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A TORELLI THEOREM FOR MODULI SPACES OF
PRINCIPAL BUNDLES OVER A CURVE

by Indranil BISWAS & Norbert HOFFMANN (*)

Abstract. — Let X and X′ be compact Riemann surfaces of genus > 3, and
let G and G′ be nonabelian reductive complex groups. If one component Md

G(X)
of the coarse moduli space for semistable principal G–bundles over X is isomorphic
to another component Md′

G′ (X
′), then X is isomorphic to X′.

Résumé. — Soient X et X′ des surfaces de Riemann compactes de genre au
moins 3, et G et G′ des groupes complexes réductifs non abéliens. Si une compo-
sante Md

G(X) de l’espace des modules de G–fibrés principaux semi-stables sur X

est isomorphe à une composante Md′

G′ (X
′), alors X est isomorphe à X′.

Introduction

Let X be a compact connected Riemann surface of genus gX . The clas-
sical Torelli theorem says that the isomorphism class of X is uniquely de-
termined by the isomorphism class of the Jacobian Pic0(X), together with
its canonical principal polarization Θ.
Several authors have studied nonabelian analogues, replacing Jacobians

by moduli spaces of vector bundles. Suppose gX > 3. Given a line bundle L
on X, letMn,L(X) denote the moduli space of semistable vector bundles E
over X of rank n with fixed determinant

∧n
E ∼= L. Then the isomorphism
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88 Indranil BISWAS & Norbert HOFFMANN

class ofX is uniquely determined by the isomorphism class of the projective
varietyMn,L(X).
This was first proved for n = 2 and deg(L) odd, by Mumford-Newstead

[10, p. 1201, Corollary] and Tyurin [19, Theorem 1].
It was then proved more generally for n coprime to deg(L), by Tyurin

[20, Theorem 1] and Narasimhan-Ramanan [12, Theorem 3].
Finally, this statement was proved in full generality by Kouvidakis-

Pantev [6, Theorem E], and then later for gX > 4 also by Hwang-Ramanan
[5, Theorem 5.1] and by Sun [18, Corollary 1.3].
These proofs used either an intermediate Jacobian of the moduli space

[10, 12], or Higgs bundles and the Hitchin map [6, 5], or rational curves on
the moduli spaces [19, 20, 18].

Our aim here is to address a similar question for the moduli spaces of
principal bundles. Given a connected reductive complex linear algebraic
group G, let Md

G(X) denote the moduli space of semistable principal G–
bundles over X of topological type d ∈ π1(G).

Theorem 0.1. — LetG andG′ be nonabelian connected reductive com-
plex groups. Let d ∈ π1(G) and d′ ∈ π1(G′) be given. Let X and X ′ be com-
pact Riemann surfaces of genus > 3. IfMd

G(X) is isomorphic toMd′

G′(X ′),
then X is isomorphic to X ′.

For the proof, our strategy is fundamentally different from the earlier
ones. Whereas [6] and [5] start from the stable locus, our starting point is
the strictly semistable locus. We show that it lies in the singular locus and is
characterized by its type of singularities. Using powers of its anticanonical
line bundle, we map it to a projective space. The fibers of this map allow
us to reconstruct the Jacobian of X and its principal polarization. Then
the usual Torelli theorem applies.
This method does not work if the strictly semistable locus is empty. But

this case is rare, and can in fact be reduced to the earlier results on moduli
spaces of vector bundles in the coprime case.

The structure of this paper is as follows. Section 1 deals with quotient
singularities arising from a group action. We give a criterion to distinguish
the case of a finite group from the torus C∗.

In Section 2, we collect some basic facts about the moduli spacesMd
G(X).

We use several tools valid only in characteristic 0, like representations of
π1(X), and the stability of induced bundles.

Section 3 describes the strictly semistable locus inMd
G(X). We relate it

to moduli spaces of principal H–bundles for Levi subgroups H of maximal
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TORELLI FOR MODULI OF PRINCIPAL BUNDLES 89

parabolic subgroups in G. Furthermore, we characterize it by the singulari-
ties it contains. As a byproduct, we show that the smooth locus ofMd

G(X)
coincides with the regularly stable locus.
In the final Section 4, we prove Theorem 0.1, by reconstructing the com-

pact Riemann surface X from the projective variety Md
G(X). In fact we

prove a slightly stronger result, namely that X is determined up to isomor-
phy by the smooth locus ofMd

G(X); see Theorem 4.1.

1. Some quotient singularities

Let S and S′ be schemes of finite type over C. We say that S is near
a closed point s0 ∈ S analytically isomorphic to S′ near a closed point
s′0 ∈ S0 if for some open neighborhoods s0 ∈ U ⊆ S and s′0 ∈ U ′ ⊆ S′ in
the Euclidean topology, there exists a biholomorphic isomorphism U → U ′

that maps s0 to s′0.
We always denote by Ssing ⊆ S the singular locus of S. Let G be a

reductive linear algebraic group over C. We assume that G acts linearly on
a finite-dimensional complex vector space V . Let

p : V −→ S := V//G = Spec(Sym(V ∗)G)

be the GIT–quotient, and put s0 := p(0) ∈ S.

Lemma 1.1. — Let G be finite and nontrivial. Suppose that the fixed
locus V g ⊆ V has codimension > 2 for all g ∈ G with g 6= 1.

i) The quotient S = V//G is singular in s0 = p(0).
ii) If s0 ∈ U ⊆ S is an open neighborhood in the Euclidean topology

such that U \ Ssing is connected, then π1(U \ Ssing) is nontrivial.

Proof. — Using the assumption on codimV g, [11, Lemma 4.4] implies

p−1(Ssing) =
⋃
g 6=1

V g.

This proves (i). In the situation of (ii), p−1(U \Ssing) is connected because
s0 has only one inverse image. Hence p−1(U \Ssing) is a nontrivial covering
of U \ Ssing, which is therefore not simply connected. �

Lemma 1.2. — Let G = C∗ act linearly on the finite-dimensional com-
plex vector space V , with associated weight space decomposition

V =
⊕
m∈Z

Vm.

Suppose that V−1 and V1 both have dimension > 2.

TOME 62 (2012), FASCICULE 1



90 Indranil BISWAS & Norbert HOFFMANN

i) The quotient S = V//C∗ is singular in s0 = p(0).
ii) Every neighborhood s0 ∈ U ⊆ S in the Euclidean topology contains

an open neighborhood s0 ∈ U ′ ⊆ U such that U ′\Ssing is connected
and π1(U ′ \ Ssing) is trivial.

Proof. — It is easy to verify S = (V+ ⊕ V−)//C∗ × V0 with

V+ :=
⊕
m>0

Vm and V− :=
⊕
m<0

Vm.

Replacing V by V+ ⊕ V− if necessary, we may thus assume V0 = 0 without
loss of generality. Then the GIT–stable locus V stab ⊆ V is

V stab = V \ (V+ ∪ V−),

and the image p(V+ ∪ V−) of V \ V stab is just the point s0 ∈ S. Let

V µn =
⊕
m∈nZ

Vm ⊆ V

be the fixed locus of the finite subgroup µn ⊆ C∗. We claim

(1.1) p−1(Ssing) = V+ ∪ V− ∪
⋃
n>2

V µn .

To check this, we first consider a stable point v ∈ V stab. Its image p(v) ∈
S is smooth if and only if its stabilizer in C∗ is trivial, according to Luna’s
étale slice theorem [8] and Lemma 1.1.
Suppose next that V µn ∩ V stab is non-empty for some n > 2. Then it

is dense in V µn , but also contained in the closed subset p−1(Ssing). Hence
0 ∈ V µn ⊆ p−1(Ssing), which implies s0 ∈ Ssing. It follows that p−1(Ssing)
contains the unstable locus V+ ∪ V− in this case.
Now suppose V µn ⊆ V+ ∪ V− for all n > 2. Then the canonical map

S̃ := (V \
⋃
n>2

V µn)
/
C∗ −→ S

is surjective. Here C∗ acts freely, so the set S̃ is a (not necessarily separated)
complex manifold. Applying [11, Lemma 4.4] to this map, we get s0 ∈ Ssing.
Hence p−1(Ssing) contains V+ ∪ V− also in this case. This proves the claim
(1.1), and in particular part (i) of the lemma.
Let a Euclidean neighborhood s0 ∈ U ⊆ S be given. For each m ∈

Z, we choose a basis (xm,i)16i6dimVm
of the vector space (Vm)∗. The C-

algebra Sym(V ∗)C∗ is generated by finitely many nonconstant monomials
f1, . . . , fN in the variables xm,i. They provide a closed embedding S ↪→ CN
with s0 7→ 0. Hence U contains the open neighborhood

s0 ∈ U ′ := {s ∈ S : |fn(s)| < ε for n = 1, . . . , N}

ANNALES DE L’INSTITUT FOURIER
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for some ε > 0. Because the fn are monomials, the open subset

p−1(U ′) = {v ∈ V : |fn(v)| < ε for n = 1, . . . , N} ⊆ V

is a star-shaped neighborhood of 0, in the sense that λv ∈ p−1(U ′) holds for
all v ∈ p−1(U ′) and λ ∈ [0, 1]. In particular, p−1(U ′) is contractible. Since
we are only removing finitely many linear subspaces of complex codimen-
sion > 2, it follows that p−1(U ′ \Ssing) is connected and simply connected.
Consequently, U ′ \ Ssing is also connected and simply connected, because

p : p−1(U ′ \ Ssing) −→ U ′ \ Ssing

is a fibration with connected fiber C∗. �

2. Moduli spaces of principal bundles

Let X be a compact connected Riemann surface of genus gX > 3. Let G
from now on be a reductive connected linear algebraic group over C. We
denote by

MG =MG(X)
the coarse moduli space of semistable algebraic principal G–bundles E over
X. Its connected components

Md
G =Md

G(X) ⊆MG(X)

are irreducible normal projective varieties of dimension

dimMd
G = (gX − 1) dimCG+ dimC ZG

where ZG denotes the center ofG. These connected components are indexed
by elements d ∈ π1(G), which correspond to topological types of algebraic
principal G–bundles E over X. In the case G = GLn of vector bundles, the
topological type d ∈ π1(GLn) = Z is their degree.
The construction of such moduli spaces is carried out in [15]; see also [3]

and [16] for generalizations to higher dimensions. We recall from [15] that
one has a dense open subscheme

Mstab
G ⊆MG

whose closed points correspond bijectively to isomorphism classes of stable
principal G–bundles over X. Closed points in MG correspond bijectively
to isomorphism classes of polystable principal G–bundles over X, and also
to S–equivalence classes of semistable principal G–bundles over X, in the
sense of [15, Definition 3.6].

TOME 62 (2012), FASCICULE 1



92 Indranil BISWAS & Norbert HOFFMANN

Let g be the Lie algebra of G. Given a principal G–bundle E over X, we
denote the associated adjoint vector bundle over X by

ad(E) := E ×G g := (E × g)/G.

If E is semistable, then ad(E) is also semistable [15, Corollary 3.18]. The
vector space

H1(X, ad(E))
parameterizes infinitesimal deformations of E according to standard defor-
mation theory. On it, we have an adjoint action of the automorphism group
Aut(E). If E is polystable, then the GIT–quotient

H1(X, ad(E))//Aut(E)

is near 0 analytically isomorphic to MG near the point [E]. This is a
standard consequence of Luna’s étale slice theorem [8].
The center ZG of G is a normal subgroup of Aut(E) for every principal

G–bundle E over X. E is stable or polystable or semistable if and only if
the induced principal G/ZG–bundle E/ZG over X is so, since both bundles
have the same set of reductions to parabolic subgroups; cf. [14, Proposition
7.1]. If E is stable, then Aut(E)/ZG is finite by [14, Proposition 3.2]. If
moreover Aut(E) = ZG, then E is called regularly stable; in this case,MG

is smooth at [E].
The canonical exact sequence of reductive groups

1 −→ [G,G] −→ G −→ G/[G,G] −→ 1

shows that π1([G,G]) is the torsion subgroup of π1(G). We put

M′G :=
⋃

d∈π1([G,G])

Md
G ⊆MG.

If G is semisimple, thenM′G =MG.
Choose a maximal compact subgroup KG ⊆ G, and a base-point x0 ∈ X.

Let X̃ � X be the universal covering of X. Given a group homomorphism
ρ : π1(X,x0)→ KG, the principal G–bundle

Eρ := X̃ ×ρ G := (X̃ ×G)/π1(X,x0)

is polystable, and its moduli point [Eρ] ∈ MG is contained in M′G. In
this way, closed points in M′G correspond bijectively to homomorphism
ρ : π1(X,x0)→ KG up to conjugacy [15, Corollary 3.15.1].

Lemma 2.1. — The set of points [Eρ] ∈ M′G coming from homomor-
phisms ρ : π1(X,x0)→ KG with dense image is Zariski-dense inM′G.

ANNALES DE L’INSTITUT FOURIER



TORELLI FOR MODULI OF PRINCIPAL BUNDLES 93

Proof. — There are only countably many conjugacy classes of closed
subgroups K ( KG, according to [1, Proposition 10.12]. For any given
closed subgroup K ( KG, the conjugacy classes of homomorphisms ρ :
π1(X,x0)→ KG factoring through K form a closed real analytic subset of
M′G of a smaller dimension. Due to the Baire category theorem, the union
of these subsets inM′G has empty interior (with respect to the Euclidean
topology). This shows that the homomorphisms ρ : π1(X,x0) → KG with
dense image are dense inM′G for the Euclidean topology, and a fortiori for
the Zariski topology. �

Lemma 2.2. — Consider the polystable principal G–bundle Eρ over X
given by a homomorphism ρ : π1(X,x0) → KG. Its automorphism group
Aut(Eρ) is canonically isomorphic to

CG(ρ) := {g ∈ G : g · ρ(ω) = ρ(ω) · g for all ω ∈ π1(X,x0)}.

Proof. — Every element g ∈ CG(ρ) defines a π1(X,x0)–equivariant au-
tomorphism of the trivial bundle (X̃ × G) over X̃, which descends to an
automorphism of Eρ. This embeds CG(ρ) into Aut(Eρ).

Now let ϕ ∈ Aut(Eρ) be given. Choose an embedding G ↪→ GLr that
maps KG to the unitary group Ur. Then ϕ defines a nonzero holomorphic
section of the unitary vector bundle

X̃ ×ρ End(Cr)

over X. This vector bundle is polystable of degree 0, so the section lies in
a trivial direct summand OX . Such a trivial direct summand corresponds,
under the Narasimhan-Seshadri correspondence, to a line in End(Cr) on
which π1(X,x0) acts trivially.
Hence the section in question comes from a fixed point in End(Cr). But

this fixed point has to be in the image of G ↪→ GLr ⊆ End(Cr). This shows
that ϕ indeed comes from an element of CG(ρ). �

Proposition 2.3. — Let E be a principal G–bundle over X. Suppose
that E is stable, but not regularly stable.

i) The point [E] ∈MG is singular.
ii) There is a neighborhood [E] ∈ U ⊆MG in the Euclidean topology

such that for every open neighborhood [E] ∈ U ′ ⊆ U with U ′\Msing
G

connected, π1(U ′ \Msing
G ) is nontrivial.

Proof. — MG is near [E] analytically isomorphic to the quotient of

V := H1(X, ad(E))

TOME 62 (2012), FASCICULE 1



94 Indranil BISWAS & Norbert HOFFMANN

modulo the finite group Aut(E)/ZG near the image of 0 ∈ V . Let an
element ϕ ∈ Aut(E) \ ZG be given. Using Lemma 1.1, it suffices to verify
that the fixed locus V ϕ ⊆ V has codimension > 2.

The image KG/ZG
⊆ G/ZG of KG ⊆ G is again a maximal compact

subgroup. Since E is stable, the induced principal G/ZG–bundle E/ZG is
also stable. Hence we may assume E/ZG = Eρ for some group homomor-
phism ρ : π1(X,x0) → KG/ZG

. The canonical homomorphism Aut(E) →
Aut(E/ZG) has kernel ZG, so we get an embedding

Aut(E)/ZG ↪→ Aut(E/ZG) = CG/ZG
(ρ) ⊆ G/ZG

using also Lemma 2.2. Let Zϕ ⊆ G/ZG denote the nontrivial finite subgroup
generated by the image of ϕ ∈ Aut(E) under this map.

We choose a maximal torus T ⊆ G such that T/ZG contains Zϕ, and
decompose g into Zϕ-eigenspaces gχ with respect to characters χ : Zϕ →
C∗. The fundamental group π1(X,x0) also acts on g, via the composition

π1(X,x0) −→ KG/ZG
⊆ G/ZG −→ Aut(g)

of ρ with the adjoint action of G/ZG on g, and we have

ad(E) = X̃ ×ρ g.

Because this action of π1(X,x0) on g commutes with the adjoint action of
Zϕ ⊆ G/ZG on g, we get a vector bundle decomposition

ad(E) =
⊕

χ:Zϕ→C∗
ad(E)χ with ad(E)χ = X̃ ×ρ gχ.

Since Zϕ is nontrivial, there is a root α : T/ZG → C∗ of G which is
nontrivial on Zϕ. Then Zϕ acts on the root spaces gα and g−α by nontrivial
characters. Hence the eigenspace gχ0 for the trivial character χ0 : Zϕ → C∗
has codimension > 2 in g. Thus the subbundle

ad(E)χ0 ⊆ ad(E)

is a direct summand of corank > 2. Because E is stable, ad(E) is semistable
of degree 0. It follows that ad(E)χ0 also has degree 0. Thus Riemann-Roch
implies that the linear subspace

V ϕ = H1(X, ad(E)χ0) ⊆ V = H1(X, ad(E))

has codimension > 2(gX − 1) > 4. So Lemma 1.1 applies. �

ANNALES DE L’INSTITUT FOURIER
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3. The strictly semistable locus

Let G still be a reductive connected linear algebraic group over C. Let H
be a Levi subgroup of a maximal parabolic subgroup P ( G. Let KH ⊆ H
be a maximal compact subgroup. We choose a Borel subgroup B ⊆ P of
G, and a maximal torus T ⊆ B ∩H of G. Let

α1, . . . , αr : T −→ C∗ and α∨1 , . . . , α
∨
r : C∗ −→ T

be the simple roots and coroots of G. The quotient of Hom(C∗, T ) modulo
its subgroup Z · α∨1 + · · ·+ Z · α∨r is isomorphic to π1(G).
The Dynkin diagram of H is given by removing one simple root αi from

the Dynkin diagram of G. The centers of G and H are

ZG =
⋂
j

ker(αj) and ZH =
⋂
j 6=i

ker(αj);

cf. [4, (13.4)]. It follows that αi induces an isomorphism

ZH/ZG
∼−→ C∗.

The simple coroots of H are the α∨j with j 6= i, so the sequence

0 −→ Z
·α∨i−→ π1(H) −→ π1(G) −→ 0

is exact. Hence the induced map π1([H,H])→ π1([G,G]) is injective.
Given a principal H–bundle E over X, we denote by

EG := E ×H G = (E ×G)/H −→ X

the principal G–bundle obtained by extending the structure group of E
using the inclusion map H ↪→ G. If E is semistable and its topological type
e ∈ π1(H) is torsion, then EG is semistable [15, Lemma 3.5.11]. Sending
[E] to [EG] thus defines a morphism of projective schemes

iH :M′H −→M′G.

The automorphism group ofH acts onMH , by extension of the structure
group. An inner automorphism of H acts trivially on MH , so the group
Out(H) of outer automorphisms also acts onMH .
We denote the normalizer of H in G by NG(H). It acts on H by conju-

gation in G. Let ΓH denote the image of NG(H) in Out(H). The induced
action of ΓH on ZH/ZG ∼= C∗ is effective, since the centralizer of ZH/ZG
in G/ZG is known to be H/ZG. This yields an embedding

ΓH ↪→ Aut(C∗) = {±1}.

TOME 62 (2012), FASCICULE 1



96 Indranil BISWAS & Norbert HOFFMANN

The morphism iH is ΓH -invariant, so it descends to a morphism

ıH :M′H/ΓH −→M′G.

Note that ΓH acts trivially on π1([H,H]), because NG(H) acts trivially on
π1([G,G]). Hence ΓH acts on each componentMe

H ⊆M′H .

Proposition 3.1. — Assume that G is semisimple. Then the normal-
ization of the strictly semistable locus

MG \Mstab
G ⊂MG

is given by the disjoint union

ı := qıH :M′H/ΓH −→M′G =MG

over a set of representatives H for conjugacy classes of Levi subgroups of
maximal parabolic subgroups in G.

Proof. — As M′H is normal, its quotient M′H/ΓH is also normal, due
to [9, p. 5]. The image of ı is contained in MG \ Mstab

G by construction.
Conversely, every closed point inMG \Mstab

G has the form

[EG] ∈MG \Mstab
G

for some semistable principal H–bundle E over X such that EG is also
semistable. Let e ∈ π1(H) be the topological type of E. Let

(3.1) χH : H −→ C∗

denote the generator of Hom(H,C∗) ∼= Z which is dominant for P . If
〈χH , e〉 > 0, then the reduction EP := E ×H P of EG to P would vio-
late semistability by [14, Lemma 2.1]; if 〈χH , e〉 < 0, then the reduction
EQ of EG to the opposite parabolic subgroup H ⊆ Q ⊆ G would do so.
These contradictions show 〈χH , e〉 = 0, which means e ∈ π1([H,H]). This
proves that the image of ı is equal toMG \Mstab

G .
The projective morphism iH is also affine due to Ramanathan’s lemma

[15, Lemma 4.8.1, Remark 4.8.2 and Lemma 5.1]. Hence the morphisms iH ,
ıH and ı are all finite. It remains to prove that ı is generically injective. For
that, we use Lemma 2.1.
Let H ′ be a Levi subgroup of another maximal parabolic subgroup P ′ ⊆

G. Let KH′ ⊆ H ′ again be a maximal compact subgroup. Suppose that
two points

[Eρ] ∈M′H and [Eρ′ ] ∈M′H′
have the same image inMG for some homomorphisms

ρ : π1(X,x0) −→ KH and ρ′ : π1(X,x0)→ KH′ .

ANNALES DE L’INSTITUT FOURIER



TORELLI FOR MODULI OF PRINCIPAL BUNDLES 97

Then there is an element g ∈ G such that

gρ(ω)g−1 = ρ′(ω)

holds for all ω ∈ π1(X,x0). Now assume moreover that the image of ρ is
dense in KH . Then we can conclude

gKHg
−1 ⊆ KH′ ,

and hence gHg−1 ⊆ H ′, so

gHg−1 = H ′

by maximality. Thus H and H ′ are conjugate in G, so we may assume
H = H ′, and then we get g ∈ NG(H). It follows that the two points [Eρ]
and [Eρ′ ] are indeed in the same ΓH -orbit. �

We return to the general case where G is reductive. Let

ΣG ⊆Msing
G

denote the set of all singular closed points [E] ∈ MG such that every
Euclidean neighborhood [E] ∈ U ⊆ MG contains an open neighborhood
[E] ∈ U ′ ⊆ U for which U ′ \ Msing

G is connected and simply connected.
Proposition 2.3 shows ΣG ⊆MG \Mstab

G .

Proposition 3.2. — Let E be a principal H–bundle over X such that
EG is polystable with Aut(EG) = ZH . Then the point [EG] ∈ MG is in
ΣG.

Proof. — Luna’s étale slice theorem [8] implies thatMG is near the point
[EG] analytically isomorphic to the GIT–quotient

H1(X, ad(EG))//Aut(EG)

near 0. Here Aut(EG) = ZH acts on the vector space

V := H1(X, ad(EG)) = H1(X,E ×H g)

via the adjoint action of ZH on g. Since ZG ⊆ ZH acts trivially, the isomor-
phism αi : ZH/ZG → C∗ yields an action of C∗ on g. Let gm ⊆ g denote
the C∗-eigenspace of weight m ∈ Z. Since the adjoint action of H on g

commutes with C∗, we get a vector bundle decomposition

ad(EG) =
⊕
m∈Z

ad(EG)m with ad(EG)m := E ×H gm.

As EG is semistable, ad(EG) is semistable of degree 0. Consequently,
ad(EG)m also has degree 0. Due to Riemann-Roch, the C∗-eigenspace

Vm = H1(X, ad(EG)m) ⊆ V

TOME 62 (2012), FASCICULE 1



98 Indranil BISWAS & Norbert HOFFMANN

has dimension > (gX − 1) dim gm. Using g±αi
⊆ g±1, we conclude

dimV±1 > gX − 1 > 2.

Then Lemma 1.2 completes the proof. �

Corollary 3.3. — The strictly semistable locus MG \ Mstab
G is the

Zariski closure of the subset ΣG ⊆MG.

Proof. — The image KH/ZG
⊆ H/ZG of KH ⊆ H is again a maximal

compact subgroup. Let E be a principal H–bundle over X such that the
principal H/ZG–bundle E/ZG comes from a homomorphism

ρ : π1(X,x0) −→ KH/ZG
.

Then the principal G/ZG–bundle EG/ZG comes from the composition

π1(X,x0) ρ−→ KH/ZG
↪→ KG/ZG

where KG/ZG
⊆ G/ZG is an arbitrary maximal compact subgroup contain-

ing KH/ZG
. Hence EG/ZG is polystable, so EG is also polystable.

If moreover the image of ρ is dense in KH/ZG
, then Lemma 2.2 yields

Aut(EG/ZG) = CG/ZG
(ρ) = ZH/ZG

since the centralizer of H/ZG in G/ZG is known to be ZH/ZG. This implies
that the two canonical embeddings

ZH ↪→ Aut(EG) and Aut(EG)/ZG ↪→ Aut(EG/ZG)

are both isomorphisms. Using Proposition 3.2, it follows that the point
[EG] ∈ MG is in ΣG. This shows that ΣG ⊆ MG contains the inverse
image of every point in MG/ZG

that comes from a homomorphism ρ :
π1(X,x0)→ KH/ZG

with dense image. Such points are dense in

MG/ZG
\Mstab

G/ZG

by Lemma 2.1 and Proposition 3.1, so ΣG is dense inMG \Mstab
G . �

Corollary 3.4. — The smooth locus ofMG consists precisely of the
moduli points [E] ∈ MG of regularly stable principal G–bundles E over
X.

Proof. — The singular locusMsing
G ⊆MG is closed and contains ΣG, so

it contains the strictly semistable locus MG \ Mstab
G due to the previous

Corollary 3.3. The rest follows from Proposition 2.3.i. �
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4. Reconstructing the Riemann surface

In this section, we prove the following main result of this paper.

Theorem 4.1. — Let X,X ′ be compact connected Riemann surfaces
of genus gX , gX′ > 3. Let G,G′ be nonabelian connected reductive linear
algebraic groups over C. Let d ∈ π1(G) and d′ ∈ π1(G′) be given.
If the smooth locus of Md

G(X) is isomorphic to the smooth locus of
Md′

G′(X ′), then X is isomorphic to X ′.

This theorem is proved here by reconstructing X from the smooth lo-
cus of the variety Md

G(X). Starting from a moduli space Md′

G′(X ′) with
isomorphic smooth locus, this reconstruction will automatically yield an
isomorphic Riemann surface, thereby proving X ′ ∼= X.

Thus it suffices to consider only one Riemann surface X. We reconstruct
X from the smooth locus ofMd

G =Md
G(X), in several steps.

Step 1.

Let Z0
G ⊆ ZG be the identity component. We put G := G/Z0

G. The
projection G� G induces a morphism

(4.1) pr :Md
G −→Md̄

G

where d̄ ∈ π1(G) denotes the image of d ∈ π1(G).

Lemma 4.2. — We have pr∗(OMd
G

) = OMd̄

G

.

Proof. — The canonical embedding

OMd̄

G

↪→ pr∗(OMd
G

)

turns the latter into a coherent sheaf of algebras over the former. Let

U ⊆Md̄
G

be the regularly stable locus. This locus U is known to be open and non-
empty; one way to see this is to use Corollary 3.4. BecauseMd̄

G
is normal,

it suffices to prove the claim over U .
Since Z0

G is central in G, the multiplication map

Z0
G ×G −→ G

is a group homomorphism. It induces a morphism of projective varieties

M0
Z0

G
×Md

G −→Md
G
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by extension of the structure group. Thus the abelian variety

A :=M0
Z0

G

acts onMd
G. The map pr in (4.1) is A–invariant, and its restriction

pr : pr−1(U) −→ U

is a principal A–bundle. As A is integral, the claim follows over U . �

Let ωG denote the dualizing sheaf of Md
G. By [13, Proposition 2.2] or

[7, Theorem 2.8], ωG is a line bundle onMd
G. Its restriction to the smooth

locusMd
G \M

sing
G is the canonical line bundle det(Ω1).

Corollary 4.3. — Choose n � 0. Then the line bundle ω⊗(−n)
G on

Md
G is globally generated, and the corresponding morphism

ϕ
ω
⊗(−n)
G

:Md
G −→ PN

factors into the morphism pr in (4.1), followed by a closed immersion.

Proof. — We have ωG ∼= pr∗(ωG) according to [13, p. 525–527]. Hence
the projection formula gives an isomorphism

pr∗
(
ω
⊗(−n)
G

) ∼= ω
⊗(−n)
G

⊗ pr∗(OMd
G

) = ω
⊗(−n)
G

for any n. Taking global sections on both sides, we get

H0(Md
G, ω

⊗(−n)
G

)
= H0(Md̄

G
, ω
⊗(−n)
G

)
.

Now use that ω⊗−1
G

is ample, according to [13, Corollary 2.1]. �

This shows how to reconstruct the morphism pr in (4.1), and in particular
its targetMd̄

G
, from the varietyMd

G.
One can in fact reconstructMd̄

G
from just the smooth locus ofMd

G, by
taking the closure of its image under the map

ϕ
ω
⊗(−n)
G

:Md
G \M

sing
G −→ PN

given by the canonical line bundle ωG onMd
G \M

sing
G .

Remark 4.4. — Every holomorphic section of ωG overMd
G \M

sing
G ex-

tends toMd
G by normality, and hence is algebraic. Thus it suffices to assume

in Theorem 4.1 that the two smooth loci are biholomorphic.

For the remaining steps, we can thus assume that G is semisimple, G 6=
{1}, and that we are given the projective varietyMd

G.
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Step 2.

Corollary 3.3 characterizes the locus Md
G \ Mstab

G in Md
G. We assume

that it is non-empty, and consider an irreducible component of it. Its nor-
malization is, due to Proposition 3.1, isomorphic to

Me
H/ΓH

for some Levi subgroup H of a maximal parabolic subgroup P ( G, and
some inverse image e ∈ π1([H,H]) of d.
The group ΓH acts on the line bundle ωH over Me

H . Its square ω⊗2
H

descends to a line bundle ω⊗2
H /ΓH over Me

H/ΓH according to Kempf’s
lemma [2, Théorème 2.3]. This line bundle is determined by the normal
varietyMe

H/ΓH alone, due to the following lemma.

Lemma 4.5. — The line bundle ω⊗2
H /ΓH is over the smooth locus of

Me
H/ΓH isomorphic to the square of the canonical line bundle det(Ω1).

Proof. — This is clear if ΓH is trivial. So we may assume ΓH ∼= {±1}.
The character χH : H → C∗ in (3.1) induces a ΓH–equivariant morphism

(χH)∗ :Me
H −→ J = J(X) := Pic0(X).

Since ΓH acts effectively on ZH/ZG, it also acts effectively on the isogenous
torus H/[H,H]. Hence −1 ∈ ΓH acts on J by the inverse map from the
group structure on J . In particular, the fixed locus

(Me
H)ΓH ⊆Me

H

is contained in the inverse image of the 2–division points in J , so its codi-
mension is at least gX > 3. Thus it suffices to check the lemma over U/ΓH
for the smooth open subscheme

U :=Me
H \

(
(Me

H)sing ∪ (Me
H)ΓH

)
where ΓH acts freely. But here the claim follows simply from the fact that
the canonical projection U � U/ΓH is étale. �

Step 3.

Replacing G by H in (4.1), we get a canonical ΓH -equivariant morphism
pr :Me

H →Mē
H

with H := H/Z0
H . It induces a morphism

(4.2) pr :Me
H/ΓH −→Mē

H
/ΓH .
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Lemma 4.6. — There is a dense open subscheme U ⊆ Mē
H
/ΓH such

that
pr : (pr)−1(U) −→ U

is an étale-locally trivial fibration, with fiber either the Jacobian J or its
quotient J/{±1} modulo the inverse map from its group structure.

Proof. — Let U ⊆Mē
H

be the regularly stable locus. The restriction

(4.3) pr : pr−1(U) −→ U

is a principal J–bundle, as in the proof of Lemma 4.2.
Suppose for the moment that the action of ΓH onMē

H
is effective. Then

ΓH acts freely on some dense open subscheme U ′ ⊆ U . The principal J–
bundle pr in (4.3) descends to a principal J–bundle

pr−1(U ′)/ΓH −→ U ′/ΓH .

Hence the lemma holds for U := U ′/ΓH ⊆Mē
H
/ΓH in this case.

It remains to treat the case where the action of ΓH onMē
H
is not effective.

This means ΓH ∼= {±1}, and that ΓH acts trivially onMē
H
.

We claim that in this case U := U ⊆ Mē
H

= Mē
H
/ΓH satisfies the

conditions in the lemma. Replacing U by an étale covering and pulling
back, we can choose a section σ of the principal J–bundle pr in (4.3). Let
γ ∈ ΓH be the nontrivial element. Then

γ · σ = ξ + σ

for some morphism ξ : U → J . Refining the covering of U if necessary, and
using the divisibility of J , we may assume ξ = 2ξ′. Then

γ · (ξ′ + σ) = γ · ξ′ + γ · σ = −ξ′ + (ξ + σ) = ξ′ + σ,

since ΓH acts by the inverse map on J . So ξ′ + σ is ΓH -invariant.
This shows that the principal J–bundle pr in (4.3) admits étale-locally

ΓH -equivariant trivializations. Hence it descends to an étale-locally trivial
fibration with fiber J/ΓH = J/{±1} over U . �

Remark 4.7. — The second case, where the general fiber of pr is J/{±1},
actually occurs. An example is G = Sp2n+2 and H ∼= C∗ × Sp2n. Here
ΓH ∼= {±1} is nontrivial, but its action on H = Sp2n is trivial.

Corollary 4.8. — Choose n � 0. Then the line bundle
(ω⊗2
H /ΓH)⊗(−n) on Me

H/ΓH is globally generated, and the corresponding
morphism

ϕ(ω⊗2
H
/ΓH)⊗(−n) :Me

H/ΓH −→ PN

factors into the morphism pr in (4.2), followed by a closed immersion.
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Proof. — Using Kempf’s lemma, the anti-ample line bundle ω⊗2
H

onMē
H

descends to an anti-ample line bundle ω⊗2
H
/ΓH onMē

H
/ΓH with

pr∗(ω⊗2
H
/ΓH) ∼= ω⊗2

H /ΓH .

The corollary can now be proved exactly as Corollary 4.3, since Lemma 4.6
and the normality ofMē

H
/ΓH together imply

pr∗(OMe
H
/ΓH

) = OMē

H
/ΓH

. �

This shows how to reconstruct the morphism pr in (4.2), and in particular
its general fiber J(X) or J(X)/{±1}, from the varietyMe

H/ΓH .
It is known that J(X) can be reconstructed from the Kummer variety

J(X)/{±1}, for example as its integral closure in the field of meromorphic
functions on the two-sheeted cover of its smooth locus given by the unique
maximal torsionfree subgroup in its fundamental group.

Step 4.

Starting from the varietyMd
G, we have now reconstructed the Jacobian

J = J(X), together with a morphism jE : J → Md
G given by a general

point [E] ∈Me
H . This morphism is the composition

jE : J ∼=M0
Z0

H

·E−→Me
H

iH−→Md
G.

Lemma 4.9. — The first Chern class c1(j∗E ωG) ∈ H2(J,Z) is a negative
multiple of the canonical principal polarization Θ on J .

Proof. — According to [13, Proposition 2.2], ωG is the pullback along

ad :Md
G −→MSL(g)

of the determinant of cohomology line bundle Ldet on MSL(g). Points in
MSL(g) correspond to polystable vector bundles V over X with trivial
determinant; we recall that the fiber of Ldet over such a point is the deter-
minant of the cohomology of V , i. e. the vector space

ΛtopH0(X,V )⊗ ΛtopH1(X,V )∗

of dimension one. Let gm ⊆ g denote the eigenspace where C∗ ∼= Z0
H acts

with weight m ∈ Z. The line bundle j∗E ωG is the pullback of Ldet along the
morphism

J −→MSL(g)
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that sends a line bundle L of degree 0 over X to the vector bundle⊕
m∈Z

L⊗m ⊗ (E ×H gm)

with trivial determinant over X. Computing the determinant of its coho-
mology, we conclude that

c1(L) =
∑
m∈Z
−m2 dim gm ·Θ ∈ H2(J,Z).

This is a strictly negative multiple of Θ, since gm 6= 0 for some m 6= 0,
because the action of C∗ ∼= Z0

H on g is not trivial. �

Hence we can also reconstruct the principal polarization Θ on J(X); then
the usual Torelli theorem gives back the Riemann surface X.

Step 5.

It remains to treat the caseMd
G \Mstab

G = ∅. According to [14, Propo-
sition 7.8], this can only happen if

G/ZG ∼= PGLn1 × · · · × PGLnr
.

In particular, the universal covering of G is a homomorphism

(4.4) SLn1 × · · · × SLnr −→ G.

Its kernel is a finite subgroup µ in the product of the centers µni ⊆ SLni .
For each i, we lift the image of d ∈ π1(G) in π1(PGLni

) ∼= Z/niZ to
an integer di ∈ Z. Then the emptiness of the strictly semistable locus also
implies that di is coprime to ni for all i. Let Li be a line bundle of degree di
on X, and letMni,Li

denote the coarse moduli space of semistable vector
bundles E over X with rank ni and determinant Li. The homomorphism
(4.4) induces a finite surjective morphism

(4.5) pr :Mn1,L1 × · · · ×Mnr,Lr
−→Md

G.

The smooth locus inMd
G coincides with the regularly stable locus by Corol-

lary 3.3; we denote it by U ⊆Md
G. The abelian group of principal µ–bundles

over X is isomorphic to µ2gX . This group acts on the morphism (4.5). This
turns the restriction

pr : pr−1(U) −→ U

into an unramified Galois covering with group µ2gX . SinceMni,Li is a uni-
rational smooth projective variety, it is in particular simply connected [17].
Thus pr−1(U) is also simply connected, as we are removing a closed subset
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of complex codimension > 2. This shows that pr−1(U) is the universal cov-
ering of U . Taking the integral closure ofMd

G in the field of meromorphic
functions on pr−1(U), we can thus recover the morphism (4.5) from the
varietyMd

G in this case.
Because the Picard group of Mni,Li is isomorphic to Z, the extremal

rays in the nef cone of the variety

Mn1,L1 × · · · ×Mnr,Lr

correspond to the factorsMni,Li . Thus we can even reconstruct these fac-
torsMni,Li

from the varietyMd
G.

The projective varietyMni,Li is known to determine the Riemann sur-
face X up to isomorphy; cf. [20, Theorem 1] or [12, Theorem 3]. Thus we
can reconstruct X fromMd

G(X) in this case as well.
This completes the proof of Theorem 4.1. �
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