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MODULI OF UNIPOTENT REPRESENTATIONS I:
FOUNDATIONAL TOPICS

by Ishai DAN-COHEN

Abstract. — With this work and its sequel, Moduli of unipotent representa-
tions II, we initiate a study of the finite dimensional algebraic representations of a
unipotent group over a field of characteristic zero from the modular point of view.
Let G be such a group. The stack Mn(G) of all representations of dimension n is
badly behaved. In this first installment, we introduce a nondegeneracy condition
which cuts out a substack Mnd

n (G) which is better behaved, and, in particular,
admits a coarse algebraic space, which we denote by Mnd

n (G). We also study the
problem of glueing a pair of nondegenerate representations along a common sub-
quotient.
Résumé. — Dans ce travail et sa suite, Moduli of unipotent representations

II, nous commençons l’étude des représentations algébriques de dimension finie
d’un groupe unipotent sur un corps de caractéristique nulle, d’un point de vue
modulaire. Soit G un tel groupe. Le champ Mn(G) de toutes les représentations
de dimension n se comporte mal. Dans cette première partie, nous introduisons
une condition de non-dégénérescence qui définit un sous-champ Mnd

n (G) qui se
comporte mieux et qui admet en particulier un espace algébrique grossier ; nous le
notons Mnd

n (G). Nous étudions aussi le problème de recoller deux représentations
non dégénérées le long d’un sous-quotient commun.

Introduction

The purpose of this paper, and its sequel [4], is to develop an approach
to the problem of moduli of representations of a unipotent group over a
field of characteristic zero. Fix such a field k, a unipotent group G over
k, and a positive integer n. The stack Mn(G) of all representations of a
fixed dimension n is badly behaved. It is typically not algebraic(1) , and its
diagonal, albeit representable, is a positive dimensional group whose fiber

Keywords: unipotent representation, unipotent group action, coarse moduli space.
Math. classification: 14L30, 14D23, 17B30, 20G05.
(1)Thanks are due to Anton Geraschenko for helping me understand this fact.



1124 Ishai DAN-COHEN

dimensions can jump in families. We define a nondegeneracy condition (4.1)
which cuts out a substack Mnd

n (G) ⊂ Mn(G). This substack is algebraic
(7.4) and its diagonal is flat. It then follows from a higher quotient con-
struction known as “rigidification” (see §6) that the fppf sheaf Mnd

n (G)
associated toMnd

n (G) is an algebraic space (7.5).
A sufficient nondegeneracy condition for the above purpose (at least for

representations defined over a field containing k) would simply minimize
the dimension of the automorphism group. Unfortunately, this condition is
not preserved under taking subquotients (4.11). Our condition includes the
recursive assumption that the subquotients of a nondegenerate represen-
tation are again nondegenerate. This allows us to fiber the moduli space
of representations of dimension n + 1 over a certain space M cnd

n (9.7) of
compatible pairs of nondegenerate representations of dimension n. I expect
this fibration to play a role in the study of the geometry of our moduli
space.
Our recursive condition is motivated also by the results of [4]. There is

an invariant w of (the Lie algebra of) G which we call the width, which
singles out a best-case-scenario for constructing moduli. For n 6 w + 1,
our nondegeneracy condition enjoys a very concrete interpretation, and
an ensuing construction shows that Mnd

n (G) is a quasi-projective variety.
[4] also contains concrete examples of Mnd

n as well as of M cnd
n for low n.

As a general matter, the present paper is concerned largely with abstract
generalities. These abstractions are, in part, justified and motivated by
the concrete results and examples of [4]. (Conversely, the more elementary
approach taken in [4] is justified, in part, by the conceptual issues discussed
here.)
The problem of constructing a coarse space of a moduli stack has a long

and rich history, which may help put our problem in context. However, our
problem does not seem to fit the rubric suggested by the methods which
have emerged from this history. The functor

Hom(G,GLn)

of homomorphisms to GLn is typically not representable, so a direct appli-
cation of geometric invariant theory to the action of GLn by conjugation
is not possible; the prospects of a more creative application are unclear.
Mumford’s theory requires a reductive group as part of the input. But in
our context, it is more natural to consider instead the action of the group
Bn of invertible upper triangular matrices on the space

Xfl
n(G) ⊂ Hom(G,Un)

ANNALES DE L’INSTITUT FOURIER



MODULI OF UNIPOTENT REPRESENTATIONS I 1125

of upper triangular representations whose canonically associated filtration
is a full flag (2.1). Even if we insist on an action by GLn on an appropriate
space, the stabilizer subgroups will not be reductive. Partial analogs of
Mumford’s theory for groups which are not reductive are currently under
development in works by A. Asok, B. Doran, and F. Kirwan (c.f. [6], [2]).
Another well known tool is the Keel-Mori theorem (c.f. [11]). This the-

orem applies to algebraic stacks with finite diagonal and produces an al-
gebraic space. In our context, plagued by a unipotent action with positive
dimensional stabilizers, it appears that the only readily available tool is
rigidification. This technique requires that we restrict attention to repre-
sentations whose automorphism group is flat, but it has the advantage of
producing a sheaf quotient: if we let

Xnd
n (G) ⊂ Xfl

n(G)

denote the locus of representations which satisfy our nondegeneracy condi-
tion, then

Mnd
n (G) = Xnd

n (G)/fppfBn

is a quotient of flat sheaves. Since Xnd
n (G) is of finite type, it follows,

moreover, that the geometric fibers of the projection Xnd
n (G) → Mnd

n (G)
are orbits.
Our nondegeneracy condition has more in common with Mumford’s sta-

bility than his semistability. In Mumford’s set-up, a reductive algebraic
group G acts on a finite-type scheme X. There is then a locus Xs ⊂ X

(depending on the choice of a linearization) of points which are stable ([14,
§4, Definition 1.7]). In Xs, dimensions of stabilizers are constant on con-
nected components (loc. cit.), and Xs admits a quotient f : Xs → Y whose
geometric fibers are orbits ([14, §4, Theorem 1.10 and §1, Definition 0.6]).
I now give an outline of the paper together with statements of the main

theorems and sketches of proofs. If g is the Lie algebra of G, then finite
dimensional representations of G correspond to finite dimensional nilpotent
representations of g. With this in mind, we begin by studying the problem of
moduli of nilpotent representations of a fixed Lie algebra g over k. In section
1 we recall the definition and first properties of nilpotent representations.
In section 2 we study flag representations: those whose associated filtration
is a full flag. We give, in particular, a criterion for a nilpotent representation
to be a flag representation in coordinates.
In section 3 we develop a technical tool: the scheme-theoretic Lie alge-

bra n(r) of the unipotent part U(r) of the automorphism group of a flag
representation r : gT → End(E) over a general base T over k. We observe

TOME 62 (2012), FASCICULE 3



1126 Ishai DAN-COHEN

that Aut r = Gm,T × U(r), that U(r) is isomorphic to n(r) as a scheme,
and that n(r) is the total space of a module.

In section 4 we turn to the definition and an initial study of our non-
degeneracy condition. Roughly, a nilpotent representation r : g→ End(E)
on a vector space E is nondegenerate, if it is a flag representation, if every
subquotient is (by recursion on the dimension of E) already nondegener-
ate, and if among representations satisfying the above two conditions, the
dimension of the automorphism group is minimal. The dimension of the
automorphism group of a nondegenerate representation of dimension n is
independent of the choice of nondegenerate representation; it thus defines
an invariant of g and n which we denote by A(g, n). We illustrate the be-
havior of A(g, n) for low n with several examples, showing in particular
that the possible triples (A(g, 2), A(g, 3), A(g, 4)) are (2, 2, 2), (2, 2, 3) and
(2, 3, 4).

Let nn be the Lie algebra of strictly upper triangular n × n matrices.
In section 5 we observe that the locus Xfl

n of flag representations of g is
an open subscheme of Hom(g, nn), we let Xnd

n ⊂ Xfl
n denote the locus of

nondegenerate nilpotent representations, and we prove that Xnd
n ↪→ Xfl

n is
an immersion. Here we use n(r) to help in showing that Xnd

n is compatible
with taking infinite unions of rings, and we use n(r) again to produce a
flattening stratification for the automorphism group of the universal family.
If X is an algebraic stack whose automorphism groups are flat, then the

associated fppf sheaf, πfppf
0 (X ), is an algebraic space. This is an instance

of rigidification, which we review in §6.
We let Mnd

n (g) denote the stack of n-dimensional nondegenerate nilpo-
tent representations of g. The main goal of section 7 is to prove:

Theorem 7.5. — The fppf sheaf πfppf
0 Mnd

n (g) associated toMnd
n (g) is

an algebraic space.

For the proof, we let Bn denote the group of invertible upper triangular
matrices, and we observe that the stack quotient of Xfl

n by the action of Bn
by conjugation is equal to the stack of flag representations. In particular,
the stack quotient of Xnd

n by the action of Bn is equal toMnd
n (g). It follows

thatMnd
n (g) is an algebraic stack. Since its inertia is by construction flat,

rigidification applies to produce the theorem.
We let

Mnd
n (g) := πfppf

0 Mnd
n (g) ,

and call it the moduli space of n-dimensional nondegenerate nilpotent repre-
sentations. Next we discuss the functoriality of our moduli spaces. We show

ANNALES DE L’INSTITUT FOURIER



MODULI OF UNIPOTENT REPRESENTATIONS I 1127

that if f, g are Lie algebras such that for i = 1, . . . , n, A(g, i) = A(f, i), then
any surjection

f� g

gives rise to a closed immersion

Mnd
n (g) ↪→Mnd

n (f) .

We end the section with a discussion of a certain variant of the above
constructions. We define a framed nondegenerate nilpotent representation
to be a nondegenerate nilpotent representation equipped with a grading-
compatible basis for the associated graded vector space. We let Mfnd

n (g)
denote the stack of n-dimensional framed nondegenerate nilpotent repre-
sentations of g, we prove that πfppf

0 Mfnd
n (g) is an algebraic space, and we

define
M fnd
n (g) := πfppf

0 Mfnd
n (g) .

This gives us a modular interpretation of the sheaf quotient of Xnd
n by

the action of the group Un of upper triangular matrices with 1’s on the
diagonal.
It is well known that the functor Lie induces an equivalence of categories

from the category of unipotent groups over k to the category of nilpotent
Lie algebras over k, and that given a unipotent group G with Lie algebra
g, Lie also induces an isomorphism from the category of finite dimensional
representations of G to the category of finite dimensional nilpotent repre-
sentations of g. In section 8 we generalize the latter statement to include
families of (as well as infinite dimensional) representations. Let REP(G)
denote the fibered category of quasi-coherent representations of G and let
REPnil(g) denote the fibered category of locally nilpotent quasi-coherent
representations of g. Then we have

Theorem 8.20. — The functor

Lie : REP(G)→ REPnil(g)

sending a representation to its derivative at the identity is an isomorphism
of fibered categories.

The main obstacle is that the functor of automorphisms of a quasi-coherent
sheaf may not be representable; it is overcome by a careful analysis of the
exponential map. This theorem reduces the problem of moduli of repre-
sentations of G to the problem of moduli of nilpotent representations of g,
and hence to the context of the previous section. We apply all definitions
introduced in sections 2–7 to G through its Lie algebra; in particular we

TOME 62 (2012), FASCICULE 3



1128 Ishai DAN-COHEN

define the moduli space of n-dimensional nondegenerate representations of
G by

Mnd
n (G) := Mnd

n (LieG) .
Since a flag representation has two canonically defined subquotients, the

moduli spaces of nondegenerate representations form a tower

...

����

Mnd
n+1

pn2
��

pn1
��

Mnd
n

pn−1
2

��

pn−1
1

��

Mnd
n−1

����

...
with

pn−1
2 ◦ pn1 = pn−1

1 ◦ pn2 .
In section 9 we discuss this tower, focussing on a modular answer to the
following question: when can two n-dimensional nondegenerate representa-
tions be glued along a codimension-one subquotient to produce an n + 1-
dimensional flag representation? The answer is given in the form of a closed
algebraic subspace M cnd

n of Mnd
n ×p2,Mnd

n−1,p1M
nd
n through which the map

Mnd
n+1 →Mnd

n ×
p2,Mnd

n−1,p1

Mnd
n

factors. This generalizes the role played by the diagonal of Pgab × Pgab in
the case of three dimensional representations of a Lie algebra of width one
([4]).
This project leads naturally in several directions which I now indicate

briefly. Computations performed jointly with Anton Geraschenko reveal
that typically Mnd

n (G) has multiple components, many singularities not
explained by the multiplicity of components, and sometimes even gener-
ically nonreduced components. These geometric features endow Mnd

n (G)
with a natural stratification which provides unipotent representations with

ANNALES DE L’INSTITUT FOURIER



MODULI OF UNIPOTENT REPRESENTATIONS I 1129

an intricate discrete invariant and suggests a classification program in the
same spirit as classical representation theory. This may lead to a study
of representations of an arbitrary algebraic group which mixes classical
representation theory with a theory of unipotent representations.
On the other hand, my initial interest in this problem came from the

hope to formulate a story somewhat similar to that of [17] for the unipotent
fundamental group in a p-adic context. Given a variety over Fp satisfying
certain hypotheses, the theory of the p-adic unipotent fundamental group
gives rise to a pair of prounipotent groups Ucris and Uét over Qp. These
groups carry various extra structures, as well as a comparison isomorphism
over Bcris which together reflect arithmetic properties of the variety and
which should in turn be reflected in the structure of the moduli space of
representations. For instance, there should be an automorphism whose fixed
points single out those unipotent isocrystals which support an F -structure.
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Notations and conventions

0.1. — If T is a scheme and F is a quasi-coherent sheaf, then the con-
travariant total space, denoted VF , of F is defined by

VF(f : T ′ → T ) = HomOT ′ (f
∗F ,OT ′)

([8, 1.7.8]) and if φ : E → F is a map of quasi-coherent sheaves then Vφ
denotes the induced map VF → VE . If E ,F are locally free of finite rank,

TOME 62 (2012), FASCICULE 3



1130 Ishai DAN-COHEN

then the kernel of φ regarded as a map of vector groups is defined by the
Cartesian square

kerVφ∨ //

��

VE∨

Vφ∨

��

T // VF∨

where the arrow at the bottom is the zero section. Although kerVφ∨ may
not be a vector group, it is the contravariant total space of a module.
Indeed, it suffices to check this under the assumption that T = SpecA is
affine in which case we write E and F for the modules of global sections,
we let Q = cok(φ∨) and we observe that for any A-algebra B we have

HomA(Q,B) = ker(idB ⊗ φ)

as in the following diagram.

0 // Hom(Q,B) // Hom(E∨, B) // Hom(F∨, B)

B ⊗ E
idB⊗φ

// B ⊗ F

0.2. — In general, when working over a scheme T , we use blackboard
bold symbols to denote presheaves on the category of affine T -schemes, and
calligraphic symbols to denote presheaves on the small Zariski site of T .
So, for example, if r : g → End(F) is a representation of a Lie algebra on
a quasi-coherent sheaf over T , then End(r) denotes the functor

(f : T ′ → T ) 7→ End(f∗r)

and End(r) denotes its restriction toXZar (0.5). The latter is quasi-coherent
but the former may not be.

0.3. — When working over an affine scheme T = SpecA we use a plain
font to denote the module of global sections of a quasi-coherent sheaf; thus
E = Γ(T, E). On the other hand, when g is a Lie algebra over a ring A and
T = SpecA, we use g again for the sheaf of Lie OT -algebras associated to
g when conflating the two poses no danger.

0.4. — Let T be a scheme, F an OT -module, and E ⊂ F a submodule.
Following Lang, we say that F is a vector sheaf if it is locally free of finite
rank. Assuming this to be the case, we say that E is a vector subsheaf if
the quotient module F/E is a vector sheaf.

ANNALES DE L’INSTITUT FOURIER



MODULI OF UNIPOTENT REPRESENTATIONS I 1131

0.5. — For generalities on stacks and algebraic stacks, we refer the
reader to [13]. An efficient overview can be found in §1 of [15]. When work-
ing with algebraic stacks, it is customary to work in the étale topology. We,
however, will have occasion to use the fppf topology, which is finer, as well
as the Zariski topology, which is coarser. An easy definition of the notion
of a (Grothendieck) topology on a category may be found in [18].
A category equipped with a topology is called a site. For our purposes,

the distinction between a site and its sheaf topos will be unimportant. Thus,
if X is a scheme, the reader is invited to think of XZar as the site whose
objects are the (Zariski) open subsets of X, whose only morphisms are
inclusions, and whose covering families are the usual coverings by Zariski
open subsets. This is often referred to as the small Zariski site of X.
By contrast, the big Zariski site of X, denoted XZAR, is the site whose
underlying category is the category Aff(X) of all affine X-schemes, and
whose coverings are the usual coverings by Zariski open subsets. The fppf
site of X is again a topology on Aff(X). Its covering families are families
of morphisms {fi : Ti → T}i such that qfi :

∐
Ti → T if faithfully flat and

locally of finite presentation.

0.6. — When working over the category Aff(T ) of affine schemes over
a base T , we employ the convention that when no topology is mentioned,
the indiscrete topology (that is, the topology whose only coverings are the
isomorphisms) is assumed. Notationally, this means the following.

If X is a presheaf on Aff(T ) and G is a group presheaf acting on X, we
write X/G for the presheaf quotient and [X/G] for the associated fibered
category. Thus for T ′ ∈ Aff(T ),

(X/G)(T ′) = X(T ′)/G(T ′)

and [X/G](T ′) is the groupoid whose objects are the elements of X(T ′) and
whose morphisms x→ y are those elements of G(T ′) such that gx = y.

Now let τ be a topology on Aff(T ) and suppose X is a τ -sheaf and G is
a group τ -sheaf acting on X. Then we write X/τG for the sheaf quotient
with respect to τ and [X/τG] for the stack quotient with respect to τ .
Thus X/τG is the τ -sheaf associated to X/G and [X/τG] is the τ -stack
associated to [X/G].

0.7. — Continuing with the situation of 0.6, suppose X is a fibered
category over Aff(T ). Then π0(X ) denotes the presheaf associated to X :
π0(X )(T ′) = π0(X (T ′)) is the set of isomorphism classes of objects of
X (T ′). If Aff(T ) is again endowed with a topology τ then we write πτ0 (X )
for the τ -sheaf associated to π0(X ).

TOME 62 (2012), FASCICULE 3



1132 Ishai DAN-COHEN

0.8. — We remind the reader that a quasi-coherent sheaf on the small
Zariski site of a scheme T extends uniquely to a quasi-coherent sheaf on the
big Zariski site of T , so there is usually no danger in conflating the two in
our notation. Nevertheless, we find it useful to reserve a special notation for
the big structure sheaf oT : Aff(T )→ Ring which sends T ′ 7→ Γ(T ′,OT ′).

1. Preliminary discussion of nilpotence

Fix a field k and a Lie algebra g over k, assumed to be finitely generated.
Here we review some of the basics of nilpotent Lie algebras and nilpotent
representations, while discussing some initial technicalities pertaining to
nilpotence in families.

1.1. — We denote by g(i) the ith term in the descending central series:
g(1) = g, g(i+1) = [g, g(i)], and by gab the abelianization: gab = g(1)/g(2).
The pronilpotent completion of g is the inverse limit lim←− g/g(n). We say that
g is nilpotent if there exits an n such that g(n) = 0 and pronilpotent if g is
equal to its pronilpotent completion. If F is a vector space, n(F ) denotes
the free pronilpotent Lie algebra on F . It is characterized by the mapping
property HomLie(n(F ), n) = HomVect(F, n) for every nilpotent Lie algebra
n, and may be constructed as the pronilpotent completion of the free Lie
algebra on F .

1.2. — The word filtration will always refer to an increasing filtration
indexed by the natural numbers.

1.3. — Let A be a ring, E an A-module, Fil a filtration of E by sub-
modules, and φ an endomorphism of E. We say that φ is nilpotent with
respect to Fil if for each i > 1, φ(FiliE) ⊂ Fili−1E, and we write nFilE for
the space of all such endomorphisms.
More generally, if (T,OT ) is a ringed space, E an OT -module, and Fil a

filtration of E by submodules, we write nFilE for the sheaf of endomorphisms
of E nilpotent with respect to Fil: if U is an open subset of T then nFilE(U)
is the set of those endomorphisms E|U → E|U such that for every i, the
composite FiliE|U ⊂ E|U → E|U factors through Fili−1E|U . We remind the
reader, however, that when T is a scheme and E is quasi-coherent, End(E)
may not be quasi-coherent.

1.4. — Let T be a k-scheme, and r : gT → End E a representation on a
quasi-coherent sheaf E . We define the 0-eigenspace of r, an OT -submodule
E0 of E , by

E0(U) := {e ∈ E(U) | (rv)e = 0 ∀v ∈ g(U)} .

ANNALES DE L’INSTITUT FOURIER
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We remark that E0 is quasi-coherent. In verifying this, we assume T =
SpecA to be affine, we write E for the module of global sections of E , and we
fix an arbitrary element a ∈ A. There is then a natural map (E0)a → (Ea)0

which is injective by exactness of localization, and we are to show that it
is surjective. To this end, fix a finite set v1, . . . , vs of generators of g, and
consider an arbitrary element e

an of (Ea)0. For each i = 1, . . . , s, we have
0 = (rvi)( e

an ) = (rvi)(e)
an , from which it follows that there exists an integer

li such that ali(rvi)(e) = 0. Let l = maxi li. Then ale ∈ E0, so ale
an−l

is an
element of (E0)a mapping to e

an , which completes the verification.

Definition 1.5. — Let T be a k-scheme and let r : gT → End E be
a representation of g on a quasi-coherent sheaf E over T . We define the
associated filtration of E , denoted Filr, by

Filr0E = 0

and
Filrn+1E = τ−1

n ((E/FilrnE)0) ,

where
τn : E → E/FilrnE

is the projection, and the 0-eigenspace (E/FilrnE)0 is defined as in 1.4. When
there is no risk of confusion, we drop the r from the notation, and we some-
times write En instead of FilnE . We also write ri for the subrepresentation

gT → End(Filri E)

and rj or r/rj for the quotient representation

gT → End(E/FilrjE)

and finally, for j 6 i we write rji for the subquotient

gT → End(Filri E/FilrjE) .

Remark 1.6. — Let T be a k-scheme and let r : gT → End E be a rep-
resentation of g on a quasi-coherent sheaf E over T . We note the following
formula for 0 6 i 6 j and 0 6 k 6 j − i:

Filr
i
j

k (Ej/Ei) = Ei+k/Ei .

Lemma 1.7. — Let r : g→ EndE be a representation of g on a vector
space E over k. Then r factors through nFilrE (1.3).

TOME 62 (2012), FASCICULE 3
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Proof. — Fixing v ∈ g, i > 1 and e ∈ FilriE, we are to show that (rv)e ∈
Filri−1E; since, in the notation of 1.5, τi−1 is a morphism of representations,
we have

τi−1((rv)e) = (ri−1v)(τi−1e) = 0
whence (rv)e ∈ Filri−1E. �

1.8. — Given a ring B, a module F over B and a filtration Fil, we say
that Fil is exhaustive if ⋃

i

FiliF = F .

1.9. — We recall that a representation r : g→ EndE on a finite dimen-
sional vector space E is nilpotent if either E = 0 or E0 is nonzero and, by
recursion on dimE, E/E0 is nilpotent. (By Engel’s theorem ([12, 1.35]),
this condition is equivalent to another condition, which is often taken as
the definition.)

Proposition 1.10. — Let r : g→ EndE be a representation of g on a
finite dimensional vector space E. The following conditions are equivalent:

(i) r is nilpotent.
(ii) Filr is exhaustive.
(iii) r factors through nFilE for some exhaustive filtration Fil of E.

Proof. — (i ⇒ ii) Suppose r is nilpotent. Then ri is nilpotent for all i;
indeed, if we assume for an induction on i that ri is nilpotent, since

E/Ei+1 = (E/Ei)/((E/Ei)0) ,

it follows that E/Ei+1 is nilpotent. This implies that for each i, either
Ei = E or Ei 6= Ei+1. Since E is finite dimensional, there exists an i such
that Ei = E, from which the conclusion follows.
(ii ⇒ iii) This follows from 1.7 by setting Fil := Filr.
(iii ⇒ i) If dimE = 0, then r is nilpotent by definition. Fix a positive

integer n and assume for an induction on n that (iii) implies (i) whenever
dimE = n. Let Fil be an exhaustive filtration on E, suppose r factors
through nFilE and suppose dimE = n + 1. If i is the smallest number
such that FiliE 6= 0, then FiliE ⊂ E0 so E0 6= 0. It remains to show that
the inductive hypothesis may be applied to the quotient representation
r1 : g → End(E/E0). Denote by τ1 : E → E/E0 the projection and
for each j, let τ1Filj(E/E0) be the image of FiljE in E/E0. Given j an
arbitrary natural number, e ∈ Filj+1E, and v ∈ g, we have

(r1v)(τ1e) = τ1((rv)e) ;
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since (rv)e ∈ FiljE, it follows that (r1e)(τ1e) ∈ τ1Filj(E/E0). Thus r1

factors through n
τ1Fil(E/E0); since τ1Fil is exhaustive, the inductive hy-

pothesis applies as hoped to conclude that r1 is nilpotent, and hence that
r is nilpotent, concluding the proof. �

Corollary 1.11. — Let r : g → EndE be a representation of g on a
finite-dimensional vector space E. If r is nilpotent then so is every subquo-
tient.
Proof. — It is sufficient to consider subrepresentations and quotient rep-

resentations separately. Suppose r : g → EndE is nilpotent and let Fil be
an exhaustive filtration such that r factors through nFilE as in 1.10 (iii).
If ι : E′ ↪→ E is a subrepresentation, define Fil′ by

Fil′iE′ := ι−1FiliE

and if π : E � E′ is a quotient representation, define Fil′ by

Fil′iE′ := π(FiliE)

as in the proof of (iii⇒ ii) in Proposition 1.10. Either way, r′ : g→ EndE′
factors through nFil′E

′: in the case of a quotient representation this was
verified in the proof of (iii ⇒ ii) in 1.10; the case of a subrepresentation is
similar. �

Definition 1.12. — If r : g→ EndE is a nilpotent representation and
Fil is an exhaustive filtration such that r factors through nFilE, we say that
r is nilpotent with respect to Fil. Note that r is nilpotent with respect
to Fil if and only if Filr is subordinate to Fil.

2. Flag representations

We continue to work with a finitely generated Lie algebra g over a field
k. We fix an arbitrary affine k-scheme T = SpecA. We write gA (or gT )
for the Lie A-algebra (or for the Lie OT -algebra associated to) A⊗ g.
Definition 2.1. — Suppose first that A is a field. A nilpotent repre-

sentation r : gA → EndE on an A-vector space E is a flag representa-
tion if Filr (1.5) is a (full) flag. Now let A be arbitrary. A representation
r : gT → End E is a flag representation if its fibers above field-valued
points of T are flag representations in the above sense, and in addition, the
following conditions are satisfied:

(i) E is a vector sheaf (0.4),
(ii) for each i > 0, Filri E is a vector subsheaf (loc. cit.), and
(iii) formation of Filr is compatible with base-change.
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Counterexamples (2.2-2.4)

We discuss briefly what can go wrong when conditions (ii) and (iii) of
definition 2.1 are dropped. Even when the canonical filtration is a full flag
by vector subsheaves, the flag can hide a degeneration (2.2); and infinites-
imally, the filtration can take on a horizontal flavor (2.3).

2.2. — Let T = Spec k[x], E = k[x]2, g = k, and define r : k[x] →
Mat2×2(k[x]) by

1 7−→
(

0 x

0 0

)
.

Then E0 = ker
(

0 x

0 0

)
, so Filr is the standard flag 0 ⊂ k[x] ⊂ k[x]⊕k[x].

But r0, the fiber of r above the origin, is the trivial representation.

2.3. — Let T = Spec k[ε]/(ε2), E = k[ε]/(ε2), g = k, and define r :
k[ε]/(ε2)→ k[ε]/(ε2) by

1 7−→ ε .

Then Filr is given by 0 ⊂ kε ⊂ k ⊕ kε = k[ε]/(ε2).

2.4. — In 2.3, Fil1 is not locally free; in 2.2, Fil1 is locally free and
co-locally-free, but its formation is not compatible with base change.

We begin our study of flag representations with a discussion of subquo-
tients.

Proposition 2.5. — Let r : g → EndE be a nilpotent representation
of g on a vector space E. If r is a flag representation, then every subquotient
is of the form rij (1.5) for some 0 6 i 6 j. Moreover, every such subquotient
is itself a flag representation.

The proof follows (2.6–2.8).

Lemma 2.6. — If r : g → End E is a flag representation and x is an
element of El not in El−1 then there exists a v ∈ g such that (rv)x is an
element of El−1 not in El−2.

Proof. — Indeed, every v ∈ g satisfies (rv)x ∈ El−1 by definition; if,
moreover, every v ∈ g satisfies (rv)x ∈ El−2 then x ∈ El−1 by definition.

�

2.7. — We consider subrepresentations first. Fixing a subrepresentation
E′, and an element x ∈ E′, it is enough to assume x ∈ El \El−1 and show
E′ ⊃ El. By 2.6, there exists an element xi ∈ (Ei \Ei−1)∩E′ for all i 6 l.
The sequence of elements {xi}i then forms a basis for El.
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2.8. — Since every subrepresentation of a flag representation r is of the
form rj , every quotient representation is of the form ri. It follows from
1.6 that every subrepresentation is itself a flag representation and hence
that every subquotient is of the form rij . Finally, it follows from the same
paragraph that each such subquotient is again a flag representation.

We now give a characterization of flag representations in coordinates. We
let nn denote the Lie algebra of strictly upper triangular n× n matrices.

Definition 2.9. — Given a representation r : gT → nn,T of gT on OnT ,
nilpotent with respect to the standard flag, we denote the composite

gT → nn,T → OT
of r with the (i, j)th standard projection of nn,T by λri,j and call it the
full (i, j)th matrix entry of r. We drop the superscript when there is no
danger of confusion. If r is a flag representation and l, m are integers, 0 6
l 6 m 6 n, then rlm is a representation on Om−lT , and for 1 6 i < j 6 m− l
we have

λ
rlm
i,j = λrl+i,l+j .

Proposition 2.10. — In the notation of 2.9, a representation of the
form r : gT → nn,T is a flag representation if and only if each λi,i+1,
i = 1, . . . , n− 1, is surjective.

The proof follows (2.11–2.13).

2.11. — Let s : g → nmT be a representation on OmT , nilpotent with
respect to the standard flag, suppose λsi,i+1 is surjective for i = 1, . . . ,m−1
and let x = (x1, . . . , xn) be a section of the 0-eigenspace of s. I claim that
xl = 0 for l = 2, . . . ,m. For v a section of gT and i = 1, . . . ,m, we have

(2.11.1) ((rv)x)i =
∑

i<j6m

(λsi,jv)xj .

This family of equations specializes to

(2.11.2) (λsm−1,mv)xm = 0

when i = m−1. Since λsm−1,m is surjective there exists a section v of gT such
that λsm−1,mv = 1; plugging in to 2.11.2 produces xm = 0, which is the base
case for a descending induction on l. Suppose xj = 0 for j = l + 1, . . . ,m.
Setting i equal to l−1 in 2.11.1 then produces (λsl−1,lv)xl = 0; plugging in a
section v of g such that λsl−1,lv = 1 yields xl = 0 and the claim follows. Since
the full matrix entries remain surjective after localization (and, indeed, after
an arbitrary base change), we conclude that the 0-eigenspace of s is equal
to the first step in the standard flag.
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2.12. — Returning to the notation of the proposition, suppose λri,i+1 is
surjective for i = 1, . . . , n − 1. We note first that Filr0OnT = 0 agrees with
step zero of the standard flag Filst. Fix a positive integer l and assume for
an induction on l that FilrlOnT = Filstl OnT . Then for i = 1, . . . , n− l, λrli,i+1
is surjective. Hence paragraph 2.11 applies with s := rl to conclude that
(On−lT )0 = Filst1 On−lT from which it follows that Filrl+1OnT = Filstl+1OnT , as
hoped.

2.13. — For the converse, suppose λi,i+1 is not surjective, and assume
for a contradiction that r is nevertheless a flag representation. After pos-
sibly pulling back to a field-valued point Spec l → T at which λi,i+1 van-
ishes, we may assume that T = Spec l is the spectrum of a field and that
λi,i+1 = 0. Since r is nilpotent with respect to the standard flag, Filr is
subordinate to the standard flag, and since Filr is a full flag, it follows that
Filr is equal to the standard flag. Since ri−1 is again a flag representation
(2.5), and since λi,i−1 = λr

i−1

1,2 , after possibly replacing r by ri−1 we may
assume λ1,2 = 0. It then follows that the 0-eigenspace of r contains step
two of the standard flag, a contradiction, as hoped.

Remark 2.14. — We note that every flag representation of gT over T is
Zariski locally on T isomorphic to a representation on OnT , with associated
flag equal to the standard flag.

Definition 2.15. — We denote the sth graded piece g(s)/g(s+1) of the
descending central series of g by hs. Let r : gT → End E be a flag repre-
sentation of g on a vector sheaf E of rank n over T . For 1 6 i 6 n, we set
Lri := grFilr

i E , and for 1 6 i < j 6 n, we set Lri,j := HomOT (Lrj ,Lri ). For
each 1 6 i < j 6 n, r defines a map

κri,j : (hj−i)T → Lri,j

which we call the canonical (i, j)th matrix entry of r. When there is
no risk of confusion, we drop the superscript r from the notation.

2.16. — Continuing with the situation and the notation of 2.15, we note
that there is a canonical isomorphism

Lr
l
m

k = Lrl+k

and a corresponding equality (through the above isomorphism)

κ
rlm
i,j = κrl+i,l+j

for any 0 6 l 6 m 6 n and 1 6 i < j 6 m− l.
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A lengthier discussion of the canonical matrix entries of a flag represen-
tation may be found in [4], where they play an important role.

3. Automorphisms of flag representations

We continue to work with a finitely generated Lie algebra g over a field k.

3.1. — If (T,OT ) is a ringed space, E is an OT -module, Fil is a filtra-
tion by OT -submodules and ψ is an automorphism of E , we say that φ is
unipotent with respect to Fil if ψ respects Fil and grFil ψ = idgrFil E .

Definition 3.2. — Let E be a vector sheaf over a k-scheme T , and let
Fil be a filtration by vector subsheaves. We call the group of unipo-
tent automorphism of (E ,Fil), and denote by UFil(E), the T -group of
automorphisms of E which are unipotent with respect to Fil. The group
of unipotent automorphisms of (E ,Fil) is a closed subgroup of Aut E . Its
functor of points is defined as follows. Since Fil is locally split, given f :
T ′ = SpecA′ → T , Fil pulls back to a filtration f∗Fil on f∗E ; UFil(E)(T ′)
is the set of automorphisms of f∗E which respect f∗Fil and induce the
identity on the associated graded.

Definition 3.3. — Let r : gT → End E be a flag representation of g on
a vector sheaf E over T (2.1). We define the group of unipotent auto-
morphisms of r, and denote by U(r), the subgroup of Aut r consisting of
those automorphisms which are unipotent with respect to Filr.

Proposition 3.4. — In the situation and the notation of 3.3, we have

Aut r = Gm,T × U(r)

Proof. — Let n denote the rank of E . We consider a point φ′ of Aut r
with values in an arbitrary T -scheme T ′, adding primes to denote pullback
to T ′. Then for i = 1, . . . , n − 1, κ′i,i+1 (2.15) is surjective. Thus, for any
open U ′ ⊂ T ′ and any morphism

L′i+1|U ′ → L′i|U ′ ,

grφ′ induces a commuting square as follows.

L′i|U ′
(grφ′)i|U′ // L′i|U ′

L′i+1|U ′ (grφ′)i+1|U′
//

OO

L′i+1|U ′

OO
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Applying this in particular to a family of local isomorphisms, it follows
that (grφ′)i = (grφ′)i+1. This gives us a short exact sequence

1→ U(r)→ Aut(r)→ Gm,T → 1 .

Finally, there is a natural splitting making Gm,T central, whence the prod-
uct decomposition. �

Definition 3.5. — Let r : gT → End E be a flag representation. We
let n(r) denote the Lie oT -algebra (0.8) whose points valued in an affine
T -scheme T ′ are given by

n(r)(T ′) = {φ ∈ nFilT ′ (ET ′) | rT ′(v) ◦ φ = φ ◦ rT ′(v) for all v ∈ gT ′} ,

that is, the set of endomorphisms of ET ′ nilpotent with respect to FilT ′
and equivariant with the action of rT ′ . We call n(r) the Lie algebra of
nilpotent infinitesimal automorphisms of r.

Claim 3.6. — In the situation and the notation of 3.3 and 3.5, the
functor n(r) is the scheme-theoretic Lie algebra of U(r). (In the notation
of [5, II §4 1.2], n(r) = LieU(r).)

Proof. — Fix T ′ = SpecB′, write T ′[ε] = SpecB′[ε]/[ε2] and write E′
for Γ(T ′, ET ′). We are to show that n(r)(T ′) is the kernel of the map

α : U(r)(T ′[ε])→ U(r)(T ′)

induced by the closed immersion T ′[ε] ←↩ T ′. Consider the (split) short
exact sequence of abstract groups

1 //nFil′(E′)
eε· //UFil(E)(T ′[ε])

β
//UFil(E)(T ′) ////1``

where for φ ∈ nFil′(E′), eεφ := 1 + εφ. Since α is just the restriction of β to
the set of automorphisms equivariant with the action, it suffices to check
that φ ∈ nFil′(E′) is equivariant with the action of gT ′ if and only if eεφ is
equivariant with the action of gT ′[ε]. This is formal: suppose φ is equivariant
with the action of gT ′ , fix an arbitrary v ∈ gT ′[ε], write v = v0 + εv1 with
v0, v1 ∈ gT ′ and compute

(1 + εφ)(v0 + εv1) = v0 + ε(v1 + φv0)
= v0 + ε(v1 + v0φ)
= (v0 + εv1)(1 + εφ);
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conversely, suppose eεφ is equivariant with the action of gT ′[ε], fix an element
v ∈ gT ′ , regard it as an element of gT ′[ε] and note that

v + εvφ = v(1 + εφ)
= (1 + εφ)v
= v + εφv

implies vφ = φv. �

The Lie algebra of nilpotent infinitesimal automorphisms of r is useful
because it is, on the one hand, isomorphic to U(r) (as a scheme) and, on
the other hand, occurs as the kernel of a map of vector groups, hence as
the contravariant total space of a module, as I now explain (3.7–3.8).

Claim 3.7. — The exponential power series induces an isomorphism of
functors n(r)→ U(r).

Proof. — Given a T -scheme T ′ = SpecB′ as above, the exponential
power series defines a map

nFil′(E′)
exp

// UFil(E)(T ′)
given by

v � // 1 + v + v2

2 + v3

3! + · · ·

while the logarithmic power series defines a map

nFil′(E′) UFil(E)(T ′)oo

given by

(u− 1)− (u−1)2

2 + (u−1)3

3 − · · · u .�oo

These are inverse to one another. So it suffices to check that for v ∈
nFil′(E′), v is equivariant with the action of gT ′ if and only if exp v is:
if v ∈ nFil′(E′) is equivariant with the action of gT ′ and w ∈ gT ′ is
an arbitrary element then rT ′w commutes with the terms of the expo-
nential power series in v and hence with their sum, exp v; conversely, if
exp v ∈ UFil(E)(T ′) is equivariant with the action of gT ′ then rT ′w com-
mutes with the terms of the logarithmic power series in exp v hence with
their sum, which equals v. �

3.8. — Fix a basis v1, . . . , vm for g, and continuing with our flag repre-
sentation r : gT → End(E), define

Ψ : nFilE → (nFilE)⊕m
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by
φ 7→ ([φ, rv1], . . . , [φ, rvm]) .

Then n(r) = kerVΨ∨ (0.1).

Proposition 3.9. — Suppose r : g→ EndE is a flag representation of
g on a vector space E of dimension n. Then

2 6 dimAut r 6 n .

Only the lower bound is needed in the sequel.
Proof. — Fixing a filtered isomorphism E ∼= kn, we may replace r with

a homomorphism of Lie algebras r : g→ nn. In the notation of 2.9,

U(r) =

b ∈ Un


∑
i<k<j

bikλkj − bkjλik = 0, j − i > 2

 .

For each i, fix vi ∈ g such that λi,i+1vi = 1. Then by applying the above
equation to vi we solve for bi+1,j in terms of entries of the form bi′+1,j′

with either j′ − i′ < j − i or both of: j′ − i′ = j − i and i′ < i. Iterating
(and renaming), we can solve for each bi,i+s in terms of entries of the form
b1,1+s′ with s′ 6 s. This provides the upper bound.
For the lower bound, note that Un contains a copy of Ga whose entries

commute with all strictly upper triangular matrices (observe simply that
b1n does not intervene in the above equations). Thus

Aut r ⊃ Gm ×Ga .

�

Remark 3.10. — Finally, we note that if T is connected and r : gT →
End E is any representation on a vector sheaf, then Aut r is connected. In-
deed, End r is the total space of a module, hence connected with irreducible
fibers; and Aut r is an open subscheme containing a global section.

4. Recursive minimization of automorphism groups

We continue to work with a finitely generated Lie algebra g over a field k.

Definition 4.1. — Let T = SpecA be an affine k-scheme, E an A-
module with corresponding OT -module E , and r : gT → End(E) a flag
representation (2.1). Suppose first that A is a field. Then r is nondegen-
erate if it satisfies the following conditions, recursive on the dimension of
E. If dimE = 1, then r = 0 is the trivial representation. If, on the other
hand, the rank of E is n > 2 then
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(i) rn−1, r1 (1.5) are both nondegenerate, and
(ii) dim Aut r is minimal subject to condition (i) in the following sense.

Let A′ be a field containing A, and let r′ be a flag representation
of gA′ . If r′n−1 and r′1 are both nondegenerate, then

dimAut r 6 dimAut r′ .

Now let A be arbitrary. Then r is nondegenerate if it satisfies the follow-
ing conditions, recursive on the rank of E :

(i) rn−1, r1 are both nondegenerate,
(ii) the fibers of r above field-valued points of T are nondegenerate in

the above sense, and
(iii) Aut r is flat.

Notation 4.2. — We denote the dimension of the automorphism group
of some (hence any) nondegenerate n-dimensional representation of g by
A(g, n).

Examples and counterexamples in low dimensions (4.3–4.11)

We consider representations of our fixed Lie algebra g on kn for small n,
nilpotent with respect to the standard flag. We begin with the case n = 2.

4.3. — Since n2 = k is abelian, every representation r : g → n2 factors
through the abelianization gab of g. Conversely, any linear map g → n2
which factors through gab is a homomorphism of Lie algebras and hence a
representation. Thus representations on k2, nilpotent with respect to the
standard flag, correspond canonically to linear functionals λ : gab → k on
the abelianization of g.

The trivial representation is clearly not a flag representation; conversely,
every nontrivial representation is a flag representation. A calculation shows
that for r nonzero,

Aut r =
{(

b c

0 b

)}
= Gm ×Ga .

In particular, dimAut r = 2. Thus every flag representation is nondegener-
ate and A(g, 2) = 2 independently of g.

We now consider three dimensional representations (4.4–4.6).
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4.4. — Fix a three dimensional nilpotent representation r : g→ n3. We
use single indices in order to simplify notation: for v ∈ g write

rv =

 0 λ1v λ3v

0 0 λ2v

0 0 0

 .

For each i, λi is the composite of r regarded as a map g → n3 with one
of the three standard projections n3 → k. Thus for each i, λi is a linear
functional on g. The equation r[·, ·] = [r·, r·] may be rewritten in terms of
these linear functionals:

λ1[·, ·] = 0(4.4.1)
λ2[·, ·] = 0(4.4.2)
λ3[·, ·] = λ1 ∧ λ2 .(4.4.3)

According to 2.10, r is a flag representation if and only if λ1, λ2 are nonzero.
For r a flag representation, the automorphism group is given by

Aut r =


 a b1 c

0 a b2
0 0 a

 b1λ2 = b2λ1 and a 6= 0

 .(4.4.4)

Thus

A(g, 3) =
{

3 if equations 4.4.1–4.4.3 imply λ1 ∧ λ2 = 0
2 otherwise.(4.4.5)

4.5. — Continuing with the notation of 4.4, consider, for a first example
in three dimensions, the case g = k2. Then the system of equations 4.4.1–
4.4.3 becomes simply

(4.5.1) λ1 ∧ λ2 = 0 .

Hence every flag representation is nondegenerate and we have

A(k2, 3) = 3 .

4.6. — Again in the notation of 4.4, consider, for a second example in
three dimensions, the case g = n3. Then flag representations with λ1, λ2
linearly independent exist: the natural representation provides an example.
So nondegenerate representations are precisely those for which λ1, λ2 are
linearly independent and A(n3, 3) = 2.

We now consider four dimensional representations (4.7–4.10).
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4.7. — Given a representation r : g→ n4, write

rv =


0 λ1v λ4v λ6v

0 0 λ2v λ5v

0 0 0 λ3v

0 0 0 0


with λi ∈ g∨. In terms of these linear functionals, the equation r[·, ·] =
[r·, r·] becomes:

(4.7.1) λ1[·, ·] = λ2[·, ·] = λ3[·, ·] = 0

and

λ4[·, ·] = λ1 ∧ λ2(4.7.2)
λ5[·, ·] = λ2 ∧ λ3(4.7.3)
λ6[·, ·] = λ1 ∧ λ5 − λ3 ∧ λ4 .(4.7.4)

The representation r is a flag representation if and only if λ1, λ2, λ3 6= 0
(2.10). For r a flag representation, Aut r is the set of matrices of the form

a b1 b4 b6
0 a b2 b5
0 0 a b3
0 0 0 a


subject to the equations

b1λ2 = b2λ1(4.7.5)
b2λ3 = b3λ2(4.7.6)

b1λ5 + b4λ3 = b5λ1 + b3λ4 .(4.7.7)

The possible pairs of numbers (A(g, 3), A(g, 4)) are (2, 2), (2, 3) and (3, 4).
Paragraphs 4.8–4.9 explain why this is and paragraph 4.10 gives examples
of each of these cases.

4.8. — Suppose A(g, 3) = 3, fix a representation r : g→ n4 and suppose
r is nondegenerate. Then according to 4.4.5, in the notation of 4.7, we have

λ1, λ2, λ3 6= 0(4.8.1)
λ4[·, ·] = λ1 ∧ λ2 = 0(4.8.2)
λ5[·, ·] = λ2 ∧ λ3 = 0 .(4.8.3)

Fix elements a, a′ ∈ k such that

aλ1 = λ2(4.8.4)
a′λ1 = λ3 .(4.8.5)
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Combining 4.7.1 and 4.7.4 with 4.8.2–4.8.5 we get the following three equa-
tions:

λ1[·, ·] =0(4.8.6)
(λ5 − a′λ4)[·, ·] =0(4.8.7)
λ1 ∧ (λ5 − a′λ4) =λ6[·, ·] .(4.8.8)

So by 4.4.5 applied with λ5 − a′λ4 in place of λ2 and λ6 in place of λ3, we
have

λ1 ∧ (λ5 − a′λ4) = 0 .(4.8.9)

There is thus an element a′′ ∈ k such that

λ5 = a′′λ1 + a′λ4 .(4.8.10)

In terms of a, a′, a′′ the system of equations 4.7.5–4.7.7 is equivalent to

ab1 =b2(4.8.11)
a′b1 =b3(4.8.12)

a′′b1 + a′b4 =b5 .(4.8.13)

This shows that dimAut r = 4 and hence that A(g, 4) = 4.

4.9. — Now suppose instead that A(g, 3) 6= 3. Fix a nilpotent repre-
sentation r : g → n4, denote its full matrix entries by λ1, . . . , λ6 as in
4.7 and suppose r is nondegenerate. Then according to 4.4.5, the pairs
(λ1, λ2), (λ2, λ3) are both linearly independent, so the system of equations
4.7.5–4.7.7 becomes

b1 = b2 = b3 = 0(4.9.1)
b4λ3 = b5λ1 .(4.9.2)

If λ1, λ3 are linearly dependent then (4.9.2) becomes

(4.9.3) b5 = a′b4

and A(g, 4) = 3. If, on the other hand, λ1, λ3 are linearly independent, then
the system of equations 4.9.1–4.9.2 becomes

(4.9.4) b1 = · · · = b5 = 0

and A(g, 4) = 2.
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4.10. — Here, then, are the promised examples. The 4× 4 upper trian-
gular Lie algebra n4 is of type (2, 2), as witnessed by the natural represen-
tation and its subquotients. The m-dimensional abelian Lie algebra km is
of type (3, 4): indeed, the system 4.7.1–4.7.4 becomes precisely

λ1 ∧ λ2 = 0(4.10.1)
λ2 ∧ λ3 = 0(4.10.2)

and, in terms of a, a′ such that aλ1 = λ2 and a′λ1 = λ3,

(4.10.3) λ1 ∧ (λ5 − a′λ4) = 0 .

Finally, n3 is of type (2, 3); this is not hard to check directly but is better
understood as a consequence of the fact that the width is bounded by the
depth; see [4].

4.11. — Finally, we give an example of a flag representation which has
minimal automorphism group, and a degenerate subquotient. Let F be a
vector space of dimension 2 and let g = n(F ) (1.1). Then

HomLie(g, n4) = HomVect(F, n4) = F∨6 .

Denoting the full coordinates of r by λ1, . . . , λ6 as in 4.7, suppose λ1, λ2 are
linearly independent and λ2, λ3 are linearly dependent but nonzero. Then
dimAut r1 = 3 is not minimal; but λ1, λ3 are linearly independent and
equations 4.7.5–4.7.7 show that dimAut r = 2 is minimal. This example
shows that the recursive aspect of the definition of nondegeneracy is not
redundant.

5. Parameter spaces

We continue to work with a finitely generated Lie algebra g over a field k.

5.1. — Fix an affine k-scheme T = SpecA, a vector sheaf E with module
of global sections E, and a full flag by vector subsheaves Fil. We denote by
HomMod(oT )(gT , nFil(E)) (or by HomVect(k)(g, nFil(E)) when T = Spec k)
the functor Aff(A)→ Set sending

(f : T ′ → T ) 7→ HomMod(OT ′ )(f
∗g, f∗nFil(E))

and we denote by

HomLie(oT )(gT , nFil(E)) = X(A,E,Fil) ⊃ Xfl
(A,E,Fil) ⊃ X

nd
(A,E,Fil)

the successively smaller subfunctors whose points are representations, flag
representations (2.1), and nondegenerate representations (4.1), respectively.
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When A = k,E = kn, and Fil is the standard flag, we write simply
Xn ⊃ Xfl

n ⊃ Xnd
n .

We begin by studying the functors X(A,E,Fil), X
fl
(A,E,Fil) and Xnd

(A,E,Fil)
(5.2–5.18).

Proposition 5.2. — In the situation and the notation of 5.1
(1) the inclusion X(A,E,Fil) ↪→ HomMod(oT )(gT , nFil(E)) is a closed im-

mersion;
(2) the inclusion Xfl

(A,E,Fil) ↪→ X(A,E,Fil) is an open immersion.

Proof. — (1) Preservation of bracket is a closed condition defined by
equations depending on the choice of a basis for g. (2) Let

r(A,E,Fil) : gX(A,E,Fil) → nFil(EX(A,E,Fil))

be the universal family and suppose E has rank n. Then Xfl
(A,E,Fil) is

the open locus defined by the nonvanishing of each κ
r(A,E,Fil)
i,i+1 (2.15), i =

1, . . . , n− 1. �

Corollary 5.3. — The functor Xfl
(A,E,Fil) is representable by a quasi-

projective scheme; in particular, it is locally of finite presentation.

Proposition 5.4. — Let A be a Noetherian k-algebra, (E,Fil) a vector
sheaf of rank n filtered by a full flag of vector subsheavs, let B be an A-
algebra and let B denote the directed system of finite type A-subalgebras
of B. Then the map

lim−→
B′∈B

Xnd
(A,E,Fil)(B′)→ Xnd

(A,E,Fil)(B)

is an isomorphism.

This proposition will be used in a special case in paragraph 5.16 below,
and in full generality only in [4, Proposition 7.1]. The proof follows (5.5–
5.9).

5.5. — For injectivity, given representations r′ : gB′ → nFil(EB′), r′′ :
gB′′ → nFil(EB′′) such that

idB ⊗B′ r′ = idB ⊗B′′ r′′ ,

let B′′′ be the subalgebra generated by B′ and B′′; then

idB′′′ ⊗B′ r′ = idB′′′ ⊗B′′ r′′ .

We turn to surjectivity. Let r : gB → B⊗nFilE = nFilBEB be a nondegen-
erate nilpotent representation. Then by 5.3 there exists a B′ ∈ B and a flag
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representation r′ : gB′ → nFilB′EB′ such that r = idB⊗B′ r′. Assume for an
induction on n that after possibly replacing B′ by a finite type subalgebra
of B containing B′, r′n−1, r

′1 are nondegenerate. Fix a basis v1, . . . , vm for
g and define

Ψ : nFilBEB → (nFilBEB)⊕m

by
φ 7→ ([φ, rv1], . . . , [φ, rvm])

and define Ψ′ similarly for r′ so that writing

0 Qoo (nFilBEB)∨
χ

oo (nFilBEB)⊕m∨Ψ∨oo

0 Q′

α

OO

oo (nFilB′EB′)
∨

χ′
oo

OO

(nFilB′EB′)
⊕m∨

Ψ′∨
oo

OO

σ
''

we have n(r) = VQ, n(r′) = VQ′ (3.8). The B-module Q is flat and of
finite presentation, hence projective, so that χ splits; fix a splitting σ as
in the diagram. Our goal is to show that after possibly replacing B′ by a
finite type B′-subalgebra of B, χ′ splits.

Lemma 5.6. — Disengaging briefly from the notation of the proposition,
let B′ be a Noetherian ring, let B be a B′-algebra, let N ′ be a finite B′-
module, and consider an element n′ ∈ N ′. If 1B ⊗B′ n′ = 0, then there
exists a finite type subalgebra B′′ ⊂ B such that 1B′′ ⊗B′ n′ = 0.

Proof. — Fix a finite family {n′i} of generators for N ′, and write

1B ⊗B′ n′ =
∑
i

bi ⊗B′ n′i

Then by [7, Lemma 6.4], there are elements ai,j ∈ B′ and cj ∈ B such that∑
j

aijcj = bi for all i(5.6.1)

and
∑
i

aijn
′
i = 0 for all j .(5.6.2)

Let B′′ be the subalgebra generated over B′ by the (finitely many) cj . Then
again by [7, Lemma 6.4], 1B′′ ⊗B′ n′ = 0 as claimed. �

Lemma 5.7. — In the notation of 5.6, let Q′ be a finitely presented
B′-module, and let σ be a morphism

Q := B ⊗B′ Q′ → N := B ⊗B′ N ′ .
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Then after possibly replacing B′ by a finite type subalgebra of B there
exists a morphism

σ′ : Q′ → N ′

such that σ = idB ⊗B′ σ′.

Proof. — Fix a finite presentation

F ′1 → F ′0 → Q′ → 0 ,

and drop the primes to denote base-change to B:

0 0

Q′

OO

// Q

OO

��???

N ′ // N

F ′0

OO

//

??

F0

OO

F ′1

OO

// F1

OO

B′ // B

Since F ′0 is free and finite, after possibly replacing B′ by a finite type
subalgebra of B, there is a map β′ : F ′0 → N ′ commuting with σε as in the
diagram. Now

(F ′1 → F ′0 → N ′ → N) = 0 ,

so by 5.6, after possibly replacing B′ by a finite type subalgebra of B,

(F ′1,→ F ′0 → N ′) = 0 .

Subsequently, β′ factors through Q′ to produce the desired morphism. �

5.8. — Returning to the situation of the proposition, after possibly re-
placing B′ by a finite type subalgebra of B containing B′, we obtain a
candidate σ′ : Q′ → (nFilB′EB′)

∨ for our desired splitting. Now since

(Q′ → (nFilB′EB′)
∨ → Q′ → Q)− (q′ 7→ 1B ⊗ q′) = 0
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and since Q′ is of finite type, by 5.6, after possibly replacing B′ by a finite
type subalgebra of B containing B′, we have χ′σ′ = idQ′ , giving us our
desired splitting.

5.9. — Finally, we have that Aut r′ is flat, and also that dim(Aut r′(t)) =
dimQ′(t) + 1 is locally constant on T ′ = SpecB′. Since the image of T ′ ←
T is dense, it follows that dim(Aut r′(t)) = A(g, n) for all t ∈ T ′ which
completes the proof.

Proposition 5.10. — The inclusion Xnd
n ↪→ Xfl

n is an immersion. In
particular, Xnd

n is representable by a quasi-projective scheme.

The proof follows in paragraphs 5.12–5.16. We begin by recalling the
theory of Fitting ideals.

5.11. — Let A be a Noetherian ring, F a finite module, and

Ar
φ−→ As → F → 0

a free presentation. Fix an integer 0 6 i 6 r. Then by [7, Corollary-
Definition 20.4], the ideal Fitti(F ) generated by determinants of all (r −
i)×(r−i) minors of φ is independent of the choice of presentation. Speaking
geometrically, when X = SpecA, we call

Xi := Z(Fitti(F )) \ Z(Fitti+1(F ))

the ith Fitting locus of F . According to Corollary 20.5 of [7], formation of
Xi is compatible with base change. Moreover, when A is a field, dimF = i

if and only if Xi = X.

Proposition 5.12. — Let X be a Noetherian scheme and F a coherent
sheaf. Then X admits a flattening stratification for F . We recall that this
means that there exists a stratification

s :
∐
i

Xi → X

of X by immersed subschemes such that given a morphism

g : T = SpecB → X ,

(i) if B is a field, then g factors through Xi if and only if

dim g∗F = i ,

and
(ii) if B is Noetherian, then g factors through s if and only if s∗F is

flat.
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Proof. — Since formation of the hypothetical stratification is compatible
with base change, we may assume X = SpecA to be affine. Write F :=
Γ(X,F) for the associated A-module, and let Xi be the ith Fitting locus
of F (5.11). Fix a T = SpecB-valued point g as in the theorem, and let Ti
denote the ith Fitting locus of B ⊗k F .
(i) Suppose B is a field. By 5.11, g factors through Xi if and only if

Ti = T if and only if dimB ⊗k F = i.
(ii) Now suppose only that T is Noetherian. We may assume T is con-

nected. Let si denote the immersion

Xi ↪→ X .

Suppose that g factors through s. Then g factors through si for some i.
Then by compatibility with base-change, Ti = T , so by [7, Proposition
20.8], B ⊗ F is projective, hence flat. Conversely, suppose B ⊗ F is flat.
Since B⊗F is finitely presented, B⊗F is also projective; and since SpecB
is connected, B ⊗ F has constant rank, say i. Then by loc. cit., Ti = T ,
from which it follows that g factors through si, hence through s, which
concludes the proof of (ii). �

5.13. — Assume for an induction on n that for i 6 n, the inclusion
ι : Xnd

i ↪→ Xfl
i is an immersion. Let p1 : Xfl

i → Xfl
i−1 denote the map given

(on points valued in an arbitrary k-scheme) by r 7→ ri−1 (1.5), and let p2
denote the map given by r 7→ r1 (loc. cit.). Assume moreover that the two
composites p1ι, p2ι in the following diagram

Xnd
i

//

�� ��

Xfl
i

p1

��

p2

��

Xnd
i−1

// Xfl
i−1

factor through Xnd
i−1 as shown. Define X ′n+1 by the Cartesian square

X ′n+1 //

��

Xfl
n+1

��

Xnd
n ×Xnd

n−1
Xnd
n

// Xfl
n ×Xfl

n−1
Xfl
n

and let r′n+1 : gX′ → nn+1,X′ be its universal family.

5.14. — Write n(r′n+1) = VQ, combining 3.8 with 0.1 as above. The
Fitting ideals of Q define a flattening stratification X ′n+1 = ∪(X ′n+1)i of
Aut r′n+1. Each (X ′n+1)i ⊂ X ′n+1 is an immersed suscheme; if T = Spec l is a
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field then g : T → X ′n+1 lands in (X ′n+1)i if and only if dim g∗ Aut r′n+1 = i;
and if T is Noetherian, then g : T → X ′n+1 factors through

∐
(X ′n+1)i if

and only if g∗ Aut r′n+1 is flat. We claim that Xnd
n+1 = (X ′n+1)A(g,n+1).

5.15. — Suppose first that T = SpecB is an affine Noetherian k-scheme,
suppose g : T → Xfl

n+1 factors through (X ′n+1)A(g,n+1) and let r be the
corresponding representation over T . Then it is clear that rn, r1 are both
nondegenerate. Thus if t ∈ T then r(t)n and r(t)1 are nondegenerate, and
dimAut r(t) = A(g, n+ 1). Hence r(t) is nondegenerate. Finally, it is clear
that Aut r is flat.
Conversely, suppose r : gT → nn+1,T is nondegenerate (T Noether-

ian) and let g : T → Xfl
n+1 be the corresponding map. It is clear that

g factors through X ′n+1. Flatness of Aut r implies that g factors through∐
i(X ′n+1)i. Finally, the fiberwise condition implies that set-theoretically

g factors though (X ′n+1)A(g,n+1), from which it follows that the previ-
ous (scheme-theoretic) factorization was actually a factorization through
(X ′n+1)A(g,n+1).
5.16. — If T = SpecB is not Noetherian, let B be the system of finite

type subalgebras. Then it follows from 5.4, from 5.15, and finally from
the fact that (X ′n+1)A(g,n+1) is finite type over a field, hence in particular
locally of finite presentation, that

Xnd
n+1(B) = lim−→

B′∈B

Xnd
n+1(B′)

= lim−→
B′∈B

(X ′n+1)A(g,n+1)(B′)

= (X ′n+1)A(g,n+1)(B)

([9, Ch. 3, Prop. 8.14.2.1]). This completes the proof of 5.10.
Remark 5.17. — It follows from the construction that although Xnd ↪→

Xfl may not be an open immersion, it is close to an open immersion in the
sense that it factors as a surjective closed immersion followed by an open
immersion.
Remark 5.18. — Although Proposition 5.4 falls short of stating that

Xnd
n is locally of finite presentation, it follows from the construction of 5.10

that it is locally of finite presentation after all.

6. Review of rigidification

6.1. — Let C be a site, and f : X → C a stack in groupoids. The inertia
stack I may be defined as follows. The object class is the class of all pairs
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(x, α), x an object of X and α an automorphism of x such that f(α) is
the identity automorphism of f(x). Given objects (x, α), (y, β), the set of
morphisms (x, α)→ (y, β) consists of those morphisms γ : x→ y such that
γα = βγ. There is a morphism I → X given by forgetting the automor-
phism. For every object x of X over an object T of C, x∗I = AutX (T )(x)
is the sheaf of automorphisms of x over the identity automorphism of T .
(To make sense of the notation x∗I, we should recall that to an object T
of C there corresponds a stack over C, again denoted by T , and, more-
over, that the 2-Yoneda lemma constructs an equivalence of categories
HOMC(T,X ) = X (T ).)

6.2. — Continuing with the situation and the notation of 6.1, let N ⊂ I
be a normal group substack. This means that for each x ∈ X over T ∈ C,
x∗N is a normal subgroup of AutX (T )(x). Then the rigidification X/N
of X by N may be constructed in two steps as follows. In the first step
we construct a prestack Y. Its object class is the same as that of X . Fix
an arbitrary T ∈ C and x, y ∈ X (T ). Then precomposition of morphisms
x→ y (over the identity of T ) with automorphisms of x (over the identity of
T ) defines a right action of x∗N on the sheaf HomX (T )(x, y) of morphisms
x→ y over the identity of T . We define the set HomY(T )(x, y) of morphisms
x→ y in Y over the identity of T to be the set of global sections of the sheaf
quotient x∗N\HomX (T )(x, y). To define the set HomY(x, y) of morphisms
between an arbitrary pair of objects x ∈ X (T ), y ∈ X (U), we fix a cleavage
of X and a morphism f : T → U , and we declare the set of morphisms
x→ y over f to be HomY(T )(x, f∗y). Composition of morphisms is defined
as follows. Consider three objects x, y, z of X over an object T of C. Then
the composite

HomX (T )(x, y)×HomX (T )(y, z) // HomX (T )(x, z)

��

HomY(T )(x, z)

factors uniquely through HomY(T )(x, y) × HomY(T )(y, z). Taking global
sections gives us our composition law.
For the second step, we define X/N to be the stack associated to Y.

There is a natural map X → X/N which we denote by p.

Proposition 6.3. — Continuing with the situation and the notation of
6.2, let Z be a second stack over C. Given a pair of stacks, we write HOM
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for the category of morphisms. Then the map

HOM(X/N ,Z)→ HOM(X ,Z)

induced by p, is fully faithful and has essential image those morphisms
g : X → Z which satisfy the following condition. Consider an arbitrary
object T of C and an object x of X (T ). Let z denote its image in Z. Then
g induces a map

AutX (T )(x)→ AutZ(T )(z) .
We require that x∗N be contained in its kernel.

Proof. — This amounts to a verification. By [13, Lemme 3.2], the map
under consideration factors through an equivalence of categories

HOM(X/N ,Z)
∼=−→ HOM(Y,Z) .

(Here Y denotes the prestack that intervened in the construction of X/N
above.) So in proving the proposition, we may restrict attention to the map

HOM(Y,Z)→ HOM(X ,Z) .

We begin with the statement concerning the essential image. Let g :
X → Z be a morphism satisfying the stated condition. Then a morphism
h : Y → Z mapping to g is defined as follows. On the level of objects h is
equal to g. Let x1, x2 be objects of X mapping to T ∈ C and to z1, z2 in
Z. Then AutX (T )(x1) acts on HomX (T )(x1, x2), and AutZ(T )(z1) acts on
HomZ(T )(z1, z2), and the map of sheaves

HomX (T )(x1, x2)→ HomZ(T )(z1, z2)

induced by g is equivariant with respect to these actions, hence factors
through the quotient HomY(T )(x1, x2) = x∗1N\HomX (T )(x1, x2).
We now go on to discuss the full faithfulness. Let q denote the projection

X → Y. Given objects g, h of HOM(Y,Z) and a morphism γ : gq → hq,
we are to construct a morphism δ : g → h mapping to γ. To this end we fix
an arbitrary object x of X (T ) and, recalling that X and Y share the same
object class, define δ(x) : g(x)→ h(x) by δ(x) := γ(x). To check naturality,
consider a morphism φ : x1 → x2 in Y over the identity of T . The desired
equality

h(φ)δ(x1) = δ(x2)g(φ)(6.3.1)

of morphisms g(x1)→ h(x2) in Z(T ) may be checked locally on T . So after
possibly replacing T by a covering, we may assume that φ is the image of
a morphism ψ : x1 → x2 in X , whereupon 6.3.1 follows from the naturality
of γ. �
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Corollary 6.4. — In particular, the rigidification of a stack X by its
entire inertia stack

X/I = π0(X )
is canonically isomorphic to the sheaf associated to the functor of isomor-
phism classes of objects of X .

Proof. — In this case, the rigidified stack X/I possesses no nontrivial
automorphisms, hence is equivalent to a sheaf. The theorem then specializes
to the statement that the projection X → X/I is the universal map to a
sheaf, which is the same as the universal mapping property of π0(X ). �

Proposition 6.5. — Continuing with the situation and the notation of
6.2, let T be an object of C, x an object of X , and x̄ its image in X/N (T ).
Then

x̄∗X = Bx∗N
is canonically the classifying stack of x∗N .

Proof. — This too is merely a verification. We regard these as stacks
over the restricted site C|T of objects over T . We let B′x∗N denote the
classifying prestack: its objects are the same as those of C|T , and for t :
T ′ → T an object of C, AutB′x∗N (t) = x′∗N (T ), where x′ denotes the
composite x′ = xt. We set out to construct a morphism

Ψ : B′x∗N → x̄∗X

and to show that Ψ is fully faithful, and, moreover, that every object of
x̄∗N is locally in the essential image. By the universal mapping property of
stackification ([13, Lemme 3.2]), it will then follow that Ψ factors uniquely
through an isomorphism as proposed. For simplicity, we restrict attention
to the morphism

Ψ(T ) : B′x∗N (T )→ x̄∗X (T )
of fibers over T .
An object of x̄∗X (T ) is a pair (y, φ̄), where y is an object of X (T ) and

φ̄ : ȳ → x̄ is an isomorphism in X/N . A morphism (y, φ̄) → (z, ψ̄) in
x̄∗X (T ) is a morphism y → z in X whose image in X/N coincides with
ψ̄−1φ̄. In particular, Autx̄∗X (T )(x, idx̄) = x∗N (T ). So we obtain our hoped-
for morphism, together with its full-faithfulness, by sending the unique ob-
ject of B′x∗N (T ) to (x, idx̄). Finally, consider an object (y, φ̄) of x̄∗X (T ).
In showing that (y, φ̄) is locally in the essential image, we may, after pos-
sibly replacing T by a covering, assume that φ̄ comes from a section φ of
HomX (T )(y, x). An isomorphism (y, φ̄)→ (x, idx̄) is then given by φ. �
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Theorem 6.6. — Let X be an algebraic stack and letN ⊂ I be a closed
group substack of the inertia stack. Suppose that N is flat and locally of
finite presentation over X . Then the rigidification X/N with respect to the
fppf topology is again an algebraic stack. Moreover, X is faithfully flat and
locally of finite presentation over X/N .

Proof. — The first statement is Proposition 1.5.4 of [15]. We note that
the main ideas behind this theorem are contained in work of Artin (c.f.
[1]). As for the second statement, the properties faithfully flat and locally
of finite presentation are local on source and target. It follows from the
construction of the stack associated to a prestack that every object x̄ of
X/N comes locally from an object x of X . So by 6.5, X is locally over
X/N the classifying stack of a group which is itself faithfully flat and
locally of finite presentation. Let G be such a group over a base T . Then
the projection T → BG is an fppf torsor under G, hance faithfully flat and
locally of finite presentation. Hence BG → T is fppf-locally on the source
the identity map of T , hence, in particular, faithfully flat and locally of
finite presentation, which completes the proof. �

Corollary 6.7. — Let X be an algebraic stack and let I denote its
inertia stack. Suppose that I is flat and locally of finite presentation (or,
which is the same, that all automorphism groups in X are flat and locally
of finite presentation). Then the fppf sheaf X := πfppf

0 (X ) associated to X
is an algebraic space. Moreover, the projection X → X is faithfully flat and
locally of finite presentation.

Proof. — This follows from Theorem 6.6 in view of Corollary 6.4. �

7. Moduli spaces

We now apply the construction of §6 to the parameter spaces of §5. We
continue to work with a finitely generated Lie algebra g over a field k, and
we preserve all notations introduced in §5.

Definition 7.1. — We let Mfl
n(g) denote the category fibered in

groupoids over Aff(k) whose objects are flag representations of rank n.
Thus an object is a pair (T, r), with T ∈ Aff(k) and r : gT → End E a
flag representation. A morphism (T ′, r′) → (T, r) is a pair (f, φ) where
f : T ′ → T is a map of affine schemes and φ : f∗r → r′ is an isomorphism
of representations. We letMnd

n (g) denote the fibered subcategory ofMfl
n(g)

whose objects are nondegenerate nilpotent representations. When there is
no risk of confusion we write simplyMfl

n andMnd
n .
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Proposition 7.2. — BothMfl
n(g) andMnd

n (g) are stacks for the fppf
topology.

Proof. — Fix arbitrarily a faithfully flat, locally finitely presented mor-
phism f : T ′ → T of k-schemes. LetMfl

n(f) denote the category of descent
data in Mfl

n relative to f (c.f. [15, 1.2.3]), and let f∗∗ denote the functor
Mfl

n(f) ←Mfl
n(T ) which sends an object over T to its descent datum rel.

f . We are to show that f∗∗ is an equivalence of categories.
To see that f∗∗ is fully faithful, fix arbitrarily flag representations r1 :

gT → End E1, r2 : gT → End E2 over T and a morphism φ′ : r′2 → r′1 over T ′.
Then by descent for quasi-coherent sheaves (c.f. [10, Eposé VIII, Theorem
1.1]), there is one and only one morphism φ : E2 → E1 of modules whose
pullback to T ′ coincides with φ′. We are to verify that φ is equivariant with
the action of g. Fix arbitrarily a v ∈ g. Then the square

E2
r2v //

φ

��

E2
φ

��

E1 r1v
// E1

commutes after pullback to T ′, so, by descent for quasi-coherent sheaves,
the square itself commutes, indeed.
To see that f∗∗ is fully faithful, let s, t : T ′′ ⇒ T ′ denote the structural

projections of the product T ′′ = T ′ ×T T ′, let r′ : gT ′ → End E ′ be a flag
representation over T ′ and let ψ : s∗r′ → t∗r′ be an isomorphism obeying
the cocycle condition. Then (E ′, ψ) is in particular a descent datum for
a quasi coherent sheaf E on T . Equivariance of ψ means that the map
End s∗E ′ → End t∗E ′ given by α 7→ ψαψ−1 fits into a commutative triangle
as follows.

gT ′′

s∗r′

��

t∗r′

&&MMMMMMMMMM

End s∗E ′ // End t∗E ′

Since E ′ is a vector sheaf (hence, in particular, coherent), the commutativity
of this triangle implies that the square

s∗gT ′

��

// t∗gT ′

��

s∗ End E ′
θ

// t∗ End E ′
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commutes. The pair (End E ′, θ) is the descent datum for End E along f .
Thus r′ is a morphism of descent data. Hence, by descent for quasi co-
herent sheaves, r′ comes from a unique homomorphism r : gT → End E .
A straightforward verification shows that r is a flag representation, and,
moreover, that if r′ was nondegenerate, then so is r. �

We recall that Bn denotes the group of invertible upper triangular n×n
matrices.

Proposition 7.3. — Let Bn act on Xfl
n(g) and on Xnd

n (g) by conjuga-
tion. Then (in the notation of 0.6)

[Xfl
n/ZARBn] =Mfl

n(g) and [Xnd
n /ZARBn] =Mnd

n (g) .

Proof. — Recall our notational convention (0.6) by which [Xfl
n/Bn] de-

notes the fibered category whose objects over T are the elements of Xfl
n(T )

and whose morphisms x → y over idT are those elements b of Bn(T ) such
that bx = y. There is an obvious map

[Xfl
n/Bn]→Mfl

n(g) .

Any isomorphism between flag representations of the form r : gT → nnT
belongs to Bn(T ). Indeed, any isomorphism of representations must respect
the associated filtrations (1.5); the filtration associated to a flag represen-
tation of the form gT → nnT is equal to the standard flag; an element of
GLn(T ) which preserves the standard flag is by definition an element of
Bn(T ). This shows that the map is fully faithful. Moreover, a general nonde-
generate nilpotent representation r : gT → End E is of the form gT → nnT ,
hence comes from Xfl

n(g)(T ), after possibly replacing T by a Zariski cover-
ing of T . That is, every object of the target is Zariski locally in the image.
It follows that the map factors through an isomorphism of Zariski stacks
as claimed.
The same argument applies toMnd

n . �

Corollary 7.4. — The stacksMfl
n andMnd

n are algebraic.

Proof. — We could switch to the étale topology, note that Bn is smooth,
and quote well known results ([13, 4.6.1]). Instead, we stick to the fppf
topology, and indicate how this follows from other well known results. By
5.3,Xfl

n is represented by a scheme. DenoteXfl
n byX, and Bn by B for short.

The groupoid (X,B×X, s, t,m, e, i) in Aff(k) ([15, 1.1.18]) associated to the
action of B on X is defined as follows. Recall that s and t are morphisms

B ×X ⇒ X ,
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m is a morphism
(B ×X) ×

s,t
(B ×X)→ B ×X

e is a morphism
B ×X ← X

and i is a morphism
B ×X → B ×X .

We set s(g, x) = x, t(g, x) = gx, m((g, x), (g′, x′)) = (gg′, x′), e(x) = (I, x)
(where I denotes the identity matrix), and i(g, x) = (g−1, gx). Then the
fppf stack quotient [X/fppfB] is equal to the stack associated to (X,B ×
X, s, t,m, e, i) ([15, 1.2.7]) in the fppf topology. By Artin’s theorem on
stacks in the flat topology (quoted in [15, Theorem 1.3.2] and proved in
[1]), the latter is an algebraic stack. On the other hand, by Propositions
7.2 and 7.3,

[X/ZARB] = [X/fppfB]
by which the assertion concerningMfl

n follows.
The assertion concerning Mnd

n follows similarly from Proposition 5.10.
�

Theorem 7.5. — The fppf sheaf πfppf
0 Mnd

n (g) (0.7) associated toMnd
n (g)

is an algebraic space.

Proof. — The automorphism group of a nondegenerate representation is
flat and locally of finite presentation. So this follows from 7.4 by Corollary
6.7. �

Definition 7.6. — We define the moduli space of nondegenerate
nilpotent representations by

Mnd
n (g) := πfppf

0 Mn(g) .

Remark 7.7. — We note that according to Corollary 6.7, the map
Mnd

n →Mnd
n is faithfully flat and locally of finite presentation.

We now discuss the functoriality of our moduli spaces (7.8–7.14).

Remark 7.8. — Let s be a surjection of Lie algebras

f� g

and let r : gT → End E be a representation of g over a k-scheme T . Then
the zero eigenspace of rsT is equal to the zero-eigenspace of r. Since the
functor r 7→ rsT is exact, it follows that rsT is a flag representation if and
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only if r is a flag preresentation. In particular, s gives rise to a fully faithful
morphism of stacks

Mfl
n(g) ↪→Mfl

n(f) .

Proposition 7.9. — Let s be a surjection of Lie algebras

f� g .

Then the morphism
Mfl

n(g) ↪→Mfl
n(f)

induced by s as in 7.8 is a closed immersion.

The proof follows (7.10–7.11).

Lemma 7.10. — Let A be a ring and θ : E → F a morphism of A-
modules with F locally free of finite rank. Then there exists an ideal I(θ)
of A such that for all A-algebras B, θB := idB ⊗ θ = 0 if and only if
I(θ)B = 0.

Proof. — The assertion is local on A, so we may assume F is free. After
possibly precomposing θ with a surjection E′ � E, we may assume E is
free as well. To complete the proof, we fix bases and let I(θ) be the ideal
generated by the corresponding matrix entries of θ. �

7.11. — Completion of proof of 7.9. Let r : fT → End E be a flag rep-
resentation of f over an affine k-scheme T = SpecA. Let i : a → f be the
kernel of s : f � g and let Z be the closed subscheme of T defined by
I(riT ). Then by 7.10, g : T ′ → T factors through Z if and only if g∗r
factors through g. Regarding r as a map T →Mfl

n(f), we have constructed
a cartesian square

Z
� � //

��

T

��

Mfl
n(g) � � //Mfl

n(f)

with Z ↪→ T a closed immersion, which concludes the proof.

Remark 7.12. — Consider again the situation of 7.8 given by a surjection

s : f� g

of Lie algebras and a representation r : gT → End E of g over a k-scheme
T . Then

Aut rsT = Aut r .
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Suppose A(g, i) = A(f, i) for i = 1, . . . , n. Then it follows from 7.8 that r
is nondegenerate if and only if rsT is nondegenerate. In particular, s gives
rise to a fully faithful morphism of stacks

Mnd
n (g) ↪→Mnd

n (f) .

Corollary 7.13. — Continuing with the situation of 7.12, the map

Mnd
n (g) ↪→Mnd

n (f)

is a closed immersion.

Proof. — Indeed, the “if and only if" part of 7.12 implies moreover that
the resulting square

Mfl
n(g) � � //Mfl

n(f)

Mnd
n (g)
?�

OO

� � //Mnd
n (f)
?�

OO

is Cartesian, so this follows from 7.8. �

Corollary 7.14. — Continuing with the situation of 7.12, s gives rise
to a closed immersion

Mnd
n (g) ↪→Mnd

n (f) .

Proof. — The square

Mnd
n (g)

��

� � //Mnd
n (f)

��

Mnd
n (g) � � // Mnd

n (f)

is automatically Cartesian. Since the vertical arrow on the right is fppf
(7.7) and the horizontal arrow at the top is a closed immersion (7.13), the
proposition follows. �

Recall that Bn = Tn n Un is the semidirect product of a torus and a
unipotent group. In studying the quotient ofXnd

n by Bn it will be convenient
to consider the actions of Un on Xnd

n and of Tn on the quotient of Xnd
n by

Un separately. The following variant provides a natural interpretation of
the quotient stack [Xfl

n/ZARUn] in terms of flag representations.

Definition 7.15. — Let T be a k-scheme. A framed flag representa-
tion of g over T is a pair (r, e) where r is a flag representation gT → End E
of g over T and e = (e1, . . . , en) is a basis for grFilrE (1.5) compatible with
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the grading. If r, r′ are framed flag representations, a framed isomor-
phism r → r′ is an isomorphism φ of the underlying flag representations
such that gr(φ) : gr E → gr E ′ is the isomorphism determined by the given
bases. A framed flag representation is nondegenerate, if the underlying
flag representation is nondegenerate.
We letMffl

n (g) denote the fibered category of framed flag representations
and we let Mfnd

n (g) denote the fibered subcategory consisting of framed
nondegenerate nilpotent representations.

Proposition 7.16. — The fibered categoriesMffl
n (g) andMfnd

n (g) obey
fppf descent.

Proof. — We start withMffl
n . This is a straightforward verification using

the fact that Mfl
n is an fppf stack (7.2). Let T be an affine k-scheme, f :

T ′ → T an fppf covering, let T ′′ = T ′×T T ′ and denote by p1, p2 : T ′′ ⇒ T ′

the two projections. Denote byMffl
n (f) the category of descent data relative

to f . We are to show that the functor

f∗∗ :Mffl
n (T )→Mffl

n (f)

is an equivalence. To see that f∗∗ is fully faithful, fix two framed represen-
tations

(r : gT → End(E), er)
and

(s : gT → End(F), es)
over T . Let α denote the induced isomorphism

p∗2f
∗r → p∗1f

∗r ,

β the induced isomorphism

p∗2f
∗s→ p∗1f

∗s ,

and consider a morphism of descent data

φ′ : (f∗r, f∗er, α)→ (f∗s, f∗es, β) ;

that is, a morphism

φ′ : (f∗r, f∗er)→ (f∗s, f∗es)

such that the square

p∗2f
∗r

p∗2φ
′

//

α

��

p∗2f
∗s

β

��

p∗1f
∗r

p∗1φ
′

// p∗1f
∗s
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commutes. Descent for Mfl
n implies that there is a (necessarily unique)

morphism of representations

φ : r → s

such that
f∗φ = φ′ ;

on the other hand
f∗gr φ = gr f∗φ = gr φ′

sends f∗er to f∗es which implies that gr φ sends er to es since restriction
maps along coverings are injective. This establishes the full faithfulness.
To check essential surjectivity, fix a framed flag representation

(r′ : gT ′ → End(E ′), e′)

and a framed isomorphism

α : (p∗2r′, p∗2e′)→ (p∗1r′, p∗1e′)

obeying the cocycle condition. Descent for Mfl
n produces a representation

r : gT → End(E) whose descent data (f∗r, αcan.) relative to f is isomorphic
to (r′, α). Fixing an isomorphism

φ : (r′, α)→ (f∗r, αcan.)

we get a diagram

p∗2gr E ′
p∗2(gr φ)

//

gr α

��

p∗2f
∗gr E

gr αcan.

��

e′i ∈ gr E ′

p∗2

AA���������

p∗1
��<<<<<<<<< gr φ

// f∗gr E 3 (gr φ)(e′i)

p∗2

]]<<<<<<<<<

p∗1
�����������

p∗1gr E ′
p∗1(gr φ)

// p∗1f
∗gr E

in which the (small) square at the front and the two trapezoids at the back
commute. Since

(gr α)(p∗2e′i) = p∗1e
′
i ,

it follows that
(gr αcan.)p∗2(gr φ)(e′i) = p∗1(gr φ)(e′i) ,

hence that {(gr φ)(e′i)} descends to a basis {ei} of gr E making (r, e) into a
framed representation. This shows that (r′, e′, α) is in the essential image
of f∗ and completes the verification.
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Finally, the same argument using the fact that Mnd
n is an fppf stack

shows thatMfnd
n is an fppf stack. �

Proposition 7.17. — Let Un act on Xfl
n(g) and on Xnd

n (g) by conju-
gation. Then

[Xfl
n/ZARUn] =Mffl

n (g) and [Xnd
n /ZARUn] =Mfnd

n (g) .

Proof. — Consider the map

[Xfl
n/Un]→Mffl

n (T )

which sends r : gT → nn,T to

(gT → nn,T ↪→ End O(n)
T , the standard basis of O(n)

T ) .

If r, r′ ∈ Xfl
n(T ), then an isomorphism of representations b : r → r′ is in

Un(T ) if and only if gr b = idO(n)
T

. The same argument applies toMfnd
n . �

Corollary 7.18. — The stacksMffl
n (g) andMfnd

n (g) are algebraic.

Proof. — This is similar to Corollary 7.4. Denote Xfl
n by X, and Un by U

for short. The groupoid (X,U ×X, s, t,m, e, i) in Aff(k) associated to the
action of U onX is defined as in 7.4. Then the fppf stack quotient [X/fppfU ]
is equal to the stack associated to (X,B × X, s, t,m, e, i) ([15, 1.2.7]) in
the fppf topology. By Artin’s theorem on stacks in the flat topology ([15,
Theorem 1.3.2]), the latter is an algebraic stack. On the other hand, by
Propositions 7.16 and 7.17,

[X/ZARU ] = [X/fppfU ]

by which the assertion concerningMffl
n follows.

The assertion concerning Mfnd
n follows similarly from Proposition 5.10.

�

Corollary 7.19. — The fppf-sheaf πfppf
0 Mfnd

n (g) associated toMfnd
n (g)

is an algebraic space.

Proof. — By construction, the inertia stack ofMfnd
n is flat. So this follows

from 7.18 by Corollary 6.7. �

Definition 7.20. — We defineM fnd
n (g), the moduli space of framed

nondegenerate nilpotent representations, by

M fnd
n (g) = πfppf

0 Mfnd
n (g) .

Remark 7.21. — According to Corollary 6.7, the mapMfnd
n →M fnd

n is
faithfully flat and locally of finite presentation.
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Remark 7.22. — Remark 7.8 applies without essential change to show
that a surjection of Lie algebras

s : f� g

gives rise to a fully faithful morphism

Mffl
n (g) ↪→Mffl

n (f)

of stacks, and the proof of 7.9 applies without essential change to show that
this map is in fact a closed immersion.
Suppose, moreover, that for i = 1, . . . , n, A(f, i) = A(g, i). Then para-

graphs 7.12–7.14 apply without essential change to show that s gives rise
to closed immersions

Mfnd
n (g) ↪→Mfnd

n (f)
and

M fnd
n (g) ↪→M fnd

n (f) .

8. Representations of a unipotent group

In this section we put ourselves in the situation indicated by the title of
the paper given by a field k of characteristic zero and a unipotent group G
over k. The problem of moduli of representations of G is equivalent to the
problem studied in the previous sections applied to the case g := LieG.
This is in part a matter of reviewing the classical theory. Statements avail-
able in the literature, however, focus on representations defined over a field.
For our purpose, we need to consider families. It turns out that limiting
our investigation to representations on vector bundles is awkward, since this
excludes the left regular representation. With a bit more work, we obtain
the result we want at the level of arbitrary quasi-coherent representations
(Theorem 8.20), as well as a more aesthetically pleasing proof.

8.1. — For proofs of the following facts (as well as a discussion of the
definition of a unipotent group), we refer the reader to [5, IV §2]. Let UG
denote the category of unipotent groups over k and let NL denote the
category of nilpotent Lie algebras over k. The Lie algebra of a unipotent
group is nilpotent. Thus Lie is a functor UG→ NL. On the other hand, if
g is a nilpotent Lie algebra, its covariant total space may be endowed with
a product structure ? : Vg∨ × Vg∨ → Vg∨ given by the Baker-Campbell-
Hausdorff formula. This makes (Vg∨, ?) into a unipotent group, and defines
a functor H : NL→ UG. Lie and H are quasi-inverse ([5, IV §2 4.5]). In
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particular, there is a natural isomorphism exp : H ◦ Lie→ idUG, which is
called the exponential map.

8.2. — For the remainder of this section, we fix a unipotent group G

over k and we let g denote its Lie algebra. Recall that formation of the Lie
algebra is compatible with flat base-change, so for any k-scheme T , gT fits
into a split short exact sequence of (abstract) groups

1 //Γ(T, gT ) //G(T [ε]) //G(T ) //1 .yy

Here T [ε] denotes specT OT [ε]/(ε2).

We note a few generalities about quasi-coherent representations of a Lie
algebra over a general (affine) base (8.3–8.4).

8.3. — Suppose T = SpecB is an affine scheme, F is a B-module and
r : B ⊗ g → End(F ) is a representation. Then for any B-algebra B′, r
defines a representation r(B′) : B′ ⊗ g → EndB′(B′ ⊗ F ) determined by
the commuting square

B ⊗ g
r=r(B)

//

��

EndB(F )

��

B′ ⊗ g
r(B′)

// EndB′(B′ ⊗ F )

and the requirement that r(B′) be B′-linear. Thus if End(F ) denotes the
functor B′ 7→ EndB′(B′ ⊗ F ), then r extends uniquely to a morphism of
Lie oT -algebras Vg∨T → End(F ), which we denote again by r.

8.4. — Continuing with the situation of 8.3, we remark that any vector
in the 0-eigenspace of r is automatically universally in the 0-eigenspace.
That is, if x ∈ F is such that r(v)(x) = 0 for all v ∈ B ⊗ g then for any B
algebra B′, and any v′ ∈ B′ ⊗ g,

r(B′)(v′)(1⊗ x) = 0 .

Indeed, since g is nilpotent and finitely generated, it is finite dimensional.
Let v1, . . . , vm be a basis and write

v′ =
∑
i

b′i ⊗ vi
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with b′i ∈ B′. Then (identifying B′ ⊗k g with B′ ⊗B B ⊗k g) we have

r(B′)(v′)(1⊗B x) = r(B′)(
∑

b′i ⊗k vi)(1⊗B x)

=
∑

b′ir(B′)(1B′ ⊗B 1B ⊗k vi)(1B′ ⊗B x)

=
∑

b′i ⊗B (r(B)(1B ⊗k vi)(x))

=
∑

b′i ⊗B 0

= 0 .

Definition 8.5. — Let B be a k-algebra and let r : gB → End(F ) be a
representation on a B-module F . Then r is locally nilpotent if Filr (1.5)
is exhaustive (1.8).

Definition 8.6. — Let B be a k-algebra and let F be a B-module. We
denote by AutF the group-valued functor

B′ 7→ AutB′(B′ ⊗ F ) .

A representation ρ of G on F (over T ) is a morphism of group-valued
functors

GT → AutF .
The submodule FGT ⊂ F of invariants is then defined to be the set of
universally fixed elements of F , that is, those x ∈ F such that for any
B-algebra B′ and any u ∈ G(B′),

ρ(B′)(u)(1B′ ⊗B x) = 1B′ ⊗B x .

We associate to ρ a filtration Filρ by submodules F0 ⊂ F1 ⊂ F2 ⊂ · · ·
of F as for a representation of g by setting F0 = 0 and defining Fi+1 to be
the preimage in F of (F/Fi)GT .

Remark 8.7. — Let ρ : GT → AutF be a representation of G on a
quasi-coherent sheaf F over an affine k-scheme T = SpecB with structure
morphism f : SpecB → Spec k. We denote the B-module associated to F
by F as usual. Then we can define an associated representation

f∗ρ : G→ Aut f∗F

of G on f∗F by forgetting the B-linearity of the coaction

F → (B ⊗k A)⊗B F = B ⊗k F .

This defines a functor

f∗ : RepGT → RepG
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from the category of quasi-coherent representations of GT to the category
of quasi-coherent representations of G which is exact and satisfies

f∗(FGT ) = (f∗F)G .

Indeed, both are equal to the kernel of

α− π : F → B ⊗k F

where α is the coaction and π is the projection x 7→ 1B⊗k x. Consequently,

Filρ = Filf∗ρ .

Proposition 8.8. — Let T = SpecB be an affine k-scheme, F a B-
module, ρ : GT → AutF a representation and Filρ = (F0 ⊂ F1 ⊂ · · · ) the
filtration associated to ρ as in 8.6. Then the filtration Filρ is exhaustive.

Proof. — Formation of the associated filtration is compatible with taking
subrepresentations. By [16, II 2.2.2.2], every element of f∗F is contained in
a finite dimensional subrepresentation; by [5, IV 2.5], the filtration associ-
ated to a finite dimensional representation over a field is strictly increasing,
hence exhaustive. �

We recall the definition and a first property of the derivative of a repre-
sentation:

8.9. — Let T = SpecB be an affine k-scheme and let ρ : GT → AutF
be a representation of a unipotent group G on a B-module F . Then Lie(ρ)
is the representation B ⊗ g → End(F ) of g induced by ρ(B) and ρ(B[ε]),
forming a morphism of split short exact sequences of abstract groups as in
the following diagram.

1 // B ⊗ g //

Lie(ρ)
��

G(B[ε]/(ε2) //

ρ(B[ε]/(ε2))
��

G(B) //

ρ(B)
��

1

1 // End(F ) // Aut(B[ε]/(ε2)⊗ F ) // Aut(F ) // 1

uu

aa

Formation of Lie(ρ) is compatible with arbitrary base-change; that is, given
any B-algebra B′, Lie(ρ)(B′) fits into a morphism of split short exact
sequences of abstract groups, as follows.

1 // B′ ⊗ g //

Lie(ρ)(B′)
��

G(B′[ε]/(ε2) //

ρ(B′[ε]/(ε2))
��

G(B′) //

ρ(B′)
��

1

1 // End(B′ ⊗ F ) // Aut(B′[ε]/(ε2)⊗ F ) // Aut(B′ ⊗ F ) // 1

uu

ZZ
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Proposition 8.10. — Let T be an affine k-scheme, ρ : GT → AutF
a quasi-coherent representation of a unipotent group G, r = Lie(ρ) the
associated representation of the Lie algebra g of G. As explained in 8.3, r
extends uniquely to a morphism of Lie-algebra-valued functors

Vg∨T → End(F ) ,

hence corresponds to a point φ of

End(F )(S•g∨T ) = EndS•g∨
T

(S•g∨T ⊗ F ) .

On the other hand,

ρ ◦ exp : Vg∨T → GT → AutF

corresponds to a point

ψ ∈ AutS•g∨
T

(S•g∨T ⊗ F ) .

Then φ is locally nilpotent and

ψ = 1 + φ+ φ2

2 + φ3

3! + · · ·

This is standard when F is a vector sheaf. The present situation re-
quires a more careful argument since the functors AutF and UFilF may
not be representable. The proof follows (8.11–8.14). We avoid any mention
of UFilF .

Lemma 8.11. — Let B be a ring, F a module, n ∈ N. Let Bn =
B[τ ]/τn+1 and Cn = B[ε1, . . . , εn]/(ε21, . . . , ε2n). Then the map

α : AutBn(Bn ⊗ F )→ AutCn(Cn ⊗ F )

induced by
τ 7→ ε1 + · · ·+ εn

is injective.

Proof. — The map Bn → Cn is injective with image the subring of in-
variants for the action of Sn which permutes the variables. The Reynolds
operator ([14, Ch. 1, Definition 1.5]) for this action provides a splitting of
the injection regarded as a map of B-modules. It is thus universally injec-
tive. Now given an automorphism φ of Bn ⊗ F , φ, α(φ) form a commuting
square

Bn ⊗ F

φ

��

� � // Cn ⊗ F

α(φ)
��

Bn ⊗ F � � // Cn ⊗ F
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in which the horizontal maps are injective, from which it follows that φ is
uniquely determined by α(φ). �

8.12. — Let B be a ring containing Q, G = SpecA an algebraic group
over B, and let g denote the Lie algebra of G. We let exp denote the formal
exponential map

g→ G(B[[τ ]])
as defined in [5, II §6 no. 3]. Following [5], we denote exp(v) by eτv and
given a map B[[τ ]] → B′ sending τ 7→ t ∈ B′, we denote the image of eτv
in G(B′) by etv. We recall that exp satisfies the following two properties:

(1) the element eεv of G(B[ε]/(ε2)) determined by the map τ 7→ ε is
also the image of v under

g→ G(B[ε]/(ε2)) ;

and
(2) e(τ+τ ′)v = eτveτ

′v in G(B[[τ, τ ′]]).

Lemma 8.13. — Continuing with the notation and the situation of 8.12,
let ρ : G→ AutF be a quasi-coherent representation over T = SpecB and
r = Lie(ρ) : g→ End(F ) its derivative. Fix a vector v ∈ g and write

φ := r(v) ,

ψ := ρ(B[[τ ]])(eτv) .
Then

ψ =
∑ τ iφi

i! .

Proof. — The map

End(F )→ Aut(B[ε]/(ε2)⊗ F )

defined by
σ 7→ 1 + εσ

is injective with cokernel equal to Aut(F ). Since r is defined by the map of
short exact sequences

0 // g //

r

��

v

G(B[ε]/(ε2)) //

ρ(B[ε]/(ε2))
��

eεv

G(B) //

ρ(B)
��

0

0 // End(F ) //

φ

Aut(B[ε]/(ε2)⊗ F ) //

1 + εφ

Aut(F ) // 0

F

��

� 00

$ ..
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induced by ρ, it follows that

ρ(B[ε]/(ε2))(eεv) = 1 + εφ .

Notation as in 8.11, the map

B[ε]/(ε2)→ Cn defined by ε 7→ εi

gives rise to a commuting square

G(B[ε]/(ε2))

��

//

eεv

Aut(B[ε]/(ε2)⊗ F )

��

1 + εφ

G(Cn) //eεiv Aut(Cn ⊗ F ) 1 + εiφ

W

��

" ..

i





from which it now follows that ρ(Cn)(eεiv) = 1 + εiφ.
Property (2) of exp implies that given nilpotent elements t, t′ in a B-

algebra B′,

e(t+t′)v = etvet
′v .

So the map

τ 7→ ε1 + · · ·+ εn

gives rise to a commuting square

G(B[[τ ]]) //

��

eτv

Aut(B[[τ ]]⊗ F )

��

ψ

G(Cn) //

eε1v · · · eεnv

Aut(Cn ⊗ F )

(1 + ε1φ) · · · (1 + εnφ)

$ ,,
U

��

� //

in which eτv maps to ψ on the upper right and to (1 + ε1φ) · · · (1 + εnφ) on
the lower right as shown. On the other hand, in the notation of 8.11, the
vertical map on the right factors through

Aut(Bn ⊗ F )→ Aut(Cn ⊗ F ) .
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By 8.11, this map is injective. Since in Aut(Cn ⊗ F ),

(1 + ε1φ) · · ·(1 + εnφ)

=
∑
i

(sum of i−fold products of distinct εj ′s)φi

=
∑
i

(ε1 · · · εn)i

i! φi(8.13.1)

this map sends ∑ τ iφi

i! to (1 + ε1φ) · · · (1 + εnφ) .

It follows that ψ maps to
∑ τ iφi

i! in Aut(Bn⊗F ) which concludes the proof
of the lemma. �

8.14. — Returning to the situation of the proposition, let

B′ := B ⊗ S•g∨

and let v ∈ gB′ be the universal section. Then r(B′)(v) = φ as defined in
the proposition. By 8.13,

ρ(B′[[τ ]])(eτv) =
∑ τ iφi

i! .

By [5, IV §2 4.1],
exp : gB′ → G(B′[[τ ]])

factors through G(B′[τ ]). The situation is summarized in the following
diagram.

gB′ //

��

v

End(B′ ⊗ F )
φ

G(B′[τ ]) //

��

Aut(B′[τ ]⊗ F )

��

G(B′[[t]]) //

eτv

Aut(B′[[τ ]]⊗ F )∑ τ iφi

i!

% --
Q

��

� 00

This implies that
∑ τ iφi

i! is in Aut(B′[τ ] ⊗ F ) and in particular that φ is
locally nilpotent. Let exp denote the global exponential map

Vg∨B → GB .
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Then by definition, exp(B′) is the composite below.

gB′ // G(B′[τ ]) // G(B′)
τ � // 1

Finally, ψ, as defined in the proposition, equals ρ(B′)(exp(B′)(v)). So we
consider the commuting square

G(B′[τ ]) //

��

eτv

Aut(B′[τ ]⊗ F )

��

∑ τ iφi

i!

τ

G(B′) //

ev
Aut(B′ ⊗ F )

ψ

1

$ ..

R

��

� 11

d

��

from which it follows that
ψ =

∑ φi

i!
as claimed.

Corollary 8.15. — Let T = SpecB be an affine k-scheme, ρ : GT →
AutF a quasi-coherent representation, r = Lie(ρ). Let FGT denote the
module of invariants of ρ (8.6) and let F 0 denote the 0-eigenspace of r
(1.4). Then

FGT = F 0 .

The proof follows (8.16–8.17).

Lemma 8.16. — Let B be a ring, F a B-module, φ ∈ End(F ) and
suppose φ is locally nilpotent. Let ψ =

∑ φi

i! and let x ∈ F . Then φx = 0
if and only if ψx = x.

Proof. — If φx = 0 then

ψx = x+ φ(x) + φ2(x)
2 + · · ·

= x .

If ψ(x) = x then

φx = (logψ)x
= (log(1 + (ψ − 1)))x

= ((ψ − 1)− (ψ − 1)2

2 + (ψ − 1)3

3 − · · · )x

= 0 .
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�

8.17. — Returning to the proof of the corollary, suppose x ∈ FGT , let
v ∈ B ⊗ g and let u = exp(B)(v) ∈ G(B). Then

ρ(B)(u)(x) = x

and

ρ(B)(u) =
∑ r(v)i

i!
so

r(v)(x) = 0

by the lemma.
Conversely, suppose x ∈ F 0, let B′ be a B-algebra, let u ∈ G(B′) and

let v = log(B′)(u) ∈ B′ ⊗ g. As explained in 8.8, r(B′)(v)(x) = 0. Thus

ρ(B′)(u)(x) =
∑ r(B′)(v)i

i! (x)

= x .

Corollary 8.18. — Let T be an affine k-scheme, ρ : GT → AutF a
quasi-coherent representation, r = Lie(ρ). Then r is locally nilpotent.

Proof. — It follows from the fact that Lie is exact, from 8.8 and from 8.15
that the canonical filtration associated to ρ witnesses the local nilpotence
of r. �

Definition 8.19. — Let REP(G) denote the full stack of quasi-coherent
representations over the category of affine k-schemes. Thus an object is a
triple (T, F, ρ), T = SpecB an affine k-scheme, F a B-module, ρ : GT →
AutF a representation; and a morphism

(T ′, F ′, ρ′)→ (T, F, ρ)

is a pair (f, φ), f a morphism T ′ → T and φ a morphism of representations
f∗ρ→ ρ′.
Let REPnil(g) denote the fibered category of locally nilpotent representa-

tions of g: an object is a triple (T, F, r) with T = SpecB an affine k-scheme,
F a B-module, r : B⊗ g→ End(F ) a locally nilpotent representation; and
a morphism

(T ′, F ′, r′)→ (T, F, r)

is a pair (f, φ), f : T ′ → T a morphism of k-schemes and φ : f∗r → r′ a
morphism of representations.
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Theorem 8.20. — The functor

Lie : REP(G)→ REPnil(g)

sending a representation to its derivative at the identity is an isomorphism
of fibered categories.

The proof is in paragraphs 8.21-8.23.

8.21. — Compatibility with Cartesian morphisms is clear; so it is enough
to fix an affine k-scheme T = SpecB and show that

Lie(T ) : REP(G)(T )→ REPnil(g)(T )

is an isomorphism. We begin by constructing an inverse

Ψ : Ob(REPnil(g)(T ))→ Ob(REP(G)(T ))

to Ob(Lie(T )).
Let Fil be an exhaustive increasing filtration indexed by N on a B-module

F and let nFil(F ) denote the submodule of End(F ) consisting of those
endomorphisms which preserve the filtration and induce 0 on the associated
graded. (Note, however, that if F is not finitely presented, formation of
nFil(F ) may not be compatible with flat base-change; so it is better not to
think of it as a quasi-coherent sheaf.) Given v1, v2 ∈ nFil(F ) and s ∈ N,
all but finitely many terms of v1 ? v2 are in (nFil(F ))(s); hence v1 ? v2 is a
locally finite sum. Moreover,

(8.21.2)
∑ (v1 ? v2)i

i! = (
∑ vi1

i! )(
∑ vi2

i! )

([3, §6.4]).

8.22. — Let r : gT → End(F ) be a locally nilpotent representation on a
B-module F and let T ′ = SpecB′ be an arbitrary affine T -scheme. Then by
8.3, r(T ′) is locally nilpotent. Let Fil(B′) denote the associated filtration
on B′ ⊗ F . There is thus a factorization of r(T ′) as

B′ ⊗ g→ nFil(B′)(B′ ⊗ F ) ⊂ EndB′(B′ ⊗ F ) .

Now given u ∈ G(B′), define

Ψ(r) : GT → AutF

by

Ψ(r)(B′)(u) =
∑
i

(r(B′) log(B′)(u))i

i! .

By 8.21, Ψ(r) is a morphism of group-valued functors. To check that

Lie(T ) ◦Ψ = idOb(REPnil(g)(T ))
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fix a locally nilpotent representation r : gT → End(F ) and consider the
following diagram.

0 //// B ⊗ g //

r

��

v

G(B[ε]/(ε2)) //

Ψ(r)(B[ε])
��

eεv

G(B) //

Ψ(r)(B)
��

0

0 // End(F ) //

r(v)

Aut(B[ε]/(ε2)⊗ F ) //

1 + εr(v)∑ (r(B[ε])(log(B[ε])(eεv))i
i!

Aut(F ) // 0

# --
{

��

M

��
� 11

tt

bb

Our goal being to check that the square on the left commutes, we compute:∑ (r(B[ε])(log(B[ε])(eεv))i

i! =
∑ (εr(B)(v))i

i! = 1 + εr(v) .

To check that
Ψ ◦ Lie(T ) = idOb(REP(G)(T )) ,

fix a representation ρ : GT → AutF , an affine T -scheme T ′ = SpecB′ and
a point u ∈ G(B′). We then have

Ψ(Lie(T )(ρ))(T ′)(u) =
∑ ((Lie ρ)(B′) log(B′)(u))i

i! = ρ(T ′)(u)

by 8.10.

8.23. — Let inv denote the functor which takes a quasi-coherent rep-
resentation of G to its module of invariants (8.6), and let null denote the
functor which takes a locally nilpotent quasi coherent representation (8.5)
of g to its 0-eigenspace (1.4). Let T = SpecB denote an arbitrary affine
k-scheme, as above, and let QCOH(T ) denote the category of B-modules.
Then in the notation of 8.19, Corollary 8.15 states that the triangle of
functors

REP(G)(T )
Lie(T )

//

inv
''NNNNNNNNNNN REPnil(g)(T )

null
wwooooooooooo

QCOH(T )

commutes. We’ve shown that the map of object classes Ob(Lie(T )) admits
an inverse. Finally, note that if one fixes a particular construction of duals
and tensor products inside the category of quasi-coherent sheaves on T , it
makes sense to say that Ob(Lie(T )) respects duals and tensor products.
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This gives us, for each ρ, ρ′, an equality of sets

Hom(ρ, ρ′) = (ρ∨ ⊗ ρ′)GT

= Lie(ρ∨ ⊗ ρ′)0

= ((Lie ρ)∨ ⊗ Lie ρ′)0

= Hom(Lie ρ,Lie ρ′)

compatible with identity elements and composition, hence an isomorphism
of categories as claimed.

9. Glueing of flag representations

The (n + 1)st moduli space Mnd
n+1 is naturally fibered over a certain

closed subscheme M cnd
n of Mnd

n ×p2,Mn−1,p1 M
nd
n . In this section we give a

construction as well as a modular interpretation of M cnd
n .

We work over a field k of characteristic zero and work interchangeably
with representations of a fixed unipotent group G and with nilpotent rep-
resentations of its Lie algebra g.

9.1. — There are two natural maps

p1, p2 :Mfl
n ⇒Mfl

n−1

given by
p1(r) = rn−1 , p2(r) = r1 .

Recall that
Mfl

n ×
p2,Mfl

n−1,p1

Mfl
n

may be described as the stack whose objects are 4-ples (T, r, r′, φ), T an
affine k-scheme, r, r′ flag representations gT → End E , φ an isomorphism
r1 → r′n−1. A morphism

(U, s, s′, χ)→ (T, r, r′, φ)

consists of a morphism f : U → T and isomorphisms f∗r → s, f∗r′ → s′

such that the square

f∗(r1)

f∗φ

��

(f∗r)1 // s1

χ

��

f∗(r′n−1) (f∗r′)n−1 // s′n−1
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commutes. Then there is a natural map

p = (p1, p2) :Mfl
n+1 →Mfl

n ×
Mfl

n−1

Mfl
n

sending r over T to (T, rn, r1, φ) where φ is the canonical isomorphism
(rn)1 → (r1)n−1.

Definition-Proposition 9.2. — In the notation of 9.1, the image of
p is the same in the indiscrete and fppf topologies, and is a closed substack
of Mfl

n ×Mfl
n−1
Mfl

n. Denote it by Mcfl
n . We call an object in the essential

image of p a compatible pair of flag representations.

The proof is in paragraphs 9.3–9.6.

9.3. — Consider first the indiscrete topology in which the image is just
the essential image of the functor. An object (T, r, r′, φ) ofMfl

n×Mfl
n−1
Mfl

n

gives rise to a two step extension

0→ r1 → r → r′ → r′n−1 → 0

hence to a class o(T, r, r′, φ) ∈ Ext2
Rep GT (r′n−1, r1). Then (T, r, r′, φ) is in

the essential image of p if and only if o(T, r, r′, φ) = 0. Indeed, (T, r, r′, φ) is
in the essential image of p if and only if there exists a quasi-coherent (nec-
essarily n+1-dimensional, flag) representation r′′ over T and isomorphisms
α : r → r′′n, β : r′′1 → r′ forming a commuting pentagon:

0

��

0

��
r1

��

r1

��

0 // r
α //

��

r′′ //

β

��

r′n−1 // 0

r1

��

φ

∼

!!CCCCCCCC

0 // r′n−1 // r′ //

��

r′n−1 // 0

0 0
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(by which the rest of the (commutative) diagram is uniquely determined).
The vertical extension on the left gives rise to a long exact sequence

· · · → Ext1(r′n−1, r) π∗−→ Ext1(r′n−1, r1) δ−→ Ext2(r′n−1, r1)→ · · ·

Under π∗ followed by δ the class of

0→ r → r′′ → r′n−1 → 0

goes to
0→ r1 → r′ → r′n−1 → 0

goes to
0→ r1 → r → r′ → r′n−1 → 0 .

Thus (r′′, α, β) as above exists if and only if the class of the two-step ex-
tension is zero.

9.4. — Suppose now that (r, r′, φ) ∈ (Mfl
n×Mfl

n−1
Mfl

n)(T ) is fppf-locally
in the essential image of p. Then there is an fppf map f : U → T such that
f∗(r, r′, φ) is compatible. Hence the class of

0→ (f∗r)1 → f∗r → f∗r′ → (f∗r′)n−1 → 0

in Ext2((f∗r′)n−1, (f∗r)1) is zero. This corresponds to the class of

0→ f∗(r1)→ f∗r → f∗r′ → f∗(r′n−1)→ 0

in Ext2(f∗(r′n−1), f∗(r1)) which is the image of o(r, r′, φ) under

Ext2(f∗(r′n−1), f∗(r1))
∼=←− f∗Ext2(r′n−1, r1)← Ext2(r′n−1, r1) .

It follows that o(r, r′, φ) = 0, hence that (T, r, r′, φ) is in the essential image
of p by 9.3. This shows that the image is the same in the indiscrete and
fppf topologies.

9.5. — Suppose (r, r′, φ) ∈ (Mfl
n ×Mfl

n−1
Mfl

n)(T ) and denote by L′n, L1

the line sheaves corresponding to r′n−1, r1 respectively. We claim that

Ext2(r′n−1, r1) = H2(G, k)⊗ L′∨n ⊗ L1.

Proof. — We denote by inv∗ the functor which takes a quasi-coherent
representation to its sheaf of invariants, and by inv∗ the functor which
endows a quasi-coherent sheaf with the trivial group action. We have

Ext2(r′n−1, r1) = H2(GT , (r′n−1)∨ ⊗ r1)

= R2inv∗inv∗(L′∨n ⊗ L1)
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since both representations are trivial

= R2inv∗(1T )⊗ L′∨n ⊗ L1

by the projection formula (here 1T denotes the trivial representation onOT )

= H2(G, k)⊗ L′∨n ⊗ L1

by compatibility with flat base change. �

9.6. — We continue to work with an arbitrary affine k-scheme T =
SpecB and an object (r, r′, φ) of Mfl

n ×Mfl
n−1
Mfl

n(T ) as above. By 9.5,
Ext2(r′n−1

, r1) is locally free of finite rank. So we can apply 7.10 to the
map of B-modules B → Ext2(r′n−1

, r1) given by 1 7→ o(T, r, r′, φ) to obtain
a closed subscheme Z ⊂ T representing the vanishing locus of o(T, r, r′, φ).
We claim that there is a Cartesian square as follows.

Z

��

//Mcfl
n

��

T //Mfl
n ×
Mfl

n−1

Mfl
n

Indeed, given f : T ′ → T , f∗(r, r′, φ) forms a compatible pair if and only if

0 = o(f∗(r, r′, φ)) = f∗(o(r, r′, φ))

if and only if f factors through Z. We’ve shown that the pullback of our map
Mcfl

n →Mfl
n×Mfl

n−1
Mfl

n along an arbitrary morphism T →Mfl
n×Mfl

n−1
Mfl

n

from an affine k-scheme is a closed immersion. It follows that the former is
itself a closed immersion, which completes the proof of 9.2.

Definition 9.7. — We defineMcnd
n , the stack of compatible pairs

of nondegenerate nilpotent representations of dimension n, by the
Cartesian square below.

Mcnd
n_�

��

�� //Mcfl
n_�

��

Mnd
n ×
Mnd

n−1

Mnd
n

� � //Mfl
n ×
Mfl

n−1

Mfl
n
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We defineM cnd
n , the moduli space of compatible pairs of nondegen-

erate nilpotent representations of dimension n, to be the subfunctor
of Mnd

n ×Mnd
n−1

Mnd
n whose T -valued points are those pairs (r, r′) such that

given any square as follows,

T ′
(s,s′,φ)

//

��

Mnd
n ×
Mnd

n−1

Mnd
n

��

T
(r,r′)

// Mnd
n ×

Mnd
n−1

Mnd
n

(s, s′, φ) is in (the essential image of)Mcnd
n .

Proposition 9.8. — The functor M cnd
n is a closed algebraic subspace

of Mnd
n ×Mnd

n−1
Mnd
n . The natural map Mnd

n+1 → Mnd
n ×Mnd

n−1
Mnd
n factors

through M cnd
n as shown.

Mnd
n+1

��

M cnd
n

� � // Mnd
n ×

Mnd
n−1

Mnd
n

The proof follows (9.9–9.12)

9.9. — The morphism

Mnd
n ×Mnd

n−1
Mnd

n →Mnd
n ×Mnd

n−1
Mnd

n

is represented by Isom(r1, r′n−1). That is, suppose T →Mnd
n ×Mnd

n−1
Mnd

n

corresponds to the pair of representations (r, r′) with r1, r′n−1 fppf-locally
isomorphic and consider the fibered product below.

Y //

��

Mnd
n ×
Mnd

n−1

Mnd
n

��

T //Mnd
n ×

Mnd
n−1

Mnd
n
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Objects of Y are 6-tuples (T ′, f, s, s′, φ, ψ), T ′ a k-scheme, f a map T ′ → T ,
(s, s′, φ) ∈ (Mnd

n ×Mnd
n−1
Mnd

n )(T ′) and ψ an isomorphism f∗(r, r′)→ (s, s′).
Given two objects

a1 = (T ′, f1, s1, s
′
1, φ1, ψ1) , a2 = (T ′, f2, s2, s

′
2, φ2, ψ2)

over T ′, there is exactly one isomorphism a2 → a1 over idT ′ if f1 = f2 and
the induced isomorphism

(s2, s
′
2)→ (s1, s

′
1)

respects φ1, φ2 and no isomorphisms otherwise. Then, on the one hand, Y
is equivalent to the full subcategory consisting of those objects such that

(s, s′) = f∗(r, r′) and φ = idf∗(r,r′) ,

which, on the other hand, is clearly equivalent to IsomT ′(r1, r′n−1).
Since r1, r′n−1 are fppf-locally isomorphic, IsomT ′(r1, r′n−1) is an fppf-

torsor under Aut r1. Hence, in particular, the morphism

Mnd
n ×Mnd

n−1
Mnd

n →Mnd
n ×Mnd

n−1
Mnd

n

is flat and locally of finite presentation.

9.10. — The inertia stack ofMnd
n ×Mnd

n−1
Mnd

n is flat and locally of finite
presentation. Indeed, if (r, r′) ∈ (Mnd

n ×Mnd
n−1
Mnd

n )(T ) then

Aut(r, r′) = Aut r ×T Aut r′

is flat and locally of finite presentation. Moreover,

Mnd
n ×Mnd

n−1
Mnd
n = πfppf

0 (Mnd
n ×

Mnd
n−1

Mnd
n ) .

It follows from Corollary 6.7 that the map

Mnd
n ×Mnd

n−1
Mnd

n →Mnd
n ×Mnd

n−1
Mnd
n

is flat and locally of finite presentation.
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Claim 9.11. — There exists a mapMcnd
n →M cnd

n which forms a Carte-
sian square as follows.

Mcnd
n� _

��

// M cnd
n� _

��

Mnd ×
Mnd

n−1

Mnd
n

// Mnd
n ×

Mnd
n−1

Mnd
n

Proof. — Let Y denote the fibered product below.

Y� _

��

// M cnd
n� _

��

Mnd ×
Mnd

n−1

Mnd
n

// Mnd
n ×

Mnd
n−1

Mnd
n

Y is the full subcategory of Mnd
n ×Mnd

n−1
Mnd

n consisting of those objects
whose image in Mnd

n ×Mnd
n−1

Mnd
n lies in M cnd

n . Thus Mcnd
n ,Y are both

full subcategories, and we claim that they are in fact equal, the inclusion
Y ⊂Mcnd

n being clear.
For the reverse inclusion we are to consider a square

T ′
(s,s′,χ)

//

��

(r,r′,φ)

��<<<<<<<<<<< Mnd
n ×
Mnd

n−1

Mnd
n

��

T //Mcnd
n

//Mnd
n ×
Mnd

n−1

Mnd
n

// Mnd
n ×

Mnd
n−1

Mnd
n

and to show that (s, s′, χ) ∈ Mcnd
n (T ′). After possibly replacing T ′ by an

fppf cover, we may assume s ∼= r, s′ ∼= r′. Fixing isomorphisms as in the
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diagram below,

0

��

0

��
s1

∼= //

��

r1

��
s

∼= //

��

r

��

s1
∼= //

��

r1

��

φ

!!CCCCCCCC

0 // r′n−1

∼=
��

// r′

∼=
��

// r′n−1

∼=
��

// 0

0 // s′n−1 // s′ // s′n−1 // 0

0 0

we claim that (s, s′, s1 → r1 → r′n−1 → s′n−1) is a compatible pair. Indeed,
the square

Ext1(s′n−1, r1)
∼= //

δ

��

Ext1(r′n−1, r1)

δ

��

Ext2(s′n−1, r1) ∼=
// Ext2(r′n−1, r1)

commutes and the arrow at the top sends the class of

0→ r1 → s′ → s′n−1 → 0

to the class of
0→ r1 → r′ → r′n−1 → 0

from which it follows that (r, s′, r1 → r′n−1 → s′n−1) is a compatible pair;
the next step follows similarly from commutativity of the square below.

Ext1(s′n−1, s1)
∼= //

��

Ext1(s′n−1, r1)

��

Ext2(s′n−1, s1) ∼=
// Ext2(s′n−1, r1)
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Finally, s1 → r1 → r′n−1 → s′s−1 differs from χ by an automorphism of
s1 from which it follows that (s, s′, χ) is compatible, again by a similar
argument. �

9.12. — We’ve shown that the inclusion

M cnd
n ↪→Mnd

n ×Mnd
n−1

Mnd
n

is a closed immersion by checking fppf locally on the target. Finally, the
factorization follows from the universal mapping property of the fppf sheaf
associated to a stack.
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