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PSEUDO-ABELIAN INTEGRALS ON SLOW-FAST
DARBOUX SYSTEMS

by Marcin BOBIEŃSKI,
Pavao MARDEŠIĆ & Dmitry NOVIKOV (*)

Abstract. — We study pseudo-abelian integrals associated with polynomial
deformations of slow-fast Darboux integrable systems. Under some assumptions
we prove local boundedness of the number of their zeros.
Résumé. — Nous étudions les intégrales pseudo-abéliennes associées aux défor-

mations polynomiales des systèmes lent-rapide Darboux-intégrables. Sous certaines
hypothèses, nous montrons l’existence d’une borne uniforme de leur nombre de zé-
ros.

1. Introduction and main result

Pseudo-abelian integrals appear as the principal (linear) part of the
displacement function in polynomial deformations of Darboux integrable
cases. This paper is a part of the program of proving uniform finiteness of
the number of zeros of pseudo Abelian integrals, see [7, 2, 3]. After study-
ing the generic cases [7, 2], nongeneric cases must be studied, too. Here
we study zeros of pseudo-abelian integrals associated to deformations of
slow-fast Darboux integrable systems.

More precisely consider Darboux integrable system ω0 given by

ω0 = M
dH0

H0
, (1.1)

Keywords: pseudo-abelian integrals, abelian integrals, slow-fast systems, Darboux inte-
grability, bifurcations, limit cycles.
Math. classification: 34C08,70K70,34C07.
(*) This research was supported by ANR ANAR Project, Polish MNiSzW Grant No N
N201 397937, and by Israel Science Foundation (grant No. 1501/08).
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where

M =
k∏
i=1

Pi, H0 =
k∏
i=1

P ai
i , ai > 0, Pi ∈ R[x, y]. (1.2)

We consider the family of forms ωε given by

ωε = P0M
dH0

H0
+ εMdP0, P0 ∈ R[x, y]. (1.3)

Note that for ε = 0 this form defines a foliation singular along the curve
P0 = 0. The form (1.3) is Darboux integrable with first integral

Hε = H0 P
ε
0 . (1.4)

The system (1.3) is slow-fast and P0 = 0 is the slow manifold. The fast
dynamics is given by the Darboux integrable system (1.1) outside the slow
manifold P0 = 0. Figure 1.1 presents typical example that we treat.

P−1
0 (0)

Figure 1.1. Phase portrait of the integrable system.

Assume that the system (1.3) has a family γε(t) ⊂ H−1
ε (t) of cycles.

Consider the polynomial perturbation of the system (1.3).

ωε,δ = ωε + ε1η, ε1 > 0. (1.5)

The linearization in perturbation parameter ε1 of the Poincaré first re-
turn map is given by the pseudo-Abelian integral

Iε(t) =
∫
γε(t)

η

P0M
. (1.6)

In this paper we study pseudo-Abelian integrals taken along the cycles
γε(t) of the simplest integrable system bifurcating from a slow-fast system:

Assume that a compact region D is bounded by P0 = 0 and some sep-
aratrices Pi = 0, i = 1, . . . , k. Assume that the functions Pi, i = 0, . . . , k,
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PSEUDO-ABELIAN INTEGRALS: SLOW-FAST CASE 419

are smooth and intersect transversally in D and that the foliation (1.1) has
no singularities on IntD.
Assume moreover that P0 = 0 is transverse to the foliation ω0 = 0 in

all points of D ∩ {P0 = 0} except for one point p0, where the contact
is quadratic. Then, for ε 6= 0, a singular point pε bifurcates from p0. It
corresponds to a real value tε = Hε(pε). The bifurcating singular point pε
is a center entering the domain D, for ε > 0. Let γε(t) be the family of
cycles in the basin of the center bifurcating from p0. For each ε, the cycles
are defined on an interval [0, tε].

Remark 1.1. — Note that if D is compact, then necessarily {P0 = 0}
must have at least one contact point with the foliation ω0 = 0. Below in
the paper we call turning point the point of tangency between {P0 = 0}
and the leaves of ω0 = 0.

For ε < 0 instead of a center, a saddle point bifurcates from p0 just
outside of D.

Example 1.2. — Consider the foliation

ωε = P0dP1 + εP1dP0, P0 = y − x2, P1 = 1− y, (1.7)

with the first integral Hε = (1 − y)(y − x2)ε. It has a critical point pε =
( ε

1+ε , 0), which is a saddle for ε < 0, coincides with the tangency point
p0 = (0, 0) for ε = 0, and is a center for ε > 0. For each ε > 0 the region
D = {x2 6 y 6 1} ⊂ R2 is filled by a nest of cycles γε(t) vanishing at pε.
These cycles are parameterized by values of t varying from 0 (corresponds
to the polycycle ∂D) to

tε = Hε(pε) = (1 + ε)−1
(

1 + 1
ε

)−ε
→ e−1, as ε→ 0.

Theorem 1.3. — Let Iε(t) be the family of pseudo-Abelian integrals
as defined above with the above genericity assumptions. Then there exists
a bound for the number of isolated zeros of the pseudo-Abelian integrals
I(t, ε), for ε > O and t ∈ (0, tε). The bound is locally uniform with re-
spect to all parameters, i.e. the parameters of the form η, varying in some
finite dimensional analytic family, the coefficients of the polynomials Pj ,
the exponents aj and ε.

Remark 1.4. — The estimates on the number of zeros of pseudo-Abelian
integrals do not imply in general estimates on cyclicity of corresponding
polycycles, due to presence of the so-called "alien" cycles, see e.g. [6].

TOME 63 (2013), FASCICULE 2
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Figure 1.2. Phase portrait of Hε = (1− y)(y − x2)ε

In order to prove the theorem we want to apply variation and argument
principle as in [2, 1, 3]. The difficulty lies in the fact that the family of
cycles of integration γε(t), ε > 0 does not have a smooth limit as ε → 0.
The family tends to a family of slow-fast cycles formed by parts of the slow
manifold and parts of leaves of the fast foliation. After taking an ε-scaled
variation, the cycle of integration γε(t) is replaced by a figure eight cycle
δε(t), see Proposition 2.1, and the integral Iε(t) by the integral Jε(t) taken
along δε(t). For t not too close to the center value tε, the cycle δε(t) can
be moved along leaves of the foliation to be at some positive ε-independent
distance from the slow manifold. This property, which does not hold for
the initial cycle γε(t), implies good analytic properties of J .

However, as t→ tε, and ε→ 0, both cycles γε(t) and δε(t) approach the
turning point. To overcome this difficulty in a ε-uniform way, we perform
a blow-up in the family ωε. To each chart of the blow up corresponds a
time scale. In blown-up coordinates the cycles γε(t) and δε(t) have smooth
limits in respective charts. This proves analyticity of I or J in the time
scale of the convenient chart.

1.1. Relation to known results

The limit cycles of system with non-isolated singularities (slow-fast sys-
tems) were investigated intensively. In particular, in [4, 5], authors consid-
ered appearance of canard cycles. They obtained a simple integral formula
for the ε-leading term of the derivative ∂∆

∂y , where y is a parametrization of
the transversal and ∆ is the Poincaré return map. The method presented
in these papers is suitable for detection and investigation of location of the
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PSEUDO-ABELIAN INTEGRALS: SLOW-FAST CASE 421

canard-like limit cycles. However, not all limit cycles that we deal with in
this paper, are of this type.
Our main aim is to prove the existence of a uniform upper bound for the

number of zeroes of pseudo-Abelian integrals corresponding to perturba-
tions of the slow-fast Darboux integrable system. We expect the bound to
be ε-uniform over the whole nest of cycles bounded by the polycycle. Some
of these limit cycles are not of canard-type as defined in [4, 5]. Namely, the
limit cycles bifurcating from the closed orbits located on distance of order
ε from the center do not have a slow-fast nature (see Figure 1.2).

Also, the methods of [4, 5] do not detect the limit cycles that tend, as
ε → 0, to the big polycycle. Indeed, in these papers authors consider an
open set containing no singular points apart from the only one born from
the slow manifold. Our methods allow treatment of saddle points. The
problem in application is related with saddle singular points located on the
polycycle. Due to these singular points the system can not be put in the
normal form ẋ = y − F (x), ẏ = εG(x), with additional assumptions as
listed in [4], in the whole nest of cycles.
Summing all this up, the difference in our result and results about slow-

fast system proved in [4, 5] is the following. Our aim was to prove the
finiteness for the pseudo-Abelian integral in the whole image of the Darboux
nest of cycles. In contrast, the results of Dumortier and Roussarie applied to
our system give information about limit cycles in the intermediate region (in
finite distance form the center and from the polycycle). In this intermediate
region their tools are more accurate. They deal with true return map,
not pseudo-Abelian integrals and in particular cases they allow even to
determine the shape of the canard (cf. [4], Theorem 1, page 8).

Since we work with pseudo-Abelian integrals, the implication of our result
to the limit cycles problem is restricted to the standard statement that
isolated zeros of Abelian integral generate limit cycles, provided the finite
distance from polycycle is assumed. One can deduce this for sufficiently
small values of the perturbation parameter ε1. The region on the (ε, ε1)
plane where we control limit cycles is marked on the figure 1.3. In this
region the following statement is true. There exists a constant N such that
for any compact set K contained in the open period annulus, the number
of limit cycles bifurcating from K is bounded by N (the constant N does
not depend on a compact K).

TOME 63 (2013), FASCICULE 2
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ε

ε1

Figure 1.3. Limit cycles control region

2. ε-variation of the γε(t) cycle

The key point of our approach is the study of analytic properties of the
integral along the family of figure eight loops.

On the smooth leaf H0 = t of the unperturbed equation there exists a
figure eight cycle lying close to the real segment {H0 = t}∩D and winding
around the points of intersection of this leaf with the curve P0 = 0, see
Figure 2.1. Since this cycle lies on a finite distance from this curve, i.e. in
a domain where the leaves of the foliation Hε = t depend analytically on
ε, t, one can move it to a complex leaf of the foliation Hε = t, uniquely up
to a small homotopy. The figure eight family of cycles δε(t) is defined as
the family of these lifts.

Figure 2.1. The "figure 8" loop

Let γε(t) ⊂ H−1
ε (t) as above and Iε(t) be the integral (1.6) along γε(t).

Acknowledgment. The authors express their gratitude to Institute of Mathematics of
Warsaw University and Weizmann Institute of Science for hospitality.
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Proposition 2.1. — The ε-variation of the cycle γε(t) is equal to the
figure eight cycle δε(t):

Varε(γε(t)) = γε(t eπiε)− γε(t e−πiε) = δε(t). (2.1)

Proof. — As in [2, 3], we transport the cycle γε(t) for t 7→ t eπiε and
subtract the transport along t 7→ t e−πiε. Using the local expression of Hε

near the slow manifold, we see that the parts of γε(t eπiε) and γε(t e−πiε)
along the slow manifold cancel. The figure eight cycle δε(t) remains. �

Corollary 2.2. — The ε-variation of the pseudo-Abelian integral Iε(t)
is an integral of the form η

P0M
along the figure eight cycle δε(t).

(VarεI)(t) : = Iε(t eπiε)− Iε(t e−πiε) =
∫
δε(t)

η

P0M
= Jε(t), (2.2)

3. Blowing up the turning point

We need to prove analytic properties of the integrals I and J in a neigh-
borhood of the slow manifold with respect to a convenient time scale. This
will be achieved by a convenient blow-up of the family in a neighborhood of
the turning point. This section is dedicated to this geometric construction.
Note that by Morse lemma we can put our family (1.3) to a normal form

of Example 1.2 in a neighborhood of the turning point:

Lemma 3.1. — By an analytic ε-independent change of coordinates de-
fined in a neighborhood of the turning point p0 we can assume that ω0 = dy

and P0 = y − x2.

We want to study the analytic properties of the foliation in a neighbor-
hood of the turning point (the vertex of parabola). The difficulty is the
approaching of the center to the vertex of the parabola, linearly with ε.
So we make the blow-up of the turning point of the family in the product
space (x, y, ε) of phase and parameter spaces. The family blow-ups were
studied by Dumortier and Roussarie e.g. in [4]. This is needed since we
want to prove analyticity with respect to both phase and parameter val-
ues. We want our blow-up to preserve the parabola y = x2 and to separate
the newborn center from the vertex. This requirements lead to the weighted
blow-up with weights (1 : 2 : 2).
Recall the construction of this weighted blow-up. We define the weighted

projective space CP 2
1:2:2 as the factor space of C3 by the C∗ action

(x, y, ε) 7→ (tx, t2y, t2ε). The blow-up of C3 at the origin is defined as

TOME 63 (2013), FASCICULE 2
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the incidence three dimensional manifold M . The precise definition is the
following. Let q = (x, y, ε) ∈ C3, [(X,Y,E)] ∈ CP 2

1:2:2. Then M = {(p, q) ∈
CP 2

1:2:2 × C3 : ∃t∈C : (x, y, ε) = (tX, t2Y, t2E)} (what means that the
point q belongs to the closure of the equivalence class defined by p ∈
CP 2

1:2:2).
Note that the weighted action of C∗ on C3\{0} is not free. The stabilizer

of points (0, y, ε) is a Z/2 = {±1} subgroup. As a result, the quotient is
not smooth on the line {x = 0}. In chart described below we will work with
the double covering which is smooth.
The blow-down π : M → C3 is just the restriction toM of the projection

CP 2
1:2:2 × C3 → C3.
For future applications we will need explicit formulae for the blow-up in

the standard affine charts of M . The projective space CP 2
1:2:2 is covered by

three affine charts: U1 = {x 6= 0} with coordinates (Y1, E1), U2 = {y 6= 0}
with coordinates (X2, E2) and U3 = {ε 6= 0} with coordinates (X3, Y3). The
transition formulae follow from the requirement that the points (1, Y1, E1),
(X2, 1, E2) and (X3, Y3, 1) lie on the same orbit of the action:

(Y1, E1) 7→ (X2 = 1√
Y1
, E2 = E1

Y1
)

(Y1, E1) 7→ (X3 = 1√
E1

, Y3 = Y1

E1
).

(3.1)

Remark 3.2. — Note that transition functions are singular since we
cover smooth double covering instead of the exceptional divisor itself. It is
easy to observe that replacing coordinates X2 and X3 in charts U2 and U3
respectively, we obtain usual, smooth projective transition functions.

These affine charts define affine charts onM, with coordinates (Y1E1, t1),
(X2, E2, t2) and (X3, Y3, t3). The projection π is written as

x = t1 y = t21Y1 ε = t21E1 (3.2)

x = t2X2 y = t22 ε = t22E2 (3.3)

x = t3X3 y = t23Y3 ε = t23. (3.4)

We apply this blow-up π to the one-dimensional foliation F on C3 given
by the intersection of dε = 0 and ωε = 0. This foliation has a complicated
singularity at the origin. Denote by π−1F the lifting of the foliation F to
the complement of the exceptional divisor π−1(0). This foliation is regular
outside of the preimage of the parabola P = {y = x2, ε = 0}.

Proposition 3.3. — The foliation π−1F can be extended analytically
to the exceptional divisor π−1(0). The resulting foliation π∗F is regular
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outside of the strict transform of the parabola P, the family of centers
{X3 = 0, Y3 = 1

1+t23
} and a point ps = (1 : 0 : 0) on the exceptional divisor.

Figure 3.1. The foliation π−1F

Remark 3.4. — The additional singular point has clear geometric in-
terpretation which is characteristic to the family blow-up of a slow-fast
system. It is a "trace" of the fast direction on the blow-up of the slow
manifold. Consider the following toy example of foliation in R2 defined by
1-form ωε = xd(1− y + ax) + ε(1− y + ax)dx. Making the family blow up

π : y = xY, ε = xE

we obtain a foliation given by 2-form
1
x2 π

∗(ωε∧dε) = (−a−E−aEx+Y +ExY )dE∧dx+x dE∧dY +Edx∧dY

that vanishes at the point x = 0, E = 0, Y = a corresponding to the
direction of the fast system.
Note that the point ps is not marked on the Figure 3.1, since it is not

covered by the respective chart of M (it is located at infinity with respect
to these coordinates).

Proof. — We check it in each chart separately. Note that a codimension
2 foliation F in 3-dimensional space is uniquely defined by 2-form σ by the
condition

F = {v : ivσ = 0}.

TOME 63 (2013), FASCICULE 2
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Alternatively, locally σ = iv Vol, where Vol is a suitable non-vanishing
volume form. Singular points of foliation correspond to zeros of 2-form σ.
The foliation (1.7) in 3-dimensional space C3 is given by σε = ωε ∧dε. The
pull-back foliation π∗F (strict transform of F) is defined by the pull-back
π∗σε divided by a suitable power of the function defining the exceptional
divisor. In charts Uj , j = 1, 2, 3, we have π∗σ = t5j σ̃j , where

σ̃1 =2(Y1 − 1)(Y1 − E1 + E1t
2
1Y1) dE1 ∧ dt1+

+ (Y1 − 1− E1 + E1t
2
1Y1)

(
t1dE1 ∧ dY1 + 2E1dt1 ∧ dY1

)
,

σ̃2 =2(1−X2
2 )(1− E2 + E2t

2
2) dE2 ∧ dt2+ (3.5)

+ 2(1− t22)X2E2

(
t2dE2 ∧ dX2 + 2E2dt2 ∧ dX2

)
,

σ̃3 =4X3(1− t23Y3)dt3 ∧ dX3 − 2(1 +X2
3 − Y3 − t23Y3)dt3 ∧ dY3.

The zero locus of the form σ̃ in a neighborhood of the exceptional divisor
consists of germs of two curves and the singular point ps = [1 : 0 : 0]
generated by weighted action. These curves are (X2 = ±1, E2 = 0) (strict
transform of the parabola P = 0) and (X3 = 0, Y3 = 1

1+t23
) (family of

centers).
In chart U3 we observe that the lifted foliation is given by two first

integrals: t3 and
s = (1− t23Y3)1/t23(Y3 −X2

3 ),
which can be analytically continued to t3 = 0. This foliation has no sin-
gularities near the exceptional divisor except for the line of centers X3 =
0, Y3 = 1

1+t23
. Note that the strict transform of the parabola is outside of

this chart.
�

4. Proof of the Theorem

In this section we first take benefit from the blowing-up in the family per-
formed in the previous section to prove analyticity of the integrals I and J
in a convenient time scale. Let us be given a compact family of cycles on
the exceptional divisor of the blown-up foliation at a finite distance from
the singularities. We can extend it to a continuous family in its full neigh-
borhood in the total blown-up space. By analyticity of blown-up foliation,
see Proposition 3.3, the integrals along these cycles will depend analytically
on the cycle in the extended family. In particular, this means that:

ANNALES DE L’INSTITUT FOURIER
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Lemma 4.1. — For any Rs < sc(0) = e−1

(1) the integral I is an analytic function of s and t3 in some neighbor-
hood of the arc {0} × {Rseiϕ||ϕ| 6 π} in complex (t3, s)-plane;

(2) the integral I is an analytic function of s and t3 in some neighbor-
hood of the segment {0} × [Rs, sc(0)] in complex (t3, s)-plane;

Proof of Lemma 4.1. — Note that the restriction of the foliation π∗F
to the exceptional divisor has first integral s = e−Y3

(
Y3 −X2

3
)
. It is easy

to construct a compact family of cycles γ lying on the exceptional divisor
and corresponding to the values of s mentioned in the first claim of the
Lemma, so the above argument proves the first claim.
For the second claim consider the compact family of real cycles vanishing

at the center. Analyticity of the integral along these cycles is standard. �
Consider the transversal X2 = 0 to the line t2 = E2 = 0 in chart U2.

To each point on this transversal corresponds a figure eight cycle as in
Proposition 2.1 passing through this point and lying on a leaf of the foliation
π∗F (note that this line is a leaf of π∗F), so the integral J defines a function
on this transversal in a neighborhood of 0.

Lemma 4.2. — The function J is an analytic function of t2, E2 for
|E2|, |t2| 6 ρ, for some sufficiently small ρ > 0.

Proof. — On the line t2 = E2 = 0 lying in U2 the blown-up foliation
(3.5) has two singular points X2 = ±1, see Figure 3.1. The figure eight
cycle lying on this line is on finite distance from these two singularities.
By integrability of π∗F , it can be extended to all sufficiently close leaves,
forming a continuous family of figure eight cycles. �

Proof of Theorem 1.3. — The first integral maps the open nest of van-
ishing cycles to the interval (0, tε). We split the interval into two parts,
one being the image l0 of the interval [Rs, sc), and the remaining part. On
the first part the number of zeros of I is uniformly bounded by Gabrielov’s
theorem, due to Lemma 4.1.(2).
To estimate the number of zeros on the remaining part we apply argu-

ment principle to the contour Γ consisting of two arcs Aε and aε and two
straight segments L± joining their ends, see Figure 4.1. The arc aε of angle
2ε has infinitesimally small radius and the arc Aε is the image of the arc
described in Lemma 4.1.(1).
The ε-uniform bound for the increment of argument along Aε is a direct

consequence of Lemma 4.1.(2).
The increment of argument along segments L± can be estimated by the

number of zeros of the imaginary part of the function I on L±. We calculate

TOME 63 (2013), FASCICULE 2
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using the fact that the function I is real on the real segment:

1
π

∆ArgL+I 6 #{t : ImI = 0}+ 1 = #{t : I − I = 0}+ 1 =

#{t : I(eπiε t)− I(e−πiε t) = 0}+ 1 = #{t : J(t) = 0}+ 1.

Thus, one translates the problem into estimating the number of zeros of the
integral J along the family of figure eight cycles corresponding to segments
L±.
We split the segment L± into two parts. One, closer to tc, is in the image

of the transversal considered in Lemma 4.2. The functions J on this part
can be considered as an analytic function of t2, E2. The remaining part of
L± corresponds to the part of the family of figure eight cycles lying not
closer than some fixed positive distance from the vertex of the parabola.
These cycles can be deformed along leaves to be not closer than some
positive constant from the parabola, see Figure 2.1. Therefore the function
J is analytic in t, ε on this part.
By Gabrielov theorem, the number of zeros of J on L± is uniformly

bounded in ε.
To obtain an upper bound for increment of argument of I along the small

arc aε, we use an argument similar to those from [2, 3, 1, 7]. One can easily
prove that |I| 6 C|t|M/ε in sectors. On the other hand, for any fixed ε the
function I has a leading term at t = 0 of the form tβ logj t, see the above
papers. Together it proves the existence of the uniform in ε upper bound
for the increment of argument.
All the above constructions depend analytically on parameters like coef-

ficients of the polynomials Pi, exponents ai and coefficients of the form η.

2πε L+

L−
aε

0
Aε

Figure 4.1. Contour Γ

�
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5. Concluding remarks and open problems

Remark 5.1. — Consider the model Example 1.2. An alternative way
to prove Theorem 1.3 for this system would be to reduce it to the situa-
tion considered in our previous paper [3]. Indeed, change of variables x =√
εX, y = εY the system (1.7) has the first integral s = (Y −X2)(1−εY )1/ε.

After additional blow-up of the point at infinity, we get an unfolding of a
system with two saddle-nodes. Unfolding of systems with polycycle with
two saddle-nodes was considered in [3]. However, this approach does not
generalizes to more general systems considered in Theorem 1.3.

In the spirit of our program of proving of uniform finiteness of the num-
ber of zeros of pseudo-Abelian integrals, more general slow-fast Darboux
systems should be studied. Already in the generic case, stable under small
perturbations of coefficients, one has to face several problems. In particular

(1) The unperturbed Darboux system ω0 = 0 can have extra singular
points inside D, not lying on the zero level of H0;

(2) Unperturbed Darboux system can have a nest of cycles, and the
slow manifold cuts the nest and becomes a part of polycycle bound-
ing the new nest;

(3) The curve {P0 = 0} can have additional tangency points with the
leaves of ω0 = 0, which generate saddles type singularities;

(4) The nest of cycles accumulating to the polycycle and encircling
more than one newborn singular point, so called “big cycles”;

These possible scenarios are illustrated on Figure 5.1 below, keeping nu-
meration.

1

P−1
0 (0)

2

3

4

P−1
0 (0)

Figure 5.1. Phase portrait of the system with two factors.
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