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GAUSS–MANIN CONNECTIONS FOR p-ADIC
FAMILIES OF NEARLY OVERCONVERGENT

MODULAR FORMS

by Robert HARRON & Liang XIAO

Abstract. — We interpolate the Gauss–Manin connection in p-adic families
of nearly overconvergent modular forms. This gives a family of Maass–Shimura
type differential operators from the space of nearly overconvergent modular forms
of type r to the space of nearly overconvergent modular forms of type r + 1 with
p-adic weight shifted by 2. Our construction is purely geometric, using Andreatta–
Iovita–Stevens and Pilloni’s geometric construction of eigencurves, and should thus
generalize to higher rank groups.
Résumé. — Nous obtenons l’interpolation de la connexion de Gauss–Manin

en familles p-adiques de formes modulaires quasi-surconvergentes. Ceci donne une
famille d’opérateurs différentiels à la Maass–Shimura qui envoie l’espace de formes
modulaires quasi-surconvergentes de type r dans celui de formes modulaires quasi-
surconvergentes de type r+1 et de poids p-adique augmenté par 2. Notre méthode
est purement géométrique, elle utlise les constructions géométriques des courbes
de Hecke dues à Andreatta–Iovita–Stevens et Pilloni, et devrait donc se généraliser
aux groupes de rang supérieur.

1. Introduction

In this article, we seek to combine two important tools in arithmetic:
the nearly holomorphic modular forms of Shimura and the p-adic families
of modular forms of Hida and Coleman–Mazur. The former are an inte-
gral part of Shimura’s study of the algebraicity of values of automorphic
L-functions while the latter have become a ubiquitous tool in number the-
ory with recent applications including the proof of Serre’s conjecture, the
proof of the Fontaine–Mazur–Langlands conjecture for GL(2), and the con-
struction of automorphic Galois representations to name a few. The p-adic

Keywords: Gauss–Manin connections, Nearly overconvergent modular forms, Eigen-
curves, Families of p-adic modular forms.
Math. classification: 11F33, 14F40.



2450 Robert HARRON & Liang XIAO

theory of nearly holomorphic modular forms has recently emerged from
the work of Darmon–Rotger [5] and Skinner–Urban (see [10]) with applica-
tions to the Birch–Swinnerton-Dyer and Bloch–Kato conjectures for ellip-
tic curves and to the theory of Stark–Heegner points. Since it is sufficient
for their purposes, these authors rely on q-expansions in their definition
of nearly overconvergent modular forms. Our approach, via the work of
Andreatta–Iovita–Stevens [1] and Pilloni [8], is geometric: we give a geo-
metric definition of nearly overconvergent modular forms of arbitrary p-adic
weight and construct p-adic families of Gauss–Manin connections varying
over the weight space. This provides a robust theory that is amenable to
generalization.
In order to state our main theorem, let us introduce the following no-

tation: for an affinoid algebra A, a continuous character χA : Z×p → A×,
a non-negative integer r, and a positive rational number v, let M†,vr (χA)
denote the Banach A-module of nearly overconvergent modular forms of
type r, weight χA, and radius of convergence v. Our main result is then
the following.

Theorem. — For sufficiently small v, we have an A-linear map

∇χA,r : M†,vr (χA)→M†,vr+1(χAχ2
cycl),

such that for each point x ∈ Spm(A) that corresponds to a classical weight,
the specialization of ∇χA,r to x restricts to the classical Gauss–Manin con-
nection.

This theorem is also proved in [9] using a subtle argument heavily de-
pendent on the q-expansion principle. Our construction (which was worked
out independently) is purely geometric and hence can be easily generalized
to similar situations whenever there is a geometric construction like the
ones given by Andreatta–Iovita–Stevens [1] and Pilloni [8].
We now briefly sketch our construction of ∇χA,r. Let X be the modu-

lar curve over Qp, with cuspidal subscheme C, and let E be the univer-
sal generalized elliptic curve over X. Let ω ⊆ H be the sheaf of relative
1-differentials and the relative de Rham cohomology sheaf of E → X, re-
spectively. For integers 0 6 r < k, the Gauss–Manin connection gives rise
to a connection ∇k,r : ωk−r ⊗ SymrH → ωk+1−r ⊗ Symr+1H. We choose
a splitting of the Hodge filtration H = ω ⊕ ω−1. Then, the Gauss–Manin
connection ∇ : H → H⊗Ω1

X(logC) can be reconstructed from a differential
operator ∂ : ω → ω ⊗ Ω1

X(logC). We interpret ∂ as a connection on the
associated principal Gm-bundle for ω, which we further restrict to a con-
nection on the principal bundle for the rigid balls inside Gm appearing in

ANNALES DE L’INSTITUT FOURIER



GAUSS–MANIN CONNECTIONS 2451

the construction of Andreatta–Iovita–Stevens [1] and Pilloni [8]. Then, we
obtain our family version of ∂ by applying the formal dictionary between
principal bundles and vector bundles associated to the representation of the
monodromy group. The family of Gauss–Manin connections can be then
reconstructed from the family version of ∂ as in Katz’s paper [7].
One of the applications of our result is the construction of the p-adic

Rankin–Selberg convolution over the product of two Coleman–Mazur eigen-
curves, which was in fact the original motivation of this paper. We now refer
to [9] for this construction.
We also note that our method of construction should be quite general.

For instance, we expect a similar construction for the case of Siegel mod-
ular forms making use of the work of Andreatta–Iovita–Pilloni [2] (or its
Hilbert–Siegel and PEL variants).

Acknowledgments

We thank Tsao-Hsien Chen, Matthew Emerton, Madhav Nori, and Eric
Urban for useful discussions. We also thank the referee for pointing out
some typos and inaccuracies.

2. A geometric construction of nearly overconvergent
modular forms

We first review the geometric construction of families of nearly overcon-
vergent modular forms. This approach essentially follows from the work
of Andreatta, Iovita, and Stevens [1] and, independently, Pilloni [8]. The
advantage of this construction is that nearly overconvergent modular forms
are on the nose sections of certain vector bundles.

2.1. Weight spaces

We fix a prime number p. Let Cp denote the completion of a fixed alge-
braic closure of Qp. It is equipped with a valuation v : C×p → R normalized
so that v(p) = 1. Let | · | = p−v(·). Put q = 4 if p = 2 and q = p if p 6= 2.(1)
We can then write Z×p = (Z/qZ)× × (1 + qZp)×.

(1)The confusion with q = e2πiz later should be minimal.

TOME 64 (2014), FASCICULE 6



2452 Robert HARRON & Liang XIAO

We put Γ = Gal(Q(µp∞)/Q), where µp∞ denotes the collection of all
p-power roots of unity. We use the cyclotomic character χcycl : Γ→ Z×p to
identify these two groups.
Let W denote the rigid analytic space over Qp whose K-points are

W(K) = Homcont(Γ,K×) for any complete field extension K of Qp. We
have an isomorphism

W
∼= // ̂(Z/qZ)× ×B(1, 1−)

χ � //
(
χ|(Z/qZ)× , χ(exp(q))

)
,

where B(1, 1−) denotes the open unit ball of radius 1 centered at 1.
A classical character of Γ is a character of the form εχkcycl : Γ → K×

with k > 2 an integer and ε a finite order continuous character of Γ. We
will use (ε, k) to denote such a character and also the associated point
on W. The p-conductor of such ε is pn, where n = n(ε) is the maximal
positive integer such that ε factors through (Z/pn−1qZ)×. (In particular,
if ε is trivial, our convention says that n(ε) = 1.) We remark that the set
of classical characters is Zariski dense in the weight space W.

Let A be an affinoid algebra over Qp. (A good example to keep in mind is
the ring of analytic functions on an affinoid subdomain of the weight space
W.) For a continuous character χA : Z×p → A×, its weight is defined to be

WT(χA) := lim
a→1

log(χA(a))
log a ∈ A.

We sometimes view it as a function on Spm(A). When χA = (ε, k) is a
classical character, its weight is simply k.

2.2. Nearly algebraic modular forms

Let X → SpecZp denote the compactified modular curve with hyper-
special level at p over SpecZp. We always take the tame level subgroup to
be sufficiently small so that X is a fine moduli space of generalized ellip-
tic curves. We fix such a tame level throughout the paper. Let C denote
the cusp subscheme. Let π : E → X be the universal generalized elliptic
curve. Put C̃ = π−1(C); it is a divisor of E with simple normal crossings.
Let e : X → E be the unit section and put ω := e∗Ω1

E/X . The Kodaira–
Spencer isomorphism gives

Ω1 := Ω1
X/Zp

(logC) ∼= ω⊗2.

ANNALES DE L’INSTITUT FOURIER
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We useH to denote the relative de Rham cohomology R1π∗(Ω•E/X(logC̃)).(2)

For integers k > 2 and r ∈ [0, k2 − 1], following Urban [9], we define the
nearly algebraic modular forms of weight k and type r to be

Mk,r := H0(XQp
, ωk−r ⊗ SymrH).

When r = 0, this recovers the space of usual modular forms Mk, which we
call classical modular forms in this paper. These nearly algebraic modu-
lar forms are closely related to the nearly holomorphic modular forms of
Shimura. We refer to [9] for a discussion of the relation between the two.

2.3. The ball fibration

We now review a construction given in [1] and [8]. We put T =
Spec(⊕n∈Z>0ω

−n) and T× = Spec(⊕n∈Zωn). The space T may be viewed
as the physical line bundle over X associated to ω and T× as the Gm-torsor
that defines the line bundle T . LetXrig denote the analytification ofXQp

(as
a rigid analytic space in the sense of Tate). Let Trig be the analytification
of TQp

. Let T×rig be the analytification of T×Qp
; it is a Gm,rig-torsor over Xrig.

There is a continuous map deg : Xrig → [0, 1], given by the valuation of
the truncated Hasse invariant. More precisely, we fix a lift h̃ ∈ H0(X,ωp−1)
of the Hasse invariant; for x ∈ Xrig, deg(x) = min{v(h̃(x)), 1}.(3) For any
v ∈ [0, 1] ∩ pQ, X(v) := {x ∈ Xrig | deg(x) 6 v} is a subdomain of Xrig. In
particular, X(0) is the tube of the ordinary locus of the special fiber of X.

For n ∈ Z>1 and v ∈ [0, 1
pn−2(p+1) ), the universal generalized elliptic

curve E over X(v) has a canonical subgroup Cn of order pn. For each closed
point x ∈ X(v)(K), we use Cn,x to denote the corresponding canonical
subgroup of the (generalized) elliptic curve Ex at the point x. We may
choose formal models Cn,x and Ex of both objects over OK . We have a
Hodge–Tate map

(2.3.1) HT : CDn,x(OCp
)→ e∗(Ω1

Cn,x/OK
)⊗OK

OCp
,

where CDn,x denotes the Cartier dual of Cn,x.
Using the Hodge–Tate map,(4) Pilloni [8, Théorème 3.2] showed that

there exists an open rigid subdomain Fn ↪→ Trig ×X(v) C
D
n such that, for

(2)Here, Ω1
E/X

(log C̃) = Ω1
E/Zp

(log C̃)/π∗Ω1
X/Zp

(logC).
(3)The notation deg refers to the degree of the corresponding finite flat p-group scheme
in the sense of [6].
(4)Technically speaking, just knowing the description of Hodge–Tate map over closed
points is not enough to prove the existence of Fn. Pilloni [8] needed a version of the
Hodge–Tate map over a formal scheme, just as in [1]. However, this subtlety does not
matter to our discussion, so we ignore it.

TOME 64 (2014), FASCICULE 6



2454 Robert HARRON & Liang XIAO

any closed point x ∈ X(v)(K), we have

Fn|x(Cp) =
{

(y, ω) ∈ CDn,x(Cp)×
(
e∗Ω1

Ex/OK
⊗OK

OCp

)
with HT(y) = ω|e∗Ω1

Cn,x/OK
⊗OK

OCp

}
where Fn|x denotes the fiber of Fn above x ∈ X(v)(K).
Let (CDn )× denote the union of the connected components of CDn formed

by local generators of CDn . We put F×n = Fn ×CD
n

(CDn )×. When v < p−1
pn ,

Pilloni [8, Proposition 3.5] proved that the natural morphism F×n → Fn →
Trig factors through T×rig and is an open immersion. In a more explicit
form, over x ∈ X(v)(Cp), we may choose a generator of ω over X and
hence identify Trig with A1

Cp,rig. Then

F×n |x(Cp) =
∐

m∈(Z/pnZ)×
xmh

1/(p−1) + pnh−
pn−1
p−1 OCp

⊂ Cp,

where h∈Cp is some element with v(h) = deg(x) and {xm |m∈ (Z/pnZ)×}
is some fixed set of lifts of (Z/pnZ)× to Z×p .

From this, it is easy to see (and is also explained in [8, §3.4] and [1,
§3.2] implicitly) that prn : F×n → X(v) is a torsor for the open subgroup
Gn ⊆ X(v)×Gm,rig given by

(2.3.2)
Gn(Cp) =

{
(x, a) ∈ X(v)(Cp)× C×p

∣∣ |a−m| 6 p−nppn deg(x)/(p−1)

for some m ∈ Z×p
}
.

Remark 2.4. — The following viewpoint of the above construction was
communicated to us by Emerton. The line bundle ω defines a Gm-torsor
over (the entirety of) X; this is why we can consider integer powers of ω and
define modular forms with integer weights. The dual Tate module of the p∞-
canonical subgroup of E only exists over the ordinary locus X(0); it gives
rise to a Z×p -torsor over X(0). This is why Hida can consider p-adic families
of modular forms parameterized by ZpJZ×p K. Over the ordinary locus, the
Hodge–Tate map is an isomorphism. It identifies the aforementioned dual
Tate module as a Z×p -subtorsor of the G×m-torsor T×. As we include some
supersingular locus, i.e. we work over X(v), the Hodge–Tate map fails to
be an isomorphism. Instead, we see a torsor F×n for the group Gn, which
is a group sitting between Z×p and Gm,rig.

ANNALES DE L’INSTITUT FOURIER
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2.5. Locally analytic characters

Let A be an affinoid algebra and χA : Z×p → A× a continuous character.
Then there exists an integer n > 3 such that λA,n−1 := χA(exp(pn−1)) ∈ A
satisfies |λA,n−1 − 1| < p−1/(p−1).(5) For any such n, the character χA
extends by continuity to a locally analytic character

χan
A = (χA, λA) : Z×p · (1 + pn−1OCp

)× // (A⊗̂Cp)×

x · z � // χA(x) · λlog(z)/pn−1

A,n−1 ,

where x ∈ Z×p and z ∈ (1+pn−1OCp
)×. In other words, this defines a family

of representations of the rigid analytic group

Gn−1 =
∐

m∈(Z/pn−1Z)×
B(xm, p1−n)

parametrized by Spm(A), where B(xm, p1−n) denotes the union of the
closed disks of radius p1−n centered at the chosen representatives xm ∈ Z×p
as m varies over all classes in (Z/pn−1Z)×.

2.6. Overconvergent sheaves

Keep the notation as above. Choose v ∈ (0, p−1
pn )∩Q. The representation

χan
A of Gn−1 induces a line bundle V over X(v)×Spm(A) on which Gn−1×
X(v) acts. Our assumption on v ensures that Gn is a subgroup of Gn−1 ×
X(v) by the description (2.3.2). We may thus consider the induced action
of Gn on V.

Let prn× id : F×n × SpmA→ X(v)× SpmA denote the map induced by
prn. Following [8, §5.1], we define the modular sheaf with character χA to
be

ωχA :=
(
(prn × id)∗OF×n ×SpmA ⊗OX(v)×Spm A

V
)Gn

.

Since F×n is a Gn-torsor, ωχA is a locally free sheaf over X(v)×Spm(A) of
rank one.
For any such χA, we define an overconvergent modular form with char-

acter χA to be a section of ωχA over X(v)× Spm(A) for some v as above.
We put

M†,v(χA) = Γ
(
X(v)× Spm(A),ωχA

)
and M†(χA) = lim−→

v

M†,v(χA).

(5)Here, we did not optimize the choice of n for simplicity of the presentation; see [8,
Section 2.1] for a careful discussion of the optimal bound.

TOME 64 (2014), FASCICULE 6
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More generally, for r ∈ Z>0, we define the space of nearly overconvergent
modular forms to be

M†,vr (χA) = Γ
(
X(v)× Spm(A),ωχAχ

−r
cycl ⊗ SymrH

)
and

M†r (χA) = lim−→
v

M†,vr (χA).

We have natural inclusions M
†(,v)
r′ (χA) ↪→ M

†(,v)
r (χA) if r′ 6 r, and

M
†(,v)
0 (χA) = M†(,v)(χA).
When χA = χkcycl : Z×p → K× is the k-th power of the cyclotomic

character, ωχk
cycl is the restriction of the usual modular sheaf ωk|X(v) for

v ∈ (0, 1) sufficiently close to 0 ([8, Proposition 3.6]). In this case, we put

M†,vk = M†,v(χA) and M†k = M†(χA).

These are the overconvergent modular forms of weight k in the usual sense;
they contain the classical modular forms Mk as a subspace.

Similarly, for an integer r > 0, we define the space of nearly overconver-
gent modular forms of weight k to be

M†,vk,r = M†,vr (χA) and M†k,r = M†r (χA).

These contain the space of nearly algebraic modular forms Mk,r as a sub-
space when k > 2r + 2.

It is clear from the construction that, when χ = (ε, k) is a classical
character, our construction agrees with that of [9].

Remark 2.7. — One can define Hecke actions on nearly overconvergent
modular forms as in [8, §4]. We refer to loc. cit. for details.

3. The Gauss–Manin connection in a p-adic family

We now give the construction of the Gauss–Manin connection in a p-adic
family over the weight space.

3.1. Gauss–Manin connections

The relative de Rham cohomology over the modular curve X fits into a
canonical exact sequence

(3.1.1) 0→ ω → H→ ω−1 → 0.

ANNALES DE L’INSTITUT FOURIER
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Equivalently, H admits a Hodge filtration given as follows: FiliH = 0 for
i > 1; Fil1H = ω; and FiliH = H for i 6 0. The filtration naturally induces
a filtration on the symmetric power SymkH for k > 1. In particular, for
an integer r ∈ [0, k], Filk−r SymkH ∼= ωk−r ⊗ SymrH.

Recall that the relative de Rham cohomology H admits a Gauss–Manin
connection ∇ : H → H⊗Ω1, or more generally ∇k : SymkH → SymkH⊗
Ω1. For an integer r ∈ [0, k], Griffiths transversality implies that the Gauss–
Manin connection on SymkH induces a differential map

∇k,r : ωk−r ⊗ SymrH ∼= Filk−r SymkH
∇k

−−→ Filk−r−1 SymkH⊗ Ω1 ∼= ωk−r+1 ⊗ Symr+1H.

When k > 2r+2, taking global sections over XQp
gives rise to a differential

operator
∇k,r : Mk,r →Mk+2,r+1.

We call it the classical Gauss–Manin connection.

3.2. Splitting of the Hodge filtration

Our goal is to consider the variation of ∇k,r as k varies p-adically with r
fixed. For this, we first choose a splitting of the Hodge filtration (3.1.1). We
will then show that two different such choices result in equivalent p-adic
interpolations.(6)
A splitting of the Hodge filtration is a homomorphism of coherent sheaves

η : H → ω which is a left inverse of the natural embedding. This is equiva-
lent to giving an embedding ω−1 ∼= H/ω → H that is a right inverse of the
natural projection. Given a splitting η, one may write H = ω⊕ω−1. Then,
the Gauss–Manin connection on H can be written as

∇ : H = ω ⊕ ω−1 −→ H⊗ Ω1 ∼= ω3 ⊕ ω
(x, y) 7−→ (∇1(x) +∇2(y),∇3(x) +∇4(y)).

We now analyse each component ∇i of ∇.
• We put ∂ = ∇1, it is a connection on ω given by

∂ : ω ↪→ H ∇−→ H⊗ Ω1 η⊗id−−−→ ω ⊗ Ω1.

(6) In fact, to p-adically interpolate Gauss–Manin connections, we need only choose the
splitting of the Hodge filtration Zariski locally on X. We choose a global splitting here
to simplify the presentation. However, it would be certainly interesting to know if one
can entirely avoid the splitting of Hodge filtration in the following construction.

TOME 64 (2014), FASCICULE 6
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For k ∈ Z, let ∂⊗k denote the induced connection on the k-th
power ωk. (Negative powers are understood as duals.) Alternatively,
using the Kodaira–Spencer isomorphism, we may view ∂⊗k as a
first-order differential operator ωk → ωk+2. Our first step later on
will be to p-adically interpolate ∂⊗k.

• For ∇2, we observe that the first term of the equality y ⊗ ∇(a) +
a∇(y) = ∇(ay) lies in ω ∼= ω−1 ⊗ Ω1 ⊆ H ⊗ Ω1. Hence, ∇2 is in
fact OX -linear and so is given by multiplication by a section λ of
ω4 over X.

• For ∇3, we note that the identification between Ω1 with ω2 is given
by the Kodaira–Spencer isomorphism. Thus, ∇3 is simply the iden-
tity map by definition.

• For ∇4, we observe that ∧2H is the trivial line bundle with the
trivial connection. This implies that ∇4 is the connection ∂⊗(−1)

on ω−1.

Example 3.3. — An example of a splitting of the Hodge filtration was
given by Katz [7, A1.2]; he constructed a so-called “canonical splitting”
using the equation for the universal elliptic curve.
For k ∈ Z>1, we put σk(n) =

∑
d|n d

k. Using this splitting, the action
of the differential operator on a form f of weight k is given in terms of
q-expansions by

∂(f) = q
df

dq
+ kE2f

12 and λ = E4 = 1 + 120
∑
n∈N

σ3(n)qn.

where E2 = 1− 24
∑
n∈Z>1

σ1(n)qn and q = e2πiz. Note that E2 is a p-adic
modular form, but not an overconvergent one [4]. The modular form E4 is
an Eisenstein series.

Lemma 3.4. — Let η′ be another splitting of the Hodge filtration. Then
η′−η induces a natural homomorphism of coherent sheaves H/ω ∼= ω−1 →
ω, which is given by multiplication by some section α of ω2. Let ∂′ and λ′
be the associated differential operator and section of ω4 defined as above
with respect to the splitting η′. Then, we have

∂′ = ∂ + α and λ′ = λ− α2 − ∂⊗2(α).

Proof. — Looking at the change of basis matrix, we have(
1 α

0 1

)(
∂ λ

1 ∂⊗(−1)

)(
1 −α
0 1

)
=
(
∂′ λ′

1 ∂′⊗(−1)

)
.

ANNALES DE L’INSTITUT FOURIER
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From this, it is clear that ∂′ = ∂ + α. Multiplying out the matrix product,
we have

λ′ = λ+ α∂⊗(−1) + (∂ + α) ◦ (−α) = λ− α2 + α∂⊗(−1) − ∂ ◦ α.

Noting that ∂ ◦ α = ∂⊗2(α) + α∂⊗(−1), the second formula of the lemma
then follows. �

The following lemma is essentially [7, A1.4]; it is a simple computation
of tensors.

Lemma 3.5 (Katz). — For integers k > 1 and r ∈ [0, k], the chosen
splitting η induces an isomorphism ωk−r ⊗ SymrH ∼= ⊕ra=0ω

k−2a. Un-
der this identification, the Gauss–Manin connection ωk−r ⊗ SymrH →
ωk−r+1 ⊗ Symr+1H is given by the sum over the maps

∇k,r : ωk−2a // ωk−2a
⊕

ωk−2a+2
⊕

ωk−2a+4

f � //
(

(k − a)f, ∂⊗(k−2a)(f), aλf
)
.

From this lemma, we see that the p-adic interpolation of the Gauss–
Manin connection will essentially follow from the p-adic interpolation of
the connections on “p-adic powers” of ω.

3.6. Connection on M†(χA)

We will use the interplay between connections on vector bundles and
connections on principal bundles to construct the p-adic interpolation of
the Gauss–Manin connection.
Let πT× : T× → X denote the natural projection. Recall that, after

choosing a splitting of the Hodge filtration, we have a connection ∂ : ω →
ω ⊗OX

Ω1. This naturally induces a connection

(3.6.1) ∂̃ : πT×,∗OT× //___
(
πT×,∗OT×

)
⊗OX

Ω1

⊕
k∈Z

∂⊗k :
⊕
k∈Z

ωk //
(⊕
k∈Z

ωk
)
⊗OX

Ω1.

This may be viewed as a connection on the Gm-torsor T× over X. Hence
the connection is equivalent to a Gm ×X-equivariant OT×-linear map

(3.6.2) ∂T× : Ω1
T×/Zp

(log π−1
T×(C)) −→ π∗T×Ω1

which splits the natural map π∗T×Ω1 ↪→ Ω1
T×/Zp

(log π−1
T×(C)).
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We may first take the analytification of T×Qp
as well as the map (3.6.2)

(tensored with Qp), and then restrict the map to F×n . We thus obtain an
OGn

-equivariant (because Gn is a subgroup of Gm,rig ×X(v)) OF×n -linear
map

∂F×n : Ω1
F×n /Qp

(log pr−1
n (C))→ pr∗nΩ1

X(v)/Qp
(logC)

which splits the natural map pr∗nΩ1
X(v)/Qp

(logC) ↪→ Ω1
F×n /Qp

(log pr−1
n (C)).

This gives the connection on theGn×X(v)-torsor F×n overX(v). In particu-
lar, pre-composing ∂F×n with the natural mapOF×n

d−→ Ω1
F×n /Qp

(log pr−1
n (C))

and then pushing forward along prn induces a naturalOGn
-equivariant map

(3.6.3) ∂̃F×n : prn,∗OF×n −→ prn,∗OF×n ⊗OX(v) Ω1
X(v)/Qp

(logC).

Now, let A be an affinoid algebra and χA : Z×p → A× a locally analytic
character as in § 2.5. We may tensor (3.6.3) with V and then take the
Gn-invariant sections. This gives a natural connection

∂χA : ωχA =
(
(prn × id)∗OF×n ×SpmA ⊗OX(v)×Spm A

V
)Gn

∂̃
F
×
n−−−→
(
(prn × id)∗OF×n ×SpmA ⊗OX(v) Ω1

X(v)/Qp
(logC)⊗OX(v)×Spm A

V
)Gn

= ωχA ⊗OX(v) Ω1
X(v)/Qp

(logC).

Taking global sections over X(v)× Spm(A) induces a natural map

∂χA : M†,v(χA)→M†,v(χA)⊗Γ(X(v),OX(v)) Γ(X(v),Ω1
X(v)/Qp

(logC))
∼= M†,v(χAχ2

cycl),

and ∂χA : M†(χA)→M†(χAχ2
cycl).

When the character χA is χkcycl, it is easy to see that ∂χ
k
cycl is the restric-

tion of ∂⊗k on ωk to X(v).

Lemma 3.7. — If we change the splitting of Hodge filtration as in
Lemma 3.4, then the corresponding family of connections ∂χA and ∂′χA

are related by
∂′χA = ∂χA + WT(χA) · α.

Proof. — This can be proved by specializing to classical characters as in
Proposition 3.9 below. But we prefer a down-to-earth proof which we hope
will give the reader a better intuition for the construction.

Let η′ be another splitting of Hodge filtration and let α be as in
Lemma 3.4. Let ∂′, ∂̃′, ∂′T× , ∂

′
F×n

, and ∂̃′
F×n

be the differential operators
or connections constructed using η′ in place of η. We analyse their differ-
ence with the original one.
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By Lemma 3.4, ∂′ − ∂ = α can be viewed as a section of ω2 ∼= Ω1. Then
∂̃′ − ∂̃ is multiplication by kα on the direct summand ωk. In other words,
the action of ∂̃′−∂̃ is given by the action of the Lie algebra of Gm multiplied
with α. It is clear that this property continues to hold for the differences
of the other differential operators. In particular, ∂′χA − ∂χA is given by
the action of the Lie algebra multiplied by α. This is the statement of the
lemma. �

3.8. The family of Gauss–Manin connections on M†r (χA)

Keep χA and v as above. Recall that the character χA gives rise to a
weight function WT = WT(χA) on Spm(A). Following Lemma 3.5, we
define the family of nearly overconvergent Gauss–Manin connections to be

∇χA,r : M†,vr (χA) =
r⊕
a=0

M†,v(χAχ−2a
cycl )

−→M†,vr+1(χAχ2
cycl) =

r+1⊕
a=0

M†,v(χAχ2−2a
cycl )

given by sending f ∈M†,v(χAχ−2a
cycl ) to

(3.8.1) ( (WT− a)f, ∂χAχ
−2a
cycl (f), aλf )

∈M†,v(χAχ−2a
cycl )⊕M

†,v(χAχ2−2a
cycl )⊕M†,v(χAχ4−2a

cycl ).

Taking v → 0+, this defines ∇χA,r : M†r (χA) → M†r+1(χAχ2
cycl). When

χA = χkcycl is a classical character and k > 2r + 2, the Gauss–Manin con-
nection M†k,r → M†k+2,r+1 is compatible with the algebraic Gauss–Manin
connection ∇k,r : Mk,r →Mk+2,r+1.

Proposition 3.9. — The family of nearly overconvergent Gauss–Manin
connections ∇χA,r defined above does not depend on the choice of the split-
ting η of the Hodge filtration.

Proof. — We can check this by hand using Lemmas 3.4 and 3.7 and the
expression (3.8.1). This amounts to checking a matrix equality. We leave
the details to the interested reader.

Alternatively, we can check the independence using an abstract argument
as follows. Note that when χA = χkcycl for an integer k > 2r + 2, ∇χA,r is
the same as the Gauss–Manin connection ∇k,r and hence is independent of
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the choice of splitting of the Hodge filtration. In general, using the functo-
riality of the construction, we may assume that Spm(A) is a geometrically
connected subdomain of W containing infinitely many characters of the
form above. Since M†,vr (χA) is potentially orthogonalizable in the sense of
Buzzard [3], the operator∇χA,r is determined by its specializations to these
classical characters. Hence ∇χA,r is independent of the choice of splitting
of the Hodge filtration. �

Remark 3.10. — It is clear from the construction that the family of
nearly overconvergent Gauss–Manin connections ∇χA,r commutes with the
action of Hecke operators.

3.11. q-expansions

Neither [1] nor [8] elaborated on the q-expansion attached to overconver-
gent modular forms in an explicit way. We include a short discussion for
completeness.
Consider the Tate curve E = Tate(q) over Zp((q)); it comes equipped

with a canonical differential ωcan = dt
t and its d.s.k “dual” ηcan as defined

in [7, A1.3.14].
The Tate curve admits a canonical subgroup Cn = µpn ⊆ E[pn]. Its dual

is canonically isomorphic to Z/pnZ over ZpJqK. The Hodge–Tate map for
the Tate curve is

HT : CDn ∼= (Z/pnZ)Zp((q))

−→ Ω1
Cn/Zp((q))

∼= Ω1
E/Zp((q)) ⊗OE

OCn
= OCn

· ωcan.

It sends the canonical generator 1 ∈ Z/pnZ to ωcan. Moreover, this isomor-
phism extends to an isomorphism over ZpJqK. Let R = Qp〈p−1q〉 be the
ring of analytic functions on the disk at a cusp of radius p−1;(7) so we view
Spm(R) as an affinoid subdomain of X(v) for any v. We put z = ωcan so
that T× ×X SpecR = SpecR[z, z−1]. The description of the Hodge–Tate
map implies that

F×n ×X(v) SpmR ∼=
∐

m∈Z/pnZ

BR(xm, p−n),

where BR(xm, p−n) denotes the relative disk over R around z = xm of
radius p−n.

(7)We could have worked with a larger disk or even with ZpJqK[ 1
p

], but the latter does
not fit into the language of rigid analytic space.
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Now, let χA : Z×p → A× be a continuous character. Then for some n > 3,
we have |χA(exp(pn−1))− 1| < p−1/(p−1). We put λ = χA(exp(pn)) ∈ A×.
It follows that we can construct the overconvergent sheaf using this n. Let
G◦n,R denote the identity component of Gn,R := Gn ×X(v) Spm(R) and
let F×,◦n,R be the connected component of F×n,R := F×n ×X(v) Spm(R) that
contains ωcan. We consider the following section of V ⊗OX(v)×Spm A

OF×,◦
n,R

zlog(λ)/pn

= 1 +
∞∑
i=1

(z − 1)i ⊗
(

log(λ)/pn

i

)
.

It is G◦n,R-equivariant in the sense that, for g ∈ 1 + pnZpJqK,

g(zlog(λ)/pn

) = (g−1z)log(λ)/pn

χ(g) = zlog(λ)/pn

χ(g)g− log(λ)/pn

= zlog(λ)/pn

.

Using the action ofGn,R, we can extend this section to aGn,R-equivariant
section of V ⊗X(v)×Spm(A) OF×

n,R
. In other words, we have constructed an

explicit section ωχA
can of ωχA over Spm(R⊗̂A).

Thus, for any nearly overconvergent modular form f ∈ M†,vr (χA), we
may evaluate f on this Tate curve and write

f = f0(q)ωχA
canω

r
can + f1(q)ωχA

canω
r−1
can ηcan + · · ·+ fr(q)ωχA

canη
r
can

for some f0, . . . , fr ∈ AJqK. This gives a natural morphism

M†,vr (χA) −→ AJqK[Y ](3.11.1)
f 7−→ f0(q) + f1(q)Y + · · ·+ frY r.

functorial in the character χA. When χA is a classical character and r = 0,
the map f 7→ f0(q) recovers the q-expansion map of overconvergent mod-
ular forms. When the modular curve X is geometrically connected, as in
the proof of usual q-expansion principle, Spec(R) has Zariski dense image
in XQp ; so passing to the q-expansion (3.11.1) is equivalent to taking com-
pletion at the corresponding cusps and is hence injective. Thus, one often
uses the q-expansion to indicate the corresponding nearly overconvergent
modular form.

Example 3.12. — Assume that we choose the splitting of the Hodge
filtration to be the one given by Katz as in Example 3.3. In terms of q-
expansions, ∂χA : M†(χA)→M†(χAχ2

cycl) is then given by

f 7→ q
d

dq
f + WT(χA)E2f

12 .
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