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INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC
SPACES WITH FIXED-SIGN CURVATURE OPERATOR

by Bruno DUCHESNE (*)

ABSTRACT. — We associate to any Riemannian symmetric space (of finite or
infinite dimension) a L*-algebra, under the assumption that the curvature oper-
ator has a fixed sign. L*-algebras are Lie algebras with a pleasant Hilbert space
structure. The L*-algebra that we construct is a complete local isomorphism invari-
ant and allows us to classify simply-connected Riemannian symmetric spaces with
fixed-sign curvature operator. The case of nonpositive curvature is emphasized.

RESUME. — Nous associons a tout espace riemannien symétrique (de dimension
finie ou non) une L*-algébre dés lors que l'opérateur de courbure est de signe fixe.
Les L*-algebres sont des algébres de Lie avec une structure d’espace de Hilbert
compatible. La L*-algébre que nous construisons est un invariant d’isomorphisme
local et nous permet de classifier les espaces symétriques riemanniens simplement
connexe avec un opérateur de courbure de signe fixe. Le cas de la courbure négative
est mis en avant.

1. Introduction
1.1. Riemannian symmetric spaces

At the very end of the nineteenth century and during the beginning of
the twentieth century, E. Cartan did a famous work of classification. He
began by completing the proof (by W. Killing) of the classification of com-
plex semisimple Lie algebras during his Ph.D. thesis and he continued by
classifying real semisimple Lie algebras. Some years later, he introduced the
so-called Riemannian symmetric spaces (“ Une classe remarquable d’espaces
de Riemann”) and classified them. The classification of symmetric spaces

Keywords: Riemannian symmetric spaces, L*-algebras, infinite dimension.
Math. classification: 53C35.
(*) The author was supported by a starting grant from the Swiss National Foundation.



212 Bruno DUCHESNE

was reminiscent of the classification of real forms of complex semisimple
Lie algebras (see [4]).

Infinite dimensional differential geometry grew up from the twentieth
century (see [12] for an outline of the theory in the sixties and see [23] for a
more recent exposition) and it is not difficult to define when a Riemannian
manifold, that is a manifold modeled on a separable Hilbert space with
a Riemannian metric, is a symmetric space. Let (M, g) be a Riemannian
manifold, a symmetry at a point p is an involutive isometry o,: M —
M such that o,(p) = p and the differential at p is -Id. A Riemannian
symmetric space is a Riemannian manifold such that, at each point, there
exists a symmetry.

An idea to classify these spaces could be to associate a “semisimple" Lie
algebra to them, to classify infinite dimensional semisimple Lie algebras
and then return to symmetric spaces. We do not know a general classifica-
tion of infinite dimensional Lie algebras nor a good notion of semisimple
Lie algebras. Nonetheless, there is a remarkable exception to this lack of
classification. R. Schue introduced complex L*-algebras (Lie algebras with
a compatible structure of Hilbert space, see Section 2) and classified the
separable ones in [30, 31]. Later, independently, V.K. Balachandran [2], P.
de la Harpe [15] and I. Unsain [35] classified separable real L*-algebras.

Each L*-algebra is an orthogonal sum of an abelian ideal and a semisim-
ple ideal. Each separable semisimple L*-algebra is a Hilbertian sum of sim-
ple ones. The simple L*-algebras of infinite dimension belong to a finite
list with three infinite families. They are closure of an increasing union of
simple Lie algebras of finite dimension and classical type.

Unfortunately, the Lie algebra of the isometry group of a Riemannian
symmetric space has no reason to be a L*-algebra. For example, consider the
Riemannian symmetric space P?(c0) ~ GL2 (R)/O?(00), that is the space
of positive invertible operators of some separable real Hilbert space, which
are Hilbert-Schmidt perturbations of the identity. This space is an infinite
dimensional generalization of the symmetric space SL,(R)/SO,(R) (See
[16, II1.2] and [24]). The full orthogonal group O(c0) acts isometrically by
conjugation on P?(00). In particular, the Lie algebra of all bounded skew-
symmetric operators is a subalgebra of the Lie algebra of the isometry
group. It is naturally a Banach Lie algebra but not a L*-algebra.

Remark 1.1. — Michael Klotz proved in [22, Theorem 5.24] that any
connected Banach symmetric space M is an homogeneous space G/K where
G is the group of automorphisms of M and K is a Banach-Lie Group.
This result legitimizes the definition of Riemannian symmetric spaces that
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INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 213

appears in [9]. Moreover, it seems to be known that the isometry group
of a Riemannian space is a Banach-Lie group but we do not know any
reference. In the sequel, we do not use such result and the Lie algebra of
Killing fields will play the role of the Lie algebra of the isometry group.
In finite dimension, the Lie algebra of the isometry group of a Riemannian
symmetric space and the algebra of Killing fields are naturally isomorphic.

In the following theorem, we show that if one looks at a smaller (but
large enough to encode the Riemann tensor) Lie algebra, one can find
a L*-algebra. We refer to Section 3.2 for the definition of the curvature
operator.

THEOREM 1.2. — Let (M, g) be a simply-connected Riemannian sym-
metric space and let p be a point in M. If M has a fixed-sign curvature
operator then there exists a real L*-algebra L with an orthogonal decom-
position of Hilbert spaces

L=tdp
which has the following properties :

(i) the subspace t is a L*-subalgebra of L and p is isometric to the
tangent space T, M,

(ii) the Lie algebra generated by p is dense in L and is isomorphic to a
subalgebra of the Lie algebra of Killing fields on M.

The L*-algebra obtained in Theorem 1.2 is the only one which satisfies
properties (i) and (ii) (see Lemma 3.14). We call it a L*-algebra associ-
ated to (M, g). The universal cover of a Riemannian symmetric space is a
Riemannian symmetric space too (Proposition 3.8). The L*-algebra con-
structed allows us to give a complete description of Riemannian symmetric
spaces with fixed-sign curvature operator up to local isomorphism.

THEOREM 1.3. — Let (M,g) and (M’',g') be Riemannian symmetric
spaces with fixed-sign curvature operator. Let L, L’ be L*-algebras associ-
ated to the universal covers M and M’ as in Theorem 1.2.

If there exists an isomorphism of L*-algebras between L and L' which
intertwines the orthogonal decompositions L = €& p and L' =€ & p’ then
M and M’ are locally isomorphic.

If the curvature operator of a Riemannian manifold is nonpositive (re-
spectively nonnegative) then the sectional curvature is nonpositive (respec-
tively nonnegative) but the converse is false in general (See, e.g., [14, §1.3]).
In finite dimension, a Riemannian symmetric space has nonpositive (re-
spectively nonnegative) curvature operator if and only if it has nonpositive
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214 Bruno DUCHESNE

(respectively nonnegative) sectional curvature. This fact holds because the
Riemann tensor is encoded in the Killing form of the Lie algebra of the
isometry group (See [33, Theorem 6], [14, Section 4] or Equation (3.3)).
The main idea of this paper is to construct an analog of the Killing form
starting from the Riemann tensor. It is natural to ask whether fixed-sign
sectional curvature implies fixed-sign curvature operator, in infinite dimen-
sion too. More generally, we have the following question.

QUESTION 1.4. — Is it true that for any Riemannian symmetric space,
there is an orthogonal decomposition of the tangent space p = p_ @ pg B
py such that p_,po and p; are commuting Lie triple systems and the
restrictions of the curvature operator is nonnegative on p_, vanishes on pg
and is nonpositive on py 7

A positive answer to this question would imply a complete classifica-
tion of simply-connected separable Riemannian symmetric spaces — that
is without any assumption on the curvature operator. Actually, if a Rie-
mannian symmetric space has a dense increasing sequence of totally geo-
desic subspaces of finite dimension then Proposition 3.16 shows that the
answer to the above question is positive. Moreover, subsequent theorems
will show that such a decomposition of the tangent space will imply the
existence of a dense increasing sequence of totally geodesic subspaces of
finite dimension.

To decompose Riemannian symmetric spaces in irreducible ones, we use
Hilbertian products.

DEFINITION 1.5. — Let (X;,d;) be a countable family of metric spaces
with base points x; € X;. The product Hf X; is defined to be the set of
elements y = (y;) of the Cartesian product of X;’s such that Y d(x;,y;)? <
oo and the distance between y = (y;) and z = (z;) is defined by d(y,z)? =
S d(yi, z;)%. This metric space is called the Hilbertian product of the spaces
Xi.

This definition depends on the choice of base points but if each X; has
a transitive group of isometries then the product HZQ X; does not depend
on this choice (up to isometry). Moreover, this product space is complete
if and only if each (X;,d;) is so.

Remark 1.6. — In general, there is no notion (in the category of Rie-
mannian manifolds) of Hilbertian product of Riemannian manifolds. The
sectional curvature at each point has to be bounded (the Riemann 4-tensor
at each point is continuous [23, Proposition IX.1.1] and thus the sectional
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INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 215

curvature is bounded). For example, the Hilbertian product of hyperbolic
plans of curvature —n cannot be a Riemannian manifold such that each
hyperbolic space embeds as a totally geodesic submanifold.

Technics that we used in nonpositive curvature and nonnegative curva-
ture are slightly different. In nonpositive curvature the Cartan-Hadamard
theorem simplifies the classification and we give this simpler proof even if
the technics used in nonnegative curvature are more general.

1.2. Nonpositive curvature

DEFINITION 1.7. — A Riemannian manifold (M,g) has no Euclidean
local de Rham factor if its universal cover cannot be decomposed as a
product H x N where ‘H is an Hilbert space of positive dimension and N
is another Riemannian manifold.

THEOREM 1.8. — Let (M,g) be a separable Riemannian symmetric
space with nonpositive curvature operator and no Euclidean local de Rham
factor. Then (M, g) is isometric to a Hilbertian product

M ~ H2MZ

where each M; is an irreducible finite dimensional Riemannian symmetric
space of noncompact type or is homothetic to an element of the following
list :

GLZ (R)/O*(c0), U* ?*(00)/Sp*(c0), U?(p,00)/U?(p) x U?(c0),

0?(p,00)/O*(p) x O*(c0)  O* *(00)/U?(c0), SPOO(R)/U o),

Sp*(p,00)/Sp*(p) x Sp®(c0), GLZ(C)/U?(0), 0O2(C)/0?(0),
2

Sp%(C)/Sp*(c0).
where p € NU {co}.

The elements of the previous list are hence the irreducible infinite dimen-
sional Riemannian symmetric spaces with nonpositive curvature operator.
Their construction is described in Section 4.2.

Remark 1.9. — If M is a simply-connected symmetric space with non-
positive curvature operator then M is a product H x M’ where H is a
Hilbert space and M’ is a Riemannian symmetric space with nonpositive
curvature operator and no Euclidean local de Rham factor. The simply-
connectedness allows us to avoid Riemannian symmetric spaces with van-
ishing sectional curvature like flat torus.

TOME 65 (2015), FASCICULE 1



216 Bruno DUCHESNE

The rank of a metric space is the supremum of dimensions of Euclidean
spaces isometrically embedded. The paper [11] was focused on some irre-
ducible infinite dimensional Riemannian symmetric spaces of nonpositive
sectional curvature with finite rank. For brevity, the following notation was
used in [11] : X,,(K) (p € N) denotes the symmetric space O%(p, 00)/O?(p) x
0?(00), U?(p, 00) /U (p) xU?(00) or Sp*(p, 00) /Sp? (p) x Sp*(00) depending
on wether K is the field of real, complex or quaternionic numbers. Actually,
these spaces are the only irreducible ones to have infinite dimension and
finite rank.

COROLLARY 1.10. — Let (M, g) be a separable Riemannian symmetric
space with nonpositive curvature operator and no Euclidean local de Rham
factor. The rank of M is equal to its telescopic dimension. Moreover, if it
is finite then

k
i=1

where M; is an irreducible finite dimensional Riemannian symmetric space
of noncompact type or is homothetic to some X, (K).

The telescopic dimension of a CAT(0) space is a notion of dimension at
large scale introduced in [7].

We conclude this section with an example of a space which is symmetric
and has nonpositive curvature but which is not a Riemannian symmetric
space. This is a purely infinite dimensional phenomenon. Let (X, d) be a
metric space. We say that X is a CAT(0) symmetric space if it is a com-
plete CAT(0) space such that for any point € X, there exists an involutive
isometry o, with unique fixed point . Observe that this condition implies
that z is the midpoint of y and o, (y) for any y € X. In finite dimension,
[8, Theorem 1.1] implies that any proper CAT(0) symmetric space is the
product of a Euclidean space and a Riemannian symmetric space of non-
compact type (and finite dimension). This theorem uses the solution to
Hilbert’s fifth problem and local compactness is crucial.

Let H be the hyperbolic plane with sectional curvature -1 and let o be
a point in H. We set L2([0,1],H) to be the space of measurable maps
f:10,1] — H such that [d(f(t),0)?dt < co. This space is a CAT(0) sym-
metric space but not a Riemannian manifold, see Section 4.3.
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1.3. Nonnegative curvature

In the case of nonnegative curvature, some more technicalities appear.
The first one is the lack of automatic simply-connectedness and the second
one is the fact that the exponential map is not necessarily a diffeomorphism.
Under the assumption of simply-connectedness, we obtain the following
theorem.

THEOREM 1.11. — Let (M,g) be a simply-connected separable Rie-
mannian symmetric space with nonnegative curvature operator then (M, g)
is isometric to a Hilbertian product

M3 x [ M
7

where ‘H is a Hilbert space and each M; is a simply-connected irreducible
Riemannian symmetric space. Each M; can be a finite dimensional Rie-
mannian symmetric space of compact type or is homothetic to an element
of the following list.

—_~— —_~—

U?(00)/80%(c0),  U2(00)/Sp*(00),  U*(p +00)/U*(p) x U*(00),

SO*(p +00)/SO?(p) x SO*(c0),  SO*(00)/U?(00),  Sp*(00)/U?(0),

e~ e~

Sp*(p + 00)/Sp*(p) x Sp*(c0), U?(c0), SO?(c0), Sp*(o0)

where p € NU {co}.

1.4. Comments

W. Kaup obtained a classification of Hermitian symmetric spaces in [18,
19]. His work uses the so-called Jordan-Hilbert algebras (Jordan algebras
with a compatible structure of Hilbert space and an adjoint map X — X*).
His technics seem difficult to adapt to the real case. The paper [34] shows a
description in terms of L*-algebras of the irreducible Hermitian symmetric
spaces. The approach to symmetric spaces of W. Kaup is closer to the one
of O. Loos than the one of E. Cartan. Generalizations of Loos’ approach
to symmetric spaces can be found in [3] and in [22, 27, 36] for Banach
symmetric spaces.
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2. L*-algebras
2.1. Definitions

DEFINITION 2.1. — A L*-algebra is a Lie algebra with a structure of
(complex or real) Hilbert space such that there is a map x — x* satisfying,
for all x,y, z, the equation

(2.1) ([, 9, 2) = (v, [2", 2]).

An ideal of a L*-algebra L is an ideal of the underlying Lie algebra which
is moreover closed and -invariant. Observe that an ideal of a L*-algebra
is a L*-algebra on its own. A L*-algebra L is semisimple if [L,L] = L
and it is simple if it has no nontrivial ideal. A L*-algebra is compact if it
is semisimple and z* = —xz for all x. A L*-algebra is noncompact if it is
semisimple and has no nontrivial compact ideal. An isomorphism between
L*-algebras is an isomorphism of Lie algebras that is also an isometry and

intertwines the involutions.

Example 2.2. — Let H be a separable Hilbert space over K = R, C or the
field of quaternions. The Lie algebra of Hilbert-Schmidt operators endowed
with the involution given by the adjoint and the Hilbert structure coming
from the Hilbert-Schmidt scalar product is a L*-algebra, which we denote
by gl2 (K). A choice of a Hilbert base for H provides embeddings of the
algebras of operators gl,,(K) on K", into gl>_ (K) such that their increasing
union is dense. The other examples of separable simple L*-algebras are
constructed in a similar way.

Example 2.3. — Let g be a semisimple real Lie algebra of finite di-
mension. Let g = £ @ p be a Cartan decomposition of g. The Killing form
B of g is negative definite on £ and positive definite on p. Moreover for
any X,Y,Z, we have B([X,Y],Z) = —B(Y,[X, Z]). Hence, if we define
(K+P)*=—K+P (with K € tand P € p) and (X,Y) = B(X,Y™) then
(g,(, )) is a L*-algebra. Actually, the map X — X* is just the opposite of
the Cartan involution.
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Any separable L*-algebra can be written as the direct sum of an Abelian
ideal and a Hilbertian sum (as described below) of simple ideals. More-
over, simple L*-algebras have been classified in the complex and real cases
(see [30, 31, 2, 15, 35]). The simple separable infinite dimensional real L*-
algebras which are compact and noncompact are recalled respectively in
Table 2.1 and 2.2.

Type | Algebra
A | u?(0)
BD | 0?(c0)
C | sp*(o0)

Table 2.1. List of simple compact L*-algebras

The last three algebras in Table 2.2 are moreover complex simple L*-
algebras. The notations used here are maybe not standard but we hope
the correspondence with notations used in [15] or [35] is transparent. They
are chosen to be brief and close to the ones used in finite dimension [17,
Tables IV and V, X.6]. We refer to the previous references for a description
of these algebras.

Type | Algebra

AT | gl (R)

ATl | 2(0)

ATl | u?(p,o0), p€ N*U{oo}
BDI | 0%(p,00), p € N*U{cc}
BD III | o* 2(c0)

CI | sp(R)

CII | sp?(p,o0), p € N*U{co}
A el (C)

BD | 02 (C)
C | sp2(C)

Table 2.2. List of simple noncompact L*-algebras

TOME 65 (2015), FASCICULE 1



220 Bruno DUCHESNE

Let {H;} be a countable family of separable (real, complex or quater-
nionic) Hilbert spaces. The Hilbertian sum of this family, which we will
denote by ®?H;, is the set of sequences v = (v;) such that Y, ||v;|? is
finite (see [5, V.2.1]). Endowed with the inner product (u,v) =, (u;,vs),
the space @2H; is also a separable Hilbert space.

PROPOSITION 2.4. — Let (L;) be a countable family of semisimple L*-
algebras such that there exists C' > 0 with ||ad(z)|| < C||z|| for all i and all
x € L;. Forz = (x;),y = (y;) € ®*Ly, set [x,y] = ([z;,y:]) and x* = (x7).

Endowed with this structure, the Hilbertian sum @®%L; is a L*-algebra.

Proof. — Let (x;) € ®%L; and y = (y;) € ®2L; then [z,y] = > [z, yi]
is an element of ©*L; since [|[z, y]||* < 30 C*[|as|[?|lysl|* < C2||[[? ||y
This also shows that ad(z) is a linear bounded operator and the Lie bracket
is also continuous. Continuity arguments show that @2L; is a Lie algebra
and for all x € ®&2L;, ad(z)* =ad(z*). Since L; is semisimple, the equation
(2.1) implies that (u;,v}) = (v;,u}) for allu; € L; and v; € [L;, L;] (see [30,
Preliminaries]). Since [L;, L;] = L;, we have ||u}|| = ||u;|| for any u; € L;.
Finally, (z}) € &%L;. O

Remark 2.5. — 1In the preliminaries of [30], R. Schue wrote : “The
Hilbert space direct sum of L*-algebras defines an L*-algebra in the obvi-
ous way". Actually, the condition on the uniform bound of operators ad(z)
is necessary.

2.2. Orthogonal symmetric L*-algebras

Orthogonal symmetric Lie algebras of finite dimension play an important
role in the theory of finite dimensional Riemannian symmetric spaces. We
give the following definition in the context of semisimple L*-algebras.

DEFINITION 2.6. — An orthogonal symmetric L*-algebra is a pair (L, s)
where
(i) L is a real L*-algebra,
(ii) s is an involutive isometric automorphism of the L*-algebra L,
(iii) For all X € L such that s(X) = X, X* = -X.
A symmetric orthogonal L*-algebra (L, s), is called irreducible if it has no
s-invariant ideal.

In finite dimension, there is a duality between orthogonal symmetric
Lie algebras of compact type and orthogonal symmetric Lie algebras of
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noncompact type (see, e.g., [17, Section V.2]). This duality extends to the
context of L*-algebras.

Let (L,s) be a symmetric orthogonal L*-algebra and let L be its com-
plexification as L*-algebra [35, §1.1]. In particular, the extension of the
map X — X* is conjugate linear. The automorphism s extends linearly to
a L*-automorphism of L. Let L = £ @ p be the decomposition of L into +1
and —1 eigenspaces of s.

DEFINITION 2.7. — The real L*-algebra L' = ¢ @ ip endowed with the
restriction s’ of s on L’ is called the dual of (L, s).

LEMMA 2.8. — Let (L, s) be a symmetric orthogonal L*-algebra.

(1) The pair (L', s") is an orthogonal symmetric L*-algebra.

(2) The pair ((L')', (s")') is isomorphic to (L, s) as symmetric orthogo-
nal L*-algebra.

(3) Assume that L is a simple L*-algebra. Then L is compact if and
only if L' is noncompact.

Proof. — The vector space L' is a real L*-subalgebra of L which in-
variant under the extension of s to L. Thus s is an involutive isometric
automorphism of L' and L' = ¢@ip is the decomposition of L’ into +1 and
—1 eigenspaces of §'. In particular, for any X € ¢, X* = —X.

The isomorphism between (L')" and L comes from the identification of
the decompositions L = (E@p) @ i(t @ p) and L' = (D ip) @ i(t @ ip).

If L is simple and compact then for any X € p, (iX)* = —iX* =
1X and thus L’ is noncompact. Conversely, assume that L is simple and
noncompact. Let L = ¥ @ p’ be the decomposition of L into -1 and +1
eigenspaces of x and let L = ¢ @ p be its decomposition into +1 and -1
eigenspaces of s. By assumption, we know that ¢ C ¢ and thus p’ C p
Observe that [p,p] C € and that [p/,p’] = . Thus, ¥ = [p’,p’] C [p,p] C

(u

This shows that X« = —s(X) for any X € L. Now, for X in p, (iX)* =
—iX* =is(X) = —iX and L’ is compact. O
PROPOSITION 2.9. — Let (L, s) be a separable compact orthogonal sym-

metric L*-algebra. Let L = ®°L; be the decomposition of L into simple
ideals then s permutes the L;’s. The algebra L is the Hilbertian sum of
irreducible orthogonal symmetric L*-algebras Ij,. Each I} is equal to some
s-invariant simple ideal or I, = L; & L; with s(L;) = L; for some L; and
Lj.

If I, = Ly @ L; with s(L;) = L; then L; is isomorphic to L; which is
isomorphic to o ( ), u?(c0) or sp ( ). The decomposition I, = €& p into
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222 Bruno DUCHESNE

Type | L*-algebra | ¢
AT u?(00) 02(00)
All u?(c0) sp2(00)

AIL | vw?(p+o0) | u¥(
BDI | o%(p+o00) | o%(

BDIII 02(c0) u?(c0)

Cl | sp2(o0) | uX(
CIT | sp*( 2

Table 2.3. List of compact simple orthogonal symmetric L*-algebras.

+1 and —1 eigenspaces of s is given by ¢ = {X + s(X); X € L;} and
p={X-s(X); X €L}

Assume L; is s-invariant. If we decompose L; = ¢ @ p into +1 and —1
eigenspaces of s then L; is isomorphic to one orthogonal symmetric L*-
algebra of Table 2.3.

Remark 2.10. — The description of simple compact orthogonal sym-
metric L*-algebras in Table 2.3 has the advantage to be brief but it is not
explicit. The subalgebra € is given up to isomorphism but the embedding
in L; and the involution are not given. An explicit description can be ob-
tained in the proof of Proposition 2.9, that is obtained as the dual of some
noncompact simple L*-algebra.

Proof of Proposition 2.9. — Since s is L*-automorphism, the image of a
simple ideal is also a simple ideal. The decomposition L = ©%L; is unique
up to permutation. Therefore, for any ¢ there is j such that s(L;) = L.

Now it suffices to understand involutive L*-automorphisms of compact
simple L*-algebras. Let Ly be a compact simple L*-algebra with an invo-
lutive L*-automorphism s. We decompose Ly = ¥ @ p into =1 eigenspaces
of s. Let L be the complexification of Lg. Since L is compact, Lo has no
complex structure and thus ([35, Theorem 1.3.1]) L is simple. Let L be the
real form of L associated to s (extended to L) (see loc. cit). Since Ly is
compact, we know that L = ¢ @ ip, that is the dual of Ly. The L*-algebra
L is a noncompact simple L*-algebra and thus is one of those described in
section 2.1 or more precisely in [35, Section 5]. Thanks to Lemma 2.8, Ly
is the dual of L with its unique possible structure of orthogonal symmetric
L*-algebra. ]

ANNALES DE L’INSTITUT FOURIER



INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 223

3. Construction of a L*-algebra
3.1. Riemannian symmetric spaces

A Riemannian manifold is a pair (M, g) such that M is a connected
smooth manifold modeled on a real Hilbert space and g is a smooth Rie-
mannian metric on M. Our standard reference for these manifolds is [23]
and in particular, we will adopt the same convention for the sign of the
Riemann 4-tensor, which is also the sign used in [17] for example, but is
opposite to the one used in [21]. With this convention, for two orthogo-
nal unitary vectors u,v of a tangent space T, M, the sectional curvature is
Sec(u,v) = —R(u,v,u,v) where R is the Riemann 4-tensor. This conven-
tion will also explain the minus sign which appears in the definition of the
curvature operator.

DEFINITION 3.1. — A Riemannian symmetric space is a Riemannian
manifold such that at each point p € M, there is an isometry, o, which
leaves p fixed and satisfies d,o, = —Id.

Remark 3.2. — The definition of symmetric spaces given in [23, XIIL,§5]
is not the same as ours since Lang assumes that the exponential map is
everywhere surjective. Neeb observed [27, Remark 3.8] that this additional
property is unnecessary to use results of [23, XIII], on which we rely.

We collect some remarks about metric completeness and geodesic com-
pleteness. In finite dimension, these two notions of completeness are equiv-
alent thanks to Hopf-Rinow theorem. Moreover, in finite dimension, any
of these two conditions implies the existence of a path of minimal length
between two points. In general, a Riemannian manifold which is metrically
complete is also geodesically complete but the converse is false (see[1]). Fur-
thermore, J.H. McAlpin [25] constructed a metrically complete Riemannian
manifold such that there are two points which are not joined by a path of
minimal length (see [23, Remark p.226]).

LEMMA 3.3. — The isometry group of a Riemannian symmetric space
M acts transitively on M.

Proof. — Let x,y € M. There are points g = z,21,...,T, = y such
that z;_; and x; are joined by a geodesic segment. Let m; be the midpoint
of that segment. Now the isometry o,,, o--- 00y, sends x to y. O

In the case of a Riemannian symmetric space, metric completeness is
a consequence of homogeneity and the existence of a closed ball that is
complete and geodesic completeness is proved in [23, Proposition XII1.5.2].
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If the sectional curvature is nonpositive then metric completeness is
equivalent to geodesic completeness [23, Corollary 1X.3.9]. This a conse-
quence of a version of Cartan-Hadamard theorem due to J.H. McAlpin
[25] (see also [27] for Banach manifolds). Since any Riemannian symmetric
space is geodesically complete, this version of Cartan-Hadamard theorem
[23, Theorem IX.3.8] implies also that the exponential map at any point is
surjective.

In finite dimension, the condition of existence of a local symmetry is
equivalent to the parallelism of the Riemann tensor. The same holds in
infinite dimension.

DEFINITION 3.4. — A Riemannian manifold M is said to be locally

symmetric if for any p € M, there exists a ball B around p and an isometry
op of this ball such that dyo, = —Id.

PRrROPOSITION 3.5. — A Riemannian manifold M is locally symmetric
if and only if VR = 0.

Proof. — The proof of this fact in finite dimension (see e.g. [17, IV.1])
works as well in infinite dimension. The fact that a Riemannian locally
symmetric space has parallel Riemann tensor is [23, Proposition XIII.6.2)
and the converse relies on Cartan’s theorem. (|

Let us introduce some notations before stating Cartan’s theorem. Let
(M, g) and (M’, ¢') be Riemannian manifolds modelled on the same Hilbert
space. If ¢ is a geodesic curve c: [a,b] — M we denote by ¢(t) the tangent
vector at ¢(t) and P(fyc the parallel transport along c. Parallelism of the
Riemann tensor can be expressed with the following relation [23, XIII, §6)

(31) Ps’c o Ré(a) = Rc'(b) © P(i),c'

Let p e M, p’ € M’ and r > 0 be such that B(p,r) and B(p/,r) are normal
balls. Let 4,: T,M — T,y M’ be an isometry. We define & = exp,, oij, o
expp_lz B(p,r) = B(p',r). Now, let ¢ be a radial geodesic with unit speed
starting at p and let ¢ be its image by ®. For 0 < t < r we set i; =
P&c, 01p O ch.

THEOREM 3.6 (Cartan’s theorem [21, Theorem 1.12.8]). — Assume that
for all radial geodesics c(t) and their images ¢/ (t) = ® o ¢(t) we have
it o Ré(t) = Rlcl(t) o it.
Then ® is an isometry.

PROPOSITION 3.7. — Let M, M’ be Riemannian symmetric spaces. As-
sume M is simply-connected. Any local isometry from an open set of M
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to M’ can be uniquely extended to an isometric covering map from M to
M'. If moreover M’ is simply-connected as well then this covering map is
actually an isometry.

Proof. — Recall that a ball B(p, ) in a Riemaniann manifold M is nor-
mal if the exponential map at p realizes a diffeomorphism from the ball
of radius r in T, M onto B(p,r). Since M, M’ are symmetric and thus ho-
mogeneous (Lemma 3.3), there is rog > 0 such that for any z € M and
2’ € M', B(x,r9) and B(z',79) are normal balls. Let x € M, ' € M’ and
r > 0 such that B(z,r) and B(z',r) are isometric normal balls. Let us call
¢ this isometry. We aim to extend ¢ to M. Let y € M and ~: [0,1] - M
be a continuous path such that 4(0) = z and (1) = y. Choose a increasing
sequence tg = 0,t1,...,t, = 1 such that UB(z;,r/2) contains ([0, 1]) and
d(x;, wi41) < r where z; = y(t;). We show that ¢ is extendable along . See
[17, 1.§11] for details about extendable isometries in finite dimension which
works in infinite dimension as well. Let us denote by ¢; the restriction of ¢
on B(z,r/2). Assume ¢; has been defined on B(z;,r/2) being an immedi-
ate continuation of ¢;_1, it has at most one isometric extension on B(x;, ),
which is given by expg,,) odz, ¢ © exp;il. The fact that this extension is an
isometry follows from Theorem 3.6 and the following computation based
on Relation (3.1).

; _ pt : 0

it 0 Rery = By o 0ip 0 Pyl oo Rey)
_ pt : 0
- PO,c’ O1p© Ré(()) ° Pt,c
= POt,c’ © Ré'(o) © il) ° Pt?c

= Ré/(t) oy .

In particular, this extension of ¢; is well defined on a neighborhood of
z;+1 and the previous formula mutatis mutandis allows us to define an
immediate continuation ¢;41 of ¢; on B(x;t1,7/2).

A small continuous deformation of v remains in UB(z;,7/2) and thus
the continuation of ¢ along such a small deformation gives same value to
y with same differential at y. This is the so-called monodromy theorem for
isometries [29]. Now, since M is simply-connected, one can extend ¢ to
an isometric map M — M’. Observe that for any ¢y’ € ¢(M) and y € M
such that ¢(y) = ¢y’ then B(y,r) is isometricaly map onto B(y',r) by ¢
by construction. In particular, B(y’,r) C ¢(M). This shows that ¢(M) is
clopen and since M’ is connected, ¢(M) = M'. The last statement of the
proposition follows from the universal property of the universal cover. O
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PrOPOSITION 3.8. — The universal cover of a Riemannian symmetric
space is a Riemannian symmetric space.

Proof. — Let M be a Riemannian symmetric space and let M be its
universal cover. We endow M with the Riemannian structure coming from
M. Since M is homogeneous under this action of its isometry group, there
exists £ > 0 such that B(p, ) is normal neighborhood for any p € M and
for any p € M, the projection 7: M — M induces an isometry from B(p, ¢)
to B(m(p),e) for any p € M.

Choose p € M there exists an isometry og of B(p,e) fixing p such that
dpog = —id. We want to extent og to M. Since M is simply-connected, it
suffices to prove that oy can extended along any continuous path starting
at p, v: [0,1] — M. By compactness of ([0, 1]), we can choose points pg =
P, P15 ---»Pn on ¥([0,1]) such that v([0,1]) C U;B(p;, ) and d(ps, piy1) <
g/2 for any 0 < ¢ < n. Assume there is an isometric extension o;: 3‘:0
B(pj,¢€) of o then the restriction o; to B(p;+1,¢/2) is an isometry which
can be extended to B(p;+1,¢) thanks to Theorem 3.6. This isometry coin-
cides with o; on U?_(B(p;j,€) N B(pit1,€) and thus there is an extension

0i+1 of op on U;i%)B(pj,a).
The monodromy theorem for isometries and simply-connectedness show
that there is a well-defined isometry o: M — M fixing p and satisfying

dpo = —id. O

3.2. Reminiscence of a Killing form

For the remainder of this section (M, g) will be a simply-connected Rie-
mannian symmetric space. A Killing field on M is a smooth vector field
such that its flow is realized by isometries (metric Killing vector field in
the terms of [23]). Let g be the Lie algebra of Killing fields of M and let p
be a point in M. The Lie algebra g has a direct decomposition g = q @ p
where p identifies with T, M under the map X — X(p) and q is the kernel
of this map (see [23, Theorem XIII.5.8]). Moreover, we have the following
relations (see [23, Theorem XIII.4.4])
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The Riemann 4-tensor has a particular expression (see Theorem XIII.4.6
in [23]) in this case : for any X,Y, Z,T € T,M ~ p,

(3.2) R(X,Y,Z,T) :g([Z, [XvYHvT)'

Remark 3.9. — In the particular case of a finite dimensional irreducible
symmetric space, the metric on the tangent space is a multiple of the Killing
form B of the group of isometries and thus

(3.3) R(X.,Y,Z,T) = AB([X,Y],[Z,T]), A € R*.

In finite or infinite dimension, the symmetries of R allows us to define
a symmetric bilinear form on the alternating algebraic tensor product AZp
by
(XANY,ZAT)=R(X,Y,ZT).
The space A% p has also a structure of preHilbert space defined by

9(X,2) g(X,T)

XAY,ZAT), = det
< Ja o(Y.Z) g(v.T)

With these notations, the sectional curvature of two vectors X,Y € T, M
is

(XAY,XAY)

(XANY,XANY),

The vector space AZp can be naturally identified with the space of finite
rank and skew-symmetric operators of p. The tensor XA\Y = XY -Y®X
is identified with the operator Z — (X, Z)Y — (Y, Z) X . This identification
is actually an isometry when the space of finite rank operators is seen as a
subspace of Hilbert-Schmidt operators with the Hilbert-Schmidt norm (up
to a factor \/i) For a bounded operator A and a finite rank operator B on

Sec(X,Y) = —

p, we define

(A, B), = trace(*AB).
For example, if A is a bounded operator and X,Y € p then (A, X AY), =
g(AX,)Y) — g(X, AY).

In finite dimension (see, e.g., [28, Section 2.2] or [14, §4]), , ), is simply
the Hilbert-Schmidt scalar product on L(p) (where L(p) is the space of
linear bounded operators on p) and thus there is a symmetric operator C
of A?p such that

(XANY,ZANT)=—(C(XAY),ZNT),

for X,Y, Z, T € p. This operator is called the curvature operator of M. We
generalize this construction in infinite dimension.
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DEFINITION 3.10. — The curvature operator of M is the linear operator
C: A?p —L(p) such that (X NY,ZAT)=—(C(XNY),ZAT),.

Actually, C(X AY) is skew-symmetric and thanks to equation (3.2), we
know that C(X AY)Z = 1/2[Z, [X,Y]].

We say that the curvature operator is nonpositive (respectively nonneg-
ative) if for any U € A%p, (C(U),U), < 0 (respectively (C(U),U), = 0).
Observe that C' is nonpositive (respectively nonnegative) if for any families
(Xi)i=1...n, (Yi)i=1..n,

> R(X:,Y:, X;,Y;) >0
i,j=1

(respectively >, . R(X;,Y;, X;,Y;) <0).

Now we assume that (M, g) is a Riemannian symmetric space of fixed-
sign curvature operator. For brevity, we will write M is NPCO (resp.
NNCO) if M has nonpositive curvature operator (resp. nonnegative cur-

vature operator). We want to endow [p, p] with a structure of preHilbert
space. For U = >, [X;,Vi] and V' = }.[Z;, Tj|, we define

UV = -3,9(U, Z,],T;) if M is NPCO
X, 90,250,y if M is NNCO.

For example, if M is NPCO
(U, V)= R(X:,Y;, Z;,Tj) = > (Xi NYi, Z; AT)).
53 (2%
LEMMA 3.11. — The bilinear form { , ) is a scalar product on [p, p] ®p
such that p and [p,p] are orthogonal and its restriction to p is g.

Proof. — The symmetries of the Riemann tensor imply that ( , ) is
a symmetric bilinear form and the hypothesis on the curvature operator
implies this form is nonnegative in both cases. The relation R(X,Y, Z,T) =
R(Z,T,X,Y) for X,Y,Z,T € p implies for any U € [p,p] that

if M is NPCO and
(3.5) 9([X,ULY) = —(U,[X,Y])

if M is NNCO. Moreover, the Cauchy-Schwarz inequality implies that if
(U,U) = 0 then for any X,Y € p, g([U, X],Y) = £(U, [X,Y]) = 0 and thus
the Killing field U is trivial. O
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We denote by ¢ the completion of [p, p] with respect to (, ), we extend
(, ) on t@p and we denote by || || the associated norm. Thus, (¢®p, (, ))
is a separable Hilbert space.

Proof of Theorem 1.2. — We show that the Lie algebra structure on
[p,p] @ p extends to a L*-algebra structure on € & p. Since the Riemann
4-tensor is a bounded 4-linear form at each point, there exists a constant
k such that R(X,Y,Z,T) < || X|[|[Y||IZ]||||T]] for any X,Y,Z,T € p.
Thus ||[X,Y]|| < VEXI|IY]]. U € ¢ and X,Y € p then (X, [U,Y])| =
KU, [X,Y])| < ||U||-1|[X,Y]||- The Lie bracket extends continuously to €x p
and any U € ¢ defines a bounded skew-symmetric operator ad(U): X
U, X].

Moreover, Jacobi’s identity for U € [p,p] and X,Y € p,

[Ua [Xa YH - [[U’ X]aY} + [Xa [Uv YH,

shows that [p, p] is a subalgebra of the algebra of Killing fields. Observe that
for U € ¢,t € R, exp(tad(U)) is an isometry of p which preserves R. Thus,
if ®; is defined as exp, oexp(tad(U)) o exp, ' on a ball around p where
exp,, is a diffeomorphism, then Theorem 3.6 shows that ®; is an isometry
which can be extended in an isometry (also denoted ®;) of M thanks to
Proposition 3.7. Thus, t — ®; is a smooth 1-parameter group of isometries
fixing p and the Killing field Uy corresponding to this 1-parameter group
satisfies [Up, X| = [U, X] for any X € p and we can identify U with Up. In
particular, € identifies with a subalgebra of q.

We now define the involution. For U € ¢, we set U* = —U and for X € p,
we set X* = X if the curvature operator is nonpositive and X* = —X if
the curvature operator is nonnegative. It remains to show that

(3.6) (X.Y],2) = (V,[x", 2)

for any XY, Z € ¢®p. Thanks to linearity and relations [¢, €] C &, [p,p] C ¢,
[¢,p] C p and €Llp, it suffices to show Equation (3.6) in the case X € ¢,
Y,Z € p and in the case X,Y,Z € ¢. Suppose that X € £, Y, Z € p then
using Equations (3.4) and (3.5) we have

<[X5YLZ> = i<X7 [ZvYD = :F<X7 [Y’Z]> = :F<[Xv Z]7Y> = <Y7 [X*vZD'

For the case X, Y, Z € £, thanks to continuity and linearity, we assume that
X = [X1,X5] for some X1, X5 € p. We treate only the case where M is
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NPCO, the other case is similar.

((X,Y], Z) = ([[X1, X2], Y], Z)
= —([[Y’, Xu], Xo] + [X1, [Y, X2]], Z)
—([Y, X1], [Z, X)) — ([Y, Xa], [X31, Z])
—(Y,[[Z, X5], Xa] + [ X1, Z], X))
= (Y, [Z,[X1, Xo]])
(Y, [X, Z2]) = (Y, [X", Z]).

O

DEFINITION 3.12. — Let (M,g) be a simply-connected Riemannian sym-
metric space with fixed-sign curvature operator and let L = ¢ @ p be a
L*-algebra associated to M as in Theorem 1.2. We call merely L the L*-
algebra associated to M. The Cartan involution of L associated to this
decomposition is the map 6: L — L defined by (U + X) = U — X for
Uectand X €p.

LEMMA 3.13. — The pair (L, 6) is an orthogonal symmetric L*-algebra.

Proof. — It is clear from the definition of 6 that it is an involutive iso-
metric map and that points (i) and (iii) of Definition 2.6 are satisfied.
Relations [p,p] C ¢, [¢,p] C p and [, €] C € show that § is an automorphism
of the Lie algebra L. ]

PrOPOSITION 3.14. — Let (M, g) be a simply-connected Riemannian
symmetric space and let L, L' be L*-algebras with orthogonal decomposi-
tions L=¢®p and L' =¥ @ p’ satisfying (i) and (ii) of Theorem 1.2 then
L and L’ are isomorphic.

Proof. — First, p and p’ are isometric as Hilbert spaces and they generate
isomorphic Lie algebras. Now, it suffices to observe that this isomorphism is
also an isometry since the inner products are determined by their respective
restrictions on p and p’. O

We state a little bit more precise theorem than Theorem 1.3.

THEOREM 3.15. — Let (M,g) and (M’,g') be simply connected Rie-
mannian symmetric spaces with fixed-sign curvature operator. Let p € M
and p' € M'and let L, L’ be the two L*-algebras with orthogonal decom-
positions L =¢®p and L' = ¥ @ p’ associated to M and M’ with respect
tope M and p’ € M'.
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Assume there exists an isomorphism of L*-algebras between L and L'
which intertwines the previous orthogonal decompositions. Then M and
M’ are isometric.

The isometry will be provided by Theorem 3.6. For any Riemannian
manifold N with Riemannian 4-tensor R, a point ¢ € N and X € TyN, we
denote by Rx: TyN — T,N the symmetric operator such that Rx(Y) =
R(X,Y)X for any Y € T,N. In the symetric case, Rx(Y) = [X, [X,Y]].

Proof of Theorem 3.15. — Choose r > 0 such that B(p,r) and B(p',r)
are normal balls. Let ¢ be an isomorphism between L and L’ such that
o(t) =¥ and ¢(p) = p’. We define i,: T, M — T,y M’ to be the restriction
of ¢ to p identified with T,M. The map i, is a linear isometry between
Hilbert spaces.

First, since ¢ is a Lie algebra isomorphism and an isometry

R(p(X),(Y),0(Z), o(T)=([¢(2), [p(X), o)}, o(T)) =R(X,Y, Z,T)
for any X,Y,Z,T € T,M. Parallelism of the Riemann tensor (Equation
(3.1)) implies that for any radial geodesic c: [0,r] = M with ¢(0) = p,
iy © Resy = Rergyy 04y (see proof of Proposition 3.7 for the computation)
and the hypotheses of Cartan’s theorem are now satisfied. This shows that
B(p,r) and B(p/,r) are isometric and thanks to Proposition 3.7, M and
M’ are isometric. O

The following proposition gives a natural condition which implies a de-
composition as asked in Question 1.4.

PRrROPOSITION 3.16. — Let M be a Riemannian symmetric space. If
there exists a dense increasing union of totally geodesic subspaces of finite
dimension containing a point p € M, then there is an orthogonal decom-
position

T,M =p_ ©poDpy
such that

e the subspaces p_, po and py are commuting Lie triple systems of
the Lie algebra of Killing fields,

e the restrictions of the curvature operator are nonnegative on p_,
trivial on po and nonpositive on p .

Proof. — Let (M,,) be an increasing sequence of finite dimensional to-
tally geodesic subspaces of M such that their union is dense in M. Choose
p € M; and let RM» be the Riemannian tensor of M, at p. Since M,
is totally geodesic in M, for any X,Y,Z, T € T,M,, RM (XY, Z,T) =
R(X,Y,Z,T) (see [23, Corollary XIV.1.4]). Moreover, for any = € M,,
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0. (M,) = M, and thus M, is a Riemannian symmetric space on its own.
Now, The tangent space p, := 1}, M,, can be decomposed as p” & pg © p’}
where p”, py and p’} satisfy properties of the proposition. We claim that
for m > n, p” C p™ and p’} C p7. Actually, if g" is the Lie subalgebra
[Pn, Pn] @ pn of the isometry group of M, then there is a structure of or-
thogonal symmetric Lie algebra (see [17, Chapters IV and V]) on g", which
can be decomposed as
g" =g @py ol

where g , g’ are respectively compact and noncompact; and pg is the max-
imal central Abelian subspace of p,,. In particular, g" is a subalgebra of g™
and s, := g” @ g7} is a semisimple Lie algebra and thus contained in s,,.
The semisimple algebras s, and s, are orthogonal sums of simple ideals
of compact or noncompact types. Let m be the orthogonal projection on
a simple ideal J of s,,. The restriction of 7 to any simple ideal I of s,, is
either trivial or is an isomorphism of orthogonal symmetric Lie algebras on
its image. In particular, if m(I) # {0} then I and J are both compact or
noncompact. This proves the claim.

We set py = Upp’t, p— = Upp” and po = {X €p, [X,Y] =0, VY € p}.
Let X € (pL ®p_)=+, then if m,: p — p, is the orthogonal projection on p,,
then 7, (X) € p§. Actually for any Y € p,

YV, X]=0 < [Z,[X,Y]]=0,VZ ep
e g([Z.[X,Y]],T) = R(X,Y,Z,T) =0, YVZ,T € p.
Thus, R(X,Y,Z,T) = lim,, R(m,(X),m(Y),Y,T) = 0 for any Z,T € p

and [X,Y] = 0. Therefore (p; ® p—)= = po and we have the desired de-
composition. O

4. Nonpositive curvature
4.1. Geometry of nonpositive curvature spaces

A Riemannian manifold of finite dimension is locally CAT(0) (or is non-
positively curved in the sense of Alexandrov) if and only if it has nonpositive
sectional curvature. The same result is also true in infinite dimension and a
proof can be found in [23, Theorem IX.3.5]. We refer to [6] for generalities
about CAT(0) spaces.

PROPOSITION 4.1. — If (M, g) is a Riemannian symmetric space with
nonpositive sectional curvature and no local Euclidean factor then M is
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simply-connected, the exponential map at any point is a diffeomorphism
and M is CAT(0).

Proof. — Consider the universal cover M of M. This universal cover
has a natural structure of Riemannian manifold turning the projection m :
M — M into a Riemannian covering. In that way, M is simply-connected
and is locally CAT(0) since M is locally CAT(0). The space M is a CAT(0)
space thanks to Cartan-Hadamard theorem [6, Theorem I1.4.1].

Choose Z,7 € M. The projection of the geodesic segment between &
and ¢ is a (locally minimizing) geodesic segment between z = 7(Z) and
y = 7(g). Let f; be the isometry o,, o 0, where z; is the point at distance
td(z,y)/2 from x on the previous segment and ¢ € [0, 1]. Let (F})seqo,1] be
a lift of (ft)ie[0,1] such that Fy =Id. Remark that ¢ — Fy(Z) is a lift of the
geodesic segment from z to y and since Fy(Z) = Z, this is the geodesic from
Z to g and thus Fy(Z) = § . Since 7 is a Riemannian covering, we observe
that F} is an isometry of M for any ¢ € [0, 1].

For v € m1 (M) and t € [0, 1],

molF,oy=fiomoy=fiom=mok;.

The map 7o F} is a Riemannian covering and thus for any ¢, there exists
~" such that Fy oy = o' o F;. A connectedness argument shows that +/
is independent of ¢ and since Fy =Id then 4’ = «~. This shows that the
displacement function of 7y is the same at  and at y and thus is constant
on M. Suppose this displacement length is not zero then v is a Clifford
translation, M has a Euclidean factor and M ~ R x N as metric space.
This is a contradiction and thus + is trivial.

Since we know that M is simply-connected, Cartan-Hadamard theorem
[23, Theorem IX.3.8] shows that the exponential map at any point is a
diffeomorphism. O

4.2. L*-algebras associated to Riemannian symmetric spaces
with nonpositive curvature operator

For the remainder of the section, (M, g) will be a separable Riemannian
symmetric with nonpositive curvature operator and no Euclidean local de
Rham factor.

LEMMA 4.2. — The L*-algebra associated to M is a Hilbertian sum
L = po®? L; where py is an abelian ideal of p and each L; is a noncompact
simple ideal.
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Proof. — Let Ly be the center of L. Since Lg is #-invariant, one can
decompose Ly = pg & €y where pg, ¥y are +1-eigenspaces of *. Since any
L*-algebra is the sum of its center and a Hilbertian sum of simple ideals,
one has L = L @? L; where each L; is simple. Let p; be the 1-eigenspace
of L;. One has p = py ® ®?p; and since L = [p,p] ® p = po ®? L;, one has
£ = {0}.

Assume for contradiction that there is a L; which is compact. By con-

struction L = [p,p] @ p and since L; is invariant under % then L; C [p, p].
Thus, p C §;j2;L;, [p, L;] = 0 and [L;, L] = 0, which is a contradiction. O

Thanks to the classification of simple separable real L*-algebras, we know
that each L; that has infinite dimension, is homothetic to one element of
the list in Table 2.2.

Each of these algebras can be realized as a L*-subalgebra of gl% (R),
which is the Lie algebra of Hilbert-Schmidt operators of some real separable
Hilbert space H, endowed with the Hilbert-Schmidt norm. For X € gl% (R),
X* is the adjoint of X as operator on H. The algebra gl2 (R) is the Lie
algebra of the Hilbert-Lie group GLZ_(R). If O?(00) is the intersection of
GLZ (R) and the orthogonal group O(H) of H then GLZ (R)/O?(00) is a
Riemannian symmetric space with nonpositive curvature operator (see for
example [16, I11.2]).

Let g be any L*-algebra of the previous list viewed as a L*- subalgebra of
gl (R). Let G be the closed subgroup of GL2_(R) generated by exp(g) and
K =GNO(H).If g=tdp is the decomposition of g into skew-symmetric
and symmetric parts then thanks to [16, Proposition II1.4], exp(p) is a
totally geodesic subspace of GLZ_(R)/0?%(c0), G acts transitively on exp(p)
and K is the stabilizer of Id in G. In this way, exp(p) ~ G/ K. When g varies
among the elements of Table 2.2, one obtains the irreducible symmetric
spaces with nonpositive curvature operator which appear in Theorem 1.8.

Let L be a simple noncompact L*-algebra, let g be the element of the
homothety class of L that is in the previous list and let A be the scaling
factor such that L = A - g. The Riemannian symmetric space associated to
L is the space G/K endowed with the metric that is the multiple by A of
the metric coming from the embedding in GL2_(R)/0?(c0).

It is a routine verification to show that if one starts from a simple non-
compact L*-algebra L, one considers the Riemannian symmetric space M
associated to L and one constructs the L*-algebra as in Section 3.2 then
the L*-algebra constructed is isomorphic to L.

Remark 4.3. — 1If L is a noncompact simple L*-algebra of finite dimen-
sion then it is a simple Lie algebra of noncompact type in the usual sense.

ANNALES DE L’INSTITUT FOURIER



INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 235

It is associated to a Riemannian symmetric space of noncompact type and
L coincides with the L*-algebra associated to this Riemannian symmetric
space (see Example 2.3 and [17, Chapter V]).

Proof of Theorem 1.8. — Let L = £ ® p be the L*-algebra to M. This
algebra L is a Hilbertian sum L = py ®? L; of simple noncompact L*-
algebras (Lemma 4.2). For each L;, let M; be the Riemannian symmetric
space associated to L; and let H be a Hilbert space isometric to po. Now,
consider the Hilbertian product H x Hf M;. This is a simply-connected
symmetric space whose associated L*-algebra is also L. Now Theorem 3.15
implies that M and H x Hf M; are isometric. Since M has trivial Euclidean
de Rham factor, H is reduced to a point and M ~ HZQ M;. O

Remark 4.4. — Let X =[[;.; X; and Y = [}, Y; be two Hilbertian
products of pointed metric spaces (X;, z;,d;) and (Yj,y;, ;). We say that
X and Y are multihomothetic if there exists a bijection ¢: I — J, a family
of scaling factors (A;)ier and isometries ®;: (X3, \id;) — (Yi(45), 0(s)) such
that ‘I’Z(l‘z) = y#’(i)'

We emphasize that the diagonal map between cartesian products

o: [[X; — I1Y;
(@) = (Po-1()(Tp-1(5))
induces a bijection, which is a homeomorphism, between X and Y if and
only if there are two positive numbers ¢,C' > 0 such that ¢ < A; < C for
alli e I.

It is a classical fact that any Riemannian symmetric space of noncompact
and finite dimension is multihomothetic to a totally geodesic subspace of
SL,(R)/SO,(R) for some n. This is also true in general. Let M = []* M;
be a separable Riemannian symmetric space with nonpositive curvature
operator and no Euclidean local de Rham factor. Let L = @®2%L; be its
associated L*-algebra. Let g; be the L*-algebra homothetic to L; that is a
L*-subalgebra of gl*(#;) where H, is a real Hilbert space of finite or infinite
dimension and gI*(#;) is the L*-algebra of Hilbert-Schmidt operators on
H;. Let H be the Hilbertian sum @©%H;. Thus,

&’g; < &gl (M) < gP(H).

The image by the exponential map of the symmetric part of ©2g; is a totally
geodesic subspace of GL2(#H)/O?(H) and this space is multihomothetic to
M (but the multihomothety is not necessarily a homeomorphism).

Proof of Corollary 1.10. — Let M ~ H2 M, be the Hilbertian decom-
position obtained in Theorem 1.8. Since the rank is greater or equal to
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the number of factors and greater or equal to the rank of each factor,
the Hilbertian product is actually a finite one and each factor has finite
rank. The only possible factors of infinite dimension are X, (K) since the
others contained increasing sequence of finite dimensional totally geodesic
subspaces of increasing rank.

The telescopic dimension is always greater or equal to the rank and it is
exactly equal to the rank when the symmetric space has finite dimension or
is X,,(K) because in both cases, any asymptotic cone is a Euclidean building
of dimension equal to the rank (see [20] and [11, Corollary 1.4]). O

4.3. A CAT(0) symmetric space which is not a Riemannian
manifold

We describe an example of a CAT(0) symmetric space which is not a Rie-
mannian manifold. Let H be the hyperbolic plane with constant sectional
curvature —1. We fix an origin o € H. We consider X =L2([0,1],H), the
space of measurable maps x: ¢ — x; from [0, 1] (endowed with the Lebesgue
measure) to H such that ¢ — d(o, ;) is a square integrable function. This
space (called Pythagorean integral in [26]) endowed with the distance

1/2
d((E,y) = (/ d(xtvyt)2dt>
[0,1]

is a complete separable CAT(0) space. Geodesics can be easily described
as in loc. cit.. Actually, if I is a real interval, a map g: I — X is a geodesic
when there exist a measurable map «: [0,1] — R* and a collection of
geodesics g¢: a(t)] — H such that

/ a(t?dt =1, (g(s)); = ge(alt)s)
[0,1]

for all s € I and almost all ¢ € [0,1]. For h € H, let S;, be the geodesic
symmetry at h in H. For x,y € X, we set 0,.(y) to be the map t — S, (y:).
The description of geodesics implies that S, is the geodesic symmetry at
x. Therefore X is a CAT(0) symmetric space.

Let X be a CAT(0) space and « be a point in X. The space of directions
¥, of X at x is the set of classes of geodesic rays starting at x. Two rays are
identified if their Alexandrov angle vanishes. The Alexandrov angle yields
a distance on the quotient. The tangent cone T, is the Euclidean cone
over .. We describe X, and T, for z €L?([0,1],H) below. We denote by
Z.(y, 2) the comparison angle and by /. (y, z) the Alexandrov angle at =
between y and z.
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DEFINITION 4.5. — Let (Y,d) be a separable metric space of diameter
less than m and ({2, u) a standard measure space. The integral join, fg Y,
is the set of pairs (y,v) = ((y.), (vw)) such that

(i) forallw e Q, y, €Y and v, € RT,
(ii) the map w — v, is measurable and [, v2du(w) =1,

(iii) the map w + y,, is measurable.

The metric on [)Y is defined by the formula

cos (d((z,v), (y,w))) = / Vst €08(d(20, 90))dja(w):

Let X, be the space of directions at our base point o € H. The tangent
cone T, is simply the tangent space at o and thus isometric to R2.

PROPOSITION 4.6. — (see also [26, Remark 48]) Let x be a point in
L?([0,1],H). The space of directions at x is isometric to f[z,u 3. The tan-
gent cone at x is isometric to the Pythagorean integral L?([0,1],T,) which
is a Hilbert space.

Proof. — Let g,g’ be two geodesics rays of L?([0,1],H) starting at x.
Thanks to the description of geodesics, there exist {g:},{g;}, families of
geodesic rays starting at o in H and v,v’ measurable maps [0,1] — RT
with L2-norm equal to 1. Therefore,

cos(Zx(9,9))

— 213(1) cos(Zx(g(s),9(s)))

2 / 2
28— d(g(9),6/(5))
s—0 282

d(g(s),9'(s))*

—1-1/21im
s—0
1 _
=1-1/2 lim — /(vt2 +0'7)s% = 200, cos(Zo(g: (ve3), gh(vhs)))dt
s—0 52 J,

:/’Ut’l);: COS(éo(gtmg;))dt'
t

This equality shows that ¥, embeds isometrically in f[:; 1 Y. Conversely, if
((g¢), (vt)) is an element in f[z_l} Y., one can construct the geodesic s — g(s)
where (g(s)): = gi(v¢s) for almost every t.

Now, we define a map ®: T, — L*([0,1],7,) through the formula
()\7 (gt>vt)) = ()"Uhgt)'
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We compute
(A, (9,0)), (N, (¢, 0)))% = N2+ A2 — 20X / v} cos(Zo(g1, g))dt
[0,1]

and

d((\ve, o), (N'vg, 97))* = / (Av)? + (N'0p)? = 20 - Mg cos(Zo(gr, 97)) dt
[0,1]

= A2 4 N2 - 2/\>\’/[ | v} cos(Zo(gt, 94))dL.
0,1

This shows that ® is an isometry and its inverse is given by

(A5 g2) = (X (96, At/ )

where X =/ [ A2dt. O

A notion of bounded curvature for geodesic metric spaces has been intro-
duced in [32]. We give a slightly different definition but equivalent in the
case of CAT(0) symmetric spaces. If x,y, z are distinct points in a CAT(0)
space, we denote the area of the comparison Euclidean triangle by Sy ..

DEFINITION 4.7. — A CAT(0) space X has bounded curvature if for
any p € X, there exist pp, i, > 0 such that for z,y,z € B(p, pp), ¥ €]z, y]
and 2’ €]z, z] we have

|Z$(y7 Z) - Zﬁf(ylv Z/)| g MPS%%Z'

In the case where d(z,y) = d(z,z) = then Sg, . = Zm(y,z)é and the

condition of bounded curvature is
| Laly,2)
Loy, =

o Mw"z.
2

Since we restrict our definition of bounded curvature to CAT(0) spaces, it
is actually a lower bound condition on the curvature. This condition is a
local condition. If M is a Riemannian manifold with nonpositive sectional
curvature and with locally a uniform lower bound on the sectional curvature
then M has bounded curvature. This is a consequence of Rauch comparison
theorem [23, Theorem XI.5.1]. In particular, any Riemannian symmetric
space of nonpositive sectional curvature has bounded curvature. Since these
spaces are homogeneous, the lower bound of the sectional curvature at any
point is actually a global lower bound. Observe that a tree with a vertex
of valency larger than 2 does not have bounded curvature.

PROPOSITION 4.8. — The space L*([0, 1],H) is not a Riemannian man-
ifold.
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Proof. — Tt suffices to show that X = L?(]0, 1], H) does not have bounded
curvature. We fix r < 0, « € (0,7) and two geodesic rays starting at o
with an angle equal to a at 0. For 0 < A < 1, we set 23 = p;i(r/)\) and
x5 = pa(r/A). We construct points z,y*, 2* € X defined by

x¢ = o for t € [0,1],
y; = o for t € (A 1],
2} =ofort € (1],
y) = a3 for t € [0, )],
2} = for t € [0, \.
We have d(z,y) = d(z,2) = r and Z,(y*, 2*) = Z,(z7,23) which tends
tomas A — 0. Since Z,.(y*, 2*) = Z, (27, ¥3) = a; choosing a small enough,
the bounded curvature condition is not satisfied. O
If two geodesic rays starting at a point x € X =L2([0, 1]) have vanishing
Alexandrov angle then they are actually contained one in another. This
allows us to define an exponential map exp,: T, — X. If v € T, then
exp, (v) is defined to be the point at distance ||v|| from x in the direction

corresponding to v. This map is a bijection and its inverse is continuous
but the same example as above shows that exp, is not continuous.

Remark 4.9. — This space has long been known and one can find a
similar space denoted H®(M, M’) on p.134 of [13]. The authors claimed
that this space is not a manifold.

Remark 4.10. — Tt has been proved in [10, Proposition 3.9] that a
CAT(0) symmetric space with bounded curvature and no branching geo-
desics is homeomorphic to a Hilbert space. More precisely, an exponential
map is defined from the tangent cone to the space and this exponential
map is a homeomorphism.

5. Nonnegative curvature

Proof of Theorem 1.11. — By construction, for any z € L,z* = —z and
if L =L EB% L; where Ly is the center and each L; is a simple ideal. Observe
that each L; is compact. Let L = Ly @2 I; be the decomposition of L into
abelian and irreducible ideals invariant under 6. That is, each I; is a simple
ideal invariant under 6 or I; = L;, & L;, where L; ,L;, are simple ideals
interchanged by 6 (Proposition 2.9). Let H be a Hilbert isometric to Iy and

TOME 65 (2015), FASCICULE 1



240 Bruno DUCHESNE

assume that for all I;, there is a simply-connected Riemannian symmetric
space M; whose associated L*-algebra is I;. The product space H x sz M;
is a simply-connected Riemannian symmetric space whose associated L*-
algebra is L. By Theorem 3.15, M and H X Hf M; are isometric.

Now, it remains to find a (unique) simply-connected Riemannian sym-
metric space for each compact irreducible symmetric orthogonal L*-algebra.
We start with the case of an irreducible symmetric orthogonal L*-algebra
(L,s) such that L = g ® g where g is a simple compact L*-algebra (see
Table 2.1) and s(X,Y) = (Y, X). For each g = u?(cc),02(c0) and sp?(c0),
we consider the Hilbert-Lie group G = U?(cc), SO?(c0) (the identity com-
ponent of O%(c0), that is the set of operators in O?(00) such that —1 has
infinite or even multiplicity as eigenvalue) and Sp?(oo). The Lie algebra of
G is exactly g. We endow GG with the Riemannian metric induced by the
scalar product on g and invariant under left and right multiplications (ob-
serve that this metric is actually invariant under conjugation). Thus G x G
acts by isometries on G via the formula (g,h) - k = gkh™! and G identi-
fies with G x G/AG where AG is the diagonal subgroup in G x G. The

1 is an isometry too with id as isolated fixed point. So

involution g — g~
G is a Riemannian symmetric space and (g, s) is the symmetric orthogonal
L*-algebra associated to G.

The remaining cases (of 3 types) will be realized as (universal cover of)
homogeneous spaces G/K where G is one of the above Hilbert-Lie group
associated to a simple compact L*-algebra and K will be the connected
component of the fixed points set of an isometric involution ¢ which yields

the symmetry at K in the symmetric space G/K.

(1) Let H be a separable infinite dimensional real (resp. complex,
quaternionic) Hilbert space with an orthogonal decomposition H =
H1 @ Ha where Hs is infinite dimensional and #; has dimension
p € NU{oo}. Let J be the linear map —idy, ®idy, and o(g) = JgJ
for g € SO?(c0) (resp. U?(oc) and Sp?(c0)). In this case, the con-
nected component of the fixed points set of o is SO?(p) x SO?(0)
(resp. U?(p) x U%(c0) and Sp?(p) x Sp?(00)).

(2) Let ‘H be a separable infinite dimensional real (resp. complex)
Hilbert space and let J be a complex (resp. quaternionic) struc-
ture on H. That is J corresponds to the multiplication by i € C
(resp. by the quaternionic number j). The involution o on SO?(c0)
(resp. U?(00)) is g — JgJ L. In this case, the connected component
of fixed points set is U?(00) (resp. Sp?(c0)).

ANNALES DE L’INSTITUT FOURIER



INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 241

(3) Let H be a complex (resp. quaternionic) separable Hilbert space
of infinite dimension and Hg be a real (resp. complex) form of H i.e.
H=H®iHo (resp. H = H ® jHo) and let J be the R-linear (resp.
C-linear) map idy, ®—idip, (resp. idy, ®—id;1, ). The involution o
on U?(00) (resp. Sp?(o0)) is g — JgJ 1. In this case, the connected
component of fixed points set is SO?(c0) (resp. U?(00)).

O

Remark 5.1.— The Riemannian symmetric spaces Sp?(o00),
Sp?(00)/U?(00), Sp?(p+00)/Sp?(p) x Sp?(00), SO?(p+00)/SO*(p + 00),
S0?(00)/U?(o0) and U?(p+00)/U?(p) x U%(o0) are simply-connected. The
Riemannian symmetric spaces U?(00), U%(00)/Sp?(c0) and U?(00)/SO?(00)
have fundamental group Z and SO?(00) has fundamental group Z/2Z. One
can look at Chapter IIT and IL.8 of [16] for more details.

6. Boundedness of the curvature operator

Let M be a Riemannian symetric space let and p be a point in M. We
defined the curvature operator C: A?p —L(p) (see Definition 3.10) thanks
to the relation

(C(XAY),ZAT)y=R(Y,X,Z,T).

A natural question, is to know if the symmetric bilinear form on A? p defined
by
(XANY,ZANT)=R(Y,X,ZT)

is bounded. A positive answer to this question would imply that the curva-
ture operator C' can be identified with a bounded operator from A2 p, the
completion of AZ p, to itself. In this case, the answer to Question 1.4 is pos-
itive. Actually, one can use the spectral theorem to the curvature operator
(which is symmetric) on the Hilbert A2p to decompose this Hilbert space
is an orthogonal sum of nonpositive and nonnegative part of C. Working a
little bit harder, one can deduce a decomposition of p as in Question 1.4.

Unfortunately the answer is negative in general even if the symmetric
space has finite rank. Let us describe some examples.

Example 6.1. — For spaces of constant sectional curvature x, that are
Hilbert spaces, spheres and hyperbolic spaces, the curvature operator is
simply an homothety or ratio , that is for any U € A?p, C(U) = kU
(under the identification of A?p with a subspace of L(p)). References are
[28, Proposition 5, Section 3.3] and [23, Remark 1, IX, §3]. In particular,
the curvature operator is bounded.
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Example 6.2. — Consider the symmetric space GL2_(R)/0?(00) which
can be identified with the set of positive definite operator A such that
A — I is a Hilbert-Schmidt operator. The tangent space at the identity
can be identified with the space of symmetric Hilbert-Schmidt operators
on a separable Hilbert space H. We denote this space by s2(#H) and by
02(H) the space of skew-symmetric Hilbert-Schmidt operators. The L*-
algebra associated to GL2_(R)/O?(c0) is gl*(H) = s%(H) @ o*(H). With
our general notations p = s2(H), ¢ = 0?(H) and the Lie bracket is the
usual bracket between operators. If (e;) is a orthonormal base of H then
the maps E; ;: © — (2, e;)e; is an orthonormal base for gI*(H). We defined
Sij = Eij + Ej; and A; j = E; ; — E;; that yield respectively orthogonal
bases for §2(H) and 0?(#). Simple computations based on

[Si> Skl = 0k Aig + 65040 x + 0ikAjo+ 0i1Ajk
and
trace(A; j A1) = 2(0; k01 — 0;.10i k)
show that

R(Si,ja Sk,h Sm,na Sp,q)
=trace ([Si j, Sk,i|[Sm,n: Sp.ql)
=2 (6j,15n,q(5k,m5i,p - 5k,p6i,m) + 5i,k6m,p(6l,n5j,q - 5l,q6j,n)) .

In particular for i, j, k, [ distincts
(6.1) (Sij N Sji, Sik N Sky) = R(Si 5,550, Siks Skp) = —2.

Since (S; ;ASk,1)i,j,k,1 is an orthogonal base for A2 p; if there was an operator
(even an unbounded one) C': A%p — AZp then the vector C(S;; A S;;)
would have infinitely many coordinates equal to -2, which is impossible in
a Hilbert space.

Actually, Example 6.2 comes from the fact that if A is a Hilbert-Schmidt
operator on a Hilbert space H then ad(A) is not necessarily a Hilbert-
Schmidt operator on gi*(#).

Example 6.3. — Consider O?(p, 00)/O?(p)x O?(c0) as a totally geodesic
submanifold of GLZ_(R)/0?%(o0) (see Section 4.2). This space as rank p and
its tangent space at the identity has orthogonal base (.S; ;) with ¢ < p and
j > p. I p > 2 the same computation as in Equation (6.1) with i,1 < p
and k,j > p leads to the same conclusion, that is the curvature operator
does not come from an operator on A?(p).
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