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REGULARITY OF SETS WITH CONSTANT INTRINSIC
NORMAL IN A CLASS OF CARNOT GROUPS

by Marco MARCHI (*)

Abstract. — In this Note, we define a class of stratified Lie groups of arbitrary
step (that are called “groups of type ?” throughout the paper), and we prove that,
in these groups, sets with constant intrinsic normal are vertical halfspaces. As a
consequence, the reduced boundary of a set of finite intrinsic perimeter in a group
of type ? is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This
result extends the previous one proved by Franchi, Serapioni & Serra Cassano in
step 2 groups.
Résumé. — Dans cette note, nous définissons une classe de groupes de Lie

stratifiés de pas arbitraire (que nous appelons “groupes de type ?” dans cet ar-
ticle), et nous montrons que, dans ces groupes, les ensembles à normale intrinsèque
constante sont des hyperplans. En conséquence, la frontière réduite d’un ensemble
de périmètre intrinsèque fini dans un groupe de type ? est rectifiable au sens in-
trinsèque (théorème de rectifiabilité de De Giorgi). Ce résultat étend un résultat
précédent prouvé par Franchi, Serapioni & Serra Cassano pour les groupes de pas 2.

1. Introduction

This article is intended to introduce a peculiar class of nilpotent Lie
groups, whose Lie algebra enjoys a particular property giving several in-
teresting algebraic and geometric consequences. We call these groups “of
type ?”. As long as we know, these groups are considered for the first time
in the present paper. Before entering into the details let us spend a few
words to illustrate the motivation of our work.

Keywords: Carnot groups, intrinsic perimeter, intrinsic rectifiability.
Math. classification: 28A75, 49Q15, 58C35.
(*) It is a pleasure to thank Bruno Franchi for his invaluable constant support and for
the many hours he spent talking with the author, and Alessandro Ottazzi for several
helpful discussions on Carnot groups of type ?. The author also thanks the referee for
his useful comments which helped improving the presentation of the paper.
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In fact our initial intent was to extend to a larger class of stratified
nilpotent Lie groups (usually called Carnot groups nowadays) De Giorgi’s
Rectifiability Theorem following the original De Giorgi’s approach ([3])
that was partially extended to some Carnot groups by [8] and [1]. Given a
set E ⊂ Rn of finite perimeter, De Giorgi’s proof relies on the fact that the
perimeter measure is concentrated in a subset of the topological boundary
of E, the so-called reduced boundary ∂∗E, and that at any point of ∂∗E the
blowup of E is a set with a constant normal and therefore, in the Euclidean
setting, is a halfspace. The notions of perimeter and of reduced boundary,
as well as that of the normal have a natural counterpart in Carnot groups.
These notions depend on the stratification of the Lie algebra and will be
presented in details in Section 3. From now on we refer to these notions as
to intrinsic perimeter, intrinsic reduced boundary and intrinsic normal.
Again the blowup of a set E at a point of its reduced boundary is a

set with constant intrinsic normal. However sets with constant intrinsic
normal in general Carnot groups may fail to be halfspaces. In fact this
result still holds in step 2 Carnot groups as it is proved in [8], but there
are counterexamples in groups of step 3 as shown in Example 3.2 of [8]. On
the other hand, in Carnot groups of arbitrary step, only a partial result
is known, that has been proved in [1] by Ambrosio, Kleiner & Le Donne.
In fact, the authors show that, given a set E of locally finite perimeter
in a Carnot group G, then for almost every x ∈ G (with respect to the
perimeter measure of E), some blow-up of E at x is a vertical halfspace.
The main result of the present paper holds precisely that constant intrinsic
normal sets in Carnot groups of type ? are halfspaces. Thus in particular
De Giorgi’s Rectifiability Theorem holds in groups of type ?.
Let us sketch now the basic points of our paper. Detailed definitions are

given below: here we restrict ourself to remind that a nilpotent, simply
connected Lie group G is called a Carnot group if its Lie algebra g admits
the stratification g = V1⊕· · ·⊕Vκ, with [V1, Vi] = Vi+1, where [V1, Vi] is the
subspace of g generated by commutators [X,Y ] with X ∈ V1 and Y ∈ Vi.
The integer κ is said the step of the group.
G is of type ? if there exists a basis (X1, . . . , Xm1) of V1 such that

[Xj , [Xj , Xi]] = 0 for i, j = 1, . . . ,m1.

Obviously groups of step 2 are of type ?. The most important examples
of groups of type ? are the nilpotent groups coming from the Iwasawa
decomposition ofGLκ+1(R), i.e. the group of unit upper triangular matrices
with 1’s in the diagonal. In particular, there are groups of type ? with
arbitrarily large step. On the other hand there are Carnot groups that are
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CONSTANT INTRINSIC NORMAL SETS 431

not of type ?, i.e. free Carnot groups and filiform groups of step greater
than 2.

In Section 2 we define groups of type ? and show some examples of
them. In Section 3 we define the notions of intrinsic perimeter and intrinsic
normal and we prove that, in such groups, sets with constant intrinsic
normal are halfspaces (Theorem 3.10). In Section 4 we recall some results
about rectifiability in Carnot groups from [8] and we enunciate the new
results in groups of type ? that follows straightforwardly from Theorem
3.10: Theorem 4.12, Theorem 4.13, Theorem 4.14, Corollary 4.15. In Section
5 we provide some necessary conditions for a group to be of type ? and some
additional examples of groups in which the blowup of a set (at a point of
its reduced boundary) is not always a halfspace.

2. Carnot groups of type ?

First we recall some preliminary definitions on Carnot groups. For more
details, one can see [2] and [8].

Definition 2.1 (Carnot group). — A Carnot group G of step κ is a
nilpotent connected and simply connected Lie group, whose Lie algebra
g admit a step κ stratification, i.e. there exist linear subspaces V1, . . . , Vκ
such that

g = V1⊕ . . .⊕Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ, (2.1)

where [V1, Vi] is the subspace of g generated by commutators [X,Y ] with
X ∈ V1 and Y ∈ Vi.

We set mi := dim(Vi) for i = 1, . . . , κ. Obviously
∑κ
i=1 mi = n, where n

is the dimension of g.

The left invariant vector fields that form a basis of V1 are called gener-
ating vector fields of the group, since they generate g for (2.1). The choice
of a basis (X1, . . . , Xm1) for V1 also fixes an inner product 〈·, ·〉 on V1 that
makes (X1, . . . , Xm1) an orthonormal basis. Precisely, if Y =

∑m1
j=1 yjXj

and Z =
∑m1
j=1 zjXj , then

〈Y,Z〉 :=
m1∑
j=1

yjzj .
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It is possible to chose a basis (X1, . . . , Xn) for g that is adapted to its
stratification, that is (Xhj−1+1, . . . , Xhj ) is a basis of Vj for 1 6 j 6 κ,
where hj =

∑j
i=1 mi.

Since Carnot groups are nilpotent, connected and simply connected, the
exponential map is a diffeomorphism from g to G, i.e. every p ∈ G can be
uniquely written in the form

p = exp(p1X1 + · · ·+ pnXn). (2.2)
By using this exponential coordinates, we can identify p with the n-tuple

(p1, . . . , pn) ∈ Rn

and identify G with (Rn, ·) where the explicit expression of the group op-
eration · is determined by Campbell-Hausdorff formula (see [5]). More pre-
cisely, G is isomorphic to the Lie group (Rn, ·).

Definition 2.2 (Horizontal bundle). — A Carnot group is character-
ized by a horizontal bundle HG, whose fibers are

HGx = {Y (x) |Y ∈ V1}, x ∈ G.

Moreover, the inner product 〈·, ·〉 defined on V1 induces an inner product
〈·, ·〉x and a norm | · |x on HGx for every x ∈ G; precisely,

〈Y (x), Z(x)〉x := 〈Y, Z〉 and |Y (x)|2x := 〈Y, Y 〉.
The sections of HG are called horizontal sections, a vector of HGx is a

horizontal vector. Every horizontal section φ defined on an open set Ω ⊂ G
can be written as φ =

∑m1
i=1 φiXi, where its coordinates are functions

φi : Ω → R. When considering two such sections φ and ψ, we will write
〈ψ, φ〉 for 〈ψ(x), φ(x)〉x; however the dependence on x remains except for
left invariant horizontal sections, i.e. vector fields belonging to V1.

Definition 2.3 (Left translations and dilations). — For each x ∈ G,
we define the left translation by x as

τx : G→ G
z 7→ x · z

and, for each λ > 0, we define the dilation δλ : G→ G as

δλ(x1, ..., xn) = (λα1x1, ..., λ
αnxn), (2.3)

where αi ∈ N is the homogeneity of variable xi in G and it is defined as

αi = j when 1 +
j−1∑
k=1

mk 6 i 6
j∑

k=1
mk . (2.4)
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Now we recall some definitions about metrics and measures on Carnot
groups.

Definition 2.4 (Sub-unit curve). — An absolutely continuous curve
γ : [0, T ] → G is a sub-unit curve with respect to X1, . . . , Xm1 if it is a
horizontal curve, i.e. there exist measurable real functions c1(s), . . . , cm1(s),
s ∈ [0, T ] such that

γ̇(s) =
m1∑
j=1

cj(s)Xj(γ(s)), for a.e. s ∈ [0, T ],

and if ∑
j

c2
j 6 1.

Definition 2.5 (Carnot-Carathéodory distance). — The Carnot-Cara-
théodory distance between two points p, q ∈ G is defined as

dc(p, q) := inf
{
T > 0 : there exists a sub-unit curve γ

with γ(0) = p, γ(T ) = q
}
.

The set of sub-unit curves joining p and q is not empty, since Chow’s
Theorem (see [15], Theorem 1.6.2); furthermore dc is a distance on G that
induces the Euclidean topology (see [16]). We denote with Uc(p, r) and
Bc(p, r) respectively the open and closed balls associated with dc.

Definition 2.6 (d∞ distance). — [8] defined another distance equiva-
lent to the previous one.

d∞(x, y) = d∞(y−1 · x, 0),

where, if p = (p̃1, . . . , p̃k) ∈ Rm1 × · · · × Rmk = Rn, then

d∞(p, 0) = max{εj ||p̃j ||1/jRmj , j = 1, . . . , k}. (2.5)

Here ε1 = 1, and ε2, . . . εk ∈ (0, 1) are suitable positive constants depending
on the group structure (see [8], Theorem 5.1).

Definition 2.7 (Homogeneous dimension). — The integer

Q =
n∑
j=1

αj =
k∑
i=1

i dimVi (2.6)

is the homogeneous dimension of G. We stress that it is also the Hausdorff
dimension of Rn with respect to dc (see [14]).

TOME 64 (2014), FASCICULE 2
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Proposition 2.8 (Haar measure). — The n-dimensional Lebesgue mea-
sure Ln is the Haar measure of the group G (see [18]). Therefore if E ⊂ Rn
is measurable, then Ln(x ·E) = Ln(E) for every x ∈ G. Moreover, if λ > 0
then Ln(δλ(E)) = λQLn(E). We note that

Ln(Uc(p, r)) = rQLn(Uc(p, 1)) = rQLn(Uc(0, 1)). (2.7)

In our paper all the spaces Lp(G) are defined with respect to the Haar
measure of G.

Now we are ready to define the class of Carnot groups of type ?. From
now on we set m := m1.

Definition 2.9 (Carnot groups of type ?). — We say that a Carnot
group G is of type ? if its stratified Lie algebra g = V1 ⊕ · · · ⊕ Vκ has the
following property: there exists a basis (X1, . . . , Xm) of V1 such that

[Xj , [Xj , Xi]] = 0 for i, j = 1, . . . ,m (2.8)

In this case we also say that g is of type ?.

Remark 2.10. — It is clear that every step 2 Carnot group is of type
?, whereas free Carnot groups of step greater than 2 are not of type ?.
Moreover, if a Carnot group of step greater than 2 is of type ?, then the
dimension of its first layer is at least 3; hence filiform groups of step greater
than 2 (and in particular Engel group) are not of type ?. For details about
the notions of free and filiform Carnot groups see [2].
We do not require the validity of (2.8) for every basis of V1, since that

would be equivalent to require that the step is 2. The proof is quite straight-
forward. Suppose [Y1, [Y1, Y2]] = 0 for every Y1, Y2 ∈ V1. If X,Y, Z ∈ V1
then

0 = [X + Y, [X + Y,Z]] = [X, [Y,Z]] + [Y, [X,Z]]
0 = [X + Z, [X + Z, Y ]] = [X, [Z, Y ]] + [Z, [X,Y ]]

= −2[X, [Y, Z]] + [Y, [X,Z]].

Therefore [X, [Y,Z]] = 0 for all X,Y, Z ∈ V1.

Example 2.11. — The Lie group Gm of unit upper triangular (m+ 1)×
(m+ 1) matrices is a Carnot group of type ?, for any m ∈ N. However, in
order to avoid trivial cases, it is possible to assumem > 2. This group is the
nilpotent group that comes from the Iwasawa decomposition of GLm+1(R).

Now let us prove that Gm is of type ? for m > 2. The Lie algebra gm of
Gm is isomorphic to the one of strictly upper triangular (m+ 1)× (m+ 1)
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matrices (see [11], Part I, Chapter 2, Section 5.7, Example 1). If Ei,j is the
matrix with 1 in the (i, j)-th entry and 0 elsewhere, it is easy to see that a
basis of gm is formed by the single-entry matrices Ek,k+l for l = 1, . . . ,m
and k = 1, . . . ,m + 1 − l, and dim gm = m(m+1)

2 . The choice of using the
particular parameters k and l will soon be explained.

The following formula, which can be proven by direct computation of the
commutators of single-entry matrices, gives the expression of Lie brackets
in gm.

[Ek1,k1+l1 , Ek2,k2+l2 ] =


Ek1,k1+(l1+l2) if k1 < k2 and k1 + l1 = k2

−Ek2,k2+(l1+l2) if k1 > k2 and k2 + l2 = k1

0 otherwise.
(2.9)

From (2.9), it is easy to see that Ek,k+1 (for k = 1, . . . ,m) are generators
of gm. Moreover, gm = V1 ⊕ · · · ⊕ Vm with

Vl = span{Ek,k+l | k = 1, . . . ,m+ 1− l}

for l = 1, . . . ,m. This explains the use of the parameters k and l. Moreover,
we observe that m is the dimension of V1 and the step of the stratification.
Now we can finally prove that Gm is of type ?. We set Xk := Ek,k+1

for k = 1, . . . ,m. From (2.9) we obtain that Ek,k+2 = [Xk, Xk+1] for
k = 1, . . . ,m − 1 and the other independent commutators of length 2
are zero, whereas Ek,k+3 = [[Xk, Xk+1], Xk+2] = [Xk, [Xk+1, Xk+2]] for
k = 1, . . . ,m − 2 and the other independent commutators of length 3 are
zero. Hence (2.8) holds.

The identity (2.9) allows to explicitly write an adapted basis of gm and
the expression of Lie brackets for any m ∈ N, but we also want to remark
the trivial case obtained when m = 2, that is the Lie algebra of the three-
dimensional Heisenberg group.

Example 2.12. — Another example of stratified algebra of type ? (be-
sides gm) is obtained from

g3 = span{X1, X2, X3} ⊕ span{[X1, X2], [X2, X3]} ⊕ span{[[X1, X2], X3]},

where [X1, X3] = 0, [[X1, X2], X3] = [X1, [X2, X3]] and the other commu-
tators of length 3 are zero, by setting [X1, X3] = b[X2, X3] with b 6= 0. This
can be done, since Jacobi identity

[[X1, X2], X3] + [[X2, X3], X1] + [[X3, X1], X2] = 0

TOME 64 (2014), FASCICULE 2
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is still verified. The only non-zero commutators of length 3 are

[[X1, X2], X3]=[X1, [X2, X3]]=[[X3, X2], X1]

and
[[X3, X1], X1]=b[[X1, X2], X3].

By changing the basis of the first layer in the following way
X̃1 = X1 − bX2

X̃2 = X2

X̃3 = X3

it is easy to see that g is of type ?.

Definition 2.13. — An ideal of a graded Lie algebra is said to be
homogeneous if can be generated by homogeneous elements.

Obviously, the quotient of a stratified Lie algebra by an homogeneous
ideal is still a stratified Lie algebra.

Remark 2.14. — A stratified Lie algebra of type ? can contain filiform
stratified subalgebras of step greater than 2.
For instance, let us consider the free Lie algebra of step 3 with 3 gene-

rators. Now we quotient it by the homogeneous ideal generated by
[Xj , [Xj , Xi]] with i, j = 1, 2, 3. Obviously the obtained stratified Lie alge-
bra is of type ?. If we consider its stratified subalgebra Lie{X1 +X2, X3},
we can verify it is filiform of step 3.

[X1 +X2, X3] = [X1, X3] + [X2, X3] 6= 0
[X1 +X2, [X1 +X2, X3]] = [X2, [X1, X3]] + [X1, [X2, X3]] 6= 0

[X3, [X1 +X2, X3]] = 0.

Thus, type ? property is not inherited by stratified subalgebras, but is
obviously inherited by stratified quotient algebras.

Remark 2.15. — In a stratified algebra, dimV3 6 1
3 (m + 1)m(m − 1)

and dimV3 = 1
3 (m+ 1)m(m− 1) in free stratified algebras of step greater

than 2. In fact, there are m(m − 1) commutators of form [Xj , [Xj , Xi]]
with j 6= i,

(
m
3
)
commutators of form [Xi, [Xj , Xk]] with i < j < k and(

m
3
)
commutators of form [Xk, [Xj , Xi]] with i < j < k, which span V3 and

are linearly independent, if we consider only the relations of antisymmetry
and Jacobi identities. If we sum the number of these commutators, we get

m(m− 1) + 2
(
m

3

)
= 1

3(m+ 1)m(m− 1).
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On the contrary, in a stratified Lie algebra of type ?, dimV3 6 1
3m(m−

1)(m− 2).

For a dimension reason we can say again that free stratified algebras of
step greater than 2 are not of type ? and that stratified algebras of type
? with m = 2 cannot be of step greater than 2, hence filiform algebras of
step greater than 2 are not of type ?.

3. Sets with constant intrinsic normal

In this section we define the intrinsic perimeter measure, the intrinsic
normal and we show the main result of our paper: Theorem 3.10.

Definition 3.1 (Sets of locally finite perimeter). — A measurable set
E ⊂ G has locally finite perimeter (or is a G-Caccioppoli set) if X1E is a
Radon measure on G for any X ∈ V1.

Definition 3.2 (Perimeter measure and generalized normal). — If f ∈
L1
loc(G) with Xif Radon measures for 1 6 i 6 m, it is possible to define

the horizontal gradient of f as the Rm-valued Radon measure

∇Gf := (X1f, . . . ,Xmf).

If E is a G-Caccioppoli set, the total variation |∇G1E | of ∇G1E is the
perimeter measure of E in G and we will denote it with |∂E|G. More-
over there exists a |∂E|G-measurable horizontal section νE on G, such that
|νE(x)|x = 1 for |∂E|G-a.e. x ∈ G and

∇G1E = νE |∂E|G = ((νE)1 |∂E|G, . . . , (νE)m |∂E|G)

where νE =
∑m
i=1(νE)iXi. We say that νE is the generalized intrinsic

normal of E.

Remark 3.3. — We stress that νE is an inward-pointing normal and
is defined up to a |∂E|G-negligible set, therefore we assume that E has a
non-null perimeter. In particular the perimeter measure is concentrated in
a subset of the topological boundary of E, the so-called reduced boundary
∂∗GE.

TOME 64 (2014), FASCICULE 2
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Definition 3.4 (Reduced boundary). — Let E be a G-Caccioppoli set;
we say that x ∈ ∂∗GE if

|∂E|G(Uc(x, r)) > 0 for any r > 0; (i)

there exists lim
r→0

∫
Uc(x,r)

νE d|∂E|G; (ii)∥∥∥∥∥ lim
r→0

∫
Uc(x,r)

νE d|∂E|G

∥∥∥∥∥
Rm1

= 1. (iii)

Lemma 3.5 (Differentiation Lemma [8]). —Assume E is aG-Caccioppoli
set, then

lim
r→0

∫
Uc(x,r)

νE d|∂E|G = νE(x), for |∂E|G-a.e. x,

hence |∂E|G is concentrated on the reduced boundary ∂∗GE.

Remark 3.6. — Thanks to Lemma 3.5, we can redefine νE in a |∂E|G-
negligible set, by setting νE(x) = limr→0∇G1E(Uc(x, r))/|∂E|G(Uc(x, r))
at every point x ∈ ∂∗GE.

Remark 3.7. — Now we want to consider the case in which νE is a
constant. From the previous definition it is clear that

Xi1E = (νE)i |∂E| for 1 6 i 6 m.

Hence we can observe that νE = X1 if and only if X11E > 0 and Xi1E = 0
for 2 6 i 6 m. Thus the following proposition is justified.

Proposition 3.8 (Constant intrinsic normal set). — A set of locally
finite perimeter E ⊂ G has a constant intrinsic normal if and only if there
exists X ∈ V1 such that X1E > 0, X1E 6≡ 0 and Y 1E = 0 for every Y
orthogonal to X in V1.

Definition 3.9 (Vertical halfspace). — A set H ⊂ G is a vertical half-
space if it has a constant intrinsic normal and

Y 1H = 0 ∀Y ∈
κ⊕
i=2

Vi.

A vertical halfspace can be represented as

τq

({
x :

m∑
i=1

vixi > 0
})

for some q ∈ G and some unit vector v ∈ Rm.
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Theorem 3.10. — Let G be a group of type ?. Then every set with a
constant intrinsic normal is a vertical halfspace.

In order to prove Theorem 3.10 we need Lemma 3.11 below, which shows
an important property of stratified Lie algebras of type ?.

Lemma 3.11. — Let g = V1 ⊕ · · · ⊕ Vκ be a stratified Lie algebra of
type ?. Then for every basis (Y1, . . . , Ym) of V1

[Y1, [Y1, Yp]] =
∑
j>1

αpij [Yj , [Yj , Yi]] +
∑

k 6=j,k 6=i
βpijk[Yk, [Yj , Yi]]

holds for p = 2, . . . ,m (with αpij , βpijk ∈ R).

We stress that the first sum contains commutators “with repeated indices
different from 1”, whereas the second one contains commutators “without
repeated indices”. Roughly speaking, the previous lemma states that a com-
mutator where an index i is repeated (for instance i = 1) can be written as
a linear combination of the remaining commutators excluding those where
the index i is repeated.

Proof. — Let (Y1, Y2, . . . , Ym) be any basis of V1. Obviously

V3 = span{[Yk, [Yj , Yi]] | i, j, k = 1, . . . ,m}.

Now let (X1, X2, . . . , Xm) be a basis of V1 that respects (2.8). The relation
between the two basis is 

X1
X2
· · ·
Xm

 = A


Y1
Y2
· · ·
Ym

 (3.1)

with

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
· · · · · · · · · · · ·
am1 am2 · · · amm


invertible real m ×m matrix. Hence there exists i ∈ {1, . . . ,m} such that
ai1 6= 0. After reordering the basis (X1, X2, . . . , Xm), we can assume a11 6=
0. Now we recall the relations

[X1, [X1, Xh]] = 0 for h = 2, . . . ,m.

Replacing (3.1) in these identities, we get∑
i,j,k

a1ka1jahi[Yk, [Yj , Yi]] = 0 for h = 2, . . . ,m.
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Keeping in mind the antisymmetry of brackets, we obtain
m∑
i=2

(a11a11ahi − a11ah1a1i)[Y1, [Y1, Yi]] +
∑
k

αhkZk = 0 for h = 2, . . . ,m

where Zk are all the remaining commutators of length 3, i.e. commutators
that are not of the form [Y1, [Yi, Y1]] with i = 2, . . . ,m which are all in-
corporated in the first sum. Now we move all terms containing Zk to the
right-hand side and we get

m∑
i=2

(a11ahi − ah1a1i)[Y1, [Y1, Yi]] = − 1
a11

∑
k

αhkZk for h = 2, . . . ,m.

If we denote by U` the `-th component of a vector U ∈ V3, ` = 1, . . . ,dimV3
with respect to an arbitrarily fixed basis, then the components [Y1, [Y1, Yi]]`
of [Y1, [Y1, Yi]] are solutions of a (m − 1) × (m − 1) linear system with
coefficient matrix

M = (mij)i,j=1,...,m−1 where mij = a1,1ai+1,j+1 − ai+1,1a1,j+1.

We stress that mij are the second order minors of A that contains a11. M
is invertible since

detM = (a11)m−2 detA 6= 0.
This computation comes from the so-called Chio’s pivotal condensation
(see, e.g., [4], Theorem 3.6.1). Therefore, we obtain eventually ([Y1, [Y1, Y2]])`

· · ·
([Y1, [Y1, Ym]])`

 = − 1
a11

∑
k

(Zk)` M−1

 α2k
· · ·
αmk

 for ` = 1, . . . ,dimV3.

�

Proof of Theorem 3.10. — Since H has constant intrinsic normal, there
exist an orthonormal basis (Y1,Y2, . . . ,Ym) for V1 such that

Y11H > 0 and Yj1H = 0 for 2 6 j 6 m. (3.2)

In order to prove that H is a vertical halfspace, it is sufficient to show that

Z1H = 0 ∀ Z ∈
k⋃
j=2

Vj . (3.3)

The function 1H can be approximated by smooth functions using the group
convolution (see [6]). Therefore, without loss of generality, we can replace
1H with a smooth function g in (3.2) and (3.3).
If (X1, . . . , Xm) is a basis for V1 satisfying (2.8), then

Y1 =
∑

a1iXi , . . . , Ym =
∑

amiXi. (3.4)
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We denote with A the coefficient matrix

A =


a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . . . . . . . .

am1 am2 . . . amm

 , detA 6= 0. (3.5)

Now we notice that (3.4) yields Y1g(x)
. . .

Ymg(x)

 = A

 X1g(x)
. . .

Xmg(x)

 for every x ∈ G.

From (3.5)A is invertible, hence the inverse image of {(t, 0, . . . , 0) ∈ Rm | t ∈
R} under A is a line of Rm, i.e. there exists k ∈ Rm, k 6= 0 such that

A−1{(t, 0, . . . , 0) ∈ Rm | t ∈ R} = {λk |λ ∈ R}. (3.6)

Since k = (k1, . . . , km) 6= 0, at least one of its components is not zero: for
instance we can assume km 6= 0 and then, without loss of generality, km = 1.
We stress that k depends only on A, so that the vector k is independent of
x ∈ G.

If we indicate with Aj the j-th row of A, we have

〈A1, k〉 6= 0 . (3.7)

Indeed by the definition of k, 〈Aj , k〉 = 0 for j = 2, . . . ,m and 〈A1, k〉 6= 0
by the invertibility of A.
Remember now that, by (3.2), Y1g > 0, Y2g = 0, . . . , Ymg = 0. There-

fore, if x ∈ G, then by (3.6),Xig(x) = λ(x)ki for i = 1, . . . ,m. In particular,
taking i = m, we have λ(x) = Xmg(x), which leads to Xig(x) = kiXmg(x)
for i = 1, . . . ,m.
Now Y1g(x) = 〈A1, k〉Xmg(x). We recall that Y1g(x) > 0 and (3.7), so

that we can conclude that Xmg(x) > 0 for every x ∈ G or Xmg(x) 6 0 for
every x ∈ G.

Now let us show that Zg = 0 for every Z ∈ V2.

Let Z ∈ V2. Then

Z =
∑

i1,i2∈{1,...,m}

αi1,i2 [Xi1 , Xi2 ] (αi1,i2 ∈ R)

where Xi1g = ki1Xmg, Xi2g = ki2Xmg and Xmg > 0 (or Xmg 6 0).
The case [Xi1 , Xi2 ]g = 0 is trivial. In particular, we can assume that, for

instance ki1 6= 0. Then we have Xmg = (ki1)−1Xi1g from which

Xi2g = ki2(ki1)−1Xi1g with Xi1g > 0 or Xi1g 6 0. (3.8)
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On the other hand, by hypothesis [Xj , [Xj , Xi]] = 0 (with i, j= 1, . . . ,m),
so that

span{Xi1 , Xi2 − ki2(ki1)−1Xi1 , [Xi1 , Xi2 ]}

is a Lie algebra isomorphic to the Lie algebra of the Heisenberg group H1

(remember [Xi1 , Xi2 ] 6= 0). Indicate with h the Lie algebra of H1. The
following claim, shown inside the proof of Lemma 3.6 in [8], holds:

• if X̃1,X̃2 ∈ g and X̃1g> 0, X̃2g= 0 and g̃ := span{X̃1, X̃2, [X̃1, X̃2]}
is a subalgebra of g isomorphic to h, then [X̃1, X̃2]g = 0 .

Alternatively this claim can be seen as an easy consequence of Remark 4.9
of [1]. Recalling (3.8), we can conclude that [Xi1 , Xi2 ]g = 0. Thus Zg = 0
for every Z ∈ V2.

Now, in order to deal with vector fields belonging to V3, we use the basis
(Y1, . . . , Ym) of V1. Since it is a basis, for every W ∈ V3 there exist Zj ∈ V2
such that W =

∑
i,j βij [Yi, Zj ]. First of all,

if i = 2, . . . ,m then [Yi, Zj ]g = 0, since Zjg = 0 e Yig = 0. (3.9)

Consider now the case i = 1. We notice that Zj can be written as a linear
combination of two types of commutators: [Y1, Yk] and [Yl, Yi], with l 6= 1
and i 6= 1. Hence, dropping the index j from Zj , we get

[Y1, Z] =
∑
k

γk[Y1, [Y1, Yk]] +
∑

l 6=1, i 6=1
λli[Y1, [Yl, Yi]].

Moreover, by Lemma 3.11,

[Y1, [Y1, Yk]] =
∑
j 6=1

µkij [Yj , [Yj , Yi]] +
∑

l 6=j,l 6=i
θkijl[Yl, [Yj , Yi]].

Thus, [Y1, Z]g can be written as a linear combination of three types of
functions:

i) [Yj , Z]g with j 6= 1 and Z ∈ V2;
ii) [Yl, [Yj , Yi]]g with l 6= j, l 6= i;
iii) [Y1, [Yl, Yi]]g with l 6= 1, i 6= 1.

By (3.9) above, terms of type i) vanish. Analogously, terms of type iii)
vanish since they can be reduced, by Jacobi identity, to a sum of terms of
type i). Finally, as for terms of type ii), either l > 1 or l = 1. If l > 1, they
vanish again by (3.9). If l = 1, then necessarily j, i 6= 1 and then, again by
Jacobi identity, they can be written as a sum of two terms of type i).
Therefore, Wg = 0 for every W ∈ V3.
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In order to complete the proof for the other layers, we show that for
every k > 3 the following claim holds:

for every W ∈ Vk there exist Zj ∈ Vk−1, Z̃r ∈ Vh and

Ẑs ∈ Vk−h with 26h6k−2 such that W is a linear combination (3.10)

of commutators of the form [Yl, Zj ] with l > 1 and [Z̃r, Ẑs].

We argue by induction on k. We have just seen the case k = 3. Suppose
now n > 4, and assume the claim is true for k 6 n − 1. We show it holds
for k = n.
Indeed, for every W ∈ Vn there exist Zi ∈ Vn−1 such that W is a linear

combination of commutators [Yj , Zi] with j = 1, . . . ,m. Obviously, the only
commutators to work on in order to show (3.10) are those with j = 1.
But every Zi ∈ Vn−1 is a linear combination of commutators of type

[Yl, Z̃] (with Z̃ ∈ Vn−2 and l > 1) and [Z1, Z2] (with Z1 ∈ Vh, Z2 ∈
Vn−1−h, 2 6 h 6 n − 3), we can reduce [Y1, Zi] to a linear combination
of commutators of type

[Y1, [Yl, Z̃]] = −[Z̃, [Y1, Yl]]− [Yl, [Z̃, Y1]]

and
[Y1, [Z1, Z2]] = −[Z1, [Z2, Y1]]− [Z2, [Y1, Z1]].

Hence (3.10) holds for every k > 3.
Consequently, Zg = 0 for every Z ∈ Vk, with k > 3. Therefore the

theorem is proved. �

4. Rectifiability

As a consequence of Theorem 3.10 it is possible to extend Rectifiability
theorem to Carnot groups of type ?. First we will remind some preliminary
notions.

Definition 4.1 (G-linearity). — A map L : G → R is G-linear if
it is a homomorphism from G ≡ (Rn, ·) to (R,+) and if it is positively
homogeneous of degree 1 with respect to the dilations of G, that is L(δλx) =
λLx for λ > 0 and x ∈ G. The R-linear set of G-linear functionals G→ R
is indicated as LG and it is endowed with the norm

‖L‖LG := sup{|L(p)| : dc(p, 0) 6 1}.
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Definition 4.2 (Pansu diffentiability). — Let Ω be an open set in G,
then f : Ω → R is Pansu differentiable (see [17] and [12]) in x0 if there
exists a G-linear map L such that

lim
x→x0

f(x)− f(x0)− L(x−1
0 · x)

dc(x, x0) = 0.

An equivalent definition is the following one: there exists a group homo-
morphism L from G to (R,+) such that

lim
λ→0+

f(τx0(δλv))− f(x0)
λ

= L(v)

uniformly with respect to v belonging to compact sets in G.
In particular, L is unique and we write L = dGf(x0). We remark that

Pansu differential depends only on G and not on a particular choice of a
basis of g.

Definition 4.3 (C1
G functions and sections). — If Ω is an open set in

G, we denote with C1
G(Ω) the set of continuous real functions in Ω such that

dGf : Ω→ LG is continuous in Ω. Furthermore, we denote with C1
G(Ω, HG)

the set of all sections φ =
∑m1
i=1 φiXi of HG whose coordinates φi ∈ C1

G(Ω)
for i = 1, . . . ,m1.

Definition 4.4 (Horizontal divergence). — If φ = (φ1, . . . , φm1) is a
horizontal section such that Xjφj ∈ L1

loc(G) for j = 1, . . . ,m1, the hori-
zontal divergence of φ is the real valued function

divG (φ) :=
m1∑
j=1

Xjφj .

If Ω ⊂ G is open, the space of compactly supported smooth sections of
HG is denoted by C∞0 (Ω, HG). If k ∈ N, Ck

0(Ω, HG) is defined similarly.

For details and proofs about Calculus of Variations on Carnot groups,
see [10] and [7].

Definition 4.5 (G-regular hypersurface). — S ⊂ G is a G-regular hy-
persurface if for every x ∈ S there exist a neighborhood U of x and a
function f ∈ C1

G(U) such that

S ∩ U = {y ∈ U : f(y) = 0}; (i)
∇Gf(y) 6= 0 for y ∈ U . (ii)
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Definition 4.6 (G-rectifiable set). — Γ ⊂ G is said to be (Q − 1)-
dimensional G-rectifiable if there exists a sequence of G-regular hypersur-
faces (Sj)j∈N such that

HQ−1
c

Γ \
⋃
j∈N

Sj

 = 0, (4.1)

where HQ−1
c is the (Q − 1)-dimensional Hausdorff measure related to the

distance dc.

Definition 4.7 (Tangent group and tangent plane). — If S = {x :
f(x) = 0} ⊂ G is a G-regular hypersurface, the tangent group to S at x is
the proper subgroup of G defined as

T gGS(x) := {v ∈ G : 〈∇Gf(x), πxv〉x = 0},

where πxv :=
∑m1
j=1 vjXj(x).

We can also define the tangent plane to S at x as

TGS(x) := x · T gGS(x).

This definition is good; in fact the tangent plane does not depend on
the particular function f defining the surface S because of point (iii) of
Theorem 2.1 (Implicit Function Theorem) in [9] that yields

T gGS(x) = {v ∈ G : 〈νE(x), πxv〉x = 0}

where νE is the intrinsic normal.
We stress that the notion of G-regular hypersurfaces is different from

the one of Euclidean C1-hypersurfaces in Rn. In particular, in Corollary
4.11 we will consider Euclidean C1-surfaces, which can have characteristic
points, i.e. points p ∈ S where the Euclidean tangent plane TpS contains
the horizontal fiber HGp. If S is an Euclidean C1-hypersurface in G, we
denote with C(S) the set of its characteristic points. The tangent group does
not exist in these points; however, there is an important result about them
proved in [13]: in any Carnot group it holds that, if S is a C1-hypersurface,
HQ−1
c (C(S)) = 0.

In [8], the rectifiability theorem is proved for step 2 Carnot groups and
Blow-up Theorem is the main key of the proof and also the reason of
the restriction to step 2. In fact, there is a counterexample regarding a
particular step 3 Carnot group, i.e. the Engel group, for which Blow-up
Theorem does not hold (see [8], Example 3.2). In particular, in the Engel
group there exist cones (i.e. dilation-invariant sets) with constant horizontal
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normal that are not vertical halfspaces, but nevertheless have the vertex
belonging to the reduced boundary.
The problem of rectifiability in general Carnot groups remains an open

question. Here we recall the Blow-up Theorem.

Let G be a Carnot group. For any set E ⊂ G, x0 ∈ G and r > 0 we
define the sets

Er,x0 := {x : x0 · δr(x) ∈ E} = δ 1
r
τx−1

0
E.

If v ∈ HGx0 we define the halfspaces S+
G (v) and S−G (v) as

S+
G (v) := {x : 〈πx0x, v〉x0 > 0}
S−G (v) := {x : 〈πx0x, v〉x0 6 0}.

(4.2)

The common topological boundary T gG(v) of S+
G (v) and of S−G (v) is the

subgroup of G
T gG(v) := {x : 〈πx0x, v〉x0 = 0}.

Moreover, we shall denote with Hn−1 the (n − 1)-dimensional Hausdorff
measure related to the Euclidean distance in Rn ' G, with SQ−1

c the
(Q−1)-dimensional spherical Hausdorff measure related to the distance dc
in G, and with SQ−1

∞ the (Q− 1)-dimensional spherical Hausdorff measure
related to the distance d∞ in G.

Theorem 4.8 (Blow-up [8]). — If E is a G-Caccioppoli set in a step
2 Carnot group G, x0 ∈ ∂∗GE and νE(x0) ∈ HGx0 is the intrinsic normal
then

lim
r→0

1Er,x0
= 1S+

G (νE(x0)) in L1
loc(G) (4.3)

and for all R > 0

lim
r→0
|∂Er,x0 |G(Uc(0, R)) = |∂S+

G (νE(x0))|G(Uc(0, R)) (4.4)

and
|∂S+

G (νE(x0))|G(Uc(0, R)) = Hn−1(T gG(νE(0)) ∩ Uc(0, R)).

Theorem 4.9 (Rectifiability Theorem [8]). — If E ⊆ G is a G-Cac-
cioppoli set in a step 2 Carnot group G, then

∂∗GE is (Q− 1)-dimensional G-rectifiable, (i)

that is ∂∗GE = N ∪
⋃∞
h=1 Kh, where HQ−1

c (N) = 0 and Kh is a compact
subset of a G-regular hypersurface Sh;

νE(p) is the G-normal to Sh at p, for all p ∈ Kh; (ii)
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|∂E|G = θcSQ−1
c ∂∗GE, (iii)

where
θc(x) = 1

ωQ−1
Hn−1 (∂S+

G (νE(x)) ∩ Uc(0, 1)
)
.

Here ωk is the k-dimensional measure of the k-dimensional ball in Rk. If
we replace the Sc-measure by the S∞-measure, the corresponding density
θ∞ is a constant. More precisely

|∂E|G = θ∞ SQ−1
∞ ∂∗GE, (iv)

where

θ∞ = ωm1−1ωm2ε
m2
2

ωQ−1
= 1
ωQ−1

Hn−1 (∂S+
G (νE(0)) ∩ U∞(0, 1)

)
.

Here ε2 is a constant that appears in (2.5).

A consequence of Theorem 4.9 is the following divergence theorem.

Theorem 4.10 (Divergence Theorem [8]). — Let E be a G-Caccioppoli
set in a step 2 Carnot group G, then

|∂E|G = θ∞ SQ−1
∞ ∂∗GE, (i)

and the following version of the divergence theorem holds

−
∫
E

div Gφ dLn = θ∞

∫
∂∗
GE

〈νE , φ〉 dSQ−1
∞ , ∀φ ∈ C1

0(G, HG). (ii)

In case the boundary of E is of class C1, a sharper result holds.

Corollary 4.11 ([8]). — If G is a Carnot group of step 2 and a measur-
able set E ⊂ G has boundary of class C1 (and hence E is a G-Caccioppoli
set), then

|∂E|G = θ∞ SQ−1
∞ ∂E =

( m1∑
j=1
〈Xj , nE〉2Rn

)1/2
Hn−1 ∂E (i)

where nE denotes the Euclidean outward normal to ∂E. Again a version
of the divergence theorem holds

−
∫
E

div Gφ dx = θ∞

∫
∂E

〈νE , φ〉 dSQ−1
∞ ∀φ ∈ C1

0(G, HG). (ii)

In order to prove this corollary, in [8] it is shown that (in a step 2 Carnot
group) if S is a C1-hypersurface, then HQ−1

c (C(S)) = 0 (see [8], Theorem
4.8). Anyway, Magnani extended this result to any Carnot group in [13].
Since non-characteristic points of a boundary ∂E of class C1 belong to the
reduced boundary, SQ−1

∞ (∂E \ ∂∗GE) = 0.
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Now, as a corollary of Theorem 3.10 we can extend Theorem 4.8, Theo-
rem 4.9, Theorem 4.10 and Corollary 4.11 to our setting of Carnot groups
of type ?.

Theorem 4.12 (Blow-up). — If E is a G-Caccioppoli set in a Carnot
group G of type ?, x0 ∈ ∂∗GE and νE(x0) ∈ HGx0 is the intrinsic normal
then

lim
r→0

1Er,x0
= 1S+

G (νE(x0)) in L1
loc(G) (4.5)

and for all R > 0

lim
r→0
|∂Er,x0 |G(Uc(0, R)) = |∂S+

G (νE(x0))|G(Uc(0, R)) (4.6)

and
|∂S+

G (νE(x0))|G(Uc(0, R)) = Hn−1(T gG(νE(0)) ∩ Uc(0, R)).

Theorem 4.13 (Rectifiability Theorem). — Let G be a Carnot group
of type ?. If E ⊂ G is a G-Caccioppoli set, then

∂∗GE is (Q− 1)-dimensional G-rectifiable, (i)

that is ∂∗GE = N ∪
⋃∞
h=1 Kh, where HQ−1

c (N) = 0 and Kh is a compact
subset of a G-regular hypersurface Sh;

νE(p) is the G-normal to Sh in p, for every p ∈ Kh; (ii)

|∂E|G = θcSQ−1
c ∂∗GE, (iii)

where
θc(x) = 1

ωQ−1
Hn−1 (∂S+

G (νE(x)) ∩ Uc(0, 1)
)
.

ωk is the k-dimensional measure of the k-dimensional ball in Rk. If we
replace the Sc-measure with the S∞-measure, the corresponding density
θ∞ is a constant. Precisely

|∂E|G = θ∞ SQ−1
∞ ∂∗GE, (iv)

where

θ∞ = ωm1−1ωm2ε
m2
2 . . . ωmκε

mκ
κ

ωQ−1
= 1
ωQ−1

Hn−1 (∂S+
G (νE(0)) ∩ U∞(0, 1)

)
.

Here εi are constants that appears in (2.5) and κ is the step of G.

The proof is the same as in [8], but a more general value of θ∞ is provided.

The following propositions can be proved following the same arguments
used in [8].
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Theorem 4.14 (Divergence Theorem). — Let G be a Carnot group of
type ?. If E ⊂ G is a G-Caccioppoli set, then

|∂E|G = θ∞ SQ−1
∞ ∂∗GE, (i)

and the following version of the divergence theorem holds

−
∫
E

div Gφ dLn = θ∞

∫
∂∗
GE

〈νE , φ〉 dSQ−1
∞ , ∀φ ∈ C1

0(G, HG). (ii)

Corollary 4.15. — If G is a Carnot group of type ? and a measurable
set E ⊂ G has boundary of class C1 (and hence E is a G-Caccioppoli set),
then

|∂E|G = θ∞ SQ−1
∞ ∂E =

( m1∑
j=1
〈Xj , nE〉2Rn

)1/2
Hn−1 ∂E (i)

where nE denotes the Euclidean outward normal to ∂E. Again a version
of the divergence theorem holds

−
∫
E

div Gφ dx = θ∞

∫
∂E

〈νE , φ〉 dSQ−1
∞ ∀φ ∈ C1

0(G, HG). (ii)

5. Necessary conditions for Carnot groups of type ?

We do not know whether in the literature there exists an alternative
characterization of stratified Lie algebra of type ?. However, the following
proposition gives a sufficient condition that, if satisfied, yields that a Carnot
algebra g is not of type ?, proving better insights into this condition. In
particular, it follows from Proposition 5.1 that free Lie algebras of step
greater than 2 and filiform stratified Lie algebras of step greater than 2 are
not of type ?.

Unfortunately, the condition is only sufficient: see Example 5.2.

Proposition 5.1. — Let g = V1 ⊕ . . .⊕ Vκ be a stratified Lie algebra.
We set W3 := {[Xk, [Xj , Xi]] | i, j, k = 1, . . . ,m}, so that V3 = span(W3).
The following three properties are equivalent:

(i) there exists a basis (X1, . . . , Xm) for V1 such that

span(W3 \ {[X1, [X1, X2]], [X1, [X2, X1]]}) ( V3 ,

i.e. [X1, [X1, X2]] = −[X1, [X2, X1]] is independent of the other
commutators;

(ii) one of the stratified quotient algebras of g is the Engel algebra;
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(iii) one of the stratified quotient algebras of g is filiform of step greater
than 2.

Moreover, if g satisfies one of these properties, then it is not of type ?; in
fact (i) is incompatible with Lemma 3.11.

Proof. — Let us show that (i) =⇒ (ii). We take the smallest ideal I
that contains Vi for i = 4, . . . , r, Xk for k = 3, . . . ,m and [X2, [X2, X1]].
Obviously the step of g/I is at most 3 and the dimension of its first
layer is 2. We note that [X1, X2], [X1, [X1, X2]] /∈ I, since [X1, [X1, X2]] =
−[X1, [X2, X1]] is independent of the other commutators by hypothesis. If
we denote with π the canonical projection, we have that π([X2, [X2, X1]]) =
0 and π([X1, [X1, X2]]) 6= 0, therefore g/I is the Engel algebra.

It’s trivial to see that (ii) =⇒ (iii).
Let us see that (iii) =⇒ (i). We denote with f a stratified quotient algebra

of g that is filiform of step greater than 2 and we take a basis (Y1, Y2) of
its first layer Ṽ1. Since it is filiform, the dimension of its third layer is 1.
Hence there exist (a, b) 6= (0, 0) in R2 such that

a[Y1, [Y1, Y2]] + b[Y2, [Y2, Y1]] = 0 (5.1)

If a = 0 it becomes [Y2, [Y2, Y1]] = 0, whereas if b = 0 it can be reduced
to the same case by exchanging the role of Y1 and Y2. If a 6= 0 and b 6= 0,
then we perform the change of basis{

Y1 = bỸ1

Y2 = aỸ1 + Ỹ2
(5.2)

By replacing (5.2) in (5.1), we obtain [Ỹ2, [Ỹ2, Ỹ1]] = 0. Therefore, up to a
change of basis, [Y2, [Y2, Y1]] = 0.
Now we consider the canonical projection g

π−→ f, which is a surjective
homogeneous homomorphism. Hence, there exist two independent vectors
X1, X2 in V1 such that π(X1) = Y1 and π(X2) = Y2. We make a basis
for V1 that contains X1 and X2 and such that its other elements Xi with
i = 3, . . . ,m are taken from a basis of Kerπ|V1 . This can be done because
of linear algebra arguments applied to the surjective linear function π|V1 :
V1 → Ṽ1.
We have that

span(W3 \ {[X1, [X1, X2]], [X1, [X2, X1]]}) ( V3,

otherwise [Y1, [Y1, Y2]] would be zero and f would be of step 2, which is a
contradiction. �
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Example 5.2. — Denote by fm,κ the free Lie algebra of step κ with m
generators, and take a free Lie algebra f3,κ with κ > 3 and three generators
X1, X2, X3. We quotient it by the homogeneous ideal generated by{

[X1, [X1, X2]] + [X1, [X1, X3]], [X1, [X1, X3]] + [X2, [X2, X1]],
[X2, [X2, X1]] + [X2, [X2, X3]], [X2, [X2, X3]] + [X3, [X3, X1]], (5.3)
[X3, [X3, X1]] + [X3, [X3, X2]]

}
,

and we denote the obtained stratified quotient algebra by g. We stress
that vector fields of (5.3) are linearly independent, since Jacobi identity
is trivial in those cases. By recalling Remark 2.15, we can say that the
dimension of the third layer of f3,κ is 8, whereas the dimension of the third
layer of g is 3 because of (5.3). In a stratified Lie algebra of type ? with 3
generators, the dimension of the third layer is at most 2, hence the stratified
quotient algebra is not of type ?. Now we show by contradiction that (i) of
Proposition 5.1 does not hold.
We assume there exists a basis of the first layer of g, denoted by

(Y1, Y2, Y3), such that

[Y1, [Y1, Y2]] = −[Y1, [Y2, Y1]]

is independent of the other commutators. If we rewrite the vectors that
generate the ideal as linear combinations of commutators of Y1, Y2, Y3, we
obtain {

α1[Y1, [Y1, Y2]] +
∑
i

β1iZi, α2[Y1, [Y1, Y2]] +
∑
i

β2iZi,

α3[Y1, [Y1, Y2]] +
∑
i

β3iZi, α4[Y1, [Y1, Y2]] +
∑
i

β4iZi,

α5[Y1, [Y1, Y2]] +
∑
i

β5iZi

}
, (5.4)

where Zi are the remaining commutators of length 3, excluding [Y1, [Y2, Y1]].
We remark that, since our assumptions,

αi = 0 for i = 1, . . . , 5. (5.5)

If  X1
X2
X3

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 Y1
Y2
Y3



TOME 64 (2014), FASCICULE 2



452 Marco MARCHI

is the relation between the two basis, we can replace coefficients αi in (5.5)
with their expression and we obtain

a11(−a12a21 + a11a22) + a11(−a12a31 + a11a32) = 0
−a21(−a12a21 + a11a22) + a11(−a12a31 + a11a32) = 0
−a21(−a12a21 + a11a22) + a21(−a22a31 + a21a32) = 0
−a31(−a12a31 + a11a32) + a21(−a22a31 + a21a32) = 0
−a31(−a12a31 + a11a32)− a31(−a22a31 + a21a32) = 0 .

This system of equations leads to the following solutions:

a11 = 0 and a21 = 0 and a31 = 0
or

a12 = 0 and a22 = 0 and a32 = 0
or

a11 = 0 and a12 = 0 and a21 = 0 and a22 = 0
or

a11 = 0 and a12 = 0 and a31 = 0 and a32 = 0
or

a21 = 0 and a22 = 0 and a31 = 0 and a32 = 0
or

a21 = 0 and a22 = 0 and a11 = a12a31

a32
and a32 6= 0

or

a11 = a12a21

a22
and a22 6= 0 and a31 = 0 and a32 = 0

or

a11 = a12a21

a22
and a22 6= 0 and a21 = a22a31

a32
and a32 6= 0

or

a11 = 0 and a12 = 0 and a21 6= 0 and a21 = a22a31

a32
and a32 6= 0 .

In any of these cases, the change of basis matrix is singular, which is a
contradiction.

We conclude this section with some examples of groups in which the
blowup of a set (at a point of its reduced boundary) is not always a halfs-
pace.
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Example 5.3. — Let G be a free Carnot group of step κ > 2 with m

generators (m > 2). Then Blow-up Theorem does not hold.
Theorem 14.1.10 of [2] gives a model for its Lie algebra g in terms of

m generating vector fields with polynomial coefficients on Rn, where n
is the dimension of g. By Remark 14.1.11 of [2], these m vector fields
naturally define a free Carnot group of step κ and m generators: more
precisely, they are left invariant vector fields of a Carnot group (Rn, ◦, δλ)
that is isomorphic to G. In general, the coordinate system given by this
isomorphism is not the exponential one defined in (2.2). We denote these
generating vector fields with X1, X2, . . . , Xm.

By Theorem 14.1.10 of [2], we have that

X1 = ∂

∂x1
, X2 = ∂

∂x2
+ . . .+ x2

1
2

∂

∂xj
+ . . .+ a2,n(x1, x2, . . . , xn) ∂

∂xn
,

where j represent the position of [[X2, X1], X1] in the Hall basis for fm,κ.
Moreover, in X3,. . .,Xm, the partial derivative ∂

∂xj
does not appear.

Let E = {x ∈ G : f(x) > 0}, where

f(x1, . . . , xn) = x3
2

3 + 2xj .

We note that ∂E = {x ∈ R4 : f(x) = 0} is a smooth Euclidean manifold,
hence E is a G-Caccioppoli set (see [8], Proposition 2.22). We stress that
∂E is not a vertical hyperplane of G.
The horizontal gradient of f is ∇Gf(x) =

(
0, x2

1 + x2
2
)
and the intrinsic

normal is

νE(x) = − ∇Gf(x)
|∇Gf(x)| = (0,−1)

for every x ∈ ∂E \ N , where N = {x ∈ E : x1 = x2 = 0}. Here we
used point (iii) of Theorem 2.1 (Implicit Function Theorem) in [9]. Since
|∂E|G(N) = 0, the origin belongs to ∂∗GE. We note that f(δλx) = λ3f(x)
for λ > 0, hence Eλ,0 = δλE = E. Finally we can conclude that (4.3) is
false since E is not a vertical halfspace.

Example 5.4. — Let G be a filiform Carnot group whose Lie algebra is
of type

span{X1, X2} ⊕ span{[X2, X1]} ⊕ span{[[X2, X1], X1]} ⊕ · · ·
· · · ⊕ span{[[· · · [[X2, X1], X1], · · · ], X1︸ ︷︷ ︸

(κ−1) times

]}
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where κ > 2 and all other independent commutators are identically zero.
Then Blow-up Theorem does not hold. A coordinate expression of vector
fields X1 and X2 is

X1 = ∂

∂x1
, X2 = ∂

∂x2
−x1

∂

∂x3
+ x2

1
2

∂

∂x4
+ . . .+(−1)(κ−1) xκ−1

1
(κ− 1)!

∂

∂xκ+1
.

Let E = {x ∈ G : f(x) > 0}, where

f(x1, . . . , xr+1) = x3
2

3 + 2x4.

Then the proof follows the same argument used in the previous example.
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