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DE RHAM THEORY FOR TAME STACKS
AND SCHEMES WITH LINEARLY

REDUCTIVE SINGULARITIES

by Matthew SATRIANO

Abstract. — We prove that the Hodge-de Rham spectral sequence for smooth
proper tame Artin stacks in characteristic p (as defined by Abramovich, Olsson,
and Vistoli) which lift mod p2 degenerates. We push the result to the coarse spaces
of such stacks, thereby obtaining a degeneracy result for schemes which are étale
locally the quotient of a smooth scheme by a finite linearly reductive group scheme.
Résumé. — Nous démontrons que la suite spectrale de Hodge-De Rham d’un

champ d’Artin propre modéré en caractéristique p (d’après Abramovich, Olsson et
Vistoli) qui se relève mod p2 dégénère. Nous étendons ce résultat à des schémas
quotients d’un schéma lisse par un schéma en groupes linéaires réductifs.

Given a scheme X smooth and proper over a field k, the cohomology
of the algebraic de Rham complex Ω•X/k is an important invariant of X,
which, when k = C, recovers the singular cohomology of X(C). When the
Hodge-de Rham spectral sequence

Est1 = Ht(ΩsX/k)⇒ Hn(Ω•X/k)

degenerates, the invariants dimkH
n(Ω•X/k) break up into sums of the finer

invariants dimkH
t(ΩsX/k). The degeneracy of this spectral sequence for

smooth proper schemes in characteristic 0 was first proved via analytic
methods. It was not until much later that Faltings [6] gave a purely al-
gebraic proof by means of p-adic Hodge Theory. Soon afterwards, Deligne
and Illusie [5] gave a substantially simpler algebraic proof by showing that
the degeneracy of the Hodge-de Rham spectral sequence in characteristic
0 is implied by its degeneracy for smooth proper schemes in characteristic
p that lift mod p2. Their method therefore extends de Rham Theory to

Keywords: de Rham, Hodge, tame stack, linearly reductive.
Math. classification: 14A20, 14F40.



2014 Matthew SATRIANO

the class of smooth proper schemes in positive characteristic which lift. A
version of de Rham Theory also exists for certain singular schemes. Steen-
brink showed [18, Thm 1.12] that if k is a field of characteristic 0, M a
proper k-scheme with quotient singularities, and j : M0 ↪→ M its smooth
locus, then the hypercohomology spectral sequence

Est1 = Ht(j∗ΩsM0/k)⇒ Hn(j∗Ω•M0/k)

degenerates and Hn(j∗Ω•M0/k) agrees with Hn(M(C),C) when k = C.
As we explain in this paper, a version of this theorem is true in positive
characteristic as well: if k has characteristic p andM is proper with quotient
singularities by groups whose orders are prime to p, then the above spectral
sequence degenerates for s+ t < p provided a certain liftability criterion is
satisfied (see Theorem 1.15 for precise hypotheses).
As a warm-up for the rest of the paper, we begin by showing how Steen-

brink’s result can be reproved using the theory of stacks. The idea is as
follows. Every scheme M as above is the coarse space of a smooth Deligne-
Mumford stack X whose stacky structure is supported at the singular locus
ofM . We show that the de Rham cohomologyHn(Ω•X/k) of the stack agrees
with Hn(j∗Ω•M0/k). After checking that the method of Deligne-Illusie ex-
tends to Deligne-Mumford stacks, we recover Steenbrink’s result as a con-
sequence of the degeneracy of the Hodge-de Rham spectral sequence for X.
The above extends de Rham Theory to the class of schemes with quotient

singularities by groups whose orders are prime to the characteristic, but in
positive characteristic this class of schemes contains certain “gaps” and it is
natural to ask if de Rham Theory can be extended further. For example, in
all characteristics except for 2, the affine quadric cone Spec k[x, y, z]/(xy−
z2) can be realized as the quotient of A2 by Z/2Z under the action x 7→ −x,
y 7→ −y. In characteristic 2, however, this action is trivial. If we allow
quotients not just by finite groups, but rather finite group schemes, then we
can realize the cone as A2/µ2 where ζ ∈ µ2(T ) acts as x 7→ ζx, y 7→ ζy. This
is an example of what we call a scheme with linearly reductive singularities;
that is, a scheme which is étale locally the quotient of a smooth scheme by
a finite flat linearly reductive group scheme.
One of the main results of this paper is that de Rham Theory can be ex-

tended to the class of schemes with isolated linearly reductive singularities.
As with Steenbrink’s result, we prove this by passing through stacks. Just
as schemes with quotient singularities are coarse spaces of smooth Deligne-
Mumford stacks whose stacky structure is supported at the singular locus,
we show in Theorem 4.2 that schemes with linearly reductive singulari-
ties are coarse spaces of smooth tame (Artin) stacks (as introduced in [1])
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DE RHAM THEORY FOR TAME STACKS 2015

whose stacky structure is supported at the singular locus. So, to extend
de Rham Theory to schemes with isolated linearly reductive singularities,
we first show the degeneracy of a type of Hodge-de Rham spectral sequence
for tame stacks. We should emphasize that, unlike in the case of Deligne-
Mumford stacks, there are technical barriers to extending the method of
Deligne-Illusie to Artin stacks or even tame stacks, first and foremost being
that relative Frobenius does not behave well under smooth base change. It
should also be noted that it is a priori not clear what the definition of the
de Rham complex of a tame stack X should be. One can use the cotangent
complex LX of the stack (see [12, §15] and [16, §8]) to define the derived
de Rham complex

∧•
LX; alternatively, one can use a more naive sheaf of

differentials $1
X on the lisse-étale site of X whose restriction to each Uet is

Ω1
U , for every U smooth over X. The latter has the advantage that it is sim-

pler, but it is not coherent; the cotangent complex, on the other hand, has
coherent cohomology sheaves. We take the naive de Rham complex as our
definition, but it is by comparing this complex with the derived de Rham
complex that we prove our main result for tame stacks:

Theorem 3.7. — Let X be a smooth proper tame stack over a perfect
field k of characteristic p. If X lifts mod p2, then the Hodge-de Rham
spectral sequence

Est1 = Ht($s
X/k)⇒ Hn($•X/k)

degenerates for s+ t < p (see the Notation section below).

>From Theorem 3.7 and Theorem 4.2, we are able to deduce

Theorem 4.8. — Let M be a proper k-scheme with isolated linearly
reductive singularities, where k is a perfect field of characteristic p. Let
j : M0 ↪→M be the smooth locus of M and let X be as in Theorem 4.2. If
X lifts mod p2, then the hypercohomology spectral sequence

Est1 = Ht(j∗ΩsM0/k)⇒ Hn(j∗Ω•M0/k)

degenerates for s+ t < p.

We should mention that unlike in the case of quotient singularities, the
cohomology groups Hn($•X/k) and Hn(j∗Ω•M0/k) no longer agree, so some
care is needed in showing how Theorem 4.8 follows from the degeneracy of
the Hodge-de Rham spectral sequence of the stack.
It is desirable, of course, to remove the stack from the statement Theo-

rem 4.8. We show in Theorem 4.9 that if the dimension of M is at least 4,
the liftability ofM implies the liftability of X. In this case, we therefore have
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2016 Matthew SATRIANO

a purely scheme-theoretic statement of Theorem 4.8. We end the paper by
proving a type of Kodaira vanishing theorem within this setting.
This paper is organized as follows. In Section 1, we begin by reviewing

some background material and giving an outline of [5, Thm 2.1] as some of
the technical details will be used later. We then consider de Rham Theory
for Deligne-Mumford stacks and show how stacks can be used to recast
Steenbrink’s result. The purpose of Section 2 is to find a way around the
problem that the method of Deligne and Illusie does not carry over directly
to the lisse-étale site of Artin stacks. Since relative Frobenius does behave
well under étale base change, our solution is to prove a Deligne-Illusie result
on the étale site of X•, where X → X is a smooth cover of a smooth tame
stack by a scheme, and X• is the simplicial scheme obtained by taking
fiber products over X. The key technical point here is showing that étale
locally on the coarse space of X, the relative Frobenius for X lifts mod p2.
In Section 3, we prove that the naive de Rham complex and the derived
de Rham complex above compute the same cohomology, and show how
this result implies the degeneracy of the Hodge-de Rham spectral sequence
for smooth proper tame stacks which lift mod p2. In Section 4, we prove
Theorem 4.8.
Acknowledgements. I would like to thank Dustin Cartwright, Ishai Dan-

Cohen, and Anto Geraschenko for helpful conversations. Most of all, I am
grateful to my advisor, Martin Olsson, both for his guidance and his help
in editing this paper.

Notation. — Unless otherwise stated, all Artin stacks are assumed to
have finite diagonal. If X is an Artin stack over a scheme S, we let X′

denote the pullback of X by the absolute Frobenius FS . We usually drop
the subscript on the relative Frobenius FX/S , denoting it by F . Given a
morphism g : X1 → X2 of S-stacks, we denote by g′ : X′1 → X′2 the induced
morphism.
Given a morphism g : X1 → X2 of Artin stacks and complex of sheaves

F• on X1, we do not use the shorthand g∗F• when we mean Rg∗F•. For
us, g∗F• always denotes the complex obtained by applying the functor g∗
to the complex F•.

Lastly, we say a first quadrant spectral sequence Er0 “degenerates for
s+ t < N” if for all r > r0 and all s and t satisfying s+ t < N , all of the
differentials to and from the Estr are zero.
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DE RHAM THEORY FOR TAME STACKS 2017

1. Steenbrink’s Result via Stacks

1.1. Review of Deligne-Illusie

We briefly review the proof of [5, Thm 2.1] and explain how it generalizes
to Deligne-Mumford stacks. Having an outline of this proof will be useful
for us in Section 2.

Let S = Spec k be a perfect field of characteristic p. For any S-scheme
X, let FX : X → X be the absolute Frobenius, which acts as the identity
on topological spaces and sends a local section s ∈ OX(U) to sp. We have
the following commutative diagram, where FX/S is the relative Frobenius
and the square is cartesian

X

  BBBBBBBB
FX/S //

FX

��
X ′ //

��

X

��
S

FS // S

We drop the subscript on the relative Frobenius FX/S , denoting it by F . If
X is locally of finite type over S, so that it is locally Spec k[x1, . . . , xn]/(f1,

. . . , fm), where fj =
∑
aj,Ix

I , then X ′ is locally Spec k[x1, . . . , xn]/(f (p)
1 ,

. . . , f
(p)
m ), where f (p)

j :=
∑
apj,Ix

I . The relative Frobenius morphism is then
given by sending xi to xpi and a ∈ k to a.

Our primary object of study is the de Rham complex Ω•X/S . The maps
in this complex are not OX -linear. To correct this “problem” we instead
consider F∗Ω•X/S , whose maps are OX′ -linear. It is now reasonable to ask
how the cohomology of this new complex compares with the cohomology
of the de Rham complex on X ′. An answer is given by:

Theorem 1.1 (Cartier isomorphism). — If X is smooth over S, then
there is a unique isomorphism of OX′ -graded algebras

C−1 :
⊕

ΩiX′/S −→
⊕
Hi(F∗Ω•X/S)

such that C−1d(x⊗ 1) is the class of xp−1dx for all local sections x of OX′ .

Note that once C−1 is shown to exist, uniqueness is automatic. For a
proof of this theorem, see [10, Thm 7.2].
We are now ready to discuss [5, Thm 2.1].

TOME 62 (2012), FASCICULE 6



2018 Matthew SATRIANO

Theorem 1.2. — Let W2(k) be the ring of truncated Witt vectors and
let S̃ = SpecW2(k). If X is smooth over S, then to every smooth lift X̃ of
X to S̃, there is an associated isomorphism

ϕ :
⊕
i<p

ΩiX′/S [−i] −→ τ<pF∗Ω•X/S

in the derived category of OX′ -modules such that Hi(ϕ) = C−1 for all
i < p.

We give a sketch of the argument. To define ϕ, we need only define
ϕi : ΩiX′/S [−i] → τ<pF∗Ω•X/S such that Hi(ϕ) = C−1 for each i < p. We
take ϕ0 to be the composite

OX′
C−1

−→ H0F∗Ω•X/S −→ F∗Ω•X/S .

Suppose for the moment that ϕ1 has already been defined. For i > 1, we
can then define ϕi to be the composite

ΩiX/S [−i] a[−i]−→ (Ω1
X/S)⊗i[−i] (ϕ1)⊗i

−→ (F∗Ω•X/S)⊗i b−→ F∗Ω•X/S ,

where
a(ω1 ∧ · · · ∧ ωi) = 1

i!
∑
σ∈Si

(signσ)ωσ(1) ⊗ · · · ⊗ ωσ(i)

and b(ω1 ⊗ · · · ⊗ ωi) = ω1 ∧ · · · ∧ ωi.
Thus, we are reduced to defining ϕ1. Suppose first that Frobenius lifts;

that is, there exists F̃ filling in the diagram

X //

F

��

��

X̃

F̃

���
�
�

��

X ′ //

��

X̃ ′

��
S // S̃

where X̃ ′ = X̃ ×S̃,σ S̃ and σ is the Witt vector Frobenius automorphism.
Let p : OX

'→ pOX̃ be the morphism sending x0 to px for any local section
x of OX̃ reducing mod p to x0. Note that if x ⊗ 1 is a local section of
OX̃ ⊗W2(k),σ W2(k) = OX̃′ , then F̃ ∗(x ⊗ 1) = xp + p(u(x)) for a unique
local section u(x) of OX . We define a morphism f : Ω1

X′/S → F∗Ω1
X/S by

f(dx0 ⊗ 1) = xp−1
0 dx0 + du(x).
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Deligne and Illusie show that ϕ1 can be taken to be f . Given two different
choices F̃1 and F̃2 of F , we obtain a homotopy h12 relating f1 and f2,
defined by h12(dx0 ⊗ 1) = u2(x)− u1(x).
Note that F lifts locally since the obstruction to lifting it lies in

Ext1(F ∗Ω1
X′/S ,OX) = H1(X,F ∗TX′/S).

So, to define ϕ1 in general, we need only patch together the local choices.
This is done as follows. Let U = {Ui} be a cover on which Frobenius lifts
and let Č•(U ,F) denote the sheafified version of the Čech complex of a
sheaf F . We define ϕ1 to be the morphism in the derived category

Ω1
X′/S [−1] Φ−→ Tot(F∗Č•(U ,Ω•X/S)) '←− F∗Ω•X/S ,

where

Φ = (Φ1,Φ2) : Ω1
X′/S → F∗Č1(U ,OX)⊕ F∗Č0(U ,Ω•X/S)

is given by (Φ1(ω))ij = hij(ω|U ′ij) and (Φ2(ω))i = fi(ω|U ′i). Deligne and
Illusie further show that this is independent of the choice of covering. This
completes the proof.

Remark 1.3. — In the local case where Frobenius lifts, ϕ is a morphism
of complexes. It is only when patching together the local choices that we
need to pass to the derived category.

Remark 1.4. — Using the fact that for any étale morphism g : Y → Z

of S-schemes, the pullback of FZ/S : Z → Z ′ by g is FY/S , one can check
that the proof of Theorem 1.2 works when X is a Deligne-Mumford stack.
Alternatively, this will follow from the proof of Theorem 2.5 below.

Given any abelian category A with enough injectives, a left exact functor
G : A → B to another abelian category, and a bounded below complex of
objects A• of A, we obtain a hypercohomology spectral sequence

Est1 = RtG(As)⇒ RnG(A•).

If X is a Deligne-Mumford stack over a scheme Y , the hypercohomology
spectral sequence Est1 = Ht(ΩsX/Y ) ⇒ Hn(Ω•X/Y ) obtained in this way is
called the Hodge-de Rham spectral sequence.
As Deligne and Illusie show, Theorem 1.2 implies the degeneracy of the

Hodge-de Rham spectral sequence for smooth proper schemes. We repro-
duce their proof, which requires no modification to handle the case of
Deligne-Mumford stacks, after first isolating the following useful fact from
homological algebra.

TOME 62 (2012), FASCICULE 6



2020 Matthew SATRIANO

Lemma 1.5. — Let K be a field and r0 a positive integer. Let Estr0
⇒

Es+t be a first quadrant spectral sequence whose terms are finite-dimensio-
nal K-vector spaces and whose morphisms are K-linear. If n is a non-
negative integer and ∑

s+t=n
dimK E

st
r0

= dimK E
n,

then for all r > r0 the differentials to and from the Es,n−sr are zero. Hence,
if the above equality holds for all n < N , then the spectral sequence de-
generates for s+ t < N .

Proof. — Note that for all r > r0∑
s+t=n

dimK E
st
r+1 6

∑
s+t=n

dimK E
st
r

with equality if and only if all of the differentials to and from the Es,n−sr

are zero. Hence ∑
s+t=n

dimK E
st
∞ 6

∑
s+t=n

dimK E
st
r0

with equality if and only if the differentials to and from the Es,n−sr are
zero for all r > r0. Since the E∞ terms are K-vector spaces, the extension
problem is trivial, and so

dimK E
n =

∑
s+t=n

dimK E
st
∞ 6

∑
s+t=n

dimK E
st
r0

= dimK E
n,

which completes the proof. �

Corollary 1.6 ([5, Cor 2.5]). — If X is a Deligne-Mumford stack over
S, which is smooth, proper, and lifts mod p2, then the Hodge-de Rham
spectral sequence

Est1 = Ht(ΩsX/S)⇒ Hn(Ω•X/S)

degenerates for s+ t < p.

Proof. — By Theorem 1.2 and Remark 1.4, we have an isomorphism⊕
s<p

ΩsX′/S [−s] −→ τ<pF∗Ω•X/S

in the derived category of OX′ -modules. It follows that for all n < p,⊕
s+t=n

Ht(ΩsX′/S) = Hn(Ω•X/S).

ANNALES DE L’INSTITUT FOURIER



DE RHAM THEORY FOR TAME STACKS 2021

Using the fact that Ht(ΩsX′/S) = Ht(ΩsX/S)⊗k,Fk
k, we see∑

s+t=n
dimkH

t(ΩsX/S) =
∑
s+t=n

dimkH
t(ΩsX′/S) = dimkH

n(Ω•X/S),

which, by Lemma 1.5, proves the degeneracy of the spectral sequence. �
Deligne and Illusie further show that the degeneracy of the Hodge-de

Rham spectral sequence in positive characteristic implies the degeneracy
in characteristic 0. While its degeneration in characteristic 0 had previously
been known by analytic means, this provided a purely algebraic proof.

Corollary 1.7. — Let X be a Deligne-Mumford stack which is smooth
and proper over a field K of characteristic 0. Then the Hodge-de Rham
spectral sequence

Est1 = Ht(ΩsX/K)⇒ Hn(Ω•X/K)

degenerates.

The proof given in [5, Cor 2.7] for schemes requires only a minor mod-
ification. It uses that if X is a smooth proper scheme over a field K of
characteristic 0, then there is an integral domain A of finite type over Z, a
morphism A→ K, and a smooth proper scheme Y over SpecA which pulls
back over SpecK to X. Since this statement remains true when we allow
X and Y to be Deligne-Mumford stacks ([13, p.2]), the proof given in [5,
Cor 2.7] implies Corollary 1.7 above.

1.2. de Rham Theory for Schemes with Quotient Singularities

Let k be a field of characteristic 0 and let S = Spec k.

Definition 1.8. — An S-schemeM (necessarily normal) is said to have
quotient singularities if there is an étale cover {Ui/Gi →M}, where the Ui
are smooth over S and the Gi are finite groups.

Our goal in this subsection is to use stacks to reprove [18, Thm 1.12]
which states:

Theorem 1.9. — Let M be a proper S-scheme with quotient singular-
ities, and let j : M0 →M be its smooth locus. Then the hypercohomology
spectral sequence

Est1 = Ht(j∗ΩsM0/S)⇒ Hn(j∗Ω•M0/S)

of the complex j∗Ω•M0/S degenerates. Furthermore, if k = C, then Hn(j∗
Ω•M0/S) agrees with the Betti cohomology Hn(M(C),C) of M .

TOME 62 (2012), FASCICULE 6



2022 Matthew SATRIANO

The following proposition gives the relationship between Deligne-Mum-
ford stacks and schemes with quotient singularities.

Proposition 1.10. — Let M be an S-scheme and let j : M0 → M be
its smooth locus. Then M has quotient singularities if and only if it is the
coarse space of a smooth Deligne-Mumford stack X such that f0 in the
diagram

X0
j0
//

f0

��

X

f

��
M0

j
// M

is an isomorphism, where X0 = M0 ×M X.

For a proof, see [7, Rmk 4.9] or [20, Prop 2.8]. Vistoli’s proposition is
slightly more general than the proposition above.

We give the proof of Theorem 1.9 after first proving a lemma which
compares j∗Ω•M0/S to the de Rham complex of a Deligne-Mumford stack.

Lemma 1.11. — If M is an S-scheme with quotient singularities and X

is as in Proposition 1.10, then

j∗Ω•M0/S = f∗Ω•X/S .

Proof. — To prove this equality, we need only show j0
∗Ω•X0/S = Ω•X/S .

That is, given an étale morphism U → X, we want to show i∗Ω•U0/S = Ω•U/S ,
where U0 := M0 ×M U and i is the projection to U . Since ΩkU/S is locally
free, hence reflexive, the following lemma completes the proof. �

Lemma 1.12. — Let X be a normal scheme and i : U ↪→ X an open
subscheme whose complement has codimension at least 2. If F is a reflexive
sheaf on X, then the adjunction map F → i∗i

∗F is an isomorphism.

Proof. — Since F is reflexive, F = Hom(G,OX), where G = F∨. There-
fore,

i∗i
∗F = i∗Hom(i∗G,OU ) = Hom(G, i∗OU )

and since X is normal, i∗OU = OX . �

Proof of Theorem 1.9. — Let X be as in Proposition 1.10. From Lem-
ma 1.11, we see that j∗Ω•M0/S = f∗Ω•X/S and j∗ΩsM0/S = f∗ΩsX/S for all s.
Since the ΩsX/S are coherent, it follows from [2, Lemma 2.3.4] that

j∗Ω•M0/S = Rf∗Ω•X/S and j∗ΩsM0/S = Rf∗ΩsX/S .

ANNALES DE L’INSTITUT FOURIER
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We see then that

Hn(j∗Ω•M0/S) = Hn(Ω•X/S) and Ht(j∗ΩsM0/S) = Ht(ΩsX/S).

The proof of Proposition 1.10 given in [20, Prop 2.8] shows that f is proper,
and so the Hodge-de Rham spectral sequence for X degenerates by Corol-
lary 1.7. It follows that∑

s+t=n
dimkH

t(j∗ΩsM0/S) =
∑
s+t=n

dimkH
t(ΩsX/S) = dimkH

n(Ω•X/S)

= dimkH
n(j∗Ω•M0/S),

which, by Lemma 1.5, proves the degeneracy of the hypercohomology spec-
tral sequence for j∗Ω•M0/S .

We now show that if k = C, then Hn(j∗Ω•M0/S) = Hn(M(C),C). We
have shown Hn(j∗Ω•M0/S) = Hn(Ω•X), and GAGA for Deligne-Mumford
stacks ([19, Thm 5.10]) shows

Hn(Ω•X) = Hn(Ω•Xan),

where Xan is defined in [19, Def 5.6]. Note that C → Ω•Xan is a quasi-
isomorphism since this can be checked étale locally. It follows that

Hn(Ω•Xan) = Hn(Xan,C).

Lastly, the singular cohomology of Xan and that of its coarse space, M(C),
are the same. This is shown in [3, Prop 36] for topological Deligne-Mumford
stacks with Q-coefficients, but the proof works equally well in our situation
once it is combined with [19, Prop 5.7], which states [Uan/G] = [U/G]an.

�

We end this section with some remarks about the situation in positive
characteristic. Suppose k is a perfect field of characteristic p and let S =
Spec k.

Definition 1.13. — We say an S-scheme M (necessarily normal) has
good quotient singularities if it has an étale cover {Ui/Gi → M}, where
the Ui are smooth over S and the Gi are finite groups of order prime to p.

Both the proof in [7] and in [20] (along with Vistoli’s Remark 2.9) cited
above work in positive characteristic. So, we have the following generaliza-
tion of Proposition 1.10.

Proposition 1.14. — Let M be an S-scheme, and let j : M0 → M

be its smooth locus. Then M has good quotient singularities if and only

TOME 62 (2012), FASCICULE 6



2024 Matthew SATRIANO

if it is the coarse space of a smooth tame Deligne-Mumford stack X ([2,
Def. 2.3.1]) such that f0 in the diagram

X0
j0
//

f0

��

X

f

��
M0

j
// M

is an isomorphism, where X0 = M0 ×M X.

If X is a smooth proper tame Deligne-Mumford stack, then the Hodge-
de Rham spectral sequence for X degenerates by Corollary 1.6, and f∗F =
Rf∗F for any quasi-coherent sheaf on X by [2, Lemma 2.3.4]. The proof of
Theorem 1.9 therefore gives the following result as well.

Theorem 1.15. — Let M be a proper S-scheme with good quotient
singularities, and let j : M0 →M be its smooth locus. If X, as in Proposi-
tion 1.14, lifts mod p2, then

Est1 = Ht(j∗ΩsM0/S)⇒ Hn(j∗Ω•M0/S)

degenerates for s+ t < p.

As will follow from Theorem 4.9 below, ifM has dimension at least 4, lifts
mod p2, and has isolated singularities, then X automatically lifts mod p2.

2. Deligne-Illusie for Simplicial Schemes

Let k be a perfect field of characteristic p and let S = Spec k. In this
section, we prove a Deligne-Illusie result at the simplicial level. To do so,
we must first make sense of the Cartier isomorphism for simplicial schemes.

Lemma 2.1. — Let X and Y be smooth schemes over S and let ρ : X →
Y be a morphism of S-schemes. If C−1 denotes the Cartier isomorphism,
then the following diagram commutes

ρ′∗ΩiX′/S
ρ′∗C−1

//

��

ρ′∗Hi(F∗Ω•X/S)

��
ΩiY ′/S

C−1
// Hi(F∗Ω•Y/S)
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Proof. — Using the canonical morphism ρ′∗Hi(F∗Ω•X/S)→Hi(ρ′∗F∗Ω•X/S)
and the multiplicativity property of the Cartier isomorphism, we need only
check that the diagram commutes for i = 0, 1. For i = 0, the Cartier iso-
morphism is simply the kernel map, so the i = 0 case follows from the
commutativity of

ρ′∗F∗OX
ρ′∗d //

��

ρ′∗F∗Ω1
Y/S

��
F∗OY

d // F∗Ω1
X/S

To handle the i = 1 case, let f be a local section of OX and note that

df � //
_

��

fp−1df_

��
d(ρ(f)) � // ρ(f)p−1d(ρ(f))

�

Corollary 2.2. — Let X be a smooth Artin stack over S and let X0 →
X be a smooth cover by a scheme. If X• is the simplicial scheme obtained
by taking fiber products of X0 over X, and X ′• is its pullback by FS , then
there exists a unique isomorphism

C−1 : ΩiX′•/S → H
i(F∗Ω•X•/S)

such that C−1(1) = 1, C−1(ω ∧ τ) = C−1(ω)∧C−1(τ), and C−1(df) is the
class of fp−1df .

Proof. — If such a C−1 exists, then its restriction to the nth level of the
simplicial scheme is the Cartier isomorphism for Xn. Therefore, we need
only show existence, which follows from Lemma 2.1. �

We have now proved the Cartier isomorphism for simplicial schemes. The
other main ingredient in extending Deligne-Illusie to simplicial schemes X•,
is showing that relative Frobenius for X• lifts locally. We note that there
are, in fact, simplicial schemes for which relative Frobenius does not lift.

Example 2.3. — Let X• be obtained by taking fiber products of S over
BGa. Lifting Frobenius for X• is then equivalent to lifting Frobenius F of
Ga to a morphism F̃ of group schemes

SpecW2(k)[x] = Ga,S̃ → Ga,S̃ = SpecW2(k)[x].
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Since F̃ reduces to F , we must have F̃ (x) = xp + pf(x) for some f(x) ∈
W2(k)[x]. The condition that F̃ be a group scheme homomorphism implies

(x+ y)p + pf(x+ y) = xp + yp + p(f(x) + f(y)),

and an easy check shows that this is not possible.

Although the above example shows that relative Frobenius need not lift
locally for an arbitrary simplicial scheme, we show that relative Frobenius
does lift locally for those simplicial schemes which come from smooth tame
stacks. This is the key technical point of this section.

Proposition 2.4. — Let X be a smooth tame stack over S with coarse
spaceM . Then étale locally onM , both X and the relative Frobenius FX/S

lift mod p2.

Proof. — Since the statement of the proposition is étale local, by [17,
Prop 5.2] we can assume that M is affine and X = [U/G], where G =
Grm,S o H and H is a finite étale constant group scheme. Note that U is
affine and that the smoothness of G and X imply that U is smooth over S.

As a first step in showing that X and FX/S lift mod p2, we begin by show-
ing that BG and its relative Frobenius lift. Since the underlying scheme of
G is Grm,S ×S H and its group structure is determined by the action

H → Aut(Grm) = Aut(Zr),

we can use this same action to define a group scheme G̃ = Gr
m,S̃

oH which
lifts G. It follows that BG̃ is a lift of BG. Lifting the relative Frobenius
of BG is the same as lifting the relative Frobenius FG/S : Grm,S oH −→
Grm,S oH to a group scheme homomorphism. Note that FG/S is given by
the identity on H and component-wise multiplication by p on Grm,S . It
therefore has a natural lift mod p2 to the group scheme homomorphism
given by the identity on H and component-wise multiplication by p on
Gr
m,S̃

.
We now prove that X and FX/S lift. There is a natural map π : X→ BG

which makes

U //

��

S

��
X

π // BG
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a cartesian diagram. To lift X mod p2, it suffices to show that there a stack
X̃ and a cartesian diagram

X //

π

��

X̃

π̃

��
BG // BG̃

The obstruction to the existence of such a diagram lies in Ext2(LX/BG,OX);
here LX/BG denotes the cotangent complex. Since π is representable and
smooth, LX/BG is a locally free sheaf. It follows that

RHom(LX/BG,OX) = Hom(LX/BG,OX),

which is a quasi-coherent sheaf. Since π is affine and G is linearly reductive,
for any quasi-coherent sheaf F on X, we have

RΓ(X,F) = RΓ(BG,Rπ∗F) = Γ(BG, π∗F).

In particular,

RHom(LX/BG,OX) = Γ(X,Hom(LX/BG,OX))

and so Ext2(LX/BG,OX) = 0.
To show that FX/S lifts mod p2, it suffices to show that it lifts over our

choice F̃BG/S . That is, it suffices to show that there exists a dotted arrow
making the diagram

X

FX/S

��

// X̃

���
�
�

F̃BG/S◦π̃

��

X′

π′

��

// X̃′

π̃′

��
BG′ // BG̃′

commute. The obstruction to finding such a dotted arrow lies in
Ext1(LX′/BG′ , (FX/S)∗OX). As before, we have

RHom(LX′/BG′ , (FX/S)∗OX) = Hom(LX′/BG′ , (FX/S)∗OX),

which is again a quasi-coherent sheaf. An argument similar to the one
above then shows Ext1(LX′/BG′ , (FX/S)∗OX) = 0, thereby completing the
proof. �

We now prove Deligne-Illusie for simplicial schemes coming from smooth
tame stacks.
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Theorem 2.5. — Let X be a smooth tame stack over S. Let X0 → X be
a smooth cover by a scheme and let X• be the simplicial scheme obtained
by taking fiber products of X0 over X. Then, to every lift X̃0 → X̃ of
X0 → X, there is a canonically associated isomorphism

ϕ :
⊕
i<p

ΩiX′•/S [−i]→ τ<pF∗Ω•X•/S

in the derived category of OX′• -modules such that Hi(ϕ) = C−1 for i < p.

Proof. — To prove this theorem we simply check that all of the mor-
phisms in the proof of Deligne-Illusie extend to morphisms on the simplicial
level (see Section 1.1 for an outline of Deligne-Illusie and relevant notation).

Let ρ : Xn → Xm be a face or a degeneracy map of X•. To ease notation,
we denote Xn by Y and Xm by X. In addition, we use F to denote all
relative Frobenii.
To show that ϕ0 extends to a morphism OX′• → F∗Ω•X•/S , we show

ρ′∗OX′
ρ′∗C−1

//

��

ρ′∗H0F∗Ω•X/S //

��

ρ′∗F∗Ω•X/S

��
OY ′

C−1
// H0F∗Ω•Y/S // F∗Ω•Y/S

commutes. The left square commutes by Lemma 2.1. The right square
commutes since for any morphism A• → B• of complexes concentrated in
non-negative degrees, the following diagram commutes

ker d0
A

//

��

A0

��
ker d0

B
// B0

To show that ϕi extends to a morphism on the simplicial level for i > 0,
we must check

ρ′∗ΩiX′/S [−i]
ρ′∗a[−i]//

��

(Ω1
X′/S)⊗i[−i]

ρ′∗(ϕ1)⊗i

//

��

(F∗Ω•X/S)⊗i ρ′∗b //

��

F∗Ω•X/S

��
ΩiY ′/S [−i]

a[−i] // (Ω1
Y ′/S)⊗i[−i]

(ϕ1)⊗i

// (F∗Ω•Y/S)⊗i b // F∗Ω•Y/S
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commutes. It is clear that the outermost squares commute, and so we are
reduced to checking the commutativity of

ρ′∗Ω1
X′/S [−1] ρ′∗ϕ1

//

��

ρ′∗F∗Ω•X/S

��
Ω1
Y ′/S [−1] ϕ1

// F∗Ω•Y/S

Suppose now that Frobenius (for the simplicial scheme) lifts. So, we have
a commutative square

Ỹ
F̃ //

ρ̃

��

Ỹ ′

ρ̃′

��
X̃

F̃ // X̃ ′

of S̃-schemes which pulls back to

Y
F //

ρ

��

Y ′

ρ′

��
X

F // X ′

over S. In this case ϕ1 = f , and to check that it defines a morphism
Ω1
X′•/S

[−1]→ F∗Ω1
X•/S

, we need to check that

ρ′∗Ω1
X′/S [−1] ρ′∗f //

��

ρ′∗F∗Ω1
X/S

��
Ω1
Y ′/S [−1] f // F∗Ω1

Y/S

commutes. Under these morphisms,

dx0 ⊗ 1 � //
_

��

xp−1
0 dx0 + du(x)

_

��
dρ(x0)⊗ 1 ρ(x0)p−1dρ(x0) + dρ(u(x))

We see dρ(x0)⊗ 1 is sent to ρ(x0)p−1dρ(x0) + dρ(u(x)) since

F̃ ∗(ρ̃(x)⊗ 1) = F̃ ρ̃′(x⊗ 1) = ρ̃F̃ ∗(x⊗ 1) = ρ̃(xp + p(u(x)))
= ρ̃(x)p + p(u(ρ̃(x))).
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Given two different choices F̃1 and F̃2 of F , we obtain a homotopy h12 re-
lating f1 and f2. It is clear that h12 extends to a morphism on the simplicial
level since h12(dx0 ⊗ 1) = u2(x)− u1(x) and ρ̃(p(ui(x))) = p(ui(ρ̃(x))).
We now need to handle the general case when Frobenius does not lift. We

begin by proving that Frobenius lifts étale locally on X•. To do so, we can,
by Proposition 2.4, assume that there is a lift F̃ of FX/S . Let U0 = {Ui} be a
Zariski cover of X0 where Frobenius lifts and let F̃i be a lift of FUi/S . Then
Un := {Ui1 ×X · · ·×X Uin} is a Zariski cover of Xn and F̃i1 ×F̃ · · ·×F̃ F̃in is
a lift of Frobenius on Ui1 ×X · · · ×X Uin . Moreover, these lifts of Frobenius
are compatible so we see that Frobenius for the simplicial scheme does lift
étale locally.
To finish the proof of the theorem, we need only prove the commutativity

of

ρ′∗F∗Ω•X/S
' //

��

Tot(ρ′∗F∗Č•(Um,Ω•X/S))

��

ρ′∗Ω1
X′/S [−1]ρ′∗Φoo

��
F∗Ω•Y/S

' // Tot(F∗Č•(Un,Ω•Y/S)) Ω1
Y ′/S [−1]Φoo

The right square commutes because the Φ are defined in terms of the f ’s and
h’s. The middle vertical map is induced by the morphism of the respective
double complexes given by

(ω1,s ∧ · · · ∧ ωa,s)s∈Sm
7→ (ρsts (ω1,s ∧ · · · ∧ ρsts (ωa,s))s∈Sm,t∈Sn

where ρsts : Us ×X Ut → Us and Sk is the symmetric group. So, under the
morphisms in the left square,

ω1 ∧ . . . ωa � //
_

��

(ω1|Us ∧ · · · ∧ ωa|Us)s

ρ(ω1) ∧ . . . ρ(ωa) � // (ρ(ω1)|Us × Ut ∧ · · · ∧ ρ(ωa)|Us × Ut)s,t

Under the middle vertical map, (ω1|Us∧· · ·∧ωa|Us)s is sent to (ρsts (ω1|Us)∧
· · · ∧ ρsts (ωa|Us))s,t. But

Us ×X Ut //

ρst
s

��

Y

ρ

��
Us // X

commutes, so this completes the proof. �
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3. de Rham Theory for Tame Stacks

Let S be a scheme and X → Y a morphism of Artin stacks over S. We
denote by $1

X/Y the sheaf of OX-modules on the lisse-étale site of X such
that $1

X/Y |Uet = Ω1
U/Y for all U smooth over X. We define $s

X/Y to be∧s
$1

X/Y . Given a morphism f : V → U of smooth X-schemes, note that
the transition function

f∗Ω1
U/Y −→ Ω1

V/Y

need not be an isomorphism, and so the $s
X/Y are never coherent. Note

also that $1
X/X is not the zero sheaf.

As mentioned in the introduction, the sheaf $1
X/S gives us a naive de

Rham complex $•X/S . In this section we prove that when S is spectrum of
a perfect field of characteristic p, the hypercohomology spectral sequence

Est1 = Ht($s
X/S)⇒ Hn($•X/S)

degenerates for smooth proper tame stacks X that lift mod p2. The reason
the proof of Corollary 1.6 and the Deligne-Illusie result proved in the last
section do not immediately imply the degeneracy of this spectral sequence
is that, as mentioned above, the $s

X/S are not coherent, and so we do not
yet know that the Ht($s

X/S) and Hn($•X/S) are finite-dimensional k-vector
spaces. The main goal of this section, which implies the degeneracy of the
above spectral sequence, is to prove that they are by comparing them with
the cohomology of the cotangent complex.
We begin by proving three general lemmas and a corollary which require

no assumptions on the base scheme S. The first two lemmas are concerned
with relative cohomological descent. For background material on cohomo-
logical descent, we refer the reader to [16, §2] and [4, §6].
In what follows, given a smooth hypercover a : X• → X of an Artin stack

by a simplicial algebraic space, Xlis−et|Xs denotes the topos of sheaves over
the representable sheaf defined byXs and Xlis−et|X• denotes the associated
simplicial topos.

Lemma 3.1. — Let X be an Artin stack over S and let a : X• → X

be a smooth hypercover by a simplicial algebraic space. If f : X → M

is a morphism to a scheme, then for any F• ∈ Ab(Xlis−et|X•), there is a
spectral sequence

Est1 = Rt(fas)∗(Fs|Xs,et)⇒ ε∗R
n(f∗a∗)F•,

where ε : Mlis−et → Met is the canonical morphism of topoi. If F• = a∗F
for some F ∈ Ab(Xlis−et), then ε∗Rn(f∗a∗)F• = ε∗R

nf∗F .
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Proof. — Let ηs : Xlis−et|Xs → Xs,et be the canonical morphism of topoi
and note that

Ab(Xs,et)
(fas)∗

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Ab(Xlis−et|Xs)

ηs∗

OO

as∗
// Ab(Xlis−et)

f∗

// Ab(Mlis−et) ε∗
// Ab(Met)

commutes. By general principles (see proof of [4, Thm 6.11]), there is a
spectral sequence

Est1 = Rt(ε∗f∗as∗)(Fs)⇒ Rn(ε∗f∗a∗)F•.

As ε∗ is exact, Rn(ε∗f∗a∗)F• = ε∗R
n(f∗a∗)F•. Since ηs∗ is exact and takes

injectives to injectives, the commutativity of the above diagram implies
that Est1 ' Rt(fas)∗(Fs|Xs,et), which shows the existence of our desired
spectral sequence. Lastly, since

a∗ : Ab(Xlis−et)→ Ab(Xlis−et|X•)

is fully faithful, it follows ([4, Lemma 6.8]) that Ra∗a∗ = id. As a result,
ε∗R(f∗a∗)a∗F = ε∗Rf∗F . �

Lemma 3.2. — With notation and hypotheses as in Lemma 3.1, we have

Rn(fa)∗(η∗F•) = ε∗R
n(f∗a∗)F•,

where η : Xlis−et|X• → X•,et is the canonical morphism of topoi.

Proof. — We see that the diagram

Ab(X•,et)
(fa)∗

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Ab(Xlis−et|X•)

η∗

OO

a∗
// Ab(Xlis−et)

f∗

// Ab(Mlis−et) ε∗
// Ab(Met)

commutes. It follows that

R(fa)∗(η∗F•) = R(fa)∗(Rη∗F•) = ε∗R(f∗a∗)F•,

as ε∗ and η∗ are exact and take injectives to injectives. �

Using Lemma 3.1, we prove a base change result for sheaves on an Artin
stack which are not necessarily quasi-coherent, but are level-by-level quasi-
coherent on a smooth hypercover of the stack.
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Corollary 3.3. — Let f : X→M be a morphism from an Artin stack
to a scheme and let a : X• → X be a smooth hypercover by a simplicial
algebraic space. Let h : T → M be an étale morphism and consider the
diagram

Y•
j //

b

��

X•

a

��
Y i //

g

��

X

f

��
T

h // M

where all squares are cartesian. If F is anOX-module such that each F|Xs,et

is quasi-coherent, then the canonical map

h∗ε∗R
nf∗F −→ α∗R

ng∗i
∗F

is an isomorphism, where ε and α denote the canonical morphisms of topoi
Mlis−et →Met and Tlis−et → Tet, respectively.

Proof. — By Lemma 3.1, we have a spectral sequence

Est1 = Rt(fas)∗(F|Xs,et)⇒ ε∗R
nf∗F .

Applying h∗, we obtain another spectral sequence
8Est1 = h∗Rt(fas)∗(F|Xs,et)⇒ h∗ε∗R

nf∗F .

Flat base change shows

h∗Rt(fas)∗(F|Xs,et) = Rt(gbs)∗j∗s (F|Xs,et) = Rt(gbs)∗(i∗F)|Ys,et.

Another application of Lemma 3.1 then shows that 8E in fact abuts to
α∗R

ng∗i
∗F . �

Before stating the next lemma, we introduce the following definitions.
Let Z be an S-scheme equipped with an action ρ : G ×S Z → Z of a
smooth linearly reductive group scheme G over S and let p : G × Z → Z

be the projection. We denote by (G − linOZet
− mod) the category of

G-linearized OZet
-modules. That is, the category of quasi-coherent OZet

-
modules F together with an isomorphism φ : p∗F → ρ∗F satisfying a
cocycle condition. From such a φ we can define a “coaction map”

σ : F −→ p∗p
∗F p∗(φ)−→ p∗ρ

∗F = F ⊗OZ ,ρ OZ×SG

which satisfies an associativity relation as in [14, p.31]; here F → p∗p
∗F

is the canonical map. Letting f : Z → Z/G be the natural map, we define
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the G-invariants FG of F to be the equalizer of

f∗σ : f∗F −→ f∗p∗ρ
∗F = f∗p∗p

∗F

and f∗ of the canonical map s 7→ s⊗ 1.
If Y is also an S-scheme equipped with a G-action and h : Z → Y is a G-

equivariant map over S, then for every G-linearized OZet
-module F , there

is a natural G-linearization on h∗F . So, we have a commutative diagram
of categories

(G- lin OZet
-mod) //

h∗

��

(OZet
-mod)

h∗

��
(G- lin OYet -mod) // (OYet -mod)

where the horizontal arrows are the obvious forgetful functors. If g : Z/G→
Y/G denotes the map induced by h, then it is not hard to see that (h∗F)G =
g∗FG. In particular, FG = (f∗F)G where G acts trivially on Z/G. Note
that for any sheaf G ofOZ/G-modules, f∗G comes equipped with a canonical
G-linearization. If the G-action on Z is free, so that f is a G-torsor, then
(f∗G)G = (f∗f∗G)G = G.
By descent theory, (G- linOZet

-mod) is equivalent to the category of
quasi-coherent sheaves on [Z/G]. Under this equivalence, taking G-inva-
riants in the above sense corresponds to pushing forward to the coarse
space Z/G.

When the action of G on Z is trivial, we denote (G- linOZet
-mod) by

(G-OZet
-mod). We can similarly define the categories (G- linOZ•,et

-mod)
and (G-OZ•,et -mod) for simplicial schemes Z•.

Lemma 3.4. — Let U be a smooth S-scheme with an action of a smooth
affine linearly reductive group scheme G over S. Let X = [U/G] and a :
X• → X be the hypercover obtained by taking fiber products of U over X.
Consider the diagram

Y•
π //

b

��

X•

a

��
U

a0 //

g
!!CCCCCCCC X

f

��
M

where the square is cartesian and M is a scheme. Then

Rn(fa)∗F• = (Rn(gb)∗π∗F•)G
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for all OX•,et
-modules F• such that the Fs are quasi-coherent.

Proof. — Note that the following diagram

(G- lin OY•,et
-mod)

(gb)∗ //

π∗

��

(G-OMet
-mod)

(−)G

��
(G-OX•,et

-mod)
(−)G

// (OX•,et
-mod)

(fa)∗ // (OMet-mod)

of categories commutes. As a result,

R(fa)∗R(−)G(Rπ∗π∗F•) = R(−)G(R(gb)∗π∗F•) = (R(gb)∗π∗F•)G,

where the second equality holds because R(gb)∗π∗F• has quasi-coherent
cohomology. It suffices then to prove

F• = R(−)G(Rπ∗π∗F•).

We begin by showing Rπ∗π∗F• = π∗π
∗F•. Let

0→ π∗F• → I0
• → I1

• → . . .

be an injective resolution of OX•,et
-modules. To show Rnπ∗π

∗F• = 0 for
n > 0, we need only do so after restricting to each level Xs. Since the
restriction functor ress : Ab(X•,et)→ Ab(Xs,et) is exact, we see

ressRnπ∗π∗F• = ressHn(π∗I•• ) = Hn(π∗I•s ) = Rnπ∗π
∗Fs = 0,

where the last equality holds because π is affine and Fs is quasi-coherent.
A similar argument showsR(−)G(π∗π∗F•) = (π∗π∗F•)G as every π∗π∗Fs

is quasi-coherent. The lemma then follows from the fact that π is aG-torsor,
and so (π∗π∗F•)G = F•. �

For the rest of the section, we let S = Spec k, where k is a perfect field
of characteristic p. We remind the reader that if X is a smooth Artin stack
and X• → X is a hypercover, then the cotangent complex LX/S of the
stack ([16, §8]) is the bounded complex of OX-modules with quasi-coherent
cohomology such that

LX/S |X•,et = Ω1
X•/S

→ Ω1
X•/X

with Ω1
X•/S

in degree 0; that is,

LX/S = $1
X/S → $1

X/X.

In Theorem 3.5 below, we compare $s
X/S with

∧s
LX/S , the sth derived

exterior power of LX/S . Given an abelian category A, the derived exterior
powers L

∧s, as well as the derived symmetric powers LSs, of a complex
E ∈ D−(A) are defined in [9, I.4.2.2.6]. Since LX/S is not concentrated in
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negative degrees, we cannot directly define
∧s
LX/S ; however, it is shown in

[9, I.4.3.2.1] that for E ∈ D−(A),

LSs(E[1]) =
(
L

s∧
E
)

[s]

so we may define
∧s
LX/S as LSs(LX/S [1])[−s]. It follows, then, from [9,

I.4.3.1.7] that∧s
LX/S = $s

X/S → $s−1
X/S ⊗$

1
X/X → · · · → $1

X/S ⊗ S
s−1$1

X/X → Ss$1
X/X

with $s
X/S in degree 0. Note that we have a canonical map from

∧s
LX/S

to $s
X/S .

We remark that
∧s
LX/S ∈ Db

coh(X) for all s. This can be seen as follows.
We have an exact triangle

a∗0LX/S −→ LX0/S −→ Ω1
X/X.

By [9, II.2.3.7], LX0/S has coherent cohomology. Since Ω1
X/X is coherent

and coherence can be checked smooth locally, we see LX/S and hence all∧s
LX/S are in Db

coh(X).
We are now ready to prove the comparison theorem.

Theorem 3.5. — If X is smooth and tame over S and f : X→M is its
coarse space, then the canonical map

ε∗R
tf∗

(∧s
LX/S

)
−→ ε∗R

tf∗$
s
X/S

is an isomorphism.

Proof. — By [17, Prop 5.2], there exists an étale cover h : T →M and a
cartesian diagram

[U/G] //

g

��

X

f

��
T

h // M

where G is linearly reductive, affine, and smooth over S. Since X and
G are smooth, we see that U is as well. Let Y = [U/G] and let ϕ :
ε∗R

tf∗(
∧s
LX/S) → ε∗R

tf∗$
s
X/S be the canonical map. By Corollary 3.3,

we see that h∗ϕ is the canonical map

ε∗R
tg∗

( s∧
LY/S

)
−→ ε∗R

tg∗$
s
Y/S .

To show that ϕ is an isomorphism, we can therefore assume X = [U/G]
and M = T .
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To prove the theorem, it suffices to show ε∗R
tf∗($s−k

X/S ⊗ S
k$1

X/X) = 0
for all k > 0 and all t. With notation as in Lemma 3.4, we see

ε∗R
tf∗($s−k

X/S ⊗ S
k$1

X/X) = ε∗R
t(f∗a∗)a∗($s−k

X/S ⊗ S
k$1

X/X)

= Rt(fa)∗(Ωs−kX•/S
⊗ SkΩ1

X•/X
),

where the first equality is by Lemma 3.1 and the second is by Lemma 3.2.
It now follows from Lemma 3.4 that

Rt(fa)∗(Ωs−kX•/S
⊗ SkΩ1

X•/X
) = (Rt(gb)∗(π∗Ωs−kX•/S

⊗ SkΩ1
Y•/U

))G.

Fix t and k > 0. It suffices then to prove by (strong) induction on s that
for every flat OX• -module G which is restriction to Y•,et of some O-module
F on the lisse-étale site of U ,

Rn(gb)∗(π∗ΩsX•/S ⊗ G ⊗ S
kΩ1

Y•/U
) = 0.

We begin with the case s = 0, which is handled separately. An application
of Lemmas 3.1 and 3.2 shows

Rn(gb)∗(G ⊗ SkΩ1
Y•/U

) = ε∗R
ng∗(F ⊗ Sk$1

U/U ).

If we let α : Ulis−et → Uet be the canonical morphism of topoi, we see then
that

ε∗R
ng∗(F ⊗ Sk$1

U/U ) = Rng∗(α∗F ⊗ SkΩ1
U/U ) = 0,

where the last equality holds since k > 0.
Assume now that s > 0. Since π is smooth, we have a short exact se-

quence
0 −→ π∗Ω1

X•/S
−→ Ω1

Y•/S
−→ Ω1

Y•/X•
−→ 0.

As a result, we have a filtration ΩsY•/S ⊃ K
1 ⊃ · · · ⊃ Ks ⊃ 0 with Ks =

π∗ΩsX•/S and short exact sequences

0 −→ K1 −→ ΩsY•/S −→ ΩsY•/X• −→ 0

0 −→ K2 −→ K1 −→ π∗Ω1
X•/S

⊗ Ωs−1
Y•/X•

−→ 0
...

0 −→ π∗ΩsX•/S −→ K
s−1 −→ π∗Ωs−1

X•/S
⊗ Ω1

Y•/X•
−→ 0.

Since G⊗SkΩ1
Y•/U

is flat, tensoring each of the above short exact sequences
by it results in a new list of short exact sequences. Since

Ω1
Y•/S

⊗ G ⊗ SkΩ1
Y•/U

= ($1
U/S ⊗F ⊗ S

k$1
U/U )|Y•,et

and
Ω1
Y•/X•

⊗ G ⊗ SkΩ1
Y•/U

= (LU/X ⊗F ⊗ Sk$1
U/U )|Y•,et,
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the s = 0 case shows

Rn(gb)∗(Ω1
Y•/S

⊗ G ⊗ SkΩ1
Y•/U

) = Rn(gb)∗(Ω1
Y•/X•

⊗ G ⊗ SkΩ1
Y•/U

) = 0.

As a result,Rn(gb)∗(K1⊗G⊗SkΩ1
Y•/U

) = 0. Using the inductive hypothesis,
we conclude

Rn(gb)∗(Ki ⊗ G ⊗ SkΩ1
Y•/U

) = 0

for all i, in particular for i = s. �

Corollary 3.6. — If X is a smooth proper tame stack over S, then
Ht($s

X/S) and Hn($•X/S) are finite-dimensional k-vector spaces for all s,
t, and n.

Proof. — Let f : X → M be the coarse space of X. For each s, there is
a Leray spectral sequence

Eij2 = Hi(ε∗Rjf∗$s
X/S)⇒ Ht($s

X/S).

By Theorem 3.5, the canonical map

ε∗R
jf∗

(∧s
LX/S

)
−→ ε∗R

jf∗$
s
X/S

is an isomorphism. As we remarked above,
∧s
LX/S ∈ Db

coh(X). Since f is
proper by Keel-Mori [11], and M is proper by [15, Prop 2.10], we see the
Eij2 are finite-dimensional k-vector spaces. It follows that Ht($s

X/S) is a
finite-dimensional k-vector space for every s and t.
Since the morphisms in the complex $•X/S are k-linear, the hypercoho-

mology spectral sequence

Est1 = Ht($s
X/S)⇒ Hn($•X/S)

consists of finite-dimensional k-vector spaces with k-linear maps. As a re-
sult, Hn($•X/S) is a finite-dimensional k-vector space as well. �

Theorem 3.7. — Let X be a smooth proper tame stack over S that
lifts mod p2. Then the Hodge-de Rham spectral sequence

Est1 = Ht($s
X/S)⇒ Hn($•X/S)

degenerates for s+ t < p.

Proof. — Choose a smooth cover X → X by a smooth scheme such that
the cover lifts mod p2. Theorem 2.5 now shows⊕

s<p

ΩsX′•/S [−s] ' τ<pF∗Ω•X•/S ,
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where X• is obtained from X by taking fiber products over X. Since
Ht($s

X/S) = Ht(ΩsX•/S) and Hn($•X/S) = Hn(Ω•X•/S), we see that for
n < p,

dimkH
n($•X/S) =

∑
s+t=n

dimkH
t(ΩsX′•/S) =

∑
s+t=n

dimkH
t(ΩsX•/S)

=
∑
s+t=n

dimkH
t($s

X/S),

which proves the degeneracy of the spectral sequence by Lemma 1.5. �

4. de Rham Theory for Schemes
with Isolated Linearly Reductive Singularities

Let k be a perfect field of characteristic p and let S = Spec k.

Definition 4.1. — We say a scheme M over S has linearly reductive
singularities if there is an étale cover {Ui/Gi → M}, where the Ui are
smooth over S and the Gi are linearly reductive group schemes which are
finite over S.

Note that if M has linearly reductive singularities, then it is automati-
cally normal and in fact Cohen-Macaulay by [8, p.115].
Our goal in this section is to prove that if M is proper over S, and j :

M0 →M is its smooth locus, then under suitable liftability conditions, the
hypercohomology spectral sequence Est1 = Ht(j∗ΩsM0/S) ⇒ Hn(j∗Ω•M0/S)
degenerates.

4.1. Relationship with Tame Stacks,
and the Cartier Isomorphism

We begin by recalling the relationship between tame stacks and schemes
with linearly reductive singularities:

Theorem 4.2 ([17, Thm 1.10]). — LetM be an S-scheme with linearly
reductive singularities. Then it is the coarse space of a smooth tame stack
X such that f0 in the diagram

X0
j0
//

f0

��

X

f

��
M0

j
// M
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is an isomorphism, where X0 = M0 ×M X.

Let M and X be as in Theorem 4.2. The proof of Lemma 1.11 goes
through word for word (after replacing “an étale morphism U → X” by “a
smooth morphism U → X”) to show

j∗Ω•M0/S = ε∗f∗$
•
X/S ,

where ε : Mlis−et →Met is the canonical morphism of topoi.

Remark 4.3. — Since ε∗f∗$s
X/S = ε∗f∗H0(

∧s
LX/S), the above equality

shows that j∗ΩsM0/S is coherent, which is not a priori obvious.

To simplify notation, throughout the rest of this subsection we suppress ε.

Proposition 4.4 (Cartier isomorphism). — Let X be a smooth tame
stack over S which lifts mod p2, and let f : X → M be its coarse space.
Then there is a canonical isomorphism

Ht(f ′∗F∗$•X/S) '→ f ′∗$
t
X′/S .

If we further assume that X and M are as in Theorem 4.2, then

Ht(F∗j∗Ω•M0/S) '→ j′∗ΩtM0/S .

Proof. — For any left exact functor G : A → B of abelian categories and
any complex A• of objects of A, there is a canonical morphism Ht(GA•)→
GHt(A•): the map GA• → RGA• induces a morphism from Ht(GA•) to
the E0t

2 -term of the spectral sequence Est2 = RsGHt(A•)⇒ RnG(A•).
For us this yields the (global) map φ : Ht(f ′∗F∗$•X/S)→ f ′∗Ht(F∗$•X/S)

= f ′∗$
t
X′/S . To prove this is an isomorphism, we need only do so locally. So,

by [17, Prop 5.2] and Proposition 2.4, we are reduced to the case X = [U/G],
where U is smooth and affine, G = Grm,SoH for some finite étale constant
group scheme H, and both X and the relative Frobenius lift mod p2. Let
X• be the simplical scheme obtained by taking fiber products of U over X,
and let a : X• → X be the augmentation map. Since U → X lifts mod p2,
Theorem 2.5 yields a quasi-isomorphism

ϕ :
⊕
t<p

ΩtX′•/S [−t] '→ τ<pF∗Ω•X•/S .

In this local setting, ϕ is a morphism of complexes by Remark 1.3. We
can therefore apply (f ′a)∗. Subsequently taking cohomology, we have a

morphism f ′∗$
t
X′/S

f ′∗ϕ
t

−→ Ht(f ′∗F∗$•X/S). We show that

ψ : f ′∗Ht(F∗$•X/S) (f ′∗C
−1)−1

−→ f ′∗$
t
X′/S

f ′∗ϕ
t

−→ Ht(f ′∗F∗$•X/S)
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and φ are inverses. Note that in this local setting f ′∗ is simply “take G-
invariants”, and that φ : Ht((F∗Ω•U )G)→ Ht(F∗Ω•U )G is [α] 7→ (α), where
we use square, resp. round brackets to denote classes in Ht((F∗Ω•U )G), resp.
Ht(F∗Ω•U )G.
In general, one does not expect the map (α) 7→ [α] to be well-defined,

but we show here that this is precisely what ψ is. Let (ω) ∈ Ht(F∗Ω•U )G.

Via the Cartier isomorphism ΩtU ′
(C−1)G

−→ Ht(F∗Ω•U )G, we know that (ω) is
of the form (∑

fi1,...,itx
p−1
i1

. . . xp−1
it

dxi1 ∧ · · · ∧ dxit
)
,

where ∑
fi1,...,it(dxi1 ⊗ 1) ∧ · · · ∧ (dxit ⊗ 1) ∈ (ΩtU ′)G.

The Deligne-Illusie map ϕq sends this G-invariant form to

η =
∑

fi1,...,it(x
p−1
i1

dxi1 + du(xi1)) ∧ · · · ∧ (xp−1
it

dxit + du(xit)),

where u(x) is the reduction mod p of any y satisfying F̃ ∗(dx̃⊗1) = x̃pdx̃+
py. So, ψ sends (ω) to (η). But since (du(x)) = 0, we see that ψ is the map
sending (α) to [α]. �

4.2. Degeneracy of Various Spectral Sequences
and a Vanishing Theorem

Let X and M be as in Theorem 4.2. Our immediate goal is to show
the degeneracy of the hypercohomology spectral sequence for j∗Ω•M0/S

when X is proper and lifts mod p2. If $1
X/S were coherent, then since

X is tame, we would have j∗Ω•M0/S = ε∗f∗$
•
X/S = ε∗Rf∗$

•
X/S . The

proof of Theorem 1.9 would then apply directly to show the degeneracy of
Est1 = Ht(j∗ΩsM0/S)⇒ Hn(j∗Ω•M0/S). Since $1

X/S is not coherent, we must
take a different approach. As we explain below, the Cartier isomorphism for
j∗Ω•M0/S proved in the last subsection implies that the degeneracy of the
above hypercohomology spectral sequence is equivalent to the degeneracy of
the conjugate spectral sequence Est2 = Hs(Ht(j∗Ω•M0/S))⇒ Hn(j∗Ω•M0/S).
We show that this latter spectral sequence degenerates by comparing it to
the spectral sequence Est2 = Hs(Rtf∗$•X/S) ⇒ Hn($•X/S) over which we
have more control due to the Deligne-Illusie result of Section 2.
As in the last subsection, we suppress ε : Met → Mlis−et. The following

is the key technical lemma we use to prove the degeneracy of the hyperco-
homology spectral sequence for j∗Ω•M0/S .
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Lemma 4.5. — Let E and 8E be two first quadrant E2 spectral se-
quences. Suppose that for s 6= 0, every differential 8Estr → 8E

s+r,t−(r−1)
r is

zero. Suppose further that we are given a morphism E → 8E of spectral
sequences such that the induced morphism Estr → 8E

s+r,t−(r−1)
r is zero for

all r, s, and t, and such that Est2 → 8Est2 is an injection for all s and t.
Then E degenerates.
Proof. — We claim that the morphism Estr → 8Estr is an injection for

s > r. Note that this is enough to prove the lemma since for all s, the
square

Estr
//

dst
r

��

8Estr

��

E
s+r,t−(r−1)
r

// 8Es+r,t−(r−1)
r

commutes, the composite is zero, and E
s+r,t−(r−1)
r → 8E

s+r,t−(r−1)
r is an

injection; this shows that all differentials dstr are zero.
We now prove the claim by induction. It is true for r = 2, so we may

assume r > 2. Let s > r and consider the commutative diagram

E
s−(r−1),t+(r−2)
r−1

//

��

Estr−1 //

��

E
s+r−1,t−(r−2)
r−1

��
8E

s−(r−1),t+(r−2)
r−1

// 8Estr−1 // 8Es+r−1,t−(r−2)
r−1 .

By the inductive hypothesis, all vertical arrows are injective and all arrows
on the bottom row are zero. It follows that all arrows on the top arrow are
zero, and so Estr → 8Estr is injective. �

Theorem 4.6. — Let X andM be as in Theorem 4.2. IfM has isolated
singularities, and X is proper and lifts mod p2, then the conjugate spectral
sequence

Est2 = Hs(Ht(j∗Ω•M0/S))⇒ Hn(j∗Ω•M0/S)
degenerates for s+ t < p.
Proof. — Choose a smooth cover X → X by a smooth scheme such that

the cover lifts mod p2, and let X• be the simplicial scheme obtained by tak-
ing fiber products of X with itself over X. Let a : X• → X be the augmen-
tation map. By Theorem 2.5, we have an isomorphism

⊕
i<p ΩiX′•/S [−i] '→

τ<pF∗Ω•X•/S in the derived category, and therefore, also an isomorphism⊕
i<p

R(f ′∗a∗)ΩiX′•/S [−i] '−→ τ<pR(f ′∗a∗)F∗Ω•X•/S .
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The first of these isomorphisms implies that the Leray spectral sequence
88Est2 = Rsf ′∗Ht(F∗$•X/S)⇒ Rnf ′∗F∗$

•
X/S

degenerates and that the extension problem is trivial. The second of the
two isomorphisms shows that the spectral sequence

8Est2 = Hs(Rtf ′∗F∗$•X/S)⇒ Hn($•X/S)

decomposes as the direct sum
⊕ 8

iE of Leray spectral sequences, where
8
iE

st
2 = Hs(Rt−if ′∗$i

X′/S)⇒ Hn−i($i
X′/S).

Note that the morphism f ′∗F∗$
•
X/S → Rf ′∗F∗$

•
X/S induces a morphism of

spectral sequences E → 8E, where

Est2 = Hs(Ht(f ′∗F∗$•X/S))⇒ Hn(f∗$•X/S).

By the degeneracy of 88E, the morphism ϕ : Ht(f ′∗F∗$•X/S)→ Rtf ′∗F∗$
•
X/S

factors as
Ht(f ′∗F∗$•X/S)→ f ′∗F∗$

t
X/S ↪→ Rtf ′∗F∗$

•
X/S .

But this first morphism is precisely how the Cartier isomorphism of Propo-
sition 4.4 was defined. From this and the fact that the extension problem
for 88E is trivial, we have a split short exact sequence

0 −→ Ht(f ′∗F∗$•X/S) ϕ−→ Rtf ′∗F∗$
•
X/S −→

⊕
i+j=t
j>0

Rjf ′∗$
i
X′/S −→ 0.

It follows that Est2 is mapped isomorphically to the direct summand 8
tE

st
2

of 8Est2 . This implies that for all r, s, and t, the induced morphism Estr →
8E

s+r,t−(r−1)
r is zero.
Note that

j′∗Rtf ′∗$
i
X′/S = j′∗Rtf ′∗

i∧
LX′/S = (f0)′∗Ht(

i∧
L(X0)′/S) = 0.

It follows that Rtf ′∗$i
X′/S is supported at the singular locus of M ′, and

since M is assumed to have isolated singularities, Hs(Rtf ′∗$s
X/S) = 0 for s

and t positive. We see then that 8
iE

st
2 is zero if t > i and s > 0, or if t < i.

Therefore, the differential 8Estr → 8E
s+r,t−(r−1)
r is zero if s 6= 0. >From

Lemma 4.5, it follows that E degenerates. �

Remark 4.7. — Let E be a locally free sheaf on M ′. Tensoring the iso-
morphism ⊕

i<p

R(f ′∗a∗)ΩiX′•/S [−i] '−→ τ<pR(f ′∗a∗)F∗Ω•X•/S
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with E , we see that the Leray spectral sequence
8Est2 = Hs(Rtf ′∗F∗$•X/S ⊗ E)⇒ Hn(Rf ′∗F∗$•X/S ⊗ E)

decomposes as the direct sum of spectral sequences. The proof of Theo-
rem 4.6 then shows that the spectral sequence

Est2 = Hs(Ht(f ′∗F∗$•X/S)⊗ E)⇒ Hn(Rf ′∗F∗$•X/S ⊗ E).

degenerates for s+ t < p.

Theorem 4.8. — Let X andM be as in Theorem 4.2. IfM has isolated
singularities, and X is proper and lifts mod p2, then the hypercohomology
spectral sequence

Est1 = Ht(j∗ΩsM0/S)⇒ Hn(j∗Ω•M0/S)

degenerates for s+ t < p.

Proof. — By the Cartier isomorphism

Hs(Ht(j∗Ω•M0/S)) = Hs(Ht(f ′∗F∗$•X/S)) = Hs(f ′∗$t
X′/S).

But Hs(f ′∗$t
X′/S) = Hs(f∗$t

X/S)⊗k,Fk
k; in particular,

dimkH
s(Ht(j∗Ω•M0/S)) = dimkH

s(f∗$t
X/S).

By Corollary 3.7, the above cohomology groups are finite-dimensional k-
vector spaces. The degeneracy of the conjugate spectral sequence shows

Hn(j∗Ω•M0/S) '
⊕
s+t=n

Hs(Ht(j∗Ω•M0/S)),

and so
dimkH

n(j∗Ω•M0/S) =
∑
s+t=n

dimkH
s(f∗$t

X/S),

which implies the degeneracy of the hypercohomology spectral sequence by
Lemma 1.5. �

Although our proof of Theorem 1.9 goes through stacks, the statement of
the theorem is purely scheme-theoretic. We would similarly like to remove
the stack from the statement of Theorem 4.8. We can do so when M has
large enough dimension.

Theorem 4.9. — Let M be a proper S-scheme with isolated linearly
reductive singularities. If dimM > 4 and M lifts mod p2, then the stack X

of Theorem 4.2 lifts mod p2, and so

Est1 = Ht(j∗ΩsM0/S)⇒ Hn(j∗Ω•M0/S)

degenerates for s+ t < p.
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Proof. — Let m = dimM . The exact triangle

Lf∗LM/S −→ LX/S −→ LX/M

gives rise to the long exact sequence

. . . −→ Ext2(LX/M ,OX) −→ Ext2(LX/S ,OX) −→ Ext2(Lf∗LM/S ,OX)
−→ . . . .

Note that

RHom(Lf∗LM/S ,OX) = RHom(LM/S , Rf∗OX) = RHom(LM/S ,OM )

since Rf∗OX = f∗OX by tameness and f∗OX = OM by Keel-Mori [11].
Since the obstruction to lifting X lies in Ext2(LX/S ,OX), we need only show
Ext2(LX/M ,OX) = 0. We in fact prove Exts(LX/S ,OX) = 0 for s 6 m− 2.
Since (j0)∗LX/M = LX0/M0 = 0, we see

0 = Rj0
∗RHom((j0)∗LX/M ,OX0) = RHom(LX/M , Rj

0
∗OX0).

A local cohomology argument given below will show Rtj0
∗OX0 6= 0 if and

only if t = 0,m − 1. Assuming this for the moment, let us complete the
proof. We have a spectral sequence

Est2 = RsHom(LX/M , R
tj0
∗OX0)⇒ RnHom(LX/M , Rj

0
∗OX0) = 0.

The only page with non-zero differentials, then, is the mth. Since LX/M

is concentrated in degrees at most 1, RsHom(LX/M , R
tj0
∗OX0) = 0 for

s < −1. It follows that

RsHom(LX/M , j
0
∗OX0) = 0

for s 6 m− 2, which proves the theorem since j0
∗OX0 = OX.

We now turn to the local cohomology argument. To prove Rtj0
∗OX0 6= 0

if and only if t = 0,m − 1, we can make an étale base change. We can
therefore assume X = [U/G], where U is smooth and affine, and G is finite
linearly reductive. SinceM has isolated singularities, we can further assume
U0 = U\{x}, where U0 is the pullback

U0 i //

h

��

U

g

��
X0

j0
// X

The following lemma, then, completes the proof. �
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Lemma 4.10. — Let U be a normal affine scheme of dimension m and
let x ∈ U be Cohen-Macaulay. If U0 = U\{x} and i : U0 ↪→ U is the
inclusion, then Rti∗OU0 6= 0 if and only if t = 0,m− 1.

Proof. — Note that Rti∗OU0 is the skyscraper sheaf Ht(OU0) at x. By
normality, H0(OU0) = H0(OU ). Since U is affine, the long exact sequence

. . . −→ Hn
x (OU ) −→ Hn(OU ) −→ Hn

x (OU0) −→ Hn
x (OU ) −→ . . .

showsHt(OU0)=Ht+1
x (OU ) for t>0. Since x is Cohen-Macaulay,Ht+1

x (OU )
6= 0 if and only if t+ 1 = m. �

We now prove an analogue of [5, Lemma 2.9] which Deligne and Illusie
use to deduce Kodaira Vanishing.

Lemma 4.11. — Let X and M be as in Theorem 4.2. Suppose M has
isolated singularities, and X is proper and lifts mod p2. Let d be the di-
mension of M and let N be an integer such that N 6 inf(d, p). IfM is an
invertible sheaf on M such that

Ht(j∗ΩsM0/S ⊗M
p) = 0

for all s+ t < N , then

Ht(j∗ΩsM0/S ⊗M) = 0

for all s+ t < N .

Proof. — LetM′ be the pullback ofM to M ′. Since F ∗M′ =Mp, the
projection formula shows

Ht(j∗ΩsM0/S ⊗M
p) = Ht(f ′∗F∗$s

X/S ⊗M
′).

>From the hypercohomology spectral sequence

Est2 = Ht(f ′∗F∗$s
X/S ⊗M

′)⇒ Hn(f ′∗F∗$•X/S ⊗M′),

we see that Hn(f ′∗F∗$•X/S ⊗M′) = 0 for all n < N . Remark 4.7 shows
that the Leray spectral sequence

Est2 = Hs(f ′∗$t
X′/S ⊗M

′)⇒ Hn(f ′∗F∗$•X/S ⊗M′)

degenerates, and so Hs(f ′∗$t
X′/S ⊗M

′) = 0 for all s+ t < N . Since

dimkH
s(f ′∗$t

X′/S ⊗M
′) = dimkH

s(j∗ΩtM0/S ⊗M),

the lemma follows. �
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Unfortunately, we cannot quite deduce from Lemma 4.11 a general Ko-
daira Vanishing result. Following Deligne and Illusie, we would like to
show that if M is a projective scheme of dimension d with isolated lin-
early reductive singularities and L is an ample line bundle on M , then
Ht(j∗ΩsM0/S ⊗L

−pm) = 0 for m sufficiently large. Lemma 4.11 would then
imply that m can be taken to be 1. The issue is that the vanishing of
these cohomology groups for m large enough is not clear. Under certain
hypothesis, however, we obtain a vanishing theorem.

Proposition 4.12. — Let M be a projective scheme of dimension d

with isolated linearly reductive singularities. Let L be an ample line bundle
on M . If the stack X of Theorem 4.2 lifts mod p2 and the j∗ΩsM0/S are
Cohen-Macaulay for all s, then

Ht(j∗ΩsM0/S ⊗ L
−1) = 0

for all s+ t < inf(d, p).

Proof. — By Lemma 4.11, we need only prove that Ht(j∗ΩsM0/S⊗L
−pm)

= 0 for m sufficiently large. Grothendieck Duality shows

Ht(j∗ΩsM0/S ⊗ L
−pm

)∨ = Extd−t(j∗ΩsM0/S ⊗ L
−pm

, ωM ).

Since the Extd−t(j∗ΩsM0/S , ωM ) are coherent, the local-global Ext spectral
sequence shows that for m sufficiently large,

Ht(j∗ΩsM0/S ⊗ L
−pm

)∨ = Γ(Extd−t(j∗ΩsM0/S , ωM )⊗ Lp
m

).

For all x ∈M ,

Extd−t(j∗ΩsM0/S , ωM )x = Extd−tOx
((j∗ΩsM0/S)x, ωOx).

Since M and the j∗ΩsM0/S are Cohen-Macaulay, local duality shows that
for t < d,

Extd−t(j∗ΩsM0/S , ωM ) = 0,
thereby completing the proof. �

We conclude by showing that the hypercohomology spectral sequence

Est1 = Rtf ′∗F∗$
s
X/S ⇒ Rnf ′∗F∗$

•
X/S

degenerates at E2 and that the only potentially non-zero differentials on
the first page are those on the zero-th row.

Lemma 4.13. — Let A and B be abelian categories and let F : A → B
be a left exact functor. Suppose that A has enough injectives. If A• is a
complex of objects in A and C• denotes the cone in the derived category
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D(A) of the canonical morphism FA• → RFA•, then there is a spectral
sequence

8Est1 =
{
RtFAs t > 0
0 t = 0 ⇒ Hn(C•).

If in the hypercohomology spectral sequence Epq1 = RqFAp ⇒ RnFA•, the
differentials Es−r,r−1

r → Es,0r are zero for all r > 2, then for every n,

0→ Hn(FA•)→ RnFA• → Hn(C•)→ 0

is a short exact sequence.

Proof. — The existence of the spectral sequence 8E is shown as follows.
Let As → Is,• be an injective resolution of As. The cone C• is then quasi-
isomorphic to the total complex of

...
...

FI01 FI11 . . .

F I00 FI10 . . .

FA0 FA1 . . .

where FA0 has bidegree (−1, 0). The spectral sequence associated to this
double complex in which we begin by taking cohomology vertically is our
desired 8E.
Note that there is a morphism of spectral sequences E → 8E. If the

differentials Es−r,r−1
r → Es,0r are zero for all r > 2, then the morphism of

spectral sequences induces an isomorphism Est∞
'→ 8Est∞ for t 6= 0. It follows

that Hn(C•) is equal to RnFA• modulo the bottom part of its filtration,
namely En0

∞ = Hn(FA•). �

Proposition 4.14. — Let X and M be as in Theorem 4.2. If M has
isolated singularities, and X is proper and lifts mod p2, then the hyperco-
homology spectral sequence

Est1 = Rtf ′∗F∗$
s
X/S ⇒ Rnf ′∗F∗$

•
X/S

degenerates at E2, and for t 6= 0, the differentials Est1 → Es+1,t
1 are zero.

Proof. — Let C• be the cone of the canonical morphism f ′∗F∗$
•
X/S →

Rf ′∗F∗$
•
X/S . Note that for t > 0, we have

j′∗Rtf ′∗F∗$
s
X/S = F∗j

∗Rtf∗
∧s
LX/S = (f0)′∗Ht(

s∧
L(X0)′/S) = 0,

and so Rtf ′∗F∗$s
X/S is supported at the singular locus of M ′; in partic-

ular, the Rtf ′∗F∗$s
X/S are torsion. On the other hand, R0f ′∗F∗$

s
X/S =

F∗j∗ΩsM0/S , which is reflexive, and hence torsion-free. As a result, for r > 2
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every differential Es−r,r−1
r → Es,0r is zero, and Estr is supported at the sin-

gular locus of M ′ for all t 6= 0 and all s and r. So, to prove the proposition,
we need only show that the spectral sequence

8Est1 =
{

Rtf ′∗F∗$
s
X/S t > 0

0 t = 0
⇒ Hn(C•)

of Lemma 4.13 degenerates.
Since M is assumed to have isolated singularities, for any short exact

sequence

0→ F → G → Q→ 0

with F supported at the singular locus,

0→ Γ(F)→ Γ(G)→ Γ(Q)→ 0

is short exact as well. Furthermore, Γ(F) =
⊕

x∈M Fx, so F is zero if and
only if Γ(F) is zero. It follows that we have a spectral sequence

88Est1 =
{

Γ(Rtf ′∗F∗$s
X/S) t > 0

0 t = 0
⇒ Γ(Hn(C•))

whose degeneracy is equivalent to that of 8E. By Lemma 4.13, there is a
short exact sequence

0 −→ Hn(f ′∗F∗$•X/S) −→ Rnf ′∗F∗$
•
X/S −→ H

n(C•) −→ 0.

Comparing this with the short exact sequence

0 −→ Ht(f ′∗F∗$•X/S) ϕ−→ Rtf ′∗F∗$
•
X/S −→

⊕
i+j=t
j>0

Rjf ′∗$
i
X′/S −→ 0

proved in Theorem 4.6, we see

Hn(C•) =
⊕
s+t=n
t>0

Rtf ′∗$
s
X′/S .

It follows that ∑
s+t=n

dimk
88Est1 = dimk Γ(Hn(C•))

which shows the degeneracy of 88E by Lemma 1.5. �
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