-Manin
moduli spaces which arises as a compactification of the moduli space of n
indistinguishable points in P!\ {0, oo}, or equivalently, finite subschemes of
degree n in P1\ {0, 0o}. Isomorphism classes of such subschemes correspond
to polynomials of the form y”+a,,_1y" ' +...+a1y+1 up to multiplication

Keywords: Losev-Manin moduli spaces, toric stacks, root systems, Cartan matrices,
permutohedron.

Math. classification: 14M25, 14D23, 14H10.
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of the variable y by an n-th root of unity. The torus (G,, )" !, parametrising
polynomials with non-zero coefficients a4, ..., a,_1, is compactified by the
moduli stack of chains of P! with finite subschemes of degree n. On the
boundary both the coefficients of the polynomials may become zero and the
curve may become a reducible chain of P'. The category of these pointed
curves, which we call degree-n-pointed chains of P!, forms an orbifold £,,.

The orbifold £,, is related to the Losev-Manin moduli space L,, by an
S,,-equivariant morphism L,, — £, L,, with the operation of the symmet-
ric group 5, that permutes the n sections and £,, with trivial operation,
which is given by mapping an n-pointed chain of P! to the corresponding
degree-n-pointed chain by forgetting the labels of the sections. The moduli
stack £,, is defined such that the morphism L,, — L, is closely related to
morphisms of the form C§ — C§/S, = C(g") = Div¢, /v from the n-fold
product over Y to the scheme of relative effective Cartier divisors of degree
n for Cy — Y a relative smooth curve over Y, here a chain of P! over YV’
without the poles of the components of the fibres. Therefore the morphism
L, — L, inherits properties like being faithfully flat and finite of degree
n! and being ramified exactly in the points corresponding to curves with
coinciding marked points, see proposition 1.5. The stack £,, differs from the
quotient stack [L,/S,], it has the same points but different automorphism
groups. The coarse moduli space of £,, coincides with the quotient L,,/S,,.

A main result of this paper, theorem 3.1, is an explicit description of
the structure of the stacks £,,: we show that £,, is a toric orbifold and we
determine the associated combinatorial data.

Toric Deligne-Mumford stacks over fields of characteristic 0 were intro-
duced in [4] and constructed from combinatorial data called (simplicial)
stacky fans, consisting of a simplicial fan and some extra data, as quotient
stacks [U/T] of an open subscheme U of some affine space by a diagonal-
isable group scheme G, generalising the quotient construction of a smooth
toric variety described in [6]. Over more general base schemes in the same
way these data give rise to toric stacks which are not necessarily Deligne-
Mumford stacks but tame stacks in the sense of [1]. As our moduli problem
results in stacks which are orbifolds, in this paper we are mainly concerned
with toric orbifolds, i.e. toric tame stacks with trivial generic stabiliser. We
will work with toric orbifolds over the integers, considering the fact that
our moduli problem is naturally defined over the integers.

It turns out that the moduli stacks £,, can be described in terms of the

Cartan matrices of root systems of type A, more precisely, L,, is isomorphic
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to the toric orbifold Y(A,,—1) which corresponds to the stacky fan Y (A, _1)
defined in section 2 using the Cartan matrix of the root system A,,_;. For
the proof of the isomorphism £,, & Y(A,,_1) we make use of a generalisation
of the description of the functor of toric varieties [5] for toric stacks, which
allows to characterise Y (A, _1) as a stack Cy(a,,_,) of X (A, _1)-collections,
i.e. collections of pairs of a line bundle with a section and additional data.

We also characterise the morphism L,, — L,,, determined by forgetting
the labels of the n sections, in terms of the combinatorial data by spec-
ifying the Y (A, _1)-collection on X (A, 1) = L, corresponding to this
morphism, see theorem 4.14. In doing this, in section 4 we compare the
description of the functor of the toric varieties X (A,_1) associated with
root systems of type A after Cox [5] in terms of ¥(A,,_1)-collections to two
other descriptions: the description of [2] in terms of A,,_;-data and a new
description involving S,-invariant line bundles on X (A,,_1). Both of these
are related to Minkowski sum decompositions of the permutohedron: the
first is a decomposition into line segments and the second corresponds to
an embedding X (A, —1) — H;l;ll P() 1 and expresses the permutohedron
as sum of S,,-symmetric polytopes.

Generalisations of the Losev-Manin moduli spaces were investigated in
[3]. We considered (2n+1)-pointed and 2n-pointed chains of P! with in-
volution and showed that the moduli spaces Z?;i and ff of these objects
coincide with the toric varieties X (B,,) and X (C,,) associated with the root
systems B,, and C,,, see [3, Thm. 4.1 and 6.15].

In the present setting it makes sense to investigate similar generalisations
of the moduli stacks £,, and to relate these to the toric orbifolds Y(R) for
root systems R belonging to other classical families as well as to the moduli
spaces Zﬂ’i ~ X(B,) and fj: =~ X(C,). In section 5 we consider moduli
stacks of stable degree-(2n+1)-pointed and degree-2n-pointed chains of P!
with involution, Z?f and Zi[. We show that Zf has a main component
fi 4 isomorphic to Y(C,,) and that Z?l’i is isomorphic to Y(B,)®", the

canonical stack associated to Y(By,) (see [7]). We have morphisms fn’i —
Zo’i and fi: — Zi 1, defined by forgetting the labels of the sections, which

are equivariant under the Weyl group.

n

Acknowledgements. Thanks to Victor Batyrev.
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1. Moduli stacks of degree-n-pointed chains

We define moduli stacks of stable degree-n-pointed chains of P'. Com-
pared to the Losev-Manin moduli spaces considered in [16], [2], we replace
the n marked points s, ..., s, of an n-pointed chain of P! by a finite closed
subscheme S of degree n.

DEFINITION 1.1. — A stable degree-n-pointed chain of P! over an alge-
braically closed field K is a tuple (C,s_,sy,S), where C is a chain of P!
over K with two distinct closed points s_, s; on the outer components such
that on each component the number of intersection points together with
s—, st adds up to 2 (cf. [2, Def. 3.1]), and S C C' a finite closed subscheme of
degree n that does neither meet the intersection points of components nor
5_,s4, but that does meet every component of C. We define the category
L, of stable degree-n-pointed chains of P over the category of schemes.
The objects over a scheme Y are stable degree-n-pointed chains of P! over
Y, ie. tupels € = (C —Y,s_,s4,S), where C — Y is a locally finitely
presented, flat, proper morphism of schemes, s_,s;: Y — C are sections
and S C C is a subscheme finite flat over Y, such that the geometric fi-
bres are stable degree-n-pointed chains of P'. We have the natural notion
of isomorphism of degree-n-pointed chains of P! over the same scheme Y
and of pullback of an object over a scheme Y with respect to a morphism
f:Y' =Y. A morphism in L,, over a morphism f:Y' —Y is a cartesian
diagram of stable degree-n-pointed chains of P' over f.

Remark 1.2. — (1) For a chain of P! (C,s_,s;) over a field K
any component is isomorphic to P} since it contains a point with
residue field K.

(2) As the morphisms C — Y are locally finitely presented, by [9, IV,
(8.9.1)] we can use some results which originally require some noetherian
hypothesis.

Remark 1.3. — The automorphism group of a chain of P! (C,s_,s,)
of length [ over a field K is a torus (G,,)%. A stable degree-n-pointed
chain of P! (C,s_,s,S) of length [ over K has a finite automorphism
group scheme which is a subgroup scheme of (Gm)ZK. There are objects
(C,s_,s4,S5) having nontrivial automorphisms: consider for example P,
with homogeneous coordinates zg, z1, two poles s_ = (1:0), sy =(0:1)
and a subscheme S of degree k given by the equation z§ — zF = 0; in this
example we have an automorphism group scheme isomorphic to py.

ANNALES DE L’INSTITUT FOURIER
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PROPOSITION 1.4. — The category L,, is a category fibred in groupoids
over the category of schemes. It forms a stack over the fpqc site of schemes
with representable, finite diagonal. Over fields of characteristic 0 the diag-
onal is unramified.

Proof. — The category L,, together with the natural functor to the cat-
egory of schemes is a fibred category, the cartesian arrows being cartesian
diagrams of degree-n-pointed chains, and moreover the fibres £,,(Y") over
schemes Y form a groupoid.

The fibred category L, is a prestack in the fpqc topology, i.e. descent
data for morphisms are effective, see for example [18, Prop. 4.31]. To show
that £, is a stack, it remains to show that descent data for objects are
effective. Let (7: C — Y, s_,s,5) be a stable degree-n-pointed chain of
P! over a scheme Y. The subscheme S C C is an effective Cartier divi-
sor in C' because this is true on the fibres, see [13, Lemma 9.3.4], and so
its ideal sheaf .# C O¢ is a line bundle. The line bundle O¢(S) = &1
is relatively ample with respect to 7 since it is ample on the fibres, see
[9, ITI, (4.7.1)], [9, IV, (9.6.5)]. In fact, Oc(S) defines a closed embed-
ding in the projective bundle Py (m.O¢c(S)), see proposition 3.4. Given a
morphism F: (C" =Y’ s’ s ,8") = (C = Y,s_,s4,5) of two degree-
n-pointed chains over a morphism f: Y’ — Y forming a cartesian dia-
gram, we have a natural isomorphism F*O¢(S) = O¢/(S’), and further,
given morphisms F and G over f: Y’ — Y and ¢g: Y — Y’, after iden-
tifying (FG)*O¢(S) with G*F*O¢(S) the isomorphisms (FG)*Oc(S) —
Ocr(S") and G*F*O¢(S) = G*Oc/ (S') = Ocn(S") coincide. Then, by
descent theory of flat proper morphisms of schemes with a relatively am-
ple invertible sheaf, see [18, Thm. 4.38], descent data for objects of £,, are
effective.

We show that the diagonal £,, — £,, x L,, is representable and finite. For
a scheme Y and a morphism Y — £,, x £,, given by two objects €, %€’ €
L, (Y), the category YV Xz wTn L, fibred over the category of Y-schemes
is isomorphic to the functor on Y-schemes Isom(%,¢")(f: Z — Y) =
Morz () (f*%, f*€"). Using the embedding via Oc¢(S5) into Py (m.0c(S))
described in proposition 3.4 we see that Isom (%, ¢”) is a finite closed sub-
group scheme of the open dense torus of Py (7,.O¢(S)). In characteristic 0
it is unramified over Y, because then the fibres are reduced. O

The stack £, is related to the Losev-Manin moduli space L,, by a mor-
phism L,, — £, that arises by considering the n sections of an n-pointed
chain over Y as a relative effective Cartier divisor of degree n over Y.

TOME 65 (2015), FASCICULE 2
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PROPOSITION 1.5. — The morphism L, — L, is faithfully flat and
finite of degree n!. It is ramified exactly in the points of L,, corresponding
to n-pointed chains with some coinciding marked points.

Proof. — Note that the morphism is representable, since £,, has repre-
sentable diagonal. We show that for any morphism ¥ — £,,, Y a scheme,
the morphism of schemes Y Xz, L, — Y has the properties in question.
The morphism Y — £,, corresponds to an object € = (C' —Y,s_,s4,5)
over Y and the functor Y xz L, maps a scheme T to the set {(f: T —
Y, (C'—=T,5_,84,81,-..,8n),a)|a: f*€ —= (C'"—=T,s_,54,81+...+5,)},
where s1 + ...+ s, denotes the divisor of degree n associated to the n sec-
tions and « is a morphism in £,,(T"). We denote by C the open subscheme
of C obtained by excluding the poles and intersection points of components
on the fibres. Then Cj is a quasi-projective curve over Y, which is smooth
over Y since it is flat with smooth fibres (see [9, IV, (17.5.1)]). We may,
for any T, identify the chains C’ over T occurring in the above sets with
C xy T via the specified isomorphisms. The additional data given by the
subscheme S C Cj are equivalent to a section s: Y — Div¢, ;y = Cén) of
the scheme of relative effective divisors of degree n, which coincides with
the n-fold symmetric product of Cy over Y, see [10, Exposé XVII, 6.3.9, p.
186]. Likewise, the data given by the sections s1,...,s, are equivalent to
a section s': T — (C§)r of the n-fold product such that its composition
with (C§)r — (C(gn))T is the base extension st of s, or equivalently, to a
morphism s': T'— C{' whose composition with Cf' — C[()") coincides with

so f. Thus the functor Y x+ L, is isomorphic to the functor of the scheme

Y x 4 C, and this concludes the proof because the morphism Cy' — C’én)
0

has the required properties. O

Remark 1.6. — With proposition 1.5 and some general theory we can
derive some properties of the stack £,: by [15, Thm. 10.1], making use of
the proposition, £, is an algebraic stack (Artin stack); in characteristic
0, by [15, Thm. 8.1] and the fact that it has unramified diagonal, it is a
Deligne-Mumford stack. However, the result will follow independently later
in section 3 together with a more detailed description of the structure of £,,.

On the Losev-Manin moduli space L,, we have an operation of the sym-
metric group S, permuting the n sections. Any S, -equivariant morphism
L, — Z, Z a scheme with trivial S,-action, factors through L, = L,.
This implies that the quotient morphism L,, — L,,/S, factors as

L, — L, — Ly,/Sy,

ANNALES DE L’INSTITUT FOURIER
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and moreover, as L, — L, is an epimorphism, £,, — L, /S, forms the
coarse moduli space of L,,.

Remark 1.7. — There is the quotient stack [L,/Sy], which has the same
geometric points as £,. However, the automorphism groups of objects of
[L,,/Sy] differ from those of £,, which are always abelian.

In the case of the Losev-Manin moduli spaces, the boundary divisors
arise as images of closed embeddings L,, x L,, — fern. For the stacks £,,
we also have embeddings L, x L,, — Zerm defined as in the Losev-Manin
case by concatenation of chains, and the diagrams

T xTn —> Toin
A )
Loy XL, —> Em+n

are commutative.

The morphism L,, — £,, maps the open dense torus of L, = X(A,_1),
the moduli space of irreducible n-pointed chains, onto the moduli stack of
irreducible degree-n-pointed chains. This open substack of £,, parametrises
subschemes S of degree n in P\ {0, co} modulo automorphisms of P! fixing
0 and co. An object over an algebraically closed field K can described by a
monic polynomial [}, (y—s;) of degree n with sy,...,s, € K* determined
up to scaling by a common factor A\ € K* and permutations. We can write
this polynomial as

T I S i + (=)"s1- - 5n

where the coefficients are the symmetric polynomials in sq, ..., s,. Assum-
ing s1+-+s, = (—1)", we have a polynomial of the form

Yt 4+ oaym T+ a4+ 4+ an_1y + 1
with coefficients a1, ...,a,_1 € K. The isomorphism class of the object de-
termines these coefficients up to the equivalence (aq,...,a,-1) ~ (5”_1(117

..y€an—1), & an n-th root of unity. The moduli stack of such objects is
the quotient stack [A"~1/u,], where the group scheme u,, of n-th roots of
unity acts with weights (n—1,...,1).

It contains an (n—1)-dimensional algebraic torus T' parametrising classes
of polynomials with non-zero coefficients. A K-valued point of T is given
by an (n—1)-tuple

a2 __ajas __ Qg —10g41 __ap—-3aGn—1 __an—2
bl_;fa b2_ az v bk_ a2 PRI bn72_ﬁa77 bnfl—az
1 2 k n—2 n—1

of elements b; € K*. These expressions in the a; form a set of gener-
ators of fi,-invariants in the coordinate ring of the torus (G,,)"~! C

TOME 65 (2015), FASCICULE 2
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A" Equivalently, we can express a K-valued point of T as a collection
(@1, an_1,b1,...,b,_1) € (K*)?*"~2 up to the equivalence

(CLl, ey p—1, bl, ceey bn—l) ~ (/ﬁZlCLl, vy Rp—1Gp—-1, )\1()1, ey )\n—lbn—l)

for k; € K* and \; = k7/(Ki—1kit1), putting kg = k,, = 1. Then (1,...,1,
bi,...,bn1) ~ (a1,...,an-1,1,...,1) if a;, b; satisfy the above equations.

Allowing certain subsets of the coordinates a;,b; to become zero, we
obtain a toric tame stack which compactifies the moduli stack [A"71/u,]
of irreducible chains. Its definition and properties are contained in section
2 and we will show in section 3 that it coincides with the moduli stack
L,,. In particular, degenerating some of the b; to zero can be interpreted as
degenerating P! to a reducible chain of IP'. These additional divisors arise

as in diagram (1.1).

Example 1.8. — We illustrate some results of this paper in the case
n = 2 (see also examples 2.2, 3.8, 4.16). There is a natural embedding
of degree-2-pointed chains (C,s_,sy,S) into P? determined by the line
bundle O¢(S) (for arbitrary n see section 3): in P2 = P(HY(C,0¢(S)))
we can choose homogeneous coordinates g, y1,y2 such that C is given by
an equation yoy2 = b1y?, the subscheme S C C by an additional equation
Yo + a1y1 + y2 = 0, and the two sections s_,s4 are (1:0:0),(0:0:1).
Over an algebraically closed field K, data (aj,b;) € K2\ {(0,0)} up to
the equivalence (ay,b;) ~ (kiai, \iby) for K3 = A\; € K* correspond to
isomorphism classes of degree-2-pointed chains over K.

The moduli stack L, is isomorphic to the quotient stack
[(A%\ {(0,0)})/G,,] for the operation with weights (1,2), i.e. the weighted
projective line P(1,2) (which coincides with the toric orbifold Y (A, —1) for
n = 2 defined in section 2). The open substack parametrising irreducible
curves, the locus where by # 0, is the quotient stack [A!/us] with coordi-
nate a; on A'. The open substack parametrising objects without isomor-
phisms, the locus where a; #0, is isomorphic to A' with coordinate b.

~.f votaiyi+y2=0 .| votaiyi+y2=0

a1, b1 #0 b1 =0

ANNALES DE L’INSTITUT FOURIER
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The morphism Ly — Lo is faithfully flat and finite of degree 2. We
introduce homogeneous coordinates z_, z; of Ly = P! that measure the
position of one of the marked points of a 2-pointed chain with respect to the
other marked point at (1:1) of its component isomorphic to P, such that
the two points (0:1), (1:0) correspond to reducible chains (cf. [2]). Then
the point (1:-1) corresponds to a 2-pointed curve P! with marked points
(1:1), (1:-1) giving rise to a degree-2-pointed curve with automorphism
group fi2. The point (1:1) corresponds to the point of £ with nonreduced
S, the morphism is ramified here and étale elsewhere.

(0:1)
Ly =TP!
(1:0)
— 'Lfl%/ a; =0 b1 =0
nontrivial nonreduced S reductble chain
automorphism ramification

We will see in section 4 that the morphism Ly — L5 is given as

(2424 :2-24): PL — P(1,2).

2. The toric orbifolds Y (A4,)

In this section we will consider a family of toric orbifolds associated to
the Cartan matrices of root systems of type A, but also comment on some
generalities on toric stacks.

We use the definitions and notations of [4]. A stacky fan 3 = (N, X, §)
defining a toric orbifold has the property that the abelian group N is free;
it consists of the data of a simplicial fan ¥ in the lattice IV and elements
n, € o N N for the one-dimensional cones p € £(1). Here we assume them
to span the ambient space Ng. The homomorphism j3: 7= — N maps
the elements of the standard basis to the elements n,. Dually we have the
exact sequence

0 — M =Homgz(N,Z) 25 2=V 25 DG(B) — 0

giving rise, as sequence of character groups, to the exact sequence of diag-
onalisable group schemes

1 —G—Tyq) —Tu — 1

TOME 65 (2015), FASCICULE 2
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The toric orbifold Xs; is defined as the quotient stack [U//G] with U € A>()
the open subset defined by the information which of the one-dimensional
cones form higher dimensional cones of 3. The constructions make sense
over the integers, however, working with G-torsors, in general one may
have to choose an appropriate Grothendieck topology on the base category
possibly finer than the étale topology (see also remark 2.8). The resulting
algebraic stacks Xs; are tame stacks in the sense of [1].

DEFINITION 2.1. — We define the toric orbifold Y(A,,) associated to the
Cartan matrix of the root system A,, in terms of the stacky fan Y (A4,) =
(N,YT(A,),B): let N = Z" and let the linear map (3: Z*" — N be given
by the n X 2n matrix

21 0 .- 1 0 0
1 -2 1 0 1 0
0 1 -2 0 0 1

i.e. the matrix consisting of two blocks (-C(A,) I,,), where C(A,,) is the
Cartan matrix of the root system A, and I, the n x n identity matrix.
The fan Y(A,,) has the 2n one-dimensional cones 01, ..., 0n,T1,. .., Tn gEN-
erated by the columns of the above matrix. A subset of one-dimensional
cones generates a higher dimensional cone of T(A,,) if it does not contain
one of the sets {p1,71}, ... , {0n,7n}. This defines a fan containing 2"
n-dimensional cones oy generated by sets {¢; : i ¢ I} U{r; : i € I} for
subsets I C {1,...,n}.

For the stacky fan Y(A,) the map 3: Z** — N gives rise to the exact
sequence of lattices
(1) o (1. )
00— M=7" = 7" 25" DG(B)=Z" — 0

where C' = C(A,)" = C(A,) is (the transpose of) the Cartan matrix, and
the exact sequence of tori

1 — G2(Gp)" — (Gp)?" — T2 (Gp)" — 1

where G2 (G,,)" — (G)?™, (K1, -+ bin) F (K1y -y By ALy« -5 Ay ) With
Ni = K2/ (Ki—1kip1) setting ko = 41 = 1 (cf. last section). Note that the
toric orbifold Y(A,) arises as quotient [U/G] by a torus G.

Example 2.2. — The toric orbifold }(A;) is isomorphic to the weighted
projective line P(1,2): we have the matrix (-2 1) and the stacky fan looks

ANNALES DE L’INSTITUT FOURIER
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as follows:
01 0 7N
Y(A) - (R e [ fooees
Example 2.3. — The toric orbifold Y(As) arises from the matrix
-2 1 1 0
( 1 2 0 1 > We have the stacky fan

The description of the functor of a smooth toric variety given by Cox
[5] in terms of collections of line bundles with sections determined by the
combinatorial data has been extended to toric Deligne-Mumford stacks by
Iwanari [11] and Perroni [17]. For the stacky fan Y (A4,,) we have:

DEFINITION 2.4. — A Y(A,,)-collection on a scheme Y is a collection
£ = ((fg,;a az’)i:L...,n, (fmbi)i:L...,m (Cz)zzln)
where (%,,,a;) and (Z;,,b;) are line bundles with a section and

11 L RQLE2R Ly, — Oy, ¢2: Ly RLy LE?R Ly, — Oy, ...
Cn—1: 2L, ©L, RLY2 ®L,, = Oy, cn: L 07, ®$‘Q{%_2 — Oy

n—1 n—2 On—1 On—1

are isomorphisms. These data are subject to the nondegeneracy condition
that for every point y € Y and i = 1,...,n not both a;,(y) = 0 and
bi(y) = 0.

A morphism &' — £ between two Y (A,,)-collections £ = ((%L,,,a:):,
(L7, 0i)i, (ci)i) on Y and &' = ((£,,,a})i, (L], )i, (c;)i) on Y’ over a
morphism of schemes f:Y' — Y is a collection ((r;)i=1,...n» (ti)i=1,...n)
consisting of isomorphisms of line bundles r;: f*%,, — £, , t;: [*%;, —

TOME 65 (2015), FASCICULE 2
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! such that ri(f*a;) = a}, t;(f*b;) = b; and the diagrams

Ti

@y O LE2Rf %, TS oy

! , 1 (2.1)
®-2 G
"Eﬁ{i ® D%L;i—l ® "S’ﬂéz ® ‘ipéwl - Oy
(i=1,...,n; for i = 1,n omit the factors indexed by 0o, 0n+1) commute.

We denote the fibred category of Y (Aj)-collections over the category
of schemes by Cy(a,). It comes with the cleavage given by pull-back of
line bundles: for f:Y' — Y we have an arrow f*.£ — £ in Cy(a,). The
definition describes a morphism ' — £ in Cy(a,) as composition of a
morphism &' — f*.% over idy, with f*% — % over f:Y' =Y.

Remark 2.5. — A morphism of Y (A, )-collections .&" — £ over idy
Zariski-locally for some open Y’ C Y, after fixing isomorphisms of the line
bundles with the structure sheaf such that the isomorphisms ¢; become
ido,,, corresponds to a collection Ki,...,Kn,A1,...,Ap € O3, (Y') such
that the isomorphisms Oy =7, |y, — £, |y' = Oy and Oy =2, |y —
Z] |y = Oy are given by multiplication by x; and A;. The condition ex-
pressed in diagram (2.1) translates into the equations \; = £2/(k;_1ki41),
putting kg = kpy1 = 1.

The category of X-collections Cx; for a stacky fan 3 is a category fibred in
groupoids (CFG) over the base category of schemes. By descent theory for
quasi-coherent sheaves the CFG Cx forms a stack in the fpqc topology, see
[18, Thm. 4.23]. By Iwanari [11, Thm. 1.4] (for toric orbifolds) and Perroni
[17, Thm. 2.6] (for toric Deligne-Mumford stacks) over fields of character-
istic 0, working with the étale topology, there is an isomorphism of stacks
Xs = Cx. Also over more general base schemes we have an isomorphism
Xs & Cs; we make some comments on this issue.

CONSTRUCTION 2.6. — Explicitely, one can construct an isomorphism
Xs = Cx as follows, here for simplicity we stick to the orbifold case and
assume that the one-dimensional cones generate the ambient space Nq.

Note that we have a natural G-equivariant 3-collection ((Oy ® V,, ,),,
(id)m) on U, where V,, is the one-dimensional representation such that the
coordinate z, of U C A¥() is an invariant section of Oy ® V, (in the case
of smooth toric varieties as considered in [6] this G-equivariant collection
descents to the universal collection on the toric variety).

Starting with an object of Xs; over Y, that is a G-torsor p: £ — Y
together with a G-equivariant morphism ¢: E — U, the pull-back t*((Opy ®
Vi, Tp) o, (id)m) is a G-equivariant X-collection on E and gives rise to the
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S-collection p&t*((Oy & V,,1,),, (id),,) on Y (the functor p¢ takes the
G-invariant part of the push-forward).

On the other hand, for a given X-collection ((-Z,,up)e, (Cm)m) o0 a
scheme Y we construct a G-torsor with a G-equivariant morphism to U.
Let E be the contravariant functor on the category of Y-schemes

X-collections ((Oyr @ Vy,uy,), (id)y,) on Y’
E:(q¢:Y' =-Y) — with an isomorphism of 3-collections

(L tg)os (€m)m) = ((Oyr @ Vy, ulg)gv (id)m)
where V,,, the one-dimensional representation as above, is used to define
an operation of G on this functor. Then one can show that the functor £
with this G-action is represented by a G-torsor p: E — Y together with
a universal isomorphism p*((-Z,,u,)p: (¢m)m) = (O ®@ Vo, ub), (id)m)
of G-equivariant 3-collections, provided that the original 3-collection is
locally trivial in the sense that there is a covering f: Y’ — Y such that
(L ug) s (€m)m) is isomorphic to a collection of the form ((Oy,u},),,
(id)m); collections of this form correspond to trivial G-torsors. We will
assume that the topology on the base category is such that any 3-collection
has this property, see also the following remarks. The sections (uf )o of the
universal 3-collection on E then define a G-equivariant morphism E —
UcA>,

Making use of the fact that for a G-torsor p: ' — Y we have the equiv-
alence QCoh(Y) + QCth(E) given by the functors p* and p¢, one can
show that these constructions define functors Xs; <+ Cx; whose compositions
are isomorphic to the identity functors.

Remark 2.7. — Zariski-locally we can interpret the construction of the
G-torsor as the coboundary homomorphism d in the exact sequence (see
[8, Ch. III, §3])

0 — HO(Y,G) — HO(Y, Tx1)) — HO(Y, Tar) -5 H'(Y,G)

where elements of H*(Y,G) are isomorphism classes of G-torsors over Y:
given a 3-collection ((Oy, U)o, (¢m)m) on Y, the automorphisms (¢, )., of
the structure sheaf can be interpreted as a morphism Y — T, or section
of Ty x Y — Y, and fitting in the cartesian diagram

E — Tg(l)
4 4

Y — T

we obtain a G-torsor E — Y which is trivial if and only if (¢)m €
HO(Y,Ty) comes from an element of HO(Y, Tsy)).
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Remark 2.8. — Working with G-torsors, we usually assume that the
Grothendieck topology on the base category is fine enough in the sense
that we have the same G-torsors as we have with respect to the canoni-
cal topology. We have seen that this assumption was necessary to derive
the isomorphism Xy = Cx: whereas the notion of G-torsor depends on
the topology, this is not the case for the notion of 3-collections. For 3-
collections we have the corresponding assumption that 3-collections are
locally trivial with respect to the topology (in the sense of construction
2.6). In characteristic 0 this is always true for the étale topology. In general
we may have to take a finer topology, for example the fppf topology.

In the case of the stacky fan Y (A,,) the lattice M is a direct summand
of Z*W) and the group scheme G a torus, so the following result also holds
in weaker topologies like étale or Zariski.

COROLLARY 2.9. — There is an isomorphism of stacks Y(An) = Cy(a,,)-

In particular, a K-valued point of Y(A,) corresponds to (ai,...,an,
bi,...,b,) € K?" such that for any ¢ not both a; = 0 and b; = 0, up to
the equivalence relation given by multiplication by a collection (K1, ..., fn,
A,y .oy An) € (K*)®™ as in remark 2.5.

3. Y(A,-1) as moduli stack of degree-n-pointed chains

In this section we will prove the following theorem.
THEOREM 3.1. — There is an isomorphism of stacks L, = Y(A,_1).

We will relate families of pointed chains to Y (A4,_1)-collections and

prove an equivalence of fibred categories L,, = Cy(4,_,)-

Let (C,s_,s.,S5) be a degree-n-pointed chain of P! over a field K. We
look at the closed embedding C' — P (H(C,0c(S))) = P% determined
by Oc(S)

First assume that C' is irreducible, that is C' = PL.. The vector space
HY(C,0¢(89)) is (n + 1)-dimensional and we have a basis yo, ..., yn such
that the divisor of y; satisfies div(y;) = is— + (n — i)s4+. The ideal sheaf
J = Oc(—=S) = Oc¢ defining S is a line bundle. Tensored with O¢(S)
we have an inclusion O¢ — O¢(S) with cokernel Og, and the image of
the 1-section of O¢ is a global section Y . a;y; € H°(C,Oc(S)). The
subscheme S C C'is given by the equation > ; a;y; = 0, where ag, a,, # 0
as S does not meet s_,s;. We can choose the basis g, ..., ¥y, such that
ap = a, = 1.
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The embedding defined by Oc¢(S), the n-fold Veronese embedding or
n-uple embedding, gives an isomorphism of C' onto the subscheme in P}
determined by the equations

Yiljr1 = bip1 - biyir1y;

for 0 < i < j < n and certain numbers by, ...,b,_1 € K*. These equations
express the condition that the rank of the matrix
(yo biyr ... b1 bn—lyn—l)
Y1 Y2 ce Yn

is less than 2. The subscheme S in the embedded curve is given by the
additional linear equation

Yn + Gn—1Yn—1 + ... + a1y1 + yo = O.

Similarly, we have a natural embedding of reducible degree-n-pointed
chains of P! into P7..

PROPOSITION 3.2. — Let (C,s_,s4,S) be a degree-n-pointed chain of
P! over a field K. It decomposes into irreducible components C1, . . ., Cy, =
Pl with poles (py,pY),...,(p;,, ) such that s_ = py, s, = p;. and C;
intersects C;y1 in p;L = piyq- Let ny, ... ,ny, be the degrees of S on the
components C1, ..., Cp, and N = Zle n;. Then there is a basis yg, - . . , Yn
of H°(C,O¢(S)) characterised up to nonzero scalars by the following con-
ditions: y; is nonzero only on the components Cj, satisfying Ni_1 < i < N
and in this case div(y;)|c, = (i — Ng—1)py + (N, — i)p; . We scale yo, yn,
such that the image of the 1-section under the inclusion Oc — O¢(S) is
S gaiy; € H(C,0c(S)) with ag = a, = 1, that is, S is given by an
equation

Yn + An—1Yn—1 + ...+ ai1yi + Yo = 0 (31)

for some a,...,a,_1 € K. These sections vy, ..., Yy, satisfy the equations
YiYj+1 = bit1 - bjyit1y; (3.2)

for 0 <4 < j < n and certain numbers by, ...,b,—1 € K such that b; =0

exactly if j € {N1,...,Npm—_1}.

The curve C embeds into P (H°(C, Oc(9))), the image being the sub-
scheme defined by the equations (3.2). The subscheme S of the embedded
curve is given by the additional equation (3.1). The sections s_,s; are
(1:0:...:0), (0:...:0:1).

The numbers ay,...,a,—1 and by,...,b,_1 in (3.1) and (3.2) have the
property that not both a; = 0 and b; = 0.

We will not work out the proof in detail, but add some remarks.
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Remark 3.3. — The component C}, is embedded into the projective sub-
space of P (HY(C,0¢(S))) spanned by the coordinates yn,_,,- - -,Yn, via
a Veronese embedding, the image is given by the equations corresponding
to the condition that the rank of the matrix

(il/Nk1 bNy 1 +1YNf_1 1 - ka1+1"'ka1yNk1)
YN _1+1 YNp_1+2 e YNy

is less than 2. The equation (3.1) reduces on Cy to an,yn, + ---
+ an,_,YN,_, = 0 which defines a finite subscheme S} of degree nj in
Cr C IPT[?. A subscheme Si of this form does not meet the poles of Cj
provided that ay,,an,_, # 0.

We generalise this to degree-n-pointed chains over schemes.

PROPOSITION 3.4. — Let (m: C —Y,s_,sy,S5) be a degree-n-pointed
chain of P! over a scheme Y. For any y € Y there is an open affine
neighbourhood Y’ C'Y such that there is a decomposition m,Oc(S)]y: =
EB?:O Ovyy; characterised on the fibres by the properties of proposition 3.2.
The generators yo, . . ., yn € HO(Y', m.Oc(S)) of the individual summands,
after possibly rescaling by a global section of O3, satisfy:

(i) The image of the 1-section under the inclusion Oc — O¢(S) is of the
form

Yn + Gn—1Yn—1 + ... + ay1 + Yo.
over Y' for some ay,...,an,—1 € Oy:(Y').
(ii) The kernel of the homomorphism of algebras Symm.(Oc(S)) —
D, T Oc(kS) is over Y’ generated by the equations

YiYi+1 = bit1 - bjyit1y;

for 0 < i< j <n and some by,...,b,_1 € Oy/(Y").

The line bundle O¢(S) determines a closed embedding C — C' C
Py (7.(Oc(S5))) over Y. Over Y’ in the coordinates yo, . . ., Yy, the embed-
ded curve Cf, C Py/(m(Oc(S))|y’) = Py, is defined by the equations
in (ii), the image of Sy in Cy,, by the additional equation in (i), and the
sections s_,s4 are (1:0:...:0), (0:...:0:1).

Proof. — The decomposition of the fibre Cy, over a point y € Y into irre-
ducible components Cy, = C1U...UCy, determines over an open affine sub-
scheme Y’ C Y containing y a decomposition of S into divisors Si, ..., Sm
which are disjoint and such that S only meets one component on each
fibre and the component C} over y. Each Sj determines a morphism onto
a P'-bundle over Y’, which on the fibres is an isomorphism on the com-
ponent containing Sy and contracts the other components (similar to the

ANNALES DE L’INSTITUT FOURIER



TORIC ORBIFOLDS ASSOCIATED TO CARTAN MATRICES 879

contraction morphisms in [14], cf. also [2, 3.3]). After possibly shrinking Y,
we have global sections y(()k), e ,y,(lk) of O]P;/ (Sk) that satisfy div(ygk)) =
(i— Ni—1)s— + (Ng — i)s4 for Ny_y < i < Ny, div(y™) = (Ne = No—1)s
for ¢ < Np_1 and div(yfk)) = (Np — Ng_1)s— for i > Nj (using the no-
tation Sk, s_, sy also for their images in Pj.). Using the pull-backs of
these sections to Cy denoted by the same symbols, let y; = yfl) e ygm) €
H%(Cyr,0c(8)) = H(Cy+,0c¢,,(51) @ ... ® Oc,, (Sm)). Over the open
affine neighbourhood Y” of y the sections g, . . ., y, define a decomposition
of m,Oc(S) with the required properties.

The image of the 1l-section under the inclusion O¢ — O¢(S) gives a
global section of O¢(S) which over Y’ is of the form Y " ,a;y; with a; €
Oy (Y’). Since ag, a, € O}, (Y’) we can assume that ag,a, = 1.

Using what is known about the fibres and results from [9, III] (cf. also
[14]), we derive that 7. (O¢(kS)) for k > 0 is locally free of rank kn + 1,
further that the homomorphism 7*m,Oc(S) — Oc¢(S) is surjective and
defines a closed embedding C' — Py (7.0¢(9)).

The embedding C' — P, corresponds to the surjection of graded algebras
Sym 7. (Oc(S)) = Breo mOc(kS). Its kernel .7 is the graded ideal that
defines the embedded curve C’ C P}.. Each part .#; of .# is locally free,
being the kernel of a surjective homomorphism of locally free sheaves. The
graded ideal .# is generated in degree 2 since this is the case on the fibres
7 ® k(y) for each point y € Y. The part % of degree 2 is a vector bundle
of rank in(n —1).

Working over Y, for i < j the subsheaves (y;+1v;, yiyj+1) and (yi+1y;) of
m:Oc(S)|y, i.e. the subsheaves generated by the respective sections, co-
incide as this is true on the fibres. Considering the case j = i + 1, the
kernel of the surjective homomorphism Sym® 7, (Oc(S))|ys D Oyry2 , &
Oy yivire — (Y21, YiYiv2) C mOc(2S)|y is generated by an element
YilYi+2 —bi+1yz-2+1 for some b; 11 € Oy (Y'). For general ¢ < j we have as ker-
nel y;y;j41 — bit1,;¥it1y; for some b1 ; € Oy (Y’) and from the equation
(Yit2rYj)biv1,Yiv1Ys = Wire - ¥;)¥i¥j+1 = (big1- - bj) (Yiga- -~ yj)yi+1yj
in 7,0¢(S)|y+ we conclude that bj41,; = biy1---b;. O

We define morphisms of fibred categories ®: £, — Cy(a,_,) and
(5 C'I‘(Anfl) — ﬁn.

CONSTRUCTION 3.5. — Let ¥ = (C — Y,s_,s4,S5) be a degree-n-
pointed chain of P! over a scheme Y. For any point y € Y we have an open
neighbourhood U C Y over which we have a decomposition m,Oc(S)|y =
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OF"*! and a basis yo,...,y, as in proposition 3.4, and we obtain func-
tions a1,...,an-1,b1,...,bp—1 € Oy (U). We define (Z,,,a;) := (Ov,a;),
(&, bi) := (Oy, b;) and have the isomorphisms ¢;: 2, ® £, ® L3272 ®
Loipy — Opy (omit Z,,, Z,,) given by the identities on Opy. These data
form a Y(A,_1)-collection over U, the nondegeneracy condition that not
both a; = 0 and b; = 0 in each point is satisfied by construction and
proposition 3.2.

Different choices of bases yo, . . .,y and y{, .. ., y,, over U and U’ as above
are related over U” = UNU’ by y; = iy, for some &} € OF,,(U"), where
ko = ki, Let k; = K}/K(. There is an isomorphism between the correspond-
ing Y (A, _1)-collections over U” that, with respect to the given trivialisa-
tions, is given by the collection K1, ..., Kn—1,A1,..., A1 € OF, (U”) as in
remark 2.5.

We cover Y by open subschemes U as above, obtain Y (A,,_1)-collections
on this covering and glue them to a Y (A, _1)-collection ®& on Y.

For a morphism %’ — % of degree-n-pointed chains over f: Y’ — Y,
i.e. a cartesian diagram consisting of f, a morphism F: C’ — C that
maps s__,s,,S" to s_,s;,5 and 7: C = Y, 7#": C" — Y’, we have a
morphism of Y (A, _1)-collections &' = ®€' — L = D€ over f: V' =Y.
Locally over U” = f~Y(U)NU’, where U’ and U are elements of the chosen
open coverings of Y/ and Y, we have chosen local bases f*yo,..., f*y, and
Yos - -5 Y of f*1.0c(S) = 7, F*Oc(S) = 7,0c/(S’). Comparing these
bases gives rise to isomorphisms f*.%, v — £, v, f* L5 um — £ v
as above, and these can be glued to a morphism ¢’ — Z.

One checks that this defines a functor ®: £, — Cx(a,_,)- The functor
® is base-preserving and sends cartesian arrows to cartesian arrows.

CONSTRUCTION 3.6. — Let .Z = ((L;, )i (L5, 0:)i, (ci)i) be a
Y (A, —1)-collection on a scheme Y. For any point y € Y we have an open
neighbourhood U C Y over which we can choose trivialisations .Z,,|v,
“Z.lu = Oy such that the isomorphisms ¢;: (£, ©.%,, ,LE?®L,,,,)lv

— Oy for i = 1,...,n — 1 (omit Z,,, %,,) are the identities on Oy.
Let C be the closed subscheme of Py, given by the equations y;y;41 =
bit1 - bjyiy1y; for 0 <4 < j < n—1, where yq,...,y, are homogeneous
coordinates of Pf; and by, ..., b,—1 are considered as regular functions on U
via the isomorphisms .2, | = Oy, and let 7: C'— U be induced by Py, —
U. By construction, the subscheme C' C P}, is isomorphic to Proj;; .# where
& is the graded algebra Ov[yo, .- Ynl / (Yithj+1 = biv1 -+ bjyit1y;5i < J).
The morphism 7: C' — U is flat since each graded piece of . is locally
free ([9, I11, (7.9.14)]). Indeed, we have .7} = OF*" 1 with basis y¥ and
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yf_lny fori =0,...,.n—1and l = 0,...,k—1. Let s_,s; be the sec-
tions (1:0 : ... :0), (0: ... :0:1) with respect to the coordinates

Yo, - - -, Yn and let S C C' be the subscheme given by the additional equation
Yn+an-1Yn—1+...+a1y1 +yo = 0, where again a1, ..., a,_1 are considered
as regular functions via .Z,, |y = Op. This defines a degree-n-pointed chain
(C—-Us_,s4,S) over U.

Different choices of local trivialisations of the line bundles .%,, over U, U’
are related by multiplication by some x; € OF.,,(U") over U”" = U NU’".
The corresponding degree-n-pointed chains in IP7,, are connected by the
automorphism of P%,, given by multiplying the homogeneous coordinates
with kg, ..., Kkn (set kKo = Kk, = 1).

We cover Y by open subschemes U as above, obtain degree-n-pointed
chains over this covering and glue them to a degree-n-pointed chain ¥V.¢
over Y.

For a morphism ¢ — & of Y (A, _1)-collections over f: Y’ — Y, i.e.
a collection of isomorphisms of line bundles with sections (f*%,,, f*a;) —
(L, a;), (f*Lr, [7bi) — (Z],0;), we have a morphism ¢’ = V.2 —
¢ = U.¥ of degree-n-pointed chains over f: Y’ — Y: locally on U" =
7Y U)NU’', where U" and U are elements of the chosen open coverings
of Y and Y, using the given trivialisations £} |» = Oy and "%, [v =
[*Ouy = Op-1vyy, the isomorphisms f*.%, — £, are given by multipli-
cation with elements x; € OF.,,(U"), and the automorphism of P}, such
that the coordinates y, and f*y; are related by multiplication by k; (set
ko = Kp = 1) induces an isomorphism of the embedded degree-n-pointed
chains over U”. By glueing we obtain an isomorphism ¢’ — f*%.

This defines a functor W: Cy(4, ,) — L, which is base-preserving and
sends cartesian arrows to cartesian arrows.

These two functors give the equivalence of fibred categories stated in the
theorem.

Proof of theorem 3.1. — We show that the fibred categories £, and
Cx(a,_,) are equivalent using the functors ¥: Cy (4, ,) — L,and ®: L, —
Cy(a,_ 1)

For an object € = (C — Y,s_,s4,95) in L,, after choice of a suit-
able open covering, the data ®% is given locally by (%, v = Ov,a;),
(L lu = Oy, b;) and locally € is isomorphic to the embedded object in
P7; defined by the functions a;, b; with respect to coordinates yo,...,¥n
of P}, see construction 3.5. Applying the functor ¥, we choose a covering
and isomorphisms %, v/, -%r, |vr — Oy as in construction 3.6 giving rise
to functions @;,b;, and these define the object ¥®% locally embedded in
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Py, with homogeneous coordinates §;. Comparing the two isomorphisms
Zy;lun — Oy over open subschemes U” = U NU’, we obtain an isomor-
phism ¥O€ — ¥ locally over U” using the two local embeddings of ¥®&
and € in Pf.,. One checks that these isomorphisms form an isomorphism
of functors ¥o ® = Id.

Starting with a Y(A,_1)-collection . on Y, after choice of a cover-
ing and isomorphisms 2|y = ((Ovu,a:):, (Ou,bi)s, (id);)), we construct
an object V. = (m: C — Y,s_,sy,5), locally embedded in P} with
homogeneous coordinates yo, ..., Yy, using the functions a;,b; € Oy (U).
From V.2 we extract data ®U.Z after choice of a suitable covering and
local bases o, ..., of m(Oc(S)), locally given by (jgi v = Oy, a;),
(L lvr = Opr,b;) for elements U’ of the covering. Comparing the two
collections of homogeneous coordinates, satisfying the conditions of propo-
sition 3.4, of IPZ Xu U// :> IPUH (ﬁ*O]PZ (S_')‘UH) = IPUH (W*Oc(S)‘UH) where
S C P} is the hyperplane determined by the equation >, a;y; = 0 (set
ag,an+1 = 1) and 7: P — U, and thus the two ways the object €
is locally embedded in P, for open sets U” = U N U’, we obtain an

isomorphism of Y (A,_1)-collections dV.¥ — & locally given by some

KlyeeosBne1,M,-- s Ap—1 € OF(U") as in remark 2.5. One verifies that
this gives an isomorphism of functors ® o ¥ = Id. |
COROLLARY 3.7. — The coarse moduli space of L,, which coincides

with the quotient L,,/S,, is isomorphic to the toric variety Y (A, _1) corre-
sponding to the simplicial fan Y (A,,_1) underlying the stacky fan Y (A, _1).

~

Example 3.8. — 1In the case n = 2 we have the isomorphism Ly =2
Y(A;). The stacky fan of Y(A;) was pictured in example 2.2. We have the
following types of pointed chains over £ = Y(A;) (cf. also example 1.8):

)

M2
- %
EQ f f
a; =0 ay,b; #0 by =0
01 T1
Example 3.9. — In the case n = 3 we have the isomorphism L3 =

Y(As). The stacky fan of Y(As) appeared in example 2.3. Here we picture
the types of pointed chains over the torus invariant divisors of the moduli
stack Ls.
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AN

M2 M3 H2
m N N

by,bo =0 by =0 ba,a; =0 a; =0 ai,az =0 ax =0 az,b; =0 by =0 b1,by=0
0{1,2} T2 0{2} 01 g9 02 {1} T1 0{1,2}

4. The functor of X(A4,_;), Losev-Manin moduli spaces
and the morphism to £,

We start by comparing three descriptions of the functor of the toric
variety associated with root systems of type A. We use notations as in [2,
Section 2.1], in particular we have the lattice M (A,_1) = (u; —u; : 4,5 €
{1,...,n}) C D}, Zu;, generated by the roots §;; = u; — u; and forming
the character lattice for the toric variety X (A4,_1). Its dual N(A,_1) =
@, Zv;/ Y, vi, where (u;); and (v;); are dual bases, is the lattice for the
fan E(An—l) of X(An—l)-

The functor of the toric variety X (A, —1) was described in [2] in terms of
Ap—1-data, ie. families (Z{1p,,),{ts.,;,t-5;,;}){=p,;) of line bundles with
two generating sections that satisfy tntgt_, = t_ot_gt, if v = a + 3, up
to isomorphism of line bundles with a pair of sections. With pull-back of
line bundles and its sections we have the functor F4 of A,_1-data, see
[2, Def. 1.17].

On X (A,,_1) we have the universal A, _;-data, which can be defined us-
ing the morphisms ¢rip, 3: X (A,_1) — P! induced by pairs of opposite
roots {£0;;} in A, _1 (see 2, Ex. 1.5 and 1.13]). We have homogeneous co-
ordinates zg,, 2_g,, € H*(P', Op1(1)) such that 2% = @?iﬁ“}(zfgij /Z-8;),
where z* for u € M(A,_1) is the rational function corresponding to an el-
ement of the root lattice. Let Ljip, 1 = cp?iﬁij}opl(l) and tg,,,t_p,, be
the pull-back of 2g,.,2_g,..

By [2, Thm. 1.20] the toric variety X (A,_1) together with the universal
A, —1-data represents the functor Fyu, _,.

n—1

We can also apply the description of the functor of a smooth toric va-
riety of Cox [5] to X(An—_1). The fan 3(A,_1) gives rise to the notion
of a X(A,_1)-collection ((-Z,wr)r, (¢ij)ij) on a scheme Y, consisting of
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line bundles on Y with a global section (&, wy) for § # I € {1,...,n}
and isomorphisms ¢;;: (®i617j€1 1) ® (®i¢1,jel ZLEY) = Oy fori,j €
{1,...,n}, i # j, such that identifications of the form ¢;; ® ¢ = ¢;; hold.
These data have to satisfy the nondegeneracy condition that for any point
y € Y there are sets I1 C ... C I,_1 C {1,...,n} with |I;| = ¢ such that
wr(y) #0if I # Ih,...,I,—1. We denote the functor of ¥(A,,_1)-collections
by CE(An,l)'

On X (A,—_1) we have the universal 3(A,_;)-collection given by the line
bundles 7 = Ox (a4, _,)(Dr), where Dy is the torus invariant prime divisor
corresponding to the ray generated by ) ._;v;, with the section wr aris-
ing as the image of the 1-section under the natural inclusion Ox 4, _,) —
Ox(a, (D7) and the isomorphisms c;;: OX(An_l)(Ziel,jgzI Dy
— > igrjer P1) = Ox(a,_,) induced by multiplication with the rational
functions 2% on X (A,_1).

By [5] the toric variety X(A,_1) together with the universal
Y(A,—1)-collection ((Ox(a,_,)(Dr),wr)1,(cij)i;) represents the functor
CxA,_0):-

As both functors Csa,_,) and Fa,_, are isomorphic to the functor of
the toric variety X (A, _1), we have an isomorphism of functors Cx;(4, ,) —
Fy4, ., which we describe explicitely.

ProroSITION 4.1. — By the following procedure we can construct
Ap—i-data (ZLpip,y,{ts, t—p,; })(+p,y out of a X(An,_1)-collection
(L1, wi)1, (cij)ij) over a scheme Y': for a pair of opposite roots £5;; in
A, _1 we have isomorphisms ®ieLj€I L ®i€1,jeI % of line bun-
dles on Y defined by c¢;j, cj; inverse to each other, and we let Z(.g, .y be
a line bundles in the same isomorphism class, with the sections tg,.,t_g,.
defined as the images of Hiel,jgl w;,HiW’EI wr in Z(1p,;; under iso-
morphisms compatible with the above. This construction defines an iso-
morphism of functors Cx 4, ,) —+ Fa,_,, mapping the universal ¥(A;,_1)-
collection to the universal A,,_1-data.

Proof. — This construction defines a morphism of functors Cy4,_,) —
Fa,_,, in particular the requirement that the two sections t14,, as defined
in the construction generate the line bundle . g, y follows from the non-
degeneracy condition of 3(A,_1)-data. One can show that this morphism
of functors is an isomorphism by showing that it coincides with the com-
position of isomorphisms Csa,_,) — Mor(-, X(A4,-1)) — Fa,_,. This
follows from the fact that the universal X(A,,_1)-collection is mapped to
the universal A,,_i-data, which is easy to verify. O
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Considering the universal data on X(A,_1), we have isomorphisms
Rjcr L1 = & ,cr 21 via multiplication by the rational function xBii,
For any chosen j € {1,...,n} we may define z,...,7, € H*(X(4,_1),
&1 -Z1) as images of the sections [[,c; wr, ..., ][,y wr under these iso-
morphisms. We then have 2% = z;/x;.

DEFINITION 4.2. — Given an ordering iy, ...,i, of the set {1,...,n},
we define line bundles &1, ..., %, 1 on X (A, _1) and sections xj of £} .

Let
Q(H{i1,-.-r25 yNI[—max{0,|I|+j—n

be defined in terms of the universal X(A,,_1)-collection. The line bundles
R, ,f[@(l‘mﬂ_max{o’ll‘ﬂ_n}) for any J C {1,...,n} of cardinality j are
isomorphic to %} via multiplication by [],c; z:/ Hi:l x;, (can also be
expressed in terms of the isomorphisms c;; being part of the universal
$(A,_1)-collection). We define z; € H°(X(A,_1),%;) as the image of
I1; wllJml_max{O’qu_"} under this isomorphism.

For these sections z; € H°(X (A,_1), £ 7)) we have equations of rational
functions

[cszi/ Il ep i =vs/xr = e v,nnt/ Hjes 20, nniy-

Remark 4.3. — The line bundle .%; was defined as Ox4,_,)(D) in
terms of the divisor D = ", d;D;, where d; = |{i1,...,4;} N I| — max{0,
|I| + 7 — n}, which corresponds to the lattice polytope

Aj(An-1) = N{ue M(An-1)q @ Yiervi(u) > —dr }
= conv{Y e ui—> g qu:|J| =4}

in M(A,_1)q; the elements x; € H*(X(A,—1),.%;) for |J| = j form a basis
of global sections. Different choices of the ordering fixed in the definition
give rise to translated polytopes.

The line bundle %, with its basis of global sections x1,...,xz, defines
a morphism X (A,_;) — P"~!. This morphism is a composition of toric
blow-ups as described in [12, (4.3.13)]. It maps the divisors Dy;; of X (A, _1)
to the torus invariant prime divisor D; = {z; = 0} of P"~!, and more gen-
erally Dy to (;c; D;. Similarly, we have a morphism X (A, 1) — P! de-
fined by the line bundle .%;, _; mapping the divisor Dy . ny\ iy of X (An_1)
to the torus invariant prime divisor D} = {x{1,. .,y i3 = 0} of P! and
more generally Dy i\ to [;c; Df, see also [12, (4.3.14)]. We also con-
sider the morphisms defined by the other line bundles .Z:
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PROPOSITION 4.4. — The line bundle £ is generated by the basis of
global sections (z5)|s|=;, it determines a projective toric morphism

X(Ano1) = P((zy || = 5)) = PO)?

which is birational onto its image. Together, these morphisms form a closed
embedding

X(Anor) = T2 Py [ =) 2 TS PO (1)

j=1

The subscheme X (A,,—1) in this product is defined by homogeneous equa-
tions

| TR | (4.2)

where O # J;, J! C {1,...,n} such that |J;| = |J!| and the equation for the

characteristic functions ), xj, = >, Xy s satisfied.

Proof. — That .Z; is generated by global sections (x7)7=; and deter-
mines a projective toric morphism follows from the fact that .£; can be re-
constructed from the polytope A;(A,_1), see remark 4.3. This morphism is
birational onto its image since the polytope is full-dimensional. We describe
these morphisms in terms of the corresponding maps of fans.

For the toric variety P({(x; : |J| = j)) we have the character lattice
M(An-1); C €D, =; Zu, generated by differences uy — uy and the dual
lattice N(An_l)j = (®|J|:j Z'UJ)/(ZJ UJ). The fan of IP(<3}J : |J| =
7)) has the one-dimensional cones generated by the v;. The morphism
X(An—1) = P{zy : |J| = j)) is determined by the map of lattices
M(An—l)j — M(An—l)a Uy +— ZiEJ g, OT dually N(An—l) — N(An—l)j7
Vi > Y i Vg, which defines a map of fans.

The product of these morphisms is given by the map of lattices
@?:1 M(A,-1); = M(A,—1) with kernel generated by elements of the
form 3, ny, — 32, ny such that |J;| = [Ji| and 7, x5, = >_; x;. This
gives rise to the homogeneous equations.

The maximal cones of the fan of P({(xz; : |J| = j)) are the cones o
generated by {vy | J # J,|J'| = j}. For an ordering iy, ...,i, of {1,...,n}
the preimage of the maximal cone oy; ) X 0y, 4,1} X -+« X 04, iy Of
the product fan is the maximal cone of ¥(A,_1) generated by v;,,v;, +
Vigy -+, Viy+...+0;, _,,thus the open sets corresponding to maximal cones
of this form cover the image of X (A, _1). The corresponding maps of coor-
dinate algebras are surjective, so the morphism is a closed embedding. [J

Remark 4.5. — The (n—1)-dimensional permutohedron, usually defined
in an n-dimensional vector space as convex hull of the orbit of (n,n—1,
.., 1) under the action of the symmetric group S,, permuting the given
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basis (cf. for example [12, (4.3.10)]), can be considered as a lattice polytope
in M(A,—1)g C Q" after a translation moving one of its vertices, specified
by fixing an ordering i1, ..., of the set {1,...,n}, to the origin:

A(An—1) = conv { 3371 (n = k)ugry — Y321 (n = k), 2 0 € S}

We have Minkowski sum decompositions of the permutohedron, first

A(Ay—1) = Zk<j Liji

into line segments l;; = {r - B;; | 0 < r < 1} corresponding to the
line bundles Z[.p ) forming the universal A, ;-data (choosing
Ox(A,-1)(2 i e1,i,¢r Pr) n the isomorphism class of f{i&jik} if k < j),
and second

A(Ap_1) = A1(Ap—1) + .o+ A1 (An1)
into the polytopes corresponding to the line bundles .Z;.

Remark 4.6. — The closed embedding (4.1) together with the func-
tor of projective spaces gives another description of the functor of the
toric variety X (A,—1). We have a contravariant functor on the category
of schemes: its data on a scheme Y are line bundles with generating sec-
tions (%}, (27)7)=j)j=1,...n—1 Up to isomorphism such that the sections
satisfy the relations (4.2), and for morphisms of schemes we have the pull-
back of line bundles with sections. We call the data on X(A,_;) intro-
duced in definition 4.2 the universal data on X (A4,_1). Then, the toric
variety X (A, _1) together with the universal data represents this functor.
Further, the method of definition 4.2 applied to X(A4,,_1)-data over arbi-
trary schemes gives a morphism from Cy 4, _,) to this functor, mapping
the universal X(A,,_1)-collection to the universal data. As in the proof of
proposition 4.1 this implies that we have an isomorphism of functors.

The following observation can be directly calculated from the definition
of the line bundles .Z;.

LEMMA 4.7. — We have isomorphisms

L2027 0 LR = Qyen-; 2 (4.3)

where we set £y = £, = Ox(a,_,)-

DEFINITION 4.8. — We define the divisors Cy,...,C,_1 and
Di,...,Dp_1 on X(A,_1). Let D; = ZIJI n—j Dy and let C; be the zero
divisor of the section EIJI .z y of the line bundle .Z;.
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Remark 4.9. — We may write the isomorphism (4.3) as linear equiva-
lence of divisors

20; = Cj_1 —Cj11 ~ Dj.
The rational function
(Zm:j—1 xI)(Zm:j—i-l p)
(Z|I|:j xr)?
has divisor D; + Cj_1 + Cj41 — 2Cj.

LEMMA 4.10. — For j =1,...,n—1 we have C; N D; = 0.

Proof. — Can easily be checked locally using the covering of the following
remark. |

Remark 4.11. — Given a X(A,_1)-collection ((-Zr,wr)r, (cij)ij) on
a scheme Y, by nondegeneracy we have the following covering of Y
by open subschemes: for a permutation o € S, set Z, = {{o(n)},
{o(n),oc(n—1)},...,{o(n),...,0(2)}} and let W, be the open subscheme
of Y where wy # 0 for I ¢ Z,.

In the case of the universal ¥(A,,_1)-collection on X(A,_1) the sub-
scheme W, C X (A, _1) corresponds to the maximal cone (Vg (n), - - -, Vo (n)+
.o+ Ug2)) € N(A,_1)q dual to the cone generated by the simple roots
Ug(n) — Ug(n—1);- - - Ua(2) — Ug(1) and has as coordinate algebra the poly-
nomial ring generated by —<_ Zo@

To(n-1)"" "7 To(1)’

By [2, Thm. 3.19] there is an isomorphism between the func-
tor Fa, , and the moduli functor of n-pointed chains of P! L,
mapping the universal A, _;-data to the universal n-pointed chain
(X(A4,) = X(An-1),5—,84,51,...,Sp) defined in [2, Con. 3.6]. This means
that the toric variety X(A,_1) coincides with the Losev-Manin moduli
space L, (we use the same symbol for the functor and the moduli space).
The construction uses an embedding of n-pointed chains into (P!)".

This also implies that there is an isomorphism between the functor
Cs(a,_,) and the moduli functor L,, compatible with the other isomor-
phisms of functors. We make this isomorphism explicit using an embedding
of n-pointed chains into P".

CONSTRUCTION 4.12. — Let ((Z7,wr)r, (cij)i;) be a 3(An—_1)-collec-
tion over a scheme Y. We construct an n-pointed chain of P! (C —
Y,s_,584,81,...,5,) using the covering of Y by (W,),cs, (see remark
4.11).
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For o € 5, the restricted X(A,,—1)-collection ((-Zs|w,, wrlw,) 1, (¢ijlw,)ij)
is isomorphic to a ¥(A,—1)-collection ((£7,w{)r, (c7;)ij) on W, with the
property (£7,w7) = (Ow,,1) for I ¢ Z,, and for i = 1,...,n — 1 we have
isomorphisms ¢7 ;1) ;i1 Lo(n). oty — Ow,- Let wf € Ow, (Ws)
be the image of wis(n),... s(i+1)}- Equivalently, we can use the restricted
original data ((<Zr|w,,wrlw, )1, (¢ijlw, )i;) and the image of the respective
product of the restricted wy’s under ¢, (i41),0¢)|w, -

>From these functions w{,...,w?_; we construct an n-pointed chain
over W, embedded in the projective space Py, with homogeneous coordi-
nates yo, - - ., Yn- Let Cy be the subscheme of Py, defined by the equations
YiYj+1 = wiiy - wiyipy; for 0 < i < j < n (cf. construction 3.6), the
sections sg(i) defined by the additional equation y;—1 = y; # 0, and let
57,57 be the sections (1:0:...:0),(0:...:0:1).

These n-pointed chains (Cy — Wy, 57,57 ,57,...,57

,82) can be glued to an
n-pointed chain (C — Y, s_,$4,81,...,8,) over Y.

PROPOSITION 4.13. — Construction 4.12 is valid and defines an isomor-
phism between the functor Cs4, _,) and the moduli functor of n-pointed
chains of P! mapping the universal Y(A,_1)-collection ((Ox(a, ,)(Dr),
wr)r, (¢ij)ij) to the universal n-pointed chain (X(A,) — X (An—1),5-,54,
S1y--y Sn)

Proof. — Given X (A,,_1)-data over a scheme Y, it is easy to show that
construction 4.12 locally over the open subschemes W, C Y defines n-
pointed chains of P! (compare also to construction 3.6).

We show that, applying the isomorphism of functors L, — Fa, , to
these objects over W, , we obtain A,,_i-data which coincide with the data
we get by applying the functor Cs(4,_,) — Fa,_, to the restricted data.
According to [2, Section 3.3] we extract A,_;-data from an n-pointed
chain (Cy — Wy, s7,5%,s7,...,57) via projections to Py, such that
57,57 become the (1:0),(0:1)-section and a given section sy becomes
the section (1 : 1). In the present case for ¢ = 1,...,n the morphism
determined by the rational functions 1,y;/y;—1 restricted to the compo-
nent of C, containing sg( 0 after contracting the other components trans-
forms the sections s7,s7,s7 ;) into the (1:0),(0:1),(1:1)-sections. For
o(i+1) Pecomes the section (wf :1), and this
gives (t—5, ) 41y * Boiy.oaen) = (w§ :1) which coincides with the data
obtained via proposition 4.1.

Thus, the chains over the open subschemes W, can be glued to an n-
pointed chain over the scheme Y and construction 4.12 defines a morphism

of functors Cxya,_,) — L, such that its composition with L, — Fa,_,

n =1,...,n—1 the section s
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coincides with the isomorphism of functors Cx(4,_,) — Fa,_, defined in
proposition 4.1. Since the other morphisms of functors are isomorphisms
and map the given universal objects to the given universal objects, this is
also true for Cya,_,) — L,. O

THEOREM 4.14. — The morphism L, — L,, that arises by forgetting
the labels of the n sections is given by the following Y (A,,_1)-collection on

Ln = X(An—l): fori = 17 .o ,n—l let ggi = OZH(O'L) and Zﬁ = Ofn(Di)7
let

Ci .,?TifgiﬂggQ ggiﬂ = Ofn (Dl +Ci_1—2C; + Ci+1) — Ozn

be given by multiplication by the rational function (4.4), and let the sections
a;, b; be defined as the images of the 1-sections under the inclusions O —

g@w Ozn — Dg/ﬂ.,—i.

Proof. — The data defined form a Y (A, _1)-collection, nondegeneracy
follows from C; N D; = (), see lemma, 4.10.

We use the covering by W,, o € S,, (see remark 4.11). We have an iso-
morphism (("S’ﬂl)mai)i? (Dg’pﬁvbi)iv (Ci)i)|Wa - ((OWava?)i’ (OW(T7qu')i’ (Zd)l)
of Y (A,—1)-collections on W, consisting of isomorphisms .Z;, |w, — Ow,
given by multiplication with 4(;41)/%5(;) (compare to construction 4.12)
and ZQAWG — Oy, by multiplication with (ZU\:Z’ II)/z{o(l),...,o(i)}-

We show that the degree-n-pointed chain constructed from these data
coincides with the degree-n-pointed chain that arises by forgetting the la-
bels of the universal n-pointed chain coming from the universal X(A4,,_1)-
collection by proposition 4.13.

Applying construction 3.6 to these data, we get a chain of P* C C Py
defined by the functions by = 4 (i11)/%(;) and a subscheme S C C finite of
degree n over W, defined by the functions af = (Zm:i T1)/Tia(1),...0(i)}

Applying construction 4.12 to the universal X(A,_1)-collection on
X(A,_1), locally over W, C X(A,_1) again we get the chain of P! C' C
P}y, defined by the functions b = 2, (i41)/To(;)- The n sections are

2
— . o (i) L To@) .1 .1 . Taltl) . To(i41)To(it2)
So(iy = (... ¢ : :1:1: :
o (i) ( To(i—2)To(i—1)  To(i—1) Ty (s) :L’f,(i) )
in terms the coordinates yo, ..., yn of Py, , that is, we have y;_1(sq(;)) =

i—]c To(1) " To(k) The
o(i) To(1) " Toi)

sections are contained in the hyperplane defined by Zzzo(—)kagyk =0
(set af = af =1):

Yi(So(i)) which we may set to 1, and then yi(s,(;)) =
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To(aus00) = gty Theo() X e e

To(1) |I[=k T{o(1),...,0(k)} L5 (4)
_ 0(1) ( LTI Zo(1) "To(k) 4 LTI Zo(1) "To(k) )
To(1) " To (i) Yizo(=)" g:k Tlo(1),o ()} Ty ‘”Eg‘k Tlo(1),co ()} Ty
o(i)gI o(i)el
_ a( ) ( TITo(1) Lo (k) _
To(1) 0()Zk 0 ( ) \IIZ=7€ T{o(1),..., a(k)}”“');(i)
o (i) g1
(_)k—l T wo‘(l)"'zfr(k—i) 1)
1=k —1 F{o), ..o (k=1)}T ;)
=0 o (i) g1

The relative effective divisors ), s; and S in C over W, coincide since
they coincide over the open dense subscheme of L, parametrising chains
with distinct sections. O

Remark 4.15. — The results of this section imply a construction of
a morphism of fibred categories from the functor of X(A,,_1)-collections,
considering the S,,-operation on this functor, to the category of Y(A4,,_1)-
collections such that the diagram

~

Cs(a,_,) <

1

Cr(a, ) +—

Do« o

S

comimutes.

Example 4.16. — 1In the case n = 2 the functor Fa, = Cya,) = Cy(a,)
maps an object (Z(+4,,}, {ts12:t g1, }) of Fa, over ascheme Y to the object

(Oy(C1),a1), (Oy(D1),b1),c1: Oy (D1) ® Oy (C1)®2 5 Oy)
((g{i512}7tﬂ12 + t—ﬁm)a (g{%f’@m}atﬁmt—ﬁm)ag{@fﬁn} & g{iﬂlg} = Oy)

of Cy(a,), cf. example 1.8.

5. Pointed chains with involution and Cartan matrices
of type B and C

o s - . . —x
As a natural variation of £,, we consider moduli stacks £, of stable
degree-2n-pointed chains of P! with an involution.

DEFINITION 5.1. — We define the fibred category Z: of stable degree-
2n-pointed chains of P! with involution. An object over a scheme Y is
a collection (C — Y,I,s_,sy,S), where (C — Y,s_,sy,S) is a stable
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degree-2n-pointed chain of P! over Y (definition 1.1), I an automorphism
of C over Y such that I? = idc and I(s_) = sy, and S is invariant under
I. Morphisms between objects are morphisms of degree-2n-pointed chains
which commute with the involution I.

- —+
As in the case of L,,, see proposition 1.4, the fibred category L, is a
stack in the fpqc topology with representable finite diagonal.

Considering degree-2n-pointed chains of P! with involution as degree-
2n-pointed chains defines a morphism of stacks Z: — Lo, which makes
Zyib a subcategory of Ls, but in general not a substack, because a stable
degree-2n-pointed chain may have automorphisms not commuting with an
additional involution.

The moduli stack Z: decomposes, unless we are working in characteristic
2, into two components Z: = Zi + U Z:ﬁ, where the component Zi +
parametrises isomorphism classes of stable degree-2n-pointed chains with
involution (C,1,s_,s4,S) such that the degree of S in each of the fixed
p(iints under the involution is even. We first consider this main component
L,

The component Zi 4 is related to the moduli space Zf = X(C,) of
2n-pointed chains with involution defined in [3, Section 6]. There is a mor-
phism fi[ — Zi . forgetting the labels of the sections. This morphism is
equivariant with respect to the natural action of the Weyl group W(C,,) =
(Z/27)" % S, on ff, the coarse moduli space of Zi+ is Z:/W(Cn) Sim-
ilar as in proposition 1.5 one can show that the morphism fjf — Zi 4 s
faithfully flat and finite of degree |W(C,,)| = 2"nl.

These morphisms together with the morphisms Lo, — Loy, (see section
1) and f,il — Loy, (see [3, Rem. 6.16]) form a commutative diagram
I. — In,

e i

—1 J—
‘Cn,+ — Loy
= .
where L, is a component of the fibred product.

The stack Zi 4 compactifies the space of finite subschemes of degree 2n
in P1\ {0, 0o} which are invariant under the involution and of even degree
in each of the fixed points of the involution. Equivalently, this is the space
of polynomials Zfﬁo aly® of degree 2n with the symmetry ab, , = a} in the

coeflicients, up to change of the variable by multiplication by —1. These
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polynomials can contain y — 1 and y + 1 only with even multiplicity. After
dividing by the coefficient aj,, = af,, we have a polynomial of the form

y—" + axn_ly_n-i-l —|— - _|_ aly_l + ao _|_ ary + o + an—lyn_l _|_ yn

determined by the isomorphism class up to multiplication of y with —1
(together with multiplication of the whole expression by (—1)").

In general, embedding a chain (C,I,s_,sy,S) into the projective space
P2 = P(H°(C,Oc(S))), the image of C is given by equations arising from
the 2 x 2 minors of a matrix of the form (decompose into several matrices if
some of the b; are zero, cf. remark 3.3; symbol v/bg introduced for symmetry
reasons)

( Y2 v Vboyo Vbobiyi >
Vbobiyr Vboyo W Y2

where y.,..., Y0, -.,Yn is a basis of H°(C,O¢(S)) defined similar as in
proposition 3.2, 3.4 and such that the involution maps y_; <> y;. The sec-
tions s_, s; become the sections (1:0: ... :0),(0: ... :0:1) and the
subscheme S C C' C P?" is determined by an equation

Yn + @n-1Y.(n—1) + ...+ a@1y1 + aoyo + a1y1 + ... + an-1Yn—1+ yn = 0.
. . —=*
For an algebraically closed field K a K-valued point of £, , corresponds
to a collection (an_1,...,a0,bp_1,...,by) € K2" up to the equivalence
(An—15-++,@0,bn—1,...,b0) ~ (Kn—1an_1,...,K000, \n—10pn—1, - - ., Aobo)

With (Kn_1,.-s K0, A_1,---,A0) € (K*)?" satisfying \,_1 = k2_|/Kn_2,
M2 = K2 _o/(Kn—3kn—1), --., A\ = k2/(Kkok2), Ao = k3/k?. This gives
rise to a toric orbifold whose exact sequence of tori

1 — G2(Gp)" — (Gp)?" — Ty = (Gp)" — 1
corresponds to the exact sequence of lattices

()

0— M=z ) 7o () gn g

where C' = C(C,,) " is the transpose of the Cartan matrix

2 -1 0 -~ 0
12 :
c(C,) = 0o . . 1 0
RS R |
0 0 -2 2
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of the root system C,,.

DEFINITION 5.2. — We define the toric orbifold Y(C,,) associated to the
Cartan matrix of the root system C,, in terms of the stacky fan Y (C,) =
(N,Y(C,),B), where N = Z"™ and the linear map B: Z*" — N is given by
the nx2n matrix (-C(C,,) I,,). The fan Y(C},) has the 2n one-dimensional
CONES On_1,--+,00,Tn-1,---,To generated by the columns of the matrix
(-C(Cy) I,). A subset of one-dimensional cones generates a higher dimen-
sional cone of Y(C,,) if it does not contain one of the sets {oo, 70}, ...,
{0n-1,Tn—1}. This defines a fan containing 2" n-dimensional cones oy gen-
erated by sets {;}igr U{T;}icr for subsets I C {0,...,n —1}.

The functor of Y(C,)-collections Cy(c,) = Y(C,) has objects of the
form ((Zy,, @i)i=o,...n—1, (L5, bi)i=o0,...n—1, (¢i)i=0,....n—1) Over a scheme Y,
where the ¢; are isomorphisms of line bundles on Y

Cno1: L RLE2RYL, , — Oy,

On—1
Cn—2: ng,—2®$Qn—1®gg%-_22 ®$Qn—3 — Oy,

11 L Ly, QLEPRLY, — Oy,
Co: $70®$§2®fg%_2 — Oy.

We have a morphism of stacks Cy(c,) — Cy(4,,_,) by considering the
collection

((D‘Zgn—l?an_l)? ey (zgoaGO)a sy (an—l?an—l)? (-’S/ﬁrn,labn—l)y
ey (.,S/ﬂm,bo), ey (37'7171760—1)’ Cn—1s---5C0y---, Cn—1)7

built out of a Y (C,)-collection, as a Y (As,_1)-collection. This morphism
can be described by the map of fans Y (C,) — Y (A2,—1) mapping e/, _; —
€on—1+€1,..., €1 = epr1t+en_1,€e, — e,, whereel, _4,..., e[ are the gener-
atorsof 7,1, ...,70 of XY(C,,) and eay,—1, . .., €1 are those of T9,,_1, ..., 7 of
Y (Az,—1). It corresponds to a toric morphism Y(C,) — Y(Asa,—_1) making
Y(C,,) a subcategory of YV(Aap—1).

(5.1)

THEOREM 5.3. — There is an isomorphism of stacks Zi+ = Y(Cp).

Proof. — Applying construction 3.5 to a degree-2n-pointed chain with
involution, it is possible to choose yg, . . ., y2,, such that the involution maps
Yi <> Yan—i, and we obtain a Y (A, _1)-collection of the form (5.1). Ap-
plying construction 3.6 to a Y (Az,—_1)-collection of the form (5.1), making
symmetric choices, we can introduce an involution on the resulting degree-
2n-pointed chain by y; ¢ yan—i- A Y (Ag,_1)-collection of the form (5.1)
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is equivalent to a Y (C},)-collection, and further, morphisms of the corre-
sponding degree-2n-chains with involution that commute with the involu-
tion are equivalent to morphisms of Y (C,,)-collections. O

The case of the other component Zi_ is very similar. The stack Zi_
parametrises isomorphism classes of stable degree-2n-pointed chains with
involution (C,I,s_,s+,S) such that the degree of S in each of the fixed
points of the involution is odd if there are two fixed points, and positive
if there is only one fixed point. It is related to the moduli stack X (Cp—_1)
defined in [3, Section 6]: there is a morphism X' (Cp,—1) — Zii determined
by forgetting the labels of the sections and adding the fixed point subscheme
of the involution as a subscheme of degree 2 to the 2n — 2 sections.

The stack Z:ﬁ compactifies the stack of finite subschemes S of degree
2n in P1\ {0, oo} invariant under the involution such that S has odd degree
in (1:1) and (1:-1) (positive degree in (1:1) = (1:-1) in characteristic 2).
Equivalently we may consider polynomials Zfﬁo aly® of degree 2n with the
symmetry a),,_; = —a} in the coefficients and a], = 0. We may represent

each isomorphism class by an expression of the form
—y M=y " = —ay T A0t ayt ot an Y Y

determined up to multiplication of y with -1 (together with multiplication
of the whole expression by (-1)"). It has a factor (y —1)(y~* +1), occurring
with odd multiplicity in characteristic # 2.

In general, similar as in the case of Zi 1, a not necessarily irreducible
chain can be naturally embedded into P?" = P(H®(C,0¢(S))) and de-
scribed by equations arising from the 2 x 2 minors of a matrix of the form

( Y2 Y1 Yo by )
bly—l Yo Y1 Y2

and the subscheme S C C C P?" is given by an equation

“Yn — An—-1Y-(n—1) — --- — A1Y1 +a1y1 + ...+ 0p-1Yn—1 +Yn = 0.
Over an algebraically closed field K a K-valued point of Z:ﬁ corresponds
to a collection (an—1,...,a1,bp-1,...,b1) € K272 up to the equivalence

(a’n717 cee,Ql, b’nfla ceey bl) ~ (K;nflan717 ..., R101, )\’I’Lflbn717 sy Albl)

With (Kpn_1,.+ s K1, An—1,-- -, A1) € (K*)?"~2 satisfying \y_1 =K2_ | /Kn_2,
Ao =K _o/(Fn_3kn_1), ---, Ao = k3/(k1K3), \? = K2 /K3.
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We will see that this stack can be described by a toric stack that differs
from Y(C,_1) by replacing the matrix (-C(Cj—1) I,,—1) defining the map
B of the stacky fan Y (C,,_1) by the matrix

1 0
0
-C(Cp-1)
10
0 2

In the case n = 1 we define it to be Busy. This toric stack corresponds to the
category of collections of the form ((.%,,,ai)i=1,...n—1, (L bi)i=1,...n—1,
(¢i)i=1,....n—1) over a scheme Y, where the ¢; are isomorphisms of line bun-
dles

Cno1: Ly, QLE2 L, , — Oy,

Cnoz: Lry s ©Ly, \QLE2RL,, , — Oy,

Co: Ly, @ Ly RLE 2L, — Oy,
c1: ,,?7?2@9%9%2@92’3'2 — Oy.
PROPOSITION 5.4. — The stack Zii is isomorphic to the above toric

stack. It can be embedded into Zi 4 as the divisor D,, corresponding to
the cone gy and defined by ag = 0.

—+

Proof. — Similar as in the proof of theorem 5.3 one can show that £, _
is isomorphic to the above toric stack by embedding this toric stack as a
subcategory into Y(As,_1).

An embedding of Zi_ into Zi . as divisor Dy, is given by mapping a col-
lection ((Z,,, ai)i=1,...n—1,(Lr s bi)i=1,...n—1, (Ci)i=1,....n—1) Over a scheme
Y to the collection ((-%,,,a:i)i=0,...n—1,(Zr,bi)i=0,...n—1, (Ci)i=0,....n—1)
where %,, = £ @ Z,,, ap = 0 and &, = Oy, by = 1 and ¢ is de-
fined using c;. This corresponds to mapping (C — Y,I,s_,s+,5_) to
(C—=Y,I,s_,s1,5) such that Sy is given by

Yor + An—1Y-(n—1) +...tayrtayr+...+ap-1Yn—1+ Yn
if S_ is given by
~Yen = Op—1Y-(n—1) — -+ — @Y1 T+ A1Y1 + ... + An_1Yn—1 + Yn.
O

Example 5.5. — The toric orbifold Zi 4 is isomorphic to the weighted
projective line P(1,2) = Y(Cy). Here the inclusion as subcategory Zir —

ANNALES DE L’INSTITUT FOURIER



TORIC ORBIFOLDS ASSOCIATED TO CARTAN MATRICES 897
L5 is an isomorphism of stacks as any degree-2-pointed chain is isomorphic
to a symmetric object under an involution whose isomorphisms commute

with the involution. So we have the same situation as in examples 1.8, 2.2,
=+ .. .
3.8. The component £; _ is isomorphic to Bus.

Example 5.6. — The stacky fan of the toric orbifold Z;t,Jr =~ Y(Cy) is

. . 2 1 10
given by the matrix ( 9 9 0 1).

We picture the types of pointed chains over the torus invariant divisors of
. —*
the moduli stack £, | .

D DD
DD P

2 H2 b2 223
N Y N N

bg,b1 =0 bg=0 bg,a1 =0 a3 =0 ag,a1 =0 ap=0 ap,by =0 by =0 bg,by =0
00,1} To 0 {0} 01 o} Qo 0{1} T1 0{0,1}
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The toric orbifold Z; _ = P! /usy corresponds to the stacky fan given by the
matrix (-2 2 ). We have the following types of pointed chains over Z; _:

) )

2 2
7 S =
2,— a1 =0 a1,by #0 by =0
01 T1

One also may consider chains with involution and a subscheme of odd
degree.

DEFINITION 5.7. — Let the fibred category Zf;i of stable degree-
(2n +1)-pointed chains of P! with involution be defined analogously to
definition 5.1.

The fibred category Z?l’i is a stack in the fpqc topology with repre-
sentable finite diagonal.

The moduli stack Zf;i forms a subcategory of Lo,41. It is related to

the moduli space ff;i >~ X(B,,) of (2n+1)-pointed chains with involution
defined in [3, Section 1]. We have a morphism fg’i

— Z?l’i forgetting
the labels of the sections, which is equivariant with respect to the action
of the Weyl group W (B,,) = (Z/27Z)™ x S,, on Zf;i. The coarse moduli
space of ZZ’i is f?l’ /W (By). As in the C-case the morphism fg’i —
Z:l’i is faithfully flat and finite of degree |W(B,)| = 2"n!, and we have a
commutative diagram

—0,4+ _
L, — Loy
ii 4

707 J—
ﬁn — £2n+1

Embedding a degree-(2n+ 1)-pointed chain with involution (C,I,s_, sy,
S) into the projective space P21 = P(H?(C, O¢(9))), the image of C is
given by equations arising from the 2 x 2 minors of a matrix of the form

( Y-5/2 Y32 Yaj2 Diyie bibaysyo )
bibayz/e biyase Y12 Ysz)e Ys/2

and the subscheme S by

Y-2n+1)/2F0nY (2n—1)/2F- - - Fa1Y.1/2F01Y1 /2t - - FAnY(2n-1)/2FY(2n+1) /2
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where  y.oni1)/25- - Y-3/25Y-1/25Y1/2,Y3/25 - - - Y(2nt1)/2 1S a basis of
H(C,0¢c(9)) defined similar as in proposition 3.2, 3.4 and such that the

involution maps y_;/2 > y;/2-

DEFINITION 5.8. — We define the toric orbifold Y(B,,) in terms of the
stacky fan Y(B,) as in definition 5.2 replacing the Cartan matrix C(C,,)
of the root system C,, by the Cartan matrix C(B,,) of the root system B,,.

—0,+ . . . .
It turns out that £, is not quite Y(B,,), but coincides with the under-
lying canonical toric stack Y(B,,)" (as defined in [7]). So instead of the
Cartan matrix of the root system B,, we have the matrix

2 1 0 - --- 0
-102
0
2 -1 0
-102 -1
0O -+ .-~ 0 -1 1

where the rightmost column is half of the column of the Cartan matrix.
The functor of Y(B,,)*"-collections Cy (g, )ean = V(B,,)**" has objects of
the form ((-Z,,,ai)i=1,...n, (L3 0i)i=1....n, (Ci)i=1,...n) Over a scheme Y,
where the ¢; are isomorphisms of line bundles

en: L, QLE2R Ly, = Oy, cno1: Ly, 0Ly QLE2 0L, ,— Oy,

0 LR Ly, RLEER Ly, — Oy, 1t Lr Ly, QLS — Oy,

The inclusion as subcategory Y(B,)®" — Y(Aa,) can be described as
Cx (B, )ean — Cx(A,,) by considering the collection

(("(fgrﬂa’n)? Tt ("?0170‘1)7 (‘$917a1)7 DR (ggnaan)7
(Lr b))y (Lo b1), (L b1)s oo (L b)) Oy e oy €L, Cy e ey G,
formed out of a Y (B,,)®"-collection, as a Y (Asg,)-collection.

As in the case of degree-2n-pointed chains with involution one can prove:
—0,+
THEOREM 5.9. — There is an isomorphism of stacks L,)” = Y(B,)®".

Example 5.10. — In the case n = 1 we have a scheme Z(l)’i = Y(By)»

isomorphic to P!.

Example 5.11. — The toric orbifold Zg’i = Y(B2)®" is given by the
-2 1 1 0

matrlx(1 10 1

). In the picture of the stacky fan Y (Bs)®" the
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dotted arrow corresponds to the generator of the ray ¢; determined by the
stacky fan Y (Bs). Z;f:

We picture the types of pointed chains over the torus invariant divisors of
. =0+ —+
the moduli stack £, . Ly _:

»

W

2
B
by,bo =0 by =0 bi,aa=0 az=0 aj,az2=0 a3 =0 aj,bg =0 by=0 by,bp=0
01,2} T1 o{1} 02 op 01 0{2} T2 0{1,2}
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