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A REMARK ON CONSTRUIRE UN NOYAU DE LA
FONCTORIALITÉ BY LAFFORGUE

by Hervé JACQUET

Abstract. — Lafforgue has proposed a new approach to the principle of func-
toriality in a test case, namely, the case of automorphic induction from an idele
class character of a quadratic extension. For technical reasons, he considers only the
case of function fields and assumes the data is unramified. In this paper, we show
that his method applies without these restrictions. The ground field is a number
field or a function field and the data may be ramified.
Résumé. — Lafforque a proposé une nouvelle approche du problème de la fonc-

torialité de Langlands. Il traite le cas témoin de l’induction automorphe à partir
d’un caractère des classes d’idèles pour une extension quadratique. Pour des rai-
sons techniques, il se limite au cas des corps de fonctions et suppose les données
non ramifiées. Dans cet article, nous montrons que sa methode s’applique sans res-
triction. Le corps de base est un corps de nombres ou un corps de fonctions et les
données peuvent être ramifiées.

1. Introduction

In [2] Lafforgue proposes a new approach to the problem of establishing
the principle of functoriality. To that end, he investigates a simple case.
In more details, let F be a number field or a function field, E a quadratic
extension of F . We denote by FA the adèle ring of F and by EA the adèle
ring of E. We also denote by F×A the group of idèles of F and by E×A
the group of idèles of E. Let χ be an idèle class character of E. We know
how to associate to χ an irreducible representation π(χ) of GL(2, FA). The
main property of the representation π(χ) is that the standard L−function
attached to π(χ), namely L(s, π(χ)), is equal to the L−function L(s, χ)
attached to the idèle class character χ. The principle of functoriality asserts

Keywords: Functoriality, Weil representation, Converse theorem.
Math. classification: 11F27, 11F66, 11F70, 11R39.



900 Hervé JACQUET

that π(χ) is automorphic. In [2] Lafforgue proves this anew in the simplest
case: F is a function field, E is unramified at all places of F and χ is
unramified at all places of E. In this note, we show that his method applies
to a number field or a function field F , an arbitrary quadratic extension
E and an arbitrary character χ. Our only contribution is to the local
theory. We use the machinery of the local Weil representation to establish
the required properties of the appropriate kernels. Since the definition of
the local Weil representation does not depend on any assumption on the
ramification of the data, we can free ourself from the restriction of [2]; the
local quadratic extensions may be ramified and the character χ may be
ramified. Furthermore, even in the special case studied in [2] where the
data is unramified, our proof is much shorter. As for the global part, we
have nothing new to say. We simply duplicate [2]. Indeed, following [2] step
by step, we construct a family of functions H(t, g) on E×A × GL(2, FA).
They have the following properties:

• For every δ ∈ E×

H(δt, g) = H(t, g);

• For every γ ∈ GL(2, F ),

H(t, γg) = H(t, g);

• For every idèle class character χ of E, the space spanned by the
functions

g 7→
∫
E×A /E

×
d×t χ(t) H(t, g)

is invariant under right translation by GL(2, FA) and the corre-
sponding representation of GL(2, FA) equivalent to π(χ).

More precisely, we let ψ be a non-trivial character of FA/F and define two
families of functions K and K0 on E×A ×GL(2, FA) such that

K

[
t,

(
1 x

0 1

)
g

]
= ψ(x)K(t, g), K0

[
t,

(
1 x

0 1

)
g

]
= K0(t, g),

for all x ∈ FA. In turn, the functions K and K0 are defined as products of
local functions. Then H is defined by the formula

H(t, g) =
∑

δ∈E×,α∈F×
K

[
δt,

(
α 0
0 1

)
g

]
+
∑
α∈F×

K0
[
t,

(
α 0
0 1

)
g

]
.

The invariance of the kernel H under an element δ ∈ E× is an issue but
is not difficult. However, the invariance under an element γ ∈ GL(2, F )
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NOYAU DE LA FONCTORIALITÉ 901

is a serious issue. Indeed, a priori, we have only the following property of
invariance:

H

[
t,

(
α β

0 1

)
g

]
= H(t, g),

for every α ∈ F×, β ∈ F . To conclude we need to prove that

H

[
t,

(
1 0
β α

)
g

]
= H(t, g),

for every every α ∈ F×, β ∈ F . At this point we refer the reader to the
proof of Theorem 1 below. The reader will see that the proof is closely
related to the proof of the automorphy of π(χ) via the converse theorem,
as in [1]. Yet, it is very different. In the converse theorem approach, the
Poisson summation formula for E is used at the outset to establish the
analytic properties of the functions L(s, χ). In the present approach, the
Poisson summation formula is used at the very end.
In addition, in Section 6.1, we relate the above construction to the global

Weil representation. This gives us an opportunity to check that certain
expressions are absolutely convergent, a point which is somewhat glossed
over in [2] — where the ground field is a function field and questions of
convergence are of little concern. In Section 6.2 we conclude by proving
that indeed π(χ) is automorphic. We also give a precise form of the Fourier
expansion of the functions g 7→

∫
E×A /E

× d
×t χ(t) H(t, g).

We hope that the present note will make the novel approach of [2] even
more attractive.

We thank the referee for a very careful reading of the first draft of this
paper and useful suggestions.

2. Notations

We let F be a number field or a function field and E a quadratic extension
of F . For simplicity, we assume that if F is a function field the characteristic
of F is odd. We denote by ι the Galois conjugation of E over F and by
Tr and Nm the norm map and the trace map from E to F . Thus Tr(z) =
z+ ι(z) and Nm(z) = zι(z). We let η be the quadratic idèle class character
of F attached to E.

If x is a place of F we set as usual Ex = E⊗FFx. The Galois conjugation ι
induces a Fx automorphism of Ex that we still denote by ι. We also denote
by Tr and Nm the norm map and the trace map from Ex to Fx. Thus,
again, for z ∈ Ex, Tr(z) = z + ι(z) and Nm(z) = zι(z). If x is split in E

TOME 62 (2012), FASCICULE 3



902 Hervé JACQUET

we choose an isomorphism Ex ' Fx ⊕ Fx. Then if z = (z1, z2), we have
ι(z) = (z2, z1), Tr(z) = z1 + z2, Nm(z) = z1z2.
We choose a non-trivial additive character ψ of FA/F . Then ψ(a) =∏
ψx(ax), where ψx is a non-trivial additive character of Fx. For almost all

finite x, the character ψx is normalized, that is, the largest ideal on which
it is trivial is the ring of integers Ox. Let dy be the Haar measure on Fx
which is self-dual with respect to ψx. We denote by L(s, 1Fx

) the L factor
at the place x (finite or infinite) of the Dedekind zeta function L(s, 1F ) of
the field F . Thus if x is finite and qx is the cardinality of the residual field
of Fx, then L(s, 1Fx) = (1− q−sx )−1. For a ∈ F×x we let |a|x be the absolute
value of a if x is a finite or real place. If x is complex then we set |a|x = aa.
In any case dy

|y|x is a Haar measure on F×x . We then define a Haar measure
on F×x by the formula

d×y = L(1, 1Fx
) dy
|y|x

.

If x is finite and the character ψx is normalized, then the ring of units O×x
has volume 1 for the measure d×y.

We define a character ψE of EA/E by the formula

ψE(z) = ψ(Tr(z)).

The local component of ψE at the place x is the character ψEx of Ex
defined by ψEx

(z) = ψx(Tr(z)). The additive Haar measure dz on Ex is
taken to be self-dual for ψEx

. Thus, if x is split and z = (z1, z2), we have
ψEx

(z) = ψx(z1)ψx(z2), dz = dz1dz2. We denote by L(s, 1Ex
) the L factor

at the place x (finite or infinite) of the Dedekind zeta function L(s, 1E) of
the field E. We define a Haar measure d×z on E×x by the formula

d×z = L(1, 1Ex) dz

|Nm(z)|x
.

If x is finite and Ex is a field, then L(s, 1Ex) = (1 − q−sEx
)−1 where qEx is

the cardinality of the residual field of Ex. If x is split and z = (z1, z2) then
d×z = d×z1d

×z2. We let OEx the ring of integers in Ex. If ψx is normalized
and Ex/Fx unramified then the volume of O×Ex

for d×z is 1. If x is split then
OEx

' OFx
⊕ OFx

and O×Ex
' O×Fx

× O×Fx
. We denote by U1 the unitary

group in one variable, regarded as an algebraic group defined over F . Thus
U1(F ) = {z ∈ E× : Nm(z) = 1} and U1(Fx) = {z ∈ E×x : Nm(z) = 1}. In
particular, if x is split, then U1(Fx) = {(z1, z2) ∈ F×x × F×x : z1z2 = 1}.
Let F+

x be the set of x ∈ F×x of the form z = Nm(h) for some h ∈ E×x . Of
course, if x is split, then F+

x = F×x . We have an exact sequence of locally

ANNALES DE L’INSTITUT FOURIER



NOYAU DE LA FONCTORIALITÉ 903

compact abelian groups

1 −→ U1(Fx) −→ E×x
Nm−→ F+

x −→1.

This defines a Haar measure du on U1(Fx); the quotient of the Haar measure
on E×x by the measure du has for image the restriction to F+

x of the Haar
measure on F×x . In more concrete terms, we have the following integration
formula. Let φ be a continuous function of compact support on E×x . Let φ0
be the function on F×x defined by

φ0(a) =
∫
U1(Fx)

φ(hu)du,

if a = Nm(h), and φ0(a) = 0 if a is not a norm. Note that indeed the right
hand side does not depend on the choice of h. Then

(2.1)
∫
F×x

φ0(a)d×a =
∫
E×x

φ(h)d×h.

If x is split, the measure du is in fact given by the following formula:∫
U1(Fx)

φ(u)du =
∫
F×x

φ(t, t−1)d×t.

We define the Fourier transform Ft(Φ) of a Schwartz-Bruhat function Φ
on Ex by the formula

Ft(Φ)(z) =
∫
Ex

Φ(u)ψEx(uz)du.

Similarly, we define the Fourier transform of a Schwartz-Bruhat function Φ
on EA by the formula

Ft(Φ)(z) =
∫
EA

Φ(u)ψE(uz)du,

where du is the product of the local Haar measures. We have then the
identity (Poisson summation formula)

(2.2)
∑
δ∈E

Φ(δ) =
∑
δ∈E

Ft(Φ)(δ).

Let x be a place of F and χ be a character of E×x of absolute value 1. If x is
a finite place, the local representation π(χ) attached to χ is an admissible
irreducible representation of GL(2, Fx) on some vector space V . If x is
an infinite place, the reader may supplement [1] by the books of Wallach
([3], [4]) for the theory of the topological models of representations and
Whittaker models. If x is an infinite place, then π(χ) is a unitary irreducible
representation of GL(2, Fx) on some Hilbert space H with norm ‖•‖. Then
we let V be the space of C∞ vectors in H. This is the space of vector v

TOME 62 (2012), FASCICULE 3



904 Hervé JACQUET

such that the map g 7→ π(χ)(g)v from GL(2, Fx) to H is C∞. For v ∈ V
and for X in the Lie algebra, or more generally the enveloping algebra Ux
of GL(2, Fx), the vector dπ(χ)(X)v is well defined and in V . We equip V
with the topology defined by the semi-norms

v 7→ ‖dπ(χ)(X)v‖.

The space V is complete for this topology. The representation of GL(2, Fx)
on V is topologically irreducible. It is still noted π(χ). Let Kx be the
standard maximal compact subgroup of GL(2, Fx) (Kx = O(2,R) or Kx =
U(2,R)). Let HKx (resp. VKx) be the space of Kx−finite vectors in H

(resp. V ). Then HKx
= VKx

. The space HKx
is invariant under the action

of Kx and Ux. It is an algebraically irreducible (Ux,Kx)−module which we
also denote by π(χ).
Finally, a Whittaker linear form for π(χ) is a linear form λ 6= 0 on V ,

continuous if x is infinite, and such that

λ

(
π(χ)

(
1 u

0 1

)
v

)
= ψx(u)λ(v),

for all u ∈ Fx and v ∈ V . Such a form exists and is unique, within a scalar
factor. The Whittaker model of π(χ) is the space W(π(χ), ψx) spanned by
the functions

g 7→ λ(π(χ)(g)v)
with v ∈ V . If x is finite the space is invariant under translations and
the representation of GL(2, Fx) on that space is equivalent to π(χ). If
x is infinite we let WKx

(π(χ), ψx) be the space of Kx−finite vectors in
W(π(χ), ψx). This is a (Ux,Kx)−module equivalent to π(χ).

3. x inert

For each place x of F , we construct two families of functions on E×x ×
GL(2, Fx). They will be used to construct the functions K and K0. We
first examine the case where x is inert in E, that is, Ex is a field. Thus we
have a local quadratic extension Ex/Fx, possibly ramified. The Galois
conjugation ι of E/F induces the Galois conjugation ι of Ex/Fx. We some-
times write z for ι(z). Recall we denote by Tr and Nm the trace and the
norm of Ex to Fx. Recall the local character ψEx

is given by the formula
ψEx(z) = ψx(Tr(z)). If ψx is normalized and Ex/Fx is unramified, then
ψEx

is normalized. The local component ηx of η is the quadratic character
of F×x associated with Ex/Fx.

ANNALES DE L’INSTITUT FOURIER
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3.1. Review of the Weil representation

We first recall the definition of the Weil constant λ(Ex/Fx, ψx). It is
defined by the following identity: for all Φ ∈ S(Ex), the space of Schwartz-
Bruhat functions on Ex,∫

Ex

Ft(Φ)(z)ψEx(Nm(z))dz = λ(Ex/Fx, ψx)
∫
Ex

Φ(x)ψEx(−Nm(z))dz.

Then the Weil representation r of SL(2, Fx) on the space S(Ex) is defined
by the following conditions:

•
[
r

(
α 0
0 α−1

)
Φ
]

(z) = ηx(α)|α|xΦ(αz);

•
[
r

(
1 u

0 1

)
Φ
]

(z) = ψx(uNm(z))Φ(z);

•
[
r

(
0 1
−1 0

)
Φ
]

(z) = λ(Ex/Fx, ψx) Ft(Φ)(ι(z)).

The constant λ(Ex/Fx, ψx) is 1 if Ex/Fx is unramified and ψx is normal-
ized; in general, if x is finite, it can be computed in terms of a Gauss sum.
We refer the reader to the original article of Weil ([5]). [1] is also a conve-
nient reference. We have also a linear representation ρ of U1(Fx) on S(Ex)
defined by

(ρ(u)Φ)(z) = Φ(uz).
The representation r and the representation ρ commute to one another.
We fix a character χ of E×x of absolute value 1 and let S(χ) be the space

of Φ ∈ S(Ex) such that

Φ(zh)χ(h) = Φ(z),

for all z ∈ Ex and all h ∈ U1(Fx). The space S(χ) is invariant under
the representation r. Let GL(2, Fx)+, or simply G+, be the subgroup of
g ∈ GL(2, Fx) such that det g is a norm of the quadratic extension Ex/Fx.
The representation r on S(χ) extends to a representation rχ of G+ on the
same space such that(

rχ

(
a 0
0 1

)
Φ
)

(z) = |Nm(h)|1/2x χ(h)Φ(zh),

if a = Nm(h). Because Φ is in S(χ) the right hand side does not depend
on the choice of h, so the left hand side is well defined.
Suppose first x is a finite place. Then the representation rχ is admis-

sible and (algebraically) irreducible. It induces a representation π(χ) of
GL(2, Fx) which is admissible and (algebraically) irreducible.

TOME 62 (2012), FASCICULE 3



906 Hervé JACQUET

Now suppose x is real. The above formulas define a continuous repre-
sentation r of SL(2, Fx) on the topological vector space S(Ex). Moreover,
each Φ ∈ S(Ex) is a C∞ vector in the sense that the map

g 7→ r(g)Φ

from SL(2, Fx) to S(Ex) is C∞. We can also use the same formulas to define
a unitary representation (still noted r) on the Hilbert space L2(Ex, du). Let
V be the space of C∞ vectors for this representation. This is the space of
functions Φ ∈ L2 such that the map

g 7→ r(g)Φ

from SL(2, Fx) to L2 is C∞. Since the inclusion of S(Ex) into L2 is con-
tinuous we have V ⊃ S(Ex). We claim that in fact V = S(Ex). Indeed,
consider the following element of the Lie algebra

X+ =
(

0 1
0 0

)
.

If Φ is in V then the function dr(X+)Φ is well defined and in V . Now
dr(X+)Φ(z) = czzΦ(z) for a suitable constant c. Thus V is stable under
multiplication by the function z 7→ zz. On the other hand, if Φ is in V then
the function z 7→ Ft(Φ)(z) is in V . It follows that V is stable under the
differential operator ∂2

∂z∂z . From these properties, it follows that V = S(Ex).
Moreover, the topology defined by the semi-norms

Φ 7→ ‖dr(X)Φ‖2,

where X ∈ Ux, is equivalent to the Schwartz topology.
We consider the space L2(χ) of (classes of) functions Φ ∈ L2(Ex, du)

such that Φ(zh)χ(h) = Φ(z) for all z ∈ Ex and all h ∈ U1(Fx). It is in-
variant under the representation r. The above formulas define a continuous
unitary representation rχ of G+ on the Hilbert space L2(χ). The space of
C∞ vectors for this representation is the closed subspace S(χ) of S(Ex).
The unitary representation rχ of G+ on L2(χ) is topologically irreducible.
Therefore, the representation rχ of G+ on S(χ) is topologically irreducible.
We let π(χ) be the unitary representation of GL2(Fx) induced by rχ in the
unitary sense. It is topologically irreducible. Finally, the representation of
GL(2, Fx) induced by the representation of G+ on S(χ) is the space of C∞
vectors for the unitary representation π(χ).
We now construct the Whittaker model of π(χ). We consider the linear

form Φ 7→ Φ(1) on S(χ) (or S(Ex)). If x is a real place, it is continuous. In

ANNALES DE L’INSTITUT FOURIER
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any case, it has the following invariance property: for every y ∈ Fx,(
r

(
1 y

0 1

)
Φ
)

(1) = ψx(y)Φ(1).

For Φ ∈ S(Ex) we define a function WΦ,χ on G+ by

(3.1) WΦ,χ(g) = (rχ(g)Φχ) (1),

where Φχ is the function in S(χ) defined by

(3.2) Φχ(z) =
∫
U1(Fx)

Φ(zu)χ(u)du.

We choose τ ∈ F×x which is not a norm. Then

GL(2, Fx) = G+ ∪G+
(
τ 0
0 1

)
.

We extend WΦ,χ to GL(2, Fx) by demanding it be 0 on G+ ( τ 0
0 1 ). The

Whittaker model W(π(χ), ψx) of π(χ) is then the space spanned by the
functions

g 7→WΦ1,χ(g) +WΦ2,χ

[
g

(
τ 0
0 1

)]
,

with Φ1,Φ2 ∈ S(Ex). We note that, for g ∈ SL(2, Fx),

r(g)(Φχ) = (r(g)Φ)χ.

In particular, we have(
r

(
0 1
−1 0

)
Φχ
)

(z) = λ(Ex/Fx, ψx)
∫
U1(Fx)

duχ(u) Ft(Φ)(ι(zu)).

We also summarize the formula defining the Whittaker function WΦ,χ as
follows: if det g = 1 and a = Nm(h) then

(3.3) WΦ,χ

[(
a 0
0 1

)
g

]
= |Nm(h)|1/2x

∫
U1(Fx)

(r(g)Φ)(hu)χ(hu)du;

if det g = 1 and a is not a norm, then

WΦ,χ

[(
a 0
0 1

)
g

]
= 0.

TOME 62 (2012), FASCICULE 3
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3.2. Construction of a kernel

We denote by Ê×x the dual group of E×x , that is, the group of characters
of E×x of absolute 1, endowed with the topology of uniform convergence on
compact sets. It is a locally compact abelian group and we let dχ be the
Haar measure on Ê×x dual to the Haar measure d×z on E×x . We let C

(
Ê×x
)

be the space of functions P on Ê×x which are of the form

P (χ) =
∫
E×x

χ−1(u)φ(u)d×u,

where φ is a function of compact support on E×x , locally constant if x is
finite and C∞ if x is infinite. Thus the Fourier transform of P , that is, the
function P̃ on E×x defined by

(3.4) P̃ (t) =
∫
Ê×x

P (χ)χ(t)dχ,

is equal to φ. For instance, if x is finite, ψx is normalized, Ex/Fx is unram-
ified and we take for φ the characteristic function of O×Ex

, then P is the
characteristic function of the set of unramified characters.
Let Φ ∈ S(E). We define a function Kx,P,Φ on E×x ×GL(2, Fx) as follows:

(3.5) Kx,P,Φ(t, g) =
∫
Ê×x

dχ · P (χ) · χ−1(t) ·WΦ,χ(g).

It follows from the definitions that, for det g0 = 1 and t0 ∈ E×x , we have

Kx,P,Φ(tt0, gg0) = Kx,P0,Φ0(t, g),

where P0(χ) = P (χ)χ−1(t0) and Φ0 = r(g0)Φ. By construction, for every
character χ, the function∫

E×x

d×t · χ(t) ·Kx,P,Φ(t, g) = P (χ)WΦ,χ(g)

belongs to the Whittaker model W(π(χ), ψx) of the representation π(χ).
It is supported on G+.

We give another formula for the function Kx,P,Φ. Assume a = Nm(h).
Then

Kx,P,Φ

[
t,

(
a 0
0 1

)]
= |Nm(h)|1/2x

∫
E×x

dχ P (χ)χ(t−1)
∫
U1(Fx)

χ(hu)Φ(hu)du.

ANNALES DE L’INSTITUT FOURIER
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Exchanging the order of integration, we get

= |Nm(h)|1/2x

∫
U1(Fx)

Φ(hu)du
∫
E×x

dχ P (χ)χ(hut−1)

= |Nm(h)|1/2x

∫
U1(Fx)

P̃ (hut−1)Φ(hu)du.

We now have the required formula. If a = Nm(h) and det g = 1 then

(3.6) Kx,P,Φ

[
t,

(
a 0
0 1

)
g

]
= |Nm(h)|1/2x

∫
U1(Fx)

P̃ (hut−1)(r(g)Φ)(hu)du;

on the other hand, the left hand side vanishes if det g = 1 and a is not a
norm.
We also need a formula for

Kx,P,Φ

[
t−1,

(
0 1
1 0

)(
−a 0
0 1

)]
.

We have (
0 1
1 0

)(
−a 0
0 1

)
=
(
a 0
0 1

)(
a−1 0
0 a

)(
0 1
−1 0

)
.

Thus

Kx,P,Φ

[
t−1,

(
0 1
1 0

)(
−a 0
0 1

)
g

]
= Kx,P,Φa

[
t−1,

(
a 0
0 1

)]
where we have set

Φa = r

(
a−1 0
0 a

)
r

(
0 1
−1 0

)
Φ.

Explicitly,

Φa(z) = λ(Ex/Fx, ψx)|a|−1
x ηx(a) Ft(Φ)(a−1ι(z)).

Thus for a = Nm(h) and u ∈ U1(Fx), we find

Φa(hu) = λ(Ex/Fx, ψx)|Nm(h)|−1
x Ft(Φ)(h−1u−1).

Hence, for a = Nm(h), we have

Kx,P,Φa

[
t−1,

(
a 0
0 1

)]
= λ(Ex/Fx, ψx)|Nm(h)|−1/2

x

∫
Ê×x

dχP (χ)χ(t)

×
∫
U1(Fx)

Ft(Φ)(h−1u−1)χ(hu)du.
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Exchanging the order of integration, we find

= λ(Ex/Fx, ψx)|Nm(h)|−1/2
x

×
∫
U1(Fx)

Ft(Φ)(h−1u−1)du
∫
Ê×x

dχP (χ)χ(thu)

= λ(Ex/Fx, ψx)|Nm(h)|−1/2
x

×
∫
U1(Fx)

Ft(Φ)(h−1u−1)P̃ (hut)du.

We now have the required formula. If a = Nm(h), then

(3.7) Kx,P,Φ

[
t−1,

(
0 1
1 0

)(
−a 0
0 1

)]
= λ(Ex/Fx, ψx)|Nm(h)|−1/2

x

∫
U1(Fx)

Ft(Φ)(h−1u−1)P̃ (hut)du;

on the other hand, if a is not a norm then the left hand side vanishes.
The key property of the kernel is given in the following Proposition.
Proposition 3.1. — Let ω be a character of F×x of absolute value 1.

Let g ∈ GL(2, Fx).
(i) The function

Ψ1(t) = ω−1(Nm(t))|Nm(t)|−1/2
x

∫
F×x

Kx,P,Φ

[
t,

(
a 0
0 1

)
g

]
ω(a)d×a,

defined a priori on E×x , extends by continuity to a Schwartz-Bruhat
function on Ex.

(ii) Similarly, the function

Ψ2(t) = ω(Nm(t))|Nm(t)|−1/2
x

×
∫
F×x

Kx,P,Φ

[
t−1,

(
0 1
1 0

)(
a 0
0 1

)
g

]
ω(a)d×a,

defined a priori on E×x , extends by continuity to a Schwartz-Bruhat
function on Ex.

(iii) Still denoting by Ψ1 and Ψ2 the extensions, we have

ω(−1)λ(Ex/Fx, ψx) Ft(Ψ1) = Ψ2.

(iv) Assume x is finite, the extension Ex/Fx unramified, the charac-
ter ψx normalized and the character ω unramified. Assume further
that P is the characteristic function of the set of unramified charac-
ters and Φ is the characteristic function of OEx

. Then ω(−1) = 1,
λ(Ex/Fx, ψx) = 1 and Ψ1 = Ψ2 = Φ.
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Remark. — The factor ω(−1) does not appear in [2] because, in the
kernel defining the function Ψ2, the character ψx is replaced by the char-
acter ψ−1

x . Here we use the same character for the kernels defining the
functions Ψ1 and Ψ2. The factor λ(Ex/Fx, ψx) does appear in [2]; however,
because the extension Ex/Fx is assumed to be unramified, the factor takes
the value ±1.

Proof. — First we observe that we can write

g =
(

det g 0
0 1

)
g0

with det g0 = 1. Making the change of variables a 7→ a det g−1 in the two
integrals of the Proposition, we see that it suffices to prove the Proposition
with g replaced by g0. We may even replace g0 by 1, at the cost of replacing
Φ by r(g0)Φ. So from now on we take g = 1.
Now we prove assertion (i) of the Proposition. We have, if a = Nm(h),

Kx,P,Φ

[
t,

(
a 0
0 1

)]
= |Nm(h)|1/2x

∫
U1(Fx)

P̃ (hut−1)Φ(hu)du.

On the other hand, the left hand side vanishes if a is not a norm. Applying
our integration formula (2.1) we find

Ψ1(t) = ω(Nm(t))−1|Nm(t)|−1/2
x

×
∫
E×x

|Nm(h)|1/2x ω(Nm(h))P̃ (ht−1)Φ(h)d×h.

After changing h to ht we arrive at

(3.8) Ψ1(t) =
∫
E×x

d×h |Nm(h)|1/2x ω(Nm(h))P̃ (h)Φ(ht).

Since P̃ is a smooth function of compact support on E×x , the function

t 7→
∫
E×x

d×h |Nm(h)|1/2x ω(Nm(h))P̃ (h)Φ(ht)

is a Schwartz-Bruhat function equal to Ψ1(t) for t 6= 0 and assertion (i)
follows. If we note again by Ψ1 the continuous extension of Ψ1 to Ex we
have

(3.9) Ψ1(0) = Φ(0)
∫
E×x

d×h |Nm(h)|1/2x ω(Nm(h))P̃ (h).
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Now we prove assertion (ii). Changing a to −a in the formula defining
Ψ2 we find

Ψ2(t) = ω(−1)ω(Nm(t))|Nm(t)|−1/2
x

×
∫
F×x

Kx,P,Φ

[
t−1,

(
0 1
1 0

)(
−a 0
0 1

)]
ω(a)d×a.

Now, if a = Nm(h) then

Kx,P,Φ

[
t−1,

(
0 1
1 0

)(
−a 0
0 1

)]
= λ(Ex/Fx, ψx)|Nm(h)|−1/2

x

∫
U1(Fx)

Ft(Φ)(h−1u−1)P̃ (hut)du.

On the other hand, if a is not a norm then the left hand side vanishes.
Applying once more our integration formula (2.1) we find

Ψ2(t) = ω(−1)λ(Ex/Fx, ψx)ω(Nm(t))|Nm(t)|−1/2
x

×
∫
E×x

|Nm(h)|−1/2
x ω(Nm(h))P̃ (ht) Ft(Φ)(h−1)d×h.

Changing h to ht−1 we arrive at

(3.10) Ψ2(t) = ω(−1)λ(Ex/Fx, ψx)

×
∫
E×x

d×h|Nm(h)|−1/2
x ω(Nm(h))P̃ (h) Ft(Φ)(h−1t).

Again, it is clear that Ψ2 extends by continuity to Ex. The resulting func-
tion still noted Ψ2 is a Schwartz-Bruhat function whose value at 0 is

(3.11) Ψ2(0) = ω(−1)λ(Ex/Fx, ψx) Ft(Φ)(0)

×
∫
E×x

d×h|Nm(h)|−1/2
x ω(Nm(h))P̃ (h).

For (iii), we observe that for h ∈ E×x , the Fourier transform of the func-
tion

z 7→ Φ(hz)|Nm(h)|1/2x

is the function
z 7→ Ft(Φ)(h−1z)|Nm(h)|−1/2

x

and our assertion follows.
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We pass to assertion (iv). Under the given assumptions we have
ω(−1) = 1, λ(Ex/Fx, ψx) = 1 and Ft(Φ) = Φ. Moreover, P̃ is the charac-
teristic function of O×Ex

and the measure of O×Ex
is 1. Our assertion follows

from the formulas for Ψ1 and Ψ2. �

3.3. Complementary kernel

We denote by U1(Fx)⊥ the set of characters χ of E×x of absolute value
1 which are trivial on U1(Fx). Thus we may identify U1(Fx)⊥ to the dual
of the quotient group E×x /U1(Fx) and give to it the Haar measure dν dual
to the quotient Haar measure on E×x /U1(Fx). We have then the Poisson
summation formula∫

U1(Fx)⊥
P (ν)dν =

∫
U1(Fx)

P̃ (u)du,

and the more general formula

(3.12)
∫
U1(Fx)⊥

P (ν)ν(t)dν =
∫
U1(Fx)

P̃ (tu)du.

Let ν be a character in U1(Fx)⊥. We define a function fΦ,ν on G+ by
the following formula: if a = Nm(h) and det g = 1 then

fΦ,ν

[(
a 0
0 1

)
g

]
= ν(h)|Nm(h)|1/2x (r(g)Φ)(0).

Again, the right hand side does not depend on the choice of h so the left
hand side is well defined. We extend fΦ,ν to GL(2, Fx) by demanding it
be 0 on G+ ( τ 0

0 1 ).
Now we define a function K0

x,P,Φ on E×x ×GL(2, Fx) by the formula

(3.13) K0
x,P,Φ(t, g) =

∫
U1(Fx)⊥

dν · P (ν) · ν−1(t) · fΦ,ν(g).

Note that the function is 0 outside E×x ×G+. Also, if det g0 = 1 and t0 ∈ E×x
then

K0
x,P,Φ(t, gg0) = K0

x,P0,Φ0
(t, g),

where P0(χ) = P (χ)χ−1(t0) and Φ0 = r(g0)Φ.
As before, we need more explicit formulas for K0

x,P,Φ. So assume a =
Nm(h) for some h and det g = 1. Then

K0
x,P,Φ

[
t,

(
a 0
0 1

)
g

]
= (r(g)Φ)(0)|Nm(h)|1/2x

∫
U1(Fx)⊥

dνP (ν)ν(ht−1).
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Applying formula (3.12) we find

= (r(g)Φ)(0)|Nm(h)|1/2x

∫
U1(Fx)

duP̃ (ht−1u).

So we have our formula. If a = Nm(h) and det g = 1 then

(3.14) K0
x,P,Φ

[
t,

(
a 0
0 1

)
g

]
= (r(g)Φ)(0)|Nm(h)|1/2x

∫
U1(Fx)

duP̃ (hut−1);

on the other hand, if det g = 1 and a is not a norm then the left hand side
is 0.
We will also need a formula for

K0
x,P,Φ

[
t−1,

(
0 1
1 0

)(
−a 0
0 1

)]
As for the kernel K this is also

K0
x,P,Φa

[
t−1,

(
a 0
0 1

)]
,

where we have set

Φa = r

(
a−1 0
0 a

)
r

(
0 1
−1 0

)
Φ.

Explicitly,
Φa(0) = λ(Ex/Fx, ψx)|a|−1

x ηx(a) Ft(Φ)(0).
Thus for a = Nm(h) we find

K0
x,P,Φa

[
t−1,

(
a 0
0 1

)]
= λ(Ex/Fx, ψx) Ft(Φ)(0)|Nm(h)|−1/2

x

×
∫
U1(Fx)⊥

dνP (ν)ν(ht).

Applying formula (3.12) we find

= λ(Ex/Fx, ψx) Ft(Φ)(0)|Nm(h)|−1/2
x

×
∫
U1(Fx)

P̃ (htu)du.

We now have the required formula. If a = Nm(h), then

(3.15) K0
x,P,Φ

[
t−1,

(
0 1
1 0

)(
−a 0
0 1

)]
= λ(Ex/Fx, ψx) Ft(Φ)(0)|Nm(h)|−1/2

x

∫
U1(Fx)

P̃ (hut)du;
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on the other hand, if a is not a norm then the left hand side vanishes.
We can now state the key properties of the function K0

x,P,Φ.

Proposition 3.2. — Let ω be a character of F×x of absolute value 1. Let
g ∈ GL(2, Fx). Let Ψ1 and Ψ2 be the functions defined in Proposition 3.1.

(i) The expression

ω(Nm(t))−1|Nm(t)|−1/2
∫
F×x

K0
x,P,Φ

[
t,

(
a 0
0 1

)
g

]
ω(a)d×a

is independent of t and equal to Ψ1(0).

(ii) Similarly, the expression

ω(Nm(t))|Nm(t)|−1/2
∫
F×x

K0
x,P,Φ

[
t−1,

(
0 1
1 0

)(
a 0
0 1

)
g

]
ω(a)d×a

is independent of t and equal to Ψ2(0).

Proof. — As before, it suffices to prove the Proposition when g = 1.
Now, in the integral for part (i), the integrand is 0 unless a is a norm.

So assume a = Nm(h) for some h. Then

K0
x,P,Φ

[
t,

(
a 0
0 1

)]
= Φ(0)|Nm(h)|1/2x

∫
U1(Fx)

duP̃ (hut−1).

The expression for part (i) is thus

ω(Nm(t))−1|Nm(t)|−1/2 × Φ(0)
∫
E×x

P̃ (ht−1)ω(Nm(h))|Nm(h)|1/2x d×h.

Changing h to ht we get

= Φ(0)
∫
E×x

ω(Nm(h))|Nm(h)|1/2x P̃ (h)d×h

= Ψ1(0).

For part (ii), consider the expression

ω(Nm(t))|Nm(t)|−1/2
x

∫
F×x

K0
x,P,Φ

[
t−1,

(
0 1
1 0

)(
a 0
0 1

)]
ω(a)d×a.

Changing a to −a we find

ω(−1)ω(Nm(t))|Nm(t)|−1/2
x

×
∫
F×x

K0
x,P,Φ

[
t−1,

(
0 1
1 0

)(
−a 0
0 1

)]
ω(a)d×a.
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The integrand vanishes unless a = Nm(h) for some h. Then

K0
x,P,Φ

[
t−1,

(
0 1
1 0

)(
−a 0
0 1

)]
= λ(Ex/Fx, ψx) Ft(Φ)(0)|Nm(h)|−1/2

x

∫
U1(Fx)

P̃ (hut)du.

Thus our expression is equal to

ω(−1)λ(Ex/Fx, ψx) Ft(Φ)(0)ω(Nm(t))|Nm(t)|−1/2
x

×
∫
E×x

|Nm(h)|−1/2
x ω(Nm(h))P̃ (ht)d×h.

Changing h to ht−1 we arrive at

= ω(−1)λ(Ex/Fx, ψx) Ft(Φ)(0)

×
∫
E×x

|Nm(h)|−1/2
x ω(Nm(h))P̃ (h)d×h

= Ψ2(0).

�

Remark. — For g ∈ G+ we could also write

fΦ,ν(g) = (rν(g)Φ0) (0)

where Φ0 is the function in S(ν) defined by

Φ0(z) = 1∫
U1(Fx) du

∫
U1(Fx)

Φ(zu)du.

Let U be the space of functions on GL(2, Fx)+ spanned by the functions
fΦ,ν and their translates. It is invariant under right translations. If x is
finite the representation of GL(2, Fx)+ on U is equivalent to πν . If x is
infinite, we have an analogous result for the space of Kx−finite vectors in
U .

Furthermore, we can write ν in the form ν(t) = χ1(Nm(t)) = χ2(Nm(t)),
where χ1 and χ2 are characters of F×x satisfying χ2 = χ1ηx. If g ∈ G+ and
a1a2 is a norm we have

fΦ,ν

[(
a1 x

0 a2

)
g

]
=
(
r

(
a−1

2 0
0 a2

)
rν

(
a1a2 0

0 1

)
rν(g) · Φ0

)
(0)

= η(a2)|a2|−1
x

(
rν

(
a1a2 0

0 1

)
rν(g) · Φ0

)
(0)

= η(a2)|a2|−1
x χ1(a1a2)|a1a2|1/2 (rν(g) · Φ0) (0).
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So, finally,

fΦ,ν

[(
a1 x

0 a2

)
g

]
= χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣1/2
x

fΦ,ν(g),

and fΦ,ν has a unique extension f1
Φ,χ to Gl(2, Fx) satisfying the identity

f1
Φ,ν

[(
a1 x

0 a2

)
g

]
= χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣1/2
x

f1
Φ,ν(g),

for all g, a1, a2, x. It has also a unique extension f2
Φ,ν satisfying the identity

f2
Φ,ν

[(
a1 x

0 a2

)
g

]
= χ2(a1)χ1(a2)

∣∣∣∣a1

a2

∣∣∣∣1/2
x

f2
Φ,ν(g),

for all g, a1, a2, x. Since we extend fΦ,ν by 0 outside G+ we find

(3.16) fΦ,ν =
f1

Φ,ν + f2
Φ,ν

2 .

In the notations of the next section, the function f1
Φ,ν (resp. f2

Φ,ν) belongs
to the space B(χ1, χ2) (resp. B(χ1, χ2) ). Let π(χ1, χ2) (resp. π(χ2, χ1))
be the representation of GL(2, Fx) on B(χ1, χ2) (resp. B(χ1, χ2) ) by right
shifts. The representations π(χ1, χ2) and π(χ2, χ1) are equivalent. If x is
finite it follows from formula (3.16) that they are equivalent to π(ν). If x
is infinite, we have an analogous statement for the spaces of Kx−finite
vectors.

4. x split

Suppose x is split in E. Recall we have chosen an isomorphism Ex '
Fx ⊕ Fx. Moreover, the norm, the trace and the Galois conjugation are
given by Nm(z1, z2) = z1z2, Tr(z1, z2) = z1 + z2 and ι(z1, z2) = (z2, z1),
respectively. The character ψEx

is given by ψEx
(z1, z2) = ψx(z1)ψx(z2).

The self dual Haar measure on Ex is the product of the self-dual measure
on Fx by itself. The Fourier transform of of a function Φ on Ex is thus
given by

Ft(Φ)(z1, z2) =
∫
Fx×Fx

Φ(u1, u2)ψx(u1z1 + u2z2)du1du2.

Finally, OEx
' Ox ⊕Ox.
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4.1. Review of the Weil representation

Let χ be a character of E×x . With our identification Ex ' Fx⊕Fx, we have
χ = (χ1, χ2) where χ1, χ2 are characters of F×. In other words, χ(z1, z2) =
χ1(z1)χ2(z2). Let B(χ1, χ2) be the space of functions f : GL(2, Fx) → C,
invariant under a compact open subgroup if x is finite, C∞ if x is infinite,
such that

f

[(
a1 x

0 a2

)
g

]
= χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣1/2
x

f(g),

for all g, a1, a2, x. If x is infinite the functions in B(χ1, χ2) are determined
by their restrictions to Kx and the topology of B(χ1, χ2) is the topology
induced by the topology of C∞(Kx). The space is invariant by the oper-
ators of right translation and we denote by π(χ1, χ2) the corresponding
representation. Explicitly,

(π(χ1, χ2)(g)f)(h) = f(hg).

The space is irreducible, algebraically if x is finite and topologically if x
is infinite. If x is infinite we can define a unitary representation on the
space (of classes) of functions transforming as above which are square in-
tegrable on Kx. This representation is topologically irreducible and the
topological space of C∞ vectors of this representation is precisely the space
B(χ1, χ2). By definition, the representation π(χ) is equivalent to π(χ1, χ2)
(and π(χ2, χ1)). On the space B(χ1, χ2), there exists a non-zero linear form
λ, continuous if x is infinite, such that

λ

(
π(χ1, χ2)

(
1 u

0 1

)
f

)
= ψx(u)λ(f)

for all u ∈ Fx and all f ∈ B(χ1, χ2). This form is unique within a scalar
factor. Formally, we can define λ by the integral

λ(f) =
∫
Fx

f

[(
0 1
1 0

)(
1 u

0 1

)]
ψ(−u)du.

However, this integral does not converge. It can be given a meaning by
analytic continuation (see [1]). Indeed, for any s ∈ C define χ1,s(z) =
χ1(z)|z|sx and χ2,−s(z) = χ2(z)|z|−sx . We can define the space B(χ1,s, χ2,−s)
and for f ∈ B(χ1,s, χ2,−s) the above integral converges if the real part of s
is > 0. The integral has analytic continuation to the point s = 0. We can
now define the Whittaker model W(π(χ), ψx) as the space of functions W
of the form

W (g) = λ(π(χ)(g)f)
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with f ∈ B(χ1, χ2).
However, we need to describe this space in terms of the Weil representa-

tion. The constant λ(Ex/Fx, ψx) is 1, that is, we have the identity∫
Ex

Ft(Φ)(z)ψEx(Nm(z))dz =
∫
Ex

Φ(x)ψEx(−Nm(z))dz,

for every Φ ∈ S(Ex), the space of Schwartz-Bruhat functions on Ex. The
Weil representation r of SL(2, Fx) on S(Ex) is defined by the same formulas
as in the inert case. Of course here ηx = 1. Explicitly, we have

•
[
r

(
α 0
0 α−1

)
Φ
]

(z1, z2) = |α|xΦ(αz1, αz2);

•
[
r

(
1 u

0 1

)
Φ
]

(z1, z2) = ψx(uz1z2)Φ(z1, z2);

•
[
r

(
0 1
−1 0

)
Φ
]

(z1, z2) = Ft(Φ)(z2, z1).

Let us denote by ρ(g) the linear action of g ∈ GL(2, Fx) on S(Ex), that is,

(ρ(g)Φ)(z1, z2) = Φ((z1, z2)g).

Let us also denote by Pt the partial Fourier transform defined by

Pt(Φ)(z1, z2) =
∫
Fx

Φ(z1, u)ψx(uz2)du.

Then, for g ∈ SL(2, Fx), we have

Pt(r(g)Φ) = ρ(g) Pt(Φ).

It is convenient to extend the representation r of SL(2, Fx) to a represen-
tation rχ1 of GL(2, Fx) on the same space by the condition

rχ1

(
a 0
0 1

)
Φ = χ1(a)|a|1/2x ρ

(
a 0
0 1

)
Φ

or, more explicitly,

rχ1

(
a 0
0 1

)
Φ(z1, z2) = χ1(a)|a|1/2x Φ(az1, z2).

Then

Pt
(
rχ1

(
a 0
0 1

)
Φ
)

= χ1(a)|a|1/2x ρ

(
a 0
0 1

)
Pt(Φ).

However, the representation π(χ) is not equivalent to rχ1 ; it is equivalent
to a quotient of rχ1 .
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Now let Φ ∈ S(Ex) and set Φ0 = Pt Φ. Then the function f defined by
the convergent integral

f(g) = χ1(g)|det g|1/2x

∫
F×x

Φ0((0, t)g)χ1χ
−1
2 (t)|t|xd×t

is in the space B(χ1, χ2). Any function f ∈ B(χ1, χ2) can be obtained this
way for a suitable Φ0 (or Φ). Computing formally, we get

λ(f) = χ1(−1)
∫
Fx

∫
F×x

Φ0

(
(0, t)

(
0 1
1 0

)(
1 u

0 1

))
× χ1χ

−1
2 (t)|t|xd×tψ(−u)du

= χ1(−1)
∫
Fx

∫
F×x

Φ(t, tu)χ1χ
−1
2 (t)|t|xd×tψ(−u)du

Exchanging the order of integration and changing u to ut−1 we arrive at

= χ1(−1)
∫
F×x

∫
Fx

Φ0(t, u)ψ(−ut−1)duχ1χ
−1
2 (t)d×t.

From Fourier inversion formula we get∫
Fx

Φ0(t, u)ψ(−ut−1)du = Φ(t, t−1).

Thus we have

λ(f) = χ1(−1)
∫
F×x

Φ(t, t−1)χ1χ
−1
2 (t)d×t.

Replacing the linear form λ by the scalar multiple χ1(−1)λ we get

λ(f) =
∫
F×x

Φ(t, t−1)χ1χ
−1
2 (t)d×t.

Thus we can write
λ(f) =

∫
U1(Fx)

Φ(u)χ(u)du.

More generally, for det g = 1 and a ∈ F×, we obtain the following formula:

λ

(
π(χ1, χ2)

(
a 0
0 1

)
π(χ1, χ2)(g)f

)
= χ1(a)|a|1/2x

∫
U1(Fx)

(r(g)Φ) ((a, 1)u)χ(u)du,

where the product (a, 1)u is computed in the algebra Fx ⊕ Fx. Thus we
have now a description of the Whittaker model W(π(χ), ψx) analogous to
the the one for the inert case. We state this as a Lemma. For Φ ∈ S(Ex)
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we define WΦ,χ by the following formula. Let a ∈ F×x and g with det g = 1.
Then

WΦ,χ

[(
a 0
0 1

)
g

]
= χ1(a)|a|1/2x

∫
U1(Fx)

(r(g)Φ) ((a, 1)u)χ(u)du.

We can make the analogy with the inert case complete. Let h be any element
of E×x such that a = Nm(h) and g with det g = 1. Then

(4.1) WΦ,χ

[(
a 0
0 1

)
g

]
= χ(h)|Nm(h)|1/2x

∫
U1(Fx)

(r(g)Φ)(hu)χ(u)du.

Lemma 4.1. — The space W(π(χ), ψx) is the space spanned by the
functions WΦ,χ.

4.2. Construction of a kernel

We let dχ be the Haar measure on Ê×x = F̂×x × F̂×x dual to the measure
d×z. So if we write χ = (χ1, χ2) then dχ = dχ1dχ2. We denote by C

(
Ê×x
)

the space of functions P on Ê×x of the form

P (χ) =
∫
E×x

χ−1(h)φ(h)d×h,

where φ is a function of compact support on E×x , locally constant if x is
finite, C∞ if x is infinite. Thus the function P̃ defined by

(4.2) P̃ (h) =
∫
Ê×x

P (χ)χ(h)dχ

is equal to φ. For instance, if Ex/Fx is unramified, ψx is normalized and
we take for φ the the characteristic function of O×Ex

= O×Fx
×O×Fx

, then P
is the characteristic function of the set of unramified characters, i.e., the
set of characters χ of the form χ = (χ1, χ2) with χ1, χ2 unramified.

Let P ∈ C
(
Ê×x
)
and Φ ∈ S(Ex). We define a function Kx,P,Φ on E×x ×

GL(2, Fx) by the following formula:

(4.3) Kx,P,Φ(t, g) =
∫
Ê×x

dχ · P (χ) · χ(t)−1 ·WΦ,χ(g).

By construction, for every character χ, the function∫
E×x

d×t · χ(t) ·KP,Φ(t, g) = P (χ)WΦ,χ(g)

belongs to the Whittaker model W(π(χ), ψx) of the representation π(χ).
Just as in the inert case, formulas (3.6) and (3.7) give alternate expressions
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for this kernel. Then we have the following Proposition which is the analog
of Proposition 3.1 and is proved in the same way.

Proposition 4.2. — Let ω be a character of F×x of absolute value 1.
Let g ∈ GL(2, Fx).

(i) The function

Ψ1(t) = ω−1(Nm(t))|Nm(t)|−1/2

×
∫
F×x

Kx,P,Φ

[
t,

(
a 0
0 1

)
g

]
]ω(a)d×a

defined a priori on E×x extends by continuity to a Schwartz-Bruhat
function on Ex.

(ii) Similarly, the function

Ψ2(t) = ω(Nm(t))|Nm(t)|−1/2

×
∫
F×x

Kx,P,Φ

[
t−1,

(
0 1
1 0

)(
a 0
0 1

)
g

]
ω(a)d×a

defined a priori on E×x extends by continuity to a Schwartz-Bruhat
function on Ex.

(iii) Denoting again by Ψ1 and Ψ2 the extensions, we have

ω(−1) Ft(Ψ1) = Ψ2.

(iv) Assume x is finite, the character ψx normalized and the character
ω unramified. Assume further that P is the characteristic function
of the set of unramified characters. Finally, assume Φ is the char-
acteristic function of OEx . Then ω(−1) = 1 and Ψ1 = Ψ2 = Φ.

4.3. Complementary kernel

Let U1(Fx)⊥ be the set of characters ν of E×x of absolute value 1 which
are trivial on U1(Fx). We may identify the group U1(Fx)⊥ to the group
dual to the quotient E×x /U1(Fx) and let dν be the Haar measure dual to
the quotient Haar measure on the group E×x /U1(Fx). We have then the
Poisson summation formula∫

U1(Fx)⊥
P (ν)dν =

∫
U1(Fx)

P̃ (u)du.

In fact, a character ν ∈ U1(Fx)⊥ is simply a character of the form ν =
(χ1, χ1) where χ1 is a character of F×x . In other words, for t = (t1, t2) we
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have ν(t) = χ1(t1t2) = χ1(Nm(t)). The above formula can also be written
in the more concrete form∫

F̂×x

P (χ1, χ1)dχ1 =
∫
F×x

P̃ (t, t−1)d×t.

As in the inert case, we have the more general formula

(4.4)
∫
U1(Fx)⊥

P (ν)ν(t)dν =
∫
U1(Fx)

P̃ (tu)du.

For ν ∈ U1(Fx)⊥ and Φ ∈ S(Ex) we define a function fΦ,ν by the follow-
ing formula: for a ∈ F×x and det g = 1,

fΦ,ν

[
t,

(
a 0
0 1

)
g

]
= ν(Nm(h))|Nm(h)|1/2x (r(g)Φ)(0),

where h is any element of E×x such that Nm(h) = a. The character ν has
the form ν = (χ1, χ1) and we check at once that

fΦ,ν

[(
a1 x

0 a2

)
g

]
= χ1(a1)χ1(a2)|a|1/2x fΦ,ν(g),

for all a1, a2, x and g ∈ GL(2, Fx). Thus fΦ,ν belongs to the space B(χ1, χ1)
of the induced representation π(χ1, χ1). By definition, π(ν) is equivalent to
the representation π(χ1, χ1).
We define a new function K0

x,P,Φ on E×x × GL(2, Fx) by the following
formula:

(4.5) K0
x,P,Φ(t, g) =

∫
U1(Fx)⊥

dν · P (ν) · ν−1(t) · fΦ,ν(g).

As in the inert case, using formula (4.4), we find the alternate expres-
sions (3.14) and (3.15) for this kernel.
Just as in the inert case, we have then the following Proposition.

Proposition 4.3. — Let ω be a character of F×x of absolute value 1. Let
g ∈ GL(2, Fx). Let Ψ1 and Ψ2 be the functions defined in Proposition 4.2.

(i) The expression

ω−1(Nm(t))|x Nm(t)|−1/2
∫
F×x

K0
x,P,Φ

[
t,

(
a 0
0 1

)
g

]
ω(a)d×a

is independent of t and equal to Ψ1(0).
(ii) Similarly, the expression

ω(Nm(t))|Nm(t)|−1/2
x

×
∫
F×x

K0
x,P,Φ

[
t−1,

(
0 1
1 0

)(
a 0
0 1

)
g

]
ω(a)d×a
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is independent of t and equal to Ψ2(0).

5. Construction of global kernels

5.1. Main results

We go back to the quadratic extension E/F of number fields or function
fields. We give to F×A the Haar measure d×y product of the local Haar
measure d×yx. We define similarly a Haar measure d×z on E×A . We let du
be the Haar measure on U1(FA) which is the product of the local Haar
measures. As in the local situation, we have then the following integration
formula. Let φ be a continuous function of compact support on F×A . Define
a function φ0 on F×A by

φ0(a) =
∫
U1(FA)

φ(hu)du

if a = Nm(h) and φ0(a) = 0 if a is not a norm. Then

(5.1)
∫
FA×

φ0(a)d×a =
∫
E×A

φ(h)d×h.

As usual, for a ∈ F×A , we set |a| =
∏
x |ax|x.

We let (Px) be a family of functions Px ∈ C
(
Ê×x
)
. For almost all finite x,

we assume that the function Px is the characteristic function of the set of
unramified characters of E×x . Thus we can define a function P on Ê×A by the
formula P (χ) =

∏
x Px(χx) and a function P̃ on E×A by P̃ (a) =

∏
x P̃x(ax).

Then ∫
E×A

P̃ (h)χ−1(h)d×h = P (χ).

We let Φ be a Schwartz-Bruhat function on EA which is a product Φ =∏
Φx. For almost all finite x, the place x is unramified in E, the character

ψx is normalized and the function Φx is the characteristic function of OEx

in Ex. Then we define two functions on E×A × GL(2, FA) by the following
formulas:

KP,Φ(t, g) =
∏
x

Kx,Px,Φx(tx, gx),(5.2)

K0
P,Φ(t, g) =

∏
x

K0
x,Px,Φx

(tx, gx).(5.3)

With our choice of data, for a given g and t, almost all factors are equal
to 1 in the two infinite products.
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We set

λ =
∏
x

λ(Ex/Fx, ψx),

the product being over all places x of F , or, what amounts to the same,
over all inert places of F . In [5] Weil proves that, in fact, λ = 1, but we
will not need this fact. Then we have the following Theorem.

Theorem 5.1. — The product of the expression

∑
δ∈E×,γ∈F×

KP,Φ

[
δt,

(
γ 0
0 1

)
g

)
] +

∑
γ∈F×

K0
P,Φ

[
t,

(
γ 0
0 1

)
g

]

by λ is equal to the expression

∑
δ∈E×,γ∈F×

KP,Φ

[
δt,

(
0 1
1 0

)(
γ 0
0 1

)
g

]
+
∑
γ∈F×

K0
P,Φ

[
t,

(
0 1
1 0

)(
γ 0
0 1

)
g

]
.

Proof. — At the cost of changing P we may assume t = 1. We may also
change δ to δ−1 in the second expression. Thus we have to prove that the
product of

∑
δ∈E×,γ∈F×

KP,Φ

[
δ,

(
γ 0
0 1

)
g

]
+
∑
γ∈F×

K0
P,Φ

[
1,
(
γ 0
0 1

)
g

]

by λ is equal to

∑
δ∈E×,γ∈F×

KP,Φ

[
δ−1,

(
0 1
1 0

)(
γ 0
0 1

)
g

]

+
∑
γ∈F×

K0
P,Φ

[
1,
(

0 1
1 0

)(
γ 0
0 1

)
g

]
.

This is equivalent to proving that for every idèle class-character ω (of ab-
solute value 1) the product of

∫
F×A

ω(a)d×a
( ∑
δ∈E×

KP,Φ

[
δ,

(
a 0
0 1

)
g

])

+
∫
F×A

ω(a)d×a KP,Φ

[
1,
(
a 0
0 1

)
g

]
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by λ is equal to

∫
F×A

ω(a)d×a
( ∑
δ∈E×

KP,Φ

[
δ−1,

(
0 1
1 0

)(
a 0
0 1

)
g

])

+
∫
F×A

ω(a)d×a K0
P,Φ

[
1,
(

0 1
1 0

)(
a 0
0 1

)
g

]
.

For a given g and a given ω, we have at each place x the element gx and
the character ωx to which we have associated Schwartz-Bruhat functions
Ψ1,x and Ψ2,x (Proposition 3.1 and Proposition 4.2). For almost all finite
x, Ψ1,x and Ψ2,x are equal to the characteristic function of OEx

. Thus the
products Ψ1 =

∏
x Ψ1,x and Ψ2 =

∏
x Ψ2,x are Schwartz-Bruhat functions.

Since ω(−1) = 1, it follows from Proposition 3.1 and Proposition 4.2 that

Ψ2 = λFt(Ψ1).

By Poisson summation formula (equation (2.2)) we have

(5.4)
∑
δ∈E

Ψ2(δ) = λ
∑
δ∈E

Ψ1(δ).

We have∫
F×A

ω(a) d×a
∑
δ∈E×

KP,Φ

[
δ,

(
a 0
0 1

)
g

]

=
∑
δ∈E×

∫
F×A

ω(a)d×a KP,Φ

(
δ,

(
a 0
0 1

)
g

)
=
∑
δ∈E×

ω(Nm(δ))|Nm(δ)|1/2Ψ1(δ)

=
∑
δ∈E×

Ψ1(δ),

the last equality because the absolute value of an element of F× is 1. We
also have ∫

F×A

ω(a)d×aK0
P,Φ

[
1,
(
a 0
0 1

)
g

]
= Ψ1(0).
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Similarly,∫
F×A

ω(a)d×a
∑
δ∈E×

KP,Φ

[
δ−1,

(
0 1
1 0

)(
a 0
0 1

)
g

]

=
∑
δ∈E×

∫
F×A

ω(a)d×aKP,Φ

[
δ−1,

(
0 1
1 0

)(
a 0
0 1

)
g

]
=
∑
δ∈E×

Ψ2(δ).

Similarly, ∫
F×A

ω(a)d×aK0
P,Φ

[
1,
(

0 1
1 0

)(
a 0
0 1

)
g

]
= Ψ2(0).

Our assertion follows now from formula (5.4). However, we need to show
that our expressions are absolutely convergent. This will be done in the
next section. �

We can now state the second Theorem. We set

HP,Φ(t, g) =
∑

δ∈E×,γ∈F×
KP,Φ

[
δt,

(
γ 0
0 1

)
g

]
+
∑
γ∈F×

K0
P,Φ

[
t,

(
γ 0
0 1

)
g

]
.

Theorem 5.2. — The function HP,Φ(t, g) is invariant under E× ×
GL(2, F ) on the left.

Proof. — As a function of g it is clear that it is invariant on the left by
the subgroup {(

α β

0 1

)
: α ∈ F×, β ∈ F

}
.

The identity just established proves that it is invariant on the left under
the subgroup {(

1 0
β α

)
: α ∈ F×, β ∈ F

}
.

Since these two subgroups generateGL(2, F ) the invariance underGL(2, F )
follows.
For the invariance under E× it suffices to prove that∑

γ∈F×
K0
P,Φ

[
δ,

(
γ 0
0 1

)
g

]
does not depend on δ ∈ E×. It amounts to the same to prove that for every
ω the integral ∫

F×A

ω(a)d×aK0
P,Φ

[
δ,

(
a 0
0 1

)
g

]

TOME 62 (2012), FASCICULE 3



928 Hervé JACQUET

does not depend on δ. Indeed, it is equal to ω(Nm(δ))|Nm(δ)|1/2Ψ1(0) =
Ψ1(0). �

Remark. — For t = 1, the equality of Theorem 1 can be reformulated
as the equality

HP,Φ

[
1,
(

0 1
1 0

)
g

]
= λHP,Φ(1, g).

Since the function g 7→ HP,Φ(1, g) is invariant under GL(2, F ) on the left
(and not identically 0 for a suitable choice of the data) we see again that
λ = 1.

6. Global theory

6.1. Relation with the global Weil representation

We need to justify our formal computations. First we summarize our
construction. Let x be any place of F and a ∈ F×x . If a has the form
a = Nm(h) and gx ∈ SL(2, Fx) we have

Kx,Px,Φx

[
t,

(
a 0
0 1

)
gx

]
= |Nm(h)|1/2x

∫
U1(Fx)

P̃x(hut−1)(r(gx)Φx)(hu)du.

If a is not a norm (which may happen only if x is inert), then the left
hand side vanishes. Let Φ =

∏
x Φx and P̃ =

∏
x P̃x. Following Weil we

can define a representation r of SL(2, FA) on the space S(EA) of Schwartz-
Bruhat functions as the tensor product of the local Weil representations.
Let a ∈ F×A and g ∈ SL(2, FA). If a = Nm(h) then

KP,Φ

[
t,

(
a 0
0 1

)
g

]
= |a|1/2

∫
U1(FA)

P̃ (ht−1u)(r(g)Φ)(hu)du,

where, we recall, du is the Haar measure on the group U1(FA) product of
the local measures. If a is not a norm, then the left-hand side vanishes.
We have a similar formula for K0

P,Φ. Let x be any place of F and a ∈ F×x .
If a = Nm(h), and gx ∈ SL(2, Fx) then

K0
x,Px,Φx

[
t,

(
a 0
0 1

)
gx

]
= |a|1/2x

∫
U1(Fx)

P̃ (ht−1u)du (r(gx)Φx)(0).

If a is not a norm, then the left hand side vanishes. Let a ∈ F×A and
g ∈ SL(2, FA). If a = Nm(h) then

K0
P,Φ

[
t,

(
a 0
0 1

)
g

]
= |a|1/2

∫
U1(FA)

P̃ (ht−1u)du (r(g)Φ)(0).
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If a is not a norm, then the left hand side vanishes.
Next, consider the formula defining

HP,Φ

[
t,

(
a 0
0 1

)
g

]
where det g = 1. Each term in the formula is 0 unless there is γ ∈ F×

such that γa is a norm at every place of F . It is so if and only if η(a) = 1.
Assuming it is the case, we can write a = γ0a0 with γ0 ∈ F× and a0 =
Nm(h) for some h. Then

HP,Φ

[
t,

(
a 0
0 1

)
g

]
= HP,Φ

[
t,

(
a0 0
0 1

)
g

]
.

Thus we are reduced to studying the formula for

HP,Φ

[
t,

(
a 0
0 1

)
g

]
where a = Nm(h) for some h and det g = 1. In the sums over γ ∈ F×

defining HP,Φ, γ must be a norm at every place, hence must be the norm
of an element of E×. Thus we may write γ in the form γ = Nm(ε) with
ε ∈ E×/U1(F ). Then

HP,Φ

[
t,

(
a 0
0 1

)
g

]
= |a|1/2

∑
δ∈E×,ε∈E×/U1(F )

×
∫
U1(FA)

P̃ (hδ−1εt−1u)(r(g)Φ)(hεu)du

+ |a|1/2
∑

ε∈E×/U1(F )

∫
U1(FA)

P̃ (hεt−1u)(r(g)Φ)(0)du.

In the first sum we change ε to εδ and then δ to δε−1. We can then
combine the two sums into one to arrive at the following formula:

|Nm(h)|1/2
∑

δ∈E,ε∈E×/U1(F )

∫
U1(FA)

P̃ (hεt−1u)(r(g)Φ)(hδu)du.

This may also be written in the following form:

|Nm(h)|1/2
∫
U1(FA)/U1(F )

du

(∑
ε∈E×

P̃ (hεt−1u)
)(∑

δ∈E

(r(g)Φ)(hδu)
)
.

This expression is absolutely convergent. Indeed, there is Φ0 ∈ S(EA),
Φ0 > 0, such that

|(r(g)Φ)(z)| 6 Φ0(z).
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Moreover, from Poisson summation formula, we get∑
δ∈E

Φ0(tδ) 6 C(1 + |Nm(t)|−1).

Thus ∑
δ∈E

|(r(g)Φ)(hδu)|

is bounded above independently of u. On the other hand, since P̃ has
compact support and U1(FA)/U1(F ) is compact, the sum over ε is finite
and ∫

U1(FA)/U1(F )
du

(∑
ε∈E×

|P̃ |(hεt−1u)
)
< +∞.

Our assertion follows. Thus the formula defining HP,Φ is an absolutely
convergent series.
Let us observe also that the function µ defined by

µ(h) =
∑
ε∈E×

P̃ (hε)

is a smooth function of compact support on E×A /E
×. Suppose det g = 1

and η(a) = 1. Let γ ∈ F× such that γa = Nm(h) for some h. Then

HP,Φ

[
t,

(
a 0
0 1

)
g

]
= |Nm(h)|1/2

∫
U1(FA)/U1(F )

duµ(ht−1u)
(∑
δ∈E

(r(g)Φ)(hδu)
)

;

if η(a) = −1 and det g = 1 then the left hand side is 0. By the theory of the
global Weil representation, it is then easy to check directly the invariance
properties of the function HP,Φ on this formula. In particular, from λ = 1,
we get

r

(
0 1
−1 0

)
Φ(z) = Ft(Φ)(ι(z))

and the invariance under
( 0 1
−1 0

)
follows from Poisson summation formula.

Next, from formula (5.1), we get, for det g = 1,∫
F×A

ω(a)d×aKP,Φ

[
t,

(
a 0
0 1

)
g

]
=
∫
E×A

|Nm(h)|1/2ω(Nm(h))P̃ (ht−1)(r(g)Φ)(h)d×h.
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Similarly,∫
F×A

ω(a)d×aK0
P,Φ

[
t,

(
a 0
0 1

)
g

]
= (r(g)Φ)(0)

∫
E×A

|Nm(h)|1/2ω(Nm(h))P̃ (ht−1)d×h.

Since P̃ has compact support, both integrals are absolutely convergent. We
need also to check that∑

δ∈E×

∫
F×A

ω(a)d×aKP,Φ

[
δ,

(
a 0
0 1

)
g

]
is absolutely convergent. Computing formally, we get∑
δ∈E×

∫
E×A

|Nm(h)|1/2ω(Nm(h))P̃ (hδ−1)(r(g)Φ)(h)d×h.

Changing h to hδ this becomes

=
∫
E×A

|Nm(h)|1/2ω(Nm(h))P̃ (h)
( ∑
δ∈E×

(r(g)Φ)(hδ)
)
d×h.

There is Φ0 ∈ S(EA) , Φ0 > 0, such that for h in the support of P̃ ,

|(r(g)Φ)(hz)| 6 Φ0(z).

Thus ∑
δ∈E×

|(r(g)Φ)(hδ)| 6
∑
δ∈E×

Φ0(δ) < +∞.

On the other hand, ∫
E×A

|Nm(h)|1/2|P̃ (h)|d×h < +∞.

Thus our expression is indeed absolutely convergent.

6.2. Conclusion

Fix a character χ of E×A /E× of absolute value 1. Set

φP,Φ(g) =
∫
E×A /E

×
d×t χ(t)HP,Φ(t, g).
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We first compute the Fourier expansion of φP,Φ. We have

φP,Φ(g) =
∑
γ∈F×

∫
E×A

d×tχ(t)KP,Φ

[
t,

(
γ 0
0 1

)
g

]
(6.1)

+
∫
E×A /E

×
d×tχ(t)

∑
γ∈F×

K0
P,Φ

[
t,

(
γ 0
0 1

)
g

]
(6.2)

We have ∫
EA×

KP,Φ(t, g)χ(t)d×t = P (χ)WΦ,χ(g),

whereWΦ,χ is the product of the functionsWΦx,χx
. Thus the first term (6.1)

is simply

P (χ)
∑
γ∈F×

WΦ,χ

[(
γ 0
0 1

)
g

]
.

Let us compute the second term (6.2) for

g =
(
a 0
0 1

)
g0

where det g0 = 1. We find∫
E×A /E

×
d×tχ(t)

∑
ε,γ

K0
P,Φ

[
t,

(
Nm(ε)γa 0

0 1

)
g0

]
where the sums are for ε ∈ E×/U1(F ), γ ∈ F×/Nm(E×) with the extra
condition that γa = Nm(h) for some h. The sum over γ has at most one
term. Assuming the sum is not empty, we find

(r(g0)Φ)(0)|Nm(h)|1/2
∫
E×A /E

×
d×tχ(t)

∑
ε

∫
U1(FA)

P̃ (hεt−1u)du.

Formal manipulations bring this to the form

(r(g0)Φ)(0)|Nm(h)|1/2χ(h)
∫
E×A

P̃ (t−1)χ(t)d×t
∫
U1(FA)/U1(F )

χ(u)du.

or
P (χ) (r(g0)Φ)(0) |Nm(h)|1/2 χ(h)

∫
U1(FA)/U1(F )

χ(u)du .

The integral over U1(FA)/U1(F ) is 0 unless the restriction of χ to U1(FA)
is trivial. Assuming this to be the case we have χ = χ1 ◦ Nm = χ2 ◦ Nm
where χ1, χ2 are characters of F×A /F× and χ2 = χ1η. Then the function
fΦ,χ =

∏
fΦx,χx is defined and the above expression is

P (χ)
∫
U1(FA)/U1(F )

du
∑
γ

fΦ,χ

[(
γa 0
0 1

)
g0

]
,
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where the sum is for γ ∈ F×/Nm(E×) with the extra condition that γa =
Nm(h) for some h. The sum is not empty if an only if η(a) = 1 and then it
has one term. Thus, in all cases,∑

γ

fΦ,χ

[(
γa 0
0 1

)
g0

]
= |a|1/2 χ1(a)1 + η(a)

2 fΦ,χ(g0)

= |a|1/2 χ1(a) + χ2(a)
2 fΦ,χ(g0).

By definition, the function fΦ,χ is a function on the group G+ of g ∈
GL(2, FA) such that det g is a norm at each place. The function is further
extended by 0 outside G+. It has a unique extension f1

Φ,χ to GL(2, FA)
satisfying

f1
Φ,χ

[(
a1 x

0 a2

)
g

]
=
∣∣∣∣a1

a2

∣∣∣∣1/2 χ1(a1)χ2(a2)f1
Φ,χ(g),

for all g, a1, a2, x; it has also a unique extension f2
Φ,χ satisfying

f1
Φ,χ

[(
a1 x

0 a2

)
g

]
=
∣∣∣∣a1

a2

∣∣∣∣1/2 χ2(a1)χ1(a2)f2
Φ,χ(g),

for all g, a1, a2, x. Then

|a|1/2 χ1(a) + χ2(a)
2 fΦ,χ(g0)

= 1
2

(
f1

Φ,χ

[(
a 0
0 1

)
g0

]
+ f2

Φ,χ

[(
a 0
0 1

)
g0

])
.

Finally, we see that∫
E×A /E

×
d×tχ(t)

∑
γ∈F×

K0
P,Φ

[
t,

(
γ 0
0 1

)
g

]

= P (χ)

∫
U1(FA)/U1(F ) du

2
(
f1

Φ,χ(g) + f2
Φ,χ(g)

)
.

We have thus obtained the Fourier expansion of φP,Φ.

φP,Φ(g) = P (χ)
∑
γ∈F×

WΦ,χ

[(
γ 0
0 1

)
g

]

+ P (χ)

∫
U1(FA)/U1(F ) χ(u)du

2
(
f1

Φ,χ(g) + f2
Φ,χ(g)

)
.

From this formula, it is clear than one can choose the data so that φP,Φ is
not identically 0.
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Assume F is a number field. One can see that the function φP,Φ is slowly
increasing. In more detail, for s real, s > 0, denote by s∞ the idèle of F
such that (s∞)x = 1 for x finite , (s∞)x = s for x infinite. Let Ω be a
compact set of GL(2, FA) and C > 0. Let S(C,Ω) be the set of matrices g
of the form

g =
(
s∞ 0
0 1

)
ω, s > C,ω ∈ Ω.

The assertion φP,Φ is slowly increasing means that, for every Ω and C,
there exist D and n such that

|φP,Φ(g)| 6 Dsn

for all g ∈ S(C,Ω). An estimate of this type is obtained in [1] for the first
term. It is easy to obtain an estimate of this type for the second term.
Let U be the space spanned by the functions φP,Φ and their translates.

Let also W(π(χ), ψ) be the space spanned by the functions WΦ,χ and
their translates. If x is a finite place we have the representation π(χx)
of GL(2, Fx). If F is a function field one defines the representation π(χ)
of GL(2, FA) as the tensor product of the local representations π(χx). The
representation of GL(2, FA) on W(π(χ), ψ) is then equivalent to π(χ). If
F is a number field and x is an infinite place, we have a representation
of (Ux,Kx), that is, a (Ux,Kx)−module noted π(χx). Let ∞ be the set
of infinite places. Set K∞ =

∏
x∈∞Kx and let U∞ be the enveloping al-

gebra of
∏
x∈∞GL(2, Fx). Let also F∞A be the ring of finite adèles. The

tensor product π(χ) of the local π(χx) is now a GL(2, F∞A )−module and
a (U∞,K∞)−module. The space WK∞(π(χ), ψ) of K∞−finite vectors in
W(π(χ), ψ) is invariant under GL(2, F∞A ) and (Ux,Kx). It is equivalent to
π(χ), as a GL(2, F∞A )−module and a (U∞,K∞)−module. If φ is in U , it
has a Fourier expansion

φ(g) =
∑
γ∈F×

W

[(
γ 0
0 1

)
g

]
+ φ0(g)

where W ∈ W(π(χ), ψ) and

φ0(g) =
∫
FA/F

φ

[(
1 u

0 1

)
g

]
du.

We claim that W = 0 implies φ = 0. This is clear if φ0 = 0. If φ0 6= 0 we
find φ = φ0. Since φ is invariant under GL(2, F ) and φ0 invariant under
the matrices ( 1 u

0 1 ) with u ∈ FA this would imply φ0 is invariant under
SL(2, FA). This contradicts the explicit expression we have found for φ0.
Our assertion follows.

ANNALES DE L’INSTITUT FOURIER



NOYAU DE LA FONCTORIALITÉ 935

Thus we have an injective mapW 7→ φ. As a consequence, in the function
field case, the space U is invariant under GL(2, FA) and the representation
of GL(2, FA) on U is equivalent to π(χ). Similarly, in the number field case,
the space UK∞ spanned by the functions φ withW ∈ WK∞(π(χ), ψ) is then
invariant under GL(2, F∞A ) and (K∞,U∞). As a GL(2, F∞A )−module and
a (U∞,K∞)−module, the space VK∞ is equivalent to π(χ). Thus we have
proved that π(χ) is automorphic.
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