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ORBIFOLD GENERIC SEMI-POSITIVITY: AN
APPLICATION TO FAMILIES OF CANONICALLY
POLARIZED MANIFOLDS

by Frédéric CAMPANA & Mihai PAUN (*)

ABSTRACT. — Let X be a normal projective manifold, equipped with an effec-
tive ‘orbifold’ divisor A, such that the pair (X, A) is log-canonical. We first define
the notion of ‘orbifold cotangent bundle’ Q!(X,A), living on any suitable rami-
fied cover of X. We are then in position to formulate and prove (in a completely
different way) an orbifold version of Y. Miyaoka’s generic semi-positivity theorem:
Q1(X, A) is generically semi-positive if Kx + A is pseudo-effective. Using the deep
results of the LMMP, we immediately get a statement conjectured by E. Viehweg:
if X is smooth, and if A is a reduced divisor with simple normal crossings on X
such that some tensor power of Q'(X,A) = QL (Log(A)) contains the injective
image of a big line bundle, then Kx + A is big.

This implies, by fundamental results of Viehweg-Zuo, the ‘Shafarevich-Viehweg
hyperbolicity conjecture’: if an algebraic family of canonically polarized manifolds
parametrised by a quasi-projective manifold B has ‘maximal variation’, then B is
of log-general type.

RizsuMi. —  Nous définissons la notion de ‘fibré cotangent orbifolde’ Q1 (X, A)
pour une paire (X,A) log-canonique: ce fibré est défini sur des revétement cy-
cliques adéquats. Nous formulons et démontrons ensuite une version orbifolde du
théoréme de semi-positivité générique de Y. Miyaoka: Q1 (X, A) est génériquement
semi-positif si Kx + A est pseudo-effectif. Nous en déduisons, & I’aide des résultats
récents du PMML, un énoncé conjecturé par E. Viehweg: si X est lisse, et si A est
un diviseur réduit a croisements normaux simples sur X tel qu’une puissance tenso-
rielle de Q% (Log(A)) contienne un fibré en droites ‘big’, alors Kx +A est lui-méme
‘big’. Les travaux de Viehweg-Zuo impliquent alors la conjecture d’hyperbolicité de
V.I. Shafarevich: si une famille algébrique de variétés projectives canoniquement
polarisées et paramétrée par une variété quasi-projective irréductible lisse B a une
‘variation’ maximale, égale & dim(B), alors B est de type log-général.

Keywords: Orbifold cotangent bundle, generic semi-positivity, canonically polarised
manifolds.
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1. The cotangent sheaf of an orbifold pair

Let X be a complex projective normal and connected variety of dimension
n = dim(X), with U C X a Zariski open non-empty subset contained in
the smooth locus of X and such that X — U is of complex codimension
at least 2 in X (we will in general have to shrink U a finite number of
times in the course of the proof, and the letter U is reserved for such an
appropriately chosen open subset where everything will take place). We
denote by Ty the tangent bundle of U and by €2}, its dual, the cotangent
bundle. The canonical bundle of U is denoted as usual by Ky := det(£2};).

We consider (using the terminology of [7]) an orbifold divisor A :=
> i—190;Dj, where the coefficients (d;);=1,.. are positive rational num-
bers in the interval ]0,1], and the Djs are irreducible, pairwise distinct
hypersurfaces of X. We say that an orbifold pair (X, A) is smooth if X
is smooth, and the support Supp(A) = [A] = Uj_;[d;]D; has normal
crossings.

Such orbifold pairs are usually simply called pairs in the LMMP, which
considers only the canonical bundle K x +A. The motivation for introducing
the orbifold pairs in [7] is to encode the multiple fibers of algebraic fibrations
in an orbifold divisor on the base, which amounts to perform a virtual
ramified cover of the actual base, with ramification orders equal to the
multiplicities of the fibres over the generic point of the components of the
orbifold divisor. Base-changing the given fibration y this virtual cover then
eliminates the multiple fibres in codimension 1.

This construction permits to introduce a geometry on the orbifold pairs,
related to, but different from, the classical theory of orbifolds. Indeed, in
the classical situation we have §; =1 — %j’ where the coefficients m; > 1
are integers, or +00, hence A then appears as the ramification divisor of
some virtual ramified cover of X branching along D; with multiplicity m;.

The orbifold pairs (X, A) interpolate between the compact case where,
for all j, m; = 1 and the logarithmic case, where these are all: m; = oo,
respectively. In both (smooth) cases, we have the notions of tangent bundle,
cotangent bundle and more generally, of holomorphic tensors.

Our first aim here is to introduce these notions for an arbitrary orbifold
pair (X, A). In contrast to the above two cases however, the corresponding
object does not live on X but only on some ramified cover of X as a coher-
ent sheaf of Ox-modules at least"). We shall introduce these objects first

@ Although this object might possibly be defined intrinsically as on X itself by introduc-
ing more general structure sheaves, proving our main result requires the consideration
of such covers in order to use only the usual structure sheaf Ox.
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locally in coordinates, and then globalize them on some (non-canonically
defined) ramified cover.

1.1. Local construction

We first assume that we are working in local coordinates (x) = (z1, 22, ...,
...,Ty), near a smooth point of X where the support of A is of normal
crossings, and contained in the union of the coordinate hyperplanes Dy
defined by zy = 0,k = 1,...,n. Such points cover a Zariski open subset
of X with complement of codimension at least two (empty if (X, A) is
smooth). We denote with my = Z—: the multiplicities in A of the coordinates
hyperplanes. Here ag, by, are coprime integers with ap = by = 1 if mg = 1
(i.e. if the coefficient §; = 0), while ap = 1,bx = 0 if my = +oo (i.e. if
o =1).

In this case the very simple idea idea is that Q'(X,A) should be the

locally free Ox-module generated by the elements Z%: = xl";k.”f—k’“, for

k =1,...,n. When ¢, = 0, or 1, we recover the tllcsual ‘compact’ and
‘purely logarithmic’ cases.

However, this construction does not make sense in the frame of classical
complex geometry. We thus need to make ramified covers in order to work
in this context.

For each coordinate hyperplane xy = 0, write its multiplicity as: ﬁ =
my = ‘g—:, where ag, by are nonnegative coprime integers. If § = 0, ie.
my = 1, we thus have: ap = by = 1, while if 0, = 1, ie. my = +00, we have:
ar = 1,b; = 0. In the other cases we have a; > by > 0.

Consider now the following (local near (0,...,0)) ramified cover: 7 :
Y :=C" — C" given by: 7(y1,...,Yn) := (1 := y7*,...,y%). This cover
ramifies at order a, over each of the coordinate hyperplanes x; = 0. It
thus does not ramify at all over the divisors where A is either 0, or ‘purely
logarithmic’.

Pulling back our ‘orbifold’ one-forms i%’j by f, we get (up to a non-

k
zero constant factor) the holomorphic or logarithmic one-forms 7*(4%k) =

br dys
Slightly more generally, if we consider a ramified cover defined by
7Y, yn) = (Y7, ..., ydn), with gi positive integers, we obtain:
w(dre\ _ , 9k-br dys
™ (mék ) =yt

T}fe following alternative coordinate-free description is due to Miyaoka:
QN X, A)) = [7*(Q%(61.D)) N QL. (LogD")] if D' := n=1(D), valid near

TOME 65 (2015), FASCICULE 2



838 Frédéric CAMPANA & Mihai PAUN

smooth points of X where the support D of A is smooth and defined by
T = 0.

The dual sheaf T'(X, A) will be defined similarly. In the same coordinates,
it is ‘virtually’ generated by the elements xik.%. On Y, they become the

(I—gr-bx) o
"oy
Observe that the sheaves defined in this way do not depend on the choice

of coordinates, provided these are ‘adapted’ to A.

In this situation, we define the inverse image of the ‘cotangent sheaf
QY(X,A) by f to be the (locally free) sheaf of Oy-modules generated by
the elements 7 (dm’“) just computed. For the rest of this article, we shall

dual meromorphic vector fields yk

denote it by m (Ql(X A)). We proceed similarly in order to define its dual
7*(T(X,A)), and more generally, any tensor sheaf associated to (X, A).

Notice that no such inverse image sheaf is presently defined at the points
of X which are either not smooth, or where the support of A is not of
normal crossings. This is indeed not needed, for our purposes (which per-
mit to ignore codimension two subsets). However a (much more involved)
definition could be given at these points too, but involving further consid-
erations.

We shall next globalize this inverse image by considering global ramified
covers of X. Normal cyclic covers will be sufficient here. We shall briefly
explain how smooth Kummer covers can be used to get locally free inverse
image sheaves which are everywhere defined by the above formulae, when
(X,A) is smooth. Such covers have also be introduced by A. Langer for
similar purposes in the surface case ([26]), and also in [18],§.2, in the case
of integral multiplicities.

1.2. Global construction

Let A :=}".0;.D; be an orbifold divisor, with §; =1 — =, m; = b' as
above. Let Dq,..., D,, be the support of the ‘finite’ part of A (i.e. those
Dj such that 0 < 5J < 1, or equivalently, such that 1 < m; < 4+00). Let a
be the least common multiple of the aj,j =1,...,m.

There exists a very ample line bundle H on X, and a positive integer g’
such that ¢’.a.H — (D1 + - - - + D,,) has a non-zero section with a reduced
zero locus E in codimension one (this can be seen, for example, by applying
the same statement to a smooth model s : X; — X of X, and to the strict
transform of (D1 + -+ + D,,) in X;, using the fact that s*(H) = H; + E,
for Hy ample on X7, and E’ an effective s-exceptional divisor).

ANNALES DE L’INSTITUT FOURIER
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We consider the normalization 7 : ¥ — X of the cyclic cover of X
associated to the section E + (D1 + -+ D,,) of g.H, g := ¢’.a, and define
75 (1(X, A)) as in the preceding section over the Zariski open subset U
of X consisting of the points where X is smooth, and F + [A] is a divisor
of normal crossings. This definition makes sense, since 7 ramifies over the
generic point of each D;,j = 1,...,m, to the order g := ¢'.a, which is
divisible by a;. Since this sheaf is defined algebraically over 71 (U), it has
a coherent extension (ip). (77(Q' (X, A))) to Y, denoted® 7*(Q1(X, A)).

Let G = Z, be the Galois group of the covering mr. The sheaf 7* (! (X, A))
is, by construction, invariant under the natural action of G over U, which
extends to 7*(Q' (X, A)), by its very definition.

The dual sheaf 7*(T'(X, A)) is defined similarly, as in the local description
above over U, and extended to Y by applying (i)« also.

Remark 1.1. — TIf (X, A) is smooth, and if the support of A is of simple
normal crossings, we can obtain from [20] (see equally [14] and the refer-
ences therein) a (non-cyclic) finite cover 7 : ¥ — X with ¥ smooth, and
a branching divisor B + (D1 + - -+ + D,,) on X which is of simple normal
crossings by using a composition of such cyclic covers, one for each the the
D;,j =1,...,m. In this case, U = X, so no extension (iy/). is needed,
and 7*(Q1(X, A)) is a locally free sheaf on Y, inductively generated by the
explicit elements given in coordinates in the preceding section.

DEFINITION 1.2. — Let Y be a normal and connected complex projec-
tive variety, and let G C Aut(Y') be a finite group of automorphisms of Y.
Let U be a G-invariant Zariski open subset contained in the smooth locus
of Y, and Fy C M(Ty) be a coherent subsheaf of the sheaf of meromor-
phic vector fields on U, such that F = (iy)«(Fu) is a coherent sheaf of
Oy -modules.

Then we say that F is G-invariant if for each open set V. C Y, the
differential of each element h € G induces over U an isomorphism between
the space of sections of F|y and the space of sections of F|},(yy. This action
then extends to F over all of Y.

We will need the following fact, which is (likely) well-known in different
contexts®).

LEMMA 1.3. — Let m : Y — X be the preceding cyclic cover defined
above, with Galois group G = Z,. Let F C ©n*(Tx) be a G-invariant

(2) This ad hoc definition will be sufficient for our present purposes.

G particular, it holds true for 7*(G), G any coherent sheaf G on X, not only for
G=Tx.

TOME 65 (2015), FASCICULE 2
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coherent Oy -module, which is saturated inside the inverse image 7*(Tx)
of the tangent sheaf T . Then F = 7*(Fx) for some coherent sheaf Fx of
Ox-modules on X.

Proof. — It will be sufficient to construct Fx over a Zariski open subset
with complement of codimension at least two, and to consider its extension
to X. We shall thus consider a smooth point xy of X where the support
of A is smooth, and thus consists of a single D; of local equation z; = 0.
If yo is a point of Y lying over x(, in suitable coordinates, 7 : ¥ — X is
given near yg by:

(t7y27"'ayn) - (tg7y23"'7yn)

and the action of the generator h € G is given by the multiplication of the
coordinate t by a primitive g-th root p of unity.

We shall show that, locally, F is generated as a Oy-module, by G-
invariant sections, which are thus lifts of sections of T'x. And Fx will be
locally generated as a Ox-module, by these sections.

Let V be a local section of F defined in a neighborhood of zy. Then
V= Zz;é tF7* (vy,) for local sections vy, of the sheaf Tx, since F C n*(Tx).
Since Y 9_, u/* = 0 if j is not divisible by g, and h*(t) = p.t, we have:

7 (vo) =

So, F being G-invariant, we get: 7*(vy) € F.Thus: (V — 7n*(vg)) = t.V4,
with V; := Z;(Q) tkw*(vkﬂ). By our saturation assumption, V; is a section
of F, since ¢.V; is a section of F, and V; is a section of 7*(Tx). for k =
1,...,(g — 1). By induction on k, we get that 7*(vg) is a section of F, for
k=0,1,...,g9. Thus F is generated as an Oy-module by elements of the
form 7*(v), for v local sections of Tx O

Remark 1.4. — If 7 : Y — X is a composition of cyclic covers, the above
argument can be also applied inductively. In particular, the conclusion holds
in the situation of remark 1.1.

Remark 1.5. — The tangent and cotangent sheaf associated to (X, A)
are clearly invariant by the group G acting on X. Also, one has the inclusion
of sheaves 7" (T'(X,A)) C f*(Tx) over the Zariski open subset U C X
consisting of smooth points of X where Supp(A) is smooth. A similar
fact holds for the cotangent sheaves (with a reversed inclusion). Moreover,
we have, for any projective irreducible curve C’ C f~1(U) which meets

ANNALES DE L’INSTITUT FOURIER



ORBIFOLD GENERIC SEMI-POSITIVITY 841

transversally each component of 7= !(Supp(A)) the exact sequence:
0= f X))o = X, A)jor = fFO(A)jor = 0

on (' this shows in particular that the degree of 7*Q!(X, A) on any curve
cohomologous with the class 7#*(H)"~!, for H ample on X, is equal to
g.(Kx + A) - H"™ ! since the complement of U is of codimension of least
2 in X.

Remark 1.6. — It is immediate to see that the inverse image by 7 of
any section of SU'IQY (X, A), as defined in [8], over an open subset V C U
defines a G-invariant section of ®"7*Q (X, A) over 7= 1(V).

1.3. Notion of orbifold generic semi-positivity

DEFINITION 1.7. — We consider the data (X, A), H, f,Y as above, with
m:Y — X a cyclic cover adapted to our situation, constructed as in
the beginning of §.1.2. We shall say that Q'(X,A) is w-generically semi
positive (gsp in abbreviated form) if for any polarization B on X, the sheaf
7*QY(X, A) defined above is generically semi-positive with respect to 7 (B)
in the usual sense. The latter condition means that any quotient subsheaf
G of mQY(X,A) has nonnegative degree on (7*(B))" L.

Remark 1.8. — This notion depends only on Zariski open subsets U
with complements of codimension at least 2 in X (which is the reason
why we did not need to have a refined definition of 7*(Q!(X, A)) over the
complement of such a U).

We shall also see later (see remark 2.5.(2) below) that this notion of
generic semi-positivity for orbifold cotangent bundles does not depend on
the choice of covers chosen for its definition. For the time being, we shall
check this in the following special case, used crucially in the proof of The-
orem 2.1.

We shall consider the following data.

(1) Let (X,A) be an orbifold pair, with X normal and projective, and
m:Y — X will be a cyclic cover of degree g associated to A as
above.

(2) Let f: X --» Z, Z normal, be a rational fibration. We denote by
Uy C X the Zariski open set with complement of codimension at
least 2 in X consisting of smooth points z of X at which the support
of A is smooth (or empty), and such that the map f is holomorphic

TOME 65 (2015), FASCICULE 2
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at x, with fibre having a smooth reduction. By blowing-up suitably
X and Z, we may and shall assume f to be holomorphic and ‘neat’
in the sense of [7], see definition 2.10 below. In this process, Uy
thus remains unchanged, if we restricted it so as to avoid the in-
determinacy locus of this ‘neat’ model of f. The image of Uy (still
restricting it with complement of codimension at least 2) may and
shall be assumed to be contained in the smooth locus Z"¢9 of Z,
since the f-exceptional divisors of X are also (by ‘neatness’) con-
tained in the exceptional divisor of the modification of our ‘initial’
X. The sheaf Q% /f*(2}) is thus well-defined in the usual sense
over Uy.

(3) Let C" C Y will be a generic member of the algebraic family of
complete intersections 7*(m.B)"~ !, m sufficiently large: C’ thus is
a projective smooth connected curve contained in 7—!(Uy) meet-
ing transversally each component of 7= (Supp(A)). C’ also meets
transversally each of the finitely many irreducible divisors F} of
X,k =1,...,7r such that f(Fj) is a divisor of Z, with multiplicity
of f along F;,NU; equal to some t; > 2. Let C' be the normalisation
of its image in X. We do not need that C” is a complete intersection
intersection curve, only that it is contained in U.

(4) Let AT be the union of the components of A which meet U; and
are mapped by f onto Z, each affected with the same coefficient it
has in A.

PROPOSITION 1.9. — In this situation, let Fx = f*(Q}) C QX this
is a well-defined coherent sheaf on U;. Let F& C 7*(Q'(X,A)) be the
saturation of 7*(Fx) in 7*(Q'(X,A)). Let Q¢ be the quotient sheaf
QY (X, A))/FA.

Then: L= .dego(Q.a) = (Kx/z+A).C—= Y42t (tr — stry)- il C
where ma (Fy) > 1 is the multiplicity of F}, in A. This equality can also
be written as: (g.m%).degcf(Qf’A) = [Kx/z + A — D(f,A)].H" Y, if

D(f,A) == [X3Z1 (tr — sstry)-Fil-

Proof. — Before starting the proof, let us notice an ambiguity in the
notations: the symbol f*(£2},) denotes the composition (df)o f*(2}), where
f* is just the inverse image sheaf on X, while df is the differential mapping
*(QL) into QL. By contrast, 7*(Fyx) is just the inverse image sheaf on Y,
not composed with the differential dzr. Thus, in particular, the ramification
of 7 along the divisor 7=1(E) is not taken into account in the computation
below, where F is the codimension one set defined in §1.2.

ANNALES DE L’INSTITUT FOURIER
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The quotient F2/7*(Fx) is a skyscraper sheaf concentrated on the
union of the support of A, and of the Fj (this over Uy, at least), and:
T (Kx)z + A).C" — detc (Qf,a).C' is equal the length of this skyscraper
sheaf over C’. We are thus reduced to the local computation of this length
at an arbitrary point gy € C’. By the transversality assumption, we may as-
sume that we have local coordinates y := (y1,...,yn) and & := (21,...,2y,)
near yo and zg := m(yo) respectively such that, in these coordinates:
w(y) = (Y], y2, .., yn), and f(z1,...,2p, Tptp1,...,2n) = (21 1= 2, 29 :=
To,...,2p = Tp), if p := dim(Z), while the curve C’ is parametrically
defined by the map v : w — vy(w) := (w,0,...,0) € Y, for w € C near
0. The coordinates x,y, z with indices 2 or more do not contribute to the
computation, and are thus ignored; the sheaf v*(7*(f*(Q%))) is thus gen-
erated by w'9~1.dw, while its saturation in 7*(Q!(X,A)) is generated by
7*(yf'(175)71.dw) = w9 (1=9=1 dy, if § is the A-multiplicity of the divisor
D, of local equation 7 = 0 in X. This establishes the claim, since the
local length at yq is then given by: (9.t — 1) — (¢9.(1 = 8) = 1) = g.(t — 1),
if m = (1—0)"! is the A-multiplicity of D;. O

Remark 1.10. — In particular, we see from this formula that the in-
tersection number we compute is completely independent of the very am-
ple hyperplane section we have used in order to define 7 : ¥ — X and
7 (QY(X, A)), although the map 7 is ramified along H.

Remark 1.11. — This proposition thus shows that the degree of ‘alge-
braically defined’ quotient sheaves of 7*(22*(X,A)) on ‘generic’ curves of
Y is, in fact, computed from data defined on X, and thus independent on
the cyclic cover Y. The first step of the proof of Theorem 2.1 will, in fact,
precisely show that such quotients are ‘algebraically defined’ if anti-ample
on Mehta-Ramanathan curves.

Remark also that proposition 1.9 holds true for any birational model of
f, provided one chooses C” accordingly. In particular, we may (and shall in
the end of the proof of Theorem 2.1) assume that f : X — Y is holomorphic
and A-neat, in the sense of definition 2.10 below.

2. An orbifold version of Miyaoka’s generic semipositivity
A Q divisor E on a projective normal variety X is said to be pseudo-
effective if the divisor F +¢.H is Q-effective (and thus big) for any rational

e > 0. According to [5], E is pseudo-effective if and only if E.C > 0, for
any irreducible member C' C X of any covering family of curves on X.

TOME 65 (2015), FASCICULE 2
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THEOREM 2.1. — The sheaf 7*Q(X, A) is m-generically semi-positive
if the pair (X, A) is log-canonical, and Kx + A is pseudo-effective on X.

Remark 2.2. — The proof in fact shows, more precisely, that if the pair
(X, A) is log-canonical, and if the sheaf 7*Q!(X,A) is not m-generically
semi-positive, there exists a ‘neat’ dominant fibration f : (X,A) — Z (on
some suitable birational model of (X, A)) such that Kx + A is not pseudo-
effective on the generic fibre X, of f. The dimension of X, is the rank of the
largest semi-stable quotient of minimal slope of 7*Q! (X, A) relative to some
polarisation 7*(H) of Y such that (Kx +A).H"~! < 0. In particular, these
fibrations are all constant maps if, for all such polarisations, 7*Q (X, A) is
semi-stable.

We shall need the following immediate generalisation, deduced from the
fact that the tensor powers of nef bundles on a smooth curve are nef:

COROLLARY 2.3. — For any integer m > 0, the sheaf @™7*QY (X, A) is
m-generically semi-positive if the pair (X, A) is log-canonical, and Kx + A
is pseudo-effective on X.

The generic semi-positivity theorem of Y. Miyaoka ([27]) asserts that if a
normal projective variety X is not uniruled, then Q! (X) is generically semi-
positive'® . This statement is equivalent to the conjunction of two results:
the bundle Q*(X) is generically semi-positive if K x is pseudo-effective and:
the canonical bundle K x is pseudo-effective if and only if X is not uniruled,
respectively.

Theorem 2.1 above extends the first assertion to the orbifold situation(®
giving when A = 0 an alternative proof in characteristic zero.

The second statement admits an orbifold counterpart, which is an im-
mediate application of [2]:

THEOREM 2.4. — If Kx + A is KLT, then it is pseudo effective if and
only if it is not ‘weakly uniruled’ (i.e.: covered by rational curves R such
that (Kx + A).R <0).

The property of ‘weak-uniruledness’ is, however, too weak to give inter-
esting geometric informations. See [8] for more geometric (but in general
only conjectural) variants of ‘orbifold uniruledness’.

Remark 2.5.

(4) The converse is an open delicate problem.
(5) Under the log-canonicity assumption.

ANNALES DE L’INSTITUT FOURIER
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(1) Tt follows from Theorem 2.1 and its proof that the property of
7*(QY(X, A)) being gsp is independent of the cyclic cover used to
define this property if Kx + A is pseudo-effective. Conversely, if
7 (QY(X, A)) is not gsp for some 7 : Y — X, the proof of Theo-
rem 2.1 constructs a fibration as in proposition 1.9 above, and this
proposition shows that (7/)*(2!(X,A)) will be non-gsp for every
other cyclic cover 7’ associated to (X, A).

(2) The conclusion of Theorem 2.1 can conjecturally be strengthened
to: “every quotient of Q' (X, A) has a pseudo-effective determinant".
Our arguments do not however permit to prove this. When X is
smooth and A = 0, this has been shown in [11].

The proof of Theorem 2.1 consists of the following steps: arguing by
contradiction, we construct, by Harder-Narasimhan theory and Mehta-
Ramanathan theorem, a foliation on X, as Miyaoka did, (the involutiveness
of the distribution is in our orbifold context more delicate, however). The
algebraicity of the leaves is shown by applying the criterion of Bogomolov-
MacQuillan ([3], see also [4],[15], [24]). The contradiction is obtained using
a slight modification of the orbifold version of Viehweg weak-positivity of
direct images of relative canonical bundles as in [7], Theorem 4.13.

We notice here that these two ingredients were also used in a parallel
manner by Andreas Horing in [16], Theorem 1.4, to show that if X is a
normal projective variety of dimension n and A a nef and big Cartier divisor
on X such that Ky + nA is nef, then Q% ® A is generically semi-positive,
unless X is birationally a scroll.

We now start the proof of Theorem 2.1.

Proof. — We consider a cyclic cover 7 : Y — X associated to the orb-
ifold pair (X,A). Arguing by contradiction, we assume the existence of
a G-invariant torsion free sheaf of Oy-modules, say Gy, which admits a
surjective map

T QNX,A) = Gy — 0

and such that degy (Go) < 0; here we use the notation H' := f*(B) for the
(ample) inverse image of an arbitrary hyperplane section B on X. In other
words, the degree of the restriction of Gy to any Mehta-Ramanathan curve
C’ relative to H' is negative. We can assume that C’ do not intersects the
singular locus of Gy, that is to say, that Gy is locally free along C’. The
dual G} of Gy, is a G-invariant torsion free subsheaf of 7*(T'(X,A)), and
degy/ (Gy) > 0. By hypothesis Kx + A is pseudo-effective, the degree of
the determinant of 7*(T'(X, A)) on C”’ is negative, by Remark 1.5, and the
orbifold tangent sheaf 7*(T(X, A)) is not H'-semi-stable.
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Let Fi1 be the semi-stable piece of the Harder-Narasimhan filtration of
7*(T(X, A)) of maximal H'-slope. By Mehta-Ramanathan, it restricts to a
piece of maximal slope on the generic Mehta-Ramanathan curves C/ C Y
associated to H' := f*(B).

LEMMA 2.6. — The sheaf F is G-invariant and saturated in m*(T(X,A)).
Moreover, the restriction of F1 to C’ is semi-stable, and hence ample.

Proof. — The first assertion is a consequence of its maximality prop-
erties, together with the fact that we are considering the stability with
respect to an inverse, and hence G-invariant, polarisation. The second one
is standard in Harder-Narasimhan theory. The third one is due to the fact
that the degree is strictly positive, together with semi-stability. 0

LEMMA 2.7. — Let L : A\2F; — f*T(X,A)/F1 be any Oy-linear map.
Then L = 0.

Proof. — This is a consequence of the semi-stability of /7, via an argu-
ment due to Y. Miyaoka in [27], resting on the fact that the slope of the
wedge product is twice the slope of the factors, by semi-stability again. [

We now need to ‘descend’ from (X,A) to the manifold X. We thus
consider the saturation of 7 in 7*T’x, denoted: .7:1(5) C mTx = (iv)«(Tv),
for U = X"9. We remark that both of these sheaves are G-invariant,
and therefore so is ]-"1(5). Therefore by Lemma 2.2, there exists a sheaf
F© ¢ O(Tx) such that F® = o (F©).

LEMMA 2.8. — The sheaf F® is closed under the Lie bracket; it thus
defines a foliation on X. These statements hold on the regular part of X.

To prove this lemma, we need here to carefully distinguish the Lie brack-
ets of vector fields Lx on X" and Ly on Y%, since 7*(O(Tx)) is not
closed under Ly .

Let £ : A2F®) — Tx/F® be deduced from the Lie bracket on the
tangent bundle Tx. Let 7L be the map deduced from £ by inverse image
and extension by Oy -linearity; it is defined as follows:

(L) : A2.7:1(S) — F*Tx/]:l(s).

Let J : A2F; — A2FY and Jy : m(T(X,A)/F — o*(TX)/FY
be the natural injections (recall that F; = 1(5) Nm*(T(X,A))). We just
need to show that £ o J vanishes along any sufficiently generic complete
intersection curve of large multiples of H’ on Y, which immediately follows
from the following lemma, by the slope argument used in lemma 2.6 above.
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Indeed, if £Lx did not vanish identically (ou X"9), then so would do also
7*(£) and 7*(£) o J, and also its restriction to any curve C’ as above.

LEMMA 2.9. — There exists a natural Oy -linear factorisation Li
A’ F; — 7 (T(X,A))/Fy of 7 (Lx) o J : A2F; — 7 (TX/F®) through
Jx, i.e: such that 7*(Lx) o J = Jx o L.

More generally, 7* (L x ) maps A?(7*(T'(X, A)) into 7*(T(X, A)). In other
words: m*(T(X, A)) is closed under the lift of the Lie bracket Lx.

Proof. — The first assertion is an immediate consequence of the last one,
which we now prove.

We chose local coordinates = (z1,...,2,) and y = (y1,...,yn) Dear
a := m(b) and b € Dy, with Dy of equation z; = 0 the local support of
A mear a, so that 7 : Y — X is locally given by: 7(y) = (x1 := y{, 22 =
Y2y «ovs T, i= Ypn) near b. We denote by ¢ the coefficient of D; in A.

Local generators as Oy-modules of 7* (T X) (resp. 7*(T(X,A)) are: (01 :=
W*(awl) Oyi=m (822) oy Op 1= F*(%)) and: (y{°.01, s, ..., 0p)), respec-
tively.

Any local ¢ € Oy can be uniquely written: o(y) = > 7 yl Y (x), for
some holomorphic functions (¢).

Let v = 3" ,¢i(y)d; be a local section of 7*(T(X,A)). Then v =
Zt o Yiwy with: wy := ;:f 1 +(x)0;, for each 0 <t < g — 1, and 914
divisible by x; for 0 <t < gc — 1.

Then, v is a section of 7*(T (X, A)) translates to: for 0 < ¢ < (gc — 1),
wy is a section of the subsheaf 7*(Vy) := 7n*(Tx(—log(D1))) of m*(Tx),
generated by: (x1.01,02,...,0n).

Therefore we have the decomposition: v = chol y¥ g + Zp ge ylw
with each wy € Vp, for 0 <t <cg— 1.

The subsheaf V; of Tx is stable by the Lie bracket 7*(Lx), and so:

(1) For each 0 < ¢,5 < cg — 1 we have: 7 (Lx)(y].we, y;.ws)) =
yi " (Lx ) (we, ws), which is a local section of 7*V; C Fj.

(2) If we have maxp,q > cg, then we have: 7*(Lx) (y}.we, y;.wy)) =
yP (L x)(@y, @,), which is divisible by y{.

The Lemma 2.9 is therefore proved, since for any two sections v, v’ of
™ (T(X,A)), 7*(Lx)(v,v") is a sum of terms of the preceding two forms
(1) or (2) . O

The sheaf F®) defines thus a foliation on the regular part of X, The
restriction of F®) to any curve C' which is a complete intersection of n — 1
hyperplanes linearly equivalent to any large enough multiple of B is ample,
since this is already the case for F;. By [3], the leaves of F ) through
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any generic point of X are algebraic (since the generic curves C' as above
avoid the singularities of the foliation defined by F®)). The statement of
[3] obviously holds with the very same proof in the normal case as well,
since the curves we consider are contained in the regular part of X.

We thus obtain a rational fibration f : X --+ Z, such that for generic
x € X, the kernel of the differential df, is equal to fé”. The idea to
finish the proof is that, since (Kx + A) is pseudo-effective(®) | the relative
canonical bundle of f is pseudo-effective on any ‘neat’ model of f, which
contradicts the positivity of the degree of F) when restricted to a generic
curve C. The quotient sheaf Qs A of 7* (2! (X, A)) we have considered has
however as kernel, not f*(Q}), but its saturation in 7*(Q(X,A)). The
difference for the degree computed on C’ is however, after proposition 1.9
above, interpreted geometrically as coming from the orbifold divisor A and
the multiple fibres(") of any ‘neat’ model of f. The needed refinement of
the pseudo-effectivity of the relative canonical bundles turns out to be
essentially the ones given either in [7], Theorem 11.3; it can be equally
extracted from [19] or [1].

We introduce some notations and definitions: given a surjective map
@ : M — N between two projective manifolds M and N, we denote by
Dy (p) the set

Dn(p) :=={y € N|¢*(y) is not smooth}.

Let Das(p) := ¢~ (Dn(p)) be the inverse image of Dy (¢). We also con-
sider a divisor A on M; in this context, we recall the following notion.

DEFINITION 2.10. — We say that the map ¢ is A-neat if the following
requirements are fulfilled.

(a) The set Dy(yp) is a (possibly empty) divisor.
(b) The divisors Dy () and A + Dp;(p) have normal crossings.

(¢) No component of A is p-exceptional.

Starting from our initial log-canonical (X, A), we can thus take a log-
resolution g : X’ — X such that X’ is smooth, and a smooth orbifold
pair (X', A’) with f' : X’ — Z’ holomorphic and birationally equivalent
to f via a modification v : Z' — Z, Z’ smooth, such that: g.(A’) =
A, Kx + A" = ¢g*(Kx + A) + E, with E g-exceptional, and such that,
moreover, ' : X' — Z’ is A’-neat. Because our curves C = g¢,(C"), with
C’' C Y a Mehta-Ramanathan curve for H' = 7*(B) do not meet the

(6) And since (X, A) is log-canonical. This the place where this hypothesis is used.
) They thus play a crucial role even when A = 0.
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indeterminacy locus of g~! : X --» X/, we still know that F(*) is ample on
C’ (identified with its isomorphic strict transform in X’). C’ is no longer
a complete intersection curve, but this property is not used. We can and
shall now thus argue as if X = X’ since the components of A’ which
are not components of A do not meet 7—1(U), and do not appear in the
computation of Proposition 1.9.

We decompose the divisor A as follows

A = Avert _|_Ahor

so that each component of the support of AV maps via f onto some
divisor of Z, while the restriction of f to any component of the support
of APT is surjective. By the A-neat condition, only these possibilities can
occur.

We now use the notations introduced before the proof of proposition 1.9.
By assumption, the quotient Q¢ a) has an ample dual over C”. In particular,
it has negative degree on C".

By proposition 1.9, this degree is given by:

(g.mn—l

k=r .
where D(f,A) = [ Zi(tr, — M)Fk] Recall that the sum in
D(f,A) bears on the finitely many irreducible divisors Fj of X which
are either components of A", or mapped by f onto divisors of Z with
multiplicity ¢ > 2. Also, ma(Fy) > 1 is the A-multiplicity of F.

Since we assumed K x+A (and thus also K x/+A’) to be pseudo-effective,

).deger (Qr,a) = [Kx/z + A — D(f,A).H"

this negativity contradicts the following result (which thus ends the proof
of Theorem 2.1):

THEOREM 2.11. — Let (X,A) be a smooth orbifold pair, and let f :
X — Z be a A-neat fibration. If Kx, + A|x, is pseudo-effective on the
generic fibre X, of f, the Q—bundle Kx/y +A—D(f,A) = Kx/y + Ahor _
D(f,0) is then pseudo-effective, too.

Proof. — The result above is an easy consequence of [7], Theorem 4.13,
applied to D := m.A"". This result indeed asserts that f., (m(Kx/z +
Ahor)) is weakly positive, and m(Kx,z + A"")) is thus pseudo-effective.

The proofs of [7], lemma 4.17 and lemma 4.18, applied with H?¢"* = 0,
now shows that this last conclusion is preserved when we substract from
m(Kx,z + A7) not only g*(A(g, H)), as stated there, but even D(f,0).
Observe indeed that we can write, for any component Fy, g*(g(Fx)) = ti.Fk
along its generic point, so the calculations at the end of the proof of [7],
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4.18 give the assertion (just ignore the 7 last lines of the proof of 4.18). The
equalities: t — L = (t—1)+(1— L) =t.(1—- 1)+ (1 — %) finally imply that
D(f,A) = A" + D(f,0). Notice that the multiplicities of AY¢"* here do
not play any role, and can be chosen to be rational, not necessarily integral.

In the special case where A = 0, it is stated in [19]. The general case
can be obtained as well from [1], by an adaptation similar to the one above
from [7]. O

2.1. An alternative approach

In a forthcoming text [10], we will provide a different proof of The-
orem 2.1 by using differential-geometric techniques. Our arguments are
based on the existence of Kéhler metrics with conic singularities and pre-
scribed Ricci curvature; the precise statement is as follows.

THEOREM 2.12. — Let (X, A) be an orbifold pair, whose canonical bun-
dle Kx + A is pseudo-effective. Let L be a line bundle, such that

H(Y,@"m*T(X,A)® L) #0
for some m > 1. Then we have L - 7*H™1 > 0.

It follows that the restriction of 7*(Q'(X,A)) to a generic complete
intersection is nef, in the sense of algebraic geometry.

We will present here the main techniques used for proof of Theorem 2.12.
We denote by Yy a complex manifold, which is not necessarily compact.
The metric w with respect to which the next computations are performed
is assumed to be Kéhler. The bundle L is endowed with a hermitian metric
h, and we denote by tr,, (@h(L)) the trace of the curvature of L with respect
to w. The following Bochner-type formula is classical, cf. [32].

LEMMA 2.13. — Let u be a L-valued tensor of (m,0)-type on Yy, with
compact support. Then we have

|0(#u)|*dV, = [ [0ul?dV,+
Yo Yo

+/ (R(u),u)dVy, + [ |u?*try, (O4(L))dV,,
Yo Yo

where R is an order zero operator, defined as follows. We write

0
_Z I
o I uaz®f®eL
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and then we have

0 0 0 0
R I
R(w) = v R @@ 5 © 50 ® g ©

I,pl

S ® Rer

Oztr
In the expression above, we use the notation
Ry = Z Rypsi
p

for the coefficients of the Ricci tensor (here all the quantities are expressed
with respect to some geodesic coordinates), as well as I = (iy,...,1,).

We will use the preceding result as follows. The manifold Yy C Y cor-
responds to the smooth, non-ramified cover of X \ Supp(A). Let f be any
smooth function on Y'; we denote by hg a reference metric on L, and let

h = exp(— f)ho

be the twisting of the reference metric on L with the function f. The last
term in the equality of the previous lemma becomes

try, (eho (L)) + Aw(f)

where A, above is the Laplacian operator associated to w. As a conse-
quence, the term corresponding to L in Lemma 2.13 becomes

/Y (trw (@h(L)) + Aw(f))|u\2 exp(—f)dV,,.

Coming back to our problem, if Kx is ample and A = 0, then the proof
of Theorem 2.12 is as follows. Let w € c¢;(H) be a representative whose
Ricci curvature is definite negative. Such a metric exists as a consequence
of the ampleness of K x, thanks to S.-T. Yau theorem, cf. [33]. We choose
hg in an arbitrary manner, and let

f=1logul?,

where u is the L-twisted tensor of (m, 0)-type given by hypothesis (and the
norm above is induced by w and hg). With this choice, we have

/ (tre (On(L)) + Au(f))|ul? exp(—f)dV,, = L- H**
b's
since the |u|? is cancelled, and the integral of A(f) with respect to dV, is
equal to zero. The term
[ By
X

|uf?
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is negative, by the properties of the Ricci curvature of the metric w, and
Ou = 0, since u is holomorphic. Thus we infer the result.

The general case is much more involved than this, but the techniques
needed to carry it on are well-understood. If A # 0 then we have to use the
cut-off procedure and the conic singularities metrics as in [9]. If Kx + A
is only pseudo-effective rather than ample, then we approximate it with a
big line bundle, and we use Kodaira lemma i.e. we have

Kx+A+eH=A.+E,

for each ¢ > 0, where A, is ample and FE. is effective. The bundle E.
will induce a further degeneracy in the volume element while solving the
Monge-Ampére equation. However, the estimates we have at our disposal
in this framework are solid enough to enable us to argue by approximation.
As we have already mentioned, the details will appear shortly in [10]. O

3. Birational stability of the orbifold cotangent bundles

We now give a consequence of Theorem 2.1 (which was its original moti-
vation). For similar results, we refer to [6], and to [9], where transcendental
methods are used.

COROLLARY 3.1. — Let (X, A) be a log-canonical orbifold pair, with X
normal projective and Kx + A pseudo-effective. Let H be any ample line
bundle on X. Let m : Y — X be a cyclic cover of group G associated to
(X,A). Let H' := n*(H). Let F' be a rank-one'® coherent sheaf on 'Y,
together with an inclusion F' C @™ (m*(Q1(X, A))).

Assume that (Kx + A).H"™! = 0. Then:

(1) F.(H")"1<o.
(2) RO(Y, F') < 1.
(3) More generally® | the evaluation map at a generic point y € Y:

ey + HO(Y, @™ (m" (21 (X, A)))) = @™ (1" (2 (X, A)))y
is injective if (Kx + A).H* ' =0. 19,

(8) The results hold in fact for det(F') if rk(F’) > 1, with the same proof.

(9) The assertions above remain true after lifting 7/ and H’ by ¢*, if¢p: Z — Y is any
surjective holomorphic map from an irreducible normal complex space Z to Y.

(10) This is a version of the fact that holomorphic tensors are ‘parallel’ in this situation,
a fact proved when A = 0 in the smooth Kéhler case by S.T.Yau using Ricci-flat Kahler
metrics and Bochner formula, and the later in the projective case by Y. Miyaoka using
his generic semi-positive theorem just as above

ANNALES DE L’INSTITUT FOURIER



ORBIFOLD GENERIC SEMI-POSITIVITY 853

Assume that A = D+ A/, for some Q-effective, non-zero D, A’, and that
F'c ™(n*(QYX,A"))). Then:

(1) F.(H)" ! <o0.

(2) hO(Y,F') = 0.

Proof. — The assertion 2 follows obviously from assertion 1, which we
now prove. Let C' C Y be a Mehta-Ramanathan curve for H' := 7n*(H),
and C = m,(C").

Assume first that (Kx + D).H"™! = 0. Let Q" be the quotient of
Q™M (m*(QY(X,A))) by F' over Y. By Theorem 2.1, and its corollary 2.3,
det(Qp/) > 0 (since Kx + A is assumed to be pseudo-effective). But
det(Q").C"' = —F'.C", since (Kx + A).C = 0. Hence the claim.

In the second case, where (Kx + A’).H"! < 0, the inclusion:

F'c @m(n*(QYX,A))) ¢ @™ (x*(2H(X,A))) permits to deduce the
last two assertions from the preceding ones, since C' meets the support of
A O

Remark 3.2. — The preceding corollary 3.1 applies if (X, A) is the im-
age of some smooth orbifold pair (X7, A”) by a rational birational map
pw X7 — X whose inverse does not contract any divisor, and with
Kx» 4+ A” pseudo-effective.

Under the ‘Abundance conjecture’, if K(X”, A”) = 0, the property (K x+
A).H"" 1 =0 will be satisfied on any Log-minimal model of (X7, A”)).

Remark 3.3. — The second case (X,A’) of the preceding corollary
arises, for example, when (X,A’) is Fano (i.e: has —(Kx + A’) is am-
ple), by adding to A’ some D = %E , where F is a generic member of the
linear system —N.(Kx + A').

Remark 3.4. — In these cases, using the invariant x*F introduced in
[6], the corollary 3.1 shows in particular that k™ (X7, A”) = 0 (resp. —o00)
it (Kx +A).H"™ L =0 (resp. (Kx + A).H" ! < 0).

4. A criterion for orbifold pairs of general type

The following result"") was conjectured by E. Viehweg in [31].

(1) we give the statement only in its ‘pure-logarithmic’ version, which involves no ‘orb-
ifold’ consideration. But it holds, and the proof given below adapts immediately for
general log-canonical pairs (X, A), which are needed in the proof of the ‘purely logarith-
mic’ case already. In the general case, the assumption is that the inverse image 7* (L) of
a big line bundle L on X injects in @™ (m* (2 (X, A)) for some cyclic cover 7: Y — X
associated to A.
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THEOREM 4.1. — Let X is a projective manifold, and D = } . D; a
reduced divisor, such that (X, D) is a smooth ‘purely-logarithmic’ orbifold
pair. We assume the existence of a big line bundle L on X, together with
an injective sheaf map

(2) 0— O(L) = @™ (X, D)
for some integer m > 1. Then Kx + D is big.

Remark 4.2. — We mention some complements and extensions which
can be obtained by similar arguments:

(0) When L is not assumed to be big, Kx + A need not be pseudo-
effective, even if L is effective, in general (consider X = P4 x Z, Z
of general type, f the second projection, A =0, and L := f*(Kz),
with Kz effective, but not big). The second step of the argument
below thus requires the bigness of L.

(1) The argument proving Theorem 4.1 can be extended with minor
changes, to show that if L and Kx + A are supposed to be pseudo-
effective, then v(Kx +A) > v(L), where v stands for the numerical
dimension .

(2) Remark also that, since the tensor product of two line bundles,
one big and the other pseudo-effective, is big, the conclusion of
the theorem were obvious if one could prove that the quotients
of Q1(X, A) have a pseudo-effective (instead of gsp) determinant,
under the hypothesis of Theorem 2.1. This stronger property has
been shown in [11] when A = 0 if X is smooth and projective.

(3) The initial part of the proof of Theorem 4.1 actually applies to give,
with an additional nefness assumption, a ‘distributional” version of
Theorem 4.1 (see the beginning of the proof of its step 1) :

THEOREM 4.3. — Let (X, D) be a pair consisting of a complex smooth
projective manifold X, equipped with a normal crossing (reduced) divisor
D. Let Q be a torsion free quotient of Q% (LogD)(*?). Assume that det(Q)
is nef, and that there exists an injective sheaf map L — ®™(Q for some
m > 0. Then det(Q) is big.

It might be possible that the result holds more generally if det(Q) is
pseudo-effective, but additional arguments concerning Log-minimal
models or Zariski decomposition of det(Q) were then needed. On
the other hand, the statement does not hold if det(Q) is not pseudo-
effective, as the following example shows.

(12) Thus seen as the dual of a saturated subsheaf F of T (LogD), and det(Q) = Kr.
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Example 4.4. — Let S be a minimal surface of general type, such that
we have 130? > 9c¢y, where ¢y and cg are the first and the second Chern
class of S, respectively. Let X := P(Ts) be the projectivization of tangent
bundle of S, and let A C T'x be the sub-bundle described by the following
relation

A, i) = {€ € Tx (2,[v)) such that dr({) € Co}

where v € T, is a non-zero tangent vector, and 7 : X — S is the projection
map. We remark that A is not integrable; geometrically, it corresponds to
the directions of X corresponding to liftings of discs tangent to S. We
denote by @ := A*, the dual of A. Then for any ample line bundle A on X
there exists an integer m such that we have

(1) H(X,S™"Q® A™') #0

but the determinant of @ is not even psef, given that its restriction to the
fibers of 7 is equal to O(—1). For a proof of (f) and much more we refer to
the article [12]. Moreover, we remark that we have

HY(X,S™Q%x @ A™") =0

for any m > 1, by the same arguments. This may look odd, given (}), yet
it is true.

(5) Actually, the techniques we use in the proof of Theorem 4.1 permit
to characterize the bigness of Kx + A, at least in the “purely loga-
rithmic" case (i.e. m; = 00). We denote by EE%(Q%A) the bundle
of logarithmic jet differentials or order k and degree m. Let [ be a
positive integer. Then Theorem 4.1 admits the following extension
and reciprocal version.

THEOREM 4.5. — The bundle Kx + A is big if and only if there exist
a couple of positive integers k, m together with an injective sheaf map
O(L) — ®lE,§gQ§(7A where L is an ample line bundle.
The “only if" part follows from the techniques developed in the
article [13] by J.-P. Demailly, and the “if" part is a consequence of
Theorem 4.1, as follows.
The logarithmic “Green-Griffiths" bundle of jet differentials of or-
der m and degree k admits the filtration whose successive quotients
are given by

ST A @ © ST A
where (m;);—1. r are positive integers, such that

mi + 2mso + - - + kmy = m.
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Then we infer that there exists some integer ¢ such that
HY(X, @05 A ® L") #0

and therefore Theorem 4.5 is a direct consequence of 4.1.

Also, we mention here that it might be possible to develop the
theory of jet differentials in the context of general orbifold pairs,
and prove a similar result.

Proof of Theorem 4.1. — Let A be a very ample line bundle on X
having a section whose zero set Z is smooth and such that D U Z is of
normal crossings, A being sufficiently multiplied, so that Kx + D + %.A is
pseudo-effective. Consider the orbifold pair (X, D+t.Z), for ¢t > 0 rational.
The proof consists of two steps:

Step 1. — Kx+D+t.Z is big if Kx + D +t.A is pseudo-effective, with
0 <t < 1. We shall prove this after proving the second step.

Step 2. — K x + D is pseudo-effective. We prove this step 2 now, assum-
ing step 1. Assume, by contradiction, that Kx + D is not pseudo-effective.
Let % > to > 0 be the smallest of the real numbers ¢ such that Kx +D+t¢.2
is pseudo-effective. By [2], to € Q. By the first step, Kx + D + t(.Z is big.
But this implies that Kx + D+ (to—e¢).Z is pseudo-effective for some € > 0,
contradicting the definition of ;.

Proof of step 1. — We first illustrate the idea in the special case where
K =K, :=Kx +D+tAis nef. Let a > 0 be such that L > a.A (i.e:
such that the difference L — a.A is Q-effective), and let ¢ = ¢(n,m) > 0 be
such that det(QY(X,D +t.Z)) = ¢.K; = c¢.(Kx + D +t.A). We then have
(using the fact that Q' (X, D+t.Z) is gsp, thus as well as its tensor powers,
and the Khovanskii-Teissier inequalities for the third and first inequalities,
respectively):

a.(A")w (K% < aAK ' < LK< (e.K). K = . K},
from which we deduce that Vol(K;) = Ki* > ($)".vol(A) > 0 (in order
to divide both sides of the inequality above by (Kt")n%, which might, a
priori, be zero, one just needs to apply the inequality to t+¢,e > 0 rational,
and let € tend to zero). This implies that K is big.

Notice that this special nef case works exactly in the same way if
OYX,D +t.Z) is replaced by any of its torsionfree quotients Q, to give
Theorem 4.3.

We then reduce to the case when K; := Kx + D + t. A is nef, assuming
it to be pseudo-effective, by using [2]. We shall give two proofs of step 1.

n—1
n

ANNALES DE L’INSTITUT FOURIER



ORBIFOLD GENERIC SEMI-POSITIVITY 857

We consider in both proofs the sequence of klt orbifold divisors Dy j :=
(1- ). D+t.Z+ 57 (M.(A+ %.D)) ~ D+ (t+ ).A, where k > 0 is an
integer, and N, M are chosen such that M.(A + %D) is very ample, and
has a section with zero locus Z’ such that DUZUZ’ is of normal crossings.
The divisor D+ (t+ +).A is big, and [BCHMO6] applies. Here ¢ > 0 is fixed
and k varies.

First proof. — By [2], there exists a composition p : X --» X’ of di-
visorial contractions and flips such that (X', Df; = p.(Dyx)) is l.c, and
X' is Q-factorial, with K’ := Kx/ + Dé,k nef. Let L' := p,(L): this is
a big Q-Cartier rank one coherent sheaf (well-defined since u~! does not
contract any divisor). We have for the same reason a natural injection of
sheaves L' — 11, (@™QY(X, D)) = (@™QY (X', D)%) if D' := p, (D). For
any t > 0,k > 0, we also get (after lifting to a suitable cyclic cover of X’)
an injection of sheaves @"Q' (X', D') — @™Q (X', D} ;).

Let v : X” — X be a birational morphism such that p := pov : X” — X’
is regular, and such that the indeterminacy locus of v~ ! : X --» X7 is in-
cluded in the indeterminacy locus of p: X --» X'. Let L” := v*(L), A” :=
v*(A). There exists a Zariski-open subset U’ of X’ with codimension two
or more complement which is isomorphic via u (resp. p) to its inverse image
U C X (resp. U” C X7). Since Kx/ + Dy is nef, K[ := Kx: + D ) + A’
is ample for any € > 0, rational, and A’ an ample line bundle on X’'. We
now consider a curve C. which is a complete intersection of (n — 1) generic
members of N'.K!, N’ sufficiently big, in such a way that C’ C U’. Let
.= (N,)%.C’, and I'.” be its inverse image in X” by p*.

We thus have: L'.(K.)""1 = L'T. = L".I'.” = L".(p(K.))"~!, for any
e > 0.

Now, we can choose a rational effective divisor A’ = ¢A’ on X’ such that
the pair (X', DL = Dj, 4+ A') is klt. Since Q' (X’, D.) is then gsp, and K]
is nef, we get, by letting ¢ — 0%, since then K. — Kj:

a. A”.((p" (K" ™) < L7.(p" (K"~ = L' (K"~ < ey

The crucial point here is that the constants a and ¢ are independent on
t,k and €.

The rest of the proof is then just as in the case where K; is nef, letting
k — +00, using the continuity of the volume, and the equality: vol(Kx +
D+ (t+ §).A) =vol(Kx: + D'+ (t + §).A*) = K™ if A* := p1,(A). This
finishes the first proof. O

(13) Recall that the cotangent sheaf has been defined by extension from any suitable
Zariski open subset with codimension two complement.
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Second proof. — Fix t,k as above. We work with the orbifold divisor
Dy =D+ %.Z, where Z is a generic member of the linear system |M.A|,
such that M = N.(t + %), and N, M are sufficiently big integers.

Because Kx + D +t.A is nef, D+ (¢t + %)A is big, and Kx + D, ) can
be written as a klt divisor, the associated canonical algebra R; j associated
to K := K + Dy is finitely generated, after [2]. There thus exists a Zariski
decomposition for Kk, that is: a modification p : X’ — X with X’ smooth,
p*(Dy, U Exc(p)) is of simple normal crossings such that p*(K) = P+ N,
where P is big, without base points, with the same volume Vol(P) = P" =
vol(K), N is effective, and N.P"~1 = 0.

The modification p is a suitable sequence of blow-ups with smooth centers
making the ideal Z C Ox locally generated by the vanishing loci of a set
of generators of the algebra Ry . By [25], we can, moreover, chose this
sequence of blow-ups in such a way that, additionally, the support of Kx,x
is contained in the inverse image of the cosupport of the preceding ideal Z,
where all sections of the generators of R;j vanish. This property implies
that F.P"~1 =0 for each irreducible component F of Exc(p).

Because (X, D) is log-canonical and D is reduced, we have: p*(Kx+ D)+
E =Ky x +D+FE' with EUE' C Exc(p), D the strict transform of D,
and E’ reduced such that D + E' C p*(D). Thus p* induces an injection
OYX, D) — QYX', D), where D' is the reduced part of p*(D).

The injection L — @™ (Q!(X, D)) thus also lifts to:

p(D) = &M@ (X, D+ (V)
such that (X', D + +.p*(V)) is also log-canonical, by the generic choice of
V', which permits to impose that V' does not contain any component of the
cosupport of the ideal Z.

The injection p* : QY(X,D) — QY(X’,D’) shows that K% + t.p*(A)
is pseudo-effective, and so Q'(X', D’ + (t + 4).p*(A) is generically semi-
positive, so that, putting K’ := Kx/ + D' + (t + +).p*(A), we get the first
inequality below:

p*(L)- Pt <eK' -P" ! =cp*(K).P" ' =c.(P+N).P" ! =cP",

the second equality comes from the fact that F.P"~! = 0 for each compo-
nent F' of Exc(p).
We can now conclude as when K is nef, since P = Vol(K). O

From [31] (see [21], which, among many other things, surveys in a detailed
way the problem, the notions involved, and the known special cases) we get:
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COROLLARY 4.6. — Let f : X — B be a projective submersion between
quasi-projective manifolds X, B. Assume that the fibres are (connected)
canonically polarized manifolds. If the variation Var(f) of the family is
maximal (i.e. equal to dim(B)), then B is of log-general type (i.e: K5+ D
is big, for any smooth projective compactification B of B with complement
D := B — B a divisor of simple normal crossings on B).

The two main cases known before were [23] (the three-dimensional case),
and [29] (the case where B is either compact, or admits a non-uniruled
compactification). The solution of [23] rests on the knowledge of the abun-
dance conjecture in dimension 3, while the solution of [29] rests on the main
result of [11]. The surface case is treated by different methods in [22].

Remark 4.7. — A stronger statement, called the ‘isotriviality conjec-
ture’, stated in [6], asserts that a family of canonically polarized man-
ifolds f : X — B as above is isotrivial if B is ‘special’, an algebro-
geometric notion introduced in [8]. Specialness roughly means ‘opposite’ to
(Log)-general type. This stronger statement is actually the exact higher-
dimensional formulation of the original conjecture of Shafarevich (proved by
A. Parshin in [28]), once ‘special’ quasi-projective manifolds are seen as the
higher-dimensional versions of non-hyperbolic quasi-projective curves.The
methods of the present paper might permit to attack this stronger con-
jecture by using the refinement of [31] given in [17], asserting that the
‘Viehweg-Zuo sheaf’ comes from the moduli stack. This conjecture is es-
tablished in [18] in dimensions at most 3.

Note added in proof. — The ‘isotriviality conjecture’ mentioned in the
above remark 4.7 has inbetween been proved by B. Taji in [30] using the
approach suggested there.
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