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SERRE FUNCTORS FOR LIE ALGEBRAS AND
SUPERALGEBRAS

by Volodymyr MAZORCHUK & Vanessa MIEMIETZ

ABSTRACT. — We propose a new realization, using Harish-Chandra bimodules,
of the Serre functor for the BGG category O associated to a semi-simple complex
finite dimensional Lie algebra. We further show that our realization carries over to
classical Lie superalgebras in many cases. Along the way we prove that category O
and its parabolic generalizations for classical Lie superalgebras are categories with
full projective functors. As an application we prove that in many cases the endomor-
phism algebra of the basic projective-injective module in (parabolic) category O for
classical Lie superalgebras is symmetric. As a special case we obtain that in these
cases the algebras describing blocks of the category of finite dimensional modules
are symmetric. We also compute the latter algebras for the superalgebra ¢(2).

RESUME. — Nous proposons une nouvelle réalisation du foncteur de Serre pour
la catégorie O de BGG associée a une algebre de Lie semi-simple complexe de
dimension finie, en utilisant les bimodules d’Harish-Chandra. De plus, nous dé-
montrons que dans beaucoup de cas notre réalisation s’applique aux super algebres
de Lie classiques. Pour cela, nous prouvons que la catégorie O et ses généralisations
paraboliques pour les super-algebres de Lie classiques sont des catégories avec fonc-
teurs pleins projectifs. Comme application, nous montrons que, dans beaucoup de
cas, l'algeébre d’endomorphismes du module projectif-injectif basique de la catégo-
rie O (parabolique) pour les super-algebres de Lie est symétrique. En particulier,
dans ce cas, les algebres décrivant les blocs de la catégorie de modules de dimension
finie sont symétriques. Nous calculons ces derniéres algébres pour la super algebre
de Lie q(2).

1. Introduction and description of the results

The category of finite dimensional modules over a semi-simple complex
finite dimensional Lie algebra is semi-simple and hence completely under-
stood. For Lie superalgebras the situation is rather more complicated. Al-
though many blocks of the category of finite dimensional modules over a

Keywords: Lie superalgebra, module, Harish-Chandra bimodule, Serre functor, quiver,
category O.
Math. classification: 17B10, 16530, 18GO05.
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Lie superalgebra are still semi-simple, a general block might have infinitely
many simple modules or infinite global dimension. The recent preprint [8]
gives a combinatorial description of associative algebras whose module cate-
gories are equivalent to blocks of the category of finite dimensional gl(m,n)-
modules. This description implies many nice properties of these algebras,
in particular, it turns out that these algebras are symmetric and Koszul
(this is proved in earlier articles of the series). To solve a similar problem
for other Lie superalgebras is an open and seemingly difficult task.

Understanding the category of finite dimensional modules is the first step
towards understanding the representation theory of a Lie superalgebra. The
next natural step is to understand the analogue of the BGG category O
(and its numerous generalizations). Various questions related to the general
theory of highest weight modules over finite dimensional Lie superalgebras
have been studied in [6, 5, 15, 9], see also references therein. However, as in
the case of finite dimensional modules, most of the problems in this theory
are still to be solved.

Among the classical Lie superalgebras the queer Lie superalgebra q(n)
stands out in many ways. While it looks deceptively easy, consisting only

of an even and an odd copy of gl , its representation theory is surpris-

n?
ingly intricate. One of the roots of this problem is that the classical Cartan
subalgebra of q(n) is non-commutative. Two major achievements in the rep-
resentation theory of ¢q(n) were a description of characters of simple finite
dimensional q(n)-modules given in [30, 29], and a relation of character for-
mulae for q(n) to Kazhdan-Lusztig combinatorics in [5]. The latter article
contains, in particular, conjectural combinatorics for the whole category O.
For “easy” blocks this conjecture was proved in [11].

Motivated by the ultimate goal of proving the conjectures from [5] and
extending the results of [8] to q(n), in the present article we take some first
steps in this direction. We consider a classical Lie superalgebra g from the
list gl(m,n), sl(m,n), asp(m,n), psl(n,n), q(n), pq(n), sq(n), psq(n). We
show that a block of the category of finite dimensional g-modules, related
in a certain way to a simple strongly typical module which is not stable
under parity change, is described by a symmetric algebra. For the first four
superalgebras this covers all blocks and for the last four this covers roughly
half of the blocks.

To this end we study Serre functors for the category O and its parabolic
generalizations. The Lie algebraic counterpart of this theory was developed
in [25] and is heavily based on the combinatorial description of blocks of O
for Lie algebras, which does not yet exist for Lie superalgebras. Therefore
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SERRE FUNCTORS FOR LIE SUPERALGEBRAS 49

we are forced to reprove the main results from [25] in a completely differ-
ent way. The paper [25] establishes the important property that the Serre
functor naturally commutes with projective functors (in the sense of [20]).
This silently uses the fact that the category O for Lie algebras is a category
with full projective functors in the sense of [20].

We show that, under some natural assumptions, the category O for Lie
superalgebras as well as its parabolic generalizations are categories with
full projective functors. This setup involves a choice of the so-called “dom-
inant object” A, which in our case turns out to be a (parabolic) Verma
module, whose highest weight satisfies certain conditions. We observe that
a convenient way to define functors naturally commuting with projective
functors is to use Harish-Chandra bimodules. For two g-modules M and N
the space L(M, N) of all linear maps from M to N which are locally fi-
nite with respect to the adjoint action of the even part has a natural g-
bimodule structure. Extending results of [2] and [27] we show that certain
direct summands (9% of the (parabolic) category OP for Lie superalgebras
are equivalent to categories of Harish-Chandra bimodules. On the latter we
have the usual restricted duality _®. As the main result of the paper we
prove the following.

THEOREM 1.1. — For category (9%, the left derived of the functor
L(-,A)® @y(g) A
is a Serre functor on the corresponding category of perfect complexes.

Even in the case of Lie algebras this description of the Serre functor
is new. The proof relies heavily on methods developed by Gorelik in [13],
which we adapt to our more general situation. As an application we obtain
that the endomorphism algebra of the basic projective-injective module in
(9§ is symmetric. For Lie superalgebras of type I this reproves and strength-
ens [3, Theorem 3.9.1] which says that the endomorphism algebra of a basic
projective-injective finite dimensional module is weakly symmetric. We use
the latter result to compute the associative algebras describing blocks of
the category of finite dimensional q(2)-modules.

The article is organized as follows: In Section 2 we collect necessary
preliminaries on modules over k-linear categories, Serre functors and sym-
metric algebras. In Section 3 we recall the theory of categories with full
projective functors following [20]. In Section 4 and Section 5 we prove the
main results for Lie algebras and superalgebras, respectively. Finally, Sec-
tion 6 is devoted to the above mentioned example of q(2).
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2. Serre functors for k-linear categories
2.1. Conventions

For an abstract category % and two objects xz,y € ¥ we denote by
€ (x,y) the set of morphisms from x to y in . At the same time, for
categories of modules and the corresponding derived categories, we will use
the usual Hom notation. In particular, working with ¢-modules (that is
functors from % to some fixed category), Homgs will mean morphisms in
the category of €-modules.

For an abelian category A we denote by D~ (A) and D’(A) the derived
categories of complexes (of objects in .A) bounded from the right and from
both sides, respectively. If A is the category of ¥-modules for some cate-
gory €, the corresponding derived categories D~ (A) and D*(A) will be de-
noted simply by D~ (%) and D°(%), respectively (and we will never consider
categories of modules over abelian categories). For a right exact functor F
on A we denote by ZF the corresponding left derived functor.

For the rest of the paper we fix an algebraically closed field k and denote
by _* the usual duality Homg(_, k). All categories in the paper are assumed
to be k-linear (i.e. enriched over k-mod) and all functors are supposed to
be k-linear and additive. If not stated otherwise, a functor always means a
covariant functor.

2.2. Serre functors

Let € be a k-linear additive category with finite dimensional morphism
spaces. A Serre functor on % is an additive auto-equivalence F of € together
with isomorphisms

(2.1) U,y €(x,Fy) =€y, x)",
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natural in  and y (see [4]). If a Serre functor exists, it is unique (up to
isomorphism) and commutes with all auto-equivalences of %.

For example, let A be a finite dimensional associative k-algebra of finite
global dimension. Then the category D”(A) always has a Serre functor,
which is given by the left derived of the Nakayama functor

A*®4 _ + A-mod — A-mod

(see [16]). Note that we have an isomorphism of functors A* ®4 _ =
Homa(—, A)* (as both are right exact and agree on the projective gen-
erator A). The last example is typical in the sense that to have a Serre
functor one usually has to extend the original abelian category A-mod to
the triangulated category DY(A) (or some other triangulated category, for
example, the category of perfect complexes, see Subsection 2.4).

2.3. Infinite dimensional setup

In what follows we will often work with abelian categories having infin-
itely many isoclasses of simple objects. Therefore we will need an “infinite
dimensional” generalization of the last example. Consider a small k-linear
category C which satisfies the following assumptions:

(I) C is basic in the sense that different objects from C are not iso-
morphic;
(IT) for any z,y € C the k-vector space C(x,y) is finite dimensional;
(IIT) for any x € C there exist only finitely many y € C such that
C(z,y) # 0;
(IV) for any x € C there exist only finitely many y € C such that
C(ya (ﬂ) # 0;
(V) for any = € C the endomorphism algebra C(z, ) is local and basic.
We will call such categories strongly locally finite, or simply slf-categories.
A left C-module is a covariant functor M : C — k-Mod. A C-module M
is said to be finite dimensional provided that ) _.dim M (z) < oco. We
denote by C-mod the category of all finite dimensional C-modules. The
corresponding notion and category mod-C of right modules are defined
similarly using contravariant functors. The functor _* induces a duality
between C-mod and mod-C.
Because of our assumptions (I)-(V), indecomposable projective C-modu-
les are of the form C(z, _), z € C, and belong to C-mod. Hence C-mod is
an abelian length category (i.e. every object has finite length) with enough
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projectives and injectives (because of _*). Let C denote the full subcate-
gory of C-mod consisting of the indecomposable projectives C(x, ), x € C.
Then C-mod is equivalent to the category of finite-dimensional éop—modules7
moreover, the category ™ is isomorphic to C.

Remark 2.1. — For an slf-category C denote by A¢ the path algebra
of C°". Then the category C-mod is equivalent to the category of finite-
dimensional Ac-modules. The algebra Ac can be axiomatically described
by the following properties:

e Ac is equipped with a system {e; : i € €} of primitive orthogonal
idempotents (the identity morphisms for objects of €);
e cach Ace; and e; A¢ is finite dimensional (this combines (IT)—(IV));
° AC = @ €iAcej.
i,j€€

A C-bimodule is a bifunctor B = B(_, _) from C to k-Mod, contravariant
in the first (left) argument and covariant in the second (right) argument.
A typical example of a bimodule is the regular bimodule C = C(_, _).

The Nakayama functor N := C* ®¢ — = Home(—,C)* is an endofunctor
of C-mod (for more details on tensor products see [24, 2.2]). Consider the
endofunctor £N of D~ (C). Let Z#(C) denote the full subcategory of D~ (C)
consisting of objects isomorphic to finite complexes of projective objects
(the so-called perfect complexes). Our first easy observation is the following
(compare with [25, 4.3]):

PROPOSITION 2.2. — Assume that all injective C-modules are of finite

projective dimension. Then £N is a Serre functor on & (C).

Proof. — To start with we claim that £N preserves Z(C). Indeed, the
functor #N is a triangle functor and £?(C) is generated, as a triangulated
category, by indecomposable projective C-modules. The functor N maps
an indecomposable projective C-module to an indecomposable injective C-
module, and the latter has finite projective dimension and hence is an object
of Z(C).

That N has the property given by (2.1) is checked by the following
standard computation: For any N € £(C) and projective P € C-mod we
have natural isomorphisms

Hom g ¢y (N, £N P)* = Hom g ¢) (NN, Homy (Home (P, C), k))*
(by adjunction) = Homyg (Home (P, C) ®¢ N, k)*
(as (_*)* =1d) = Hom¢(P,C) ®c N

(by projectivity of P) = Home (P, N).
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Using the triangle property for .£N this extends to the whole of Z(C) (in
the second variable) and proves (2.1). O

2.4. Serre functors and symmetric algebras

Let C be as in the previous subsection. The category C is called sym-
metric provided that the C-C-bimodules C and C* are isomorphic. Our sec-
ond observation is the following infinite-dimensional generalization of [25,
Lemma 3.1]:

PRrROPOSITION 2.3. — Assume that all injective C-modules are of finite
projective dimension. Then C is symmetric if and only if the Serre functor
on #(C) is isomorphic to the identity.

Proof. — By Proposition 2.2, under our assumptions the functor ZN is
the Serre functor on Z2(C). If C is symmetric, then N =C*®¢ - 2 C®¢ _,
the latter being isomorphic to the identity functor on C-mod. Hence -£N
is isomorphic to the identity functor.

Conversely, if £N is isomorphic to the identity functor, then N is isomor-
phic to the identity functor, when restricted to the additive subcategory of
all projective modules in C-mod. The latter is certainly true for the functor
C ®c —. As both N and C ®¢ _ are right exact and agree on projective
modules, they must be isomorphic, which implies that the bimodules C*
and C are isomorphic. a

3. Categories with full projective functors
3.1. Definitions

Let o/ be an abelian category, M € o and F := {F; : i € I} a full
subcategory of the category of right exact endofunctors of /. We assume
that F is closed (up to isomorphism) under direct sums and composition.
Following [20] we say that (<, M,F) is a category with full projective
functors, or, simply, an fpf-category, provided that

(i) Idy € F;
(ii) for every i € I the object F; M is projective in &7;

(iii) every N € & is a quotient of F; M for some i € I;

(iv) foralli,j € I the evaluation map evas: F(F;,F;) = &/(F; M,F; M)

is surjective.
Functors in F are called projective functors and M is called the dominant
object.

TOME 62 (2012), FASCICULE 1
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3.2. Basic examples

Let g be a semi-simple finite-dimensional complex Lie algebra with a fixed
triangular decomposition g =n_ & b @ ny. Consider the BGG category O
associated with this triangular decomposition (for details on O we refer
the reader to [17]). Let © be the set of weights of all finite dimensional
g-modules. For A € h* consider the coset A = A + © and denote by Ox the
full subcategory of O containing all modules M such that supp M C \. Fix
any dominant regular ;2 € A and consider the corresponding Verma module
A(p) (with highest weight p).

For every finite-dimensional g-module E the functor F ®¢ — preserves
O5. Let F denote the family of all such functors. Then (Ox, A(u), F) is an
fpf-category, see [20, Proposition 16].

If p is a parabolic subalgebra of g containing h @ n,, we have the full
subcategory Og of Oy consisting of all modules on which the action of p
is locally finite. Every functor in F preserves (’)%. Let A(p)® denote the
maximal quotient of A(u) which lies in O;. Then (O%, A(p)?, F) is an fpf-
category, see [20, Proposition 22]. For further examples of categories with
full projective functors see [20].

3.3. Functors naturally commuting with projective functors

Assume that (o, M, F) is an fpf-category as in Subsection 3.1. An end-
ofunctor G of & is said to naturally commute with projective functors if
for every i € I there is an isomorphism 7; : F; o G — G o F; such that for
any 4,j € I and any o € F(F;,F;) the diagram

ml lﬁj
G(a)

GOF,L' GOFj

commutes. A functor naturally commuting with projective functors is de-
termined uniquely (up to isomorphism) by its image on the dominant ob-
ject M, see [20]. For examples of functors naturally commuting with projec-
tive functors (in the situations described in Subsection 3.2) we again refer
the reader to [20]. A natural question to ask is under what assumptions
the Nakayama functor naturally commutes with projective functors.
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4. Serre functors for Lie algebras
4.1. Harish-Chandra bimodules and category O

From now on k = C and we abbreviate ®¢ by ®. Consider the setup of
Subsection 3.2 and denote by H the category of Harish-Chandra bimodules
for g. This category consists of all finitely generated g-bimodules on which
the adjoint action of g is locally finite (see [2] or [18, Kapitel 6]).

Let U = U(g) denote the universal enveloping algebra of g. For a prim-
itive ideal I of U let H} denote the full subcategory of H which consists
of all bimodules annihilated by I from the right. For A € h* let I, denote
the annihilator of A(\). If A is dominant and I is a primitive ideal contain-
ing I, we denote by A’()) the quotient A(\)/TA(N). We denote by Oy the
full subcategory of Oy consisting of all modules which are isomorphic to
quotients of modules of the form E®@AL()\), where E is a finite-dimensional
g-module (the categories O(P} from [26, 4.3] are direct summands of Oy).
Let _* be the usual duality on O. The duality _* restricts to Oj.

For two g-modules M and N, let £L(M,N) denote the g-bimodule of
all linear maps from M to N which are locally finite with respect to the
adjoint action of g (see [18, Kapitel 6]). For A € h* dominant and regular
we have an equivalence of categories as follows (see [2, Theorem 5.9] for
the category O and [27, Theorem 3.1] for the general statement):

£(AT (), )
M
(4.1) Oor<____ =TT
_®UAI(>\)

Fix one representative in every isomorphism class of indecomposable pro-
jective objects in O and denote by C; the full subcategory of O generated
by these fixed objects. Then C;y is an slf-category and Oy is equivalent to
Cr-mod (note that C; = C7® because of x). The canonical equivalence be-
tween O and C;-mod sends M € Op to the C;P-module Homg(_, M)
(which is a functor from C7” to C-mod) and is defined on morphisms in the
natural way.

Let o denote the Chevalley anti-involution on g. For a g-bimodule X we
denote by X*® the bimodule defined as follows: X® = X as a vector space
and for a,b € g, x € X, we have a -5z -5 b := o(b)zo(a). We also denote
by X* the dual bimodule of X. If X is a Harish-Chandra bimodule, we
denote by X® the subbimodule of X* consisting of all elements on which
the adjoint action of g is locally finite.
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56 Volodymyr MAZORCHUK & Vanessa MIEMIETZ
4.2. Serre functor for category O

The Serre functor for the regular block of the category O was described
in [1] and [25]. The latter also contains a description of the Serre functor
for the regular block of OP.

THEOREM 4.1. — Let A\ be dominant and regular and I be a primitive
ideal containing Iy. Set A := A!(X\). Then for any PN € O; with P
projective there is an isomorphism

Homg (N, L(P,A)® @y A) = Homg(P,N)*,
natural in both P and N.

Proof. — In the proof we will need the following statement:

PROPOSITION 4.2. — For any P,N € Oy with P projective there is an
isomorphism
(4.2) Homg.¢(L(A, P),L(A,N)) = L(P,A) ®@u.v LIA,N)

natural in both P and N (here ®y.y denotes the tensor product over
UeU°P).

Proof. — We start with the following observation:

LEMMA 4.3. — In the case P = A both sides of (4.2) are finite dimen-
sional vector spaces of the same dimension.

Proof. —If P = A, then L(A,A) 2 U/I, see [18, 6.9], and the left hand
side of (4.2) (which is clearly finite dimensional) is isomorphic to L(A, N)89,
the set of g-invariants of L(A, N), see [2, Lemma 2.2]. Further, we have the
inclusion

U/I ®u.v L(A,N) C Home (U/I @y L(A,N),C)”
(by adjunction) = Homg o (U/I, L(A, N)*)>k
=~ Homg4 (U/1,L(A,N)®)"
(by the above) = ((L(A, N)®)‘3)*
= L(A,N)?,
where the third step is justified by the facts that the image of any homo-
morphism from U/I to L(A, N)* belongs to L(A, N)®, and the fifth step is

justified by the fact that (L(A, N)®)% = (L(A, N)%)* as the canonical non-
degenerate pairing L(A, N) x L(A, N)® — C restricts to a non-degenerate
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pairing L(A, N)8 x (L(A, N)®)# — C. Since the vector space L(A, N)? is
finite dimensional, the original inclusion

U/I ®u.v L(A,N) C Home (U/I @y L(A,N),C)”

is, in fact, an isomorphism. The claim follows. 0

Write L(A,N) = L(A,N)® & X, where X is stable with respect to
the adjoint action of g. In the case P = A we have L(A,A) = U/I and
U/I®y_v L(A, N) is the 0-degree Hochschild homology of £L(A, N), which
equals

(4.3) U/l ®@u_u LA, N) = L(A, N)/KL(A, N),

where
KLA,N) :={uw —vu:ueU/I,ve L(A,N)}.

As an adjoint module, X is a direct sum of finite-dimensional simple mod-
ules, none of which is isomorphic to the trivial module. Therefore X C
KL(A,N). From Lemma 4.3 it follows that X = KL(A, N) comparing the
dimensions. Composing (4.3) with the projection of L(A, N) onto L(A, N)®
along X we obtain the following natural isomorphism:

(4.4) U/I @u_u LA, N) = L(A,N)/KL(A, N) = L(A,N)S.

Consider now the case where P = E ® A for some finite-dimensional
g-module E. By [18, 6.2] we have canonical isomorphisms

45) LE®AAN=LAAN®E, LAERA)2E®LAA).

Denote by E the right g-module defined as follows: E = E as a vector
space and v g := —gv for v € F and g € g (and similarly for going from
right to left modules). Then the usual adjunction (see [2, 2.1(d)]) gives, by
restriction, the isomorphism

(4.6) Homg o(E ® U/I, X) = Homg o(U/I, E* @ X).

A straightforward computation also shows that
(4.7) (U/I ® E*) @u.y X 2U/I @p.y (B* @ X)
vihu®@u®r—uu® .

Combining (4.4), (4.7) and (4.6) we obtain a required isomorphism in
the case P = E ® A. Now the claim follows from additivity of all functors
and naturality of all constructions. O
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The theorem is now proved via the following chain of natural isomor-
phisms:

—~
N
=

N

1R 1R TR TRE

Homgy(P, N

(by Proposition 4.2
(taking the double dual
(by adjunction

Homg ¢(L(A, P), L(A, N))
L(P,A) @u.u L(A,N)
Home (£(P, A) @y L(A,N),C)”
Homg 4 (L(A,N), L(P,A)*)"
Homg 4 (L(A, N), L(P,A)®)"
(by (4.1)) Homg (N, L(P,A)® @y A)”
Here taking the double dual is justified by the fact that the vector space in

question is finite dimensional (see Lemma 4.3), and the penultimate step
is justified by the fact that the image of every morphism from L£(A, N) to

N — —

L(P,A)* belongs to L(P,A)®. O
COROLLARY 4.4. — Assume that \, I and A are as above.
(a) The functor L(_,A)® @y A is isomorphic to the Nakayama functor
on O[.

(b) If we additionally assume that all injective modules in Oy have finite
projective dimension, then the left derived of the functor L(_, A)®®y
A is a Serre functor on & (Cy).

We would like to point out that the hypothesis of Corollary 4.4(b) is
satisfied if Oy is a direct summand of the usual or parabolic category O.
Note that Oy is a direct summand of O if I is a minimal primitive ideal.
Furthermore, O; is a direct summand of some parabolic O if [ is the
annihilator of some dominant parabolic Verma module.

4.3. Alternative descriptions and applications

COROLLARY 4.5. — Under the assumptions of Corollary 4.4(a) the Na-
kayama functor on O naturally commutes with projective functors.

Proof. — By Corollary 4.4(a), the Nakayama functor on Oy is isomorphic
to the functor £(_,A)® @y A. Applying _® to the left isomorphism in
(4.5) we get that £(_,A)® @y A commutes with projective functors and
naturality follow from the definition of projective functors. |

Under the assumptions of Corollary 4.4(a) consider the endofunctor C
of Oy of partial coapproximation with respect to projective-injective mod-
ules, see [21, 2.5]. This functor is the unique (up to isomorphism) right
exact functor which sends a projective module P to the submodule of P
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generated by images of all possible morphisms from projective-injective
modules to P and acts on morphisms via restriction.

The module A = A’()\) has, by [23, Corollary 3], simple socle which
we denote by K = K(\) (it is the only simple subquotient of A of max-
imal Gelfand-Kirillov (GK) dimension). We have a canonical embedding
¢ : U/Anny K — L(K, K). The question of surjectivity of ¢ is known as
Kostant’s problem for K (see [19] and references therein). It is known (see
[19, 4.1]) that Kostant’s problem has a positive answer in the case when O;
is the usual or parabolic category O (and in many other cases as well).

COROLLARY 4.6. — Assume that A, I and A are as above and that ¢
is surjective. Then the Nakayama functor on Oy is isomorphic to C2.

Proof. — The fact that functor C (and hence also C?) naturally com-
mutes with projective functors repeats verbatim the proof of [25, Claim 2,
Page 153]. The Nakayama functor naturally commutes with projective func-
tors by Corollary 4.5. Therefore to complete the proof we only need to show
that C? maps A to the corresponding injective module.

First we claim that CA & K, where K is the simple socle of A (as in
Subsection 4.2). Indeed, A is projective and hence CA coincides with the
trace of projective-injective modules in A. By [23, 3.2], this trace coincides
with K.

By [23, Corollary 12], the surjectivity of ¢ is equivalent to the existence of
a two step resolution A — Xy — X7 with Xy and X; projective-injective.
Applying x we obtain
(4.8) X7 = X] > A
where both X and X7 are again projective-injective. As the kernel of the

natural projection A* - K* = K is killed by C, it follows that CK = CA*
and from (4.8) we obtain CA* =2 A*, which is exactly what we needed. O

Remark 4.7. — 1If Oy is a direct summand of the usual or parabolic
category O one can give yet another description for the Nakayama and
Serre functors in terms of Arkhipov’s twisting functors, see [25] for details.

Fix one representative in every isomorphism class of indecomposable
projective-injective objects in O; and denote by P; the full subcategory
of Oy generated by these fixed objects. The category P; is an slf-category.

COROLLARY 4.8. — Under the assumptions of Corollary 4.6 the cate-
gory Pr is symmetric.

Proof. — By our construction of Pj, every projective Pr-module is also
injective. Thus the Nakayama functor preserves &2 (Py) and hence gives rise
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to a Serre functor on this category. From Corollary 4.6 we obtain that the
Serre functor on & (P;) is the left derived of C2. The functor C obviously
induces the identity functor when restricted to projective-injective modules.
Now the claim follows from Proposition 2.3. g

In the case when [ is the annihilator of some parabolic Verma module,
Corollary 4.8 implies (and reproves) [25, Theorem 4.6]. If g is of type A,
then for an arbitrary I the claim of Corollary 4.8 can be deduced combining
[25, Theorem 4.6] and [26, Theorem 18]. In all other cases Corollary 4.8
seems to be new.

5. Serre functors for Lie superalgebras
5.1. Generalities on Lie superalgebras

In this section we denote by g one of the following Lie superalgebras:
gl(m,n), sl(m,n), osp(m,n), psl(n,n), q(n), pq(n), sq(n), psq(n). For all
these superalgebras the Lie algebra gg is reductive. The first four super-
algebras admit an even g-invariant bilinear form which is non-degenerate
on [g, g] (these superalgebras are called basic). The last four superalgebras
are called queer Lie superalgebras, or Lie superalgebras of type ¢. In the
following we denote by g-sMod the category of all g-supermodules, where
morphisms are homogeneous of degree zero (and by a module over a super-
algebra we always mean a supermodule). The category g-sMod is abelian.
Denote by II the parity change autoequivalence of g-sMod and by U = U (g)
the universal enveloping algebra of g.

Fix a triangular decomposition g = n~ ®h®n™ of g, where b is a Cartan
subalgebra, and let O denote the full subcategory of g-sMod consisting of
finitely generated modules M such that the action of hy on M is diagonal-
izable and the action of U(n™) on M is locally finite. Note that h = bq if
and only if g is basic.

If p C g is a parabolic subsuperalgebra containing h @ n*, we denote
by OF the full subcategory of O consisting of all modules M on which the
action of U(p) is locally finite. In particular, the category O9 coincides with
the category of finite dimensional hy-diagonalizable g-modules. Abusing
language, in the following by finite dimensional g-modules we will mean
finite dimensional ho-diagonalizable g-modules (the two categories coincide
if go is a semi-simple Lie algebra). Let _* denote the usual duality on O
(which is simple preserving for basic g and simple preserving up to II if g
is of type q). This duality restricts to OP.
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We have the usual induction and restriction functors Ind and Res be-
tween g-sMod and go-sMod. They are adjoint in the usual way (Ind, Res).
We also have the adjointness (Res, [19™ 8 o Ind), see [12, 3.2.4] and [10,
Proposition 2.2]. Note that dim g; is even dimensional if g is basic and also
for q(n) and pq(n) when n is even, and for sq(n) and psq(n) when n is odd.

Since U(g) is a finite extension of U(gp), we define the category H of
Harish-Chandra g-bimodules as the full subcategory of the category of g-
bimodules which become Harish-Chandra go-bimodules after restriction.
For any graded ideal I of U(g) we denote by H} the full subcategory of H
which consists of all bimodules annihilated by I from the right. If M and N
are g-modules, we denote by L£(M,N) the go-bimodule £(Res M,Res N)
which is also a g-bimodule as U(g) is a finite extension of U(go).

5.2. Structure of the category O

Consider the category h-dmod of finite dimensional h-modules on which
the action of hg is diagonalizable. In case h = b (i.e. g is basic) this category
is semi-simple and its simple objects are naturally parameterized by pairs
(A, €), where A € b (which describes the action of ) and € € {0, 1} (which
determines the parity of the module). If g is of type q, then the category
h-dmod is not semi-simple, it has enough projectives (see [7, Section 3])
and its simple objects are naturally parameterized by pairs (A, ), where
A € b (which describes the action of ) and ¢ is either in {+} or in {+, —}
depending on A as prescribed by the theory of Clifford algebras (see [15,
Appendix]). If we have two different simple modules for some A, they differ
by a parity change.

For a simple V € Bh-dmod set n™V = 0 and define the corresponding
Verma module as

A(V) :=U(g) Qupant+) V-

Every object in O has finite length (already as a go-module as U(g) is a
finite extension of U(gop)). To distinguish Lie algebras from superalgebras,
we denote by O the category O for g (defined with respect to the triangular
decomposition of gg obtained from the above triangular decomposition of g
by restriction).

Category O has enough projectives (which may be obtained as direct
summands of modules induced from projectives in @), every projective has
a filtration by Verma modules (see [7]). As induction is exact and adjoint
(from both sides) to exact functors, it sends injectives to injectives and
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projectives to projectives. In particular, it follows that all injective modules
in O have finite projective dimension (since this is true for O).

For any parabolic p (as in Subsection 5.1), the usual projection from O
onto OP obviously commutes with both induction and restriction. Hence,
using [31] and [32], we similarly get that injective modules in O have finite
projective dimension. We denote by AP(V') the image of A(V) in OP.

5.3. Equivalence to Harish-Chandra bimodules

Let T denote the generator of the anticenter of U(g), see [12]. An element
A € b is called strongly typical if T does not annihilate the Verma module
A(V), where V is a simple h-module on which by acts via A. Note that A
strongly typical implies that V is projective in h-dmod.

Let © denote the set of weights of all simple finite dimensional g-modules.
Fix a strongly typical A € hg which is regular and dominant with respect
to the dot-action of W and set A = A + ©. Call such A\ generic provided
that the go-module Res A(V) is a direct sum of Verma modules and non-
isomorphic direct summands of Res A(V') correspond to different central
characters. Denote by Oy the full subcategory of O consisting of all M
such that the go-support of M belongs to A. Define (9% correspondingly.
For V as above the indecomposable direct summand of O containing A(V)
is equivalent to a direct summand of O, see [14, 11].

As in the Lie algebra situation, we have projective endofunctors on O
given as direct summands of the functors of the form F ® _, where E is a
finite dimensional g-module. The functor E® _ is both left and right adjoint
to E* @ _, in particular, it is exact and sends projectives to projectives. It is
easy to see that every indecomposable projective in O; is a direct summand
of E® A(V) for some finite dimensional E, in particular, (’); coincides with
the category coker(E ® A(V)) which consists of all modules M having a
two step resolution

X1 =2 Xg—>M—0,
where Xy, X7 belong to the additive closure of modules of the form F ®
A(V) for finite dimensional E. Denote by F the full subcategory of the
category of right exact endofunctors of O whose objects are projective
functors. Now we can formulate our first main result for superalgebras.

THEOREM 5.1. — Let A € h§ be as above, V' a simple ho-module of
weight A and I = AnngAP(V).
(a) The triple ((9%, AP(V),F) is an fpf-category.
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(b) Assume that IIV 22V and that X is generic. Then the natural injec-
tive map U/I — L(AP(V), AP(V)) is surjective.

(c¢) Assume that IIV 2 V and that A is generic. Then we have the
following mutually inverse equivalences of categories:

L(AP(V),-)
M
(5.1) O -
_®UAP(V)

Note that for our choice of A the module AP(V') is obviously projective
in OP. The condition IIV 22 V is equivalent to the condition that dim g; is
even.

5.4. Proof of Theorem 5.1(a)

We only need to check condition (iv). Assume first that p = h @ n™.
For any finite dimensional g-module E we have the following commutative
diagram:

E®Q_

(5.2) o

@
Resl \LRES
ResE® v

O—0

Denote by Oy the block of O containing A(V). For any p € b denote
by O, the block of O containing A(u). By [14] and [11], to our A there
corresponds a dominant regular A’ € b such that the appropriate direct
summand of (5.2) has the form

(5.3) Ov 4F> OV

Gl lG

~ Ing ~

Ox Oy,
where G is an equivalence. In particular, for any projective functor F :
Oy — Oy there is a projective functor F/ : Oy, — O, such that (5.3)
commutes. Since condition (iv) is satisfied for Oy, and G is an equivalence,
it follows that (iv) is satisfied for Oy as well. This shows that Oy is an
fpf-category.

The corresponding statement for the category O reduces to Oy using

the adjointness of E ® _ and E* @ _ as follows. We have

Homg(Ey @ A(V), By @ A(V)) 2 Homg (A(V), Ef @ Ey @ A(V))
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by adjointness and the homomorphism space on the right hand side can
be computed inside Oy . Similarly for the morphisms of the corresponding
projective functors. Now the claim follows from the observation that the
evaluation map from (iv) commutes with adjunction.

The statement for the category (9% follows from that for the category Oy
since every homomorphism between projective modules in Og comes from
a homomorphism between projective modules in Ox.

5.5. Proof of Theorem 5.1(b) and (c)

Let us first assume that p = h @ nt. If g is one of the superalgebras
gl(m,n), sl(m,n), osp(m,n) or psl(n,n), the claim of Theorem 5.1(b) is
proved in [13, Proposition 5.1(ii)]. The idea of the following proof for type
g-superalgebras was suggested by Maria Gorelik and follows closely [13,
Section 8]. We are going to define some analogue of Gorelik’s notion of
a perfect mate, show that it exists for type g-superalgebras and use it to
prove our statement.

Denote by x the U(g)-central character of A(V') and by x§ the U(go)-
central character of A()).

LEMMA 5.2. — Let L be a simple U(g)-module with central charac-
ter xx. Then Res L has a non-zero component with U(gg)-central charac-
ter Xg'

Proof. — Set J := Anny L. Then J is a primitive ideal of U and hence, by
[28], coincides with the annihilator of some simple highest weight moduleN.
Since L has central character x», we can choose N € Oy. From (5.3)
(with A = X by [11]) it follows that Res N has a non-zero component with
central character XE{. Let x1 = X87 X2,---, Xk be all central characters
occurring in Res N, and my,...,m; the corresponding maximal ideals in
Z(go). Let l1,...,lx be minimal possible such that Hle m!

Then Hf:z m!" does not annihilate N and thus it does not annihilate L

“ annihilates N.

either. At the same time, the nonzero space Hf:z mé"L is annihilated by mlf.
The claim follows. O

Denote m = my, where m; is as in the proof of Lemma 5.2. Consider the
set
X :={veL(AN),AN) : vn' =mlv = 0,1 > 0}
and define B := UXU, which is a U-subbimodule of L{A(X), A(X)).

PROPOSITION 5.3. — We have B = L(A(A), A(N)).
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Proof. — Let B’ denote the cokernel of the embedding
B <= LIAN),A(N)).
Then B’ satisfies
{fveB v =nlv=0,1>0}=0
by construction of B. The fact that B’ = 0 is now proved mutatis mutandis
13, 8.4.2]. 0

Let M denote the go-submodule of A(V'), annihilated by m. As X is generic
by assumption, the module M is isomorphic to a direct sum of copies of
A(M). The direct summands of M are indexed by a basis of V' and hence
the number of direct summands equals dim V. Due to Proposition 5.3, to
complete the proof of Theorem 5.1(b) it is enough to show that U surjects
onto the gg-bimodule

L(M, M) = Endc(V) @ LIAN), A(N)).
We know that U(go) surjects onto L(A(N),A(N)) (see [18, 6.9(10)]). By
[15, A.3.2], under our assumption that ITV 2 V the algebra U(h) surjects
onto the matrix algebra End¢ (V). The claim follows.

For an arbitrary p the claim of Theorem 5.1(b) follows from the case
p=h@nt similarly to [18, 6.9].

The claim of Theorem 5.1(c) follows from Theorem 5.1(b) mutatis mu-
tandis [27, Theorem 3.1].

5.6. Some conjectures following Theorem 5.1

In this subsection p = hdn,, A € b, V is a simple ho-module of weight A
and I = AnngA(V).
Conjecture 5.4. — Assume A is strongly typical and regular. Then, the

adjoint g-module (U/I)*! is a direct sum of injective finite-dimensional
modules.

By [18, 6.8(3)], for every finite dimensional g-module F there is a natural
isomorphism
Homg(E, L(A(N), AN)*) = Homg (A(N), E* @ A(N)).

Since the functor Homg(A(M), (=)* ® A(A)) is exact on the category of
finite dimensional g-modules (as tensoring over C is exact and A(M) is
projective), it follows that the adjoint g-module £(A(X), A(X))2d is a direct
sum of injective finite dimensional modules. In particular, Theorem 5.1(b)
implies Conjecture 5.4 in the case V 2 IIV.
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Conjecture 5.5. — Assume A\ is strongly typical and regular. Then the
bimodule U/I is a direct summand of L(A(X), A(X)).

Conjecture 5.5 obviously implies Conjecture 5.4. Denote by ¢ the auto-
morphism of U(g), which multiplies elements from gy with 1 and elements
from g, with —1. For a U-bimodule B denote by B?¥ the bimodule, obtained
by twisting the right action of U with .

Conjecture 5.6. — Assume ) is strongly typical and regular, and V =
ITV. Then we have the following bimodule decomposition: L{(A(N), A(X)) =
U/Ie (U/I)?.

From [15, A.3.2] it follows that in the case V = IIV the algebra U(h)
does not surject onto the matrix algebra End¢(V), in fact, the image of
U(h) in Endc(V) has dimension 1 dim End¢ (V). It follows that in this case
the image of U in L(A(X), A(N)) is only “one half” of L(A(X), A(N)).

5.7. Annihilators and Kostant’s problem

In this subsection we work under the assumptions of Theorem 5.1(b).
Due to the equivalences from [14] and [11], the module AP(V') has simple
socle, say K, which is the unique simple subquotient of AP(V') of maximal
GK-dimension. Thanks to (5.3), for every projective functor 6 we have

(5.4) dim Homgy (A*(V), AP(V)) = dim Homy (0K, K).
PROPOSITION 5.7. —
(a) The natural inclusion
U/Anny (K) — L(K,K)
is surjective.
(b) Anngy (K) = Anny (AP(V)).

(c) We have Anngy (N) = Anny (AP(V)) for any nonzero submodule N
of AP(V).

Proof. — From (5.4) we have L(K,K) = L(AP(V),AP(V)) using the
same argument as in [19, Lemma 11]. Now (a) follows from the fact that U
surjects onto L(AP(V'), AP(V)), established in Theorem 5.1(b). Since

Anny (AP(V)) € Anny (K),

claim (b) follows from (a). As K is the simple socle of AP(V), claim (c)
follows from (b). O
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COROLLARY 5.8. — All Verma modules in Oy have the same annihila-
tor and for each such module N we have U/Anny (N) = L(N, N).

Proof. — The first claim follows from Proposition 5.7(c) since all Verma
modules in Oy are submodules of A(V).

To prove the second claim we need some notation. Let W denote the Weyl
group. Then Verma modules in Oy are naturally indexed by elements of .
For w € W let A(w) denote the corresponding Verma module (with the
convention A(e) = A(V)). Since all A(w) have the same annihilator by
the first claim, to prove the second claim it is enough to show that for any
simple reflection s € W we have

(5.5) L(A(w), A(w)) = LIA(sw), A(sw)).

Without loss of generality we may assume that A(sw) — A(w) — C,
where C is just the cokernel. Then C' is s-finite while the simple top and
the simple socle of A(sw) are s-infinite. Using this, (5.5) is proved similarly
to [19, Lemma 11]. The claim follows. O

5.8. Serre functor for category Oy

Fix one representative in every isomorphism class of indecomposable pro-
jective objects in (9% and denote by C; the full subcategory of O; which
these fixed objects generate. The category C; is an slf-category and O% is

equivalent to C¥-mod (note that C3 2 (C2)°P because of x). Now we are
ready to formulate our main result.

THEOREM 5.9. — Let A € h§ be strongly typical, regular, dominant and
generic. Let further V' be a simple ho-module of weight A and assume that
IV 2 V. Set A := AP(V'). Then we have:

(a) For any P,N € (’)§ with P projective there is an isomorphism
Homg (N, L(P,A)® @y A) = Homg(P, N)*,

natural in both P and N.
(b) The left derived of the functor L(_,A)® @y A is a Serre functor on
Q(Cg).

Proof. — Using Theorem 5.1(c) we will prove claim (a) along the lines
of the proof of Theorem 4.1. In fact, we need only to prove an analogue of
Proposition 4.2, the rest of the proof is identical to that of Theorem 4.1.

Our first observation is that it is enough to prove Proposition 4.2 under
the assumption that IV is projective. The case of general N reduces to the
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case of projective N by taking the first two steps of the projective resolution
(because both sides of (4.2) are right exact in N).

If N is projective, then N = §A for some projective functor . Similarly
to Subsection 5.6 one shows that the adjoint g-module £(A,0A)3 is a
direct sum of injective finite dimensional modules. Let Ly and Ly, denote
the trivial g- and go-modules, respectively. Note that Res Ly = L. Let
I(0) denote the injective hull of Ly in the category of finite dimensional
modules.

LEMMA 5.10. — The top of I(0) is isomorphic to the trivial module.

Proof. — The assumption IIV 2 V is equivalent to the assumption that
Ind is isomorphic to coinduction. By adjunction we have

Homg(Lg,Ind Ly,) = Homg,(Res Ly, Lg,) # 0,
which implies that 1(0) is a direct summand of Ind Lg,. Similarly,
Homg(Ind Ly, , Lg) = Homg, (Lg,,Res Ly) # 0

and hence Ly appears in the top of Ind L, .

At the same time, we claim that Ly does not appear in the top of any
other indecomposable injective module I. Indeed, if L is the simple socle
of I, then L # Ly and hence L has a nontrivial simple go-submodule,
say Ng,. Then, by adjunction,

Homg (L, Ind Ny, ) = Homg, (Res L, Ng,) # 0

and hence I appears as a direct summand in Ind Ng,. At the same time,
again by adjunction,

Homg(Ind Ny, , Lg) = Homg, (Ng,, Res Lq) = 0.
The claim follows. O

In the case P = A we have L(A,A) = U/I by Theorem 5.1(b). It follows
that in this case

(56) HOmg_g(ﬁ(A,P),ﬁ(A,N)) = 'C(AaN)g
Similarly to the proof of Lemma 4.3, we obtain that
(5.7) L(P,A) ®v.y LIA,N) = ((L(A,N)®)g)".

As L(A, N)2d is a direct sum of indecomposable injective modules and I(0)
has isomorphic top and socle, the multiplicities of Ly in the top and the
socle of £(A, N)2? coincide. This implies that the vector spaces in (5.6) and
(5.7) have the same dimension, say k, giving us an analogue of Lemma 4.3.
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Let Y be the isotypic component of I(0) in £(A,N)2d. It is easy to
see that JLL(A, N) contains both the complement Y’ of Y and the radical
RadY of Y. The dimension argument implies that KL(A, N) coincides
with Y' @ RadY. This means that L(A, N)/KL(A,N) is the top of Y.
Clearly, £(A, N)§ is the socle of Y. Let u € U(g) be any element which
annihilates the radical of I(0) but not I(0). Applying u provides a unique
(up to a nonzero scalar) isomorphism from the top of ¥ to the socle of Y.
This gives us an analogue of the isomorphism (4.4). The rest of the proof
of Proposition 4.2 carries over analogously. Claim (a) follows.

Claim (b) follows directly from (a). This completes the proof. O

5.9. Applications

In this subsection we work under the assumptions of Theorem 5.9.

COROLLARY 5.11. — The Nakayama functor on (’)§ naturally commutes
with projective functors.

Proof. — Mutatis mutandis Corollary 4.5. O
Consider the endofunctor C of (9% of partial coapproximation with re-
spect to projective-injective modules.

COROLLARY 5.12. — The Nakayama functor on (9; is isomorphic to C2.

Proof. — Mutatis mutandis Corollary 4.6. g

Fix one representative in every isomorphism class of indecomposable
projective-injective objects in (’)§ and denote by Pg the full subcategory of
(9; generated by these fixed objects. The category ’P; is an slf-category.

COROLLARY 5.13. — The category Py is symmetric.

Proof. — Mutatis mutandis Corollary 4.8. ]

As a special case of Corollary 5.13 we obtain that the algebra ’Pg describ-
ing finite dimensional modules in Oy is symmetric. For the superalgebra
gl(m,n) this is proved in [8]. In the case IV = V this is no longer true
in general (it is easy to see that the projective cover and the injective
hull of the trivial q(1)-module are not isomorphic). Instead we propose the
following:

Conjecture 5.14. — Under the assumption IIV = V the functor II is
the Serre functor on @(”P;).

TOME 62 (2012), FASCICULE 1



70 Volodymyr MAZORCHUK & Vanessa MIEMIETZ

6. Finite dimensional ¢(2)-modules
6.1. The result

In this section we use our results to describe all blocks of the category
of finite dimensional q(2)-modules.

THEOREM 6.1. — Every block of the category of finite dimensional q(2)-
modules is equivalent to the category of finite dimensional modules over
one of the following algebras given by quiver and relations:

(a)

(b) .
.\—Ja a2:O.
(c)
a a a
e e TR R R
b b b
(d)
\‘/oo a? =b*=0,ab = ba;
chd = ba, dch = hdc;
j h? =ac=db=cd=0.
/”\ /‘.’_\...
\__ﬂ/

It is worth emphasizing that the algebra in Theorem 6.1(d) is not qua-
dratic (not even homogeneous) and hence not Koszul either (in contrast
to algebras from [8]). Note that all algebras in Theorem 6.1 are special
biserial, in particular, they are tame.

6.2. Notation and the typical case

We fix the standard matrix unit basis {e11, 12, €21, €22, €11, €12, €21, €22 },
where the overlined elements are odd.

Write q(2)-weights in the form A = (A1, \2) € C? with respect to the
dual basis of hy. Simple finite dimensional q(2)-modules are determined
uniquely up to parity change by their highest weight. If X\ is the highest
weight of a simple finite dimensional ¢(2)-module L, then either A\ = 0 or
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A1 — A2 € N. The module L satisfies L = I1L if and only if exactly one of \;
and A9 equals zero. Denote by W the set of highest weights of all simple
finite dimensional q(2)-modules. We will loosely denote these modules by
L(\) and IIL(A) (but L(0) is the trivial module).

The weight A € W is atypical if and only if it is of the form (k,—k) for
some k € {0, %, 1, %, 2,...}. The facts that strongly typical blocks are semi-
simple (and hence described by Theorem 6.1(a)) and that other typical
blocks are described by Theorem 6.1(b) follow from [10, 6.2].

6.3. The non-integral atypical block

For k € {O,%,l,%,Q,...} set \¥ = (k,—k) and let N(A\¥) denote the
simple go-module with highest weight A*. It has dimension 2k + 1. We
denote by P()\*) the projective cover of L(\*) (in the category of finite
dimensional modules).

Recall from [30, 22] that simple atypical q(2)-modules look as follows:
we have the trivial module L(0), its parity changed ITIL(0), and for every
k€ {3,1,2,2,...} the even part of both L(A*) and IIL(A¥) is isomorphic to
N()\¥). In particular, using adjunction we obtain that the module Ind N (\?)
is indecomposable, while Ind N (\¥) = P(\*) @ ILP(\F) for all k # 0.

For any go-module M we have Ind M = A g1 ® M as go-modules. The
go-module A g; is a direct sum of four copies of the trivial module and four
copies of N(A!). Moreover, the odd part of ) g; is isomorphic to the even
part.

Assume now that k € {1,2,2 ...}, In this case the even part of P(A¥)
is isomorphic, as a gg-module, to the module

(N(0) & N(A1)) ® N(A") =

NOF) @ N @ N(AF), k=1
N(O*) @ NN @ N(AF1) @ N(AF),  otherwise.

This implies that P(A\*) has length three if & = % and length four otherwise.
By Corollary 5.13, P(A\*) has isomorphic top and socle, which are thus
isomorphic to L(AF). The other composition factor of P(Az) has highest
weight A%. For k # %, the other two composition factors of P(\*) have
highest weight A**! and A*~!. Interchanging L(A\F) and IIL(\*) for some k,
if necessary, we may assume that all composition factors of P(\F) have the
form L(\*) or L(A¥*1). This means that we have the following Loewy
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filtrations of projective modules:

P(\2) P(\F)

L(\7) L(A¥)
PN

L(A\3) LAY L")
~ 7

L(A\3) L(\")

It is now easy to see that the full Serre subcategory generated by L(\¥),
ke {%, %, %, ...}, forms a block which is equivalent to the category of finite
dimensional modules over the algebra given in Theorem 6.1(c).

6.4. The principal block

Similarly to the previous subsection one shows that for k € {2,3,4,...}
the projective module P(\F) has length four, isomorphic simple top and
socle, and two other composition factors which may be chosen to be isomor-
phic to L(A\*~1) and L(A\**1). So we need only to determine the structure
of P(0) and P(A\!).

A similar argument for P(A!) shows that it has length five with top
and socle isomorphic to L(A!) and the other three composition factors
isomorphic to L(0), ILL(0) and L(A?).

By a character argument, the module P(0) has length six with top and so-
cle isomorphic to L(0), two other composition factors isomorphic to IIL(0),
and the two remaining composition factors having highest weight A!. Since
P(A') contains both L(0) and IIL(0), the module TIP(A!) contains both
L(0) and TIL(0) as well. This implies that both L(A!) and ITL(A!) must
appear in the injective hull of L(0). Since we work with a symmetric alge-
bra, it follows that P(0) contains both L(A!) and IIL(\!), that is we now
know the composition factors of both P(0) and P(A!).

LEMMA 6.2. — We have Ext(L(0),11L(0)) = C.

Proof. — The elements €12, €21, €12 and €31 obviously annihilate any ex-
tension of L(0) by IIL(0). An extension of L(0) by IIL(0) is thus given by
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specifying two scalars o and § which represent the action of €17 and ey,
respectively. These scalars must satisfy o — 8 = 0 as [€12, e21] = €11 — €22.
On the other hand, it is straightforward to verify that any o and [ satis-
fying a — 8 = 0 give rise to a nontrivial extension of L(0) by IIL(0). This
proves the lemma. O

From Lemma 6.2 it follows that P(0) has Loewy length at least four for
otherwise the top of Rad P(0) would contain two copies of IIL(0). Therefore
the top of Rad P(0) has at most two composition factors, one of which must
be isomorphic to IIL(0). The parity change argument implies that the top
of Rad P(0) must contain more than IIL(0). Without loss of generality we
may assume that it contains L(A!). Since we already know that P(A!) does
not contain any IIL(A!) and that L(0) does not extend L(0), it follows

that P(0) has the composition structure as shown on the left part of the
following picture:

P(0) P(AY)
L(0) LAY
1L(0) L(\Y) TIL(0) L()?)
LAY I1L(0) L(0)
\ \
L(0) LAY

We see that the image of the unique up to scalar nonzero map from P(\!)
to P(0) contains an extension of ITL(0) by L(0). This implies that the com-
position structure of P(A!) is as shown on the right hand side of the above
picture. Now it is easy to see that the full Serre subcategory generated
by L(\*) and TIL(\*), k € {0,1,2,...} forms a block which is equivalent
the category of finite dimensional modules over the algebra given in Theo-
rem 6.1(d). Since this is the block containing the trivial module, it is called
the principal block.
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