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EXTENSIONS OF GENERIC MEASURE-PRESERVING
ACTIONS

by Julien MELLERAY

Abstract. — We show that, whenever Γ is a countable abelian group and ∆
is a finitely-generated subgroup of Γ, a generic measure-preserving action of ∆ on
a standard atomless probability space (X,µ) extends to a free measure-preserving
action of Γ on (X,µ). This extends a result of Ageev, corresponding to the case
when ∆ is infinite cyclic.
Résumé. — Nous établissons que, pour tout groupe dénombrable abélien Γ et

tout sous-groupe finiment engendré ∆ de Γ, l’ensemble des actions de ∆ sur un
espace de probabilités standard (X,µ) qui peuvent être étendues en une action libre
de Γ sur (X,µ) est générique (au sens de Baire). Ce résultat étend un théorème
d’Ageev, qui correspond au cas où ∆ est un groupe cyclique infini.

1. Introduction

A classical subject in ergodic theory is the study of measure-preserving
actions of countable groups on a standard atomless probability space (X,µ).
Given two countable groups ∆ 6 Γ, one may ask whether any measure-
preserving action of ∆ on (X,µ) extends to a measure-preserving action
of Γ, and it is well-known that, in this generality, the question has a negative
answer.
Let G denote the automorphism group of (X,µ), endowed with its usual

Polish group topology. The set of measure-preserving actions of Γ on (X,µ),
which is just the set of homomorphisms from Γ into G, may naturally be
identified with a closed subset of GΓ (endowed with the product topology),
and so the space of Γ-actions is a Polish space in its own right. Then, one
may wonder what happens for a generic action of ∆ on (X,µ), in the sense

Keywords: Measure-preserving action, Baire category, Polish group.
Math. classification: 22F10, 54H05, 54E52.



608 Julien MELLERAY

of Baire category: can a generic action of ∆ on (X,µ) be extended to an
action of Γ on (X,µ)? This problem is for instance mentioned in [12, p. 75],
where one can find an example of countable groups ∆ 6 Γ such that ∆ is
infinite cyclic and a generic action of ∆ cannot be extended to an action
of Γ.
It is well-known that, for any countable group ∆, generic actions of ∆

are free and so, given a pair of countable groups ∆ 6 Γ, one may also ask
whether a generic action of ∆ can be extended to a free action of Γ. A
complete answer to that question, in the case ∆ = Z and Γ is abelian, has
been provided by Ageev [3, Theorem 2]: in that case, a generic action of ∆
does extend to a free action of Γ. In this paper, we extend Ageev’s result
to the case when ∆ is finitely generated abelian (1) , proving the following
theorem (Corollary 3.8 below).

Theorem. — Let Γ be a countable abelian group and ∆ a finitely-
generated subgroup of Γ. Then a generic measure-preserving action of ∆
on a standard atomless probability space (X,µ) can be extended to a free
measure-preserving action of Γ on (X,µ).

Our approach to this question is via category-preserving maps and a
generalization of the classical Kuratowski-Ulam theorem valid for these
maps; these notions were first considered in [15](2) .
The paper is organized as follows: first we quickly go over some back-

ground on the space of actions of countable groups and properties of generic
measure-preserving Z-actions that will be needed in our proof. Next, we re-
call the definition of a category-preserving map, establish some properties,
and discuss the relationship between our approach to the problem tackled
here and a classical approach to similar problems in ergodic theory, which
is via “Dougherty’s lemma” and the notion of points of local density for a
continuous map between two Polish spaces. Then we give a proof of our
main result and discuss possible generalizations. While we prove that most
of these possible generalizations are false, we leave open the question of
whether one might drop the assumption that ∆ is finitely generated in the
statement of our main result.

(1)Ageev did not publish his proof, so it was unknown to me when writing this ar-
ticle whether his argument was similar to what is presented here. Since then (private
communication) he told me that his proof was quite different.
(2)After completing a first draft of this paper, I became aware that a similar approach
was used by Tikhonov [20] to study embeddings of generic actions of Zd in continuous
actions of Rd.
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2. Background and terminology

2.1. The space of actions

For information on Polish groups and spaces, we refer the reader to [11]
and [7]. The book [12] is a good reference for ergodic theory seen from the
descriptive set theoretic point of view.

Let Γ be a countable group and (G, τ) be a Polish group. We denote by
Hom(Γ, G) the set of homomorphisms of Γ into G. If we endow GΓ with its
product Polish topology τ̃ (the product of countably many copies of (G, τ))
then Hom(Γ, G) is a closed subset of GΓ, hence (Hom(Γ, G), τ̃) is a Polish
topological space in its own right, and the conjugation action given by
(g·π)(γ) = gπ(γ)g−1 is continuous. We may then use Baire category notions
in Hom(Γ, G); below, we say that a subset Ω ⊆ Hom(Γ, G) is generic, or
comeager, if it contains a countable intersection of dense open subsets of
Hom(Γ, G). Dually, a set is meager if its complement is comeager; we will
often use the formulation “a generic π ∈ Hom(Γ, G) has property (P)” to
mean “the set of all π ∈ Hom(Γ, G) which have property (P) is generic”.
By a standard atomless probability space, we mean, as usual, a prob-

ability space isomorphic to [0, 1] endowed with the Lebesgue measure. If
G = Aut(X,µ) denotes the automorphism group of a standard atomless
probability space (X,µ), then we endow G with its usual Polish group
topology, which is most easily described by its convergent sequences: a se-
quence (gn) of elements of G converges to g ∈ G, if, for any measurable
A ⊆ X, one has µ(gnA∆gA) → 0 as n → +∞. Note that two measure-
preserving automorphisms of (X,µ) are identified if they coincide on a set
of full measure; since all the subgroups of G that we consider here are count-
able, this should not cause any confusion and so we shall simply neglect
sets of measure zero in what follows.

TOME 64 (2014), FASCICULE 2



610 Julien MELLERAY

Notation. — In the remainder of this article, (X,µ) is a standard atom-
less probability space andG denotes its automorphism group, endowed with
its usual Polish topology.

We say that π ∈ Hom(Γ, G) is free if µ({x : π(γ)x = x}) = 0 for all γ 6= 1.
The set of free measure-preserving actions is dense Gδ in Hom(Γ, G) [9].
If Γ is finite, any two free measure-preserving actions of Γ are conjugate,
hence a free measure-preserving action of Γ on (X,µ) has a comeager con-
jugacy class. While such a strong fact is not true in general (for instance,
conjugacy classes in Hom(Γ, G) are meager whenever Γ is amenable and in-
finite [6]), it is well-known that for any countable group Γ there exist actions
of Γ on (X,µ) which have a dense orbit under conjugacy [8], so the 0 − 1
topological law (see e.g. [11, 8.46]) implies that any conjugacy-invariant
subset with the property of Baire is either meager or comeager. This fact
seems to be often called the dynamical alternative, after the terminology
of [9], where it was first established.
Let us also note here a few results that will be useful below;

Theorem 2.1 (King [14]). — A generic element of G admits roots of
all orders. Actually, the map g 7→ gn is category-preserving (see below for
a definition) for all n 6= 0.

This was first proved by King in [14], then de la Rue and de Sam Lazaro
gave a simpler presentation of King’s proof in [17], and improved the above
result by showing that a generic element g of G embeds in a flow, i.e. there
exists a continuous homomorphism F : (R,+)→ G such that g = F (1).

For g ∈ G, we denote by 〈g〉 the subgroup of G generated by g.

Theorem 2.2 (Chacon-Schwartzbauer [5]). — For a generic element g
of G, the centralizer C(g) of g coincides with 〈g〉; in particular C(g) is a
maximal abelian subgroup of G.

In an earlier version of this article, the above result was incorrectly at-
tributed to King [13]; actually, it was proved much earlier: it is stated in [4],
where the authors say it was already proved by Chacon-Schwartzbauer [5]
(though the result does not seem to appear explicitly there) (3) . Yet another
proof recently appeared in [15].
Stepin and Eremenko, using techniques originated by Ageev and de la

Rue-de Sam Lazaro, proved that the centralizer of a generic element is large
in the following sense.

(3) I am grateful to S. Solecki for pointing this out to me.
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Theorem 2.3 (Stepin-Eremenko [19]). — The infinite-dimensional
torus Tω embeds isomorphically (as an abstract group) in the centralizer
of a generic element of G.

What we really need for our proof is a weaker corollary of this theorem,
originally proved by Ageev [2], namely the fact that if g is a generic element
of G then any finite abelian group isomorphically embeds in the centralizer
of g.
Though it will not be needed in this paper, we mention for completeness

a recent result of Solecki [18], who proved that the centralizer of a generic
element of Aut(X,µ) is a continuous homomorphic image of a closed sub-
space of L0(R) and contains an increasing sequence of finite dimensional
tori whose union is dense (in [18], Solecki explains how to use this result
to derive the theorem of Stepin-Eremenko quoted above, which is not ex-
plicitly proved in [19] even though it is stated in the abstract of that paper
and can also be derived from the authors’ arguments).

2.2. Category-preserving maps

As explained in the introduction, our aim is to show that, whenever
∆ 6 Γ are countable abelian groups and ∆ is finitely generated, a generic
element of Hom(∆, G) may be extended to a free element of Hom(Γ, G).
In particular, denoting by Res the restriction map from Hom(Γ, G) to
Hom(∆, G), we would like to show that the image of Res is comeager.
Since the conjugacy action of G on Hom(∆, G) is topologically transitive,
the 0− 1 topological law implies that it is enough to show that the image
of Res is not meager.
A common approach to this type of question in ergodic theory is based

on an observation sometimes called Dougherty’s lemma (see e.g. [13, 14,
19, 20]); below we quickly discuss this approach, as well as the technique
used in [15], and compare the two.

Definition 2.4. — Let Y,Z be topological spaces and f : Y → Z a con-
tinuous map. Say that y ∈ Y is locally dense for f if for any neighborhood
U of y the set f(U) is a neighborhood of f(y).

Proposition 2.5 (“Dougherty’s lemma” ). — Assume Y, Z are com-
plete metric spaces, f : Y → Z is continuous and the set of points which
are locally dense for f is dense in Y . Then f(Y ) is not meager.

TOME 64 (2014), FASCICULE 2



612 Julien MELLERAY

Proof. — Assume that the set of points which are locally dense for f is
dense and f(Y ) ⊆ ∪nFn where each Fn is a closed subset of Z with empty
interior. Then Y = ∪nf−1(Fn) so some f−1(Fn) must have nonempty
interior, hence must contain a point of local density, so the interior of
f(f−1(Fn)) ⊆ Fn is nonempty, a contradiction. �

Conversely, the next proposition shows that, when Y is separable, the
existence of points of local density is necessary for f(Y ) to be non meager,
though it is certainly not necessary that the set of points of local density be
dense; as a side remark, note that this is always a Gδ subset of Y , see [13].

Proposition 2.6. — Assume Y, Z are Polish spaces, f : Y → Z is con-
tinuous and let A = {y ∈ Y : y is not locally dense for f}. Then f(A) is
meager.

Proof. — If y is not locally dense for f , then there exists an open subset
U such that y ∈ U and f(y) 6∈ Int(f(U)). Hence f(y) ∈ f(U) r Int(f(U)).
Choosing a countable basis of open subsets (Un) for the topology of Y , we
see that

f(A) ⊆
⋃
n

f(Un) r Int(f(Un)).

Hence f(A) is meager. �

A different approach, at least on the face of it, was used in [15] to study
similar questions.

Definition 2.7 ([15]). — Let Y,Z be Polish spaces. Say that a continu-
ous map f : Y → Z is category-preserving if it satisfies one of the following
equivalent conditions:

(i) For any comeager A ⊆ Z, f−1(A) is comeager.
(ii) For any nonempty open U ⊆ Y , f(U) is not meager.
(iii) For any nonempty open U ⊆ Y , f(U) is somewhere dense.

Note that f being category-preserving implies in particular that f(Y ) is
not meager; also, any continuous open map is category-preserving.
It turns out that the two approaches are equivalent.

Proposition 2.8. — Assume Y, Z are Polish spaces and f : Y → Z is
continuous. Then f is category-preserving if and only if the set of points
which are locally dense for f is dense in Y .

Proof. — The implication from right to left is immediate from the defi-
nition of a point of local density and condition 2.7 (iii). To see the converse,
assume that there is a nonempty open subset U of Y such that U does not

ANNALES DE L’INSTITUT FOURIER
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contain any point of local density. Then Proposition 2.6 implies that f(U)
is meager, so f is not category-preserving. �

So far, we have explained an approach to showing that the image of the
restriction map Res: Hom(Γ, G) → Hom(∆, G) is comeager; actually, we
want to prove more, since we want to prove that a generic action of ∆
extends to a free action of Γ. In other words, we want to prove that the
restrictions of free actions of Γ form a comeager set in Hom(∆, G). This will
come for free (no pun intended) if we establish that the restriction map is
category-preserving: indeed it is easy to check, assuming that the restriction
map is category-preserving, that the restrictions of elements taken in any
comeager subset of Hom(Γ, G) must form a comeager subset of Hom(∆, G)

Saying that f : Y → Z is category-preserving is a strong condition, much
stronger than just saying that f(Y ) is comeager. This is witnessed by the
following theorem.

Theorem 2.9 ([15]). — Let Y,Z be Polish spaces, and f : Y → Z be a
category-preserving map. Let also A be a subset of Y with the property of
Baire. Then the following assertions are equivalent:

(i) A is comeager in Y .
(ii)

{
z : A ∩ f−1(z) is comeager in f−1(z)

}
is comeager in Z.

In what follows, we will use the notation ∀∗y ∈ Y A(y) to signify that
A is comeager in Y ; for example, the equivalence in the above theorem,
when written using this notation, becomes (for A ⊆ Y with the property
of Baire):

(∀∗y ∈ Y A(y))⇔ (∀∗z ∈ Z ∀∗y ∈ f−1(z) A(y)).

The above statement, in the case Y = Y1 × Y2 and f is a coordinate
projection, is the classical Kuratowski-Ulam theorem. It enables one to
“split category along the fibers of f” and will be extremely useful in our
proof.
After a first draft of this paper was completed, I became aware of the

paper [20], where the author considers maps which “respect genericity”
— i.e. such that the inverse image of a comeager set is comeager, and the
image of a comeager set is comeager. Any map which respects genericity
is category-preserving, and a category-preserving map respects genericity
if and only if it has a dense image. Thus, in the context of this article, the
two notions are essentially equivalent; compared to [20], our approach is
somewhat simpler because we have Theorem 2.9 at our disposal, while [20]
only uses the classical Kuratowski-Ulam theorem.
The following simple proposition from [15] will also be useful.

TOME 64 (2014), FASCICULE 2



614 Julien MELLERAY

Proposition 2.10. — Let H be a Polish group, Y,Z be two Polish H-
spaces and f : Y → Z a H-map. Assume that Y is minimal (i.e. every orbit
is dense) and f(Y ) is not meager. Then f is category-preserving.

Proof. — Since f(Y ) is not meager, there must exist a point of local
density y ∈ Y . Then every point of H · y is a point of local density, so the
set of points of local density is dense, and we are done. �

As an example, an immediate corollary of this lemma is that, whenever
H,K are Polish groups, a continuous homomorphism φ : H → K with
non-meager image must be category-preserving; actually it is well-known
that under these assumptions φ must be open. Let us give a slightly more
interesting example.

Lemma 2.11. — Let ∆ 6 Γ be two groups, and assume that ∆ is
finite and Γ is countable. Then the restriction map Res: Hom(Γ, G) →
Hom(∆, G) is category-preserving.

Proof. — Let Y denote the set of all free actions of Γ with a dense
conjugacy class. Res(Y ) is conjugacy-invariant and contains a free action
of ∆, hence it must contain all of them (recall that they are all conju-
gate) and so is comeager. The action of G on Y is minimal, so Res : Y →
Hom(∆, G) is category-preserving. Since Y is comeager in Hom(Γ, G) ([8],
see [12, Theorem 10.7] for a simple proof) this implies that Res is category-
preserving. �

In the proof of the main result, we will also need the following facts
from [15].

Lemma 2.12 ([15]). — Let H be a Polish group and Γ be a countable
abelian group such that, for a generic π ∈ Hom(Γ×Z, H), π(Γ× Z) = π(Γ).
Then the restriction map Res: Hom(Γ × Z, H) → Hom(Γ, H) is category
preserving.

This criterion was applied to obtain the following result (also proved,
earlier and independently, by Tikhonov [20], using his notion of map re-
specting genericity).

Lemma 2.13 ([15]). — For any integers d 6 k, the restriction map from
Hom(Zk, G) to Hom(Zd, G) is category-preserving.

3. Proof of the main result

We are now ready to give the proof of our main result. We break down
the argument in a series of lemmas, most of which are special cases of the
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main result. Some of the lemmas were already known, but the proofs we
give here seem simpler and we try to limit the appeal to black boxes as
much as possible; the two results that are used below and that are not
proved here or in [15] are Theorems 2.1 and 2.3. We begin by setting the
notation to be used in the proof.

Notation. — We recall that (X,µ) denotes a standard atomless proba-
bility space and G its automorphism group, endowed with its usual Polish
topology. All groups are noted multiplicatively (in particular, 1 stands for
the neutral element). If Γ is a group and A is a subset of ∆, we denote by
〈A〉 the group generated by A. By Ck(G) we mean the set of commuting
k-uples of elements of G, which we identify with Hom(Zk, G) whenever it
is convenient. If ḡ ∈ Ck(G), C(ḡ) denotes the centralizer of 〈ḡ〉; when Γ
is some finite abelian group and ḡ ∈ Ck(G), we let CΓ(ḡ) denote the set
of Γ-actions on (X,µ) which commute with ḡ. Similarly, if Γ is some finite
group, π ∈ Hom(Γ, G) and k ∈ ω, Ck(π) stands for the set of commuting
k-uples of elements of G which commute with π(γ) for all γ ∈ Γ. Whenever
d 6 k and we view Zd as a subgroup of Zk, we view it as the subgroup of
k-uples generated by the first d elements of the natural basis of Zk.

Lemma 3.1. — Let d be an integer, and Γ be a finite abelian group.
Then the restriction map Res: Hom(Zd×Γ, G)→ Hom(Zd, G) is category-
preserving.

Proof. — Since the restriction map Hom(Zd, G) → Hom(Z, G) is
category-preserving (Lemma 2.13), Theorems 2.2 and 2.3 imply that

∀∗ḡ∈Cd(G), C(ḡ)=〈g1〉 is abelian and contains an isomorphic copy of Tω.

It is also well-known that a generic element of Hom(Zd, G) is free ergodic.
Now, choose ḡ ∈ Cd(G) such that the action Zd y (X,µ) induced by ḡ is
free ergodic, and C(ḡ) = 〈g1〉 is an abelian group containing an isomorphic
copy of Tω.
We may extend the action Zd y (X,µ) induced by ḡ as follows: pick

an isomorphic embedding φ : Γ → C(ḡ), and set π(n1, . . . , nd, γ) = gn1
1 · · ·

gnd

d φ(γ). This action extends the original action of Zd to Zd × Γ, and we
claim that π is free. To see this, pick h ∈ 〈ḡ〉 and γ ∈ Γ, and assume that

µ({x : hφ(γ)(x) = x}) > 0.

Since {x : hφ(γ)(x) = x} is 〈ḡ〉-invariant and 〈ḡ〉 acts ergodically, we get

µ({x : hφ(γ)(x) = x}) = 1.

TOME 64 (2014), FASCICULE 2
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Since γ has finite order, h must be of finite order and so h = 1 since the
original Zd-action was free. Hence φ(γ) = 1, so γ = 1.
Thus a generic Zd-action extends to a free action of Zd × Γ; applying

Proposition 2.10 as in the proof of Lemma 2.11, we obtain that Res is
category preserving. �

An immediate corollary of this and Lemma 2.12 is the following.

Lemma 3.2. — Let Γ be a finite abelian group, and d 6 k be two
integers. Then the restriction map Res: Hom(Zk×Γ, G)→ Hom(Zd×Γ, G)
is category-preserving.

Proof. — It is enough to show the above result when k = d+1 (a compo-
sition of category-preserving maps is still category-preserving, a fact that
will be useful to us more than once) and d > 1, since the case d = 0 is
covered by Lemma 2.11. From Lemma 3.1 and Theorem 2.2 we obtain

∀∗π ∈ Hom(Zd+1 × Γ, G) π(Z) is maximal abelian.

Hence

∀∗π ∈ Hom(Zd+1 × Γ, G) π(Zd+1 × Γ) = π(Z) = π(Zd × Γ).

Applying Lemma 2.12 yields the desired result. �

Lemma 3.3. — Fix an integer d. Then, for a generic ḡ ∈ Cd(G), the
group C(ḡ) is divisible.

Proof. — Fixing some nonzero integer p, it is enough to show that for a
generic ḡ any element of C(ḡ) has a p-th root in C(ḡ). We begin with the
case when d is equal to 1. We know, by Theorem 2.1, that

∀∗h ∈ G ∃f ∈ G h = fp.

Applying Lemma 2.13 and the fact that the centralizer of a generic g coin-
cides with 〈g〉, we obtain

∀∗(g, h) ∈ C2(G) C(h) = C(g) = 〈g〉 and ∃f ∈ G h = fp.

Since the equation h = fp implies that f and h commute, the above equa-
tion implies, using Lemma 2.13 again (projecting on the other coordinate)
and Theorem 2.9, that

∀∗g ∈ G ∀∗h ∈ C(g) = 〈g〉 ∃f ∈ C(g) h = fp.

In other words, for a generic g and any integer p the homomorphism h 7→ hp

of the abelian Polish group C(g) has a comeager image, hence it must be
surjective, and we are done.
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The general case immediately follows from Lemma 2.13, since

∀∗ḡ ∈ Cd(G) C(ḡ) = C(g1) and C(g1) is divisible.

�

The following closely related lemma was already proved in [20] (using
different vocabulary).

Lemma 3.4. — For any nonzero integers (n1, . . . , nk) the map (g1, . . . ,

gk) 7→ (gn1
1 , . . . , gnk

k ) is category-preserving from Ck(G) to itself.

Proof. — It is enough to show that the map (g1, . . . , gk) 7→ (g1, . . . , gk−1,

gpk) is category-preserving for each k > 2 (the case k = 1 is the content of
Theorem 2.2) and p 6= 0. Let O be comeager in Ck(G). We have

∀∗(g1, . . . , gk−1) ∈ Ck−1(G) ∀∗h ∈ C(g1, . . . , gk−1) (g1, . . . , gk−1, h) ∈ O.

From Lemma 3.3 we know that h 7→ hp is a surjective homomorphism from
C(g1, . . . , gk−1) to itself for a generic (g1, . . . , gk−1) ∈ Ck−1(G), so it is
category-preserving and the above equation yields

∀∗(g1, . . . , gk−1) ∈ Ck−1(G) ∀∗h ∈ C(g1, . . . , gk−1) (g1, . . . , gk−1, h
p) ∈ O.

That is,
∀∗(g1, . . . , gk) ∈ Ck(G) (g1, . . . , gk−1, g

p
k) ∈ O.

�

Lemma 3.5. — Let Γ be a finite abelian group, and ∆ be a torsion-free
subgroup of Zk × Γ. Then the restriction map Res: Hom(Zk × Γ, G) →
Hom(〈∆,Γ〉, G) is category-preserving.

Note before the proof that, as a group, 〈∆,Γ〉 ∼= ∆×Γ; also, ∆ ∼= Zd for
some d 6 k.
Proof. — We may assume that ∆ is nontrivial, i.e. isomorphic to Zd

for some d ∈ {1, . . . , k}. Using the existence of simultaneous bases for
subgroups of a free finitely-generated abelian group, we may find a basis
e1, . . . , ek of Zk, nonzero integers n1, . . . , nd and elements γ1, . . . γd of Γ
such that

∆ = 〈(eni
i , γi) : i 6 d〉.

Using these particular generating sets, the restriction map may be identified
with the map{

Hom(Zk × Γ, G)→ Hom(Zd × Γ, G)
(g1, . . . , gk, π) 7→ (gn1

1 π(γ1), . . . , gnd

d π(γd), π)
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Let O be a comeager subset of Hom(Zd × Γ, G). We know from Lem-
ma 2.11 and Theorem 2.9 that

∀∗π ∈ Hom(Γ, G) ∀∗ḡ ∈ Cd(π) (ḡ, π) ∈ O.

Since, for each fixed π, the map ḡ 7→ (g1π(γ1), . . . , gdπ(γd)) is a homeomor-
phism of Cd(π), this may be rewritten as

∀∗π ∈ Hom(Γ, G) ∀∗ḡ ∈ Cd(π) (g1π(γ1), . . . , gdπ(γd), π) ∈ O.

Using Theorem 2.9 and Lemma 3.1, this is the same as

∀∗ḡ ∈ Cd(G) ∀∗π ∈ CΓ(ḡ) (g1π(γ1), . . . , gdπ(γd), π) ∈ O.

Applying Lemma 3.4 this yields

∀∗ḡ ∈ Cd(G) ∀∗π ∈ CΓ(ḡ) (gn1
1 π(γ1), . . . , gnd

d π(γd), π) ∈ O.

Finally, Lemma 3.2 and Theorem 2.9 lead to the desired

∀∗π ∈ Hom(Zk × Γ, G) Res(π) ∈ O.

�

Lemma 3.6. — Let Γ2 6 Γ1 be finite abelian groups and d be an integer.
Then Res: Hom(Zd × Γ1, G)→ Hom(Zd × Γ2, G) is category-preserving.

Proof. — We claim that, for a generic ḡ ∈ Cd(G), any homomorphism
from Γ2 to C(ḡ) extends to a homomorphism from Γ1 to C(ḡ) . The proof
of this is the same as the classical proof of the fact that a character of a
finite abelian group extends to a character of a finite abelian supergroup.
By induction, it is enough to prove the above fact in case there exists
x ∈ Γ1 such that Γ1 = 〈Γ2, x〉. Pick such an x, and let m be the smallest
nonnegative integer such that xm = γ ∈ Γ2. Let also ḡ be such that C(ḡ) =
〈ḡ〉 is abelian and divisible.

Then for any homomorphism φ from Γ2 to C(ḡ), we may find h ∈ C(ḡ)
such that hm = φ(γ), and extend φ to Γ1 by setting, for any k < ω

and δ ∈ Γ2, φ(xkδ) = hkφ(δ). The verification that this is a well-defined
homomorphism from Γ1 to C(ḡ) is left to the reader.
Since Γ1,Γ2 and C(ḡ) are abelian, the restriction map from CΓ1(ḡ) to

CΓ2(ḡ) is a (continuous) homomorphism between two Polish groups, and we
just proved that this homomorphism is surjective: hence it must be open,
and in particular category-preserving.
We are almost done: let O be a comeager subset of Hom(Zd × Γ2, G).

Then we know from Lemma 3.2 that

∀∗ḡ ∈ Cd(G) ∀∗π ∈ CΓ2(ḡ) (ḡ, π) ∈ O.
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Since a generic ḡ ∈ Cd(g) is such that C(ḡ) = 〈ḡ〉 is abelian and divisible,
our reasoning above yields

∀∗ḡ ∈ Cd(G) ∀∗φ ∈ CΓ1(ḡ) (ḡ, φ|Γ2) ∈ O.

That is,
∀∗π ∈ Hom(Zd × Γ1, G) Res(π) ∈ O.

�

Now to the proof of our main result.

Theorem 3.7. — Let Γ be a countable abelian group and ∆ be a finitely
generated subgroup of Γ. Then the restriction map Res: Hom(Γ, G) →
Hom(∆, G) is category-preserving.

Proof. — We begin with the case when Γ is finitely generated. We may
assume that for some nonzero integers d 6 k, finite groups F1 6 F2, and a
subgroup H of Zk × F2 isomorphic to Zd, we have

Γ = Zk × F2 and ∆ = H × F1.

Then applying Lemmas 3.5 and 3.6 to the following sequence yields the
desired result:

Hom(Zk × F2, G)→ Hom(〈H,F2〉, G)
∼= Hom(H × F2, G)→ Hom(H × F1, G).

Now we turn to the case when Γ is not finitely generated; we apply the
same method as in [15] to deal with that case. Going back to the definition
of a category-preserving map, we pick a dense open O ⊆ Hom(∆, G) and a
nonempty open U ⊆ Hom(Γ, G); without loss of generality we may assume
that there is a finitely generated subgroup Γ′ of Γ containing ∆, and a
nonempty open subset U ′ of Hom(Γ′, G), such that

U =
{
π ∈ Hom(Γ, G) : π|Γ′ ∈ U ′

}
.

Since Γ′ is finitely generated, the restriction map from Hom(Γ′, G) to
Hom(∆, G) is category-preserving, so

U ′′ =
{
π ∈ U ′ : π|∆ ∈ O

}
is open nonempty in Hom(Γ′, G). Letting γ1, . . . , γn denote generators of
Γ′, we may further assume that there exist π0 ∈ U ′′, ε > 0 and a finite
measurable partition A of (X,µ) such that, for any π ∈ Hom(Γ′, G), one
has

π ∈ U ′′ ⇔ ∀A ∈ A ∀i ∈ {1, . . . , n} µ(π0(γi)(A)∆π(γi)(A)) < ε.
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Let ψ : Γ y (XΓ/Γ′
, µΓ/Γ′) be the action of Γ co-induced by π0 (see [12,

10(G)]), and let Θ: XΓ/Γ′ → X be defined by Θ(f) = f(Γ′). Then, de-
noting by B the (finite) measurable partition generated by A and π0(A),
one may pick a measure-preserving bijection T : XΓ/Γ′ → X such that
T−1(B) = Θ−1(B) for all B ∈ B, and define φ ∈ Hom(Γ, G) by set-
ting φ(γ) = Tψ(γ)T−1. The construction ensures that φ|Γ′ ∈ U ′′, so
φ ∈ U ∩ Res−1(O), and we are done. �

Remark. — In general, given a Polish group H, and countable groups
∆ 6 Γ, one may ask whether the restriction map from Hom(Γ, H) to
Hom(∆, H) is category-preserving. The current paper is concerned with
the case H = Aut(X,µ), but this question is certainly also of interest for
other Polish groups, such as the isometry group of the Urysohn space. Thus
is seems worth pointing out that the strategy of proof presented here could
conceivably be adapted to other cases; looking at the proof, it is clear that
the most important (and, probably, hardest) step is to understand what
happens when Γ = Z and ∆ = nZ. So, Chacon-Schwartzbauer’s result
(Theorem 2.1) seems to be the key to understand the general situation. If
one were able to show that a generic isometry of the Urysohn space admits
infinitely many n-th roots for any n then, using a line of reasoning similar
to the one presented here (and some results of [15]), one could prove that
Theorem 3.7 holds also when G is the isometry group of the Urysohn space.

Corollary 3.8. — Let Γ be a countable abelian group and ∆ be a
finitely generated subgroup of Γ. Then a generic measure-preserving action
of ∆ extends to a free measure-preserving action of Γ.

Proof. — The restriction map Res: Hom(Γ, G)→Hom(∆, G) is category-
preserving and has a non meager, conjugacy-invariant range, hence a comea-
ger range. Thus the image of any comeager subset of Hom(Γ, G) is comeager
in Hom(∆, G); as free actions of Γ form a dense Gδ subset of Hom(Γ, G),
we are done. �

Now, it is reasonable to wonder to which extent one can strengthen
Theorem 3.7. Clearly, if Γ is no longer assumed to be abelian, then the
restriction map does not need to be category-preserving in general - indeed,
it will never be category-preserving if ∆ is an abelian central subgroup of
Γ, Γ is nonabelian and ∆ contains an element with infinite order. To see
this, note that it follows from our results that for such a ∆, a generic
π ∈ Hom(∆, G) is such that C(π) = π(∆) is an abelian group; thus, for
a generic π ∈ Hom(∆, G), no action π̃ of Γ extending π can be free, since
π̃(Γ) 6 C(π) must be abelian. Hence, even if ∆ is infinite cyclic and H
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is a finite nilpotent group, the restriction map Res: Hom(∆ × H,G) →
Hom(∆, G) need not be category-preserving (the simplest counterexample
being Γ = Z×Q8, where Q8 denotes the quaternion group, and ∆ = Z).

Then, one may wonder whether a weakening of Theorem 3.7 holds in
greater generality, namely, whether when ∆ 6 Γ and ∆ is (say) abelian, a
generic measure-preserving action of ∆ may be extended to an action of Γ
(we are no longer asking that the extension be free). This statement is also
false in general; a counterexample appears in [12, p. 75]. We quickly mention
another counterexample: Ageev proved in [1] that a generic element of G
is not conjugate to its inverse, thus a generic measure-preserving Z-action
cannot be extended to an action of any nontrivial semidirect product ZoH.
Indeed, the only nontrivial group automorphism of Z is n 7→ −n, so the
image of the generator of Z under any morphism from Z o H to G must
be conjugate to its inverse, and generically this does not happen.
In view of the above counterexamples, it is tempting to ask the following

question: if Γ is a countable group and ∆ is an abelian central subgroup
of Γ, is it true that a generic measure-preserving action of ∆ may be ex-
tended to a measure-preserving action of Γ? This is false even under the
additional assumption that ∆ is solvable (I do not know of an example with
∆ nilpotent but it seems likely that such an example exists); I am grateful
to Bruno Sévennec for pointing out to me the existence of a group Γ as in
the example below.

Theorem 3.9. — There exists a countable polycyclic (hence, solvable)
group Γ, whose center contains an infinite cyclic subgroup ∆, such that a
generic action of ∆ cannot be extended to an action of Γ.

Proof. — Let Γ be the countable group defined by the following presen-
tation with three generators:

Γ = 〈x, y, z| [x, y] = z4, zxz−1 = x−1, zyz−1 = y−1〉.

K.A. Hirsch showed that Γ is torsion-free, polycyclic, and its abelianization
is finite (see [10] for the original reference; this is exercise 15 p. 158 of [16]);
from the above presentation we see that z2 is central.

Let ∆ = 〈z2〉 6 Γ. We know that, for a generic action π of ∆, π is free
and the centralizer of π(z2) is an abelian group; since z2 is central in Γ,
any action π̃ of Γ extending π must take its values in the abelian group
C(π(z2)), hence have finite range since Γ has no infinite abelian quotients.
Thus such a π̃ cannot exist, since π is free and so π̃(∆) = π(∆) must be
infinite if π̃ extends π. �
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While it would be interesting to understand exactly for which pairs
of groups ∆ 6 Γ the restriction map from Hom(Γ, G) to Hom(∆, G) is
category-preserving, or simply has a comeager image, the above examples
show that a general answer will necessarily be complicated and is perhaps
too much to ask for. Still, perhaps one may generalize Theorem 3.7 to the
case when ∆ is any countable abelian group (i.e. is no longer supposed to
be finitely generated), and we end the paper with that question.

Question. — Is it true that, whenever ∆ 6 Γ are countable abelian
groups, the restriction map Res: Hom(Γ, G) → Hom(∆, G) is category-
preserving?
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